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Supergravity pp-wave solutions with 28 and 24 supercharges
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We conduct an exhaustive search for solutions of type 1A and 1IB supergravity with augmented supersym-
metry. We find a two-parameter family of type 1IB solutions preserving 28 supercharges, as well as several
other type 11A and 1IB families of solutions with 24 supercharges. Given the simplicity gipheave solution,
the algorithm described here represents a systematic way of classifying all such solutions with augmented
supersymmetry. By dualizing some of these solutions we obtain exact ppavave supergravity solutions
(with 8 or 16 supercharggswhich can be interpreted as perturbations of the AdS-CFT correspondence with
irrelevant operators.
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[. INTRODUCTION (p,q), p#q supercharges. Four dimensional solutions with
this property were also constructed in Ref3].

Plane waves are among the simplest solutions of the su- In the presence of general form fields, the dilatino varia-
pergravity equations of motion. Because of the existence of ton is proportional to the contraction of these forms with the
null Killing field, they are also solutions of string theory to Dirac I" matrices acting on the supersymmetry parameter
all orders in the sigma model perturbation thefty?]. Therefore, in order to obtain more preserved supersymme-

In addition to the three well-known supergravity solutionstries, one needs thE matrices to combine into commuting
with 32 supercharges (Ad$ < S"*%, it is possible to con-  projectors. In order for this to happen one needs to turn on
struct two more[3-5]. Even though originally these solu- appropriate forms with appropriate coefficients.
tions were constructed by solving the equations of motion, it If the dilatino variation takes the form
later turned out that they can be obtained as PenroseiGu
limits [6] of the former. One of these solutiof3,4] is a pp ON=M(ToI' )(1+M1)(1+My)e, (1.9
wave in 11 dimensional supergravity, has a nonzero four-
form field strengthF,, and is the Penrose-@en limit of  whereM is a matrix,M; andM, are independent, commut-
both AdS,x S’ and AdS x S*. The other solutiofi5] is app  ing and unipotentl(/liz= 1) combinations of" matrices, each
wave in 10 dimensional type IIB supergravity, has a nonzermf the three projectors will annihilate half of the spinors it
self-dual five-form field strengths, and is the Penrose- acts upon. Since we assumed them to be independent and
Given limit of AdS;x S°. These important observations pro- commuting they will annihilatelifferentsets of spinors and
vided the link between plane wave solutions of supergravitythus the right hand side of Eq1.1) will vanish for 16+ 8
equations of motion and the AdS conformal field theory+4=28 spinors. If instead of three projectors we only have
(CFT) correspondence. Thus, string theory in the plane wavéwo, then only 16-8= 24 spinors give a zero dilatino varia-
geometry is dual to a sector with a largecharge on the tion.
gauge theory sidg7]. Once we have these candidates for Killing spinors, the

The ensuing burst of interest in plane wave geometriesiext step is to test whether the gravitino supersymmetry
prompted the construction of solutiof8—11] generalizing variation vanishes. For plane wave would-be solutions this
the original ones and preserving more supersymmetries thazompletely fixes the metric, as well as the dependence of the
the standard 16 of any plane wave. The plane wave geometgpinors on the coordinates. In some cases all the 24 or 28
seems simple enough to attempt a classification of these augpinors give a zero gravitino variation, so they are Killing
mented supersymmetry solutions. In this paper we perfornspinors. In other cases, the number of Killing spinors is
this analysis for type IIB and IIA supergravity with the sur- smaller.
prising result that in the type 1B theory there exist solutions In the next section of this paper we describe ppavave
preserving 28 supercharges. These solutions turn out to lgeometry and the form of the dilatino and gravitino super-
related to Penrose limits of coset spafE2|. Our method is  symmetry variations. We then explore the types and combi-
powerful enough to allow the classification of all solutions nations of form fields that can be turned on in order for
with 24 supercharges as well. We construct a fairly largeprojectors to appear in these equations. Then, we use the
number of them, both in type IIA and type IIB supergravity. dilatino variation to make a number of educated guesses for
Even though we do not prove here that our analysis exhaustolutions with enhanced supersymmetry, both in type 1A and
all these solutions, we believe it is quite likely that it does. Inin type IIB supergravity. In Sec. IV we test thesmsdze
the type IIA theory we also find solutions preserving against the gravitino variation, and find the full solutions.

We first describe two families of type IIB backgrounds
with 28 Killing spinors. These backgrounds have nonvanish-
*Email address: iosif@vulcan.physics.ucsb.edu ing self-dualF5 flux, as well as nonzero Ramond-Ramond
TEmail address: radu@vulcan.physics.ucsb.edu (RR) or Neveu-Schwarz—Neveu-Schwar&NSNS three
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forms in particular combinations. The relative strength of thedepend orx*, the forms satisfy the equations of motion and
five form and RR or NSNS three form is a free parameter, s@ianchi identities by construction.

each of the two solutions is in fact a one parameter family. ~ Choosing ¢, _=—1), the vielbeine are
We then list the other type IIA and type 11B backgrounds
with more than 16 Killing spinors which we obtain by this et =dx", e*=(d¢, dx, dy)=dZ,

procedure. We list solutions with 24 supercharges involving
Fs+Fs, Hg+Fg, Fs+Hg+Fs, Fu+Hs, Fu+F,, Hj 1
+F,, as well as solutions preserving chiral supersymmetry. e =dx + =Auy(x)z2zPdx", (2.2
Some of the solutions we analyze have some Killing 2
spinors independent of the coordinate along the direction of
propagation of the wave. Thus, it is possible Ttadualize  and the spin connectiofdefined byde*+ w”g/\eB=0) is
along this direction and still have a solution preserving some
supersymmetry. We find that the dual geometries can be in- w0 = Ay(x ) Zdx*. (2.3
terpreted as arising from smeared strings or D-branes de-
formed with transverse fluxes, and explain them in light of_l_h rcovariant derivative is therefore given b
the AdS-CFT correspondence. In the process we construct € supercovanant derivative 1S theretore given by
exact nonsingular flows from brane near-horizon geometries 1
in the IR to certain nontrivial geometries in the UV. The . _ . b
results are described in Sec. V.g Visdi, Vo=0o, Vi=dit A )ZT T,
It is also interesting to ask what is the highest number of (2.9
supersymmetries than can be preserved Ipp-wave back-
ground in type Il theories. To obtain 32 supercharges on@nd the Ricci tensor is just
needs the dilatino variation to vanish, in order to impose no
constraints on the supersymmetry parameters. Thus the only R, , =A% (x") (2.5
form field we can have is the type 1IB self-dual five-form. e an '
;?r?et;n iarIIX::g:a?.l[lé] |Ssu E)ﬁersgm)r/n ;Erclzﬁz\(lyvli\t/iinPaCkgmund ob ThL_Js, the only equation of motion our backgrounds have to
A solution preserving 30 supercharges would have a diSatisfy is
latino variation containing a product of four independent
projectors. As we will show in Sec. VI, it is not possible to
combine the fields of type IIA and 1IB supergravity to form
S0 many projectors. Thus, in addition to the maximally su-
ersymmetric solution of type IIB supergravity, the solutions ' .
\F/)vith )é8 supercharges desgr?bed herg hgve th)é largest possib gereF+il, i 1€ the field strengths of the various RR and

amount of supersymmetry one can obtain jopavave back- NSNSp forms present and .self—dual fields enter only once.
ground in 10 dimensiorf. We will use the conventions of Reff14] for the type |l

supersymmetry transformation rules. In these conventions
we will work with two Dirac spinorgthus, all Dirac matrices
will be 32-dimensionalobeying appropriate chirality condi-

In this section we will describe in detail a general way oftions and forming a 2-dimensional representation of an aux-
constructing wave solutions of the supergravity equations offiary SL(2)R). Defining Fy=(1n!) TN NFy - | the
motion with enhanced supersymmetry. As it is known, thesupersymmetry transformations are for type IIA,
metric and forms of gp wave are quite simple, yet non-
trivial. We choose a metric of the form

1 1 o
Riv=A%(X)=3 2 o iy i F 1070 (26

II. SUPERSYMMETRIES AND PROJECTORS

5>\:31“Ma ¢6—E|7‘|(r36+ 3e¢[5|: o1+ 3F 5 (i0?)
A= — 2dx" dx™ — Agy(x ") Z220(dx" )2+ (d )2, 20 MTE 4 2 © @)
2.0 +F(’4) alle, 2.7
and the only nonzero component of the field strengths of the
RR and NSNS fields i§+i1,,_ip(x+). Because they only

1 1
NMZVMG_ gFNPHMNp0'3€+ §e¢[F(O)rMUl

10f course these two solutions are related $yluality, and are +F)Cu(io?) +FTuotle,
just the end points of an entire family of solutions generated by
rotating F; andH; into each other viés duality. This gives in the  5nd for type 1B,
end a 2-parameter family of 28 supercharge solutions.

2It would be interesting to see if the methods we use for finding

. . . 1 1 1

pp-wave solutions with augmented supersymmeétgmbining the Sh=—TMy be— “Hole— e F (i 0_2)6+_Fr ole
forms to form projectonscan be used to find M-theory or lower 2 M 4 2 @) 2 '
dimensional supergravity solutions with 28 supersymmetries. (2.8
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These field configurations have the potential of producing
F(l)FM(ia'z) wave solutions preserving 28 supercharges. We will then
proceed in Sec. IV to analyze the Killing spinor equation and
the equations of motion.

1
8

e?

NM:VMG_ )

FNPHMNPO'3€+

€

’ 1 1 ’ - 2
+F(3)FMO' +§F(5)FM(|O')

IIl. POTENTIAL SOLUTIONS

ith the modified field strengthB’ given b
W med g gv y Given the simplicity of the wave metric and the fact that

Flov=F@—CHpay, Fle=F&—H3/\C, all field strengths carry one null index, it is easy to find field
S @) &G ey ) configurations such that the dilatino transformation is pro-
, ortional to a product of commuting projectors. We will be-

gin with the type IIB supergravity. It will be argued in Sec.

Preserved supersymmetry appears in the form of spinor¥| th'at the dilaton and the axion cannot have nontrivial val-
that are annihilated by a set of projectors when the abovH€S if more than 16 supercharges are to be preserved. Thus,
transformations are evaluated on solutions to the equatio e wil _IOOk for field configurations involving only the
of motion. Thus, a classification of all possible solutions pre- -form f|.e|d_ strepgths. . . L
serving some supersymmetry becomes a three-step process.We WI||/ first d|scu_ss _potent!al solutions with either one of
The first step requires a classification of projectors that caf(3) O F(s) nonvanishing. It is very easy to see that, after
be built out of supergravity fields in the dilatino transforma- factorizing the Dirac matrix pointing along the direction of
tion rule. The next step requires checking whether these fiel@ropagation of the wave, bot(s) and F 3 will contribute
configurations are compatible with the gravitino supersymiwo Dirac matrices that must be further combined in projec-
metry transformatioriKilling spinor equation and the third ~ tors. Since for the time being we are considering only one
step involves checking whether the equations of motion aré&ype of field, the gl(2) component of the supersymmetry
satisfied. transformation rule will factorize. The only possibility is

The first step in the procedure outlined above can be pe,then to find projectors constructed out of four Dirac matrices.
formed in quite some generality. In the notation we are usindt turns out to be possible to have
here a generic projector looks similar to .

ON~T (1= B39 (1—yl'1259 €, B=y"=1
1 (3.9
P=5(1+T'®0), (T®o)?=1, (2.10 . . . _ _ .
which vanishes for 28 different spinors. The field configura-

. L . . tion realizing this setup is the following:
wherel” is some combination of Dirac matrices asmds one g P g

of the gl(2R) generators. We will loosely refer to the H10= BH  34= yH  56= aByH 7= f(x"),
dependence of various terms as their gl(2) structure. Half of
the eigenvalues of such a projector vanish. Thus, one such I je=ae, o?=1. 3.2

projector will preserve one half of the supersymmetries. The

only way to find more preserved supersymmetries is t0 hav@iere f(x*) is for the time being an arbitrary function &f

the dilatino variation be proportional to a product of com-\hile T, 'is the 10-dimensional chirality operator. As stated

muting projectors. This observation allows us to find thej, the beginning, we are free to replagewith F’. This

maximum number of supersymmetries that can be preserveglnction will be fixed in the next section using the gravitino

by a solution of the equations of motion which has a non- 4 iation as well as the equations of motion.

trivial supersymmetry transformation of the dilatiho. , To show that this field configuration indeed reproduces
Due to the fact that we are considering wave squnonsEq_ (3.1) we need to make use of the fact that both super-

each term in the dilatino variation is proportional to the symmetry parameters have the same chirality. After pulling

Dirac matrix pointing along thénull) direction of propaga- o 1, as common factor the dilatino variation becomes
tion of the wave(this direction will be denoted by*). This

matrix is proportional to a projectd2.10 in whicho=1. It f(x*)

is easy to see that this projector commutes with any othero\ = 7 I'_T'1,00'[1— BT 1230~ Y 1256~ @By 1078 €
projector that can be constructed from the remaining Dirac
matrices appearing in the supersymmetry transformation

. . . f(x™
rules. Thus a wave solution will always preserve sixteen su- _ ( )F_F12® o'[1= BT 1050~ YT 1256
percharges. 4
In the next two sections we will follow the steps outlined
above. We will begin by describing several field configura- —aBylusd —1]e
tions that factorize the dilatino variation into projectors. f(x")

= I T1,00' (1= B30 (1= 9T 1259 €,

3For the maximally supersymmetric wave each term in the di-
latino variation vanishes separately. =1,3. (3.3
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Here we used the definition of the chirality oper&tbr_; 1 1

=—3T,,'_1p345675and the definition ofx in Eq. (3.2). 5 H+12=5BYH 56~ = BF 124~ YF 1 145= f(x").

The choiced =1 andl =3 correspond to having a nontrivial 3.9
RR 3-form and NSNS 3-form, respectivel$.duality con-

tinuously interpolates between these two solutions. As beforef(x™) is an arbitrary function to be determined by

Next we discuss a possible solution of type 1IB supergravthe Killing spinor equation and equations of motion. The
ity which preserves 28 supercharges, contains Bethand  dilatino variation generated by this field configuration is in-
H) and is notS dual to the solutions considered above deed proportional to Eq3.7)

(neither F 3y nor H3y can beS-dualized away It is clear

that, after pulling out a common factor, some terms will be SN=T _T'1,0 03[ 1+ BT 1469 (1 02) [ 1+ YT 242 (i 02) ].

left with the identity operator as their gl(2) component while (3.9
others will have (o). Since {o?) can appear in a projector _ _

only tensored with two or three Dirac matrices, it is easy tolt iS possible to add a further projector to the product above.

see that a possible combination of projection operators is However, this requires use éf_, and thus it enhances su-
persymmetry only in the right-handed sector while breaking

ON~T_[1-BT (i) [1—yT(ic?)]e, B>=y>=1. it in the left-handed sector.
(3.4) Finding solutions preserving 24 supercharges is also easy

. . . ) o _ .. inthis approach. The projector
The field configuration producing this dilatino variation is

YHi15= —BH 20=F 5= ByFl3=1(x"). (3.5

As before,f(x™) is for the time being arbitrary and will be
determined by the gravitino variation and equations of mo- 1

tion. One can in principle construct these field strengths from 3Fi1=—5H1= f(x"). (3.1
several different potentials. However, we choose the gauge in

which the potentials do not carry theindex. The reason for ;s gives the dilatino variation

this gauge choice is to make sure that the modified 5-form

I_(1+predt) (3.10

can appear in a solution with nonzeiysy andF ;)

field strength remains trivial. As promised, the dilatino varia- f(x*)
tion is h=— I'_[T1,0%+T(i0?)]
__ e 3 . f(x*)
Oh=— =T [(Yl15= Bl2g) 0"+ (Tt Bylsd) o € = Iy(iod)T_(1-T,ah), (3.12
_ f(x") which contains the projector promised above.

= Ffrlszl[l_ﬁrm(igz)][l_7r23(i0'2)]5-

4 Another example of potential solutions preserving 24 su-
(3.6)  percharges is built on the projector
We will show in Sec. VI that, up to a relabeling of coordi- I (14T 1p30°). (3.13

nates, the field configurations described above are the only
ones that lead to a product of three projecttivgo if one  The field configuration that can generate this projector con-
ignoresI’_) in the dilatino supersymmetry transformation tainsF 4y andF,y:
rule.
We now turn to possible solutions of type IIA supergrav- 3F 1 =F 1 oa=f(x"). (3.19
ity. As in type 1I1B supergravity, any wave solution preserving o o
more than 16 supercharges has a trivial dilaton. Even witd his leads to the dilatino variation
this simplification, the situation is substantially more compli-

cated than in type IIB theory since there are three different S\ = f(x™) T [T4(i02)+T 0]

types of fields contributing to the dilatino transformation 2 B 234

rule. Deferring the detailed analysis to Sec. VI, we present F(x)

here several examples. __fix Ty(i0)T (14T o). (319
The only possible(up to relabeling and reshuffling of 2

termg projector that could preserve 28 supercharges is . )
To summarize, we have described how the study of the

SN~T_[1+ BT udicd)[1+ v ufic®)] (3.7 dilatino variation can yield field configurations that have the
potential of preserving large amounts of supersymmetry. The
and the field configuration generating it is final word in this matter belongs however to the Killing
spinor equation and the supergravity equation of motion. We
proceed with their analysis, thus completing the second and
. =(1N2)(TxTg); {T,, T }=-2. third steps of the program outlined in Sec. Il.
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IV. GRAVITINO VARIATION AND EQUATIONS 1 é

e
OF MOTION Qu= 8FNPHMNP®O'3+§FFM, 4.7

A. Generalities

where F=%F (,,1,)®¢'® andl(p) is determined from the
persymmetry transformation ruléx7),(2.8).

Definingh ) and £, as

The strategy for solving the Killing spinor equations in
plane wave backgrounds was discussed in some detail !
Refs.[4,8]. Here we will go beyond their analysis and cast
these equations in a form suitable for the setup discussed in
the previous sections.

The generic structure of the gravitino transformation is

H@@o’=T_H), Feiyeo®=I_1;, 4.8

and =21, the torsion(}), decomposes into transverse
SV y=Vye+ Qu(xe, (4.1  and lightlike components as

whereQy(x™) is the torsion part of the spin connection and
represents the contribution of the various form fields. If all
RR fields vanish thef, is just the standard torsion induced
by the NSNS 3-form field strength. It is not hard to see from 1 (—)P

the gravitino variationg2.7) and (2.9 that Q;(x") is pro- Q. =- Zh(z)_ TF,FJ, 4.9
portional tol" _ . Therefore

1 1
0= gF,[Vl(z), Iil- gFJFi )

I Qi(x")=0,(xHTI_=0;(x")Q(x")=0 (4.2 while 0_=0. We also lowered the uppefr index on the
Dirac matrices and this leads to the various sign differences
becausd’_ is nilpotent. On the other hand), does not between Eqs(4.9) and(4.7). Then, the commutator appear-
satisfy these relations because it contains the combinatioifg in Eqg. (4.5 becomes
I'_T", which is not nilpotent.
Since the spin connection vanishes along the transvers

1
_ 2 g2 _ .
directions, it is trivial to solve the corresponding equations Fﬂi’ Q.]= 32F,[(h(2)+f Ti={t, AL+ 21T )

dietQi(xNe=0—e=[1-xQ;(xH]x, (4.3 =20 ) Tilh o)+ T3], (4.10
where x is an unconstrained spinor depending only>on Consider now the case when the NSNS fielgsy and
The remaining nontrivial equation corresponds to theldi-  only one of the RR fieldsF ., are turned on, and both

rection. In the following we will suppress the dependence orhave exactly one nonvanishing, constant component. Then,
x", with the understanding that bofh andA arex ™ depen-  the first two terms above represent the right-hand side of the

dent: equation of motion, while the last two terms give a traceless
contribution toA;; . Therefore, the remaining two terms must
9. [(1=X0) ]+ EA_,XjF Tix+ Q. (1-x Q) =0 give a tracelesgor vanishing contribution toA;; if the equa-
* ! 27T * ! ' tion of motion is to be satisfied.
(4.4 SinceF (- 1) andH 3y combine to form a projector in the

] . ) ) dilatino variation, it is not hard to see thatahd,y com-
It is clear that the terms with different dependence should 1 ;te which implies that the two terms we are interested in
cancel separately. Thus, the equation above splits in tw@sn pe written as

parts, one of which can be used to remove from the other one
terms with derivatives acting on the spinor. The final result is 20[T;, iyl (4.12)

= + . . T
0=dsx+Qx, Moreover, the vanishing dilatino variation implies thag)f

andh ,)x are proportional. Therefore, the object above can
always be written a€;;I" _I';, whereCj; is a constant ma-
trix. Its trace is the obstruction to constructing a solution of
the field equation with 24 supercharges and the NSNS and
Being a first order differential equation, the first equationRR fluxes described above, and it vanishes.

1
0=—(9:+Qx+[Qi, Quilx+ A I-Tjx. (4.9

always has the solution An important question is whether any wave solution pre-
serving more than 16 supercharges can havalependent
y=e o2y, (4.6)  form fields. If such a field existed, it would follow that. Q;
in Eq. (4.5 is nonvanishing. Its Dirac matrix structure allows
wherep is an unconstrained, constant spinor. a contribution of F(,) be canceled by introducing off-

The second equation is more restrictive. Consider a wavgiagonal entries of the coefficient matrl; . However, the
solution supported by both NSNS flu4 3y as well as RR  differences between the gl(2) structures of the two terms
fluxes which we will generically denote d&=XF (). prevents this cancellation. Thus, we conclude that all form
Then,Q, is given by fields must be constant.
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B. Solutions with 28 supercharges
0

1.\ 1

We now analyze the field configurations put forward in - 3_2F* Tyt 51(4)> Fix+ 2 Al -Tjx, (4.17
Sec. lll. Of the potential solutions with 28 supercharges,
some do not solve the Killing spinor equations. Those whichwhere/f,, is given by
solve it exist in type 1IB and can be extended to include the
5-form field strength as well.

Let us begin \?vith the type 1IB theory and discuss the T(4y=9(T'1234F al'se79). (4.18
fields in Eqg.(3.2) and itsS-dual version. These fields do not
satisfy the assumptions introduced at the end of the previous

subsection, so we must start with E4.10. Consider first

Since/f,y and f 4y anticommute, Eq(4.17 becomes

the field configuration in Eq(3.2). Since /f vanishes, the , 1, 1

second and third terms in EG.10 are absent. Furthermore, 0=35T- fo)+ Zf(4) Fix+5A;I-Tjx. (4.19
from the previous section we know that the dilatino variation

is proportional toh ) which is Thus, each of the two RR field strengths gives an indepen-

dent contribution to the coefficientd;; . This shows that
under certain circumstances plane wave solutions can be su-
(4.12 perposed without breaking supersymmetry.
Thus, takingy to be the spinors that annihilate the dilatino ~ The £,y dependence is treated as above while/the i&
variation, the only terms that survive in the second term ofanalyzed as in the case of the maximally supersymmetric
Eq. (4.5 are plane wave solution, which we now repeat for the reader’s
convenience. The important observation is that for each
choice of the index, pushingl’; past/f4y changes the rela-
tive sign between the two terms ifh,f. Then, using the
chirality operator, the term with changed sign can be mapped
To find Aj; it is helpful to notice that, for any choice of the into the one that did not. Since each of the two terms square
index i in Eq. (4.13, passingl’; throughl,y changes the to —g? we find
sign of exactly one of the four terms Iy, . Then, the fact
thatlh,) annihilatesy implies that the three terms with the

h2)=F(X") (T 1o+ Bl 34t Y set aByl79) @ as.

1 1

—q1 2 | 2_ 2
sign unchanged can be replaced by the fourth one, whose fa=Tw+Ta, (@) =-9%
square is proportional to the identity matrix. For example, for
' =1.2 we have Pyt 152D =T i1y~ 184)*x=4T Tif {5y %x
(1 (2)2T i x=f2Ti( =T 12+ BT g+ YT s+ Byl 79 % = — 492" _Ty. (4.20
—f21 2. _af21 -
=Ti(=2I) = - 41T, (4.14 Thus, the coefficientd;; now become the sum of tte; and
Thus, the Eq(4.13 implies that Fs contribution, and the solution is
1 —
A :Z5i_f2_ 4.15 F (3= fdx*A(dx!Adx?+ Bdx3Adx*

+ ydx>/A\dx8+ aBydx'Adx8),
It is trivial to check that the equation of motiof2.6) is

satisfied. _ + 1 2 3 4
The same analysis applies with only cosmetic changes to F5)=gdx A(dx?AdxAdX*/Adx
any of theSduals of Eq.(3.2). Since the Dirac matrix struc- + adx®/A\dx8Adx' Adx8),

ture of fandH,, is identical, andh,)x=0, then only the
first two terms in Eq.(4.10 survive; for both of them the
discussion above Ed@4.14 applies without change. - ’ )
This family of S-dual solutions can be further extended to Aij= 4 o 29 Sij - (4.2
a two 2-parameter one by including the 5-form field strength.
This is possible because the 5-form field strength does ngtyen thougt andg appear in the metric only in the combi-
appear in the dilatino supersymmetry transformation rulepation (f2+ 1g?), the field strengths retain information én
Consider the following addition to E¢3.2): andg separately. Usin duality one can reconstruct the full
_ n 1 5 3 2 2-parameter family of solutiony rotatingF; into H; by
Fe=9dx" A AdXAdX /A DX any angleé. The maximal rotation corresponds to solutions
+adX®AdXCAdXNdXE), T_;y=ay. (4.16  With only H3 andFs.
To conclude this discussion, we formulate a superposition
Under these circumstanceg,fin Eq. (4.10 must be re- rule for wave solutionsAdding any two plane wave solu-
placed with/{,)+ %f(4) and this leads to tions with RR fields f, 1) and F(4 1) leads to a new solu-

125014-6



SUPERGRAVITY pp-WAVE SOLUTIONS WITH 28 AND . .. PHYSICAL REVIEW D67, 125014 (2003

tion. If the corresponding,) andf 4, anticommute, the com- g%+ 4f?2
mon supernumerary Killing spinors are inherited by the A11=Azo=Ass= A6~ 75
resulting solution.
This statement allows one to immediately decide whether 92+ 4282
the direct sum of two wave solutions remains a solution by Azz= A= A77= Agg= 16
just looking at the directions covered by the various excited 4.23
field strengths. The final amount of supersymmetry is given :
by the number of Killing spinors common to both solutions, iogether with itsS-dual cousins.
which can be found from the dilatino variation only. The ratiof/g, 8 and theS-duality parameter are uncon-

We now turn to the other candidate solution preserving 28 3ined. In the casg=0 we recover the Penrose-@n
sqpercharge(s’s.S). The building blocks of Eq(4.10 are in  |imit of AdSsx X T [7], which is also theT dual of the
this case solutions with 24 supercharges obtained in type IIA by Ref.
[9]. If the five-form field is vanishing angg=0, then the
Woy=f(YT 15~ Bl ®0°,  f=f(L i+ Byl @t “most distant” S-dual cousin of Eq(4.23 (involving only
(4.22 H(s)) is a 24 supercharge solution of type IIA supergravity.
In Sec. lll we also discussed some projectors that preserve
Unfortunately, Eq.(3.5 cannot source a solution that pre- 24 supercharges and cannot be extended to preserve 28. We
serves more than 20 supercharges. Ind€edoiitains a term  now construct the supergravity solutions which realize them.
of the form ByI" 153421, which cannot be canceled either by  Type IIB supergravityAs we saw in the previous section,
a choice ofA;; or by introducing other fields. This further the field configuration3.5 cannot be completed to a full
restricts the extra Killing spinors to be eigenvectord'ef;,  supergravity solution with 28 supercharges. Nevertheless, it
with the same eigenvalue, and thus reduces them to 4. & possible to use it for constructing solutions with 24 super-
5-form field strength can also be added to this configuratiortharges by truncating it to
without further reducing its supersymmetry. Solutions con-

taining F s, and the fields in Eq(3.5) were explored in Ref. aH15=F/ ,=f(x"), a®=1, (4.24
[15] and obtained as Penrose limits of the Pilch-Warner flow o o
[16]. The dilatino variation is
We can also analyze the possible type IIA solution pre- F(x*)
serving 28 supercharge8.8). The discussion is similar to Sh=— I _[al 1303+ T 0t]e
the one above; unfortunately, these solutions do not preserve 4
more than 20 supercharges. f(x+)
The solution sourced by NSNS fluxes found in type 1I1B =——T TI'pol[1+al,yic?)]e (4.29
supergravity is a solution of the type IIA theory as well. 4

However, in the latter case it Preserves only (.14'8) SUPETHNd the gravitino variation fixes the metric coefficients to

charges, because the two fermions have opposite chiralities.
To summarize the results thus far, we have constructed in §2

type 1IB supergravity a two-parameter family of wave solu- Ajj =Ediag9,1,1,1,1,1,1,)L (4.26

tions preserving 28 supercharges. They &rdual to each

other and are constructed by adding 5-form flux to the fieldy g expected, the equation of motion

configurations suggested by the projector analysis of Sec. IIl.

1
= —f2=_ 13 12
C. Solutions with 24 supercharges Ri =TrA=f 7 (HaeasH PPl ) 429

Deformations of solutions with 28 superchargésyy of is also satisfied
the solutions discussed in the previous section and preserv- Type 1A supérgravityA similar solution to the one ob-
ing 28 supercharges can be deformed to solutions preserviqgined above involveE, . andH . -
only 24. Indeed, if one modifies one of the two commuting @ @)
projectors in the dilatino equation (1M)(1+ N), the other
one is still a projector, and still annihilates half the spinors it §H+12=aF+145= f(x"), a?=1, (4.28
acts upon. Thus, all the families of solutions of the form
(4.2]) with B%=1,°#1 or vice-versa preserve 24 Super- gnd thus
charges. Adding one structure of five-form field strength can

be done without paying any cost. Thus we find a two f(x")
2-parameter family ofpp-wave solutions with 24 super- h=— I'_(Fp0°+al 1450™)
charges
f(x") .
Fio=Fise=f, Fuz=aF. 76=pf, =TF,F1203[1—aF245(|02)]; (4.29
F 1037 aF 1 5676=0, the gravitino variation fixes the metric coefficients to
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2 V. T DUALITY

A =-—diag9,25,1,1,1,1,1, 4.3 . . : ;
i" 16 g o (430 It is interesting to explore the metrics one obtainsToy

dualizing some of the solutions with augmented supersym-
and the equation of motion metry found in the previous sections. The Killing spinors that
survive theT-duality transformation are those which com-
B o 1 1 145 mute with the Killing vector defining the duality direction.
R. 4 =TrA=5f"/2= §(H+12H+ +tF 1) Equation(4.3) implies that all spinors depend on the trans-
(4.32) verse coordinates, therefore these directions cannot be used
for our purpose. We thus explore duality transformations

is also satisfied. along x™, which is the most interesting of the remaining
Another type IIA solution preserving 24 supercharges cardlirections.
be obtained by combiningl ) andF ,: However, as one can see from the solutions described in
the previous chapter, all;; giving augmented supersymme-
@ try are positive, and therefore E¢R.1) implies thatx™ is
3F == SHip= f(x*), a®=1. (432 timelike. Unfortunately, timelikd duality is hard to interpret

physically since it yields RR-field kinetic terms with the
wrong sign[8,17]. Thus, it can only be used as a solution-
generating technique, and only for spacetimes with NSNS
fields.
2 There are two ways we can circumvent this problem. The
Aij=— §diaq 121,169,1,1,1,1,1)1 (4.33 first one is toT dualize o_nly th_e solutions with NSNS flux.
We have one such solution with 28 supercharges, as well as

] ] ) _ 2 families of solutions with 24. The secoh@] is to perform
Despite these rather bizarre numbers, the equation of motiog qordinate transformation —x~ — (c/2)x", wherec s a

The dilatino variation is given by Ed3.12), and the metric
is given by the gravitino variation to be

is also satisfied: positive constant. The metri@.1) becomes
37 1/1 1 = —odx Ty +2
R, =TrA= 5= E(?uz) = S(FF M H L H L), ds’=—2dx"dx" +c(dx")
(4.34 —Agp(x ) Z222(dx )2+ (d )2, (5.1)
The last solution discussed in Sec. [[Hq. (3.14)]: and thus for any there exists a region of space whereis
spacelike and duality can be performed. The same shift can
3F 1 =F , pa=f(x") (4.35 be performed for the spacetimes containing only NSNS

fields. It is rather straightforward to take any of the solutions

also preserves 24 supercharges. The dilatino variation is E§/€ have andr dualize it using the rules in Reff18].

(3.15, and the metric determined by the gravitino variation = AS €xplained in the beginning of this section, not all of
the original supersymmetries survive tfeduality proce-

£2 (41, 0O dure. Only those Killing spinors which are independent of
A= 4 ) (4.3 x* remain Killing spinors of the new geometries. From Eq.
9%x41 0 14 (4.5 we can see that these spinors sati@fy y=0.

o ) ] Unfortunately, for the solutions with 28 superchardes,
satisfies the equation of motion is not proportional to any projector from the dilatino varia-
tion. This is becausé andlh are no longer multiplied from
the left by’ _ (as in the dilatino variation and therefore the
chirality of the spinors cannot be used to combine the
matrices into products of projectors. It is, however, not hard
Upon lifting this solution to M-theory one obtains the maxi- to see that, whe dualizing the solutions with 28 super-
mally supersymmetric solution found in RdE]. We can  charges, all the supernumerary Killing spinors disappear, and
also use the superposition principle formulated in the previonly 6 of the 16 annihilated by _ remain.
ous section to add to this solution the identical solution with  pp-wave solutions with only two nonzero structuresaf
fields along different directions. As we explained, the grav-or H; (preserving 24 superchargdsave morex™ indepen-
itino variation equation is satisfied if the fields anticommute,dent Killing spinors. Indeed, in both cas8s, contains one
and the dilatino variation becomes the sum of two projectorsprojector, and thus all the 8 supernumerary Killing spinors
Thus the superposition solution with and 8 of the 16 regular ones survive theluality. The result

of the duality transformation along" is a nonpp-wave so-
3F, 1=F y3,~=f, 3F . »=F, 1560, (4.38 lution of type IIA and 11 dimensionalllD) supergravity
with 16 supercharges.
and the corresponding; preserves 4 supernumerary Killing Let us first consider a solution containing only NSNS
spinors and thus has 20 supercharges. fluxes[similar to theS dual of Eq.(4.23)]:

R =§f2=£(F2 +F2% 30 (4.37)
++ 9 2 +1 +234 - .
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Hi=H.,3=h, —B,;=hx’, B,3=hx’,

H=c— 2[(x1)2+(x2)2+ (x®)%+(xH?].
(5.2

The T dual of this geometry is
1 .
dsz=ﬁ[(dx++hxzdx1+hx4dx3)2—(dx‘)2]+(dx')2,
1

1
e?*= IR B= ﬁ(o|x++hx2dx1+ hx*dx®)Adx,
(5.3

which is exactly the metric of smeardt strings perturbed

PHYSICAL REVIEW D67, 125014 (2003

formed with transverse forms. It is also possible to ad#ito
the regular harmonic functioN/r®, in which case the super-
numerary Killing spinors disappear, but a fraction of the
regular ones survives thieduality. One can thus obtain more
realistic perturbed M2 brane solutions.

A. The AdS-CFT interpretation of the divergences

All the solutions we found by spacelikeduality, as well
as the solutions found in Reff8] have the generic property
that the curvature diverges at a finite radius. Since all these
solutions correspond to smeared F1 strings or M2 branes
perturbed with transverse fluxes, it is possible to give them a
very interesting interpretation from the point of view of the
AdS-CFT correspondence.

To do this, we first add the usual harmonic functhdfr®

with transverse fluxes. The solution diverges at finite disyy 4 The metrics obtained above are still solutions, but they

tance from the origin.

only have 8 supercharges. Nevertheless, it now becomes pos-

Since Eq/(5.3) only contains NSNS fields, it makes sensegjpje 1o interpret them as near-horizon geometries of F1

as a solution whell is negative. The only difference is that

X~ becomes spacelike,” becomes timelike, and tHg field

switches sign. SincH| can be chosen to be nowhere van-

strings or M2 branes perturbed with constant transvEise
off-diagonal metric components, or transveksg It is quite
straightforward to see that these perturbations correspond to

ishing (by choosingc<0), this solution is regular every- ¢, ming on an irrelevant operator in the boundary theory. In

where.

the case of the M2 branes, the transverse perturbation with

It is quite surprising that these metrics preserves 16 SUsgnstanf, corresponds to a boundary operator of dimension
percharges, and it is even more surprising that such metriGs ¢ the formrE2w ¥ 6

areT dual to that of gop wave. Very similar solutions can be

obtained byT dualizing the solution wittH; and 28 super-

Since the operator is irrelevant, if one turns on a finite
perturbation in the UV, it flows to zero in the IR. Conversely,

charges. In that case only 6 of the original 28 supercharges qne turns on a finite perturbation in the IR, it diverges in

survive T duality; however, it is possible that the resulting y,e v, Thus, the only solutions which are regular at infinity
solution preserves a larger amount of supersymmetry,

which only 6 supercharges commute wikhduality. We did
not investigate this possibility.

For positiveH we can alsoT dualize the solution with
nontrivial F3:
C+3: fX4,

Fip=Fia=f, —C.i=fx%

H=c—%[(x1)2+(x2)2+(x3)2+(x4)2], (5.4)

Okre those with = 0, which is exactly what the solutiol(s.5)
and the ones discussed in Sec. VII of R&f imply.

This singularity can also be seen as coming from “nega-
tive mass” smeared M2 branes effectively created by the
combination of the transverse 4-folfor F, andFg in the F1
string casg via the Chern-Simons term of the 11D super-
gravity Lagrangian. When one puts enough real M2 branes in
the geometryby adding to the harmonic function a constant
or N/r®), the supergravity is regular up to the radius where
H become zero, which is the radius where the “negative
mass” M2 branes overtake the real ones. Such setups are

and obtain a solution corresponding to smeared F stringgery reminiscent of the ones where an enfmmmechanism

perturbed with transverse RR 2-form
1 .
ds’= 7 [(dx)? = (dx )]+ (dx)?,

1 1
e2¢=|—|, B+_:ﬁ' C1=fX2, C3=fX4.

(5.9

Upon lifting this solution to M theory we can obtain the \We obtain

supergravity solution of smeared M2 branesth the har-

monic functionH), perturbed with off-diagonal components

is responsible for the removal of singularitigg9], and it
would be interesting to explore if this is also the fate of the
singularities present here.

In addition to these divergent solutions we can also obtain
metrics which are everywhere regular by addingHahe
function —N/r® and performing timelikeT duality. Of
course, the wrong sign of N/r® is unphysical in the origi-
nal pp-wave metric, but since we are only using timelike
duality for solution generating we do not worry about this.
the metric (5.3) with —H=|H|=N/r®

of the metric. Similar to the previous solutions obtained by Sgee Ref[20] for the AdS-CFT analysis of the perturbation of F1
spacelikeT duality, these solutions become divergent at finitestrings with transversg, and Ref.[21] for the AdS-CFT analysis

radius.

of the perturbation of M2 branes with transvefsg

One carl dualize the other solutions we found and obtain 6This can be seen from Eq&l6) and (17) in Ref. [21], and is
geometries corresponding to F1 strings and M2 branes deimilar to Eq.(50) in Ref.[22].
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+(f/4)=,(x')?, which can again be interpreted as the nearto a perturbation of the AdS-CFT duality in the first place
horizon of F1 strings or M2 branes perturbed with off- possible direction toward obtaining these full solutions
diagonal metric components aiy,; . would be to go backward along the chain of dualities, to first
Unlike its cousin obtained by spaceliReduality, this so-  obtain a more generic wave and then use its simple features
lution does not diverge at finite radius. The two solutionsto try to find the full solution.
correspond to turning odifferentperturbations in the IRin The metrics obtained by duality can be easily made time
one case thé,) perturbation contains a timelike direction dependent. As we explained in the previous chapter, adding
and in the other it does notTherefore it is not surprising x* dependence to the forms and the metric removes the su-
that these perturbations give rise to different UV physics. pernumerary Killing spinors. Nevertheless, a certain fraction
In the regular case, the metric in the UV becornfiesthe  of the 16 spinors annihilated by (1/2 or 3/4, depending
string frame on the fluxes survive theT duality. Thus, we obtain time-
dependent metrics with nontrivial fluxes, and some super-
d52:2f_u[_(dt+ fx2dxt+ fx*dx®)?+ (dx )%+ du? symmetry(8 or 12 supercharggs
8 VI. A GENERAL ANALYSIS

+4u?d03]+ >, (dX)?, (5.6) In this section we will prove that a wave solution with
'=° nontrivial dilatino variation cannot preserve more than 28
B 4 i\ 2 . ) . supercharges and that the field configurations analyzed in
whereu=(/2)%_,(x')". The nontrivial part of this metric  gecs. |1 and IV are the only ones with this property. As
is conformal to a fibration of &, orbifold of a 4-plane, and  giscussed in the beginning of this paper, a systematic way of
does not appear to be singular. If only one structurd@fis  constructing all solutions with more than 16 supercharges is
turned on, the metric resembles that of a wave. This flow cag, start from the dilatino variation and ask for field configu-

easily be lifted to M theory, or dualized to other flows. Thusations that organize it as a product of commuting projectors.
we obtained a nonsingular supergravity flow, starting fromrp,s

AdS,x S’ (or the near horizon F1 string metriin the IR
and ending with the geometi(.6) in the UV. It would be

very interesting to find if this geometry has a field theory . 1

dual, and learn more about these irrelevant perturbations. A=T_M ,1:[1 Pi) & Pi:§(1+Ai)’ 6.0

Moreover, by using’ andSduality it is possible to construct

similar nonsingular flows from AdS< S° in the IR to a met-

ric similar to Eq.(5.6) in the UV. whereM is some combination of Dirac matrices aRgdare a
These types of flows are reminiscent of the one obtaine§€t of commuting projectors.

by turning on the dimension 6 operatd;, in the An upper bound on the number of preserved supercharges

AdS;x S° dual of theA’=4 Yang-Mills theory. In that case translates into an upper bound on the number of projectors
one also flows to a nontrivial UV geometry, which is dual to that can be generated in the dilatino variation by the fields

a noncommutative field theory. present in the theory. _ _
The basic observation that will help us reach our goal is

that any two terms in the dilatino variation must form a
projector, up to a common factor. It is easy to see that this is
As we have seen in the beginning of this section, bythe case by expanding the brackets in &ql). Furthermore,
T-dualizing pp-wave solutions with fluxes one can obtain any of these terms has to be generated by one of the form

metrics corresponding to branes and strings perturbed witfields appearing in Eq$2.7), (2.8). This implies that, for the
constant fluxes. It is quite trivial to further u3eduality and cases we are interested in, the dilaton cannot contribute to
S duality on these solutions to generate the solutions correthe dilatino variation. Indeed, after factoring out the Dirac
sponding to other branes perturbed with transverse fluxes. matrix I' _ which is common to all fields, the contribution of
However, since we consider wave backgrounds in whickany component of any form field squares-tdl while the
the form field strengths only depend @i (otherwise con- dilaton contribution squares to one. Similar arguments lead
structing solutions of the equation of motion and Bianchito the conclusion that the axion cannot contribute either.
identities becomes more challenginghe resulting fluxes Since the O-form field strength cannot contribute to a wave
will not depend on the transverse directions, and will generisolutiorf we are left to considei 3y, F(z), andF 4 in the
cally correspond to turning on irrelevant operators in thetype IIA theory and the two three-forms of the type IIB
boundary theory. Thus, most of these solutions have eithgheory. We will now argue that it is not possible for the
singularities at a finite distance from the origin, or very non-dilatino variation to contain more than two projectors in ad-
trivial UV completions. ditiontoI"_ .
Since the fluxes do not depend on transverse directions, it
does not appear possible to obtain from the singgevave
ansatz the full solutions corresponding to perturbations of the "The equations of motion are not satisfied in the presence of a
AdS-CFT correspondence witklevantoperatorg(in fact, it cosmological constant unless form fields are allowed to have non-
seems quite remarkable thgt-wave backgrounds afedual  null nonvanishing components.

B. pp waves as solution factories
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A. The type IIB theory charges. Such products of projectors can be generated using
We begin by discussing the type IIB theory. Because a|pomb|nat|ons of the two 3-forms and were analyzed in Secs.

spinors appearing in this theory have the same chirality, wdll and 1V,

can use the chirality operatdr_, to rewrite a product om (3) The last possibility is to have some projectors con-
Dirac matrices as a product of {am). structed out of products of four Dirac matrices while the

A simple inspection of the available form fields reveaISOtherS_ of _products of two. The requirement that they com-
that in type 1B the prefactoM in Eq. (6.1) must be a prod- m_ute |mpI|§as that there must be an even number of common
uct of two Dirac matrices tensored with eithet or o=. Dirac matrices between any twiy andA; . If one product of

Then, the gl(2) component of any of the projectors in Eq_two Dirac matrices, call ?Bz, is not containgd in one prod-
(6.1) is either the identity matrix oro?> depending, respec- uct of four of them, call itB,, then, expanding the brackets

tively, on whether only one or both types of fields are ex-N EQ. (6.1) implies that we need a-form field to supply a
cited. Therefore, the Dirac matrix part of &|'s in Eq. (6.1) term .Of t.he typeMB,B,. .BUt such a field does not appear in
must commute. Furthermore, they can be either products cw_e dilatino transformatlon rule unIe_ss one of_the Dlra_c ma-
two or four Dirac matrices. These observations set an uppdfiCES appearing i also appears either iy, in B, or in
bound on the numbe of projectors. In particular, there are POth- Indeed, if this were the case, tHdB,B, will become

at most threéndependentommuting products of two Dirac & Product of sixl” matrices and using’_, can be rewritten

matrice€ and only twoindependentommuting products of 25 & product of two of them. Furthermore, similar arguments

four Dirac matrices. We will now discuss separately the pos@PPlied on the terms B, implies thatM andB, cannot have
sible constructions of projectors. a common Dirac matrix. We are therefore left with the fol-

(1) The easiest to analyze is the case in whichAz are  10Wing possibility:
built out of products of four Dirac matrices. Since there are
only two such independent combinations, it follows that Fap(1+ o) (14 Tgerg) 6.3
=<2 which in turn implies that there are at most 28 preserved o . )
supercharges. This product of projectors, which can be genthis combination has the potential of preserving 28 super-
erated using either one of the two 3-form field strengthscharges and was analyzed in Secs. Ill and IV. Since there
present in the theory, was analyzed in Secs. Ill and Iv.  does not seem to be any obstruction to adding more projec-
(2) Consider next the situation when all projectors aretors we will attempt to do so. It is easy to see that a projector

constructed out of products of two Dirac matrices. The prod<£onstructed out of four Dirac matrices that satisfies kaih
uct of projectors can be expanded as and(3) will anticommute withl’ 4.1y and thus is not allowed.

We are thus left with the possibility of adding a projector

n constructed out of two Dirac matrices. This will have to
M kZO > ) H A, (6.2 comply with both the restrictions of poiri2) as well as with
Y ogecy €1 those of point(3). Thus, it seems possible to insert
whereCK is the collection of sets of k elements picked out 1+ T, (6.4

of n. Since allA;’s are different, they will commute with

each other if and only if no two have common Dirac matri- where the indexh represents the matrix which does not al-
ces. The only way for this to come from a sum of bilinears ofready appear in Eq6.3. Nevertheless, the three projectors
Dirac matrices of the type appearing in the dilatino transfor-are not independent becaube I' ;I =T _T",cI gerg and
mation rule, is that exactly one of the matrices building anythus the third projector does not lead to more preserved su-
A; appears iM. Indeed, if this were not the case, the productpersymmetry.

betweenM and the corresponding; would contain four This concludes the analysis of the type 1B theory with the
Dirac matrices and this cannot be generated by one of theesult that any solution of the equations of motion which
available fieldS. Furthermore, such a term cannot be can-leads to a nontrivial dilatino variation will preserve at most
celed usind’ _; since all terms in the sum above are propor-28 supercharges. Because the 5-form field strength does not
tional toM and the use of _; would produce terms without appear in the dilatino variation, it can be used to enlarge the
this property. Since, as argued abdwanust be a bilinear in  set of fields producing the projectors discussed above. This
Dirac matrices, we can have at most two projectors of thigpossibility was discussed in detail in Sec. IV.

type in Eq.(6.1) and therefore there are at most 28 super-

B. The type IlA theory

8Products of two Dirac matrices gener&€(8) whose rank is . We n_ow .turn to t_he analysis Of the_type 1A theor_y. Th_e
four. Due to the fact that the chirality of both spinors is the samediScussion is complicated by having fields contributing dif-
and that the dilatino variation is proportionalta , it follows that  ferent numbers of Dirac matrices but is also simplified by the

in the dilatino variation in the type 1B theory one of the four Cartan fact that we are no longer aHOWEd_ to use the chirality opera-
generators of S@) can be expressed in terms of the other three andor I' -1 to map products of’ matrices into each other. In-

the chirality operatoll _;. deed, any projector constructed by using; would lead to
9The 5-form field strength does not appear in the dilatino varia-enhanced supersymmetry in one sector while breaking it in
tion. the other sector. Furthermore, in the type lIA theory all fields
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appear in the dilatino variation. Thus, the set of fields leading A=T,, .(®{l,6%%. Two of the Dirac matrices that ap-
to projectors in this variation cannot be enlarged. pear inA must also appear iM since otherwise there would
As discussed before, the dilaton cannot be excited in @e fourl" matrices inMA. This in turn fixes the gl(2) com-
wave solution with augmented supersymmetry. As a first steponent ofA to be the identity matrix. Such a term can be
in answering the question of how many independent comgenerated by the NSNS 3-form field strength.
muting projectors can appear in the dilatino variation, we A=T ,pcqe2{1,0>%. Two of the Dirac matrices that ap-
first study if it is possible to have two projectors. Thus,  pear inA must also appear iM since otherwise there would
be more than threE matrices inMA. Then, the gl(2) com-
ON=M(1+A)(1+A)e=[MF+M(A1+Az) +MAA €. ponent prevents this term from being generated.
(6.9 Thus, A; and A, must be of the typd ,.q® (i ?) with
c#b andd#b (i.e., they must have one Dirac matrix com-
As noticed before, each term above must be produced by onfion with M) or of the typel e 1. The gl(2) component
of the fields present in the background. We have at our disof MA,;A, forbids bothA’s be of the second type. Thus, we

posal products of one, two and three Dirac matrices. have two choices.
Let us now discuss case by case the possible matiices  |f poth are of the first type then, due to the gl(2) compo-
and for each of them the allowed projectds nent of MA,A, beinga?, this term must be generated by the

(1) M is generated by the 2-form field strength, i, NSNS 3-form and thus must contain exactly two Dirac ma-
=T,®(i0?). The fact thaMA; must be generated by one of trices. The only possibility for this to happen is if the Dirac
the fields implies that the Dirac matrix component/Agfis matrices that are common betwedn and M are different
constructed out of one, two, or thréematrices and the re- and there is one more Dirac matrix common between the two
quirement of (& A) being a projector fixes the gl(2) com- A’s. Thus, the only solution is
ponent. Combining everything Welarealeft with thezfollowing
possibilities: I'y®g with g=1, o, ¢°, T',®(i0°) and 3 P2 .2
Tape® (i) Itis easy to see that some of these possibilities Fap® o1+ Taca® (0D 1+ Toce@ (107)]. (6.6
cannot be generated by the available fields. Indeed, the pro
ucts T, @ (i 0?) M@ (i0?) and I ,® (i 0?)T 5@ (i0%) have
the identity matrix as gl(2) component and there is no field
with this property except for the dilaton which does not
contribute anyI" matrix. The remaining possibility is
A=T,®g with g=1, ¢!, ¢°. Inserting these remaining
combinations in Eq(6.5 we find that the gl(2) component which is none other than the field configuration discussed in
is fixed by the term$/A to beg=o'. This last possibility is Eqg. (3.9.
nevertheless eliminated by consideribyA;A,. Thus, we If the two A;’s are of different type, then the gl(2) com-
conclude that ifM is generated by the 2-form field strength, ponent ofM A;A, implies that this term is generated by the
the dilatino variation contains at most one projector besideg-form field strength. Thus, there must be another Dirac ma-
I'_, and thus no more than 24 supercharges can exist.  trix common betweerA; and A, which uniquely identifies

(2) The next possibility is foiM to be generated by the the projectors as
NSNS 3-form field strength, i.eM =T ,,® ¢°. Then, requir-
ing that 1+A is a projector, we have the following T 5@ 0 14T ag® (1 02) (14T gpee®]1), 6.9
possibilities: 2 ac abee

A=T_ ®{l, o*3. The case with ant_do3 cannot be gen- .o just a rewriting of Eq(6.6).
erated due to the gl(2) component while the other one can be It is now easy to analyze the problem of adding more

generated using the 2-form field strengticia or c=b. ; : :
: ) ) . projectors to either one of Eq&.6) or (6.9). Let us discuss
A=T,.®(iag?). One of the Dirac matrices that appear in Eq. (6.6). If A, is of the same type a8, andA,, then the
A must also appear iNl since otherwise there would be four Dirac matrix ?hat is common betwe 91 and I\z/l must be

lk; matrlcest 'QI\SA' Itt t?ﬁn f?IIZOWS that thISth’fO:ﬁCtOI’ mr:ot different from the ones common betwe&n andM andA,
e generated due to the gi(2) component of the pro andM. However,M is constructed out of only twd matri-

_ . 2 . . .
A A_{alﬂ@(' o). Q;;le Qf the gllrac _ma’irrllces that Izpk?e?'r N ces. Therefore, a third projector of the first type is forbidden.
T mu?_asq al\lzge?rrh' ?;]nceloz erwise er? V\f'(:ﬁ edlvet If A; is of the second type, it follows from E¢6.9) that it
matrices inMA. Then the gi(2) component of the produc must have one common Dirac matrix witk, and A, for

g/l;;ergqt:ges thatcb and d+b for this projector to be MA; ,A; to be generated. Furthermore, this matrix cannot be
' common betweer\; and A, because otherwis®l A;A5Az,
which is proportional tao®, could not be generated. Thus,
we are left with

q"his projector is generated by the following choice of fields:

1
§H+ab:_§H+de:F+bcd:F+ace (6.7

0This last possibility occurs wheA and M have one common
Dirac matrix.

Mwe will put from the outset some common Dirac matrices be-
tweenA and M. This is due to the fact that the produdiA must
have at most three Dirac matrices for such a term to be generate®ut this does not lead to an independent projector

Az=T apge=A1A;. (6.9
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(I+A)(1+A)(1L+AA,) i.e., A; and A, each have two commoh matrices withM
and one common between themselves. This projector is just
=(1+A1+A+AL1A2) (1+A1A7) the rewriting of Eq.(6.6).

In this case there existd;=I",.s which has the same
properties asA; and A,. However, adding it to Eq(6.11)
does not lead to enhanced supersymmetry. Indeed, the term
) 5 L MA;A,A; will contain six Dirac matrices. Such a term can
sfmceAi =1. Thus, _|f|\_/| is ge_ne_rated by _the NSNS 3-form g generated only usifig_; to map it to a product of twd'
field strength, the dilatino variation contains at most two Pro-matrices, but this operation enhances supersymmetry in the
jectors in addition td"_ and there are at most 28 preserved|eft-handed sector while breaking it in the right-handed sec-

—2(1+A))(1+A,) (6.10

supercharges. tor. The required field configuration has the potential of pre-
(3) The third and last possibility is favl to be generated serving (15,8) supercharges.

by the 4-form field strength, i.eM=T4p®0*. As in the This concludes the analysis of the dilatino variation in

previous case, there are several possibilitiesfar? type A theory with the result that there exist field configu-

A=T4®{1, ¢13. There is no field that can give this con- rations leading to variations proportional to E¢§.6) and
tribution. IndeedMA is a product of either four or two Dirac (6.11) which potentially preserve 28 supercharges. Unlike
matrices tensored with, o* or (o). None of these terms the case of the type IIB theory where the 5-form does not
can be generated by the available fields. appear in the dilatino variation, in the type IIA theory we

A=T,4®(id?). This leads to aMA with o as the gl(2) ~ cannot enlarge the set of fields that lead to enhanced super-
component, which requires two Dirac matrices. There is nymmetry. _
choice ofd that can do this, and thus such Anis not al- To summarize, we have shown that a wave solution of the
lowed. supergravity equations of motion with a nontrivial dilatino

A=T,,4®(io?). This leads again ta® being the gi(2) variation preserves at most 28 supercharges. The candidates

component oMA. If d#c it also contains a product of two @€ given by the projectors analyzed in Secs. Il and IV.
Dirac matrices. This can be generated using the NSNS

3-form field strength. , VIl. SUMMARY AND CONCLUSIONS

A=T 4211, o¥3. The choiced ando! as gl(2) com- _ S .
ponents cannot be generated while the choitean be gen- Using the relative simplicity of pp-wave geometries we
erated using=,) if d=c. have explored wavelike solutions of type IIA and type 1IB

A=T  p4e@1{l, o>3. The first possibility is viable ifd supergravity with augmented amounts of supersymmetry.
=c, since it can be generated by the NSNS 3-form. ThdVaking use of the chirality of the fermions of type IIB su-
other two cases cannot be generated due to a mismatch beergravity, and expressing the dilatino variation as a product
tween the gl(2) component and the Dirac matrix componen®f commuting projectors, we found one two-parameter fam-
of MA. ily of type IIB solutions with 28 supercharges, as well as one

A:rabdefg@)(iUZ)_ The Dirac matrix component requires tYPe [IB three-parameter family qf s.ollutions with 24 super-
d=c, leading to a product of three matrices which does no€harges. We glso found_several individual solutions of type
match with the gl(2) component which €. Therefore, this  |IA supergravity preserving 24 supercharges, as well as so-
combination is not allowed. lutions preserving (14,8) supersymmetry. _

Thus, if M=T,,.® ¢! both A; andA, can be either of In the process of d0|_ng thls_, we formulated a superposi-
the typel pq® (i 02) With d#C, T o 03 or Taperg® 1. By tion rule for wave solutions, giving an easy way of testing
analyzing the six inequivalent combinations it follows thatWhen a direct sum of wave solutions still possesses enhanced
A, and A, cannot be of different types because of a mis-Supersymmetry. We also c_onducteq a rigorous exploration of
match between the gl(2) component and the number oihe possibility of constructing solutions with augme_nted Su-
Dirac matrices that can be generatedMm,A,. Therefore, Persymmetry, and concluded that 28 supercharges is the most
they must be of the same type, which requires ta,A, one can find when the dilatino variation is nontrivial.

be built out of three Dirac matrices since its gl(2) compo- _BY T dualizing some of oupp-wave solutions we ob-
nent isot. Since € apd(Taned (Taper) cONtains five Dirac tained solutions with 16 supercharges similar to smeared F1

matrices, while Tapd) (T apced (I'aberr) CONtains either five strings perturbed with transverse fluxes. After adding an ex-

or seven Dirac matrices, it follows that the only possibility is @ term to the harmonic function we interpreted these solu-
tions as perturbations of the AdS-CFT duality with irrelevant

operators. This allowed us to give a field theoretical interpre-
Tape® 0 {1+ T q® (0D [1+Tpee®(i0?)], c#d#e, tation to 'ghg sin_gularities some of t.hese solutions generically
(6.11) have at finite distance from the origin.
We also obtained an exact nonsingular+RV flow from
AdS,x S’ to an intriguing UV geometry. Similar procedures
12As in previous discussions, we will put from the outset somecan be used to construct flows from AGSS® and other
common Dirac matrices betweghand M. This is due to the fact Nnear-horizon geometries.
that the producMA must have at most three Dirac matrices for such ~ Since our solutions are exact, the careful investigation of
a term to be generated. these geometries can vyield further insights into the role of
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these irrelevant operators. The similarity of these flows to thelual to another field theononly if one adds by hand a term
flows to geometries dual to noncommutative field theoriesof the form Q/r® in the harmonic function. However, this
deserves further investigation, and could yield interestingspoils the original duality with the large angular momentum
physics. sector of the first field theory. It thus appears that win
The work presented here can be extended in several difjoes to zero, the dual field theory changes drastically, al-
ferent directions. One would be to try to realize thegge  though this is not such a drastic change from the point of
wave solutions as Penrose~@&n limits of other supergrav- view of the supergravity. This phenomenon deserved further
ity backgrounds. This does not seem straightforwardstudy, and might even be a link toward establishing a more
especially for the solutions with 28 supercharges; their muldirect relation between the field theories at the ends of the
tifarious mix of fields makes them hard to obtain as such‘broken” duality chain.
limits. Nevertheless, some of their cousin solutidlilee the Yet another direction involves investigating and maybe
one with 24 supercharges and only two nonzero structures @xpanding the exact nonsingular IR to UV flows we con-
F3) can easily be obtained as limits of the A4SS® geom-  structed, finding possible field theory duals of the UV geom-
etry[7,23-27, so it is not implausible that a careful analysis etry, and understanding their similarity to the flows to non-
could in the end find a “mother background.” If this back- commutative theories.
ground were found and it had a dual field theory, our back- Last but not least, arguments similar to those leading to
grounds would be dual to limits of the field theory with 28 the equivalence of th&/=3 andN=4 vector multiplets in 4
supercharges, which can yield interesting insights into thatlimensions imply the equivalence of¥/=7 (28 super-
theory. chargesand /=8 gravity multiplets. It would be interesting
Another possibility would be to look for waves whose to see if this structure is preserved by interactions in the
duals correspond teelevantperturbations of the AdS-CFT background of the waves with 28 supercharges.
correspondence. As explained in Sec. V, such waves would
haver dependent fields, and they would not be as simple as
the ones discussed here. However, it is conceivable that the
equations of motions would take a more transparent form, We would like to thank Joe Polchinski for interesting and
which could be more amenable to finding exact solutions. useful discussions and reading the manuscript. We also prof-
The duality betweerpp waves and irrelevant perturba- ited from conversations with Mariana Genand Gary
tions of the AdS-CFT correspondence could be further reHorowitz. The work of 1.B. was supported in part by UCSB
fined. As seen in Ref.7], string theory on @p-wave back- and in part by the NSF Grant No. PHY00-9869). The
ground is dual to a larg&-charge sector of a field theory. work of R.R. was supported in part by the DOE Grant No.
After T dualization, the resulting background can only be91ER40618N) and in part by the NSF Grant No. PHYO0O-
interpreted as a perturbed near-horizon geometiyich is  98096T).
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