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This paper could have been entitled “D branes and strings from flesh and blood.” We study field theoretic
prototypes of D branes or strings. To this end we consi@erl)-dimensional domain walls i3+ 1)-
dimensional\/=2 supersymmetric QCD with an $2) gauge group antl;=2 flavors of fundamental hy-
permultiplets(quarks. This theory is perturbed by a small mass term of the adjoint matter which, in the leading
order in the mass parameter, does not brédk2 supersymmetry, and reduces togeneralizeyl Fayet-
lliopoulos term in the effective low-energy’=2 supersymmetric QEDSQED. We find a 1/2 BPS-saturated
domain wall solution interpolating between two quark vacua at weak coupling, and show that this domain wall
localizes a W1) gauge field. To make contact with the brane or string picture we consider the Abrikosov-
Nielsen-Olesen magnetic flux tube in one of two quark vacua and demonstrate that it can end on the domain
wall. We find an explicit 1/4 BPS-saturated solution for the wall-flux-tube junction. We verify that the end
point of the flux tube on the wall plays the role of an electric charge in the @ial)-dimensional SQED
living on the wall. Flow ta\V/= 1 theory is discussed. Our results lead us to a conjecture regarding the notorious
“missing wall” in the solution of Kaplunovsky, Sonnenschein, and Yankielowicz.
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I. INTRODUCTION calization on the domain walls is an important ingredient of
our analysis. The only viable mechanism of gauge field lo-

D branes are extended objects in string theory on whicltalization was put forward in Reff2] where it was noted that
strings can enfll]. Moreover, the gauge fields are the lowestif a gauge field is confined in the bulk and is unconfiried
excitations of open superstrings, with the end points attacheléss confined on the brane, this naturally gives rise to a
to D branes. SU{) gauge theories are obtained as a field-gauge field on the wal{for further developments see Refs.
theoretic reduction of a string theory on the world volume 0f[10,11]). Although this idea seems easy to implement, in fact
a stack ofN D branes. it requires a careful consideration of quantum effgcisn-

In recent years solitonic objects of the domain wall andfinement is certainly such an effeavhich is hard to do at
string type were extensively studied in supersymmetricstrong coupling. This again leads us to models in which the
gauge theories in#3 dimensions. First, it was observE?]  gauge field localization can be implemented at weak cou-
that there should exist critica[Bogomol'nyi-Prasdad- pling. We use, in addition, some new general requi$§ (see
Sommerfield (BPS saturatei domain walls in also Ref[13]) regarding effective field theories on the criti-
N=1gluodynamics, with the tension scalingd 3. (Here  cal domain walls in supersymmetric gluodynamics. In the
A is the scale parametgiThe peculiaN dependence of the present paper we focus on localization of the Abelian gauge
tension promptedi3] a D brane interpretation of such walls. field. The issue of non-Abelian gauge fields on domain walls
Ideas as to how flux tubes can end on the BPS walls werwill be addressed in the subsequent publication.
analyzed4] at the qualitative level shortly thereafter. Later ~ Our main results can be summarized as follows. First, we
on, BPS saturated strings and their junctions with domairsuggest anV'=2 model (V=2 may or may not be softly
walls were discussefb—7] in a more quantitative aspect in broken down taAV/=1) which possesses both critical walls
N=2 theories. Some remarkable parallels between fieldand strings, at weak coupling. In this model one can address
theoretical critical solitons and the D-brane constructionall questions regarding the gauge field localization on the
were discovered. In this paper we undertake a systematiwall and the wall-string junction, and answer these questions
investigation of this issue—parallel between field-theoreticain a fully controllable manner. We find that there exists an
critical solitons and D branes or strings. The setup which will1/2 BPS domain wall which does localize 41y gauge field;
provide us with multiple tools useful in this endeavorN§  the charge which presents the source for this field is confined
=2 supersymmetric QCOSQCD considered by Seiberg in the bulk. We find that a 1/2 BPS flux tube coming from
and Witten[8,9]. Following the original publications, we will infinity does indeed end on the above wall. The wall-string
introduce a parameter which explicitly breaks\'=2 down  junction is 1/4 BPS. When the string ends on the wall the
to N=1. It turns out that in the limiju<<A we will be able latter is no longer flat, it acquires a logarithmic bending
to verify many of the previous conjectures as well as estabwhich is fully calculable.
lish new results in the reliable regime of weak coupling. In more detail, our theoretical setup can be described as

Research on field-theoretic mechanisms of gauge field Icfollows. We consider(2+1)-dimensional critical domain
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walls in (3+1)-dimensional S2) SQCD originally studied
by Seiberg and Wittefi8,9]. To ensure the existence of do-
main walls at weak coupling we introdudg =2 flavors of
fundamentalquark hypermultiplets. This theory has a Cou-
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JE<Am=<m;~m,, Am=m;—m,, 1.9
when two quark vacua come close to each other on the

would-be Coulomb branch. Qualitatively the solution has the

lomb branch on which the adjoint scalar acquires an arbitraryollowing structure: the quark fields are small inside the wall,

vacuum expectation valu&/EV),

(®)=(a) >,

breaking the S(2) gauge group down to (1). The Coulomb

while a is a slowly varying(almost lineay function of z
where z=X; is the coordinate orthogonal to the wall. The
original U(1) gauge field is higgsed outside the wall—this is
a “superconducting” phase. Inside the wall superconductiv-
ity is destroyed. Correspondingly, magnetic charges are con-
fined in the bulk[5,16], giving rise to magnetic flux tubes in

branch has four singular points in which either monopole, othe bulk! while inside the wall the magnetic flux can spread
dyon, or one of the two quarks become massless. The firgteely. The U1) gauge fieldAZ*Y |ocalized on the wall,
two of these points are always at strong coupling, while theyhich describes interaction of the probe magnetic charges
massless quark points can be at weak coupling provided th%ﬁaced on the wall, is dual to the originall) gauge field.

the quark mass parametarg, are largem,>A, whereA

As is well-known[21], a 2+1 dimensional gauge field is

=1,2 is the flavor index. Below the vacua in which quarksequivalent to a real scalécompact field—we will call it .

become massless will be referred to as the quark vacua.

This must be one of the moduli fields. In the limit &f=2

In order to have domain walls, the vacuum manifold, sypersymmetry, the effective field theory on the 1/2 BPS
rather than being continuous, must consist of isolated pointsya|| must possess four conserved superchafges it is A/
To guarantee the existence of discrete vacua we perturb thes from the(2+1)-dimensional standpoihtThen the mini-

above theory by adding a small mass term for the adjointya supersymmetry representation contains two real boson

matter, via superpotential

W,=pu, u=Trd2 (1.2
Generally speaking, the superpotential bre&ks2 down

to AN=1. The Coulomb branch shrinks to four above-

mentioned isolatedV=1vacua. Of special importance for

what follows is the fact that\'=2 supersymmetry isiot

broken[5,6,14 to the leading order in the paramejeiin the

effective theory. In the effective low-energy SQED the su-

perpotential(1.1) gives rise to a superpotential linear @
plus higher order corrections. If only the linear termaitin
the superpotential is kept, the theory is exadtly 2.

We will be mostly interested in the quark vacua since they(

yield a weak coupling regime. Near the quark vacua, to th
leading order in theV=2 breaking parameter, the superpo-
tential in the effective low-energy SQED is

1
Wsoep= — méa, (1.2

where the coefficient is determined by the VEV of the
lowest component o& in the given quark vacuum,

£=—2\2u(a),

The perturbatior{1.2) can be “rotated”[6] in such a way as
to render it a Fayet-lliopoulo&-l) term[15]; per seit does
not break V=2 supersymmetry. 1£#0, the quark fields
develop VEVs(of order of &) breaking U1) gauge sym-

(a)y~my> . (1.3

fields—the effective field theory on the wall must include
two real boson fields. One is the above mentionétx,y),
another originates from the translational collective coordi-
nate, the position of the wat},. We will refer to this field as
{(tx,y).

In the limit of exact\'=2, the fieldo(t,x,y) is massless,
as well as{(t,x,y), and is related to the gauge field strength
tensor as follows:

F§12m+1)=const>< €nmid o, (1.5
wheren,m=0,1,2 and the constant on the right-hand side
has dimension of mass. Taking account of higher ordegs in
i.e., quadratic in thea—(a) term in the superpotential

$reaks N=2 supersymmetry of our macroscopic theory

down to N=1. Surprisingly, this does not generate a mass
term for the fieldo(t,X,y), which remains a moduli field.
This can be seen in many different ways. One of them is
through analyzing the fermion zero modes. A Jackiw-Rebbi
type index theorenj22] tells us that fermion zero modes
(those unrelated to the supertranslational preegst even
thoughA/=2 is broken N=1 supersymmetry requires then
a bosonic superpartner, which is the massless &étcx,y).
Thus, at the level of quadratic in derivative terms, the effec-
tive moduli field theory on the domain wall world volume is
N=2 (four superchargesThe breaking presumably occurs
if higher-derivative terms are taken into account.

Next, completing the theme of the gauge field localization
on the wall we proceed to the second aspect of the
problem—the issue of how strings originating in the bulk can

metry, so that the theory becomes fully higgsed. Then wend on the wall. In string theory, the brane localization of
consider a domain wall interpolating between the two quarkgauge fields is closely related to the possibility for an open
vacua, a task which can be addressed at weak coupling. We
also analyze the string-wall junction. E—

Our domain wall is 1/2 BPS-saturated. It turns out that the 1The magnetic flux tube is nothing but the Abrikosov-Nielsen-
solution of the first-order Bogomol'nyi equations can beOlesen(ANO) string[17]. Flux tubes in the Seiberg-Witten theory
readily found in the range of parameters were studied ir{18,16,19,6,20
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(Simultaneously the parameter governing the breaking

N=2—N=1becomes largerAt strong coupling there exist

two additional vacua, the monopole and dyon ones. A do-
_ <charged field>=0 main wall interpolating between the monopole and dyon

= S vacua was discussed previou$B3]. This is a strong cou-

- pling problem which requires a “patchy” description—one

cannot introduce one and the same effective low-energy

theory which would be valid simultaneously near the mono-
pole and dyon vacua because monopoles and dyons are not
mutually local states. Nevertheless, we have something new

[ to say regarding the wall interpolating between the monopole
and dyon vacua. The analysis of REZ3] does not seem to
be complete since it does not take into account moduli dy-
namics on the wall. As is well establish¢d4,12,13, in
SU(2) theory twodistinctcritical domain wallgwith one and

X the same tensignmust exist. At the same time, only one

domain wall was detected in RgR3]. We suggest a tenta-

tive solution to the paradox of a “missing wall” which
should emerge from consideration of the moduli dynamics.
A problem similar to ours was addressed previously in
FIG. 1. Geometry of the wall-string junction. The gauge field Ref.[7] in the context of(3+1)-dimensional\V=2 massive
localized on the wall can be cast in the form of a dat2)- Sigma models on hyperll«hdﬁr target SpaceSee also Ref.
d?mensio_nal electrodynamics. This field _is dual to _the gauge field[25])_ The results we obtain V=2 SQCD are in qualitative
higgsed in the bulk. The probe magnetic charge in the litfle 5000 ment with those obtained in REF] in sigma models.
:sat‘g:;;t('c monopole of the origind=2 SQCD is denoted by an In particular in the sigma model the existence of a compact
' moduli field on the wall, representing dual to(1) gauge

string to end a a D brane. Since, as we assert, the BPS walléi€ld, was demonstrated, which is certainly no accident. In-
and flux tubes inV’=2 SQCD present a close prototype, it is 9€€d, in the limit opposite to that quoted in Ef.4), when
instructive to study this phenomenon in field theory. That theV€>Am, the photon and its superpartners become heavy in
magnetic field flux tube will end on the wall was already V=2 SQCD, and can be integrated out. Thafz2 SQCD
explained above, at a qualitative level. There is no doubt thaieduces in the low-energy limit t&/=2 sigma model with
the phenomenon does take place in our model. Our task i€ hyper-Kaler Eguchi-Hanson target space studied in Ref.
more quantitative, however. We want to fitahd do finga  [7]- . .

1/4 BPS solution of the first order Bogomol'nyi equations ~ The paper is organized as follows. In Sec. Il we present a
that describes an ANO flux tube ending on the wall. In otherf0y (nonsupersymmetricmodel which has a domain wall
words, attaching a flux tube to 1/2 BPS wall makes the conand exhibits the phenomenon of the gauge field localization
figuration 1/4 BPS. The attachment of the tube gives rise t®N the wall. Although this model is primitive it serves as a
two effects. First, the wall is now bent, and, second, the fielqhice illustration for one of the phenomena we are interested
o(x,y) develops a vortex. Ifx,,yo} are the coordinates of in—the occurrence of a2-+1)-dimensional gauge field

center model—supersymmetric QED—obtained as a reduction of

the Seiberg-Witten model. We specify in which limit the
o(x,y)=a, (1.6)  model has extendetf=2 supersymmetry, while for nonlim-

) _ ) iting values of parameters it i&=1. In Sec. V we derive
wherea is the polar angle on the two-dimensional wall sur- gng solve first order BPS equations for the domain wall in-
face (Fig. 1) andr = y(x—Xq)*+(y—Yo)*. terpolating between two quark vacua. Of most importance is

According to Eq.(1.5) the vortex ino is equivalentto a Sec. VD where we derive field theory for the moduli fields
radial electric field in the duall+2)-dimensional QED on Jiving on the wall. In Sec. VI we review the ANO strings in
the wall, (the low-energy limit of the Seiberg-Witten theory. Section
VII treats the issue of strings ending on the wall. Here we
derive first order BPS equations for the string-wall junctions
and discuss the properties of 1/4 BPS solutions to these
equations. We find how the magnetic flux which the flux tube
Thus the string end point on the wall plays the role of abrings to the wall spreads out inside the wall. In Sec. VIl we
probe charge for the dudll+2)-dimensional QED on the discuss the impact of soft breaking.bf=2 down toA'’=1in
wall. our model. Brief remarks on the literature, including the

Diminishing the mass parameterm we move mystery of a “missing wall” in the solution of Kaplunovsky
the quark vacua toward the strong coupling regimeet al. are presented in Sec. IX.

z

XA_(X )
Fg?*1)=const><'—20',
r

i=1,2. 1.7
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II. ATOY MODEL

In this section we will consider a tognonsupersymmet- o
ric) model which exhibits the phenomenon we are interested
in—the gauge field localization on a wall. This model lacks
certain ingredients which will be of importance in the analy-
sis of more sophisticated supersymmetric models, to be car- ‘
ried out below. The main virtue of the toy model is its sim-
plicity. It will serve as a warm up exercise. X

Let us assume that we have two complex fiefdand y,
with one and the same electric charge, coupled to(d U —
gauge field(“photon”), with the following self-interaction: B

v

)\._I/ZU -1

FA’+|D,¢|?+|D ,x|>=V(¢,x), FIG. 2. A schematic rendition of the domain wall in the model

1
ﬁtoy: -—F
4e (2.1).

2wy
(2.9
N — oy — - o 12 is obviously a solution too; it represents a family of solutions
V(g x)= E{(¢¢_U )2+ (xx—v) %+ Bl Bl | X%, with the same energy, containing two moduli—the wall cen-
ter z; and a phaser. The occurrence of, is due to the
wherev, \, andg are positive constants, and we assume, fospontaneoysbreaking of the translational invariance by the
simplicity, thath < 8<e’?<1. It is easy to see that the model given wall solution, whiles is due to the(spontaneoys
under consideration has two distinct mininalassical breaking of a global ().

vacua: Indeed, the mode(2.1) has two U1) symmetries:
i develops a vacuum expectation val 0€es not; : .
ané) ¢ p p ted d— e, x—x and ¢p— g, X—’Xelﬁ- (2.5

(ii) x develops a vacuum expectation valyedoes not.
In the first casé¢|=v, and one can always takgto be real
and positive(this is nothing but imposing a gauge condition
¢=v. The phase ofp is eaten up by the vector field, which
becomes massive, with mass,=\2ev. The xy* quanta
have massn, = (8—\)v. Finally, there is one real field

which remains fromg; it can be pqram_etrizec;zl af:“' 7 field Reg starts at at z— —o, while Rey starts at zero.
with real . The mass term of the field is 2\v-%*, so that Then Rep decreases as(1—e™*?) and Rey increases as
My =V2\v. In the second vacuum the mass of the Vector, o vz There is a crossover at=0, where the roles of Ré
.f'etld rre]mams the sa|1|me Vt\’k:"l_e the roles ﬁf ttJbe?]ndX f'eldfh t and Rey interchange: the field which was lighter becomes
Intérchange, as well as their masses. Note, Nowever, that Wl ayiar andjice versalf one’s goal is the calculation of the
neither vacuum there are massless excitations which wou

. . . all tension, one may treat the modajj ando as constants.
make the vacuum manifold continuous. The energies in thes?hen the vector field\, is not excitedA, = 0. The wall has
) ) " 2dA,=0.
two vacua are necessa_rlly degenerat_e be_cause al,thgm a two-component structure: the thickness of one component
metry ¢y apparent in Eq(2.1) which is spontaneously o il is 1/(/\v) while that of the other is 14(Bv).
broken. Therefore, there mgst eX|§pana fidedomain wall The latter size is much smaller than the former provided that
interpolating between vacu@ and (ii).

Although the analytic solution for the domain wall seems’8>)\’ as was assumed. The wall tensibis saturated by

to be unknown in the case at hand, it is not difficult to ana-the contribution of the secongharrow) component,

lyze its qualitative features. Let us assume, for definiteness, T 3 \/E 2.6
that the wall lies in thexy plane and impose the following " ' '
boundary conditior{to be referred to as “standargt”

One of these ()—the diagonal combination—is gauged,
the other remains global. It is not spontaneously broken in
either of the vacua(i) or (ii). It is broken, however, on the
domain wall.

A qualitative sketch of the “standard” domain wall is
given in Fig. 2. Im¢=1Im y=0 on the standard solution. The

Our task is more than just calculating the wall tension. We
want to construct an effectivd2+1)-dimensional field
$—0 at z—x. theory for the moduli on the wall world volume. As we will

(2.20  see momentarily, to this end we will have to take into ac-
count the third component of the wall, built of the gauge
We denote the “standard” domain wall solutigoentered at field, which has thickness of order of &{() (see the zigzag
z=0), with the above boundary conditions, as line in Fig. 2. This component does not show up in the
calculation ofT,,.
bo(2), xo(2). (2.3 Upon quantization, the moduli; and o become fields
(adiabatically depending ox,,={t,x,y}. We will call them
Then {(t,x,y) and o(t,x,y), respectively. Furthermore, in Eq.
_ (2.4) the collective coordinate®, and o are to be replaced
~'7x0(2- 20) 2.4 py

$p—v, x—0 atz— —ox; X—U,

e po(z—20), €
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zo—L(t,xy), o—a(t,xy). 2.7 Wheree§+l is a a(2+1)-dimensional gauge couplirfégn our
casee§+1/(8772)=f<v/e]. As a result, the moduli Lagrang-
Then we substitute the expressions thrand y in the La-  jan (2.13 can be rewritten as
grangian(2.1), integrate overz, and obtain in this way a
low-energy Lagrangian for the moduli. Féft,x,y) this pro-

19y L . 1 Tw
cedure is quite standard, leading to Loi1=— Tanan+7(ﬁmé’)((9m§)- (2.15
2+1
Tw
Li=2(0md)(3™0), m=0,1,2. (2.9 o . .
2 The consideration above bears purely illustrative charac-

_ o ter, first and foremost because it was purely classical. The
For o(t,x,y) there is a subtlety. Indeed, substituting EQ.impact of quantum corrections will be discussed in a super-
(2.4 in Eq. (2.1), we arrive at symmetric setting.
2

+ XoXo

2

1
EémU(t,XaY)"'Am’ . Ill. GAUGE INVARIANT DEFINITION OF THE PHASE
(2.9 COLLECTIVE COORDINATE o

— 1
(,250(,250 Eama-(tv)(’y) _Am

When we speak of the relative phase of the fietdand y
we compare their phases in distant poirgs; = . In the
1 theory with the local gauge invariance this raises the ques-
sdmo(t,X,y) at z——ox, tion as to the meaningfulness of this comparison. The way
ALY, 2)— 2 (2.10 we have ir_1troduced t_he phase_gollective coordimatg Sec.
M 1 ' Il is meaningful only in a specific gauge. In fact, it is useful
- EamU(t,X,y) at z—o, to give a gauge invariant definition. Let us introduceas
follows:

It is clear that az— * % one must choosé, as follows:

i.e., A, is pure gauge. However, dz|<(ev) ! the field
An(t,x,y,2) must smoothly interpolate between two regimes 2

in Eq. (2.10 and, hence, cannot be pure gauge in this domain o=arg¢(zy) —argx(zp) + L dzAs(z), (3.1
of z (see Fig. 2 It must be chosen in such a way as to !

minimize the coefficient of d,0)? in £,. Thus at|z|
=<(ev) ! the photon field strength tensor is generated, wit
necessity,

hwhe.re formallyz,— —, z,—o. Under the gauge transfor-
mations

o b(2)—€“D(2), x(2)—€*“x(2),
Fra~ 35 Az=(ev) L. (2.11
Asz(2)—Az(2) +d,a(2), (3.2
Therefore,
while o as defined in Eq(3.1) stays intact.
E{f:KK(amg)((gmU), (2.12 Although formally z;— —%,z,— %, there is an unques-
e tionable tradition to setp,x = const,A,=0 in the plane

) ) o ) vacuum(this is the unitary gaugeTherefore, practically one
where « is a numerical coefficient of order 1 depending on 5, takez, just to the left of the wall whilez, just to the

the form of A, in the intermediate domain. It is determined
through minimization. The dynamics of the moduli fields on
the wall world sheet is thus described by the Lagrangian

right. With this choice ofz, , it is perfectly clear thatr is a
collective coordinate characterizing the wall structure, an in-
ternal phase.

Alternatively one can consider @onlocal gauge invari-

T
Loi1= s (am0) (@) + 24 (apd)(a™). (243 ND order parameter

The target space of the fietd is S, (x(22)€ 1282552 (2,)). (3.3

Oso=<2m7. It obviously vanishes in the plane vacuum, while it reduces

. i . to v2e'“ if there is a domain wall of the type discussed in
As was noted by Polyakoy21], in 2+1 dimensions, the gec. |1 This order parameter is noninvariant under the “sec-

gauge field is equivalent to a compact scalar field, throughynq» U(1)—the one which is not gauged. The fact that Eq.

the relation (3.3 does not vanish on the wall means that the glob@l) U
2 is spontaneously broken triggering the emergence of the
F(2+1):%8 o (2.14 Goldstone boson localized on the wall and described by the
mn 2q “MM T field o(t,x,y).
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IV. BASIC MODEL
2
A. The original non-Abelian theory +V2myf? (4.2

The field content ofA'=2 SQCD with the gauge group -
SU(2) andN; flavors of the quark multiplets is well-known. where V,=4,—i/l2A,, V,=d,+i/2A,, while near the
The A'=2 vector multiplet consists of the gauge fieqq, quark vacua
two Weyl fermionsi 2, and the scalar fields?, all in the
adjoint representation of the gauge group. Herel,2,3 is f(a)=§—2\/§,u5a+ e 4.3
the color indexa= 1,2 is the spinor index, anfl=1,2 is an
SU(2)g index [warning: SU(2) is not to be confused with and the ellipses denote terms quadraticém Under our

the gauge S(2) or flavor SU2) emerging aiN;=2, the case choice of parameters the generalized FI paramg&tean be

to be considered belojw chosen as
On the Coulomb branch, the adjoint scalar develops a
VEV, E=4pum, (4.9
(¢p*)=(a) (4.)  where

breaking the gauge group down td1) The W bosons and 1
their superpartners become heawijth masses of order of m= §(m1+ my). (4.9
(a)~mp>A) and can be integrated out. What is left of the
vector multiplet in the low-energy SQED are the third color
components oA, A and ¢, to be referred to ag,,, two
Weyl fermions\! , and the scalar fielé. This is the field
content of SQED.

The quark multiplets of the non-Abelian theory consist of

complex scalar fieldg** andqa, and Weyl fermionsyA

In order to keegF real(as we will always dpwe assume that
both u and m are real. The scalar potential in E¢.2)
comes fromF and D terms of the vector and matter super-
multiplets.

P : _ B. N=2 SQED
and ¢, all in the fundamental representation of the gauge . .
group. Herek=1,2 is the color index whilé\ is the flavor In what follows we will mostly ignore the dependence
index. In what follows we will limit ourselves t&=1,2. of the functionf(a) in the second line of Eq4.2) setting

With the gauge symmetry spontaneously broken by thd (@)= ¢. The theory we get in this limit id/=2 SQED. The
condensaté4.1), only the upperk=1) components, or only relative impact of the terms linear iba in the functionf (a)
the lower k=2) components, of the fields, G, ¢, andy; i of orderm™*éa. As will be seen momentarilysa~m,
remain light in the quark vacua, while the opposite compo-—Mi. Therefore, taking account of the dependencé (@)
nents acquire the same mass as the W bosons and the otiféa results in a small /=2 breaking correction provided
fields in the /=2 vector supermultiplet. They can be inte- |Am[<m, as we always assume. All our conclusions remain
grated out and will play no role in our consideration. unchanged.

Let us denote the light quark fields a4, g, #*, and From Eg. (4.2 we can immediately infer the vacuum
U, respectively. Note that the scalars form a doublet undeftructure of the model at hand. We have two quark vacua, the

= irst one located at
the action of the global SU()group,q'=(q,q). In terms
of these fields the bosonic part of the low-energy effective a=— \/Eml (4.6)
SQED takes the forf
and the second one at

— 4 1 2 1 2.7 . A
Slow—en_ d®x 4_ng,¢¢1/+?|’9#6‘| + V,quV;Lq a=— \/§m2. (47)
.= g - In the first vacuum the first quark flavor develops a VEYV,
+Vu0aY,.0"+ 5 (1942~ [aal)? ;
1_7 _+ /2 2_%
g2 _ A f(a) 2 1 a2 - q ql \[21 q q2 01 (48)
RECH L R +§(|q 12+1aal?)|a

completely breaking the (1) gauge symmetry. In the second
vacuum the second flavor develops a VEV,

2Here and below we use a formally Euclidean notation, e.g.,
F2,=2F5+F}, (9,8)%=(doa)?+ ()% etc. This is appropriate o ~ \/E 1~
as long as we are after statitime-independentfield configura- q4"=q2= 2 9°=09,=0, (4.9
tions, andA,=0. Then the Euclidean action is nothing but the
energy functional. Furthermore, we defimé*“=(1,—i§-), ;;m

=(1; 77). Lowing and raising of spinor indices is performed by 3In our case the variable defined in Eq(1.1) can be represented
virtue of the antisymmetric tensor defined ag,=ei5=1, >  as u=a2/2=(1/2)(— V2m+da)2. Hence f(a)=—2\2udulda
=g¥?=—1. =4,um*2\/§,u5a.
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which does the same job. _ ~where we introduce a new complex figjd. In this ansatz
Above, the vacuum expectation values of the squark field§ED under consideration reduces to

were assumed to be real. In fact, one can assign arbitrary
phases to the two squark fields. We will discuss the impact of 1 1 o
these phases shortly. _ _ _ Sred SQED:J d4x[—2Ffw+ _2|‘9ua|2+ VMquVMDA
Now let us discuss the mass spectrum of light fields in 49 g

both quark vacua. Consider for definiteness the first vacuum,

Eq. (4.6). The spectrum can be obtained by diagonalizing the + g9
quadratic form in Eq.4.2). This is done in Ref[6]; the 8
result is as follows: one real component of figjtl is eaten

up by the Higgs mechanism to become the third components

of the massive photon. Three components of the massiveyiq | agrangian is qualitatively very similar to that consid-
photon, one remaining componentaf, and four real com-  gqq in Sec. II. In particular, it has twglobal U(1) symme-

ponents of the fieldg; anda form one long\/=2 multiplet  tries, allowing one to independently rotate the fields of the

2
1
("= &%+ 51" a+ V2mp?t.

(5.2

(8 boson states- 8 fermion statels with mass first and second flavors, respectively. The diagonél)Us
1 gauged.
mizigzg. (4.10 In terms of the fieldsp” the quark condensate becomes
ol=\éexpia), ¢?>=0 (5.3

The second flavag?, q, (which does not condense in this
vacuun) forms one shortV= 2 multiplet(4 boson states- 4 in th
e vacuum(4.6), and
fermion stateg with massAm which is heavier than the m4.6)

mass of the vector supermultipfehe latter assertion ap- 2_ [Fexnia’ -9 54
plies to the regimé1.4). In this regime theN-boson super- of=\Eexpia’), ¢ ©4
multiplet is heavier still. in the vacuum(4.7). Because of the gauge freedom, the

If we consider the limit opposite to that in E(L.4) and phasesz, @’ can be always chosen to vanish.

tend Am—0, the ‘photonic” supermultiplet becomes *t\ye assume that all fields depend only on the coordinate
heavier than that ofi“, the second flavor field. Therefore it 2=x5 the Bogomol'nyi completion of the wall energy func-
can be integrated out, leaving us with the theory of masslesgynal can be written as

moduli from g2, which interact through a nonlinear sigma

model with the Kaler term corresponding to the Eguchi-

Hanson metric. TW:J dz{
In the second vacuum the mass spectrum is similar — the

roles of the first and the second flavors are interchanged.

2

1
quoAiE@A(aﬂL V2my)

2
Our immediate goal is constructing a 1/2 BPS domain n E(; ax 9 (|e*2— &) +i§a a (5.5
wall interpolating between the above two vacua. g’ T2\2 ¢ 2 = '
V. THE DOMAIN WALL IN  A/=2 SQED Here we do not assunaepriori that the gauge field vanishes.

We will see that although the gauge field strength does van-
ish on the flat wall solution at rest, the gauge potential need
not vanish. Putting mod-squared terms to zero gives us the
“first order Bogomol'nyi equations, while the surface term
%the last one in Eq(5.5)] gives the wall tension. Assuming

or definiteness thaAm>0 and choosing the upper sign in
Eq. (5.5 we get the BPS equations,

In this section we work out and solve the first order
Bogomol'nyi equations for the domain wall. The
Bogomol'nyi equations can be derived in two ways: by per
forming the Bogomol’'nyi completiofi26] and by analyzing
the set of supercharges and isolating those four that annih
late the wall[27,28,2,29-3]L We will follow both routes.

A. First-order equations

1
First, let us note that the structure of the vacuum conden- V,ph=— E‘F’A(a"' ﬁm/\)’
sates in both vacug@.8) and(4.9) suggests that we can look
for the domain wall solution using thensatz 5
. ga=— ;’—ﬁqw—g)_ (5.6
q*=0a= = ¢" (5.1)
V2

These first order equations should be supplemented by the
following boundary conditions:

“In estimating the relative masses of various fields we will ignore 1 5
the factors ofg?. Although the coupling constant is certainly as- P (—oo)= \/E' ¢ (—2)=0, a(—o)=- \/Eml;
sumed to be small to make the theory weakly coupled, we consider (5.7)
the u,m dependences as more important. e (®)=0, @*(o)= \/E a(wo)=— \/Emz,
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which show that our wall interpolates between the two quark field profile
vacua. As was mentioned, this boundary condition is not
generic (it was referred to as “standard” in Sec.)lIThe (pl - B M E /,fq)Z
existence of the exact ungaugedlWimplies that the generic /
boundary condition could be obtained from E§.7) by mul- /
tiplying/gbl in the first line bye'”? and ¢? in the second line /
by e™'7<,
Finally, the tension of the wall satisfying the above equa- //

tions is \ / z
Tu=|(Am)g. (5.9 A

|

Now, let us derive the Bogomol'nyi equations by analyz-
ing relevant combinations of supercharges. We will show
that four combinations of supercharges act trivially. To see
this explicitly, let us write down the supersymmetry transfor-
mations in SQED:

?1/2 R ?1/2

FIG. 3. Internal structure of the domain wall: two eddeés-
mainsE; ,) of the width ~ ¢~ 2 are separated by a broad middle
1 . ) band(domainM) of the widthR, see Eq(5.15.
S\fe= E(O"u(r,,sf)“FW,+ £*PD¥( Ta)lfo+ i \/Eﬁ““a?; ,
range of variation of the field inside the wall is of the order
of Am [see Eq(5.7)]. The minimization of its kinetic energy

Sy A=i 2V eqhe,+ 2 TFL, (5.9  implies this field to be slowly varying. Therefore, we may
- S—— _ safely assume that the wall is thick; its sige>1/\¢. This
5¢K=I\/§Y7““QASM+ V2e“Fip, fact will be confirmed shortly.

o ) o We arrive at the following picture of the domain wall at
where we explicitly write out the SU(2)indicesf,p=12.  hang. The quark fields vary from their VEVis JE to zero
HereD? is the SU(2) triplet of D terms which in the ansatz within small regions, of the order of {Z (see the previous

(5.1) reduce to footnote. They remain small inside the wall, see Fig. 3.
92 Then to the leading order we can put the quark fields to
Dl=i=(|¢"?—-¢), D?=D%=0, (5.10  zero in Eq.(5.6). Now, the second equation in EG.6) tells
2 us thata is a linear function ok The solution fora takes the
_ form
while Ff andF; are the matteF terms,
z—z
a=—+2[m—-Am = 0), (5.13

1 — 1 _
FiA=i—=(a+\2ma)q"™, Far=i—=(a+y2ma)aa;.
(5.11) where the collective coordinatg is the position of the wall
center(andAm is assumed positiyeThe solution is valid in
The fact that the wall we work with is critical implies that a wide domain oz
some ofd\ and S in Eq. (5.9 vanish. Accepting, as above,
the ansatz5.1) and taking into account that all fields depend 27 |<E (5.14
only on z we get the same first order equatiof®s6), pro- =2 '

vided thats®" ande" satisfy the following conditions: .
e a ty 9 except narrow areas of sizel/\/£ near the edges of the wall

2 .7 1 . 922 atz—z :iR/Z
gs=—le g;=—le 0~ : . o
2 ' 2 ' Substituting the solutiof5.13) in the second equation in
. -, (512 Eq.(5.6) we get
8-1=|812, 8-1=|811.
. ) 4Am  2Am
These four constraints on the supertransformation parameters = = (5.19

—=
show which particular linear combinations of the super- 9°¢ my

charges act trivially on the domain wall solution. With these .. .

four constraints we reduce the number of trivially acting Su_SmceAm/ \E»l See Eq.(1.4), th|s result .ShOWS thak

percharges to foufout of eigh}. Thus, our domain wall is >1/\E, which justifies our approximation. It is easy to check

1/2 BPS saturated. that 1/2 of the wall tension quoted in E(.8) comes from

the kinetic term of the field in the middle domairM.

Furthermore, we can now use the first relation in &06)

to determine tails of the quark fields inside the wall. First let
Now let us work out the solution to the first order equa-us fix the gauge imposing the condition thgt is real atz

tions (5.6), assuming the conditiond.4) are satisfied. The — —o and¢? is real atz— . This is a generalization of the

B. Finding the domain wall solution
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unitary gauge for the problem with a domain wall that inter- 7 (p2
polates between two vacua. Of course, this requirement does ¢
not fix the gauge completely. We still have the freedom to a

make gauge transformations with a gauge parameter which is
nonzero inside the wall.
Let us assume that the gauge field is given by

A,=0d,B(z), A,=0, n=0,1,2, (5.19
so that the field strength is zero. HegBéz) is some function
of z while o is a constant introduced in order to normalize g2 g2
B(2) in a convenient way.
Consider first the left edgédomainE; in Fig. 3) at z R
—2zo=—RJ/2. Substituting the above solution fer in the
equation fore! we get FIG. 4. The translational zero mode.

_ —(m2/4)(z— 20+ RI2)2+i(/2 . . .
o= \Jge (MM 0t RATHERIAE@] (517 hatis gauged it is natural to parametrize them as a common

. . - . phase which we denote #z) /2 (it depends on the gauge
This behavior is valid in the _doma|M, at_(z—zo+ R/2) transformations which we can still make inside the yvafid
>1/\J&, and shows that the field of the first quark flavor g rejative phase. This phaser is nothing but a global (1)
tends to zero exponentially inside the wall, as was expecteqdqmnant of the global flavor Sb;=2) symmetry which is
Our gauge choice requires explicitly broken down to 1) due to the fact tham,
(5.18 #m,. It is worth stressing that is acollective coordinate of

' the wall rather than a modulus associated with the vacua.
while inside the wall the function3(z) remains undeter- Because of the (1)xU(1) symmetry of the Lagrangian
mined reflecting the possibility of gauge transformations. (5-2, the effective theory on the wall has no potential energy

By the same token, we can consider the behavior of th@ssociated withy. At the same time, as was already men-
second quark flavor near the right edge of the walt-at, tioned, in the model under consideration there are no mass-

B(2)——1, z——0»,

=R/2. The first equation in Eq5.6) for A=2 implies less fields in the bulk—all fields are massive in each of two
quark vacua.
@2= \/Ee—<m§/4)(z—zo—R/z)z—i(g/zm—ﬁ(z)]' (5.19 Thus we have two collective coordinates characterizing

our wall solution, the position of the centey and the phase
which is valid in the domaiM provided that R/2—z+z,)  ©- In the effective low-energy theory on the wall they be-
>1/\/£. Inside the wall the second quark flavor tends to zerd?®Me scalar fields of the world-voluni@+1)-dimensional

exponentially too. Our gauge choice implies that theory,{(t,x,y) anda(t,x,y), respectively. The target space
P y gaug P of the second field i§,;, as is obvious from Egg5.17) and
B(2)—1, z—. (520 (5.19.

[After the submission of the present paper, the number of
Needless to say that the first and second quark flavor prahe zero modes on domain walls i{=2 SQED with N;
files are symmetric with respect to reflectionzgt The po- flavors was discussed in Rdf32]. An index theorem was
tential term of thee” fields in the domair produces the established showing that this number isNg¢ 1) for the

remaining 1/2 of the wall tension, bosonic modes. In our cash;=2, and the above formula
, ) implies two modes, which perfectly matches our consider-
9" Az s, 9 o Tw ation]
This means of course that the contribution of the edgges C. Zero modes
in the wall tension must be of higher order §n With this Two bosonic zero modes are obtained by differentiating
remark we proceed to the edge domains. the solution of Sec. V B with respect iy and o. The first

In the domains near the wall edges; zo=*+R/2, the one is translational, the second can be called “rotational.”
fields ¢* anda smoothly interpolate between their VEVs in Obtaining the translational zero mode is straightforward; it is
the given vacua and the behavior inside the wall determinedepicted in Fig. 4, which gives an idea of its spretotal-
by Egs.(5.13 and (5.17), and (5.19. It is not difficult to  ization). The rotational zero mode deserves a comment.
check that these domains produce contributions to the wall The solution for thea field is o independent. Therefore
tension of the order o&®? which makes them negligibly the rotational zero mode contains acomponent. As for the

small. ¢ components, differentiating the solution with respectrto
Now let us comment on the phase factors in H§sl7), in a straightforward manner one obtains

(5.19. Two complex fieldsp® and¢? have, generally speak- A A

ing, two independent phases. Since it is the diagond) U "= o+ oom  A=12, (5.22
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where wall while the matter fermiongs are concentrated near the
N wall edges. This picture is a superreflection of that in Fig. 4.
(9(,00 |
1 1
=—380=z¢[1+ B(2)]d0,
b= 55 977 2 ¢ol1+B(2)]60 D. Effective field theory on the wall
P i (5.23 In this section we work ou2+1)-dimensional effective
0 ) .
o2 = (9_50: — E(pg[l_ﬁ(z)]&,_ low-energy theory of the moduli on the wall. To do so we

make the wall collective coordinateg and o (together with
their fermionic superpartners®’) slowly varying fields de-

Note that because of the boundary conditi¢Bd8), (5.20 pending onx,, (n=0,1,2)
he n 1= il

these zero modes are normalizable. Qualitatively they are t
same as the modes in Fig. 4. Zo—L(Xy), o—0o(xy), 7*T—n(x,).
Now we will dwell on the fermion zero modes. There are
fermion zero modes of two types, “supertranslational” andFor simplicity let us consider the bosonic fieldéx,) and
“superrotational.” o(Xn); the residual supersymmetry will allow us to readily
To generate these modes we apply supersymmetry trangeconstruct the fermion part of the effective action.
formations to the bosonic wall solution of Sec. V B. As we  Becaus€/(x,) ando(x,) correspond to zero modes of the
have already explained, four supercharges selected by condiall, they have no potential terms in the world sheet theory.
tions (5.12 act trivially on the wall solution. The remaining Therefore, in fact our task is to derive kinetic terms. For
four supercharges act nontrivially giving fermion zero /(x,) this procedure is very simple. Substituting the wall
modes. To separate them we impose conditions betw&en solution (5.13, (5.17, and (5.19 in the action(5.2) and
and?a which differs by sign from those in Eq5.12. taking into account the,, dependence of this modulus we

Namely, we take immediately gefcf. Eq. (2.8)]
2_i.21 T_1_. 22 T
R 7WJ d3x(da0)2. (5.28
. (5.24)
;-1=—i812, ei=—iell

1 As far as the kinetic term fowr(x,,) is concerned more effort

titute this into E@5.9). Using Ed.(5. t th is needed. We start from Eq&.17) and(5.19 for the quark
?enr?msounbiérl:) emo(ljse!sn(;)n tﬁg \9,)\)/all|JSIng a.(5.6) we get the fields® Then we will have to modify our ansatz for the gauge

field®

NT=in®(r)0%(| P~ 6, f.p=12,

i A=, [0(X)B(D]+X(2)9,0(xy). (529

aA_; af A

v i7" (at \/EmA)qf ' (5.25 A few important points to be noted are as follows.
~a  of Bmaa. (i) We have introduced an extra profile functigifiz). It
Ya=in®(a+V2ma)Qia, has no role in the construction of the static wall solutpeT
se It is unavoidable, however, in constructing the kinetic

where by definition part of the world sheet theory of the moduli. This new profile

1 1 function is described by its own action, which will be subject
A (0 — o™ Uin=— (0. 0, to minimization. This seems to be an element of the proce-
q (‘P @ )! s (‘P P ), (526) P
! V2 A V2 A dure which is sufficiently gener@previously a similar con-

o o struction was applied, e.g., in R¢B3]), and yet, to the best
while " are four Grassmann parameters parametrizing thgf our knowledge, no proper coverage can be found in the
fermion zero modes. Under the supertransformations literature.

(ii) The first term in Eq(5.29 is pure gauge; it replaces a
similar term in Eq.(5.16 where o wasx independent. The
Here the fields and¢” are given by Eqs(5.13, (5.17), and function B(2) rhgmarllns Iundetermmed, a}nd S?\ does the phure
(5.19. Note that the conjugated fermion fields are given bygauge term. This should not worry us since they do not show

conjugation of Eqs(5.25, however, the parameteﬁ_ﬁz are UP in any physical observables. The second term in Eq.

. i (5.29, on the other hand, is not pure gauge. It does lead to a
not independent. They are expressed in termgfaccord-  nonvanishing field strength. It is introduced in order to can-

5naf:8af'

ing to cel thex dependence of the quark fields far from the wail
-2 . -1 .
n,=in"  np=in?
- - (5.27 Sstrictly speaking, these equatioper seare valid only inside the
7= —int? = —inp't wall, in the domainM. Outside the wallp®— & exp{(io/2)[1

+B(2)]} at z—— and ®>—JEexp|(—iol2)[1-B(2)]} at z
We see that the. fermions(i.e., photino plus its\/=2 — 00,

partnel are nonzero and approximately constant inside the ®Remember the electric charge of the quark fields i5/2.
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the quark vacua at— *«) emerging through th& depen- z—z,
dence ofo(x,), see Eqs(5.17 and(5.19. X=—2—(g- (5.39
To ensure this cancellation we impose the following
boundary conditions for the functiop(z): In narrow edge domaing, , the exacty profile smoothly
interpolates between the boundary values, se¢®&84), and
x(2)—F1, z— * o, (5.30 the linear behaviof5.395 inside the wall. These edge do-

mains give small corrections to the leading term in the ac-
This parallels the procedure outlined in the toy model of Section.

II. Next, substituting Eqs(5.17), (5.19, and (5.29 in the Substituting the solutiofb.35) in the y action, the second
action(5.2) we arrive at line in Eq.(5.3)), we finally arrive at
1 1 8 [ a0
7. = fdsxi(ﬁn(f)z sz{&(ﬁz)()hr(l_)()zqu $*1_Amf d X2(f7n0') . (5.36
As has been already mentioned previously, the compact
+(1+x)¥ 9?2} (5.31)  scalar fieldo(t,x,y) can be reinterpreted to be dual to the
(2+1)-dimensional Abelian gauge field living on the wall,

see Eq(1.5. The emergence of the gauge field on the wall is

The expression in the second line is an “action” for the easy to understand. The quark fields almost vanish inside the
profile function. To get the classical solution for the BPSwall. Therefore the \(Il) gauge group is restored inside the
wall andthe wall world volume the theory of moduli we will wall while it is higgsed in the bulk. The dual(l) is in the
have to minimize this “action.” confinement regime in the bulk. Hence, the duél)jauge

The last two terms in the braces—the potential terms irfield is localized on the wall, in full accordance with the
the action fory—come from the kinetic terms for the quark general argument of Ref2]. The compact scalar fieldl(x,,)
fields. The first term d,x)? in the braces—the kinetic term living on the wall is a manifestation of this magnetic local-
in the action fory—comes from the kinetic term of the ization.

gauge field. Indeed, the second term in Eg29 produces a The result in Eq(5.36) implies that the coupling constant
field strength, of our effective U1) theory on the wall is given by

F,n=,x0n0. (5.32 e§+1:4ﬂ_2%_ (5.37)
This field strength gives rise to the kinetic term fpiin the ) o . .
action (5.31. In particular, the definition of thé2+1)-dimensional gauge

Now to find the functiony we have to minimize Eq. field (1.5 takes the form
(5.31) with respect toy. This gives the following equation: 2
F(ZH):ES o (5.38
am . .
—d5x =g’ (1= x)|e*+g%(1+ x)|¢??=0. (533 moo2w

This finally leads us to the following effective low-energy

Note that the equation foy is of the second order. This ISV\}geory of the moduli fields on the wall

because the domain wall is no longer a BPS state once

switch on the dependence of the moduli on the “longitudi- T 1
nal” variablesx,, . :f 3y W 2 (2+1)\2
To the leading order in/é/Am the solution of Eq(5.33 Se+1 d X| 2 (and)™* e%H(an )
can be obtained in the same manner as we did previously for
other profile functions. Let us first discuss what happens out- +fermion term% (5.39
side the inner part of the wall. Say, &t z,>R/2 the profile ' ’
|@!| vanishes whilg¢?| is exponentially close ta/¢ and,
hence, The fermion fields living on the wall are associated with the
four fermion moduli »%'. On the grounds of(2+1)-
X— —1+const e” Mz~ %), (5.349  dimensional Lorentz symmetry on the wall we may be cer-

tain that these four fermion moduli fields form twwo-

The picture at,—2z>R/2 is symmetric, with the interchange component Majorana spinors. Thus, the field content of the
@' ¢? Thus, outside the inner part of the wall,|at-z,]  world sheet theory we have obtained is in full accord with
>R/2, the functiony approaches its boundary valuesl the representation @2+ 1)-dimensional extended supersym-
with the exponential rate of approach. metry (i.e., that with four supercharg@s

Of most interest, however, is the inside part, the middle
domainM (see Fig. 3 Here both quark profile functions
vanish, and Eq(5.33 degenerates inté>x=0. As a result,  “Minimal supersymmetric theories i@-+1) dimensions have two
the solution takes the form supercharges.
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Now let us address the question as to the relative magnihat the number of distinct domain walls in SU) super-
tude of the(2+1)-dimensional gauge coupling. We expect Yang-Mills theories is in faci.

that the lightest massive excitations on the wall have mass of Following this convention we can say that the 1/2 BPS

the order of the inverse wall thickness1/R. Since wall we have constructed has a multiplicity of two. This is
rather obvious by itself, since in the case at hand the original

1 g% ¢ ) 9° (3+1)-dimensional theory we began with had eight super-
R™ 2 Am =€ 1@, (5.40 charges. What is remarkable is that the above statement will

hold even if we breakV=2 of the original theory down to
. . . . _ N=1.

our (2+1)-dimensional coupling constait$.37 is large in To see that the wall multiplicity is two it is sufficient to
this scale, so that the theory on the wall is in the Stron@bompactify the longitudinal directionsandy. Then the re-

coupling regime. This could have been expected since.it IS Buced moduli field theory on the whlbecomes quantum
U(1) theory of the dual degrees of freedomagnetic \ochanics of one real variabig(t) defined on a circle,
chargeg as will be discussed in more detall in Sec. VII.

The fact that each domain wall has two collective ot+2me—a0,
coordinates—its center and a phase—in the sigma-model

limit was noted in Ref[34]. and two fermion variablegy(t) and (t). This supersym-
metric quantum mechanics has the ground state at zero en-

E. Nonzero modes ergy which is doubly degenerate. This double degeneracy is
_protected against nonsingular perturbations, such as genera-
éion of the potential term forr, which, generally speaking,
might occur if A/=2 is broken down toV=1. The potential
fierm isnot generated for our domain wall; presumably, it is
generated in the case considered in R28].

It is not difficult to see that the lightest massive excita

middle domainM. When its thickness “breathes,” this gives
rise to the softest mode. The mass of the softest mode can
readily estimated to be of the order mﬁ/Am~ R L

F. /=2 supersymmetry and the multiplicity VI. THE ANO STRINGS

of the domain walls In string theory gauge fields are localized on D branes

We have just demonstrated that one can find a 1/2 BP$ecause fundamental open strings can end ® brane. Our
saturated domain wall in th&=2 SQED with the general- task now is to investigate to what extent this picture—a flux
ized Fayet-lliopoulos term. This faper sehas far reaching tube ending on the critical domain wall—holds in field
consequences for the world-volume theory as well as for théheory. We will see that the answer to this question is posi-
multiplicity of the domain walls. Indeed2+1)-dimensional tive: our 1/2 BPS domain wall does allow for the magnetic
world-volume theory must haveur supercharges. This im- flux tubes to end on it.
plies with necessity that there amgo (masslessboson fields As we have already explained, both quark vacua in our
in the world-volume theory. On general grounds they canN=2 QCD give rise to a confinement phase for monopoles
form either a chiral supermultiplet a/=2 in 1+2 or a  [5,16]. The monopoles themselves are very heavy in the
vector supermultiplet of a world-volume theory with(ly  quark vacua; the monopole mass is of the ordemog?.
gauge invariancéinear supermultiplgt As long as the fields Hence, the monopoles can be considered as probes for con-
are massless, there is a duality between these two descrifinement. Here we deal with the Abelian confinement, due to
tions. the ANO flux tubes which stretch between monopoles and

Supersymmetrization requires twdMajorana two-  antimonopoles.
component fields in the world-volume theory. The dimension Now we will demonstrate, through an exact solution, that
of the supermultiplet we deal with is four. The question to bethe ANO string can end on the domain wall interpolating
discussed is: how many distinct domain walls do we have®etween two quark vacua. Imagine a monopole placed at
This question is meaningful in light of the recent finding some point in the bulk far away from the domain wall. The
[24,12,13 of nontrivial multiplicity of the domain walls in magnetic flux of the monopole is trapped inside the flux tube
N= 1super-Yang-Mills theories. in the bulk. When the tube joins the wall the magnetic flux of

In addressing this question we have to explain our conthe tube becomes electric flux of the dugllJtheory on the
vention. Every(2+1)-dimensional domain wall emerging in wall; therefore it spreads out along the wall. The end point of
the (3+1)-dimensional theory has a translational and superthe tube on the wall plays the role of an electric charge in the
translational moduli. If we quantize these moduli in a finite (2+1)-dimensional W1) gauge theory. Ending the flux tube
volume the corresponding wall multiplicity is two. This part on the wall, rather than letting the tube go through, is ener-
of the moduli dynamics is trivial, however, and céand getically advantageous. The field configuration with a string
should be factored out. That is what we will always do. attached to the wall is 1/4 BPS saturated in our model. In
When we speak of the wall multiplicity we discard the above
trivial degeneracy and focus exclusively on possible extra—
degeneracy not associated with thHsupejtranslational 8By reduced we mean that the translational modulus and its su-
moduli. With this convention one can demonsti@4,12,13  perpartner are factored out.
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other words, the theory localized on the string-wall junction m,=my, (6.5
has two supercharges.

Before delving into details of the string-wall junction con- and the superconductor is exactly at the border between type
struction (which will be done shortly we have to briefly | and type Il. The relatior{6.5) has important consequences.
review the critical ANO strings in the Seiberg-Witten theory |t means that the ANO string satisfies the first order equa-
[18,16,19,6,20 Our presentation follows that of Rg6], the  tions and saturates the Bogomol'nyi boufb]. The BPS
only difference is that Ref{.6] deals with the critical strings = strings do not interact.
in the monopole/dyon vacua while here we are interested in  To get the BPS equations for the string in the ma@éel)
the quark vacua. (as well as the BPS bound for its tensidhis convenient to

Let us consider, say, the ANO strings in the vacudn®).  perform the Bogomol'nyi completion of the action,

The fielda is irrelevant for the string solution so we can put

it equal to its VEV(4.6) and drop from the effective QED 1 2
Lagrangian, Eq(4.2). In the vacuum4.6) the second quark Tstrzf dzx[—2

flavor g2 is heavier than the first one and we can ignore it.

Moreover, it turns out that the string solution we are after +2mén. (6.6)
admits the same ansat.1l) we exploited for finding the
wall solution.

With all these simplifications the effective action of our
model (5.2) becomes

2
F5-2 (o™= 8 +|<V1—iv2>¢1|2]

Here we assume that the string is aligned alongxfrez
axis with its center at the point; =x,=0 and, moreover,

1
1 9° Fr=cermEme NmMk=1,23. (6.7
_ 4, _— p2 12 2 (1 112_ 2 n nmk_m
Sstr_f d X[492F;LV+|V/L(P | + 8 (|()D | g) ] 2
(6.1)  The last term in Eq(6.6) measures the quantized magnetic
) . ) ~ flux of the vortex,n is the winding number. For simplicity
First, let us compare this theory with the general Abelianye will consider the minimal windinga=1.
Higgs model in which the ANO vortices are known to exist  As ysual, implications of the Bogomol'nyi completion are
[17]. The action of the Abelian Higgs model reads immediate. The energy minimum is reached if the first two
terms in the braces vanish individually. Then the string ten-
1 sion is, obviously,
SAH:f d4x[4_92':;2LV+|V,L<P1|2+7\(|<P1|2_5)2]-

(6.2 Tsw=2mE. (6.8

We see that the modéb.1) which appears ifV=2 QED The vanishing of the first two terms in the braces imply the
with the FI term(the same model appears i=1SUsy following first order equations:

with the FI term[30]) corresponds to a special value of the o
couplingX, F§—5(|<p1|2—§)=0,
g (6.9
)\—g. (63) (Vl_ivz)(plzo_
In the model6.2) the photon has mag4.10 while quarke! Certainly, these equations are well studied in the literature
acquires the mass 26]. _ _ _
The classical ANO vortex solution for the fields- and
mﬁ:4)\§- (6.4) A, is obtained in the standard ansatz:
For generic values of in Eq. (6.2 the quark massthe Pr(X)=p(r)e”',
inverse correlation lengjtand the photon magshe inverse (6.10
penetration depthare distinct. Their ratio is an important X
parameter characterizing the type of the superconductor un- Ai(X)=2g;; ;[1—f(f)],

der consideration. Namely, fan,<m, one deals with the

type | superconductor in which two strings at large separa- . . i

tions attract each other. On the other hand,rfgy>m,, the wherei,j=1,2,r= W, anda is the polar angle in thel,2)
superconductor is of type II, in which case two strings atPlane(Fig. 1). The real profile functiong(r) andf(r) sat-
large separation repel each other. This behavior is related #§fy the boundary conditions

the fact that the scalar field generates attraction between two

vortices, while the electromagnetic field generates repulsion. $(0)=0, f(0)=1,
Now we see that with the choia®.3) for A the masses (6.1
are equal, P(=)=1€, f(=)=0,
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which ensure that the scalar field reaches its VEE/ at and the string condition&.13 simultaneously. It turns out
infinity and the vortex carries precisely one unit of the mag-that there is a nontrivial solution with
netic flux. T T

With this ansatz, the first order equatiof@s9) become e Ten, ErTE, (7.9)

o1 while the parameters are given in Eq(5.12. We see that
¢'—11¢=0, all eight SUSY parameters can be expressed in terms of two
6.12 arbitrary para}metersll_andszz. Thus, the string-ending-on-
g2 , the-wall configuration is 1/4 BPS saturated.

- Ff '+ Z((b —£&)=0. Now we substitute Eq.7.1) in the SUSY transformations
(5.9 and put the fermion components to zero. This leads us

These equations, together with the boundary condition& the following first order equations:

(6.11), can be solved numerically. r s . _
In supersymmetric theories the Bogomol'nyi bouieds) Fi—iF3 —V2(9,-id,)2=0,

for the string tension can be viewed as a central chérge 2

the anticommutatofQ, ,Qp}) of the supersymmetry alge- Fi— g—(|¢A|2—g)— J29,a=0,

bra. The first order equatiori6.9) can be obtained by requir- 2

ing half of the supercharges to act trivially on the string (7.2)

solution[29-31,8. In order to see which particular super-
charges act trivially we write down all relevant SUSY trans-
formations(5.9) in our effective QED and put the fermion

components to zero. Dropping the fieldsand g? (as was (V,—iV,) ¢”=0.

discussed in the beginning of this secli@md assuming that

all fields depend only on the coordinates, x, we arrive at These equations generalize the first order equations for the
the same equatior(.9) provided that the SUSY transforma- wall and for the string F* is defined in Eq(6.7)].

1
Vaph=— EwA(aJr V2my),

tion parameterg“f and;fa are subject to the following con- It is instructive to check that both the wall and the string
straints: solutions, separately, satisfy these equations. Start from the
wall. In this case the gauge field is pure gaygee Eq.
gl2=_gll  gP=_gl (5.16)], and all fields depend only an Thus, the first and the
! ! 6.13 last equations in Eq7.2) are trivially satisfied. The compo-

21 22 T1_T2 nent of the gauge fielé3 vanishes in the second equation
eT7=g", e&,=¢e,. . . K .
and this equation reduces to the second equation if3=6).

These conditions select those supercharges which act trisze(ghg;j equation in Eq7.2) coincides with the first one in

ally on the BPS string solution. Moreover, they explicitly . . . .

show that our ANO string is 1/2 BPS saturated. Note, how- Fordthe stkn?lg which _l'is’ Si‘y’ in the vacuue.6), the
ever, that the condition.13 are different from those in Eq. S€¢ON hqualr avorvanis ?ﬁ_.o' while a is given by its
(5.12), so that four supercharges preserved by the string anyEV- The electromagnetic lux is directed along thexis,

four supercharges preserved by the wall are not the same.S% thatFT =F3=0. All fields depend only on the coordi-
natesx; andx,. Then the first and the third equations in Eq.

(7.2 are trivially satisfied. The second equation reduces to
the first one in Eq(6.9). The last equation in Eq7.2) for

In this section we derive BPS equations and find a 1/4A=1 reduces to the second equation(9), while for A
BPS solution for the wall-string junction. We analyze quali- =2 this equation is trivially satisfiedjuod erat demonstran-
tative features of the solution and investigate how the mageum
netic flux of the string gets spread inside the wall.

VII. STRING ENDING ON THE WALL

B. The string-wall junction (solution for a string
A. First order equations for a string ending on the wall ending on the wal)

It is natural to assume that at large distances from the Needless to say, the solution of first order equatighg)
string end point at =0, z=0, the wall is almost parallel to for a string ending on the wall can be found only numerically
the (x1,X,) plane while the string is stretched along the especially near the end point of the string where both the
axis, see Fig. 1. Since both solutions, for the string and thstring and the wall profiles are heavily deformed. However,
wall, were obtained using the ansaf&.1) we restrict our far away from the end point of the string, deformations are
search for the wall-string junction to the same ansatz. Asveak and we can find the asymptotic behavior analytically.
usual, we look for a static solution assuming that all relevant Let the string be on the>0 side of the wall, where the
fields can depend only oxy, (n=1,2,3). vacuum is given by Eq(4.7), see Fig. 1. Consider first the

First, we have to decide which particular combinations ofregion z—« far away from the string end point at-0.
supercharges act trivially on the wall-string junction configu-Then the solution to Eq(7.2) is given by an almost unper-
ration. To this end we impose both the wall conditighsl?  turbed string. Namely, at—« there is noz dependence to
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r v However, the first and the last equations in EG2) be-
* come nontrivial. Consider the first one. Inside the string the
electromagnetic field is directed along thexis and its flux
Y is given by 47. This flux is spread out inside the wall and

directed almost along; in the (X;,X,) plane at large&. Since
\ the flux is conserved, we have

§-1/2 { | | «_2 X
F; “R,? (7.9
Zg
inside the wall ajz—z,(r,a)|<R/2.
Substituting this in the first equation in E(..2) and as-
suming thatz, depends only om we then get
1
r —
2y Amr: (7.5

FIG. 5. Bending of the wall due to the string-wall junction. The
flux tube extends to the right infinity. The wall profile is logarithmic Needless to say, our adiabatic approximation holds only pro-
at transverse distances larger than'’ from the string axis. At vided the above derivative is small, i.e., sufficiently far from
smaller distances the adiabatic approximation fails. the string \/Ef 1.

The solution to this equation is straightforward,
the leading order, and, hence, the following ansatz for fields
A, and ¢? is appropriate:

PA(X)=(r),

1
zo=—mlnr+const. (7.6)

(7.9  We see that the wall is logarithmically bent according to the
X Coulomb law in(2+1) dimension$ see Fig. 5. This bending
Ai(X)=—&jj —lzf(r). produces a balance of forces between the string and the wall
X in the z direction so that the whole configuration is static. To
see that this is indeed the case, please, observe that the force
It differs from the one in Eq(6.10 by a gauge transforma- of the string is equal to the string tensionr2 [see Eq.
tion, to the “singular” gauge, in which the scalar fielef is  (6.8)]. On the other hand, the force of the wall in tke
aligned along its VEV at—, z—. The profile functions  direction at some poirt, is given by the wall tensioAm
¢(r) and f(r) satisfy the boundary condition®.11). We  times the length of the circle2r, [r, corresponds ta,
also take the fieldé, Ao, ande® to be zero, witha equal  via Eq. (7.6)] times the angley following®® from Eq. (7.5),
to its VEV (4.7). Then Eq.(7.2) reduces to those of Eq. which projects the force of the bent wall onto thaxis. This
(6.12. The latter have a standard solution of the unperturbedjives 27 ¢, which precisely coincides with the string tension.

ANO string. On the other side of the wall, at>—o, we Now let us consider the last equation in E@.2). First,
have an almost unperturbed first vacuum with the fielddet us work out the gauge potential which enters the covari-
given by their VEVs(4.6) and (4.8). ant derivatives in this equation. In order to produce the field

Now consider the domain—co at smallz. In this domain  strength(7.4) A, should reduce to
the solution to Eq(7.2) is given by a perturbation of the wall
solution. Let us use the ansatz in which the solutions for the 2 X )
fields a and g* are given by the same equatio(.13, Ai=geij5lz= 2]+ B(2)dio(x), =12,
(5.17), and(5.19 in which the size of the wall is still given '
by Eq.(5.15, andthe only modifications that the position
of the wall zy and the phaser now become slowly varying

functions of r an_d a _[i.e., the polar coc_)rdinates on the where we also include pure gauge terms, segEg6). Con-
(X1,%2) plang. It is quite obvious thag, will depend only  sider first the region near the edge of the wallzatzo~
onr, as schematically depicted in Fig. 5. The physical mean-_Rg/>. Near this edge the first quark fielg! is not zero.

ing of this “adiabatic” approximation is as follows: the mas- Substituting Eq(5.17 in the last equation in Eq7.2) and
sive excitations of the wall, responsible for its structure, arq,sjng Eqs(7.7) and(7.5) we get

assumed to be absent; we study the impact of the string-wall
junctions on the massless moduli.

(7.7)
7.7RA0=0, A,=0(X)d,B(2),

As long as the second and the third equations in(Ec) °The logarithmic bending in two spatial dimensions was used by
do not contain derivatives with respectta i=1,2, they are  yjiten to explain logarithmic running of coupling constant ot
satisfied identically for any functiongy(r,«) and o(r,a) =2 theories within the brane approads).

[note thatF3 =0, the field strength is parallel to the domain %ne should remember that, >(Am) %, so that y~tany
wall plane, andA,=o(r,a)d,8(z), see Eq(5.16)]. ~siny.
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The solution to these equations is
o=a. (7.9

PHYSICAL REVIEW D 67, 125007 (2003

Méacharw ﬂg _ \/E
3 £ m

This estimate is confirmed, in particular, by the calculation of
the fermion mass shift presented in Sec. VIII B. However,
when one deals with collective excitations of the domain
wall (other than the zero modeshen the N=2 breaking
parameter is larger, since in this casa,,,,is of the order of

(8.2

This vortex solution is certainly expected and welcome. InAm. Then, theN'=2 breaking parameter is of the order of
terms of the dual gauge field localized on the wall, this so-

lution reflects nothing but the unit source chairdewe con-
sider the other edge of the wall near z,~R/2 and substi-
tute Eq.(5.19 into the last equation in Eq7.2) we get the
same equation€/.8) for o(r,«).]

The above relation between the vortex solution and th
unit source charge requires a comment. One can identify t

compact scalar fieldr with the electric field living on the
domain wall world volume via Eq(5.38). Then result(7.9)
gives Eq.(1.7) for this electric field. In the proper normal-
ization we have

2
€241 X
Fgﬂ):ﬁ et (7.10

where the (2+1)-dimensional coupling is given by Eq.
(5.37.

This is a field of a point-like electric charge i2+1)
dimensions placed a=0. The interpretation of this result

is that the string end point on the wall plays a role of the

electric charge in the dual (W) theory on the wall.

Our string-wall junction solution explicitly demonstrates
another rather apparent aspect of the problem at hand. In-

MAM

3

Although this is still a small parameter it is nevertheless

(8.3

his parameter controls the splitting of massive=2 mul-

iplets in the world-volume theory on the wall. It is not dif-
ficult to calculate this mass splitting, and so we did. If we
substitute the expression fgrfrom Eq. (4.4) here, then Eq.
(8.3) reduces taAm/m. Note, however, that we can ignore
the relation (4.4 coming from underlying non-Abelian
theory and consider the (W) theory (4.2) on its own right.
Then theA/=2 limit is characterized by paramete¢sand
m” while u controls =2 breaking down toV=1. In this
setup the parameter &f= 2 breaking on the wall is given by
Eq. (8.3 and goes to zero ai— 0 while ¢ is fixed.

It is easy to see that with(a) # const the Bogomol'nyi
completion for the domain wall configuration is still pos-
sible, and we end up with the following first order equations:

héﬁE\rger than the one in Eq8.2) under our choice Eq.l1.4).

1
V,oh=— E¢A(a+ V2my),

) (8.9

deed, when the string ends on the wall, and the magnetic flux ga=— g (|<PA|2— f(a)),

it brings with it spreads out inside the wall, the overall en-

242

ergy of the configuration is minimized. Indeed, the energy of

the flux tube grows linearly with its dimension, while when Where the same ansatz as in £§.1) is used. These equa-
the flux is spread inside the wall, the energy grows onlytions are quite similar to the equatio(&6) for A'=2 theory,
logarithmically with the dimension of the domain over which the only difference being that the constant FI paramétisr
the flux is spread. It is certainly no accident that the wallnow replaced by a linedand slowly varying functionf(a).

bending is logarithmic.

VII. FLOW TO N=1 THEORY

The tension of this domain wall is still given by E@.8).
The emergence of the first order equations means that the

wall at hand is still BPS saturatg@lbeit in A’/=1theory.

This can be most straightforwardly seen by noting that a half

It is high time now to address the question of what hap-of the relations(5.12 survive breaking ofN=2 to N=1.

pens with the moduli theory once we include subleading in
terms that brealV=2 supersymmetry down t&/=1. At the
level of the low-energy QEDO4.2) to which we limit our-

selves in the present paper this amounts to taking into ac-

count thea dependence of the functidi{a) in Eq. (4.2,

f(a)=—2\2u 70 = ~2\2ua, ©1)

while previouslyf(a) was set to be constant(a)=¢, in
which limit we deal with the fully blown\'=2.
Let us first discuss the value of &= 2 breaking param-

Now we have four parametees! ands_m, subject to two
constraints,

e1,=—ig?l

(8.5

This leaves us with two supercharges which act trivially on
the wall solution.

At small x and Am<m the solution to first order equa-
tions(8.4) is a small perturbation of the domain wall solution
presented in Sec. V B. Thus, it is still parametrized by two
collective coordinategsmoduli), z, and o. In the exact\/
=2 limit the moduli fields{(t,x,y) ando(t,X,y) formed the
bosonic part of aV=2 vector multiplet in(2+1) dimension.

Sli:i{:}ll.

eter on general grounds. It is quite clear that in both vacu®ow the question is: do these fields split once we br&ak

this parameter can be estimated as

=2 supersymmetry softly down t&4/=17?
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Naively one might think that while the “translational” naturally divided in two classes: four “large” eigenvalues
field £(t,x,y) certainly remains massless, the second moduand two “small” ones.
lus field o(t,x,y) becomes massive acquiring a small mass,
so that theN'=2 supermultiplet is split in two\V'=1 super- A. Fermion modes, N/=2 limit
multiplets. A particular mechanism for such splitting was Consider first the\'=2 limit when the last term in Eq.

suggested in Ref12] for the case of the domain wall inter- 8.6) is ignored. Two “small” eigenvalues approach the pho-
polating between the monopole and dyon vacua. Namely, iﬁ 91519 - W Igenvaiu PP P

was suggested that a Chern-Simons term is generated in tﬁ%n masg(4.10 in both quark vacua,
(2+1)-dimensional gauge theory on the wall, generating a
mass to the () gauge field. Although this conjecture is very

relevant and will be exploited in Sec. IXC, we will prove The “large” eigenvalues behave as follows. In the left

momentarily that the splitting doesot take place for the vacuum two of them approach the photon mass while the
wall interpolating between the quark vacua—the object ofpther two approach the larger valuem,

our study in this paper. The field stays massless. In other

words, the moduli field theory on the wall exhibits a super- |p'1,2|—>m7, |p'3]4J—>Am, zZ— — oo, (8.9

symmetry enhancement—the particle contents are character- ) _ o

istic of the theory with four supercharges, rather than twowhile in the right vacuum their role is interchanged, namely

supercharges one might expect to operate on the world sheet | |

of a 1/2 BPS domain wall io\’=1theory. lp3d—my,  [prd—Am,  z—c. (8.9
First, this conclusion follows from symmetry arguments. s pehavior is, of course, in perfect agreement with the

Indeed, the phase is associated with the global(l) rota-  1aq5 spectrum of the theory in both quark vacua found in
tion which is a part of the flavor SW;=2) broken downto  gec v B.

U(1) by the mass differencéym+0. This symmetry is vec- In the middle regiorM (see Fig. 3 “large” eigenvalues

torlike and therefore is not anomalous. Thus, we have afhterpolate between these two values. They always remain
exact global symmetry broken down on the domain wall S0141ge inside the wall and clearly do not cross the zero.
lution. This implies the inevitability of the zero mode asso-«gmg||” eigenvalues are exponentially small inside the wall
ciated with the collective coordinaie. With two massless  gnq, therefore, one needs to carry out a more careful study. In

moduli, £(t,x,y) ando(t,x,y), N'=1supersymmetry on the {he middle domairM these eigenvalues are given by
world sheet would imply two massless Majorana fields in the

|pi,2|_)m'y1 Z—* o, (87)

fermion sector. The fermion moduli are related to the fer- 1 2| Y2 2| ?|?

. o ; . s g%l g%le
mion zero modes. It is instructive to check, by counting the pP1= tf \/—+ \/— , (8.10
fermion zero modes, that in the fermion sector we deal with my+aly2  mptaly2

two massless Majorana fields localized on the domain wall
We will now show that we have four fermion zero modes Onsolutions(5.13), (5.17), and(5.19. Two “small’ eigenvalues

the wall solution(two plus two complex conjugated (8.10 clear] - Cht ;
. . . . . y cross the zero at=2z,, right in the middle of
To this end we use the Jackiw-Rebbi theorem which tellgne omain wall. This is in accordance with our previous

us that we have exactly two normgliza_ble fermion Z8109¢onclusion that we have four fermion zero modes in Afie
modes(one two-component real fermion figlger each ei- —2 limit

genvalue of the fermion mass matrix which changes its sign |
on the wall solutiof22]. The fermion mass matrix in softly
broken SQED is given by

where the functions and ¢” are given by the domain wall

B. Fermion modes, A/=2 broken down to N'=1

Now let us take into account th&=2 breaking term in
Eqg. (8.6). Then the first eigenvalue in E¢8.10 gets an
olerm _ 1 Jd4x[a M) — (Fan)aA— (a+ V2my) additional contribution,

mass_ﬁ Af T APANE - A
ps_l g’le® | g’le??
S=—
~ M 2|m+al\2 my+aly2
><<«/IAW*>—E<A2)2]. 8.6 ka2 mytal 2

+29°%u|, (8.11)

while the second one does not change. At small u
<\/&/g both eigenvalues still cross the zerozatz,.
The last term explicitly breaksV=2 supersymmetry and We conclude that inV=1theory the critical domain wall
SU(2) global symmetry because it depends only on the supports four fermion zero modéat least in some domain
=2 components of the field". of small x and largem). This means that th&/=2 vector
The fermion mass terms and Yukawa couplings in Egmultiplet living on the wall(2 real boson fieldst 2 Majo-
(8.6) give us a 6<6 fermion mass matrix. To study its ei- rana field$ is not split everafter we break\'=2 supersym-
genvalues we calculate its determinant. The general expresaetry down toAV=1. The low-energy theory is still given by
sion for the determinant is rather complicated; therefore, weeq. (5.39. Presumably, we would feg/=2 breaking if we
study it approximately in different domains of the wall pro- considered higher derivative terms on the world volume. We
file, see Fig. 3. The six eigenvalues of the mass matrix can beefinitely see\/=2 breaking in the spectrum of massive ex-
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citations localized on the wall, with masses of the order ofC. Multiplicity of the Kaplunovsky-Sonnenschein-Yankielowicz

the inverse width of the wal~ 1/R. domain walls
In this section we leave the solid ground of weakly
IX. COMMENTS ON THE LITERATURE coupled models and venture into uncharted waters of strong

: . S L coupling. The issue to be addressed is the domain wall con-
The topic under consideration is rather hot; its aSpeCt%ecting the monopole and dyon vacua M=2 SQCD
have been discussed in the recent literature in various cons-Iightly perturbed by the Tr 2 term [with SU(2) gauge

texts, including rather exotic, e.g., gauge field localization on .
branes in the framework of noncommutative field theoriesquUp]' This problem has been recently stud(@d] by Ka-

[36]. Here we briefly comment on the relation between ou'plunovgky, Sonnenschem,' and Yankle_loyvlgiKSY). We
results and those one can find in the literature. would like to address the issue of multiplicity of such do-

main walls(i.e., the number of distinct domain walls inter-
N polating between the given vacua, with degenerate tensions
A. Generalities First of all, let us summarize what is known about the
The most recent revival of the theme of field-theoreticmultiplicity of the super-Yang-Mills walls at strong coupling.
implementation of D branes and strings can be attributed tdhis question was analyzed by Acharya and Vafa, RE],
Ref.[11] which presents an excellent elaboration of generaffom the string theory side. Representing tlig+2)-
ideas as to how gauge fields can be localized on domailimensional domain wall of the super-Yang-Mills theory as a
walls. A variety of examples are worked out providing a D4-brane wrapped ove®?, the authors found that the(L)
clear-cut illustration to the statemej#t] that localization of  gauge field localized on the wall is described by supersym-
the gauge fields requires confinement in the bulk. It is alsanetric QED (similar to the construction discussed in Sec.
explained how this automatically entails the existence of the¢/ D) with the Chern-Simons term at levh,
flux tubes ending on the walls. In Sec. Il of R¢fL1] the \
authors construct a model for (guasistable wall-antiwall _ mn mnk .
configuration of a variable thickness which traps a gauge~1+2~ FF’““F + EF”‘“A"E +fermion terms,
field in the middle domain. This model served as an impetus of 9.1)
for our construction, which, being totally different '

in many aspects, shares a common feature with that of Refyhare N is related to SU) of the underlying (1+3)-
[11]—the' thickness of the middle domain in our model is adimensional gauge theory. For the @V gauge groupN
large variable parameter too. =2. It is well-known that the level of the Chern-Simons
term determines the number of vacua of the theory—two in
B. Varying Am the case at handhe gauge group of the underlying theory is
The proof of the existence of the “second” modulus SU(2)). The number of vacua in th€l+2)-dimensional ef-
a(t,x,y), dual to the W1) gauge field on the wall, and its fective theory on the walls the number of distinct degener-
massless fermion superpartner was based on symmetry arg@fe domain walls in(1+3)-dimensional theorythe above
ments and was independent on the value of the i/,  WO" refers to the counting convention explained in Sec.

In our model this ratio is large. However, thg1) gauge VF).

field localization must occur for arbitrakm/+/€. This ob- Needless to say, this is an index of the underlying theory,
servation perfectly matches the result of R@l, where a 1/4 which does not change under continuous deformations of the

BPS solution of the string-wall junction type was found in a th€ory. Based on this fact, the domain-wall multiplicity was
sigma model. In our language the sigma-model limit Cc,rre_calculated directly from field theorl13] and was found to

sponds toAm/\/é—0. In this limit the photon field and its coincide with the Acharya-Vafa result.

. : ; Let us return now to Kaplunovskgt al. Since they con-
superpartners are heavy; upon integrating them out we re- 5 y
cover the Kaler sigma models with the Eguchi-Hanson tar- SiderédN=2 SQCD perturbed by the Tr®* term, and at

get space for the remaining light matter fields. It is well-'arg€ # this theory smoothly goes int&/= 1gluodynamics,

known that such models have string-type solitons, which caﬁhe index argument tells us that the number of distinct KSY

have arbitrary transverse dimensitsee Ref[37] for a re-  Walls, in the case of the SB) gauge group, iswo.
view of the so-called semilocal strings Near each vacuum—monopole and dyon—Kaplunovsky

Turning on Am+0 as a small perturbation produces gt al. use distinct effective low-energy SQED-type descrip-

small potential on the target space. Once the potential igons, e.g., near the mo_nopole vacuum the low-energy ”.‘Ode'
switched on, domain walls become possible, and one caficludes a Wl) gauge field and its superpartners, plus light

search for the string-wall junctions. Strictly speaking the so-monopole superfield1, M. Near the dyon vacuum it is also
lution found in Ref.[7] is somewhat singular, since finite- & U(1) gauge superfieléalbeit not that of the previous pafch
radius strings exist only in the limit of massless sigma mod-plus a light dyon superfiel®,D. In the intermediate patch
els while in this limit there are no domain walls. In massivethe authors keep just one superfield—thatefTr ®2. It is
sigma models treated in Reff7] the strings are forced to worth stressing that no unified description exists and the
have vanishing transverse size, and, in fact, a “spike”-typeconsideration has to be carried out in three distinct patches
junction was obtained. This is as close as one can géfto separately. Auniquesolution to the Bogomol'nyi equations
=2 SQCD string-wall junctions in sigma models. was found.
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The KSY solution bears a remarkable resemblance to the The quasimodulus field with the target spaceSnwith
domain wall in our weakly coupled model. Indeed, the KSYa nonvanishing magsan be transformed into a du@-+1)-
wall consists of three domains—a broad middle domain ofdimensional QED with a Chern-Simons term. In this way we
size ~ "%, where the monopole and dyon condensates d&natch with the Acharya-Vafa analysis.
vanish, and two much narrower edge domdioisthickness A slightly different argument for this quasimodulus field
~(uA) Y2 where the transition from the vacuum value of o(t,x,y) is as follows. In each of the edge domains of the
the condensaté4.} (or DD) to zero occurs. So, why do we Wall (i-e., near the monopole and dyon vartie underlying
speak of an unsolved problem? theory is approximatelyy’=2. The parameter governing the

That is because the KSY solution shows no sigriveé  breaking ofA/=2 is of the order/u/A. In the middle of the
distinct domain walls. As was explained above, the doublevall, the breaking of\V’=2 is stronger, but it is natural to
degeneracy of the domain wall is a must. Since the indexhink that the phase field is essentially disassociated from
does not depend on the value af the limit of small  the middle domain. Then the effective theory on the wall
considered in Ref[23] must exhibit the same number of must be close t¢2+1)-dimensional\V=2, which would re-
domain walls as the one emerging in the laggdimit. quire two real massless bosonic moduli. The breaking/of

What is lacking in Ref[23]? An obvious analogy with =2 splits the supermultiplet into tw(®2+1)-dimensional\\
our weakly coupled model prompts us that the lacking ele= 1supermultiplets as now there is no exa¢tlko prevent
ment is the analysis of modulor quasimoduli fields local- the splitting. A natural estimate for the mass of the quasimo-

ized on the wall. dulus is then
For the domain wall at weak coupling, considered in the
present paper, there is an unambiguous supersymmetry-based Mo~ Vu ANl A~ .

argument proving the double degeneracy. InAfte 2 limit
our BPS wall belongs to the short representation\éf2  The dual(2+1)-dimensional SQED will have the Lagrangian
superalgebra, i.e., we have two boséntwo fermion states (9.1) with e§ﬁ= ulk wherek is a dimensionless constant of
(4 fermion zero modgs When we breakV=2 down to A/ order one. The value of the constant in frontrgf,F™" will
=1our wall is still '=1BPS—it belongs to a short repre- be in accord with our resu(6.40), since the thickness of the
sentation of /= 1superalgebra. This is possible only if we KSY wall is ~u .

havetwo A/'=1 short multiplets because the number of states

cannot discontinuously change. One of these supermultiplets X. BRIEF CONCLUSIONS
is the translational modulus plus its superpartner, another is

the phase fieldr and its superpartner.

For the KSY wall, generally speaking, this argument doe
not apply because we do not have\a 2 limit: the N'=2
breaking parametei8.3) is never small. Why, nevertheless,
we suggest that the missed multiplicity of the KSY walls

might be associated with a mlssmhas)m_od_ulus. . quantitative manner the following long-standing issues:
In the KSY problem, there are two distindiynamically (i) gauge field localization on the wall;

generatedphase symmetries—one associated with the phase (i) the wall-string junction(i.e., a flux tube coming from
rotations of M, another with the phase rotations®f At the infinity and ending on the wall

same time the (1) gauge field is singléthough it is de- We confirm that a 1/2 BPS domain wall does localize a

scribed differently in the two edge patcheShere are no (1) gauge field; the charge which presents the source for

massless particles in either of the vacua. So far, all this ishis field is confined in the bulk.

perfectly parallel to what we have in our model. We find that a 1/2 BPS flux tube coming from infinity
Now the two theories divorce. Ours has an exact globatioes indeed end on the above wall. The wall-string junction

U(1), unbroken in the vacua and spontaneously broken ois 1/4 BPS.

the wall, which results in the strictly massless modulus A task which remains for the future idhe quantitative

o(t,x,y). The Seiberg-Witten theory perturbed yTr®?  analysis of localization of non-Abelian gauge fields on the

(the KSY casg has no strictly conserved (). Due to the wall and related flux-tube—wall junctions.

full similarity in the description of the edge domains, one

may expect, however, the emergence of a quasimodulus lo-

calized on the KSY wall. We will call i (t,x,y).

We suggest and work out a model which seems to be a
Jood prototype for studying the basic properties of D brane
or string theory in the field-theoretic setting. Our model is
weakly coupled, fully controllable theoretically, and pos-
sesses both critical walls and strings.

Then, using our model as a tool we addressed in a fully
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