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Dimensional reduction of a Lorentz- andCPT-violating Maxwell-Chern-Simons model
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Taking as a starting point a Lorentz andCPT noninvariant Chern-Simons-like model defined in 113
dimensions, we proceed to realize its dimensional reduction toD5112. One then obtains a new planar model,
composed by the Maxwell-Chern-Simons~MCS! sector, a Klein-Gordon massless scalar field, and a coupling
term that mixes the gauge field to the external vectorvm. In spite of breaking Lorentz invariance in the particle
frame, this model may preserveCPT symmetry for a single particular choice ofvm. Analyzing the dispersion
relations, one verifies that the reduced model exhibits stability, but the causality can be jeopardized by some
modes. The unitarity of the gauge sector is assured without any restriction, while the scalar sector is unitary
only in the spacelike case.
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I. INTRODUCTION

It is usually assumed that a consistent quantum fi
theory ~QFT! must respect at least two symmetries: Lore
covariance andCPT invariance. The traditional framewor
of a local QFT, from which we derive the standard mod
that sets the physics inherent to the fundamental partic
satisfies both these symmetries. In the beginning of
1990s, a new work@1# proposing a correction term to con
ventional Maxwell electrodynamics that preserves gauge
variance, despite breaking Lorentz,CPT, and parity symme-
tries, was first analyzed. The correction term, composed
the gauge potentialAm and an external background 4-vect
vm , has a Chern-Simons-like structure,emnklvmAnFkl , and
is responsible for inducing an optical activity of th
vacuum—or birefringence—among other effects. In t
same work, however, it was shown that astrophysical data
not support the birefringence and impose stringent limits
the value of the constant vector,vm , reducing it to a negli-
gible correction term. Similar conclusions, also based on
trophysical observations, were also confirmed by Goldha
and Timble@2#. Some time later, Colladay and Kostelec
@3# adopted a quantum field-theoretical framework to addr
the issue ofCPT and Lorentz breakdown as a spontaneo
violation. In this sense, they constructed an extension of
minimal standard model, which maintains unaffected
SU(3)3SU(2)3U(1) gauge structure of the usual theor
and incorporatesCPT violation as an active feature of th
effective low-energy broken action. They started from
usualCPTand Lorentz-invariant action as defining the pro
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erties of an eventual underlying theory at the Planck sc
@4#. It then undergoes a spontaneous breaking of both s
metries. In the broken phase, there arises an effective ac
with CPT and Lorentz symmetries broken, but covarian
preserved for the inertial observer frame. The Lorentz inva
ance is spoiled at the level of the particle system, which
be viewed in terms of the noninvariance of the fields un
boosts and Lorentz rotations~relative inertial observer
frames!. This covariance breakdown is also manifest whe
ever analyzing the dispersion relations, extracted from
propagators.

Investigations concerning the unitarity, causality, and c
sistency of a QFT with violation of Lorentz andCPT sym-
metries~induced by a Chern-Simons term! were carried out
by Adam and Klinkhamer@5#. As a result, it was verified tha
the causality and unitarity of the model may be preserv
whenever the fixed~background! 4-vector is spacelike, and
spoiled whenever it is timelike or null. An analysis of th
consistency put forward in the presence of spontaneous s
metry breaking~SSB! @6# has confirmed the results obtaine
in Ref. @5#: the spacelike case is free from unitarity illnesse
on the other hand, they are present in the timelike and lig
like cases.

The active development of Lorentz- andCPT-violating
theories inD5113 has led to the inquiry regarding th
structure of a similar model in 112 dimensions and its pos
sible implications. To study a planar theory endowed w
Lorentz- andCPT violation, we have decided to adopt
dimensional reduction procedure: we start from the origi
Chern-Simons-like term,emnklvmAnFkl , and perform its re-
duction toD5112, which yields a pure Chern-Simons ter
along with a breaking mixed term. Our purpose, therefore
to end up with a planar model, whose structure is deriv
from a known counterpart defined in 113 dimensions. Next,
we investigate some of its features, such as propagators,
persion relations, causality, stability, and unitarity.
©2003 The American Physical Society11-1
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BELICH et al. PHYSICAL REVIEW D 67, 125011 ~2003!
The motivation to study the planar descent of the Carr
Field-Jackiw model@1# is based on two main aspects:~i! the
theoretical relevance of investigating a new planar sys
and comparing its features with the ones of its fo
dimensional counterpart;~ii ! the establishment of a new the
oretical framework with perspectives for applications
low-dimension systems. In connection with the latter,
point out that the Lorentz breaking, explicitly realized by t
external vectorvm, may account for at least two usual fac
for condensed matter systems: the nonrelativistic regime~in-
herent to these systems! and the presence of an anisotropy
the wave functions of some condensed matter system
spacelike background may effectively induce a spatial
isotropy which appears clearly in the solutions of the pot
tials discussed in the work of Ref.@7#. Such anisotropy
would play a relevant role if it could be identified with th
ones present in several condensed matter systems, su
the one in ane2e2 pair condensate of a class of high-Tc
superconductors. Therefore, the study of the planar ver
of the Lorentz- andCPT-breaking model may be adopted n
only to shed light on the four-dimensional parent model,
also to offer a possibility to fit phenomenological aspects
planar condensed matter systems. To pursue our inves
tion, we perform the dimensional reduction to 112 dimen-
sions of an Abelian gauge model with nonconservation of
Lorentz andCPT symmetries@1,5# induced by the term
emnklvmAnFkl . The resulting planar quantum electrod
namics (QED3) is composed of a Maxwell-Chern-Simon
gauge field (Am), a scalar~w!, a scalar parameter~s! without
dynamics ~the Chern-Simons mass!, and a fixed 3-vector
(vm). Besides the MCS sector, this Lagrangian has a m
less scalar sector, represented by the fieldw, which also
works out as the coupling constant in the Chern-Simons-
structure that mixes the gauge field to the 3-vectorvm ~where
one gauge field is replaced byvm). This latter is responsible
for the Lorentz noninvariance. Therefore, the reduced
grangian is endowed with three coupled sectors: a MCS
tor, a massless Klein-Gordon sector, and a mixing Loren
violating one. As is well known, the MCS sector breaks bo
parity and time-reversal symmetries, but it preserves the L
entz andCPT ones. The scalar sector preserves all discr
symmetries and Lorentz covariance, whereas the mixing
tor, as it will be seen, breaks Lorentz invariance~in relation
to the particle frame!, keeps conserved parity and charg
conjugation symmetries conserved, but may break~or pre-
serve! time-reversal symmetry. This implies that both cons
vation ~for a purely spacelikevm) and violation ~for vm

timelike and lightlike! of CPT invariance may take place.
This paper is outlined as follows. In Sec. II, we perfor

the dimensional reduction, leading to the reduced mo
With the new planar Lagrangian, we devote some effort
derive the propagators of the gauge and scalar fields;
requires a closed algebra composed by 11 spin operator
displayed in Table I. In Sec. III, we investigate the stabil
and the causal structure of the theory. We discuss the ca
ity by looking at the dispersion relations extracted from t
poles of the propagators, which reveal the existence of b
causal and noncausal modes. All the modes, neverthe
present positive definite energy~positivity! relative to any
12501
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Lorentz frame, which implies an overall stability. In Sec. I
we carry out the unitarity analysis, based on the residue
trix evaluated at the poles of the propagators. Unitarity
ensured only in the case of a purely spacelike backgro
vectorvm. In Sec. V, we present our concluding commen

II. THE DIMENSIONALLY REDUCED MODEL

We start from the Maxwell Lagrangian1 in 113 dimen-
sions supplemented by a term that couples the dual elec
magnetic tensor to a fixed 4-vectorvm as it appears in Refs
@1#, @2#, @5#:

L1135H 2
1

4
F m̂n̂F m̂n̂1

1

4
em̂n̂k̂l̂v m̂An̂F k̂l̂1An̂Jn̂J , ~1!

with the additional presence of the coupling between
gauge field and the external current,An̂Jn̂.

This model~in its free version! is gauge invariant but doe
not preserve Lorentz andCPT symmetries relative to the
particle frame. For the observer system, the Chern-Simo
like term transforms covariantly, once the background als
changed under an observer boost:v m̂→v m̂85La

mva. In con-
nection with the particle system, however, when one app
a boost on the particle, the background 4-vector is suppo
to remain unaffected, behaving like a set of four independ
numbers, which configures the breaking of the covarian
This term also breaks the parity symmetry, but keeps
invariance under charge conjugation and time reversal.

To study this model in 112 dimensions, we perform its
dimensional reduction, which is based on the following a
satz over any 4-vector:~i! one keeps its 0-, 1-, and
2-components;~ii ! one identifies its third component with
scalar in (112) and makes the assumption that there is
dependence on the third spatial dimension:]3(anything)
→0. Applying this prescription to the gauge 4-vectorAm̂ and
to the fixed external 4-vectorv m̂, and to the 4-currentJm̂,
one has

Am̂→~Am;w!, ~2!

v m̂→~vm;s!, ~3!

Jm̂→~Jm;J!, ~4!

whereA(3)5w, v (3)5s, J(3)5J, andm50, 1, 2. According
to this process, there appear two scalars: the scalar fiew
that exhibits dynamics, ands, a constant scalar~without dy-
namics!. Carrying out this prescription for Eq.~1!, one then
obtains

1Here one has adopted the following metric conventions:gmn

5(1,2,2,2) in D5113 andgmn5(1,2,2) in D5112. The
greek letters~with hat! m̂ run from 0 to 3, while the pure greek
lettersm run from 0 to 2.
1-2
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DIMENSIONAL REDUCTION OF A LORENTZ- AND . . . PHYSICAL REVIEW D67, 125011 ~2003!
L11252
1

4
FmnFmn1

1

2
]mw]mw1

s

2
emnkA

m]nAk

2wemnkv
m]nAk2

1

2a
~]mAm!21AmJm1wJ, ~5!

where the last free term represents the gauge-fixing te
added up after the dimensional reduction. The scalar fielw
exhibits a typical Klein-Gordon massless dynamics and
also appears as the coupling constant that links the fixedvm

to the gauge sector of the model, by means of the new te
wemnkv

m]nAk. In spite of being covariant in form, this kin
of term breaks the Lorentz symmetry in the particle fram
since the 3-vectorvm is not sensitive to particle Lorent
boost, behaving like a set of three scalars.

The Lagrangian~1!, originally proposed by Carroll, Field
and Jackiw@1#, has the property of breaking parity symm
try, even though it conserves time-reversal and cha
conjugation symmetries~for a pure timelikevm), resulting in
nonconservation of theCPT symmetry. Simultaneously, th
Lorentz invariance is spoiled, since the fixed 4-vectorvm

breaks the rotational and boost invariances. On the o
hand, the reduced model, given by Eq.~5!, does not neces
sarily jeopardize theCPT conservation, which depends tru
on the character of the fixed vectorvm. As it is known, the
parity transformation~P! in 112 dimensions is character
ized by the inversion of only one of the spatial axes:xm

→
P

x8m5(xo ,2x,y), the same being valid for the 3-potentia

Am→
P

A8m5(A0 ,2A(1),A(2)).
The time-reversal transformation~T ! must keep un-

changed the dynamics of the system, so that we must h

xm→
t

x8m5(2xo ,x,y), Am→
t

A8m5(A0 ,2A(1),2A(2)),

while the charge conjugation determinesxm→
C

x8m5xm, Am

→
C

A8m52Am. We know that the Chern-Simons term brea
both parity and time-reversal symmetries and keeps c
served the charge conjugation, which assures the globalCPT
invariance. The new term,wemnkv

m]nAk, however, will
manifest a nonsymmetric behavior beforeT transformation:
there will occur conservation if one works with a pure
spacelike external vector@vm5(0,vW )#, or breakdown ifvm is
purely timelike. Under parity and charge-conjugation tra
formations, in turn, this term will evidence noninvariance f
any adoptedvm, thereby one can state thatCPTconservation
will occur whenvm is purely spacelike, andCPT violation
otherwise. Here, the fieldw was considered as having a sc
lar character under the parity transformation. Yet if this fie
behaves like a pseudoscalar,2 the CPT conservation will be
assured for a purely timelikevm. For a lightlike vm, there
will always occur time-reversal noninvariance, and con
quentlyCPT violation.

2The adoption of a pseudoscalar field can be justified by look

at the vector character of the potential (AW →
P

2AW ) before the dimen-
sional reduction. If one assumes that the fieldw maintains the same
behavior of its ancestral (A3), one has a pseudoscalar.
12501
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Neglecting divergence terms, we can write the lineariz
free action in an explicitly quadratic form, namely

S1125E d3x
1

2
$Am@Mmn#An2whw

2w@emanvm]a#An1Am@enamvn]a#w%, ~6!

which can also appear in the matrix form:

S1125E d3x
1

2
~Amw!F Mmn Tm

2Tn 2h
G S An

w D . ~7!

The action~7! has as its nucleus a square matrix,P, com-
posed of the quadratic operators of the initial action. T
mass dimensions of the physical parameters and tensor
@Am#5@w#51/2, @vm#5@s#51, @Tm#5@Mmn#52. Here,
some definitions are necessary:

Mmn5humn1sSmn1
h

a
vmn , Tn5Smnvm, ~8!

Smn5«mkn]k, umn5hmn2vmn , vmn5
]m]n

h
, ~9!

whereumn ,vmn ,Smn stand, respectively, for the transvers
longitudinal, and Chern-Simons dimensionless projecto
while Mmn is the quadratic operator associated with the M
sector. The inverse of the square matrix,P, given at the ac-
tion ~7! yields the propagators of the gauge and the sc
fields, which are also written in a matrix form, the propag
tor matrix ~D!:

D5P215
21

~hMmn2TmTn! F 2h Tn

2Tm Mmn
G . ~10!

The propagators of the gauge field,D11, and scalar field,
D22, are written as

~D11!
mn5Fhumn1sSmn1

h

a
vmn2

1

h
TmTnG21

, ~11!

~D22!52
Mmn

h
Fhumn1sSmn1

h

a
vmn2

1

h
TmTnG21

,

~12!

~D12!
m52

Tn

h
Fhumn1sSmn1

h

a
vmn2

1

h
TmTnG21

,

~13!

~D21!
n5

Tm

h
Fhumn1sSmn1

h

a
vmn2

1

h
TmTnG21

,

~14!

while the termsD12, D21 are related to the mixed propaga
tors ^Amw&, ^wAm& that indicate a scalar mediator turnin
into a gauge mediator and vice versa. Here, for future p
poses, it is useful to present the inverse of the tensorMmn ,
that is, the propagator of the pure MCS Lagrangian:

g

1-3
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TABLE I. Multiplicative operator algebra fulfilled byu, v, S, L, TT, Q, S, andF. The products are supposed to be in the ordering ‘‘r
times column.’’

umn vmn Smn Lmn TmTn Qmn Qnm Smn Snm Fmn Fnm

una um
a 0 Sm

a Lm
a1

2
l

h
Sm

a

TmTa Qm
a Qa

m1

2
l

h
Fm

a

0 Sa
m1

2lhva
m

0 Fa
m

vna 0 vm
a 0 l

h
Sm

a
0 0 l

h
Fm

a
Sm

a lva
m Fa

m 0

Sna Sm
a 0 2hum

a Qm
a lFm

a1
2hQa

m

lSm
a1

2Lm
ah

2TmTa 0 ]mTa 0 h(vm
a1

2Sa
m)

Lna Lm
a1

2
l

h
Sa

m

l

h
Sa

m

2Qa
m v2Lm

a 0 0 v2Qa
m lLm

a v2Sa
m lQa

m 0

TnTa TmTa 0 hQm
a1

2lFa
m

0 T2TmTa T2Qm
a 0 0 0 0 T2Qm

a

Qna Qm
a1

2
l

h
Fa

m

l

h
Fa

m

2TmTa v2Qm
a 0 0 v2TmTa lQm

a v2]mTa lTmTa 0

Qan Qa
m 0 hLm

a1
2lSa

m

0 T2Qa
m T2La

m 0 0 0 0 T2Sa
m

Sna Sm
a1

2lvm
a

lvm
a 2Fm

a v2Sm
a 0 0 v2Fm

a lSm
a v2Lm

a lFm
a 0

San 0 Sa
m 0 lLm

a 0 0 lQa
m hLm

a v2Lm
a hQm

a 0

Fna Fm
a 0 h(Sm

a1
2lvm

a)
0 T2Fm

a T2Sm
a 0 0 0 0 hT2vm

a

Fan 0 Fa
m 0 lFa

m 0 0 lTmTa hFa
m lFa

m hTmTa 0
e
r

uc-
ely

n

or

tly

he
~Mmn!215
1

h1s2 umn2
s

h~h1s2!
Smn1

a

h
vnm.

~15!

To perform the inversion of the above operator, we ne
to define some new operators, since the ones known so fa
not form a closed algebra, as is shown below:

SmnTnTa5hvmTa2lTa]m5hQm
a2lFa

m , ~16!

QmnQan5T2vavm5T2La
m , ~17!

QmnFna5T2vm]a5T2Sm
a, ~18!

where the new operators are

Qmn5vmTn , Lmn5vmvn , Smn5vm]n , Fmn5Tm]n ,
~19!

and
12501
d
do

l[Sm
m5vm]m, T25TaTa5~v2h2l2!. ~20!

Their mass dimensions are@Lmn#52, @Qmn#53, @Smn#52,
@Fmn#53.

Three of these new terms exhibit a nonsymmetric str
ture, which suggests they should be taken in pairs, nam
Qmn , Qnm ; Smn , Snm ; Fmn , Fnm . The inversion of the
operator D11 is done according to the expressio
(D11

21)mn(D11)
na5dm

a , where the operator (D11)
na is com-

posed of all the possible tensor combinations~of rank 2!
involving Tm ,vm ,]a . In so doing, the proposed propagat
will consist, at first glance, of 11 terms:

~D11!
na5a1una1a2vna1a3Sna1a4Lna1a5TnTa

1a6Qna1a7Qan1a8Sna1a9Sna1a10F
na

1a11F
an, ~21!

which are displayed in Table I, where we observe explici
the closure of the operator algebra.

Using the data contained in Table I, we find out that t
gauge-field propagator assumes the form
1-4
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~D11!
mn5

1

h1s2 umn1
a~h1s2!�2l2s2

h~h1s2!� vmn2
s

h~h1s2!
Smn2

s2

~h1s2!� Lmn1
1

~h1s2!� TmTn2
s

~h1s2!� Qmn

1
s

~h1s2!� Qnm1
ls2

h~h1s2!� Smn1
ls2

h~h1s2!� Snm2
sl

h~h1s2!� Fmn1
sl

h~h1s2!� Fnm,

where�5(h21s2h2T2).
By the same procedure, we evaluate the mixed propagator, (D12)

a52Tn /h(D11)
na, which can be written in the following

form:

~D12!
n52

1

� FTn1svn2
sl

h
]nG , ~22!

whereas the propagator (D21)
n, in turn, becomes

~D21!
n52

1

� F2Tn1svn2
sl

h
]nG .

In order to compute the propagator of the scalar field,

~D22!52
1

h
F12

1

h
Tm~Mmn!21TnG21

, ~23!

we make use of the inverse of the tensorMmn , given by Eq.~15!, so thatTm(M 21)mnTn5(h1s2)21T2. In such a way, a
compact scalar propagator arises:

~D22!52
h1s2

� . ~24!

In momentum space, the photon propagator takes the final expression

^Am~k!An~k!&5 i H 2
1

k22s2 umn2
a~k22s2!�~k!1s2~v•k!2

k2~k22s2!�~k!
vmn2

s

k2~k22s2!
Smn1

s2

~k22s2!�~k!
Lmn

2
1

~k22s2!�~k!
TmTn1

s

~k22s2!�~k!
Qmn2

s

~k22s2!�~k!
Qnm1

is2~v•k!

k2~k22s2!�~k!
Smn

1
is2~v•k!

k2~k22s2!�~k!
Snm2

is~v•k!

k2~k22s2!�~k!
Fmn1

is~v•k!

k2~k22s2!�~k!
FnmJ , ~25!
ll
ha
io
e

of
dis-

ing
-
be-
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ical
a-
ions
al-
while the scalar and the mixed propagators read as

^ww&5
i

�~k!
@k22s2#, ~26!

^Aa~k!w&52
i

�~k! FTa1sva2
s~v•k!

k2 kaG , ~27!

^wAa~k!&52
i

�~k! F2Ta1sva2
s~v•k!

k2 kaG , ~28!

where �(k)5@k42(s22v•v)k22(v•k)2#. These results
show that the factor� is present in the denominator of a
propagators, so that the scalar and the gauge field will s
the pole structure, and consequently, the physical excitat
associated to the poles of�(k). This common dependenc
12501
re
ns

on 1/� also amounts to similarities on the causal structure
the scalar and gauge sectors of this model, as will be
cussed in Sec. III.

III. DISPERSION RELATIONS, STABILITY, AND
CAUSALITY ANALYSIS

Some references in the literature@5,6,8,9# have dealt with
the issues of stability, causality, and unitarity concern
Lorentz- andCPT-violating theories. Causality is usually ad
dressed as a quantum feature that requires commutation
tween observables separated by a spacelike interval, w
one calls microcausality in field theory@10#. In this section,
however, we analyze causality at the level of the class
theory. The starting point for all investigation is the prop
gator, whose poles are associated to dispersion relat
~DR! that provide information about the stability and caus
1-5
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BELICH et al. PHYSICAL REVIEW D 67, 125011 ~2003!
ity of the model. The causality analysis is then related to
sign of the propagator poles, given in terms ofk2, so that one
must havek2>0 in order to preserve it~circumventing the
existence of tachyons!. In the second quantization frame
work, stability is related to the positivity of the energy of th
Fock states for any momentum. Here, stability is direc
associated with the positivity of the energy of each mo
arising from the DR.

The field propagators, given by Eqs.~25!–~27!, present
three families of poles atk2:

k250, k22s250, k42~s22v•v !k22~v•k!250,
~29!

from which we straightforwardly infer the DR derived from
the Lagrangian~5!, namely

k0~1!
2 5kW2, k0~2!

2 5kW21s2,

k0~3!
2 5kW21

1

2
@~s22v•v !6A~s22v•v !214~v•k!2#. ~30!

The first dispersion relation,k056ukW u, stands for a massles
photon mode, which carries no degree of freedom, since
Lagrangian~5! involves a massive photon. The second D
represents the Chern-Simons massive mode,k05

6As21ukW u2, which propagates only one degree of freedo
~in the Maxwell-Chern-Simons electrodynamics, the sca
magnetic field encloses all information of the electroma
netic field, which justifies the existence of a single degree
freedom!. These first two poles apparently respect the c
sality condition, sincek2>0 for them. Once the causality i
set up, the stability comes up as a direct consequence.

Concerning the third DR, corresponding to the roots
�(k), it may provide both massless and massive modes
some specifickW values, but in general, the mode is massi
By remembering thatkW is the transfer momentum, whos
values are generally integrated from zero to infinity, we co
clude it does not make much sense to fix any value forkW in
order to obtain a particular dispersion relation. Remark
that the term�(k) is ubiquitous in the denominator of a
propagators, as is explicit in Eqs.~25!–~27!, we conclude the
causal structure entailed in the poles of 1/� will be common
to these three propagators. Specifically, for a purely space
3-vector,vm5(0,vW ), this DR is written as

k06
2 5kW21

1

2
@~s21vW 2!6A~s21vW 2!214~vW •kW !2#. ~31!

A simple analysis of this expression indicates that bothk01
2

andk02
2 are positive-energy modes for anykW value ~and for

any Lorentz observer!, which ensures the stability of thes
modes. This fact may suggest that the causal structure o
spacelike sector of this model remains preserved, as was
served by Adam and Klinkhamer@5# in the context of the
four-dimensional version of this theory, which is endow
with a dispersion relation very similar to Eq.~31! ~this con-
clusion was also supported by the attainment of a group
locity, associated with this mode, smaller than 1!. Concern-
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ing the pole analysis, however, we havek1
2 .0 for arbitrary

kW and k2
2 ,0 ~unlesskW'vW or kW50, which impliesk2

2 50).
So, while the modek1

2 preserves the causality and stabilit
the modek2

2 , in spite of assuring stability, will be in genera

noncausal, preserving causality only forkW'vW or kW50.
In the case of a purely timelike 3-vector,vm5(v0 ,0W ), the

DR assumes the form

k06
2 5

1

2
@~s212kW2!6As414v0

2kW2#, ~32!

where one observes a similar behavior: the modek01
2 will

exhibit stability and causality, while the modek02
2 will

present energy positivity~for an arbitrarykW value! whenever
the conditions22v0

2.0 is fulfilled. From now on, we mus
assume the validity of this condition, so that the modek02

2

can be taken stable. This latter mode is noncausal for ankW
Þ0. Assuming the coefficients for Lorentz violation a
small near the Chern-Simons mass (s2@v0

2,uvW u2), we obtain
an entirely causal theory~at least at zero order inv2/s2).
This is consistent with some results@9# concerning some
quantum theories containing Lorentz-violating terms, wh
evidence the preservation of causality when the breaking
tors are small.

Hence, the modesk06
2 exhibit positive energy both in

spacelike and timelike cases, which also implies these
modes can be written as an expansion in terms of posi
and negative frequency terms. This separation allows
definition of particle and antiparticle states, a necessary c
dition for the quantization of this theory. Nevertheless, t
existence of noncausal modes, both in the timelike a
spacelike case, may be seen already at the classical leve
a prediction of the impossibility of realizing a consiste
quantization of this model, an issue that will be prope
addressed when one analyzes the unitarity at these nonc
poles. Therefore, the existence of quantization illness will
solved by investigating the unitarity of the model, a mat
that will be discussed in the next section.

The similarity underlying the dispersion relations of o
reduced model and its four-dimensional counterpart ent
some common properties. The stability, for instance, is
sured in the same way. As for the causality issue, we re
here on the existence of noncausal modes (k2

2 ) for both
timelike and spacelike backgrounds. On the other hand,
lowing the approach of Adam and Klinkhamer@5#, it is pos-
sible to argue that these specific noncausal modes do
harm the causal structure of the overall reduced model, o
the group velocity associated with all modes~for both cases!
is always less than 1 (ug,1). Hence, in our planar mode
the causal structure is preserved for both the timelike
spacelike cases. Instead, in the four-dimensional pa
model @5#, this occurs only for the spacelike backgroun
The explanation for this peculiarity is the same one used
justify the property of unitarity for the gauge sector of th
reduced model in both timelike and spacelike cases.

In a Lorentz covariant framework,k2 is a Lorentz scalar,
which assures a unique value for all Lorentz frames. In s
1-6
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a case, ifk2 represents a causal mode for one observer,
same will be true for all observers. The fact thatk2 does not
have a positive definite value in an arbitrary Lorentz frame
unequivocally indicative of the Lorentz covariance brea
down.

IV. UNITARITY ANALYSIS

In order to analyze the unitarity of the model at tree lev
we have adopted the method which consists in saturating
propagators with external currents. The fact that our mo
possesses two sectors~scalar and gauge! implies that we
must saturate the scalar propagator and the gauge propa
individually. In such a way, we write the two saturate
propagators, namely

SP̂ AmAn&5J* m^Am~k!An~k!&Jn,

SP̂ ww&5J* ^ww&J,

where the gauge currentJm must obey the conservation la
valid for the gauge sector of the system,3 whereas the scala
currentJ is not subject to any constraint. The unitarity ana
sis is based on the residues ofSP, namely the unitarity is
ensured whenever the imaginary part of the residues ofSPat
the poles of each propagator is positive. It is easy to no
that the saturated propagator in the momentum space is
current-current transition amplitude.

A. Scalar sector

We can initiate our analysis by the scalar sector, wh
saturated amplitude is given bySP̂ ww&5J* ^ww&J, or more
explicitly,

SP̂ ww&5J*
i ~k22s2!

�~k!
J.

This expression presents two poles,k1
2 , k2

2 , the roots of

�(k)50. In the purely timelike case,vm5(v0 ,0W ), these
poles are exactly the ones given by Eq.~32!: k6

2 51/2@s2
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6As414v0
2kW2#. Evaluating the residues ofSP̂ ww& at the

pole k1
2 we achieve a positive imaginary result, while at t

pole k2
2 a positive result appears only under the conditi

kW2,(v0
21s2). In such a way, we conclude that the unitari

of the scalar sector, in the timelike case, is not assured.
Considering now the purely spacelike casevm5(0,vW ), the

poles of SP̂ ww& are given by Eq.~31!: k6
2 51/2@(s21vW 2)

6A(s21vW 2)214(vW •kW )2#. The residues associated wit
these two poles exhibit a positive-definite imaginary part,
we can state that the unitarity of the scalar sector, at
spacelike case, is generically preserved.

B. Gauge-field sector

The continuity equation]mJm50 in thek space is read as
kmJm50; it allows us to write the current in the formJm

5„j 0,0,(k0 /k2) j (0)
…. The conservation constraintj (2)

5(k0 /k2) j (0) appears whenever one adoptskm5(k0,0,k2) as
the momentum. The current-conservation law also reduce
six the number of terms of the photon propagator that c
tributes to the evaluation of the saturated propagator:

SP̂ AmAn&5Jm* ~k!H i

D
~h�gmn2s�Smn2s2hLmn1hTmTn

2shQmn1shQmn!J Jn~k!, ~33!

whereD5h(h1s2)�. Writing this expression in the mo
mentum space, one obtains

SP̂ AmAn&5J* m~k!$ iBmn%J
n~k!, ~34!

where D5k2(k22s2)�, with �(k)5k42(s22v•v)k2

2(v•k)2.

1. Timelike case

We start by analyzing the unitarity in the case correspo
ing to a timelike background vector:vm5(v0 ,0W ). In this
situation, the 2-rank tensorBmn can be put in the form
Bmn~k!5
1

D~k! F k2~s2v0
22� ! ik ~2!~s�2v0

2s2k2! ik ~1!~2s�1v0
2s2k2!

ik ~2!~2s�1v0
2s2k2! k2~�1v0

2k2
2! is�k~0!2v0

2k2k~1!k~2!

ik ~1!~s�2v0
2s2k2! 2 is�k~0!2v0

2k2k~1!k~2! k2~�1v0
2k1

2!
G , ~35!

3
By applying the differential operator]m on the equation of motion derived from Lagrangian~5!, there results the following equation~see

Ref. @7#! for the gauge current:]mJm52«mnr]mvn]rw, which reduces to the conventional current-conservation law,]mJm50, whenevervm

is constant or has a null rotational («mnr]mvn50).
1-7
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where�5k42(s22v0
2)k22k0

2.
For the polek250, with km5(k0,0,k0), we have the fol-

lowing residue matrix:

Bmnu~k250!5
1

s2 F 0 2 isk0 0

isk0 0 2 isk0

0 isk0 0
G , ~36!

which is reduced to a null matrix when saturated with t
conserved current,Jm5„j 0,0,(k0 /k2) j (0)

…, implying also a
null saturation (SP50). This fact indicates that the mod
associated with the polek250 carries no physical degree o
freedom, and further, it does not jeopardize the unitarity.

For the polek25s2, with km5(k0,0,k2), the matrix takes
the form

Bmnu~k25s2!52
1

s2k2
2 F s2k0

2 2 isk~2!k0
2 0

isk~2!k0
2 0 2 isk0k2

2

0 isk0k2
2 2s2k2

2
G .

~37!

This matrix, whenever saturated with the external curr
Jm5„j 0,0,(k0 /k2) j (0)

…, leads to a trivial saturation (SP
50), which is compatible with unitarity requirements. Th
vanishing of the current-current amplitude at this pole in
cates that the massive excitationk25s2 is not dynamical for
the timelike background.

At the polek1
2 51/2@s21As414v0

2kW2#, the residue ma-
trix reads
s
ol

12501
t

-

Bmnu~k25k
1
2 !5

v0
2

~k1
2 2s2!~k1

2 2k2
2 ! F s2 2 is2k~2! 0

is2k~2! k2
2 0

0 0 0
G ,

~38!

which has as eigenvaluesl150, l250, l35k2
21s2. Conse-

quently, one hasSP.0 ~unitarity preservation!.
At the pole k2

2 , a similar behavior occurs: we obtain
residue matrix similar to the one given above. The differen
rests only on the coefficient appearing in front of the matr
in this case 1/D(k2)5v0

2@(k2
2 2s2)(k2

2 2k1
2 )#21.0. The

fact that this last coefficient turns out to be positive indica
that the unitarity is also preserved at the polek25k2

2 , once
one has the same eigenvalues.

Here, we observe that, for a timelike background vec
our planar system presents no ghost states that spoil unita
This is a sensitive difference with respect to
(113)-dimensional parent model, described in the works
Refs. @5#, @6#. For the latter, the gauge sector is alwa
plagued by ghost states which cannot be removed by
gauge choice, actually spoiling the unitarity. We justify th
peculiarity for the scalar and gauge-field sectors, in the tim
like case, by noticing that the scalarw identified with A(3)

becomes~upon dimensional reduction! a gauge-invariant
field in (112) dimensions. The gauge transformation it
acted upon in (113)D is no longer present in the plana
case, by virtue of our dimensional reduction ansatz. This
why our reduced model inherits a ghostlike excitation in t
scalar sector; the gauge-field ghost of (113)D migrates to
the planar space-time through the scalar field. Next, for
spacelike case, no ghosts are present in the (113)D case;
naturally, in (112) dimensions,w cannot inherit any ghos
state.

2. Spacelike case

In this case, takingvm5(0,0,v), the tensorBmn is given
as follows:
Bmn~k!5
1

D~k! F 2k2~�2v2k1
2! is�k~2!2k2v2k0k~1! ik ~1!~2s�2sk2v2!

2 is�k~2!2k2v2k0k~1! k2~�1v2k0
2! isk0~�1v2k2!

ik ~1!~s�1sk2v2! 2 is�k01 iskv2k0 k2~�1v2s2!
G , ~39!
ere.
where�5k42(s22v2)k22v2k2
2.

For the polek250, with km5(k0,0,k0), we obtain the
same matrix attained in the timelike case, given by Eq.~36!.
Exactly for the same reasons presented in the preceding
tion, we can assert that the unitarity is preserved at this p

For the polek25s2, with km5(k0,0,k2), the resulting
matrix is identical to one given by Eq.~37!, so that the con-
ec-
e.

clusions established in the timelike case are also valid h
The vanishing of the saturated propagator at the polek2

5s2, in both cases, indicates that the massive excitationk2

5s2 is not dynamical in our model.
For the pole k1

2 51/2@(s21vW 2)

6A(s21vW 2)214(vW •kW )2#, with km5(k0,0,k2), the residue
matrix is reduced to
1-8
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Bmnu~k25k
1
2 !5

v2

~k1
2 2s2!~k1

2 2k2
2 ! F 0 0 0

0 k0
2 isk0

0 2 isk0 s2
G ,

~40!

where (k1
2 2k2

2 )5A(s21v2)214v2k2
2. The eigenvalues o

this matrix arel150, l250, l35k0
21s2, which leads to a

positive saturation (SP.0), and then unitarity is guarantee
at this pole. For the polek2

2 , unitarity is also ensured; thi
may be seen in a similar way to the one performed in
timelike case.

Taking into account all results concerning the gauge s
tor of this model, we conclude that the unitarity is preserv
in both timelike and spacelike cases~at all the poles of the
gauge propagator! without any restriction. Considering th
restriction on the unitarity of the scalar sector at the timel
case, we can state that our entire model preserves unit
only in the spacelike case. It is also interesting to note t
the unitarity of the gauge sector is guaranteed even at
noncausal polesk2

2 , which confirms the consistency of ou
model.

V. CONCLUDING COMMENTS

We have accomplished the dimensional reduction to
12 dimensions of a gauge-invariant, Lorentz- andCPT-
violating model, defined by the Carroll-Field-Jackiw term
«mnklvmAnFkl . We then obtain a Maxwell-Chern-Simon
planar Lagrangian in the presence of a Lorentz-breaking t
and a massless scalar field. Concerning this reduced m
the CPT symmetry is conserved for a purely spacelikevm,
and spoiled otherwise. The propagators of this model
evaluated and exhibit a common pole structure~bound to the
dependence on 1/�!, which is used as starting point for th
analysis of causality, stability, and unitarity. Concerning t
dispersion relations, we verify that the modes have posit
definite energy, which ensures stability. The causality is
sured for all modes of the theory, except fork2

2 ~both in
spacelike and timelike case!, which does not pose a physic
problem, once these modes are stable and the causal stru
of the global model remains preserved. In connection w
the unitarity of this model, we have analyzed the scalar
the gauge sectors separately, by means of the saturatio
the residue matrix. The gauge sector has been shown t
unitary for timelike and spacelike background vecto
whereas the scalar sector has been shown to preserve u
ity only in the spacelike case. We should now pay attent
to a special property of 3-space-time dimensions, namely
absence of ghosts in the gauge-field spectrum for a time
vm. Unitarity is a relevant matter and an essential condit
for a consistent quantization of any theory. Once the unita
is ensured here, this model may become a useful and in
esting tool to analyze planar systems~including condensed
matter ones! with anisotropic properties.

The fact that the polek25s2 is not associated with a
physical degree of freedom reflects an interesting new
ture of this planar system. In a usual MCS model, this p
stands for a massive degree of freedom leading to a con
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erable screening of the corresponding potentials and corr
tion functions derived from the MCS Lagrangian. In spite
the presence of the MCS terms in our case, the nondynam
character of the polek25s2 reveals that this sector decouple
from the physical spectrum. Indeed, a good perception of
fact is provided by evaluating the potentials and correlat
functions@7#. The attainment of results typical of a massle
theory confirms the absence of physical content concern
the MCS sector.

A new version of this work@11# may address the dimen
sional reduction of a gauge-Higgs model@6# in the presence
of the Carroll-Field-Jackiw term. In this case, the reduc
model will be composed of two scalar fields~one stemming
from the dimensional reduction, the other being the Hig
scalar!, by a Maxwell-Chern-Simons-Proca gauge field, a
by the Lorentz-violating mixing term. The introduction o
the Higgs sector may shed light on new interesting iss
concerning planar systems, such as the investigation of
texlike configurations in the framework of a Lorent
breaking model.

Another interesting question concerns the stability
three-dimensional QED (QED3) with the scalarw against
quantum corrections if fermions are coupled to both
gauge field~minimal coupling! and w ~Yukawa coupling!.
Should Lorentz andCPT symmetries be broken by a ferm
onic term of the formC̄gmCbm @12,13#, one-loop fermionic
corrections would induce the termss«mnkA

mFnk and
w«mnkv

mFnk as the planar counterpart of the similar mech
nism in 4D. So, a Lorentz breaking in the fermionic sec
radiactively induces Lorentz breaking in terms of the gau
and scalar fields. As for this issue, see also Andrianovet al.
@5#.

Another natural investigation consists also in studying
solutions to the classical equations of motion~the extended
Maxwell equations! and wave equations~for the potential
Am) corresponding to the reduced Lagrangian. It is poss
that such equations reveal a similar structure~but more com-
plex! to the MCS conventional electrodynamics, since t
reduced Lagrangian indeed contains the MCS sector.
solution to these equations may unveil some interesting
pects, such as the property of anisotropy~induced by a
spacelike backgroundvW ) and the role of the CS term on th
interaction potential. This issue is actually being investiga
and we shall report on it in a forthcoming paper@7#. The
theoretical framework developed here may also be usefu
address the issue of electron-electron pairing and the s
metry of the order parameter representing the correlated e
tron pairs, which exhibit ad-wave pattern. This can be ca
ried out by studying the Mo¨ller scattering in the
nonrelativistic limit.
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