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Supergravity pp-wave solutions with 28 and 24 supercharges

Iosif Bena* and Radu Roiban†

Department of Physics, University of California, Santa Barbara, California 93106, USA
~Received 11 December 2002; published 23 June 2003!

We conduct an exhaustive search for solutions of type IIA and IIB supergravity with augmented supersym-
metry. We find a two-parameter family of type IIB solutions preserving 28 supercharges, as well as several
other type IIA and IIB families of solutions with 24 supercharges. Given the simplicity of thepp-wave solution,
the algorithm described here represents a systematic way of classifying all such solutions with augmented
supersymmetry. ByT dualizing some of these solutions we obtain exact non-pp-wave supergravity solutions
~with 8 or 16 supercharges!, which can be interpreted as perturbations of the AdS-CFT correspondence with
irrelevant operators.
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I. INTRODUCTION

Plane waves are among the simplest solutions of the
pergravity equations of motion. Because of the existence
null Killing field, they are also solutions of string theory t
all orders in the sigma model perturbation theory@1,2#.

In addition to the three well-known supergravity solutio
with 32 supercharges (AdS4,5,73S7,5,4), it is possible to con-
struct two more@3–5#. Even though originally these solu
tions were constructed by solving the equations of motion
later turned out that they can be obtained as Penrose-G¨ven
limits @6# of the former. One of these solutions@3,4# is a pp
wave in 11 dimensional supergravity, has a nonzero fo
form field strengthF4, and is the Penrose-Gu¨ven limit of
both AdS43S7 and AdS73S4. The other solution@5# is app
wave in 10 dimensional type IIB supergravity, has a nonz
self-dual five-form field strengthF5, and is the Penrose
Güven limit of AdS53S5. These important observations pr
vided the link between plane wave solutions of supergra
equations of motion and the AdS conformal field theo
~CFT! correspondence. Thus, string theory in the plane w
geometry is dual to a sector with a largeR charge on the
gauge theory side@7#.

The ensuing burst of interest in plane wave geomet
prompted the construction of solutions@8–11# generalizing
the original ones and preserving more supersymmetries
the standard 16 of any plane wave. The plane wave geom
seems simple enough to attempt a classification of these
mented supersymmetry solutions. In this paper we perfo
this analysis for type IIB and IIA supergravity with the su
prising result that in the type IIB theory there exist solutio
preserving 28 supercharges. These solutions turn out t
related to Penrose limits of coset spaces@12#. Our method is
powerful enough to allow the classification of all solutio
with 24 supercharges as well. We construct a fairly la
number of them, both in type IIA and type IIB supergravi
Even though we do not prove here that our analysis exha
all these solutions, we believe it is quite likely that it does.
the type IIA theory we also find solutions preservin
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(p,q), pÞq supercharges. Four dimensional solutions w
this property were also constructed in Ref.@13#.

In the presence of general form fields, the dilatino var
tion is proportional to the contraction of these forms with t
Dirac G matrices acting on the supersymmetry parametee.
Therefore, in order to obtain more preserved supersym
tries, one needs theG matrices to combine into commutin
projectors. In order for this to happen one needs to turn
appropriate forms with appropriate coefficients.

If the dilatino variation takes the form

dl5M ~G0G2!~11M1!~11M2!e, ~1.1!

whereM is a matrix,M1 andM2 are independent, commut
ing and unipotent (Mi

251) combinations ofG matrices, each
of the three projectors will annihilate half of the spinors
acts upon. Since we assumed them to be independent
commuting they will annihilatedifferentsets of spinors and
thus the right hand side of Eq.~1.1! will vanish for 1618
14528 spinors. If instead of three projectors we only ha
two, then only 1618524 spinors give a zero dilatino varia
tion.

Once we have these candidates for Killing spinors,
next step is to test whether the gravitino supersymme
variation vanishes. For plane wave would-be solutions t
completely fixes the metric, as well as the dependence of
spinors on the coordinates. In some cases all the 24 o
spinors give a zero gravitino variation, so they are Killin
spinors. In other cases, the number of Killing spinors
smaller.

In the next section of this paper we describe thepp-wave
geometry and the form of the dilatino and gravitino sup
symmetry variations. We then explore the types and com
nations of form fields that can be turned on in order
projectors to appear in these equations. Then, we use
dilatino variation to make a number of educated guesses
solutions with enhanced supersymmetry, both in type IIA a
in type IIB supergravity. In Sec. IV we test theseAnsätze
against the gravitino variation, and find the full solutions.

We first describe two families of type IIB background
with 28 Killing spinors. These backgrounds have nonvani
ing self-dualF5 flux, as well as nonzero Ramond-Ramon
~RR! or Neveu-Schwarz–Neveu-Schwarz~NSNS! three
©2003 The American Physical Society14-1
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I. BENA AND R. ROIBAN PHYSICAL REVIEW D 67, 125014 ~2003!
forms in particular combinations. The relative strength of
five form and RR or NSNS three form is a free parameter
each of the two solutions is in fact a one parameter fami1

We then list the other type IIA and type IIB backgroun
with more than 16 Killing spinors which we obtain by th
procedure. We list solutions with 24 supercharges involv
F31F5 , H31F5 , F31H31F5 , F41H3 , F41F2 , H3
1F2, as well as solutions preserving chiral supersymme

Some of the solutions we analyze have some Killi
spinors independent of the coordinate along the direction
propagation of the wave. Thus, it is possible toT dualize
along this direction and still have a solution preserving so
supersymmetry. We find that the dual geometries can be
terpreted as arising from smeared strings or D-branes
formed with transverse fluxes, and explain them in light
the AdS-CFT correspondence. In the process we cons
exact nonsingular flows from brane near-horizon geomet
in the IR to certain nontrivial geometries in the UV. Th
results are described in Sec. V.

It is also interesting to ask what is the highest number
supersymmetries than can be preserved by app-wave back-
ground in type II theories. To obtain 32 supercharges
needs the dilatino variation to vanish, in order to impose
constraints on the supersymmetry parameters. Thus the
form field we can have is the type IIB self-dual five-form
The maximally supersymmetricpp-wave background ob
tained in Ref.@5# is the only such solution.

A solution preserving 30 supercharges would have a
latino variation containing a product of four independe
projectors. As we will show in Sec. VI, it is not possible
combine the fields of type IIA and IIB supergravity to for
so many projectors. Thus, in addition to the maximally s
persymmetric solution of type IIB supergravity, the solutio
with 28 supercharges described here have the largest pos
amount of supersymmetry one can obtain in app-wave back-
ground in 10 dimensions.2

II. SUPERSYMMETRIES AND PROJECTORS

In this section we will describe in detail a general way
constructing wave solutions of the supergravity equations
motion with enhanced supersymmetry. As it is known,
metric and forms of app wave are quite simple, yet non
trivial. We choose a metric of the form

ds2522dx1dx22Aab~x1!zazb~dx1!21~dza!2,
~2.1!

and the only nonzero component of the field strengths of
RR and NSNS fields isF1 i 1••• i p

(x1). Because they only

1Of course these two solutions are related byS duality, and are
just the end points of an entire family of solutions generated
rotatingF3 andH3 into each other viaS duality. This gives in the
end a 2-parameter family of 28 supercharge solutions.

2It would be interesting to see if the methods we use for find
pp-wave solutions with augmented supersymmetry~combining the
forms to form projectors! can be used to find M-theory or lowe
dimensional supergravity solutions with 28 supersymmetries.
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depend onx1, the forms satisfy the equations of motion an
Bianchi identities by construction.

Choosing (h12521), the vielbeine are

e15dx1, ea5~df, dxi , dyi ![dza,

e25dx21
1

2
Aab~x1!zazbdx1, ~2.2!

and the spin connection~defined bydeA1vA
B`eB50) is

v2c5Acb~x1!zbdx1. ~2.3!

The supercovariant derivative is therefore given by

¹i5] i , ¹25]2 , ¹15]11
1

2
Aab~x1!zbG2Ga ,

~2.4!

and the Ricci tensor is just

R115Aa
a~x1!. ~2.5!

Thus, the only equation of motion our backgrounds have
satisfy is

R115Aa
a~x1!5

1

2 (
p

1

p!
F1 i 1••• i p

F1 i 1••• i p, ~2.6!

whereF1 i 1••• i p
are the field strengths of the various RR a

NSNSp forms present and self-dual fields enter only onc
We will use the conventions of Ref.@14# for the type II

supersymmetry transformation rules. In these conventi
we will work with two Dirac spinors~thus, all Dirac matrices
will be 32-dimensional! obeying appropriate chirality condi
tions and forming a 2-dimensional representation of an a
iliary SL(2,R). Defining F” (n)5(1/n!)GN1•••NnFN1 . . . Nn

, the
supersymmetry transformations are for type IIA,

dl5
1

2
GM]Mfe2

1

4
H” s3e1

1

2
ef@5F (0)s

113F” (2)~ is2!

1F” (4)8 s1#e, ~2.7!

dCM5¹Me2
1

8
GNPHMNPs3e1

1

8
ef@F (0)GMs1

1F” (2)GM~ is2!1F” (4)8 GMs1#e,

and for type IIB,

dl5
1

2
GM]Mfe2

1

4
H” s3e2

1

2
efFF” (1)~ is2!e1

1

2
F” (3)8 s1eG ,

~2.8!
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SUPERGRAVITYpp-WAVE SOLUTIONS WITH 28 AND . . . PHYSICAL REVIEW D67, 125014 ~2003!
dCM5¹Me2
1

8
GNPHMNPs3e1

ef

8 FF” (1)GM~ is2!

1F” (3)8 GMs11
1

2
F” (5)8 GM~ is2!Ge

with the modified field strengthsF8 given by

F (3)8 5F (3)2CH(3) , F (5)8 5F (5)2H (3)`C(2) ,

F (4)8 5F (4)2H (3)`C(1) . ~2.9!

Preserved supersymmetry appears in the form of spin
that are annihilated by a set of projectors when the ab
transformations are evaluated on solutions to the equat
of motion. Thus, a classification of all possible solutions p
serving some supersymmetry becomes a three-step pro
The first step requires a classification of projectors that
be built out of supergravity fields in the dilatino transform
tion rule. The next step requires checking whether these fi
configurations are compatible with the gravitino supersy
metry transformation~Killing spinor equation! and the third
step involves checking whether the equations of motion
satisfied.

The first step in the procedure outlined above can be
formed in quite some generality. In the notation we are us
here a generic projector looks similar to

P5
1

2
~11G ^ s!, ~G ^ s!251, ~2.10!

whereG is some combination of Dirac matrices ands is one
of the gl(2,R) generators. We will loosely refer to thes
dependence of various terms as their gl(2) structure. Ha
the eigenvalues of such a projector vanish. Thus, one s
projector will preserve one half of the supersymmetries. T
only way to find more preserved supersymmetries is to h
the dilatino variation be proportional to a product of com
muting projectors. This observation allows us to find t
maximum number of supersymmetries that can be prese
by a solution of the equations of motion which has a no
trivial supersymmetry transformation of the dilatino.3

Due to the fact that we are considering wave solutio
each term in the dilatino variation is proportional to t
Dirac matrix pointing along the~null! direction of propaga-
tion of the wave~this direction will be denoted byx1). This
matrix is proportional to a projector~2.10! in which s51. It
is easy to see that this projector commutes with any o
projector that can be constructed from the remaining Di
matrices appearing in the supersymmetry transforma
rules. Thus a wave solution will always preserve sixteen
percharges.

In the next two sections we will follow the steps outline
above. We will begin by describing several field configu
tions that factorize the dilatino variation into projector

3For the maximally supersymmetric wave each term in the
latino variation vanishes separately.
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These field configurations have the potential of produc
wave solutions preserving 28 supercharges. We will th
proceed in Sec. IV to analyze the Killing spinor equation a
the equations of motion.

III. POTENTIAL SOLUTIONS

Given the simplicity of the wave metric and the fact th
all field strengths carry one null index, it is easy to find fie
configurations such that the dilatino transformation is p
portional to a product of commuting projectors. We will b
gin with the type IIB supergravity. It will be argued in Se
VI that the dilaton and the axion cannot have nontrivial v
ues if more than 16 supercharges are to be preserved. T
we will look for field configurations involving only the
3-form field strengths.

We will first discuss potential solutions with either one
H (3) or F (3)8 nonvanishing. It is very easy to see that, af
factorizing the Dirac matrix pointing along the direction
propagation of the wave, bothH (3) andF (3)8 will contribute
two Dirac matrices that must be further combined in proje
tors. Since for the time being we are considering only o
type of field, the gl(2) component of the supersymme
transformation rule will factorize. The only possibility i
then to find projectors constructed out of four Dirac matric
It turns out to be possible to have

dl;G2~12bG1234!~12gG1256!e, b25g251
~3.1!

which vanishes for 28 different spinors. The field configu
tion realizing this setup is the following:

H1125bH1345gH1565abgH1785 f ~x1!,

G21e5ae, a251. ~3.2!

Here f (x1) is for the time being an arbitrary function ofx1

while G21 is the 10-dimensional chirality operator. As stat
in the beginning, we are free to replaceH with F8. This
function will be fixed in the next section using the gravitin
variation as well as the equations of motion.

To show that this field configuration indeed reproduc
Eq. ~3.1! we need to make use of the fact that both sup
symmetry parameters have the same chirality. After pull
out G2G12 as common factor the dilatino variation becom

dl5
f ~x1!

4
G2G12^ s l@12bG12342gG12562abgG1278#e

5
f ~x1!

4
G2G12^ s l@12bG12342gG1256

2abgG3456G21#e

5
f ~x1!

4
G2G12^ s l~12bG1234!~12gG1256!e,

l 51,3. ~3.3!
i-
4-3
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I. BENA AND R. ROIBAN PHYSICAL REVIEW D 67, 125014 ~2003!
Here we used the definition of the chirality operator4 G21
521

2@G1 , G2#G12345678and the definition ofa in Eq. ~3.2!.
The choicesl 51 andl 53 correspond to having a nontrivia
RR 3-form and NSNS 3-form, respectively.S duality con-
tinuously interpolates between these two solutions.

Next we discuss a possible solution of type IIB supergr
ity which preserves 28 supercharges, contains bothF (3) and
H (3) and is notS dual to the solutions considered abo
~neither F (3) nor H (3) can beS-dualized away!. It is clear
that, after pulling out a common factor, some terms will
left with the identity operator as their gl(2) component wh
others will have (is2). Since (is2) can appear in a projecto
only tensored with two or three Dirac matrices, it is easy
see that a possible combination of projection operators i

dl;G2@12bG14~ is2!#@12gG23~ is2!#e, b25g251.

~3.4!

The field configuration producing this dilatino variation is

gH11352bH1245F1128 5bgF1348 5 f ~x1!. ~3.5!

As before,f (x1) is for the time being arbitrary and will be
determined by the gravitino variation and equations of m
tion. One can in principle construct these field strengths fr
several different potentials. However, we choose the gaug
which the potentials do not carry the1 index. The reason for
this gauge choice is to make sure that the modified 5-fo
field strength remains trivial. As promised, the dilatino var
tion is

dl52
f ~x1!

4
G2@~gG132bG24!s

31~G121bgG34!s
1#e

52
f ~x1!

4
G2G12s

1@12bG14~ is2!#@12gG23~ is2!#e.

~3.6!

We will show in Sec. VI that, up to a relabeling of coord
nates, the field configurations described above are the
ones that lead to a product of three projectors~two if one
ignoresG2) in the dilatino supersymmetry transformatio
rule.

We now turn to possible solutions of type IIA supergra
ity. As in type IIB supergravity, any wave solution preservi
more than 16 supercharges has a trivial dilaton. Even w
this simplification, the situation is substantially more comp
cated than in type IIB theory since there are three differ
types of fields contributing to the dilatino transformatio
rule. Deferring the detailed analysis to Sec. VI, we pres
here several examples.

The only possible~up to relabeling and reshuffling o
terms! projector that could preserve 28 supercharges is

dl;G2@11bG148~ is2!#@11gG245~ is2!# ~3.7!

and the field configuration generating it is

4G65(1/A2)(G06G9); $G1 , G2%522.
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H1125

1

2
bgH15852bF12485gF11455 f ~x1!.

~3.8!

As beforef (x1) is an arbitrary function to be determined b
the Killing spinor equation and equations of motion. T
dilatino variation generated by this field configuration is i
deed proportional to Eq.~3.7!

dl5G2G12^ s3@11bG148^ ~ is2!#@11gG245^ ~ is2!#.

~3.9!

It is possible to add a further projector to the product abo
However, this requires use ofG21 and thus it enhances su
persymmetry only in the right-handed sector while break
it in the left-handed sector.

Finding solutions preserving 24 supercharges is also e
in this approach. The projector

G2~11bG1^ s1! ~3.10!

can appear in a solution with nonzeroH (3) andF (2)

3F1152
1

2
H1125 f ~x1!. ~3.11!

This gives the dilatino variation

dl5
f ~x1!

2
G2@G12s

31G1~ is2!#

52
f ~x1!

2
G1~ is2!G2~12G2s1!, ~3.12!

which contains the projector promised above.
Another example of potential solutions preserving 24

percharges is built on the projector

G2~11G1234s
3!. ~3.13!

The field configuration that can generate this projector c
tainsF (4) andF (2) :

3F115F12345 f ~x1!. ~3.14!

This leads to the dilatino variation

dl5
f ~x1!

2
G2@G1~ is2!1G234s

1#

52
f ~x1!

2
G1~ is2!G2~11G1234s

3!. ~3.15!

To summarize, we have described how the study of
dilatino variation can yield field configurations that have t
potential of preserving large amounts of supersymmetry. T
final word in this matter belongs however to the Killin
spinor equation and the supergravity equation of motion.
proceed with their analysis, thus completing the second
third steps of the program outlined in Sec. II.
4-4
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IV. GRAVITINO VARIATION AND EQUATIONS
OF MOTION

A. Generalities

The strategy for solving the Killing spinor equations
plane wave backgrounds was discussed in some deta
Refs. @4,8#. Here we will go beyond their analysis and ca
these equations in a form suitable for the setup discusse
the previous sections.

The generic structure of the gravitino transformation is

dCM5¹Me1VM~x1!e, ~4.1!

whereVM(x1) is the torsion part of the spin connection a
represents the contribution of the various form fields. If
RR fields vanish thenVM is just the standard torsion induce
by the NSNS 3-form field strength. It is not hard to see fro
the gravitino variations~2.7! and ~2.8! that V i(x

1) is pro-
portional toG2 . Therefore

G2V i~x1!5V i~x1!G25V i~x1!V j~x1!50 ~4.2!

becauseG2 is nilpotent. On the other hand,V1 does not
satisfy these relations because it contains the combina
G2G1 which is not nilpotent.

Since the spin connection vanishes along the transv
directions, it is trivial to solve the corresponding equation

] ie1V i~x1!e50→e5@12xiV i~x1!#x, ~4.3!

wherex is an unconstrained spinor depending only onx1.
The remaining nontrivial equation corresponds to the1 di-
rection. In the following we will suppress the dependence
x1, with the understanding that bothV andA arex1 depen-
dent:

]1@~12xiV i !x#1
1

2
Ai j x

jG2G ix1V1~12xiV i !x50 .

~4.4!

It is clear that the terms with differentxi dependence shoul
cancel separately. Thus, the equation above splits in
parts, one of which can be used to remove from the other
terms with derivatives acting on the spinor. The final resul

05]1x1V1x,

052~]1V i !x1@V i , V1#x1
1

2
Ai j G2G jx. ~4.5!

Being a first order differential equation, the first equati
always has the solution

x5e2*dx1V1r, ~4.6!

wherer is an unconstrained, constant spinor.
The second equation is more restrictive. Consider a w

solution supported by both NSNS fluxH (3) as well as RR
fluxes which we will generically denote asF[(pF (p11)8 .
Then,VM is given by
12501
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VM52
1

8
GNPHMNP^ s31

ef

8
F” GM , ~4.7!

where F” [(pF” (p11)8 ^ s l (p) and l (p) is determined from the
supersymmetry transformation rules~2.7!,~2.8!.

Defining h” (2) and f” (p) as

H” (3)^ s3[G2h” (2) , F” (p11)^ s l (p)[G2f” (p) , ~4.8!

and f”5(pf” (p) , the torsionVM decomposes into transvers
and lightlike components as

V i5
1

8
G2@h” (2) , G i #2

1

8
G2f”G i ,

V152
1

4
h” (2)2

~2 !p

8
G2G1f” , ~4.9!

while V250. We also lowered the upper1 index on the
Dirac matrices and this leads to the various sign differen
between Eqs.~4.9! and ~4.7!. Then, the commutator appea
ing in Eq. ~4.5! becomes

@V i , V1#5
1

32
G2@~h” (2)

2 1f”2!G i2$ f” , h” (2)%G i12f”G ih” (2)

22h” (2)G ih” (2)1G ih” (2)
2 #. ~4.10!

Consider now the case when the NSNS fieldH (3) and
only one of the RR fields,F (p11) are turned on, and both
have exactly one nonvanishing, constant component. Th
the first two terms above represent the right-hand side of
equation of motion, while the last two terms give a tracele
contribution toAi j . Therefore, the remaining two terms mu
give a traceless~or vanishing! contribution toAi j if the equa-
tion of motion is to be satisfied.

SinceF (p11) andH (3) combine to form a projector in the
dilatino variation, it is not hard to see that f” and h” (2) com-
mute, which implies that the two terms we are interested
can be written as

2f” @G i , h” (2)#. ~4.11!

Moreover, the vanishing dilatino variation implies that f” (p)x
andh” (2)x are proportional. Therefore, the object above c
always be written asCi j G2G j , whereCi j is a constant ma-
trix. Its trace is the obstruction to constructing a solution
the field equation with 24 supercharges and the NSNS
RR fluxes described above, and it vanishes.

An important question is whether any wave solution p
serving more than 16 supercharges can havex1-dependent
form fields. If such a field existed, it would follow that]1V i
in Eq. ~4.5! is nonvanishing. Its Dirac matrix structure allow
a contribution of F (2) be canceled by introducing off
diagonal entries of the coefficient matrixAi j . However, the
differences between the gl(2) structures of the two ter
prevents this cancellation. Thus, we conclude that all fo
fields must be constant.
4-5
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B. Solutions with 28 supercharges

We now analyze the field configurations put forward
Sec. III. Of the potential solutions with 28 supercharg
some do not solve the Killing spinor equations. Those wh
solve it exist in type IIB and can be extended to include
5-form field strength as well.

Let us begin with the type IIB theory and discuss t
fields in Eq.~3.2! and itsS-dual version. These fields do no
satisfy the assumptions introduced at the end of the prev
subsection, so we must start with Eq.~4.10!. Consider first
the field configuration in Eq.~3.2!. Since f” vanishes, the
second and third terms in Eq.~4.10! are absent. Furthermore
from the previous section we know that the dilatino variati
is proportional toh” (2) which is

h” (2)5 f ~x1!~G121bG341gG561abgG78! ^ s3.

~4.12!

Thus, takingx to be the spinors that annihilate the dilatin
variation, the only terms that survive in the second term
Eq. ~4.5! are

05
1

32
G2h” (2)

2 G ix1
1

2
Ai j G2G jx. ~4.13!

To find Ai j it is helpful to notice that, for any choice of th
index i in Eq. ~4.13!, passingG i through h” (2) changes the
sign of exactly one of the four terms inh” (2) . Then, the fact
that h” (2) annihilatesx implies that the three terms with th
sign unchanged can be replaced by the fourth one, wh
square is proportional to the identity matrix. For example,
i 51,2 we have

~h” (2)!
2G ix5 f 2G i~2G121bG341gG561abgG78!

2x

5 f 2G i~22G12!
2x524 f 2G i . ~4.14!

Thus, the Eq.~4.13! implies that

Ai j 5
1

4
d i j f

2. ~4.15!

It is trivial to check that the equation of motion~2.6! is
satisfied.

The same analysis applies with only cosmetic change
any of theSduals of Eq.~3.2!. Since the Dirac matrix struc
ture of f” and h” (2) is identical, andh” (2)x50, then only the
first two terms in Eq.~4.10! survive; for both of them the
discussion above Eq.~4.14! applies without change.

This family of S-dual solutions can be further extended
a two 2-parameter one by including the 5-form field streng
This is possible because the 5-form field strength does
appear in the dilatino supersymmetry transformation ru
Consider the following addition to Eq.~3.2!:

F (5)5gdx1`~dx1`dx2`dx3`dx4

1adx5`dx6`dx7`dx8!, G21x5ax. ~4.16!

Under these circumstances, f”(p) in Eq. ~4.10! must be re-
placed with f” (2)1

1
2 f” (4) and this leads to
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05
1

32
G2S f” (2)1

1

2
f” (4)D 2

G ix1
1

2
Ai j G2G jx, ~4.17!

where f” (4) is given by

f” (4)5g~G12341aG5678!. ~4.18!

Since f” (2) and f” (4) anticommute, Eq.~4.17! becomes

05
1

32
G2S f” (2)

2 1
1

4
f” (4)

2 DG ix1
1

2
Ai j G2G jx. ~4.19!

Thus, each of the two RR field strengths gives an indep
dent contribution to the coefficientsAi j . This shows that
under certain circumstances plane wave solutions can be
perposed without breaking supersymmetry.

The f” (2) dependence is treated as above while the f” (4) is
analyzed as in the case of the maximally supersymme
plane wave solution, which we now repeat for the reade
convenience. The important observation is that for ea
choice of the indexi, pushingG i past f” (4) changes the rela
tive sign between the two terms in f” (4) . Then, using the
chirality operator, the term with changed sign can be map
into the one that did not. Since each of the two terms squ
to 2g2 we find

f” (4)5f” (4)
1 1f” (4)

2 , ~ f” (4)
I !252g2,

G2~ f” (4)
1 1f” (4)

2 !2G ix5G2G i~ f” (4)
1 2f” (4)

2 !2x54G2G i f” (4)
1 2x

524g2G2G ix. ~4.20!

Thus, the coefficientsAi j now become the sum of theF3 and
F5 contribution, and the solution is

F (3)5 f dx1`~dx1`dx21bdx3`dx4

1gdx5`dx61abgdx7`dx8!,

F (5)5gdx1`~dx1`dx2`dx3`dx4

1adx5`dx6`dx7`dx8!,

A i j 5
1

4 S f 21
1

4
g2D d i j . ~4.21!

Even thoughf andg appear in the metric only in the comb
nation (f 21 1

4 g2), the field strengths retain information onf
andg separately. UsingSduality one can reconstruct the fu
2-parameter family of solutions~by rotatingF3 into H3 by
any angle!. The maximal rotation corresponds to solutio
with only H3 andF5.

To conclude this discussion, we formulate a superposit
rule for wave solutions:Adding any two plane wave solu
tions with RR fields F(p11) and F(q11) leads to a new solu-
4-6



-
he

he
b
te
e
s

2

e-

y
r

.
tio
n

ow

re

er

IB
ll.
e

tie
d
lu-

el
. I

e
vi
ng

i
rm
r-
a
o

-

-

ef.

y.
rve
. We
m.
,

ll
s, it
er-
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tion. If the correspondingf”(p) and f”(q) anticommute, the com
mon supernumerary Killing spinors are inherited by t
resulting solution.

This statement allows one to immediately decide whet
the direct sum of two wave solutions remains a solution
just looking at the directions covered by the various exci
field strengths. The final amount of supersymmetry is giv
by the number of Killing spinors common to both solution
which can be found from the dilatino variation only.

We now turn to the other candidate solution preserving
supercharges~3.5!. The building blocks of Eq.~4.10! are in
this case

h” (2)5 f ~gG132bG24! ^ s3, f”(2)5 f ~G121bgG34! ^ s1.

~4.22!

Unfortunately, Eq.~3.5! cannot source a solution that pr
serves more than 20 supercharges. Indeed, f”

2 contains a term
of the formbgG1234̂ 1, which cannot be canceled either b
a choice ofAi j or by introducing other fields. This furthe
restricts the extra Killing spinors to be eigenvectors ofG1234
with the same eigenvalue, and thus reduces them to 4
5-form field strength can also be added to this configura
without further reducing its supersymmetry. Solutions co
tainingF (5) and the fields in Eq.~3.5! were explored in Ref.
@15# and obtained as Penrose limits of the Pilch-Warner fl
@16#.

We can also analyze the possible type IIA solution p
serving 28 supercharges~3.8!. The discussion is similar to
the one above; unfortunately, these solutions do not pres
more than 20 supercharges.

The solution sourced by NSNS fluxes found in type I
supergravity is a solution of the type IIA theory as we
However, in the latter case it preserves only (14,8) sup
charges, because the two fermions have opposite chirali

To summarize the results thus far, we have constructe
type IIB supergravity a two-parameter family of wave so
tions preserving 28 supercharges. They areS dual to each
other and are constructed by adding 5-form flux to the fi
configurations suggested by the projector analysis of Sec

C. Solutions with 24 supercharges

Deformations of solutions with 28 supercharges. Any of
the solutions discussed in the previous section and pres
ing 28 supercharges can be deformed to solutions preser
only 24. Indeed, if one modifies one of the two commuti
projectors in the dilatino equation (11M )(11N), the other
one is still a projector, and still annihilates half the spinors
acts upon. Thus, all the families of solutions of the fo
~4.21! with b251,g2Þ1 or vice-versa preserve 24 supe
charges. Adding one structure of five-form field strength c
be done without paying any cost. Thus we find a tw
2-parameter family ofpp-wave solutions with 24 super
charges

F1125F1565 f , F1345aF1785b f ,

F112345aF156785g,
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A115A225A555A665
g214 f 2

16
,

A335A445A775A885
g214 f 2b2

16
,

~4.23!

together with itsS-dual cousins.
The ratio f /g, b and theS-duality parameter are uncon

strained. In the caseb50 we recover the Penrose-Gu¨ven
limit of AdS33S33T4 @7#, which is also theT dual of the
solutions with 24 supercharges obtained in type IIA by R
@9#. If the five-form field is vanishing andb50, then the
‘‘most distant’’ S-dual cousin of Eq.~4.23! ~involving only
H (3)) is a 24 supercharge solution of type IIA supergravit

In Sec. III we also discussed some projectors that prese
24 supercharges and cannot be extended to preserve 28
now construct the supergravity solutions which realize the

Type IIB supergravity. As we saw in the previous section
the field configuration~3.5! cannot be completed to a fu
supergravity solution with 28 supercharges. Nevertheles
is possible to use it for constructing solutions with 24 sup
charges by truncating it to

aH1135F1128 5 f ~x1!, a251. ~4.24!

The dilatino variation is

dl52
f ~x1!

4
G2@aG13s

31G12s
1#e

52
f ~x1!

4
G2G12s

1@11aG23~ is2!#e ~4.25!

and the gravitino variation fixes the metric coefficients to

Ai j 5
f 2

16
diag~9,1,1,1,1,1,1,1!. ~4.26!

As expected, the equation of motion

R115Tr A5 f 25
1

2
~H113H1

131F112F1
12! ~4.27!

is also satisfied.
Type IIA supergravity. A similar solution to the one ob-

tained above involvesF (4) andH (3) :

1

2
H1125aF11455 f ~x1!, a251, ~4.28!

and thus

dl5
f ~x1!

2
G2~G12s

31aG145s
1!

5
f ~x1!

2
G2G12s

3@12aG245~ is2!#; ~4.29!

the gravitino variation fixes the metric coefficients to
4-7
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I. BENA AND R. ROIBAN PHYSICAL REVIEW D 67, 125014 ~2003!
Ai j 5
f 2

16
diag~9,25,1,1,1,1,1,1! ~4.30!

and the equation of motion

R115TrA55 f 2/25
1

2
~H112H1

121F1145F1
145!

~4.31!

is also satisfied.
Another type IIA solution preserving 24 supercharges c

be obtained by combiningH (3) andF (2) :

3F1152
a

2
H1125 f ~x1!, a251. ~4.32!

The dilatino variation is given by Eq.~3.12!, and the metric
is given by the gravitino variation to be

Ai j 52
2

9
diag~121,169,1,1,1,1,1,1!. ~4.33!

Despite these rather bizarre numbers, the equation of mo
is also satisfied:

R115Tr A5
37

18
5

1

2 S 1

32 122D5
1

2
~F11F1

11H112H1
12!.

~4.34!

The last solution discussed in Sec. III@Eq. ~3.14!#:

3F115F12345 f ~x1! ~4.35!

also preserves 24 supercharges. The dilatino variation is
~3.15!, and the metric determined by the gravitino variatio

Ai j 5
f 2

934 S 414 0

0 14
D ~4.36!

satisfies the equation of motion

R115
5

9
f 25

1

2
~F11

2 1F1234
2 !. ~4.37!

Upon lifting this solution to M-theory one obtains the max
mally supersymmetric solution found in Ref.@5#. We can
also use the superposition principle formulated in the pre
ous section to add to this solution the identical solution w
fields along different directions. As we explained, the gra
itino variation equation is satisfied if the fields anticommu
and the dilatino variation becomes the sum of two projecto
Thus the superposition solution with

3F115F12345 f , 3F125F11565g, ~4.38!

and the correspondingAi j preserves 4 supernumerary Killin
spinors and thus has 20 supercharges.
12501
n

on
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V. T DUALITY

It is interesting to explore the metrics one obtains byT
dualizing some of the solutions with augmented supersy
metry found in the previous sections. The Killing spinors th
survive theT-duality transformation are those which com
mute with the Killing vector defining the duality direction
Equation~4.3! implies that all spinors depend on the tran
verse coordinates, therefore these directions cannot be
for our purpose. We thus explore duality transformatio
along x1, which is the most interesting of the remainin
directions.

However, as one can see from the solutions describe
the previous chapter, allAi j giving augmented supersymme
try are positive, and therefore Eq.~2.1! implies thatx1 is
timelike. Unfortunately, timelikeT duality is hard to interpret
physically since it yields RR-field kinetic terms with th
wrong sign@8,17#. Thus, it can only be used as a solutio
generating technique, and only for spacetimes with NS
fields.

There are two ways we can circumvent this problem. T
first one is toT dualize only the solutions with NSNS flux
We have one such solution with 28 supercharges, as we
2 families of solutions with 24. The second@8# is to perform
a coordinate transformationx2→x22(c/2)x1, wherec is a
positive constant. The metric~2.1! becomes

ds2522dx1dx21c~dx1!2

2Aab~x1!zazb~dx1!21~dza!2, ~5.1!

and thus for anyc there exists a region of space wherex1 is
spacelike andT duality can be performed. The same shift c
be performed for the spacetimes containing only NS
fields. It is rather straightforward to take any of the solutio
we have andT dualize it using the rules in Ref.@18#.

As explained in the beginning of this section, not all
the original supersymmetries survive theT-duality proce-
dure. Only those Killing spinors which are independent
x1 remain Killing spinors of the new geometries. From E
~4.5! we can see that these spinors satisfyV1x50.

Unfortunately, for the solutions with 28 supercharges,V1

is not proportional to any projector from the dilatino vari
tion. This is becausef” andh” are no longer multiplied from
the left byG2 ~as in the dilatino variation!, and therefore the
chirality of the spinors cannot be used to combine theG
matrices into products of projectors. It is, however, not ha
to see that, whenT dualizing the solutions with 28 super
charges, all the supernumerary Killing spinors disappear,
only 6 of the 16 annihilated byG2 remain.

pp-wave solutions with only two nonzero structures ofF3
or H3 ~preserving 24 supercharges! have morex1 indepen-
dent Killing spinors. Indeed, in both casesV1 contains one
projector, and thus all the 8 supernumerary Killing spino
and 8 of the 16 regular ones survive theT duality. The result
of the duality transformation alongx1 is a non-pp-wave so-
lution of type IIA and 11 dimensional~11D! supergravity
with 16 supercharges.

Let us first consider a solution containing only NSN
fluxes @similar to theS dual of Eq.~4.23!#:
4-8
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H1125H1345h, →B115hx2, B135hx4,

H5c2
h

4
@~x1!21~x2!21~x3!21~x4!2#.

~5.2!

The T dual of this geometry is

ds25
1

H
@~dx11hx2dx11hx4dx3!22~dx2!2#1~dxi !2,

e2F5
1

uHu
, B5

1

H
~dx11hx2dx11hx4dx3!`dx2,

~5.3!

which is exactly the metric of smearedF strings perturbed
with transverse fluxes. The solution diverges at finite d
tance from the origin.

Since Eq.~5.3! only contains NSNS fields, it makes sen
as a solution whenH is negative. The only difference is tha
x2 becomes spacelike,x1 becomes timelike, and theB field
switches sign. SinceuHu can be chosen to be nowhere va
ishing ~by choosingc,0), this solution is regular every
where.

It is quite surprising that these metrics preserves 16
percharges, and it is even more surprising that such me
areT dual to that of app wave. Very similar solutions can b
obtained byT dualizing the solution withH3 and 28 super-
charges. In that case only 6 of the original 28 supercha
survive T duality; however, it is possible that the resultin
solution preserves a larger amount of supersymmetry
which only 6 supercharges commute withT duality. We did
not investigate this possibility.

For positiveH we can alsoT dualize the solution with
nontrivial F3:

F1125F1345 f , →C115 f x2, C135 f x4,

H5c2
f

4
@~x1!21~x2!21~x3!21~x4!2#, ~5.4!

and obtain a solution corresponding to smeared F str
perturbed with transverse RR 2-form

ds25
1

H
@~dx1!22~dx2!2#1~dxi !2,

e2F5
1

uHu
, B125

1

H
, C15 f x2, C35 f x4.

~5.5!

Upon lifting this solution to M theory we can obtain th
supergravity solution of smeared M2 branes~with the har-
monic functionH), perturbed with off-diagonal componen
of the metric. Similar to the previous solutions obtained
spacelikeT duality, these solutions become divergent at fin
radius.

One canT dualize the other solutions we found and obta
geometries corresponding to F1 strings and M2 branes
12501
-

u-
cs
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of

s

y

e-

formed with transverse forms. It is also possible to add toH
the regular harmonic functionN/r 6, in which case the super
numerary Killing spinors disappear, but a fraction of t
regular ones survives theT duality. One can thus obtain mor
realistic perturbed M2 brane solutions.

A. The AdS-CFT interpretation of the divergences

All the solutions we found by spacelikeT duality, as well
as the solutions found in Ref.@8# have the generic propert
that the curvature diverges at a finite radius. Since all th
solutions correspond to smeared F1 strings or M2 bra
perturbed with transverse fluxes, it is possible to give them
very interesting interpretation from the point of view of th
AdS-CFT correspondence.

To do this, we first add the usual harmonic functionN/r 6

to H. The metrics obtained above are still solutions, but th
only have 8 supercharges. Nevertheless, it now becomes
sible to interpret them as near-horizon geometries of
strings or M2 branes perturbed with constant transverseF2,
off-diagonal metric components, or transverseF4. It is quite
straightforward5 to see that these perturbations correspond
turning on an irrelevant operator in the boundary theory.
the case of the M2 branes, the transverse perturbation
constantF4 corresponds to a boundary operator of dimens
5, of the formF2CC.6

Since the operator is irrelevant, if one turns on a fin
perturbation in the UV, it flows to zero in the IR. Converse
if one turns on a finite perturbation in the IR, it diverges
the UV. Thus, the only solutions which are regular at infin
are those withf 50, which is exactly what the solutions~5.5!
and the ones discussed in Sec. VII of Ref.@8# imply.

This singularity can also be seen as coming from ‘‘neg
tive mass’’ smeared M2 branes effectively created by
combination of the transverse 4-form~or F2 andF6 in the F1
string case! via the Chern-Simons term of the 11D supe
gravity Lagrangian. When one puts enough real M2 brane
the geometry~by adding to the harmonic function a consta
or N/r 6), the supergravity is regular up to the radius whe
H become zero, which is the radius where the ‘‘negat
mass’’ M2 branes overtake the real ones. Such setups
very reminiscent of the ones where an enhanc¸on mechanism
is responsible for the removal of singularities@19#, and it
would be interesting to explore if this is also the fate of t
singularities present here.

In addition to these divergent solutions we can also obt
metrics which are everywhere regular by adding toH the
function 2N/r 6 and performing timelikeT duality. Of
course, the wrong sign of2N/r 6 is unphysical in the origi-
nal pp-wave metric, but since we are only using timelikeT
duality for solution generating we do not worry about th
We obtain the metric ~5.3! with 2H5uHu5N/r 6

5See Ref.@20# for the AdS-CFT analysis of the perturbation of F
strings with transverseF2 and Ref.@21# for the AdS-CFT analysis
of the perturbation of M2 branes with transverseF4.

6This can be seen from Eqs.~16! and ~17! in Ref. @21#, and is
similar to Eq.~50! in Ref. @22#.
4-9
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1(f/4)( i(x
i)2, which can again be interpreted as the ne

horizon of F1 strings or M2 branes perturbed with o
diagonal metric components andB(2) .

Unlike its cousin obtained by spacelikeT duality, this so-
lution does not diverge at finite radius. The two solutio
correspond to turning ondifferentperturbations in the IR~in
one case theB(2) perturbation contains a timelike directio
and in the other it does not!. Therefore it is not surprising
that these perturbations give rise to different UV physics

In the regular case, the metric in the UV becomes~in the
string frame!

ds25
f

2u
@2~dt1 f x2dx11 f x4dx3!21~dx2!21du2

14u2dV3
2#1(

i 55

8

~dxi !2, ~5.6!

whereu5( f /2)( i 51
4 (xi)2. The nontrivial part of this metric

is conformal to a fibration of aZ2 orbifold of a 4-plane, and
does not appear to be singular. If only one structure ofH (3) is
turned on, the metric resembles that of a wave. This flow
easily be lifted to M theory, or dualized to other flows. Th
we obtained a nonsingular supergravity flow, starting fro
AdS43S7 ~or the near horizon F1 string metric! in the IR
and ending with the geometry~5.6! in the UV. It would be
very interesting to find if this geometry has a field theo
dual, and learn more about these irrelevant perturbati
Moreover, by usingT andSduality it is possible to construc
similar nonsingular flows from AdS53S5 in the IR to a met-
ric similar to Eq.~5.6! in the UV.

These types of flows are reminiscent of the one obtai
by turning on the dimension 6 operatorB12 in the
AdS53S5 dual of theN54 Yang-Mills theory. In that case
one also flows to a nontrivial UV geometry, which is dual
a noncommutative field theory.

B. pp waves as solution factories

As we have seen in the beginning of this section,
T-dualizing pp-wave solutions with fluxes one can obta
metrics corresponding to branes and strings perturbed
constant fluxes. It is quite trivial to further useT duality and
S duality on these solutions to generate the solutions co
sponding to other branes perturbed with transverse fluxe

However, since we consider wave backgrounds in wh
the form field strengths only depend onx1 ~otherwise con-
structing solutions of the equation of motion and Bianc
identities becomes more challenging!, the resulting fluxes
will not depend on the transverse directions, and will gen
cally correspond to turning on irrelevant operators in
boundary theory. Thus, most of these solutions have ei
singularities at a finite distance from the origin, or very no
trivial UV completions.

Since the fluxes do not depend on transverse direction
does not appear possible to obtain from the simplepp-wave
ansatz the full solutions corresponding to perturbations of
AdS-CFT correspondence withrelevantoperators~in fact, it
seems quite remarkable thatpp-wave backgrounds areT dual
12501
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to a perturbation of the AdS-CFT duality in the first place!. A
possible direction toward obtaining these full solutio
would be to go backward along the chain of dualities, to fi
obtain a more generic wave and then use its simple feat
to try to find the full solution.

The metrics obtained byT duality can be easily made tim
dependent. As we explained in the previous chapter, add
x1 dependence to the forms and the metric removes the
pernumerary Killing spinors. Nevertheless, a certain fract
of the 16 spinors annihilated byG2 ~1/2 or 3/4, depending
on the fluxes! survive theT duality. Thus, we obtain time-
dependent metrics with nontrivial fluxes, and some sup
symmetry~8 or 12 supercharges!.

VI. A GENERAL ANALYSIS

In this section we will prove that a wave solution wit
nontrivial dilatino variation cannot preserve more than
supercharges and that the field configurations analyze
Secs. III and IV are the only ones with this property. A
discussed in the beginning of this paper, a systematic wa
constructing all solutions with more than 16 supercharge
to start from the dilatino variation and ask for field config
rations that organize it as a product of commuting projecto
Thus

dl5G2M S )
i 51

n

Pi D e, Pi5
1

2
~11Ai !, ~6.1!

whereM is some combination of Dirac matrices andPi are a
set of commuting projectors.

An upper bound on the number of preserved supercha
translates into an upper bound on the number of projec
that can be generated in the dilatino variation by the fie
present in the theory.

The basic observation that will help us reach our goa
that any two terms in the dilatino variation must form
projector, up to a common factor. It is easy to see that thi
the case by expanding the brackets in Eq.~6.1!. Furthermore,
any of these terms has to be generated by one of the f
fields appearing in Eqs.~2.7!, ~2.8!. This implies that, for the
cases we are interested in, the dilaton cannot contribut
the dilatino variation. Indeed, after factoring out the Dir
matrix G2 which is common to all fields, the contribution o
any component of any form field squares to21 while the
dilaton contribution squares to one. Similar arguments le
to the conclusion that the axion cannot contribute eith
Since the 0-form field strength cannot contribute to a wa
solution7 we are left to considerH (3) , F (2) , andF (4) in the
type IIA theory and the two three-forms of the type II
theory. We will now argue that it is not possible for th
dilatino variation to contain more than two projectors in a
dition to G2 .

7The equations of motion are not satisfied in the presence
cosmological constant unless form fields are allowed to have n
null nonvanishing components.
4-10
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A. The type IIB theory

We begin by discussing the type IIB theory. Because
spinors appearing in this theory have the same chirality,
can use the chirality operatorG21 to rewrite a product ofm
Dirac matrices as a product of (82m).

A simple inspection of the available form fields revea
that in type IIB the prefactorM in Eq. ~6.1! must be a prod-
uct of two Dirac matrices tensored with eithers1 or s3.
Then, the gl(2) component of any of the projectors in E
~6.1! is either the identity matrix oris2 depending, respec
tively, on whether only one or both types of fields are e
cited. Therefore, the Dirac matrix part of allAi ’s in Eq. ~6.1!
must commute. Furthermore, they can be either product
two or four Dirac matrices. These observations set an up
bound on the numbern of projectors. In particular, there ar
at most threeindependentcommuting products of two Dirac
matrices8 and only twoindependentcommuting products of
four Dirac matrices. We will now discuss separately the p
sible constructions of projectors.

~1! The easiest to analyze is the case in which allAi ’s are
built out of products of four Dirac matrices. Since there a
only two such independent combinations, it follows thatn
<2 which in turn implies that there are at most 28 preser
supercharges. This product of projectors, which can be g
erated using either one of the two 3-form field streng
present in the theory, was analyzed in Secs. III and IV.

~2! Consider next the situation when all projectors a
constructed out of products of two Dirac matrices. The pr
uct of projectors can be expanded as

M (
k50

n

(
skPCn

k
)
j Ps i

Aj , ~6.2!

whereCn
k is the collection of setssk of k elements picked ou

of n. Since all Ai ’s are different, they will commute with
each other if and only if no two have common Dirac mat
ces. The only way for this to come from a sum of bilinears
Dirac matrices of the type appearing in the dilatino transf
mation rule, is that exactly one of the matrices building a
Ai appears inM. Indeed, if this were not the case, the produ
betweenM and the correspondingAi would contain four
Dirac matrices and this cannot be generated by one of
available fields.9 Furthermore, such a term cannot be ca
celed usingG21 since all terms in the sum above are prop
tional toM and the use ofG21 would produce terms withou
this property. Since, as argued aboveM must be a bilinear in
Dirac matrices, we can have at most two projectors of t
type in Eq.~6.1! and therefore there are at most 28 sup

8Products of two Dirac matrices generateSO(8) whose rank is
four. Due to the fact that the chirality of both spinors is the sa
and that the dilatino variation is proportional toG2 , it follows that
in the dilatino variation in the type IIB theory one of the four Cart
generators of SO~8! can be expressed in terms of the other three
the chirality operatorG21.

9The 5-form field strength does not appear in the dilatino va
tion.
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charges. Such products of projectors can be generated u
combinations of the two 3-forms and were analyzed in Se
III and IV.

~3! The last possibility is to have some projectors co
structed out of products of four Dirac matrices while t
others of products of two. The requirement that they co
mute implies that there must be an even number of comm
Dirac matrices between any twoAi andAj . If one product of
two Dirac matrices, call itB2, is not contained in one prod
uct of four of them, call itB4, then, expanding the bracke
in Eq. ~6.1! implies that we need a form field to supply
term of the typeMB2B4. But such a field does not appear
the dilatino transformation rule unless one of the Dirac m
trices appearing inM also appears either inB2, in B4 or in
both. Indeed, if this were the case, thenMB2B4 will become
a product of sixG matrices and usingG21 can be rewritten
as a product of two of them. Furthermore, similar argume
applied on the termsMB4 implies thatM andB4 cannot have
a common Dirac matrix. We are therefore left with the fo
lowing possibility:

Gab~11Gbc!~11Gde f g! ~6.3!

This combination has the potential of preserving 28 sup
charges and was analyzed in Secs. III and IV. Since th
does not seem to be any obstruction to adding more pro
tors we will attempt to do so. It is easy to see that a projec
constructed out of four Dirac matrices that satisfies both~1!
and~3! will anticommute withGde f g and thus is not allowed
We are thus left with the possibility of adding a project
constructed out of two Dirac matrices. This will have
comply with both the restrictions of point~2! as well as with
those of point~3!. Thus, it seems possible to insert

11Gah , ~6.4!

where the indexh represents the matrix which does not a
ready appear in Eq.~6.3!. Nevertheless, the three projecto
are not independent becauseG2GahG215G2GbcGde f g and
thus the third projector does not lead to more preserved
persymmetry.

This concludes the analysis of the type IIB theory with t
result that any solution of the equations of motion whi
leads to a nontrivial dilatino variation will preserve at mo
28 supercharges. Because the 5-form field strength does
appear in the dilatino variation, it can be used to enlarge
set of fields producing the projectors discussed above. T
possibility was discussed in detail in Sec. IV.

B. The type IIA theory

We now turn to the analysis of the type IIA theory. Th
discussion is complicated by having fields contributing d
ferent numbers of Dirac matrices but is also simplified by
fact that we are no longer allowed to use the chirality ope
tor G21 to map products ofG matrices into each other. In
deed, any projector constructed by usingG21 would lead to
enhanced supersymmetry in one sector while breaking i
the other sector. Furthermore, in the type IIA theory all fie
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appear in the dilatino variation. Thus, the set of fields lead
to projectors in this variation cannot be enlarged.

As discussed before, the dilaton cannot be excited i
wave solution with augmented supersymmetry. As a first s
in answering the question of how many independent co
muting projectors can appear in the dilatino variation,
first study if it is possible to have two projectors. Thus,

dl;M ~11A1!~11A2!e5@M1M ~A11A2!1MA1A2#e.

~6.5!

As noticed before, each term above must be produced by
of the fields present in the background. We have at our
posal products of one, two and three Dirac matrices.

Let us now discuss case by case the possible matriceM
and for each of them the allowed projectorsA.

~1! M is generated by the 2-form field strength, i.e.,M
5Ga^ ( is2). The fact thatMAi must be generated by one o
the fields implies that the Dirac matrix component ofAi is
constructed out of one, two, or three10 matrices and the re
quirement of (11A) being a projector fixes the gl(2) com
ponent. Combining everything we are left with the followin
possibilities: Gb^ g with g51, s1, s3, Gbc^ ( is2) and
Gabc^ ( is2). It is easy to see that some of these possibilit
cannot be generated by the available fields. Indeed, the p
ucts Ga^ ( is2)Gbc^ ( is2) and Ga^ ( is2)Gabc^ ( is2) have
the identity matrix as gl(2) component and there is no fi
with this property except for the dilaton which does n
contribute any G matrix. The remaining possibility is
A5Gb^ g with g51, s1, s3. Inserting these remaining
combinations in Eq.~6.5! we find that the gl(2) componen
is fixed by the termsMA to beg5s1. This last possibility is
nevertheless eliminated by consideringMA1A2. Thus, we
conclude that ifM is generated by the 2-form field strengt
the dilatino variation contains at most one projector besi
G2 , and thus no more than 24 supercharges can exist.

~2! The next possibility is forM to be generated by th
NSNS 3-form field strength, i.e.,M5Gab^ s3. Then, requir-
ing that 11A is a projector, we have the following
possibilities.11

A5Gc^ $1, s1,3%. The case with1 ands3 cannot be gen-
erated due to the gl(2) component while the other one ca
generated using the 2-form field strength ifc5a or c5b.

A5Gac^ ( is2). One of the Dirac matrices that appear
A must also appear inM since otherwise there would be fou
G matrices inMA. It then follows that this projector canno
be generated due to the gl(2) component of the productMA.

A5Gacd^ ( is2). One of the Dirac matrices that appear
A must also appear inM since otherwise there would be fiv
G matrices inMA. Then the gl(2) component of the produ
MA requires thatcÞb and dÞb for this projector to be
generated.

10This last possibility occurs whenA and M have one common
Dirac matrix.

11We will put from the outset some common Dirac matrices b
tweenA and M. This is due to the fact that the productMA must
have at most three Dirac matrices for such a term to be gener
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A5Gabcd^ $1,s1,3%. Two of the Dirac matrices that ap
pear inA must also appear inM since otherwise there would
be fourG matrices inMA. This in turn fixes the gl(2) com-
ponent ofA to be the identity matrix. Such a term can b
generated by the NSNS 3-form field strength.

A5Gabcdê $1,s1,3%. Two of the Dirac matrices that ap
pear inA must also appear inM since otherwise there would
be more than threeG matrices inMA. Then, the gl(2) com-
ponent prevents this term from being generated.

Thus, A1 and A2 must be of the typeGacd^ ( is2) with
cÞb anddÞb ~i.e., they must have one Dirac matrix com
mon with M ) or of the typeGabe f^ 1. The gl(2) component
of MA1A2 forbids bothA’s be of the second type. Thus, w
have two choices.

If both are of the first type then, due to the gl(2) comp
nent ofMA1A2 beings3, this term must be generated by th
NSNS 3-form and thus must contain exactly two Dirac m
trices. The only possibility for this to happen is if the Dira
matrices that are common betweenAi and M are different
and there is one more Dirac matrix common between the
Ai ’s. Thus, the only solution is

Gab^ s3@11Gacd^ ~ is2!#@11Gbce^ ~ is2!#. ~6.6!

This projector is generated by the following choice of field

1

2
H1ab52

1

2
H1de5F1bcd5F1ace ~6.7!

which is none other than the field configuration discussed
Eq. ~3.8!.

If the two Ai ’s are of different type, then the gl(2) com
ponent ofMA1A2 implies that this term is generated by th
4-form field strength. Thus, there must be another Dirac m
trix common betweenA1 and A2 which uniquely identifies
the projectors as

Gab^ s3@11Gacd^ ~ is2!#~11Gabcê 1!, ~6.8!

which is just a rewriting of Eq.~6.6!.
It is now easy to analyze the problem of adding mo

projectors to either one of Eqs.~6.6! or ~6.8!. Let us discuss
Eq. ~6.6!. If A3 is of the same type asA1 andA2, then the
Dirac matrix that is common betweenA3 and M must be
different from the ones common betweenA1 andM andA2
andM. However,M is constructed out of only twoG matri-
ces. Therefore, a third projector of the first type is forbidde
If A3 is of the second type, it follows from Eq.~6.8! that it
must have one common Dirac matrix withA1 and A2 for
MA1,2A3 to be generated. Furthermore, this matrix cannot
common betweenA1 andA2 because otherwiseMA1A2A3,
which is proportional tos3, could not be generated. Thu
we are left with

A35Gabde5A1A2 . ~6.9!

But this does not lead to an independent projector

-

d.
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~11A1!~11A2!~11A1A2!

5~11A11A21A1A2!~11A1A2!

52~11A1!~11A2! ~6.10!

sinceAi
251. Thus, if M is generated by the NSNS 3-form

field strength, the dilatino variation contains at most two p
jectors in addition toG2 and there are at most 28 preserv
supercharges.

~3! The third and last possibility is forM to be generated
by the 4-form field strength, i.e.,M5Gabc^ s1. As in the
previous case, there are several possibilities forAi .12

A5Gd^ $1, s1,3%. There is no field that can give this con
tribution. Indeed,MA is a product of either four or two Dirac
matrices tensored with1, s1 or (is2). None of these terms
can be generated by the available fields.

A5Gad^ ( is2). This leads to anMA with s3 as the gl(2)
component, which requires two Dirac matrices. There is
choice ofd that can do this, and thus such anA is not al-
lowed.

A5Gabd^ ( is2). This leads again tos3 being the gl(2)
component ofMA. If dÞc it also contains a product of two
Dirac matrices. This can be generated using the NS
3-form field strength.

A5Gabdê $1, s1,3%. The choices1 ands1 as gl(2) com-
ponents cannot be generated while the choices3 can be gen-
erated usingF (2) if d5c.

A5Gabde f̂ $1, s1,3%. The first possibility is viable ifd
5c, since it can be generated by the NSNS 3-form. T
other two cases cannot be generated due to a mismatch
tween the gl(2) component and the Dirac matrix compon
of MA.

A5Gabde f ĝ ( is2). The Dirac matrix component require
d5c, leading to a product of three matrices which does
match with the gl(2) component which iss3. Therefore, this
combination is not allowed.

Thus, if M5Gabc^ s1 both A1 and A2 can be either of
the typeGabd^ ( is2) with dÞc, Gabcê s3 or Gabc f g^ 1. By
analyzing the six inequivalent combinations it follows th
A1 and A2 cannot be of different types because of a m
match between the gl(2) component and the number
Dirac matrices that can be generated inMA1A2. Therefore,
they must be of the same type, which requires thatMA1A2
be built out of three Dirac matrices since its gl(2) comp
nent iss1. Since (Gabc)(Gabce)(Gabc f) contains five Dirac
matrices, while (Gabc)(Gabceg)(Gabc f h) contains either five
or seven Dirac matrices, it follows that the only possibility

Gabc^ s1@11Gabd^ ~ is2!#@11Gbce^ ~ is2!#, cÞdÞe,

~6.11!

12As in previous discussions, we will put from the outset so
common Dirac matrices betweenA and M. This is due to the fact
that the productMA must have at most three Dirac matrices for su
a term to be generated.
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i.e., A1 and A2 each have two commonG matrices withM
and one common between themselves. This projector is
the rewriting of Eq.~6.6!.

In this case there existsA35Gac f which has the same
properties asA1 and A2. However, adding it to Eq.~6.11!
does not lead to enhanced supersymmetry. Indeed, the
MA1A2A3 will contain six Dirac matrices. Such a term ca
be generated only usingG21 to map it to a product of twoG
matrices, but this operation enhances supersymmetry in
left-handed sector while breaking it in the right-handed s
tor. The required field configuration has the potential of p
serving (15,8) supercharges.

This concludes the analysis of the dilatino variation
type IIA theory with the result that there exist field config
rations leading to variations proportional to Eqs.~6.6! and
~6.11! which potentially preserve 28 supercharges. Unl
the case of the type IIB theory where the 5-form does
appear in the dilatino variation, in the type IIA theory w
cannot enlarge the set of fields that lead to enhanced su
symmetry.

To summarize, we have shown that a wave solution of
supergravity equations of motion with a nontrivial dilatin
variation preserves at most 28 supercharges. The candid
are given by the projectors analyzed in Secs. III and IV.

VII. SUMMARY AND CONCLUSIONS

Using the relative simplicity of pp-wave geometries w
have explored wavelike solutions of type IIA and type II
supergravity with augmented amounts of supersymme
Making use of the chirality of the fermions of type IIB su
pergravity, and expressing the dilatino variation as a prod
of commuting projectors, we found one two-parameter fa
ily of type IIB solutions with 28 supercharges, as well as o
type IIB three-parameter family of solutions with 24 supe
charges. We also found several individual solutions of ty
IIA supergravity preserving 24 supercharges, as well as
lutions preserving (14,8) supersymmetry.

In the process of doing this, we formulated a superpo
tion rule for wave solutions, giving an easy way of testi
when a direct sum of wave solutions still possesses enha
supersymmetry. We also conducted a rigorous exploratio
the possibility of constructing solutions with augmented s
persymmetry, and concluded that 28 supercharges is the
one can find when the dilatino variation is nontrivial.

By T dualizing some of ourpp-wave solutions we ob-
tained solutions with 16 supercharges similar to smeared
strings perturbed with transverse fluxes. After adding an
tra term to the harmonic function we interpreted these so
tions as perturbations of the AdS-CFT duality with irreleva
operators. This allowed us to give a field theoretical interp
tation to the singularities some of these solutions generic
have at finite distance from the origin.

We also obtained an exact nonsingular IR→UV flow from
AdS43S7 to an intriguing UV geometry. Similar procedure
can be used to construct flows from AdS53S5 and other
near-horizon geometries.

Since our solutions are exact, the careful investigation
these geometries can yield further insights into the role
4-13
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these irrelevant operators. The similarity of these flows to
flows to geometries dual to noncommutative field theor
deserves further investigation, and could yield interest
physics.

The work presented here can be extended in several
ferent directions. One would be to try to realize thesepp-
wave solutions as Penrose-Gu¨ven limits of other supergrav
ity backgrounds. This does not seem straightforwa
especially for the solutions with 28 supercharges; their m
tifarious mix of fields makes them hard to obtain as su
limits. Nevertheless, some of their cousin solutions~like the
one with 24 supercharges and only two nonzero structure
F3) can easily be obtained as limits of the AdS33S3 geom-
etry @7,23–27#, so it is not implausible that a careful analys
could in the end find a ‘‘mother background.’’ If this back
ground were found and it had a dual field theory, our ba
grounds would be dual to limits of the field theory with 2
supercharges, which can yield interesting insights into t
theory.

Another possibility would be to look for waves whos
duals correspond torelevantperturbations of the AdS-CFT
correspondence. As explained in Sec. V, such waves wo
haver dependent fields, and they would not be as simple
the ones discussed here. However, it is conceivable tha
equations of motions would take a more transparent fo
which could be more amenable to finding exact solutions

The duality betweenpp waves and irrelevant perturba
tions of the AdS-CFT correspondence could be further
fined. As seen in Ref.@7#, string theory on app-wave back-
ground is dual to a largeR-charge sector of a field theory
After T dualization, the resulting background can only
interpreted as a perturbed near-horizon geometry~which is
rg
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dual to another field theory! only if one adds by hand a term
of the form Q/r 6 in the harmonic function. However, thi
spoils the original duality with the large angular momentu
sector of the first field theory. It thus appears that whenQ
goes to zero, the dual field theory changes drastically,
though this is not such a drastic change from the point
view of the supergravity. This phenomenon deserved furt
study, and might even be a link toward establishing a m
direct relation between the field theories at the ends of
‘‘broken’’ duality chain.

Yet another direction involves investigating and may
expanding the exact nonsingular IR to UV flows we co
structed, finding possible field theory duals of the UV geo
etry, and understanding their similarity to the flows to no
commutative theories.

Last but not least, arguments similar to those leading
the equivalence of theN53 andN54 vector multiplets in 4
dimensions imply the equivalence ofN57 ~28 super-
charges! andN58 gravity multiplets. It would be interesting
to see if this structure is preserved by interactions in
background of the waves with 28 supercharges.
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