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Taking as a starting point a Lorentz a@PT noninvariant Chern-Simons-like model defined ir-3
dimensions, we proceed to realize its dimensional reducti@td + 2. One then obtains a new planar model,
composed by the Maxwell-Chern-SimofMCS) sector, a Klein-Gordon massless scalar field, and a coupling
term that mixes the gauge field to the external vegtarin spite of breaking Lorentz invariance in the particle
frame, this model may preser@PT symmetry for a single particular choice of. Analyzing the dispersion
relations, one verifies that the reduced model exhibits stability, but the causality can be jeopardized by some
modes. The unitarity of the gauge sector is assured without any restriction, while the scalar sector is unitary
only in the spacelike case.

DOI: 10.1103/PhysRevD.67.125011 PACS nuni®er11.10.Kk, 11.30.Cp, 11.30.Er, 12.64.

I. INTRODUCTION erties of an eventual underlying theory at the Planck scale
[4]. It then undergoes a spontaneous breaking of both sym-
It is usually assumed that a consistent quantum fieldnetries. In the broken phase, there arises an effective action,
theory (QFT) must respect at least two symmetries: Lorentzwith CPT and Lorentz symmetries broken, but covariance
covariance andCPT invariance. The traditional framework preserved for the inertial observer frame. The Lorentz invari-
of a local QFT, from which we derive the standard modelance is spoiled at the level of the particle system, which can
that sets the physics inherent to the fundamental particlefe viewed in terms of the noninvariance of the fields under
satisfies both these symmetries. In the beginning of théoosts and Lorentz rotationgrelative inertial observer
1990s, a new workl] proposing a correction term to con- frames. This covariance breakdown is also manifest when-
ventional Maxwell electrodynamics that preserves gauge inever analyzing the dispersion relations, extracted from the
variance, despite breaking Loren@PT, and parity symme- propagators.
tries, was first analyzed. The correction term, composed of Investigations concerning the unitarity, causality, and con-
the gauge potentiagh,, and an external background 4-vector sistency of a QFT with violation of Lorentz ar@PT sym-
v, , has a Chern-Simons-like structu&é‘,“"”vﬂAvFK)\, and  metries(induced by a Chern-Simons terwere carried out
is responsible for inducing an optical activity of the by Adam and Klinkhame}5]. As a result, it was verified that
vacuum—or birefringence—among other effects. In thisthe causality and unitarity of the model may be preserved
same work, however, it was shown that astrophysical data dawhenever the fixedbackgroungl 4-vector is spacelike, and
not support the birefringence and impose stringent limits orspoiled whenever it is timelike or null. An analysis of the
the value of the constant vectar, , reducing it to a negli- consistency put forward in the presence of spontaneous sym-
gible correction term. Similar conclusions, also based on asmetry breaking SSB) [6] has confirmed the results obtained
trophysical observations, were also confirmed by Goldhabein Ref.[5]: the spacelike case is free from unitarity illnesses;
and Timble[2]. Some time later, Colladay and Kostelecky on the other hand, they are present in the timelike and light-
[3] adopted a quantum field-theoretical framework to addreskke cases.
the issue ofCPT and Lorentz breakdown as a spontaneous The active development of Lorentz- ai@PT-violating
violation. In this sense, they constructed an extension of théheories inD=1+3 has led to the inquiry regarding the
minimal standard model, which maintains unaffected thestructure of a similar model in-42 dimensions and its pos-
SU(3)XSU(2)XU(1) gauge structure of the usual theory, sible implications. To study a planar theory endowed with
and incorporate€PT violation as an active feature of the Lorentz- andCPT violation, we have decided to adopt a
effective low-energy broken action. They started from adimensional reduction procedure: we start from the original
usualCPT and Lorentz-invariant action as defining the prop- Chern-Simons-like terms“”"”v”AyFK)\, and perform its re-
duction toD =1+ 2, which yields a pure Chern-Simons term
along with a breaking mixed term. Our purpose, therefore, is

*Email address: belich@cbpf.br to end up with a planar model, whose structure is derived
TEmail address: manojr@cbpf.br from a known counterpart defined int13 dimensions. Next,
*Email address: helayel@cbpf.br we investigate some of its features, such as propagators, dis-
SEmail address: orlando@cce.ufes.br persion relations, causality, stability, and unitarity.
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The motivation to study the planar descent of the Carroll-Lorentz frame, which implies an overall stability. In Sec. 1V,
Field-Jackiw mode[1] is based on two main aspects:the  we carry out the unitarity analysis, based on the residue ma-
theoretical relevance of investigating a new planar systent¥ix evaluated at the poles of the propagators. Unitarity is
and comparing its features with the ones of its four-ensured only in the case of a purely spacelike background
dimensional counterpartii) the establishment of a new the- vectorv*. In Sec. V, we present our concluding comments.
oretical framework with perspectives for applications on
Iovy-dimension systems. In connection_v_vith the_ latter, we Il. THE DIMENSIONALLY REDUCED MODEL
point out that the Lorentz breaking, explicitly realized by the
external vecton”, may account for at least two usual facts ~ We start from the Maxwell Lagrangiarin 1+ 3 dimen-
for condensed matter systems: the nonrelativistic regime  sions supplemented by a term that couples the dual electro-
herent to these systejrasnd the presence of an anisotropy in magnetic tensor to a fixed 4-vectot* as it appears in Refs.
the wave functions of some condensed matter systems. |], [2], [5]:
spacelike background may effectively induce a spatial an-
isotropy which appears clearly in the solutions of the poten- 1 N .
tials discussed in the work of Ref7]. Such anisotropy Lq43= —ZF;L;FMMZe””’“vﬁA;F;ﬁA;‘J” , (D
would play a relevant role if it could be identified with the
ones present in several condensed matter systems, such as
the one in ane"e~ pair condensate of a class of high- With the additional presence of the coupling between the
superconductors. Therefore, the study of the planar versiogauge field and the external curreAt,J”.
of the Lorentz- and€CPT-breaking model may be adopted not ~ This model(in its free versionis gauge invariant but does
only to shed light on the four-dimensional parent model, buthot preserve Lorentz an@PT symmetries relative to the
also to offer a possibility to fit phenomenological aspects ofparticle frame. For the observer system, the Chern-Simons-
planar condensed matter systems. To pursue our investighke term transforms covariantly, once the background also is
tion, we perform the dimensional reduction ta-2 dimen-  changed under an observer ong:t;—>Uﬁ':AZv“_ In con-
sions of an Abelian gauge model with nonconservation of theyection with the particle system, however, when one applies
Lorentz andCPT symmetries[1,5] induced by the term a boost on the particle, the background 4-vector is supposed
e v AF . The resulting planar quantum electrody- to remain unaffected, behaving like a set of four independent
namics (QER) is composed of a Maxwell-Chern-Simons numbers, which configures the breaking of the covariance.
gauge field A ), a scalar(¢), a scalar parametés) without ~ This term also breaks the parity symmetry, but keeps the
dynamics (the Chern-Simons massand a fixed 3-vector invariance under charge conjugation and time reversal.
(v*). Besides the MCS sector, this Lagrangian has a mass- To study this model in 2 dimensions, we perform its
less scalar sector, represented by the figJdwhich also  dimensional reduction, which is based on the following an-
works out as the coupling constant in the Chern-Simons-lik&atz over any 4-vector{i) one keeps its 0-, 1-, and
structure that mixes the gauge field to the 3-vectbfwhere  2-components(ii) one identifies its third component with a
one gauge field is replaced by"). This latter is responsible scalar in (1+2) and makes the assumption that there is no
for the Lorentz noninvariance. Therefore, the reduced Ladependence on the third spatial dimensi@g(anything)
grangian is endoweq with three coupled sectors: a MCS sec-, 0. Applying this prescription to the gauge 4-vecédt and
tor, a massless Klein-Gordon sector, and a mixing Lorentzy, the fixed external 4-vectar”, and to the 4-currend”,
violating one. As is well known, the MCS sector breaks bothy,a has
parity and time-reversal symmetries, but it preserves the Lor-
entz andCPT ones. The scalar sector preserves all discrete
symmetries and Lorentz covariance, whereas the mixing sec-
tor, as it will be seen, breaks Lorentz invariarigerelation
to the particle framg keeps conserved parity and charge- vﬁﬂ(vu;s)' 3
conjugation symmetries conserved, but may bréakpre-
serve time-reversal symmetry. This implies that both conser- -
vation (for a purely spacelikev”) and violation (for v* = (3%9), 4)
timelike and lightlike of CPT invariance may take place.

This paper is outlined as follows. In Sec. II, we performwhereA®) =, v®)=s J®=J andu=0, 1, 2. According
the dimensional reduction, leading to the reduced modeto this process, there appear two scalars: the scalar dield
With the new planar Lagrangian, we devote some effort tathat exhibits dynamics, ang a constant scalékwithout dy-
derive the propagators of the gauge and scalar fields; thisamics. Carrying out this prescription for Eql), one then
requires a closed algebra composed by 11 spin operators, abtains
displayed in Table I. In Sec. lll, we investigate the stability
and the causal structure of the theory. We discuss the causat——
|ty by |00king at the diSperSion relations extracted from the IHere one has adopted the following metric Conventia‘m};;
poles of the propagators, which reveal the existence of botk-(+,-,—,—) inD=1+3 andg,,=(+,—,—) in D=1+2. The
causal and noncausal modes. All the modes, neverthelesgeek letterswith hat 2 run from 0 to 3, while the pure greek
present positive definite enerdpositivity) relative to any lettersu run from 0 to 2.
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1 s ) Neglecting divergence terms, we can write the linearized
Liv2= = 7Fu "+ 50,00 0+ 5 €, i ARI"A free action in an explicitly quadratic form, namely
opk_ L 2 S L= d3xE{A“[M 1A"— o]
— @€, " I"A —Z(ﬂﬂA”) +A, 4+ ¢J, (5 1+2 2 uv el

. _QD[E/LauUM’?a]AV—’_AM[Eva/LU Vaa](p}, (6)

where the last free term represents the gauge-fixing term,
added up after the dimensional reduction. The scalar field which can also appear in the matrix form:
exhibits a typical Klein-Gordon massless dynamics and it
also appears as the coupling constant that links the fixed _ 5 1 L
to the gauge sector of the model, by means of the new term: 21+2_j d XE(A ®)
goewkv“a”Ak. In spite of being covariant in form, this kind
of term breaks the Lorentz symmetry in the particle frame,The action(7) has as its nucleus a square matix,com-
since the 3-vectow* is not sensitive to particle Lorentz posed of the quadratic operators of the initial action. The
boost, behaving like a set of three scalars. mass dimensions of the physical parameters and tensors are

The Lagrangiaril), originally proposed by Carroll, Field, [A*]=[¢]=1/2, [v*]=[s]=1, [T,]=[M,,]=2. Here,
and Jackiw{1], has the property of breaking parity symme- some definitions are necessary:
try, even though it conserves time-reversal and charge-

Ty
-0

AV
1]

M,

e @

14

conjugation symmetriedor a pure timelikev#), resulting in _ 0 -~
nonconservation of th€PT symmetry. Simultaneously, the My =00, 4SS+ o e Tv=Suw®, ®)
Lorentz invariance is spoiled, since the fixed 4-veaiér

breaks the rotational and boost invariances. On the other . 3,0,

hand, the reduced model, given by Ef), does not neces- Suv=€uicvd s 0= M= Opy,s Cur= T ©)

sarily jeopardize th€PT conservation, which depends truly

on the character of the fixed vectof. As it is known, the  where6,,,,w,,,S,, stand, respectively, for the transverse,

parity transformation(P) in 1+2 dimensions is character- |ongitudinal, and Chern-Simons dimensionless projectors,

ized by the inversion of only one of the spatial ax&s:  while M ,, is the quadratic operator associated with the MCS

sector. The inverse of the square matix,given at the ac-

tion (7) yields the propagators of the gauge and the scalar

A“— A= (Ag,— A, AR)) fields, which are also written in a matrix form, the propaga-
The time-reversal transformatio(Z) must keep un- tor matrix (A):

changed the dynamics of the system, so that we must have

XMHX,M:(_XOley)! AMHA,M:(AO!_A(D!_A(Z))' A= Pil:—_l
¢ (OM,—T,T,)

P
—X"*=(Xy,—X,Y), the same being valid for the 3-potential:
P

-0o 7T
-T, M

" v

14

(10

while the charge conjugation determine$—x’#=x*, A*
C

—A’#=—A* We know that the Chern-Simons term breaksThe propagators of the gauge fieldl;;, and scalar field,
both parity and time-reversal symmetries and keeps condp,, are written as

served the charge conjugation, which assures the globBal

invariance. The new tel’mgpswkv'“(?”Ak, however, will (AgH'=
manifest a nonsymmetric behavior befafdransformation: !
there will occur conservation if one works with a purely

spacelike external vectpv*=(0r)], or breakdown ifv* is uv O
purely timelike. Under parity and charge-conjugation trans- (8220 == 57| D0, 4SS+ —w,, = 5T, T,
formations, in turn, this term will evidence noninvariance for (12
any adopted*, thereby one can state th@PT conservation

will occur whenv* is purely spacelike, an@PT violation . 1 -1
otherwise. Here, the fielg was considered as having a sca-  (A1)"=— E{Dﬁuﬁ SSut o g Tulu|

lar character under the parity transformation. Yet if this field (13)
behaves like a pseudoscafahe CPT conservation will be

assured for a purely timelike#. For a lightlikev*, there

will always occur time-reversal noninvariance, and conse- (A,))"=
guently CPT violation.

-1

1
woE T @

ae +S+D
wr TSy P

1 -1

1 -1
T,T

g T

(14)

Ol

O
U 0t SSHV‘F Ew

2 _ _ o ~ Wwhile the termsA 5, A, are related to the mixed propaga-
The adoption of a pseudoscalar fle|C713 can be justified by lookingors (A,@), (¢A,) that indicate a scalar mediator turning
at the vector character of the potentidi — A) before the dimen-  into @ gauge mediator and vice versa. Here, for future pur-
sional reduction. If one assumes that the figlthaintains the same POSes, it is useful to present the inverse of the tehgy,

behavior of its ancestralA;), one has a pseudoscalar. that is, the propagator of the pure MCS Lagrangian:
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TABLE I. Multiplicative operator algebra fulfilled by, w, S, A, TT, Q, 2, and®. The products are supposed to be in the ordering “row

times column.”
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0/.4,1/ w/.u} S,u,u A,u,u T/.LTI/ Q,uu QI/[.L Epw zu,u (D,u,u CDV/.L

0 0,” 0 S,* A+ T, T Q" Q"+ 0 e+ 0 P,

N, N —AMw“,
_Ezu _E(I)#
" 0 w," 0 No 0 0 N 3, No®, P, 0
SR 5%
S S,.“ 0 -06,* Q.” AP+ NS+ -T,T 0 9,T" 0 O(w,*+
_DQQM _AMQD _Ea#)
A" A -Q%, VA 0 0 v?QY,  AA v, AQ“, 0
N, Ezau
_EE:‘"
L P 0 0Q,*+ 0 T, T T%QN 0 0 0 0 T°Q,.“
—\de,
Q™ Q2 -T,T*  0v%2Q,” 0 0 0T, T NQ,* %9, T* AT, T® 0
A g?
« O *
_E(DH
Q® Q“, 0 OA,"+ 0 T?Q*,  T2A“, 0 0 0 0 L
—A3e,
e 3 % e, -0, vy @ 0 0 w20, NX,Y vPALC A 0
—\w,*
e 0 59, 0 AA Y 0 0 AQY,  OA~  v?A” 0Q,* 0
e D, 0 OE,*+ 0 T2 ,* T, 0 0 0 0 OT%w;
—No,")

o 0 P, 0 AP, 0 0 AT, T®  O®¢, \de, OT,T" 0
M) ie 1 o s vy & o N=3h=yp 0", T?=T,T*=(v’0-\?). (20)
(M) =g O(0+s?) ov

(15 Their mass dimensions afé ,,]=2,[Q,,]=3,[2,,]=2,

P
To perform the inversion of the above operator, we neetg

1=3.
.
Three of these new terms exhibit a nonsymmetric struc-

to define some new operators, since the ones known so far qBre, which suggests they should be taken in pairs, namely

not form a closed algebra, as is shown below:

Quv» Quui 2,40, 2,5 @,,, ©,,. The inversion of the
operator A;; is done according to the expression
(Al’ll)W(AU)”“z ;. where the operatorX;,)"* is com-

S, T'T*=0v,T*—\T%9,=0Q,“~\®",, (16 \ -
" a »=Hu w16 posed of all the possible tensor combinatidio$ rank 2
involving T, ,v,,d,. In so doing, the proposed propagator
av_ T2, « _ T2\ i i i .
Q.. Q" =T%%,=T?A“,, (17) Wil consist, at first glance, of 11 terms:
Q#,,cb”“:TzU#&“:TZE#“, (19 (A" =a10" "+ a,w”*+a3S"*+a, A" +agT' T

where the new operators are

Qu=v,T,, Ay,=v,v,, %,,=v,0,, ®,,=T,9,,

e (19

and

+agQ"*+a;Q*+ag2 " +agx " +a @

+a P, (21

which are displayed in Table I, where we observe explicitly
the closure of the operator algebra.

Using the data contained in Table I, we find out that the
gauge-field propagator assumes the form
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a(0+s?)X—\%s? o s oo s? Ay - s o
O0O+s9)R ¢ O0O+s)°  (O+HKX (O+s9)K _(D+s?)@Q

1
uy—
(All) O

6"+
+ &2

. s vy AS? Sury AS? s S\ D S -
(D+sf)®Q O(0+s)K O(0+s)K O(0+s)K O(0+sH)K '

whereX = ((0%+ 5?0 —T?).
By the same procedure, we evaluate the mixed propagaie){=—T,/[J(A14) "%, which can be written in the following
form:

s\
T+ sv"— —aV}, (22

A=
(12)_§ O

whereas the propagatoA§,)”, in turn, becomes

Ay)'= —l T"+sv” —S)\V
( 21) = X Sv 0 avl.
In order to compute the propagator of the scalar field,

-1

1- , (23

1 -1
ET,U,(M,U,V) TV

A)= 1
(An)=—5
we make use of the inverse of the tensby,,, given by Eq.(15), so thatT (M~ 1)#'T,=(0+s?) ~'T2 In such a way, a
compact scalar propagator arises:

O+s2
(A== (24)

In momentum space, the photon propagator takes the final expression

A A () 1o a(K=s)R(k)+s*(v-k)? S gy s? N
< ( ) ( )>_| kZ_SZ k2(k2_32)®(k) w k2(k2_SZ) (kZ_SZ)IX(k)
TATY s wv S vp —isz(v-k) Suy
TRmEm T T oRm Y T W—Rm QT R DR(K)
N is2(v-k) sn is(v-k) P is(v-k) e o5
k2(k2—s?)X (k) k2(k2—s?)X (k) k2(k2—s?)X (k) ' (25
|
while the scalar and the mixed propagators read as on 1/X also amounts to similarities on the causal structure of
the scalar and gauge sectors of this model, as will be dis-
[ s cussed in Sec. Ill.
<<P<P>—W[k —s7], (26)
i s(v-K) I1l. DISPERSION RELATIONS, STABILITY, AND
@ - _ @ o 2NV @ CAUSALITY ANALYSIS
<A (k)¢’> &(k) T+ sv k2 k }1 (27) . - .
Some references in the literatf®6,8,9 have dealt with
i S(v-K) the issues of stability, causality, and unitarity concerning
(eA%(K))=— = [ —T®+sp®— v2 k|, (28  Lorentz- andCPT-violating theories. Causality is usually ad-
X (k) k dressed as a quantum feature that requires commutation be-

tween observables separated by a spacelike interval, which
where X(k)=[k*—(s>—v-v)k?—(v-k)?]. These results one calls microcausality in field theofg0]. In this section,
show that the factoi is present in the denominator of all however, we analyze causality at the level of the classical
propagators, so that the scalar and the gauge field will shat&eory. The starting point for all investigation is the propa-
the pole structure, and consequently, the physical excitationgator, whose poles are associated to dispersion relations
associated to the poles &f(k). This common dependence (DR) that provide information about the stability and causal-
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ity of the model. The causality analysis is then related to théng the pole analysis, however, we have>0 for arbitrary
sign of the propagator poles, given in terméf so thatone g anqk2 <0 (unlesskLg or k=0, which impliesk? =0).

must havek®=0 in order to preserve itcircumventing the g5 yhile the modé? preserves the causality and stability,
existence .O.f t_achyoms In the S"-‘CF’!’"?‘ quantization frame- the modek? , in spite of assuring stability, will be in general
work, stability is related to the positivity of the energy of the _ . L

Fock states for any momentum. Here, stability is directlynoncausal, preserving causality only farv or k=0.
associated with the positivity of the energy of each mode In the case of a purely timelike 3-vector,'=(v,,0), the

arising from the DR. DR assumes the form
The field propagators, given by EgR5—(27), present
three famili f poles d¢?: 1 . =
ree families of poles k§i=§[(sz+2k2)t /—S4+4v(2)k2], (32)
k?=0, k®>—s°=0, k*—(s®—v-v)k*—(v-k)?=0,
(29)

where one observes a similar behavior: the mkgle will
from which we straightforwardly infer the DR derived from exhibit stability and causality, while the mod%_ will

the Lagrangiar(5), namely present energy positivitfor an arbitraryk value whenever
- S S - J the conditions?—v3>0 is fulfilled. From now on, we must
oL ™ » R0 ’ assume the validity of this condition, so that the magde

5 I . 5 5 can be taken stable. This latter mode is noncausal forkany
Kog) =k™+ 5[(s —v-v)=\(s"—v-v)?+4(v-K)?. (30  £0. Assuming the coefficients for Lorentz violation are
small near the Chern-Simons massv3,|i|?), we obtain

The first dispersion relatiorky= = |K|, stands for a massless @n entirely causal theoriat least at zero order in®/s?).
photon mode, which carries no degree of freedom, since th&his is consistent with some result8] concerning some

> . tors are small

++/s2+|k|?, which propagates only one degree of freedom ' 2 - - :

(in the Maxwell-Chern-Simons electrodynamics, the scalar Her|1.cke, thg tr.nOdFkkOi exhibit hposltl\lle gnerlgy t:ﬁth mtw

magnetic field encloses all information of the eIectromag-Space' € and timelike cases, which also Implies nese wo
fnodes can be written as an expansion in terms of positive

freedon. These first two poles apparently respect the Caug:md negative frequency terms. This separation allows the

sality condition, sinc&?=0 for them. Once the causality is d_e_finition of particle_anc_l antipart_icle states, a necessary con-
set up, the stability comes up as a direct consequence. dlt!on for the quantization of this theory_. Never'[_helgss, the
Concerning the third DR, corresponding to the roots OfeX|steqce of noncausal modes, bath in the “”."e"ke and
X(k), it may provide both massless and massive modes fo§pacellke_ case, may_be see.n_alllready at .th.e classical .Ievel, as
P _ _ _a prediction of the impossibility of realizing a consistent
some specifik valuesL but in general, the mode is massiVe.quantization of this model, an issue that will be properly
By remembering thak is the transfer momentum, whose addressed when one analyzes the unitarity at these noncausal
values are generally integrated from zero to infinity, we conpoles. Therefore, the existence of quantization illness will be
clude it does not make much sense to fix any valuefor  solved by investigating the unitarity of the model, a matter
order to obtain a particular dispersion relation. Remarkinghat will be discussed in the next section.
that the termX (k) is ubiquitous in the denominator of all The similarity underlying the dispersion relations of our
propagators, as is explicit in Eq25)—(27), we conclude the reduced model and its four-dimensional counterpart entails
causal structure entailed in the poles dlMill be common  some common properties. The stability, for instance, is en-
to these three propagators. Specifically, for a purely spacelikeured in the same way. As for the causality issue, we report
3-vector,v*=(0y), this DR is written as here on the existence of noncausal mode%)(for both
. timelike and spacelike backgrounds. On the other hand, fol-
2 24 (a2 2 2, =222 Y lowing the approach of Adam and Klinkhamé&, it is pos-
Ko =k 2[(S o )i\/(s TO9)" 40K (D sible to argue that these specific noncausal modeps do not
) ) ) o harm the causal structure of the overall reduced model, once
A simple analysis of this expression indicates that bBdh  the group velocity associated with all modésr both cases
andkZ_ are positive-energy modes for aRyvalue (and for is always less than lug<<1). Hence, in our planar model,
any Lorentz observér which ensures the stability of these the causal structure is preserved for both the timelike and
modes. This fact may suggest that the causal structure of thepacelike cases. Instead, in the four-dimensional parent
spacelike sector of this model remains preserved, as was obiodel [5], this occurs only for the spacelike background.
served by Adam and Klinkhamégb] in the context of the The explanation for this peculiarity is the same one used to
four-dimensional version of this theory, which is endowedjustify the property of unitarity for the gauge sector of the
with a dispersion relation very similar to E(B1) (this con-  reduced model in both timelike and spacelike cases.
clusion was also supported by the attainment of a group ve- In a Lorentz covariant framework? is a Lorentz scalar,
locity, associated with this mode, smaller than Concern-  which assures a unique value for all Lorentz frames. In such
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a case, ifk? represents a causal mode for one observer, the- Vs*+4v32k?]. Evaluating the residues BP,,) at the
same will be true for all observers. The fact thétdoes not _polek? we achieve a positive imaginary result, while at the
have a positive definite value in an arbitrary Lorentz frame 'spole k2 a positive result appears only under the condition
unequivocally indicative of the Lorentz covariance break--, 5 =, o
k“<(vg+s9). In such a way, we conclude that the unitarity

down.
of the scalar sector, in the timelike case, is not assured.
Considering now the purely spacelike cage=(0,0), the
poles of SP,,, are given by Eq(31): k=212 (s’+v?)
In order to analyze the unitarity of the model at tree level,+ \/(s24 7224 4(5.k)2]. The residues associated with
we have adopted the method which consists in saturating thgese two poles exhibit a positive-definite imaginary part, so

propagators with external currents. The fact that our modefye can state that the unitarity of the scalar sector, at the
possesses two sectofscalar and gaugeimplies that we spacelike case, is generically preserved.
must saturate the scalar propagator and the gauge propagator

individually. In such a way, we write the two saturated
propagators, namely

IV. UNITARITY ANALYSIS

B. Gauge-field sector

The continuity equatiod, J*=0 in thek space is read as
k,J*=0; it allows us to write the current in the fordr
SP =J**(A (KA, (k))J", u ' ) . I
(AR (A()ALK)) =(j%0,(ko/ky)]®). The conservation constraint(®
=(ko/ky)|© appears whenever one adokts= (ko,0k,) as
SPepy=3*(ee)J, the momentum. The current-conservation law also reduces to
six the number of terms of the photon propagator that con-

) tributes to the evaluation of the saturated propagator:
where the gauge curredt must obey the conservation law

valid for the gauge sector of the systémhereas the scalar i

currentJ is not subject to any constraint. The unitarity analy- gp =J* (k)| = (OXg*"— SRS — sS2CIA#Y + O THTY
o . L (AANTY D g

sis is based on the residues 8P, namely the unitarity is

ensured whenever the imaginary part of the residueRaft

the poles of each propagator is positive. It is easy to notice —sOIQM"+ SDQM”)]Jv(k)’ (33

that the saturated propagator in the momentum space is the

current-current transition amplitude.

whereD =[J(J+s?)X. Writing this expression in the mo-
mentum space, one obtains
We can initiate our analysis by the scalar sector, whose

A. Scalar sector

saturated amplitude is given 1P oey=J*(®)J, or more SP<AMAV>:J*M(k){iBMV}JV(k), (34)
explicitly,
Li(k2=s?) where D=k?(k*-s?)X, with X(k)=k*—(s*—v-v)k?
SPge)= X(K) J. —(v-k)2.

1. Timelike case

This expression presents two poldg,, k?, the roots of We start by analyzing the unitarity in the case correspond-

X (k)=0. In the purely timelike caseuf‘z(vo,ﬁ), these ing to a timelike background vectorzf‘:(vo,ﬁ). In this
poles are exactly the ones given by H§2): k% =1/4s®> situation, the 2-rank tensdd,, can be put in the form

k3(s?v3—K) ik?(sK —v3s%k?) ik D (—sX+v3s%k?)
B..(K= 500 ik(®(—sK+v3s%k?) k?(X+v3k3) isk(©—pak?k Mk | (35)
ikV(sk—v3s?k?)  —iskk©®—p3k2kDk? K2(K +v3k3)

3By applying the differential operatar, on the equation of motion derived from Lagrangi@&, there results the following equatigsee
Ref.[7]) for the gauge currentl, J#=—e*"3,v,d,¢, which reduces to the conventional current-conservationdgd/; =0, wheneveun*
is constant or has a null rotationad{*?d ,v,=0).
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wherel=k*— (s>~ v3)k?— k3. ) s —is?%k® 0
For the polek?=0, with k*=(ko,0ko), we have the fol- B _ Vo is2K(2) K2 0
lowing residue matrix: #V|<k2=k2+>_ (k2 —s?) (k3 —K?) 2 :

0 0

(38)

. 0 —isky 0 .
_ . . which has as eigenvaluadg =0, A,=0, A3=k5+s°. Conse-
Bulie=0= s2 isko _ 0 isko ], (36) guently, one ha§P>0 (unitarity preservation
0 isky 0 At the polek?, a similar behavior occurs: we obtain a

residue matrix similar to the one given above. The difference
rests only on the coefficient appearing in front of the matrix,

e . _ in this case M(k_)=v3[ (k% —s?)(kZ—k%)]"'>0. The
which is reduced to a r'é‘” matrix yvglen_satur_ated with thega et that this last coefficient turns out to be positive indicates
conserved current)*=(j°,0,(ko/k,)j?), implying also a

) i o that the unitarity is also preserved at the plfe= k?, once
null saturation §P=0). This fact indicates that the mode ne nas the same eigenvalues.

associated with the pole=0 carries no physical degree of  Here, we observe that, for a timelike background vector,
freedom, and further, it does not jeopardize the unitarity.  oyr planar system presents no ghost states that spoil unitarity.
For the polek®=s?, with k“=(ko,0k,), the matrix takes  This is a sensitive difference with respect to its
the form (1+ 3)-dimensional parent model, described in the works of
Refs. [5], [6]. For the latter, the gauge sector is always
plagued by ghost states which cannot be removed by any
22 sk 212 0 gauge c_hoice, actually spoiling the qnitarity. We j_ustify t_his
1 0 0 peculiarity for the scalar and gauge-field sectors, in the time-
B, s = — =3 | ISK?K3 0 —iskok? | . like case, by noticing that the scalaridentified with A
sk . 2 2 2 becomes(upon dimensional reductipna gauge-invariant
0 iskokz —s%k; field in (1+2) dimensions. The gauge transformation it is
(37 acted upon in (*3)D is no longer present in the planar
case, by virtue of our dimensional reduction ansatz. This is
why our reduced model inherits a ghostlike excitation in the
This matrix, whenever saturated with the external curren ﬁ: Ig{aiztﬁtgga?f. tﬁg%ﬁrgighgtr%?tsgﬁ?)f:jelgq IgNrg)t(?Sfé? the
34=(j°.0,(ko/k7)}®), leads to a trivial saturation SP spacelike case, no ghosts are present in the 3D case;

=0), which is compatible with unitarity requirements. The hayrally, in (1+2) dimensionsg cannot inherit any ghost
vanishing of the current-current amplitude at this pole indi-g¢ate.

cates that the massive excitatikf=s? is not dynamical for

the timelike background. 2. Spacelike case
At the polek? =1/ s?+ \/s*+4v3k?], the residue ma- In this case, taking*=(0,0p), the tensomB,,, is given
trix reads as follows:
— k¥ (K —v2k3) iskk® —k?v%kok™® k™M (—sX —skv?)
1
B, (k)= Bk — sk —k?p2kokV) k(K +v2k3) isko(M+v2k?) |, (39)
ik™M(sX +skPv?) —isKkqy+iskv?k, k(K +v2s?)
|
where =k*— (s>~ v?)k?—v2k3. clusions established in the timelike case are also valid here.
For the polek?=0, with k*=(ko,0k), we obtain the The vanishing of the saturated propagator at the pdle
same matrix attained in the timelike case, given by B6). ZSE,. in both cases, indicates that the massive excitatfon
Exactly for the same reasons presented in the preceding sec-S” is not dynamical in our model. , L
tion, we can assert that the unitarity is preserved at this pole. For the pole ki =1/ (s"+v")

For the polek?=s?, with k#=(k,,0k,), the resulting =+ y(s?+52)2+4(5-K)2], with k“=(ko,0k,), the residue
matrix is identical to one given by E¢§37), so that the con- matrix is reduced to
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0 0 0 erable screening of the corresponding potentials and correla-
v? 0 K2 . tion functions derived from the MCS Lagrangian. In spite of
Buslue=i2)= (K2 —s2) (K2 —K2) o sk, the presence of the MCS terms in our case, the nondynamical

0 —isky, ¢&? character of the polk?= s? reveals that this sector decouples
(40 from the physical spectrum. Indeed, a good perception of this
fact is provided by evaluating the potentials and correlation
where &2 —k?)=/(s>+v?)?+4v2k5. The eigenvalues of functions[7]. The attainment of results typical of a massless
this matrix arex;=0, \,=0, )\3:k3+ s?, which leads to a theory confirms the absence of physical content concerning
positive saturation§P>0), and then unitarity is guaranteed the MCS sector.
at this pole. For the pol&?, unitarity is also ensured; this A new version of this work11] may address the dimen-
may be seen in a similar way to the one performed in theional reduction of a gauge-Higgs modé] in the presence
timelike case. of the Carroll-Field-Jackiw term. In this case, the reduced
Taking into account all results concerning the gauge secnodel will be composed of two scalar fieldsne stemming
tor of this model, we conclude that the unitarity is preservedrom the dimensional reduction, the other being the Higgs
in both timelike and spacelike caséat all the poles of the scalaj, by a Maxwell-Chern-Simons-Proca gauge field, and
gauge propagatpwithout any restriction. Considering the by the Lorentz-violating mixing term. The introduction of
restriction on the unitarity of the scalar sector at the timelikethe Higgs sector may shed light on new interesting issues
case, we can state that our entire model preserves unitarigPncerning planar systems, such as the investigation of vor-
only in the spacelike case. It is also interesting to note thatexlike configurations in the framework of a Lorentz-
the unitarity of the gauge sector is guaranteed even at thereaking model.
noncausal pole&?, which confirms the consistency of our  Another interesting question concerns the stability of
model. three-dimensional QED (QEp with the scalare against
guantum corrections if fermions are coupled to both the
gauge field(minimal coupling and ¢ (Yukawa coupling.
Should Lorentz ancCPT symmetries be broken by a fermi-
We have accomplished the dimensional reduction to lonic term of the form@yﬂ\lfbﬂ [12,13, one-loop fermionic
+2 dimensions of a gauge-invariant, Lorentz- a@®T-  corrections would induce the termSSMVkA”FVk and
violating model, defined by the Carroll-Field-Jackiw term, pe , 40*F** as the planar counterpart of the similar mecha-
e ,AF .. We then obtain a Maxwell-Chern-Simons nism in 4D. So, a Lorentz breaking in the fermionic sector
planar Lagrangian in the presence of a Lorentz-breaking terrmadiactively induces Lorentz breaking in terms of the gauge
and a massless scalar field. Concerning this reduced modelnd scalar fields. As for this issue, see also Andriagtoal.
the CPT symmetry is conserved for a purely spacelikg [5].
and spoiled otherwise. The propagators of this model are Another natural investigation consists also in studying the
evaluated and exhibit a common pole structioeund to the  solutions to the classical equations of motighe extended
dependence on &), which is used as starting point for the Maxwell equations and wave equation&for the potential
analysis of causality, stability, and unitarity. Concerning theA*) corresponding to the reduced Lagrangian. It is possible
dispersion relations, we verify that the modes have positivethat such equations reveal a similar structilmat more com-
definite energy, which ensures stability. The causality is asplex) to the MCS conventional electrodynamics, since the
sured for all modes of the theory, except & (both in  reduced Lagrangian indeed contains the MCS sector. The
spacelike and timelike cagevhich does not pose a physical solution to these equations may unveil some interesting as-
problem, once these modes are stable and the causal structyects, such as the property of anisotrofigduced by a
of the global model remains preserved. In connection withspacelike background) and the role of the CS term on the
the unitarity of this model, we have analyzed the scalar anéhteraction potential. This issue is actually being investigated
the gauge sectors separately, by means of the saturation ahd we shall report on it in a forthcoming pagdéi. The
the residue matrix. The gauge sector has been shown to Ilkeoretical framework developed here may also be useful to
unitary for timelike and spacelike background vectors,address the issue of electron-electron pairing and the sym-
whereas the scalar sector has been shown to preserve unitaretry of the order parameter representing the correlated elec-
ity only in the spacelike case. We should now pay attentiortron pairs, which exhibit al-wave pattern. This can be car-
to a special property of 3-space-time dimensions, namely theed out by studying the Mter scattering in the
absence of ghosts in the gauge-field spectrum for a timelikeyonrelativistic limit.
v*. Unitarity is a relevant matter and an essential condition
for a consistent quantization of any theory. Once the unitarity
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