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Domain walls and flux tubes inNÄ2 SQCD: D-brane prototypes

M. Shifman
William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

A. Yung
William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455,

Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia,
and Institute of Theoretical and Experimental Physics, Moscow 117250, Russia

~Received 24 January 2003; published 12 June 2003!

This paper could have been entitled ‘‘D branes and strings from flesh and blood.’’ We study field theoretic
prototypes of D branes or strings. To this end we consider~211!-dimensional domain walls in~311!-
dimensionalN52 supersymmetric QCD with an SU~2! gauge group andNf52 flavors of fundamental hy-
permultiplets~quarks!. This theory is perturbed by a small mass term of the adjoint matter which, in the leading
order in the mass parameter, does not breakN52 supersymmetry, and reduces to a~generalized! Fayet-
Iliopoulos term in the effective low-energyN52 supersymmetric QED~SQED!. We find a 1/2 BPS-saturated
domain wall solution interpolating between two quark vacua at weak coupling, and show that this domain wall
localizes a U~1! gauge field. To make contact with the brane or string picture we consider the Abrikosov-
Nielsen-Olesen magnetic flux tube in one of two quark vacua and demonstrate that it can end on the domain
wall. We find an explicit 1/4 BPS-saturated solution for the wall-flux-tube junction. We verify that the end
point of the flux tube on the wall plays the role of an electric charge in the dual~211!-dimensional SQED
living on the wall. Flow toN51 theory is discussed. Our results lead us to a conjecture regarding the notorious
‘‘missing wall’’ in the solution of Kaplunovsky, Sonnenschein, and Yankielowicz.

DOI: 10.1103/PhysRevD.67.125007 PACS number~s!: 11.27.1d, 11.10.Lm, 11.25.Uv, 11.30.Pb
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I. INTRODUCTION

D branes are extended objects in string theory on wh
strings can end@1#. Moreover, the gauge fields are the lowe
excitations of open superstrings, with the end points attac
to D branes. SU(N) gauge theories are obtained as a fie
theoretic reduction of a string theory on the world volume
a stack ofN D branes.

In recent years solitonic objects of the domain wall a
string type were extensively studied in supersymme
gauge theories in 113 dimensions. First, it was observed@2#
that there should exist critical@Bogomol’nyi-Prasdad-
Sommerfield ~BPS! saturated# domain walls in
N51gluodynamics, with the tension scaling asNL3. ~Here
L is the scale parameter.! The peculiarN dependence of the
tension prompted@3# a D brane interpretation of such wall
Ideas as to how flux tubes can end on the BPS walls w
analyzed@4# at the qualitative level shortly thereafter. Lat
on, BPS saturated strings and their junctions with dom
walls were discussed@5–7# in a more quantitative aspect i
N52 theories. Some remarkable parallels between fie
theoretical critical solitons and the D-brane construct
were discovered. In this paper we undertake a system
investigation of this issue—parallel between field-theoreti
critical solitons and D branes or strings. The setup which w
provide us with multiple tools useful in this endeavor isN
52 supersymmetric QCD~SQCD! considered by Seiberg
and Witten@8,9#. Following the original publications, we wil
introduce a parameterm which explicitly breaksN52 down
to N51. It turns out that in the limitm!L we will be able
to verify many of the previous conjectures as well as est
lish new results in the reliable regime of weak coupling.

Research on field-theoretic mechanisms of gauge field
0556-2821/2003/67~12!/125007~20!/$20.00 67 1250
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calization on the domain walls is an important ingredient
our analysis. The only viable mechanism of gauge field
calization was put forward in Ref.@2# where it was noted tha
if a gauge field is confined in the bulk and is unconfined~or
less confined! on the brane, this naturally gives rise to
gauge field on the wall~for further developments see Ref
@10,11#!. Although this idea seems easy to implement, in f
it requires a careful consideration of quantum effects~con-
finement is certainly such an effect! which is hard to do at
strong coupling. This again leads us to models in which
gauge field localization can be implemented at weak c
pling. We use, in addition, some new general results@12# ~see
also Ref.@13#! regarding effective field theories on the crit
cal domain walls in supersymmetric gluodynamics. In t
present paper we focus on localization of the Abelian ga
field. The issue of non-Abelian gauge fields on domain wa
will be addressed in the subsequent publication.

Our main results can be summarized as follows. First,
suggest anN52 model (N52 may or may not be softly
broken down toN51) which possesses both critical wal
and strings, at weak coupling. In this model one can add
all questions regarding the gauge field localization on
wall and the wall-string junction, and answer these questi
in a fully controllable manner. We find that there exists
1/2 BPS domain wall which does localize a U~1! gauge field;
the charge which presents the source for this field is confi
in the bulk. We find that a 1/2 BPS flux tube coming fro
infinity does indeed end on the above wall. The wall-stri
junction is 1/4 BPS. When the string ends on the wall t
latter is no longer flat, it acquires a logarithmic bendi
which is fully calculable.

In more detail, our theoretical setup can be described
follows. We consider~211!-dimensional critical domain
©2003 The American Physical Society07-1
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M. SHIFMAN AND A. YUNG PHYSICAL REVIEW D 67, 125007 ~2003!
walls in ~311!-dimensional SU~2! SQCD originally studied
by Seiberg and Witten@8,9#. To ensure the existence of do
main walls at weak coupling we introduceNf52 flavors of
fundamental~quark! hypermultiplets. This theory has a Cou
lomb branch on which the adjoint scalar acquires an arbitr
vacuum expectation value~VEV!,

^F&5^a&
t3

2
,

breaking the SU~2! gauge group down to U~1!. The Coulomb
branch has four singular points in which either monopole
dyon, or one of the two quarks become massless. The
two of these points are always at strong coupling, while
massless quark points can be at weak coupling provided
the quark mass parametersmA are large,mA@L, whereA
51,2 is the flavor index. Below the vacua in which quar
become massless will be referred to as the quark vacua

In order to have domain walls, the vacuum manifo
rather than being continuous, must consist of isolated po
To guarantee the existence of discrete vacua we perturb
above theory by adding a small mass term for the adjo
matter, via superpotential

Wu5mu, u[Tr F2. ~1.1!

Generally speaking, the superpotential breaksN52 down
to N51. The Coulomb branch shrinks to four abov
mentioned isolatedN51vacua. Of special importance fo
what follows is the fact thatN52 supersymmetry isnot
broken@5,6,14# to the leading order in the parameterm in the
effective theory. In the effective low-energy SQED the s
perpotential~1.1! gives rise to a superpotential linear ina
plus higher order corrections. If only the linear term ina in
the superpotential is kept, the theory is exactlyN52.

We will be mostly interested in the quark vacua since th
yield a weak coupling regime. Near the quark vacua, to
leading order in theN52 breaking parameter, the superp
tential in the effective low-energy SQED is

WSQED52
1

2A2
ja, ~1.2!

where the coefficientj is determined by the VEV of the
lowest component ofa in the given quark vacuum,

j522A2m^a&, ^a&;mA@m. ~1.3!

The perturbation~1.2! can be ‘‘rotated’’@6# in such a way as
to render it a Fayet-Iliopoulos~FI! term @15#; per seit does
not breakN52 supersymmetry. IfjÞ0, the quark fields
develop VEVs~of order of Aj) breaking U~1! gauge sym-
metry, so that the theory becomes fully higgsed. Then
consider a domain wall interpolating between the two qu
vacua, a task which can be addressed at weak coupling
also analyze the string-wall junction.

Our domain wall is 1/2 BPS-saturated. It turns out that
solution of the first-order Bogomol’nyi equations can
readily found in the range of parameters
12500
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Aj!Dm!m1;m2 , Dm[m12m2 , ~1.4!

when two quark vacua come close to each other on
would-be Coulomb branch. Qualitatively the solution has
following structure: the quark fields are small inside the wa
while a is a slowly varying~almost linear! function of z
where z5x3 is the coordinate orthogonal to the wall. Th
original U~1! gauge field is higgsed outside the wall—this
a ‘‘superconducting’’ phase. Inside the wall superconduct
ity is destroyed. Correspondingly, magnetic charges are c
fined in the bulk@5,16#, giving rise to magnetic flux tubes in
the bulk,1 while inside the wall the magnetic flux can spre
freely. The U~1! gauge fieldAm

(211) localized on the wall,
which describes interaction of the probe magnetic char
placed on the wall, is dual to the original U~1! gauge field.

As is well-known@21#, a 211 dimensional gauge field is
equivalent to a real scalar~compact! field—we will call it s.
This must be one of the moduli fields. In the limit ofN52
supersymmetry, the effective field theory on the 1/2 B
wall must possess four conserved supercharges@i.e., it is N
52 from the~211!-dimensional standpoint#. Then the mini-
mal supersymmetry representation contains two real bo
fields—the effective field theory on the wall must includ
two real boson fields. One is the above mentioneds(t,x,y),
another originates from the translational collective coor
nate, the position of the wallz0. We will refer to this field as
z(t,x,y).

In the limit of exactN52, the fields(t,x,y) is massless,
as well asz(t,x,y), and is related to the gauge field streng
tensor as follows:

Fnm
(211)5const3«nmk]

ks, ~1.5!

where n,m50,1,2 and the constant on the right-hand s
has dimension of mass. Taking account of higher orders im
~i.e., quadratic in thea2^a& term in the superpotential!
breaks N52 supersymmetry of our macroscopic theo
down to N51. Surprisingly, this does not generate a ma
term for the fields(t,x,y), which remains a moduli field
This can be seen in many different ways. One of them
through analyzing the fermion zero modes. A Jackiw-Re
type index theorem@22# tells us that fermion zero mode
~those unrelated to the supertranslational ones! exist even
thoughN52 is broken.N51 supersymmetry requires the
a bosonic superpartner, which is the massless fields(t,x,y).
Thus, at the level of quadratic in derivative terms, the eff
tive moduli field theory on the domain wall world volume
N52 ~four supercharges!. The breaking presumably occur
if higher-derivative terms are taken into account.

Next, completing the theme of the gauge field localizati
on the wall we proceed to the second aspect of
problem—the issue of how strings originating in the bulk c
end on the wall. In string theory, the brane localization
gauge fields is closely related to the possibility for an op

1The magnetic flux tube is nothing but the Abrikosov-Nielse
Olesen~ANO! string @17#. Flux tubes in the Seiberg-Witten theor
were studied in@18,16,19,6,20#.
7-2
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DOMAIN WALLS AND FLUX TUBES IN N52 SQCD: . . . PHYSICAL REVIEW D 67, 125007 ~2003!
string to end on a D brane. Since, as we assert, the BPS w
and flux tubes inN52 SQCD present a close prototype, it
instructive to study this phenomenon in field theory. That
magnetic field flux tube will end on the wall was alrea
explained above, at a qualitative level. There is no doubt
the phenomenon does take place in our model. Our tas
more quantitative, however. We want to find~and do find! a
1/4 BPS solution of the first order Bogomol’nyi equatio
that describes an ANO flux tube ending on the wall. In oth
words, attaching a flux tube to 1/2 BPS wall makes the c
figuration 1/4 BPS. The attachment of the tube gives rise
two effects. First, the wall is now bent, and, second, the fi
s(x,y) develops a vortex. If$x0 ,y0% are the coordinates o
the tube center on the wall, at large separationsr from the
center

s~x,y!5a, ~1.6!

wherea is the polar angle on the two-dimensional wall su
face ~Fig. 1! and r 5A(x2x0)21(y2y0)2.

According to Eq.~1.5! the vortex ins is equivalent to a
radial electric field in the dual~112!-dimensional QED on
the wall,

F0i
(211)5const3

xi2~x0! i

r 2
, i 51,2. ~1.7!

Thus the string end point on the wall plays the role o
probe charge for the dual~112!-dimensional QED on the
wall.

Diminishing the mass parametermA we move
the quark vacua toward the strong coupling regim

FIG. 1. Geometry of the wall-string junction. The gauge fie
localized on the wall can be cast in the form of a dual~112!-
dimensional electrodynamics. This field is dual to the gauge fi
higgsed in the bulk. The probe magnetic charge in the bulk~the
magnetic monopole of the originalN52 SQCD! is denoted by an
asterisk.
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~Simultaneously the parameter governing the break
N52→N51becomes larger.! At strong coupling there exis
two additional vacua, the monopole and dyon ones. A
main wall interpolating between the monopole and dy
vacua was discussed previously@23#. This is a strong cou-
pling problem which requires a ‘‘patchy’’ description—on
cannot introduce one and the same effective low-ene
theory which would be valid simultaneously near the mon
pole and dyon vacua because monopoles and dyons are
mutually local states. Nevertheless, we have something
to say regarding the wall interpolating between the monop
and dyon vacua. The analysis of Ref.@23# does not seem to
be complete since it does not take into account moduli
namics on the wall. As is well established@24,12,13#, in
SU~2! theory twodistinctcritical domain walls~with one and
the same tension! must exist. At the same time, only on
domain wall was detected in Ref.@23#. We suggest a tenta
tive solution to the paradox of a ‘‘missing wall’’ which
should emerge from consideration of the moduli dynamic

A problem similar to ours was addressed previously
Ref. @7# in the context of~311!-dimensionalN52 massive
sigma models on hyper-Ka¨hler target spaces~see also Ref.
@25#!. The results we obtain inN52 SQCD are in qualitative
agreement with those obtained in Ref.@7# in sigma models.
In particular in the sigma model the existence of a comp
moduli field on the wall, representing dual to U~1! gauge
field, was demonstrated, which is certainly no accident.
deed, in the limit opposite to that quoted in Eq.~1.4!, when
Aj@Dm, the photon and its superpartners become heav
N52 SQCD, and can be integrated out. Then,N52 SQCD
reduces in the low-energy limit toN52 sigma model with
the hyper-Ka¨hler Eguchi-Hanson target space studied in R
@7#.

The paper is organized as follows. In Sec. II we presen
toy ~nonsupersymmetric! model which has a domain wa
and exhibits the phenomenon of the gauge field localiza
on the wall. Although this model is primitive it serves as
nice illustration for one of the phenomena we are interes
in—the occurrence of a~211!-dimensional gauge field
localized on the wall. Section IV introduces our bas
model—supersymmetric QED—obtained as a reduction
the Seiberg-Witten model. We specify in which limit th
model has extendedN52 supersymmetry, while for nonlim
iting values of parameters it isN51. In Sec. V we derive
and solve first order BPS equations for the domain wall
terpolating between two quark vacua. Of most importanc
Sec. V D where we derive field theory for the moduli field
living on the wall. In Sec. VI we review the ANO strings i
~the low-energy limit of! the Seiberg-Witten theory. Sectio
VII treats the issue of strings ending on the wall. Here
derive first order BPS equations for the string-wall junctio
and discuss the properties of 1/4 BPS solutions to th
equations. We find how the magnetic flux which the flux tu
brings to the wall spreads out inside the wall. In Sec. VIII w
discuss the impact of soft breaking ofN52 down toN51in
our model. Brief remarks on the literature, including t
mystery of a ‘‘missing wall’’ in the solution of Kaplunovsky
et al. are presented in Sec. IX.

d
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II. A TOY MODEL

In this section we will consider a toy~nonsupersymmet
ric! model which exhibits the phenomenon we are interes
in—the gauge field localization on a wall. This model lac
certain ingredients which will be of importance in the ana
sis of more sophisticated supersymmetric models, to be
ried out below. The main virtue of the toy model is its sim
plicity. It will serve as a warm up exercise.

Let us assume that we have two complex fieldsf andx,
with one and the same electric charge, coupled to a U~1!
gauge field~‘‘photon’’ !, with the following self-interaction:

Ltoy52
1

4e2
FmnFmn1uDmfu21uDmxu22V~f,x!,

~2.1!

V~f,x!5
l

2
$~f̄f2v2!21~ x̄x2v2!2%1bufu2uxu2,

wherev, l, andb are positive constants, and we assume,
simplicity, thatl!b!e2!1. It is easy to see that the mod
under consideration has two distinct minima~classical
vacua!:

~i! f develops a vacuum expectation value,x does not;
and

~ii ! x develops a vacuum expectation value,f does not.
In the first caseufu5v, and one can always takef to be real
and positive~this is nothing but imposing a gauge condition!,
f5v. The phase off is eaten up by the vector field, whic
becomes massive, with massmV5A2ev. The x6 quanta
have massmx5A(b2l)v. Finally, there is one real field
which remains fromf; it can be parametrized asf5v1h
with realh. The mass term of theh field is 2lv2h2, so that
mf5A2lv. In the second vacuum the mass of the vec
field remains the same while the roles of thef andx fields
interchange, as well as their masses. Note, however, th
neither vacuum there are massless excitations which w
make the vacuum manifold continuous. The energies in th
two vacua are necessarily degenerate because of theZ2 sym-
metry f↔x apparent in Eq.~2.1! which is spontaneously
broken. Therefore, there must exist abona fidedomain wall
interpolating between vacua~i! and ~ii !.

Although the analytic solution for the domain wall seem
to be unknown in the case at hand, it is not difficult to an
lyze its qualitative features. Let us assume, for definiten
that the wall lies in thexy plane and impose the following
boundary condition~to be referred to as ‘‘standard’’!:

f→v, x→0 at z→2`; x→v, f→0 at z→`.
~2.2!

We denote the ‘‘standard’’ domain wall solution~centered at
z50), with the above boundary conditions, as

f0~z!, x0~z!. ~2.3!

Then

eis/2f0~z2z0!, e2 is/2x0~z2z0! ~2.4!
12500
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is obviously a solution too; it represents a family of solutio
with the same energy, containing two moduli—the wall ce
ter z0 and a phases. The occurrence ofz0 is due to the
~spontaneous! breaking of the translational invariance by th
given wall solution, whiles is due to the~spontaneous!
breaking of a global U~1!.

Indeed, the model~2.1! has two U~1! symmetries:

f→feig, x→x and f→f, x→xeib. ~2.5!

One of these U~1!—the diagonal combination—is gauge
the other remains global. It is not spontaneously broken
either of the vacua,~i! or ~ii !. It is broken, however, on the
domain wall.

A qualitative sketch of the ‘‘standard’’ domain wall i
given in Fig. 2. Imf5Im x50 on the standard solution. Th
field Ref starts atv at z→2`, while Rex starts at zero.
Then Ref decreases asv(12eAlvz) and Rex increases as
veAbvz. There is a crossover atz50, where the roles of Ref
and Rex interchange: the field which was lighter becom
heavier, andvice versa. If one’s goal is the calculation of the
wall tension, one may treat the moduliz0 ands as constants.
Then the vector fieldAm is not excited,Am50. The wall has
a two-component structure: the thickness of one compon
of the wall is 1/(Alv) while that of the other is 1/(Abv).
The latter size is much smaller than the former provided t
b@l, as was assumed. The wall tensionTw is saturated by
the contribution of the second~narrow! component,

Tw;v3Ab. ~2.6!
Our task is more than just calculating the wall tension. W

want to construct an effective~211!-dimensional field
theory for the moduli on the wall world volume. As we wi
see momentarily, to this end we will have to take into a
count the third component of the wall, built of the gau
field, which has thickness of order of 1/(ev) ~see the zigzag
line in Fig. 2!. This component does not show up in th
calculation ofTw .

Upon quantization, the moduliz0 and s become fields
~adiabatically! depending onxm[$t,x,y%. We will call them
z(t,x,y) and s(t,x,y), respectively. Furthermore, in Eq
~2.4! the collective coordinatesz0 ands are to be replaced
by

FIG. 2. A schematic rendition of the domain wall in the mod
~2.1!.
7-4
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DOMAIN WALLS AND FLUX TUBES IN N52 SQCD: . . . PHYSICAL REVIEW D 67, 125007 ~2003!
z0→z~ t,x,y!, s→s~ t,x,y!. ~2.7!

Then we substitute the expressions forf and x in the La-
grangian~2.1!, integrate overz, and obtain in this way a
low-energy Lagrangian for the moduli. Forz(t,x,y) this pro-
cedure is quite standard, leading to

Lz5
Tw

2
~]mz!~]mz!, m50,1,2. ~2.8!

For s(t,x,y) there is a subtlety. Indeed, substituting E
~2.4! in Eq. ~2.1!, we arrive at

f̄0f0U12 ]ms~ t,x,y!2AmU2

1x̄0x0U12 ]ms~ t,x,y!1AmU2

.

~2.9!

It is clear that atz→6` one must chooseAm as follows:

Am~ t,x,y,z!→H 1

2
]ms~ t,x,y! at z→2`,

2
1

2
]ms~ t,x,y! at z→`,

~2.10!

i.e., Am is pure gauge. However, atuzu&(ev)21 the field
Am(t,x,y,z) must smoothly interpolate between two regim
in Eq. ~2.10! and, hence, cannot be pure gauge in this dom
of z ~see Fig. 2!. It must be chosen in such a way as
minimize the coefficient of (]ms)2 in Ls . Thus at uzu
&(ev)21 the photon field strength tensor is generated, w
necessity,

Fm3;
]ms

Dz
, Dz5~ev !21. ~2.11!

Therefore,

Ls5k
v
e

~]ms!~]ms!, ~2.12!

wherek is a numerical coefficient of order 1 depending
the form ofAm in the intermediate domain. It is determine
through minimization. The dynamics of the moduli fields
the wall world sheet is thus described by the Lagrangian

L2115k
v
e

~]ms!~]ms!1
Tw

2
~]mz!~]mz!. ~2.13!

The target space of the fields is S1,

0<s<2p.

As was noted by Polyakov@21#, in 211 dimensions, the
gauge field is equivalent to a compact scalar field, throu
the relation

Fmn
(211)5

e211
2

2p
«mnk]

ks, ~2.14!
12500
.

in

h

h

wheree211
2 is a a~211!-dimensional gauge coupling@in our

casee211
2 /(8p2)5kv/e]. As a result, the moduli Lagrang

ian ~2.13! can be rewritten as

L21152
1

4e211
2

FmnF
mn1

Tw

2
~]mz!~]mz!. ~2.15!

The consideration above bears purely illustrative char
ter, first and foremost because it was purely classical.
impact of quantum corrections will be discussed in a sup
symmetric setting.

III. GAUGE INVARIANT DEFINITION OF THE PHASE
COLLECTIVE COORDINATE s

When we speak of the relative phase of the fieldsf andx
we compare their phases in distant points,z→6`. In the
theory with the local gauge invariance this raises the qu
tion as to the meaningfulness of this comparison. The w
we have introduced the phase collective coordinates in Sec.
II is meaningful only in a specific gauge. In fact, it is usef
to give a gauge invariant definition. Let us introduces as
follows:

s5argf~z1!2argx~z2!1E
z1

z2
dz A3~z!, ~3.1!

where formallyz1→2`, z2→`. Under the gauge transfor
mations

f~z!→eia(z)f~z!, x~z!→eia(z)x~z!,

A3~z!→A3~z!1]za~z!, ~3.2!

while s as defined in Eq.~3.1! stays intact.
Although formally z1→2`,z2→`, there is an unques

tionable tradition to setf,x 5 const,Am50 in the plane
vacuum~this is the unitary gauge!. Therefore, practically one
can takez1 just to the left of the wall whilez2 just to the
right. With this choice ofz1,2 it is perfectly clear thats is a
collective coordinate characterizing the wall structure, an
ternal phase.

Alternatively one can consider a~nonlocal gauge invari-
ant! order parameter

^x̄~z2!ei *
z1

z2dzA3(z)f~z1!&. ~3.3!

It obviously vanishes in the plane vacuum, while it reduc
to v2eis if there is a domain wall of the type discussed
Sec. II. This order parameter is noninvariant under the ‘‘s
ond’’ U~1!—the one which is not gauged. The fact that E
~3.3! does not vanish on the wall means that the global U~1!
is spontaneously broken triggering the emergence of
Goldstone boson localized on the wall and described by
field s(t,x,y).
7-5
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IV. BASIC MODEL

A. The original non-Abelian theory

The field content ofN52 SQCD with the gauge grou
SU~2! andNf flavors of the quark multiplets is well-known
The N52 vector multiplet consists of the gauge fieldAm

a ,
two Weyl fermionsla

f a , and the scalar fieldfa, all in the
adjoint representation of the gauge group. Herea51,2,3 is
the color index,a51,2 is the spinor index, andf 51,2 is an
SU(2)R index @warning: SU(2)R is not to be confused with
the gauge SU~2! or flavor SU~2! emerging atNf52, the case
to be considered below#.

On the Coulomb branch, the adjoint scalar develop
VEV,

^f3&[^a& ~4.1!

breaking the gauge group down to U~1!. The W bosons and
their superpartners become heavy~with masses of order o
^a&;mA@L) and can be integrated out. What is left of th
vector multiplet in the low-energy SQED are the third co
components ofA, l and f, to be referred to asAm , two
Weyl fermionsla

f , and the scalar fielda. This is the field
content of SQED.

The quark multiplets of the non-Abelian theory consist
complex scalar fieldsqkA and q̃Ak and Weyl fermionsckA

and c̃Ak , all in the fundamental representation of the gau
group. Herek51,2 is the color index whileA is the flavor
index. In what follows we will limit ourselves toA51,2.

With the gauge symmetry spontaneously broken by
condensate~4.1!, only the upper (k51) components, or only
the lower (k52) components, of the fieldsq, q̃, c, and c̃
remain light in the quark vacua, while the opposite comp
nents acquire the same mass as the W bosons and the
fields in theN52 vector supermultiplet. They can be int
grated out and will play no role in our consideration.

Let us denote the light quark fields asqA, q̃A , cA, and
c̃A , respectively. Note that the scalars form a doublet un

the action of the global SU(2)R group,qf5(q,q̄̃). In terms
of these fields the bosonic part of the low-energy effect
SQED takes the form2

Slow-en5E d4xH 1

4g2
Fmn

2 1
1

g2
u]mau21¹̄mq̄A¹mqA

1¹̄mq̃A¹m q̄̃A1
g2

8
~ uqAu22uq̃Au2!2

1
g2

2 Uq̃AqA2
f ~a!

2 U2

1
1

2
~ uqAu21uq̃Au2!ua

2Here and below we use a formally Euclidean notation, e
Fmn

2 52F0i
2 1Fi j

2 , (]ma)25(]0a)21(] ia)2, etc. This is appropriate
as long as we are after static~time-independent! field configura-
tions, andA050. Then the Euclidean action is nothing but th

energy functional. Furthermore, we definesaȧ5(1,2 i tW ), s̄ ȧa

5(1,i tW ). Lowing and raising of spinor indices is performed b
virtue of the antisymmetric tensor defined as«125« 1̇2̇51, «12

5« 1̇2̇521.
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1A2mAu2J , ~4.2!

where ¹m5]m2 i /2Am , ¹̄m5]m1 i /2Am , while near the
quark vacua3

f ~a!5j22A2mda1••• ~4.3!

and the ellipses denote terms quadratic inda. Under our
choice of parameters the generalized FI parameterj can be
chosen as

j54mm, ~4.4!

where

m5
1

2
~m11m2!. ~4.5!

In order to keepj real~as we will always do! we assume tha
both m and m are real. The scalar potential in Eq.~4.2!
comes fromF and D terms of the vector and matter supe
multiplets.

B.NÄ2 SQED

In what follows we will mostly ignore thea dependence
of the function f (a) in the second line of Eq.~4.2! setting
f (a)5j. The theory we get in this limit isN52 SQED. The
relative impact of the terms linear inda in the functionf (a)
is of orderm21da. As will be seen momentarily,da;m2
2m1. Therefore, taking account of the dependence off (a)
on a results in a small (N52 breaking! correction provided
uDmu!m, as we always assume. All our conclusions rem
unchanged.

From Eq. ~4.2! we can immediately infer the vacuum
structure of the model at hand. We have two quark vacua,
first one located at

a52A2m1 ~4.6!

and the second one at

a52A2m2 . ~4.7!

In the first vacuum the first quark flavor develops a VEV,

q15q̃15Aj

2
, q25q̃250, ~4.8!

completely breaking the U~1! gauge symmetry. In the secon
vacuum the second flavor develops a VEV,

q25q̃25Aj

2
, q15q̃150, ~4.9!

.,

3In our case the variableu defined in Eq.~1.1! can be represented
as u5a2/25(1/2)(2A2m1da)2. Hence f (a)522A2m]u/]a
54mm22A2mda.
7-6
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which does the same job.
Above, the vacuum expectation values of the squark fie

were assumed to be real. In fact, one can assign arbit
phases to the two squark fields. We will discuss the impac
these phases shortly.

Now let us discuss the mass spectrum of light fields
both quark vacua. Consider for definiteness the first vacu
Eq. ~4.6!. The spectrum can be obtained by diagonalizing
quadratic form in Eq.~4.2!. This is done in Ref.@6#; the
result is as follows: one real component of fieldq1 is eaten
up by the Higgs mechanism to become the third compon
of the massive photon. Three components of the mas
photon, one remaining component ofq1, and four real com-
ponents of the fieldsq̃1 anda form one longN52 multiplet
~8 boson states1 8 fermion states!, with mass

mg
25

1

2
g2j. ~4.10!

The second flavorq2, q̃2 ~which does not condense in th
vacuum! forms one shortN52 multiplet~4 boson states1 4
fermion states!, with massDm which is heavier than the
mass of the vector supermultiplet.4 The latter assertion ap
plies to the regime~1.4!. In this regime theW-boson super-
multiplet is heavier still.

If we consider the limit opposite to that in Eq.~1.4! and
tend Dm→0, the ‘‘photonic’’ supermultiplet become
heavier than that ofq2, the second flavor field. Therefore
can be integrated out, leaving us with the theory of mass
moduli from q2, which interact through a nonlinear sigm
model with the Ka¨hler term corresponding to the Eguch
Hanson metric.

In the second vacuum the mass spectrum is similar —
roles of the first and the second flavors are interchanged

Our immediate goal is constructing a 1/2 BPS dom
wall interpolating between the above two vacua.

V. THE DOMAIN WALL IN NÄ2 SQED

In this section we work out and solve the first ord
Bogomol’nyi equations for the domain wall. Th
Bogomol’nyi equations can be derived in two ways: by p
forming the Bogomol’nyi completion@26# and by analyzing
the set of supercharges and isolating those four that an
late the wall@27,28,2,29–31#. We will follow both routes.

A. First-order equations

First, let us note that the structure of the vacuum cond
sates in both vacua~4.8! and~4.9! suggests that we can loo
for the domain wall solution using theansatz

qA5qD A[
1

A2
wA, ~5.1!

4In estimating the relative masses of various fields we will ign
the factors ofg2. Although the coupling constant is certainly a
sumed to be small to make the theory weakly coupled, we cons
the m,m dependences as more important.
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where we introduce a new complex fieldwA. In this ansatz
SQED under consideration reduces to

Sred SQED5E d4xH 1

4g2
Fmn

2 1
1

g2
u]mau21¹̄mw̄A¹mwA

1
g2

8
~ uwAu22j!21

1

2
uwAu2ua1A2mAu2J .

~5.2!

This Lagrangian is qualitatively very similar to that consi
ered in Sec. II. In particular, it has twoglobal U~1! symme-
tries, allowing one to independently rotate the fields of t
first and second flavors, respectively. The diagonal U~1! is
gauged.

In terms of the fieldswA the quark condensate become

w15Aj exp~ ia!, w250 ~5.3!

in the vacuum~4.6!, and

w25Aj exp~ ia8!, w150 ~5.4!

in the vacuum~4.7!. Because of the gauge freedom, t
phasesa, a8 can be always chosen to vanish.

If we assume that all fields depend only on the coordin
z5x3 the Bogomol’nyi completion of the wall energy func
tional can be written as

Tw5E dzH U¹zw
A6

1

A2
wA~a1A2mA!U2

1U1g ]za6
g

2A2
~ uwAu22j!U2

6
1

A2
j]zaJ . ~5.5!

Here we do not assumea priori that the gauge field vanishes
We will see that although the gauge field strength does v
ish on the flat wall solution at rest, the gauge potential ne
not vanish. Putting mod-squared terms to zero gives us
first order Bogomol’nyi equations, while the surface ter
@the last one in Eq.~5.5!# gives the wall tension. Assuming
for definiteness thatDm.0 and choosing the upper sign i
Eq. ~5.5! we get the BPS equations,

¹zw
A52

1

A2
wA~a1A2mA!,

]za52
g2

2A2
~ uwAu22j!. ~5.6!

These first order equations should be supplemented by
following boundary conditions:

w1~2`!5Aj, w2~2`!50, a~2`!52A2m1 ;
~5.7!

w1~`!50, w2~`!5Aj, a~`!52A2m2 ,

e

er
7-7
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which show that our wall interpolates between the two qu
vacua. As was mentioned, this boundary condition is
generic ~it was referred to as ‘‘standard’’ in Sec. II!. The
existence of the exact ungauged U~1! implies that the generic
boundary condition could be obtained from Eq.~5.7! by mul-
tiplying f1 in the first line byeis/2 andf2 in the second line
by e2 is/2.

Finally, the tension of the wall satisfying the above equ
tions is

Tw5u~Dm!ju. ~5.8!

Now, let us derive the Bogomol’nyi equations by analy
ing relevant combinations of supercharges. We will sh
that four combinations of supercharges act trivially. To s
this explicitly, let us write down the supersymmetry transf
mations in SQED:

dl f a5
1

2
~sms̄n« f !aFmn1«apDa~ta!p

f 1 iA2]”aȧa«̄ ȧ
f ,

dcaA5 iA2¹” aȧqf A«̄ f ȧ1A2«a fF f
A , ~5.9!

dc̃A
a5 iA2¹” aȧq̄A

f «̄ f ȧ1A2«a f F̄ f A ,

where we explicitly write out the SU(2)R indices f ,p51,2.
HereDa is the SU(2)R triplet of D terms which in the ansat
~5.1! reduce to

D15 i
g2

2
~ uwAu22j!, D25D350, ~5.10!

while F f and F̄ f are the matterF terms,

F f A5 i
1

A2
~a1A2mA!qf A, F̄A f5 i

1

A2
~ ā1A2mA!q̄A f .

~5.11!

The fact that the wall we work with is critical implies tha
some ofdl anddc in Eq. ~5.9! vanish. Accepting, as above
the ansatz~5.1! and taking into account that all fields depe
only on z we get the same first order equations~5.6!, pro-
vided that«a f and «̄ ȧ

f satisfy the following conditions:

«̄ 2̇
2
52 i«21, «̄ 2̇

1
52 i«22,

~5.12!
«̄ 1̇

1
5 i«12, «̄ 1̇

2
5 i«11.

These four constraints on the supertransformation param
show which particular linear combinations of the sup
charges act trivially on the domain wall solution. With the
four constraints we reduce the number of trivially acting s
percharges to four~out of eight!. Thus, our domain wall is
1/2 BPS saturated.

B. Finding the domain wall solution

Now let us work out the solution to the first order equ
tions ~5.6!, assuming the conditions~1.4! are satisfied. The
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range of variation of the fielda inside the wall is of the order
of Dm @see Eq.~5.7!#. The minimization of its kinetic energy
implies this field to be slowly varying. Therefore, we ma
safely assume that the wall is thick; its sizeR@1/Aj. This
fact will be confirmed shortly.

We arrive at the following picture of the domain wall a
hand. The quark fields vary from their VEVs;Aj to zero
within small regions, of the order of 1/Aj ~see the previous
footnote!. They remain small inside the wall, see Fig. 3.

Then to the leading order we can put the quark fields
zero in Eq.~5.6!. Now, the second equation in Eq.~5.6! tells
us thata is a linear function ofz. The solution fora takes the
form

a52A2S m2Dm
z2z0

R D , ~5.13!

where the collective coordinatez0 is the position of the wall
center~andDm is assumed positive!. The solution is valid in
a wide domain ofz:

uz2z0u,
R

2
, ~5.14!

except narrow areas of size;1/Aj near the edges of the wa
at z2z056R/2.

Substituting the solution~5.13! in the second equation in
Eq. ~5.6! we get

R5
4Dm

g2j
5

2Dm

mg
2

. ~5.15!

Since Dm/Aj@1, see Eq.~1.4!, this result shows thatR
@1/Aj, which justifies our approximation. It is easy to che
that 1/2 of the wall tension quoted in Eq.~5.8! comes from
the kinetic term of the fielda in the middle domainM.

Furthermore, we can now use the first relation in Eq.~5.6!
to determine tails of the quark fields inside the wall. First
us fix the gauge imposing the condition thatw1 is real atz
→2` andw2 is real atz→`. This is a generalization of the

FIG. 3. Internal structure of the domain wall: two edges~do-
mainsE1,2) of the width ;j21/2 are separated by a broad midd
band~domainM ) of the widthR, see Eq.~5.15!.
7-8
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unitary gauge for the problem with a domain wall that inte
polates between two vacua. Of course, this requirement d
not fix the gauge completely. We still have the freedom
make gauge transformations with a gauge parameter whic
nonzero inside the wall.

Let us assume that the gauge field is given by

Az5s]zb~z!, An50, n50,1,2, ~5.16!

so that the field strength is zero. Hereb(z) is some function
of z while s is a constant introduced in order to normali
b(z) in a convenient way.

Consider first the left edge~domain E1 in Fig. 3! at z
2z052R/2. Substituting the above solution fora in the
equation forw1 we get

w15Aje2~mg
2/4!(z2z01R/2)21 i (s/2)[11b(z)] . ~5.17!

This behavior is valid in the domainM, at (z2z01R/2)
@1/Aj, and shows that the field of the first quark flav
tends to zero exponentially inside the wall, as was expec
Our gauge choice requires

b~z!→21, z→2`, ~5.18!

while inside the wall the functionb(z) remains undeter-
mined reflecting the possibility of gauge transformations.

By the same token, we can consider the behavior of
second quark flavor near the right edge of the wall atz2z0
5R/2. The first equation in Eq.~5.6! for A52 implies

w25Aje2~mg
2/4!(z2z02R/2)22 i (s/2)[12b(z)] , ~5.19!

which is valid in the domainM provided that (R/22z1z0)
@1/Aj. Inside the wall the second quark flavor tends to z
exponentially too. Our gauge choice implies that

b~z!→1, z→`. ~5.20!

Needless to say that the first and second quark flavor
files are symmetric with respect to reflection atz0. The po-
tential term of thewA fields in the domainM produces the
remaining 1/2 of the wall tension,

E dz
g2

8
~ uwAu22j!25

g2

8
j2R5

Tw

2
. ~5.21!

This means of course that the contribution of the edgesE1,2
in the wall tension must be of higher order inj. With this
remark we proceed to the edge domains.

In the domains near the wall edges,z2z056R/2, the
fields wA anda smoothly interpolate between their VEVs
the given vacua and the behavior inside the wall determi
by Eqs. ~5.13! and ~5.17!, and ~5.19!. It is not difficult to
check that these domains produce contributions to the
tension of the order ofj3/2 which makes them negligibly
small.

Now let us comment on the phase factors in Eqs.~5.17!,
~5.19!. Two complex fieldsw1 andw2 have, generally speak
ing, two independent phases. Since it is the diagonal U~1!
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that is gauged it is natural to parametrize them as a comm
phase which we denote asb(z)s/2 ~it depends on the gaug
transformations which we can still make inside the wall! and
a relative phases. This phases is nothing but a global U~1!
remnant of the global flavor SU(Nf52) symmetry which is
explicitly broken down to U~1! due to the fact thatm1
Þm2. It is worth stressing thats is acollective coordinate of
the wall, rather than a modulus associated with the vac
Because of the U~1!3U~1! symmetry of the Lagrangian
~5.2!, the effective theory on the wall has no potential ene
associated withs. At the same time, as was already me
tioned, in the model under consideration there are no m
less fields in the bulk—all fields are massive in each of t
quark vacua.

Thus we have two collective coordinates characteriz
our wall solution, the position of the centerz0 and the phase
s. In the effective low-energy theory on the wall they b
come scalar fields of the world-volume~211!-dimensional
theory,z(t,x,y) ands(t,x,y), respectively. The target spac
of the second field isS1, as is obvious from Eqs.~5.17! and
~5.19!.

@After the submission of the present paper, the numbe
the zero modes on domain walls inN52 SQED with Nf
flavors was discussed in Ref.@32#. An index theorem was
established showing that this number is 2(Nf21) for the
bosonic modes. In our case,Nf52, and the above formula
implies two modes, which perfectly matches our consid
ation.#

C. Zero modes

Two bosonic zero modes are obtained by differentiat
the solution of Sec. V B with respect toz0 ands. The first
one is translational, the second can be called ‘‘rotationa
Obtaining the translational zero mode is straightforward; i
depicted in Fig. 4, which gives an idea of its spread~local-
ization!. The rotational zero mode deserves a comment.

The solution for thea field is s independent. Therefore
the rotational zero mode contains noa component. As for the
f components, differentiating the solution with respect tos
in a straightforward manner one obtains

wA5f0
A1wzm

A , A51,2, ~5.22!

FIG. 4. The translational zero mode.
7-9
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where

wzm
1 5

]w0
1

]s
ds5

i

2
f0

1@11b~z!#ds,

~5.23!

wzm
2 5

]w0
2

]s
ds52

i

2
w0

2@12b~z!#ds.

Note that because of the boundary conditions~5.18!, ~5.20!
these zero modes are normalizable. Qualitatively they are
same as thew modes in Fig. 4.

Now we will dwell on the fermion zero modes. There a
fermion zero modes of two types, ‘‘supertranslational’’ a
‘‘superrotational.’’

To generate these modes we apply supersymmetry tr
formations to the bosonic wall solution of Sec. V B. As w
have already explained, four supercharges selected by co
tions ~5.12! act trivially on the wall solution. The remainin
four supercharges act nontrivially giving fermion ze
modes. To separate them we impose conditions between«a f

and «̄ ȧ
f which differs by sign from those in Eq.~5.12!.

Namely, we take

«̄ 2̇
2
5 i«21, «̄ 2̇

1
5 i«22,

~5.24!
«̄ 1̇

1
52 i«12, «̄ 1̇

2
52 i«11,

and substitute this into Eq.~5.9!. Using Eq.~5.6! we get the
fermion zero modes on the wall

la f5 ihap~t1!p
f g2~ uwAu22j!, f ,p51,2,

caA5 iha f~a1A2mA!qf
A , ~5.25!

c̃A
a5 iha f~a1A2mA!q̄f A ,

where by definition

qf
A5

1

A2
~wA,2wA!, q̄f A5

1

A2
~ w̄A ,w̄A!, ~5.26!

while ha f are four Grassmann parameters parametrizing
fermion zero modes. Under the supertransformations

dha f5«a f .

Here the fieldsa andwA are given by Eqs.~5.13!, ~5.17!, and
~5.19!. Note that the conjugated fermion fields are given
conjugation of Eqs.~5.25!, however, the parametersh̄ ȧ

f are
not independent. They are expressed in terms ofha f accord-
ing to

h̄ 2̇
2
5 ih21, h̄ 2̇

1
5 ih22,

~5.27!
h̄ 1̇

1
52 ih12, h̄ 1̇

2
52 ih11.

We see that thel fermions ~i.e., photino plus itsN52
partner! are nonzero and approximately constant inside
12500
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wall while the matter fermionsc are concentrated near th
wall edges. This picture is a superreflection of that in Fig.

D. Effective field theory on the wall

In this section we work out~211!-dimensional effective
low-energy theory of the moduli on the wall. To do so w
make the wall collective coordinatesz0 ands ~together with
their fermionic superpartnersha f) slowly varying fields de-
pending onxn (n50,1,2),

z0→z~xn!, s→s~xn!, ha f→ha f~xn!.

For simplicity let us consider the bosonic fieldsz(xn) and
s(xn); the residual supersymmetry will allow us to readi
reconstruct the fermion part of the effective action.

Becausez(xn) ands(xn) correspond to zero modes of th
wall, they have no potential terms in the world sheet theo
Therefore, in fact our task is to derive kinetic terms. F
z(xn) this procedure is very simple. Substituting the w
solution ~5.13!, ~5.17!, and ~5.19! in the action~5.2! and
taking into account thexn dependence of this modulus w
immediately get@cf. Eq. ~2.8!#

Tw

2 E d3x~]nz!2. ~5.28!

As far as the kinetic term fors(xn) is concerned more effor
is needed. We start from Eqs.~5.17! and~5.19! for the quark
fields.5 Then we will have to modify our ansatz for the gau
field6

Am5]m@s~xn!b~z!#1x~z!]ms~xn!. ~5.29!

A few important points to be noted are as follows.
~i! We have introduced an extra profile functionx(z). It

has no role in the construction of the static wall solutionper
se. It is unavoidable, however, in constructing the kine
part of the world sheet theory of the moduli. This new profi
function is described by its own action, which will be subje
to minimization. This seems to be an element of the pro
dure which is sufficiently general~previously a similar con-
struction was applied, e.g., in Ref.@33#!, and yet, to the bes
of our knowledge, no proper coverage can be found in
literature.

~ii ! The first term in Eq.~5.29! is pure gauge; it replaces
similar term in Eq.~5.16! wheres was x independent. The
function b(z) remains undetermined, and so does the p
gauge term. This should not worry us since they do not sh
up in any physical observables. The second term in
~5.29!, on the other hand, is not pure gauge. It does lead
nonvanishing field strength. It is introduced in order to ca
cel thex dependence of the quark fields far from the wall~in

5Strictly speaking, these equationsper seare valid only inside the
wall, in the domainM. Outside the wallw1→Aj exp$(is/2)@1
1b(z)#% at z→2` and w2→Aj exp$(2is/2)@12b(z)#% at z
→`.

6Remember the electric charge of the quark fields is61/2.
7-10
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the quark vacua atz→6`) emerging through thex depen-
dence ofs(xn), see Eqs.~5.17! and ~5.19!.

To ensure this cancellation we impose the followi
boundary conditions for the functionx(z):

x~z!→71, z→6`. ~5.30!

This parallels the procedure outlined in the toy model of S
II. Next, substituting Eqs.~5.17!, ~5.19!, and ~5.29! in the
action ~5.2! we arrive at

S211
s 5F E d3x

1

2
~]ns!2G E dzH 1

g2
~]zx!21~12x!2uw1u2

1~11x!2uw2u2J . ~5.31!

The expression in the second line is an ‘‘action’’ for thex
profile function. To get the classical solution for the BP
wall and the wall world volume the theory of moduli we wil
have to minimize this ‘‘action.’’

The last two terms in the braces—the potential terms
the action forx—come from the kinetic terms for the quar
fields. The first term (]zx)2 in the braces—the kinetic term
in the action forx—comes from the kinetic term of th
gauge field. Indeed, the second term in Eq.~5.29! produces a
field strength,

Fzn5]zx]ns. ~5.32!

This field strength gives rise to the kinetic term forx in the
action ~5.31!.

Now to find the functionx we have to minimize Eq.
~5.31! with respect tox. This gives the following equation

2]z
2x2g2~12x!uw1u21g2~11x!uw2u250. ~5.33!

Note that the equation forx is of the second order. This i
because the domain wall is no longer a BPS state once
switch on the dependence of the moduli on the ‘‘longitu
nal’’ variablesxn .

To the leading order inAj/Dm the solution of Eq.~5.33!
can be obtained in the same manner as we did previously
other profile functions. Let us first discuss what happens o
side the inner part of the wall. Say, atz2z0@R/2 the profile
uw1u vanishes whileuw2u is exponentially close toAj and,
hence,

x→211const e2mg(z2z0). ~5.34!

The picture atz02z@R/2 is symmetric, with the interchang
w1↔w2. Thus, outside the inner part of the wall, atuz2z0u
@R/2, the functionx approaches its boundary values61
with the exponential rate of approach.

Of most interest, however, is the inside part, the mid
domain M ~see Fig. 3!. Here both quark profile function
vanish, and Eq.~5.33! degenerates into]z

2x50. As a result,
the solution takes the form
12500
c.

n

e
-

or
t-

e

x522
z2z0

R
. ~5.35!

In narrow edge domainsE1,2 the exactx profile smoothly
interpolates between the boundary values, see Eq.~5.34!, and
the linear behavior~5.35! inside the wall. These edge do
mains give small corrections to the leading term in the
tion.

Substituting the solution~5.35! in thex action, the second
line in Eq. ~5.31!, we finally arrive at

S211
s 5

j

DmE d3x
1

2
~]ns!2. ~5.36!

As has been already mentioned previously, the comp
scalar fields(t,x,y) can be reinterpreted to be dual to th
~211!-dimensional Abelian gauge field living on the wa
see Eq.~1.5!. The emergence of the gauge field on the wal
easy to understand. The quark fields almost vanish inside
wall. Therefore the U~1! gauge group is restored inside th
wall while it is higgsed in the bulk. The dual U~1! is in the
confinement regime in the bulk. Hence, the dual U~1! gauge
field is localized on the wall, in full accordance with th
general argument of Ref.@2#. The compact scalar fields(xn)
living on the wall is a manifestation of this magnetic loca
ization.

The result in Eq.~5.36! implies that the coupling constan
of our effective U~1! theory on the wall is given by

e211
2 54p2

j

Dm
. ~5.37!

In particular, the definition of the~211!-dimensional gauge
field ~1.5! takes the form

Fnm
(211)5

e211
2

2p
«nmk]

ks. ~5.38!

This finally leads us to the following effective low-energ
theory of the moduli fields on the wall:

S2115E d3xH Tw

2
~]nz!21

1

4e211
2 ~Fnm

(211)!2

1fermion termsJ . ~5.39!

The fermion fields living on the wall are associated with t
four fermion moduli ha f . On the grounds of~211!-
dimensional Lorentz symmetry on the wall we may be c
tain that these four fermion moduli fields form two~two-
component! Majorana spinors. Thus, the field content of t
world sheet theory we have obtained is in full accord w
the representation of~211!-dimensional extended supersym
metry ~i.e., that with four supercharges7!.

7Minimal supersymmetric theories in~211! dimensions have two
supercharges.
7-11
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Now let us address the question as to the relative ma
tude of the~211!-dimensional gauge coupling. We expe
that the lightest massive excitations on the wall have mas
the order of the inverse wall thickness;1/R. Since

1

R
5

g2

4

j

Dm
5e211

2 g2

16p2
, ~5.40!

our ~211!-dimensional coupling constant~5.37! is large in
this scale, so that the theory on the wall is in the stro
coupling regime. This could have been expected since it
U~1! theory of the dual degrees of freedom~magnetic
charges!, as will be discussed in more detail in Sec. VII.

The fact that each domain wall has two collecti
coordinates—its center and a phase—in the sigma-m
limit was noted in Ref.@34#.

E. Nonzero modes

It is not difficult to see that the lightest massive exci
tions are associated with perturbation of the size of
middle domainM. When its thickness ‘‘breathes,’’ this give
rise to the softest mode. The mass of the softest mode ca
readily estimated to be of the order ofmg

2/Dm;R21.

F.NÄ2 supersymmetry and the multiplicity
of the domain walls

We have just demonstrated that one can find a 1/2 B
saturated domain wall in theN52 SQED with the general
ized Fayet-Iliopoulos term. This factper sehas far reaching
consequences for the world-volume theory as well as for
multiplicity of the domain walls. Indeed,~211!-dimensional
world-volume theory must havefour supercharges. This im
plies with necessity that there aretwo ~massless! boson fields
in the world-volume theory. On general grounds they c
form either a chiral supermultiplet ofN52 in 112 or a
vector supermultiplet of a world-volume theory with U~1!
gauge invariance~linear supermultiplet!. As long as the fields
are massless, there is a duality between these two des
tions.

Supersymmetrization requires two~Majorana! two-
component fields in the world-volume theory. The dimens
of the supermultiplet we deal with is four. The question to
discussed is: how many distinct domain walls do we ha
This question is meaningful in light of the recent findin
@24,12,13# of nontrivial multiplicity of the domain walls in
N51super-Yang-Mills theories.

In addressing this question we have to explain our c
vention. Every~211!-dimensional domain wall emerging i
the ~311!-dimensional theory has a translational and sup
translational moduli. If we quantize these moduli in a fin
volume the corresponding wall multiplicity is two. This pa
of the moduli dynamics is trivial, however, and can~and
should! be factored out. That is what we will always d
When we speak of the wall multiplicity we discard the abo
trivial degeneracy and focus exclusively on possible ex
degeneracy not associated with the~super!translational
moduli. With this convention one can demonstrate@24,12,13#
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that the number of distinct domain walls in SU(N) super-
Yang-Mills theories is in factN.

Following this convention we can say that the 1/2 BP
wall we have constructed has a multiplicity of two. This
rather obvious by itself, since in the case at hand the orig
~311!-dimensional theory we began with had eight sup
charges. What is remarkable is that the above statement
hold even if we breakN52 of the original theory down to
N51.

To see that the wall multiplicity is two it is sufficient to
compactify the longitudinal directionsx andy. Then the re-
duced moduli field theory on the wall8 becomes quantum
mechanics of one real variables(t) defined on a circle,

s12p↔s,

and two fermion variablesc(t) and c̄(t). This supersym-
metric quantum mechanics has the ground state at zero
ergy which is doubly degenerate. This double degenerac
protected against nonsingular perturbations, such as gen
tion of the potential term fors, which, generally speaking
might occur ifN52 is broken down toN51. The potential
term isnot generated for our domain wall; presumably, it
generated in the case considered in Ref.@23#.

VI. THE ANO STRINGS

In string theory gauge fields are localized on D bran
because fundamental open strings can end on a D brane. Our
task now is to investigate to what extent this picture—a fl
tube ending on the critical domain wall—holds in fie
theory. We will see that the answer to this question is po
tive: our 1/2 BPS domain wall does allow for the magne
flux tubes to end on it.

As we have already explained, both quark vacua in
N52 QCD give rise to a confinement phase for monopo
@5,16#. The monopoles themselves are very heavy in
quark vacua; the monopole mass is of the order ofm/g2.
Hence, the monopoles can be considered as probes for
finement. Here we deal with the Abelian confinement, due
the ANO flux tubes which stretch between monopoles a
antimonopoles.

Now we will demonstrate, through an exact solution, th
the ANO string can end on the domain wall interpolati
between two quark vacua. Imagine a monopole placed
some point in the bulk far away from the domain wall. Th
magnetic flux of the monopole is trapped inside the flux tu
in the bulk. When the tube joins the wall the magnetic flux
the tube becomes electric flux of the dual U~1! theory on the
wall; therefore it spreads out along the wall. The end poin
the tube on the wall plays the role of an electric charge in
~211!-dimensional U~1! gauge theory. Ending the flux tub
on the wall, rather than letting the tube go through, is en
getically advantageous. The field configuration with a str
attached to the wall is 1/4 BPS saturated in our model.

8By reduced we mean that the translational modulus and its
perpartner are factored out.
7-12
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other words, the theory localized on the string-wall juncti
has two supercharges.

Before delving into details of the string-wall junction co
struction ~which will be done shortly! we have to briefly
review the critical ANO strings in the Seiberg-Witten theo
@18,16,19,6,20#. Our presentation follows that of Ref.@6#, the
only difference is that Ref.@6# deals with the critical strings
in the monopole/dyon vacua while here we are intereste
the quark vacua.

Let us consider, say, the ANO strings in the vacuum~4.6!.
The fielda is irrelevant for the string solution so we can p
it equal to its VEV~4.6! and drop from the effective QED
Lagrangian, Eq.~4.2!. In the vacuum~4.6! the second quark
flavor q2 is heavier than the first one and we can ignore
Moreover, it turns out that the string solution we are af
admits the same ansatz~5.1! we exploited for finding the
wall solution.

With all these simplifications the effective action of o
model ~5.2! becomes

Sstr5E d4xH 1

4g2
Fmn

2 1u¹mw1u21
g2

8
~ uw1u22j!2J .

~6.1!

First, let us compare this theory with the general Abel
Higgs model in which the ANO vortices are known to ex
@17#. The action of the Abelian Higgs model reads

SAH5E d4xH 1

4g2
Fmn

2 1u¹mw1u21l~ uw1u22j!2J .

~6.2!

We see that the model~6.1! which appears inN52 QED
with the FI term ~the same model appears inN51SUSY
with the FI term@30#! corresponds to a special value of th
couplingl,

l5
g2

8
. ~6.3!

In the model~6.2! the photon has mass~4.10! while quarkw1

acquires the mass

mH
2 54lj. ~6.4!

For generic values ofl in Eq. ~6.2! the quark mass~the
inverse correlation length! and the photon mass~the inverse
penetration depth! are distinct. Their ratio is an importan
parameter characterizing the type of the superconductor
der consideration. Namely, formH,mg one deals with the
type I superconductor in which two strings at large sepa
tions attract each other. On the other hand, formH.mg the
superconductor is of type II, in which case two strings
large separation repel each other. This behavior is relate
the fact that the scalar field generates attraction between
vortices, while the electromagnetic field generates repuls

Now we see that with the choice~6.3! for l the masses
are equal,
12500
in

.
r

n
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n.

mg5mH , ~6.5!

and the superconductor is exactly at the border between
I and type II. The relation~6.5! has important consequence
It means that the ANO string satisfies the first order eq
tions and saturates the Bogomol’nyi bound@26#. The BPS
strings do not interact.

To get the BPS equations for the string in the model~6.1!
~as well as the BPS bound for its tension! it is convenient to
perform the Bogomol’nyi completion of the action,

Tstr5E d2xH 1

2g2 FF3* 2
g2

2
~ uw1u22j!G2

1u~¹12 i¹2!w1u2J
12pjn. ~6.6!

Here we assume that the string is aligned along thex35z
axis with its center at the pointx15x250 and, moreover,

Fn* 5
1

2
«nmkFmk , n,m,k51,2,3. ~6.7!

The last term in Eq.~6.6! measures the quantized magne
flux of the vortex,n is the winding number. For simplicity
we will consider the minimal winding,n51.

As usual, implications of the Bogomol’nyi completion a
immediate. The energy minimum is reached if the first tw
terms in the braces vanish individually. Then the string te
sion is, obviously,

Tstr52pj. ~6.8!

The vanishing of the first two terms in the braces imply t
following first order equations:

F3* 2
g2

2
~ uw1u22j!50,

~6.9!
~¹12 i¹2!w150.

Certainly, these equations are well studied in the literat
@26#.

The classical ANO vortex solution for the fieldsw1 and
Am is obtained in the standard ansatz:

w1~x!5f~r !e2 ia,
~6.10!

Ai~x!52« i j

xj

x2
@12 f ~r !#,

wherei , j 51,2, r 5Axi
2, anda is the polar angle in the~1,2!

plane~Fig. 1!. The real profile functionsf(r ) and f (r ) sat-
isfy the boundary conditions

f~0!50, f ~0!51,
~6.11!

f~`!5Aj, f ~`!50,
7-13
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which ensure that the scalar field reaches its VEVAj at
infinity and the vortex carries precisely one unit of the ma
netic flux.

With this ansatz, the first order equations~6.9! become

f82
1

r
f f50,

~6.12!

2
1

r
f 81

g2

4
~f22j!50.

These equations, together with the boundary conditi
~6.11!, can be solved numerically.

In supersymmetric theories the Bogomol’nyi bound~6.8!
for the string tension can be viewed as a central charge~in
the anticommutator$Qa ,Q̄ḃ%) of the supersymmetry alge
bra. The first order equations~6.9! can be obtained by requir
ing half of the supercharges to act trivially on the stri
solution @29–31,6#. In order to see which particular supe
charges act trivially we write down all relevant SUSY tran
formations~5.9! in our effective QED and put the fermio
components to zero. Dropping the fieldsa and q2 ~as was
discussed in the beginning of this section! and assuming tha
all fields depend only on the coordinatesx1 , x2 we arrive at
the same equations~6.9! provided that the SUSY transforma
tion parameters«a f and «̄ ȧ

f are subject to the following con
straints:

«1252«11, «̄ 1̇
2
52 «̄ 1̇

1 ,

~6.13!
«215«22, «̄ 2̇

1
5 «̄ 2̇

2 .

These conditions select those supercharges which act
ally on the BPS string solution. Moreover, they explicit
show that our ANO string is 1/2 BPS saturated. Note, ho
ever, that the conditions~6.13! are different from those in Eq
~5.12!, so that four supercharges preserved by the string
four supercharges preserved by the wall are not the sam

VII. STRING ENDING ON THE WALL

In this section we derive BPS equations and find a
BPS solution for the wall-string junction. We analyze qua
tative features of the solution and investigate how the m
netic flux of the string gets spread inside the wall.

A. First order equations for a string ending on the wall

It is natural to assume that at large distances from
string end point atr 50, z50, the wall is almost parallel to
the (x1 ,x2) plane while the string is stretched along thez
axis, see Fig. 1. Since both solutions, for the string and
wall, were obtained using the ansatz~5.1! we restrict our
search for the wall-string junction to the same ansatz.
usual, we look for a static solution assuming that all relev
fields can depend only onxn (n51,2,3).

First, we have to decide which particular combinations
supercharges act trivially on the wall-string junction config
ration. To this end we impose both the wall conditions~5.12!
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and the string conditions~6.13! simultaneously. It turns ou
that there is a nontrivial solution with

«1252«11, «215«22, ~7.1!

while the parameters«̄ are given in Eq.~5.12!. We see that
all eight SUSY parameters can be expressed in terms of
arbitrary parameters«11 and«22. Thus, the string-ending-on
the-wall configuration is 1/4 BPS saturated.

Now we substitute Eq.~7.1! in the SUSY transformations
~5.9! and put the fermion components to zero. This leads
to the following first order equations:

F1* 2 iF 2* 2A2~]12 i ]2!a50,

F3* 2
g2

2
~ uwAu22j!2A2]3a50,

~7.2!

¹3wA52
1

A2
wA~a1A2mA!,

~¹12 i¹2!wA50.

These equations generalize the first order equations for
wall and for the string@F* is defined in Eq.~6.7!#.

It is instructive to check that both the wall and the stri
solutions, separately, satisfy these equations. Start from
wall. In this case the gauge field is pure gauge@see Eq.
~5.16!#, and all fields depend only onz. Thus, the first and the
last equations in Eq.~7.2! are trivially satisfied. The compo
nent of the gauge fieldF3* vanishes in the second equatio
and this equation reduces to the second equation in Eq.~5.6!.
The third equation in Eq.~7.2! coincides with the first one in
Eq. ~5.6!.

For the string which lies, say, in the vacuum~4.6!, the
second quark flavor vanishes,q250, while a is given by its
VEV. The electromagnetic flux is directed along thez axis,
so thatF1* 5F2* 50. All fields depend only on the coordi
natesx1 andx2. Then the first and the third equations in E
~7.2! are trivially satisfied. The second equation reduces
the first one in Eq.~6.9!. The last equation in Eq.~7.2! for
A51 reduces to the second equation in~6.9!, while for A
52 this equation is trivially satisfied,quod erat demonstran
dum.

B. The string-wall junction „solution for a string
ending on the wall…

Needless to say, the solution of first order equations~7.2!
for a string ending on the wall can be found only numerica
especially near the end point of the string where both
string and the wall profiles are heavily deformed. Howev
far away from the end point of the string, deformations a
weak and we can find the asymptotic behavior analytical

Let the string be on thez.0 side of the wall, where the
vacuum is given by Eq.~4.7!, see Fig. 1. Consider first th
region z→` far away from the string end point atz;0.
Then the solution to Eq.~7.2! is given by an almost unper
turbed string. Namely, atz→` there is noz dependence to
7-14
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the leading order, and, hence, the following ansatz for fie
A1,2 andw2 is appropriate:

w2~x!5f~r !,
~7.3!

Ai~x!52« i j

xj

x2
f ~r !.

It differs from the one in Eq.~6.10! by a gauge transforma
tion, to the ‘‘singular’’ gauge, in which the scalar fieldw2 is
aligned along its VEV atr→`, z→`. The profile functions
f(r ) and f (r ) satisfy the boundary conditions~6.11!. We
also take the fieldsA3 , A0, andw1 to be zero, witha equal
to its VEV ~4.7!. Then Eq.~7.2! reduces to those of Eq
~6.12!. The latter have a standard solution of the unpertur
ANO string. On the other side of the wall, atz→2`, we
have an almost unperturbed first vacuum with the fie
given by their VEVs~4.6! and ~4.8!.

Now consider the domainr→` at smallz. In this domain
the solution to Eq.~7.2! is given by a perturbation of the wa
solution. Let us use the ansatz in which the solutions for
fields a and qA are given by the same equations~5.13!,
~5.17!, and~5.19! in which the size of the wall is still given
by Eq. ~5.15!, and the only modificationis that the position
of the wall z0 and the phases now become slowly varying
functions of r and a @i.e., the polar coordinates on th
(x1 ,x2) plane#. It is quite obvious thatz0 will depend only
on r, as schematically depicted in Fig. 5. The physical me
ing of this ‘‘adiabatic’’ approximation is as follows: the ma
sive excitations of the wall, responsible for its structure,
assumed to be absent; we study the impact of the string-
junctions on the massless moduli.

As long as the second and the third equations in Eq.~7.2!
do not contain derivatives with respect toxi , i 51,2, they are
satisfied identically for any functionsz0(r ,a) and s(r ,a)
@note thatF3* 50, the field strength is parallel to the doma
wall plane, andAz5s(r ,a)]zb(z), see Eq.~5.16!#.

FIG. 5. Bending of the wall due to the string-wall junction. Th
flux tube extends to the right infinity. The wall profile is logarithm
at transverse distances larger thanj21/2 from the string axis. At
smaller distances the adiabatic approximation fails.
12500
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However, the first and the last equations in Eq.~7.2! be-
come nontrivial. Consider the first one. Inside the string
electromagnetic field is directed along thez axis and its flux
is given by 4p. This flux is spread out inside the wall an
directed almost alongxi in the (x1 ,x2) plane at larger. Since
the flux is conserved, we have

Fi* 5
2

R

xi

r 2
~7.4!

inside the wall atuz2z0(r ,a)u,R/2.
Substituting this in the first equation in Eq.~7.2! and as-

suming thatz0 depends only onr we then get

] rz052
1

Dmr
. ~7.5!

Needless to say, our adiabatic approximation holds only p
vided the above derivative is small, i.e., sufficiently far fro
the string,Ajr @1.

The solution to this equation is straightforward,

z052
1

Dm
ln r 1const. ~7.6!

We see that the wall is logarithmically bent according to t
Coulomb law in~211! dimensions9 see Fig. 5!. This bending
produces a balance of forces between the string and the
in thez direction so that the whole configuration is static. T
see that this is indeed the case, please, observe that the
of the string is equal to the string tension 2pj @see Eq.
~6.8!#. On the other hand, the force of the wall in thez
direction at some pointz* is given by the wall tensionjDm
times the length of the circle 2pr * @r * corresponds toz*
via Eq. ~7.6!# times the angleg following10 from Eq. ~7.5!,
which projects the force of the bent wall onto thez axis. This
gives 2pj, which precisely coincides with the string tensio

Now let us consider the last equation in Eq.~7.2!. First,
let us work out the gauge potential which enters the cov
ant derivatives in this equation. In order to produce the fi
strength~7.4! Am should reduce to

Ai5
2

R
« i j

xj

r 2
@z2z0~r !#1b~z!] is~xj !, i 51,2,

~7.7!
7.7A050, Az5s~xi !]zb~z!,

where we also include pure gauge terms, see Eq.~5.16!. Con-
sider first the region near the edge of the wall atz2z0;
2R/2. Near this edge the first quark fieldw1 is not zero.
Substituting Eq.~5.17! in the last equation in Eq.~7.2! and
using Eqs.~7.7! and ~7.5! we get

9The logarithmic bending in two spatial dimensions was used
Witten to explain logarithmic running of coupling constant ofN
52 theories within the brane approach@35#.

10One should remember thatr * @(Dm)21, so that g'tang
'sing.
7-15
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]s

]a
51,

]s

]r
50. ~7.8!

The solution to these equations is

s5a. ~7.9!

This vortex solution is certainly expected and welcome.
terms of the dual gauge field localized on the wall, this
lution reflects nothing but the unit source charge.@If we con-
sider the other edge of the wall nearz2z0;R/2 and substi-
tute Eq.~5.19! into the last equation in Eq.~7.2! we get the
same equations~7.8! for s(r ,a).#

The above relation between the vortex solution and
unit source charge requires a comment. One can identify
compact scalar fields with the electric field living on the
domain wall world volume via Eq.~5.38!. Then result~7.9!
gives Eq.~1.7! for this electric field. In the proper norma
ization we have

F0i
(211)5

e211
2

2p

xi

r 2
, ~7.10!

where the ~211!-dimensional coupling is given by Eq
~5.37!.

This is a field of a point-like electric charge in~211!
dimensions placed atxi50. The interpretation of this resu
is that the string end point on the wall plays a role of t
electric charge in the dual U~1! theory on the wall.

Our string-wall junction solution explicitly demonstrate
another rather apparent aspect of the problem at hand
deed, when the string ends on the wall, and the magnetic
it brings with it spreads out inside the wall, the overall e
ergy of the configuration is minimized. Indeed, the energy
the flux tube grows linearly with its dimension, while whe
the flux is spread inside the wall, the energy grows o
logarithmically with the dimension of the domain over whic
the flux is spread. It is certainly no accident that the w
bending is logarithmic.

VIII. FLOW TO NÄ1 THEORY

It is high time now to address the question of what ha
pens with the moduli theory once we include subleading inm
terms that breakN52 supersymmetry down toN51. At the
level of the low-energy QED~4.2! to which we limit our-
selves in the present paper this amounts to taking into
count thea dependence of the functionf (a) in Eq. ~4.2!,

f ~a![22A2m
]u

]a
522A2ma, ~8.1!

while previously f (a) was set to be constant,f (a)5j, in
which limit we deal with the fully blownN52.

Let us first discuss the value of anN52 breaking param-
eter on general grounds. It is quite clear that in both va
this parameter can be estimated as
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This estimate is confirmed, in particular, by the calculation
the fermion mass shift presented in Sec. VIII B. Howev
when one deals with collective excitations of the doma
wall ~other than the zero modes!, then theN52 breaking
parameter is larger, since in this casedachar is of the order of
Dm. Then, theN52 breaking parameter is of the order o

mDm

j
. ~8.3!

Although this is still a small parameter it is neverthele
larger than the one in Eq.~8.2! under our choice Eq.~1.4!.
This parameter controls the splitting of massiveN52 mul-
tiplets in the world-volume theory on the wall. It is not di
ficult to calculate this mass splitting, and so we did. If w
substitute the expression forj from Eq. ~4.4! here, then Eq.
~8.3! reduces toDm/m. Note, however, that we can ignor
the relation ~4.4! coming from underlying non-Abelian
theory and consider the U~1! theory ~4.2! on its own right.
Then theN52 limit is characterized by parametersj and
mA while m controlsN52 breaking down toN51. In this
setup the parameter ofN52 breaking on the wall is given by
Eq. ~8.3! and goes to zero atm→0 while j is fixed.

It is easy to see that withf (a)Þ const the Bogomol’nyi
completion for the domain wall configuration is still po
sible, and we end up with the following first order equation

¹zw
A52

1

A2
wA~a1A2mA!,

~8.4!

]za52
g2

2A2
~ uwAu22 f ~a!!,

where the same ansatz as in Eq.~5.1! is used. These equa
tions are quite similar to the equations~5.6! for N52 theory,
the only difference being that the constant FI parameterj is
now replaced by a linear~and slowly varying! function f (a).
The tension of this domain wall is still given by Eq.~5.8!.

The emergence of the first order equations means tha
wall at hand is still BPS saturated~albeit in N51theory!.
This can be most straightforwardly seen by noting that a h
of the relations~5.12! survive breaking ofN52 to N51.
Now we have four parameters«a1 and «̄1ȧ , subject to two
constraints,

«̄12̇52 i«21, «̄11̇5 i«11. ~8.5!

This leaves us with two supercharges which act trivially
the wall solution.

At small m and Dm!m the solution to first order equa
tions~8.4! is a small perturbation of the domain wall solutio
presented in Sec. V B. Thus, it is still parametrized by tw
collective coordinates~moduli!, z0 and s. In the exactN
52 limit the moduli fieldsz(t,x,y) ands(t,x,y) formed the
bosonic part of aN52 vector multiplet in~211! dimension.
Now the question is: do these fields split once we breakN
52 supersymmetry softly down toN51?
7-16
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Naively one might think that while the ‘‘translational
field z(t,x,y) certainly remains massless, the second mo
lus field s(t,x,y) becomes massive acquiring a small ma
so that theN52 supermultiplet is split in twoN51 super-
multiplets. A particular mechanism for such splitting w
suggested in Ref.@12# for the case of the domain wall inter
polating between the monopole and dyon vacua. Namel
was suggested that a Chern-Simons term is generated i
~211!-dimensional gauge theory on the wall, generating
mass to the U~1! gauge field. Although this conjecture is ve
relevant and will be exploited in Sec. IX C, we will prov
momentarily that the splitting doesnot take place for the
wall interpolating between the quark vacua—the object
our study in this paper. The fields stays massless. In othe
words, the moduli field theory on the wall exhibits a sup
symmetry enhancement—the particle contents are chara
istic of the theory with four supercharges, rather than t
supercharges one might expect to operate on the world s
of a 1/2 BPS domain wall inN51theory.

First, this conclusion follows from symmetry argumen
Indeed, the phases is associated with the global U~1! rota-
tion which is a part of the flavor SU(Nf52) broken down to
U~1! by the mass difference,DmÞ0. This symmetry is vec-
torlike and therefore is not anomalous. Thus, we have
exact global symmetry broken down on the domain wall
lution. This implies the inevitability of the zero mode ass
ciated with the collective coordinates. With two massless
moduli, z(t,x,y) ands(t,x,y), N51supersymmetry on the
world sheet would imply two massless Majorana fields in
fermion sector. The fermion moduli are related to the f
mion zero modes. It is instructive to check, by counting
fermion zero modes, that in the fermion sector we deal w
two massless Majorana fields localized on the domain w
We will now show that we have four fermion zero modes
the wall solution~two plus two complex conjugated!.

To this end we use the Jackiw-Rebbi theorem which t
us that we have exactly two normalizable fermion ze
modes~one two-component real fermion field! per each ei-
genvalue of the fermion mass matrix which changes its s
on the wall solution@22#. The fermion mass matrix in softly
broken SQED is given by

Smass
ferm5

1

A2
E d4xH q̄A f~l fcA!2~ c̃Al f !q

f A2~a1A2mA!

3~ c̃AcA!2
m

A2
~l2!2J . ~8.6!

The last term explicitly breaksN52 supersymmetry and
SU(2)R global symmetry because it depends only on thf
52 components of the fieldl f .

The fermion mass terms and Yukawa couplings in E
~8.6! give us a 636 fermion mass matrix. To study its e
genvalues we calculate its determinant. The general exp
sion for the determinant is rather complicated; therefore,
study it approximately in different domains of the wall pr
file, see Fig. 3. The six eigenvalues of the mass matrix ca
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naturally divided in two classes: four ‘‘large’’ eigenvalue
and two ‘‘small’’ ones.

A. Fermion modes,NÄ2 limit

Consider first theN52 limit when the last term in Eq.
~8.6! is ignored. Two ‘‘small’’ eigenvalues approach the ph
ton mass~4.10! in both quark vacua,

ur1,2
s u→mg , z→6`. ~8.7!

The ‘‘large’’ eigenvalues behave as follows. In the le
vacuum two of them approach the photon mass while
other two approach the larger value,Dm,

ur1,2
l u→mg , ur3,4

l u→Dm, z→2`, ~8.8!

while in the right vacuum their role is interchanged, name

ur3,4
l u→mg , ur1,2

l u→Dm, z→`. ~8.9!

This behavior is, of course, in perfect agreement with
mass spectrum of the theory in both quark vacua found
Sec. IV B.

In the middle regionM ~see Fig. 3! ‘‘large’’ eigenvalues
interpolate between these two values. They always rem
large inside the wall and clearly do not cross the ze
‘‘Small’’ eigenvalues are exponentially small inside the wa
and, therefore, one needs to carry out a more careful stud
the middle domainM these eigenvalues are given by

r1,2
s 56

1

2 F g2uw1u2

m11a/A2
1

g2uw2u2

m21a/A2
G , ~8.10!

where the functionsa andwA are given by the domain wal
solutions~5.13!, ~5.17!, and~5.19!. Two ‘‘small’’ eigenvalues
~8.10! clearly cross the zero atz5z0, right in the middle of
the domain wall. This is in accordance with our previo
conclusion that we have four fermion zero modes in theN
52 limit.

B. Fermion modes,NÄ2 broken down toNÄ1

Now let us take into account theN52 breaking term in
Eq. ~8.6!. Then the first eigenvalue in Eq.~8.10! gets an
additional contribution,

r1
s5

1

2 F g2uw1u2

m11a/A2
1

g2uw2u2

m21a/A2
12g2mG , ~8.11!

while the second one does not change. At smallm, m
!Aj/g both eigenvalues still cross the zero atz5z0.

We conclude that inN51theory the critical domain wal
supports four fermion zero modes~at least in some domain
of small m and largem). This means that theN52 vector
multiplet living on the wall~2 real boson fields1 2 Majo-
rana fields! is not split evenafter we breakN52 supersym-
metry down toN51. The low-energy theory is still given by
Eq. ~5.39!. Presumably, we would feelN52 breaking if we
considered higher derivative terms on the world volume.
definitely seeN52 breaking in the spectrum of massive e
7-17
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citations localized on the wall, with masses of the order
the inverse width of the wall;1/R.

IX. COMMENTS ON THE LITERATURE

The topic under consideration is rather hot; its aspe
have been discussed in the recent literature in various
texts, including rather exotic, e.g., gauge field localization
branes in the framework of noncommutative field theor
@36#. Here we briefly comment on the relation between o
results and those one can find in the literature.

A. Generalities

The most recent revival of the theme of field-theore
implementation of D branes and strings can be attribute
Ref. @11# which presents an excellent elaboration of gene
ideas as to how gauge fields can be localized on dom
walls. A variety of examples are worked out providing
clear-cut illustration to the statement@2# that localization of
the gauge fields requires confinement in the bulk. It is a
explained how this automatically entails the existence of
flux tubes ending on the walls. In Sec. III of Ref.@11# the
authors construct a model for a~quasistable! wall-antiwall
configuration of a variable thickness which traps a gau
field in the middle domain. This model served as an impe
for our construction, which, being totally differen
in many aspects, shares a common feature with that of
@11#—the thickness of the middle domain in our model is
large variable parameter too.

B. Varying Dm

The proof of the existence of the ‘‘second’’ modulu
s(t,x,y), dual to the U~1! gauge field on the wall, and it
massless fermion superpartner was based on symmetry
ments and was independent on the value of the ratioDm/Aj.
In our model this ratio is large. However, the U~1! gauge
field localization must occur for arbitraryDm/Aj. This ob-
servation perfectly matches the result of Ref.@7#, where a 1/4
BPS solution of the string-wall junction type was found in
sigma model. In our language the sigma-model limit cor
sponds toDm/Aj→0. In this limit the photon field and its
superpartners are heavy; upon integrating them out we
cover the Ka¨hler sigma models with the Eguchi-Hanson ta
get space for the remaining light matter fields. It is we
known that such models have string-type solitons, which
have arbitrary transverse dimension~see Ref.@37# for a re-
view of the so-called semilocal strings!.

Turning on DmÞ0 as a small perturbation produces
small potential on the target space. Once the potentia
switched on, domain walls become possible, and one
search for the string-wall junctions. Strictly speaking the
lution found in Ref.@7# is somewhat singular, since finite
radius strings exist only in the limit of massless sigma m
els while in this limit there are no domain walls. In massi
sigma models treated in Ref.@7# the strings are forced to
have vanishing transverse size, and, in fact, a ‘‘spike’’-ty
junction was obtained. This is as close as one can get tN
52 SQCD string-wall junctions in sigma models.
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C. Multiplicity of the Kaplunovsky-Sonnenschein-Yankielowicz
domain walls

In this section we leave the solid ground of weak
coupled models and venture into uncharted waters of str
coupling. The issue to be addressed is the domain wall c
necting the monopole and dyon vacua inN52 SQCD
slightly perturbed by them Tr F2 term @with SU~2! gauge
group#. This problem has been recently studied@23# by Ka-
plunovsky, Sonnenschein, and Yankielowicz~KSY!. We
would like to address the issue of multiplicity of such d
main walls~i.e., the number of distinct domain walls inte
polating between the given vacua, with degenerate tensio!.

First of all, let us summarize what is known about t
multiplicity of the super-Yang-Mills walls at strong coupling
This question was analyzed by Acharya and Vafa, Ref.@12#,
from the string theory side. Representing the~112!-
dimensional domain wall of the super-Yang-Mills theory as
D4-brane wrapped overS2, the authors found that the U~1!
gauge field localized on the wall is described by supersy
metric QED ~similar to the construction discussed in Se
V D! with the Chern-Simons term at levelN,

L11252
1

4eeff
2

FmnF
mn1

N

16p
FmnAk«

mnk1fermion terms,

~9.1!

where N is related to SU(N) of the underlying ~113!-
dimensional gauge theory. For the SU~2! gauge groupN
52. It is well-known that the level of the Chern-Simon
term determines the number of vacua of the theory—two
the case at hand~the gauge group of the underlying theory
SU~2!!. The number of vacua in the~112!-dimensional ef-
fective theory on the wallis the number of distinct degener
ate domain walls in~113!-dimensional theory~the above
‘‘two’’ refers to the counting convention explained in Se
V F!.

Needless to say, this is an index of the underlying theo
which does not change under continuous deformations of
theory. Based on this fact, the domain-wall multiplicity w
calculated directly from field theory@13# and was found to
coincide with the Acharya-Vafa result.

Let us return now to Kaplunovskyet al. Since they con-
sideredN52 SQCD perturbed by them Tr F2 term, and at
large m this theory smoothly goes intoN51gluodynamics,
the index argument tells us that the number of distinct K
walls, in the case of the SU~2! gauge group, istwo.

Near each vacuum—monopole and dyon—Kaplunovs
et al. use distinct effective low-energy SQED-type descr
tions, e.g., near the monopole vacuum the low-energy mo
includes a U~1! gauge field and its superpartners, plus lig
monopole superfieldM,M̃. Near the dyon vacuum it is als
a U~1! gauge superfield~albeit not that of the previous patch!

plus a light dyon superfieldD,D̃. In the intermediate patch
the authors keep just one superfield—that ofu5Tr F2. It is
worth stressing that no unified description exists and
consideration has to be carried out in three distinct patc
separately. Auniquesolution to the Bogomol’nyi equation
was found.
7-18
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The KSY solution bears a remarkable resemblance to
domain wall in our weakly coupled model. Indeed, the KS
wall consists of three domains—a broad middle domain
size ;m21, where the monopole and dyon condensates
vanish, and two much narrower edge domains@of thickness
;(mL)21/2] where the transition from the vacuum value

the condensateMM̃ ~or DD̃) to zero occurs. So, why do w
speak of an unsolved problem?

That is because the KSY solution shows no sign oftwo
distinct domain walls. As was explained above, the dou
degeneracy of the domain wall is a must. Since the in
does not depend on the value ofm, the limit of small m
considered in Ref.@23# must exhibit the same number o
domain walls as the one emerging in the largem limit.

What is lacking in Ref.@23#? An obvious analogy with
our weakly coupled model prompts us that the lacking e
ment is the analysis of moduli~or quasimoduli! fields local-
ized on the wall.

For the domain wall at weak coupling, considered in t
present paper, there is an unambiguous supersymmetry-b
argument proving the double degeneracy. In theN52 limit
our BPS wall belongs to the short representation ofN52
superalgebra, i.e., we have two boson1 two fermion states
~4 fermion zero modes!. When we breakN52 down toN
51our wall is still N51BPS—it belongs to a short repre
sentation ofN51superalgebra. This is possible only if w
havetwo N51 short multiplets because the number of sta
cannot discontinuously change. One of these supermultip
is the translational modulus plus its superpartner, anothe
the phase fields and its superpartner.

For the KSY wall, generally speaking, this argument do
not apply because we do not have aN52 limit: the N52
breaking parameter~8.3! is never small. Why, nevertheles
we suggest that the missed multiplicity of the KSY wa
might be associated with a missed~quasi!modulus?

In the KSY problem, there are two distinctdynamically
generatedphase symmetries—one associated with the ph
rotations ofM, another with the phase rotations ofD. At the
same time the U~1! gauge field is single~though it is de-
scribed differently in the two edge patches!. There are no
massless particles in either of the vacua. So far, all thi
perfectly parallel to what we have in our model.

Now the two theories divorce. Ours has an exact glo
U~1!, unbroken in the vacua and spontaneously broken
the wall, which results in the strictly massless modu
s(t,x,y). The Seiberg-Witten theory perturbed bym Tr F2

~the KSY case! has no strictly conserved U~1!. Due to the
full similarity in the description of the edge domains, o
may expect, however, the emergence of a quasimodulus
calized on the KSY wall. We will call its̃(t,x,y).

To make quasimoduluss̃ massive we have to include
periodic superpotential, of the type cos(s̃) giving rise to a
scalar potential of the type sin2(s̃) which has two vacua. This
is quite a general argument based only on periodicity ins̃
and on the existence of the quasimodulus field localized
the KSY domain wall, our basic conjecture in this section
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The quasimodulus field with the target space onS1 ~with
a nonvanishing mass! can be transformed into a dual~211!-
dimensional QED with a Chern-Simons term. In this way w
match with the Acharya-Vafa analysis.

A slightly different argument for this quasimodulus fie
s̃(t,x,y) is as follows. In each of the edge domains of t
wall ~i.e., near the monopole and dyon vacua! the underlying
theory is approximatelyN52. The parameter governing th

breaking ofN52 is of the orderAm/L. In the middle of the
wall, the breaking ofN52 is stronger, but it is natural to
think that the phase fields̃ is essentially disassociated from
the middle domain. Then the effective theory on the w
must be close to~211!-dimensionalN52, which would re-
quire two real massless bosonic moduli. The breaking oN
52 splits the supermultiplet into two~211!-dimensionalN
51supermultiplets as now there is no exact U~1! to prevent
the splitting. A natural estimate for the mass of the quasim
dulus s̃ is then

ms̃;AmLAm/L;m.

The dual~211!-dimensional SQED will have the Lagrangia
~9.1! with eeff

2 5m/k wherek is a dimensionless constant o
order one. The value of the constant in front ofFmnF

mn will
be in accord with our result~5.40!, since the thickness of the
KSY wall is ;m21.

X. BRIEF CONCLUSIONS

We suggest and work out a model which seems to b
good prototype for studying the basic properties of D bra
or string theory in the field-theoretic setting. Our model
weakly coupled, fully controllable theoretically, and po
sesses both critical walls and strings.

Then, using our model as a tool we addressed in a fu
quantitative manner the following long-standing issues:

~i! gauge field localization on the wall;
~ii ! the wall-string junction~i.e., a flux tube coming from

infinity and ending on the wall!.
We confirm that a 1/2 BPS domain wall does localize

U~1! gauge field; the charge which presents the source
this field is confined in the bulk.

We find that a 1/2 BPS flux tube coming from infinit
does indeed end on the above wall. The wall-string junct
is 1/4 BPS.

A task which remains for the future is~the quantitative
analysis of! localization of non-Abelian gauge fields on th
wall and related flux-tube–wall junctions.
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