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Thermal one- and two-graviton Green’s functions in the temporal gauge
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The thermal one- and two-graviton Green’s functions are computed using a temporal gauge. In order to
handle the extra poles which are present in the propagator, we employ an ambiguity-free technique in the
imaginary-time formalism. For temperatur&shigh compared with the external momentum, we obtain the
leadingT* as well as the subleadink? and log{l) contributions to the graviton self-energy. The gauge fixing
independence of the leadifig terms as well as the Ward identity relating the self-energy with the one-point
function are explicitly verified. We also verify the 't Hooft identities for the subleadifigerms and show that
the logarithmic part has the same structure as the residue of the ultraviolet pole of the zero temperature
graviton self-energy. We explicitly compute the extra terms generated tprékeription polesand verify that
they do not change the behavior of the leading and sub-leading contributions froharthéhermal loop
region. We discuss the modification of the solutions of the dispersion relations in the graviton plasma induced
by the subleading? contributions.
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[. INTRODUCTION gauges have been restricted to the zero temperature case.
Another reason for the lack of popularity of the temporal

One of the main motivations for the first attempts to com-gauge in gravity is that, in contrast with the situation in
pute the self-energy at finite temperature was the study oYang-Mills theory, the zero temperature graviton self-energy
dispersion relations of a graviton plasma and the related inis not transvers¢7,8]. However, this should not be a very
teresting phenomena of antidamping and wave propagatioimportant concern in the finite temperature case where the
[1,2]. For temperature3 high compared with the external transversality property is expected to be violated in general.
momentum, but well below the Planck scale, the completéA more important difficulty in the temporal gauge is the
tensor structure of the leading one-loop contributions, proproblem of spurious singularities arising from time=0
portional toT#, was calculated for the first time in RéR]. terms in the Matsubara sufik8], which is even more severe
Later some subleading contributions of ordérwere com-  in the case of gravity in view of the higher powersmof the
puted, including the contributions of thermal scalar matterdenominator of the temporal gauge graviton propagator. This
and radiatior{ 3], and subsequently all terms proportional to situation was improved after the development of an
T4, T? and log{l) were computed taking into account ther- ambiguity-free technique to perform perturbative calcula-
mal loops of graviton$4]. tions at finite temperature in the temporal gayde,16|.

When the internal graviton lines are included, the gaugeOriginally this technique was tested using zeta functions to
dependence which arises from the choice of gauge fixing itompute the Matsubara sums and later it was applied to the
the gravitational action becomes an issue. In Réf.the  calculation of the gluon self-energy using the standard
graviton self-energy was computed employing themethod of introducing thermal distributions by replacing the
Feynman—de Donder gauge with an arbitrary gauge fixindMatsubara frequency sum with a contour integral in the com-
parameter. While the subleading contributions are gauge dglex plane of the zero component of the internal momentum
pendent, the leadind* contributions to the self-energy as [19].
well as to the one-point function are gauge fixing indepen- The purpose of the present work is to apply the Leib-
dent and satisfy the Ward identity. This last property is alsdorandt’s prescription to the calculation of the thermal one-
true for the contributions from matter and radiation, beingand two-graviton Green’s functions in a class of temporal
consistent with a gauge invariant effective action for hardgauges. We will show explicitly how this approach leads to a
thermal loops interacting with gravity. well defined result which can be expressed in terms of for-

One can go further into the question of gauge dependencsard scattering amplitudes of thermal gravitdiZd] plus
by considering a class of non-covariant gauges of the kingontributions from prescription poles. We will also show
that has been employed in gravity at zero temperaturéow the ghost interactions effectively decouple leaving only
[5-10]. At finite temperature non-covariant temporal gaugeshermal gravitons in the forward scattering amplitudes. We
would be even more appropriate, since Lorentz covariance igrovide the explicit results for the leading and sub-leading
already broken by the heat bath but the rotational invarianclard thermal loop contributions and show that the prescrip-
is preserved. Despite the other well known advantages of thiégon poles do not change the hard thermal loop behavior.
temporal gauge, finite temperature calculations have been In Sec. Il we will present the Lagrangian for the graviton
performed only in Yang-Mills theories both in imaginary and field and the corresponding Feynman rules in a class of tem-
in the real time formalism$11—17. This can be partially poral gauges. We will also illustrate the basic approach with
understood in view of the complexity of the gravitational the simplest one-loop calculation, namely the one-graviton
interaction and so explicit calculations in non-covariantfunction (tadpolg. In Sec. Il we describe how the thermal
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graviton self-energy can be split in two parts. The first part TABLE I. The 14 independent tensors built fron),, , k, and
arises from the on-shell poles of thermal graviton, and igi,=n,/n, and satisfying the symmetry condition§’,, ,,
expressed in terms of forward scattering amplitudes, While=7",,..p0=Tuv.0p= T por.pov -

the second part is generated by poles in the complex energy
plane which are characteristic of the temporal gauge preT,lw,pf NupMve T MuoMvp

scription. We obtain from the forward scattering amplitudes

the leadingT* and the subleading? and logT contributions. 72, pe= TupUslo T 7ol Up+ 7,,U,U,+ 7,,U,U,
In Sec. IV we explicitly calculate the contributions from the

prescription poles and compare the results with the high temfiy,p(,:uﬂuyupua

perature limit of the forward scattering expression. In Sec. V
we employ the hard thermal loop results, up to the subleads’,, ,=7,,7,,
ing T2 contributions, to investigate the modification of the

solutions of the dispersion relations in a gravitational plasmag® =, u u +#,.u.u,
We will discuss our results in Sec. VI. e e e

1
Il. LAGRANGIAN, FEYNMAN RULES AND BASIC oo = g Lokt k) Ust (ks + 10K, U,
DEFINITIONS +(77,u,puv+ nvpu,u) ktr+(77,u,a'uv+ ﬂvvup,) kp]

The graviton field¢,,, can be defined as a small pertur-

bation around the flat space-time metrig,,, as follows: T’

pvpo

1
o (kU upue+k,u,uu,+Kkou,u,u,+Kku,u,u,)

U, (X)=7,,+ Kk, (X), «?=327G. (2.1
. _ _ T8 o= (7KKt 70K K+ 7,K Ko+ 7,0k K
Here G is Newton’s constant and,,, is the metric tensor. ~ #""” kz(n"” Kot Tkt Dupkukot moKiky)
The Einstein Lagrangian density is given by

77

1

5 My,pU=P(k“kvupuU+ K K,u,u,)

L= —2\/—gg‘”RW (2.2
K 10 1

;Lv,p(r:m[(k,uuv—"_ kvuu)(kpua+ kaup)]

whereR,,, is the Ricci tensor given by

1
Ru=3,0%,—d,I'%,— rzyrgﬁ rzﬁrfa T}Lﬁyﬂa:m(uﬂkykpka-i- u, K, K Ky U K,k Kyt Uk, K k)
a 1 af 2 1
FMy: Eg (a,ugﬂv—’—avgﬁ,u_aﬁgp,v)' (23) Tiv,p(T:Fk/J-kaPk‘f

It is clear from the previous expressions that the Einstein ,, 1

Lagrangian is an infinity series in powers ef(an infinity #V’ﬂvzﬁ(ﬂﬂvkpkﬁ 7paKuky)

number of terms arises both from the inverse megtit and

from the determinang). Each powe" will come out mul- 7™ p(,:i[nw(kpuﬁ U Ko) + 70 (KU U ,K,) ]

tiplied by a combination of tensor scalar products@énsor 7 _ku

fields ¢ and two derivativesi¢. Performing a systematic

expansion in powers of the coupling constaxt it is

straightforward to obtain the tree-level Feynman rules corre- 0y

sponding to the terms which are quadratic, cubic, [&6]. Lyghost= —n“XVFﬂ : (2.9
Before we show the explicit form of these vertices, let us &

recall that the invariance of the Einstein action under general o

coordinate transformationgégauge transformatiopsimply ~ Wherex* and »* are the gravitational Faddeev-Popov ghost
the existence of Ward identities relating all the vertices dowrv/€ctor fieldsn* is the axial vector and is a constant gauge
to the quadratic ternisee Appendix A The identity given ~Parameter. Using EqA3), we obtain the following explic-
by Eq.(A10) shows explicitly the usual problem of inverting itly form for the ghost Lagrangian:

the free quadratic part of a gauge invariant Lagrangian. Fol-

lowing the standard procedure of introducing a gauge fixing Lghos= X"{M\d,+ 7y,N- 9+ k[N* b\ d,+ ¢ ,\Nn-J
condition and ghost fields, we add the following two terms to

A
the Einstein Lagrangiaj21] N4\ 1" (2.6
_ v p ” Notice that, unlike Yang-Mills theory, ghosts remain coupled
Liix== 551" (0" ¢y, (N dg,) (24 to the gravitons even for the choice=0. However, our
explicit calculation will show that the decoupling occurs
and when the loop integrations are performed.
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We have now all the basic ingredients to perform perturtensors as shown in Table (lve will employ this same
bative calculations in thermal gravity. The graviton propaga-basis in order to obtain the tensor structure of the thermal
tor can now be obtained inverting the quadratic termZof self-energy [31]. Using this tensor basis it is possible
+ L, . Our choice of gauge fixing is such that even the bareo obtain the following compact form for the graviton propa-
graviton propagator is already dependent on 14 independegator

k4 2

1
- 1 __— 2 o N A2 A
DAB,pU(k)_ (k2+ie) IAB,pU D_Zlkﬁ,po—'—ang(k.u)z ,zi\sﬁ,prr—F (k.u)ﬂ—)\ﬁ,w Thﬁ,pv

] , 2.7
where

1t =
uv,po

1
Z(dMKdV}\+ d,u,}\dVK)(dedU)\ + dp)\dax)l

k,u
Iiv,pozduKdVde)\dcr)\ ’ d,lLV: 77;/.1/_ k:U“ uV,

are convenient linear combinations of the tensors in Table |. As we can see the graviton propagator has the usudpéles at
as well as the poles &t u=ky=0. The first and second order termsxryield the following three and four graviton vertices,
respectively:

K
Viﬁ,p)\,ﬁy(kl Kz, K3) :Z({kz' Kl 7ap( 7o M5y~ MpsTy) T 4108 Mg\ — Mo\ M) ]

+ 2Koal Kag( My Mps™ Mo 15y) + 2K (180 15y = 215570 4) ]
+2Ko,[ 2K3a ) 15y T Kan (2789 a5 MapMsy) ]+ 2KasKao( Map My =278y May)
+symmet. oa«— B),(p<\),(5+ y))+permut. ofk,,a,B),(Ks,p,N), (K3, 8,7), (2.8
2
Viﬁ,px,ﬁy,w(kl KoKz, Kg)= E({ka' Kal (7010 = 2Map 10 ) (M9 M 20— No:Mye) T 8(MasMppt Mapps™ NapMsp)

X(Dry M0~ Doy M) 87 Mas( My Nor— Mps M) 1+ 4K3a(2Ka, 750 — Kap1,0)

X (N5yMro™ NorMye) T 18Kz Kan 755~ K3aKag750) (75610 7— M M76) T 8(K3oKasT KasKaa)

XDy~ 200 M8p) Nrot 16K3oKasl 7, (278510 = M3y Md) + 130( 275150 = Mo\ 71p7) ]

— 16K35Ka0 775,y Mon T 2(K3 K157 50— KasKay 70) (1apoh = 2709 M p0)

+8(K3Kas7yn —KasKay 70 1) (2M66 Map™ MpoMap)}

+symmet. oQa<— B),(p—N\),(5—7y),(T—0))

+permut. ofky,a,B),(K>,p,N),(Kz,8,7),(Ks, 70). (2.9

We have verified that these vertices are in agreement withthe /699 (k. k. k.)=ik Kot 7,0 Ko,
Ward identities described in Appendix A. (K K ) =5, K 7k
Finally, the quadratic and the interacting term in the ghost 7N K1p) + ek, (2.1
Lagrangian(2.6) yields the ghost propagator
respectively.

1 1
ghosfpy —i| - A. The one-point function

o
In order to introduce our notation and the basic method of
calculation we will rederive here the result for the thermal
and the graviton-ghost-ghost vertex one-point function. The one-point function is interesting by
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| @ dldr-o 214
:' |
q | q The thermal piece also vanishes since we can close the con-
tour in the right-hand side of theg, plane without enfolding
any poles
The contribution from the graviton loop in Fig(l) is a
nv kO uv little bit more involved. After some straightforward tensor
algebra we obtain from Eq$2.7) and (2.8) the following
result:
(a) (b) oo
aq
FIG. 1. Diagrams contributing to the one-graviton function in _KTE (27T)D 18

the one-loop approximation. The curly lines represent gravitons and

the dashed lines represent ghosts.
q,uqv

x|2(D—3) 2 o —~(D-5)7,,[. (219

itself, since it is directly related to the energy momentum
tensor derived from the effective acti¢8]. It also provides
the simplest non-trivial example of a one-loop calculation inlt is interesting to notice that the gauge parametérom the
gravity. Indeed, in contrast with the zero temperature casegraviton propagator has already canceled out at the integrand
the finite temperature one-point function is non-zero, beingevel.

exactly proportional toT*. For that reason it will play an Let us now compute Eq2.15 with the help of formula
important rde in the Ward identities obeyed by the hard (2.13. As in the case of the ghost loop diagram, the contri-
thermal loop Green'’s functions. bution proportional top,,, vanishes. The dimensional regu-

The relevant diagrams are shown in Fig. 1. Using thdarized vacuum piece will also vanish and we are left with
imaginary time formalisni18], Egs.(2.10 and (2.11) give  only the following expression:
the following contribution for the ghost loop diagram shown

in Fig. 1(a): i“+s dg, 1 &*q q,q,
F :ZKJ ) 2— a0/T f 3 > -
d°-1g —izt+s em /-1 J (27)° q
F%hvos KTE (271 ———— M, Qo=2miINnT, (2.16
Closing the contour in the right hand side plane the pole at
n=0+1%+2.... (212 go=|q| gives the following contribution

Throughout this work the Matsubara sums like that one in = dal g3
Eqg. (2.12 will be computed using the standard and elegant = _Kf _qq_f dQa . q
0

relation[18] (2m)2 dalim—1 ag=lil
2 f floc-%—& f f : r<q ) (2.17
T — + cot n N
a0 (%)= [ (80)+ (=80 ] 2T where we have introduceg},=q,/|q| and fd(} is the inte-
i=+5 dgg gration over all directions oﬁ. Finally, using the formula
=f 5 11(d0) +f(~qo)] (23]
—j®+4 I
1 1 . XV*l
vl = (2.13 fo ex/T_ldX=F(v)§(V)T (2.18
2 er/T 1
In general, the vacuum part of the amplitudesrms which we obtain
arise from the factor 1/2 inside the parentheses of £4.3)] 72T4 ( dQ
may be divergent in the limiD—4 and so the arbitrary I T J a#ay
dimensionD provides a regulator for the vacuum piece of 30 ao=dl

the thermal Green’s functions as us{i22]. s

The tadpole diagram provides the simplest example of an I ™ (4u,u,— .. 2.19
effective decoupling of the ghost graviton interaction in the 90 o™ Muw): ‘
temporal gaugethis is not a trivial property at non-zero
temperature Indeed, substituting Eq2.13 into Eq.(2.12  where we have employed the quantity=(1,0,0,0), which
we can see that the vacuum piece vanishes as a consequero@cides with the vector representing the local rest frame of
of the identity the plasma and was introduced in Table I.
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q
g+k g+
/’—’~\\
Hv o N op 18 of
[ Wb
N Sk k -k Hv op
-
q q k iy
(2) (b) ©)

FIG. 2. Diagrams contributing to the graviton self-energy. The curly lines represent gravitons and the dashed lines represent ghosts. The
external momenturk is inward. 1

IIl. THERMAL FORWARD SCATTERING (q-w)™ (k+q)-u]"
CONTRIBUTIONS TO THE GRAVITON SELF-ENERGY

m,n=0,1,2. (3.1

Before trying to perform the loop momentum integrations

The diagrams which contribute to the graviton self-energyexplicitly it is convenient to simplify the integrand using
are shown in Fig. 2. The relevant Feynman rules for thewell known algebraic identities and change of variables
propagators and vertices are all given in the previous sectionvhich may reduce the number of terms considerably. Indeed,
Let us first consider the ghost loop diagram shown in Figwe have found that using a partial fraction decomposition of
2(a). As we can see from the structure of the ghost propagathe quantities shown in Eq3.1) and a shiftg—qg—k in
tor in Eq.(2.10 the integrand will involve a combination of the resulting partial fractions containing powers [dfg
fractions of the following type: +k)-u] ™%, leads to the simplest possible result given by

e 1S f dgP~ 1! {kquuﬂuyuauﬁ_i kzuﬂu,,qau[,JrE uKUals 1k quk,usug 1u,0,U.0p
(

pwv,ap do 277-)D*1 k.u3q.u 2 k.uzq.u 2 k'UC|'U 2 k.uzq.u 2 q.u2
lu,q,kus 1 1q,uk.us 1k-qu,uk,us 1k-qguu,uus 1 kzuﬂqvuauﬁ
t e T 5 Nau et 5 -5 +5 -5
2 k~Uq-U 2 am 2 k~UCI'U 2 k.uzq.u 2 k.uq.u2 2 k.uzq.u

+ E k'qu,u,qvuauﬁ_ E unvqauB _ E q,uuvuaqﬁ _ E uMqvqauB + E _ E kzq,uuvuau5+ 1 uﬂkvqauﬁ
2 k.uq.u2 2 q.uz 2 q.u2 2 q.u2 27]av77ﬂ,u, 2 k.uzq.u 2 k'UQ'U

1k,uu.0s 1k,u,g.ug 1k-gk,uuug 1lu,quks 1k-quuuks 149,u,ukg
+§ k-ug-u 2 k-ug-u 2 k-u2q-u +§ k-ug-u 2 k-u?g-u +§ k-ug-u

1 kzuﬂu,,uaqﬁJr 1k-qu,uu,gs 1 k-g?u,u,u,lg 1 k-qu,u,g,Ug

3.2
2 k-u’lqgou 2 k-ug-u? 2 k-u’q-u? 2 k-ug-u? (

This procedurgpartial fractions and then shijthas been at this stage of the calculatipnin order to use the contour
employed previously in the case of the Yang-Mills theory method of integration described in Sec. Il A, we will employ

[17]. In contrast with the present thermal gravity result giventhe following prescription for the poles ay=0 [15]:
by Eqg.(3.2), the axial gauge Yang-Mills ghost loop vanishes
at the integrand level. Notice that the partial fraction decom-

;
position is justified since the integrands are regularized ac- ir_> |im2q—°2_ (3.3
cordingly. Ao ,oldo— )

Let us now consider the diagrams shown in Figs) 2nd

2(c). An important difference between these diagrams andyi, his prescription the temporal gauge poles are moved
the ghost loop is that while the ghost loop contaimly the 5, frompthe inf)aginary axis gnd Wg arg alﬁ)owed to employ
poles atqo:O, the structure of the graviton propagator in o formula(2.13. The qq integral can then be performed
Eq.(2.7) is such that there amisothe usual simple poles in - ¢,ing the contour of integration in the right hand side of the
the right hand side plane locatedqi=|q| andgo=[q+k| g, plane, as we did in the previous section in the case of the
—ko for the diagram in Fig. @) and atqgo=|q| for the  one point function. The contributions from tpeescription
diagram in Fig. 2c) (notice thatk, is an imaginary quantity poleslocated atgy= « will be analyzed in the next section.
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We now follow the steps explained in Appendix A of Ref. Then, in the residues from the poles|qt+k|—ko we per-
[17]. Basically this consists of the use of EQ.13 taking  orm the shift gl_w*]_g and use the property cotko)
into account only the contributions from the poles located on—coth). This yields the following expression in terms of
the right hand side plane af,=|q| and go=|q+k|—k,.  thermalforward scattering amplitudes

kuv —kap Luv -kop kuv  -koB
7R = = — ,
waBlps @r)3 /) 2 e 12 TNy ARSI P
q0=|q]
(3.4

where the factor 1/2 in front of the curly brackets takes intocalculations performed in the Feynman—de Donder gauge

account the symmetry of the graphs in Figd)2and Zc). It [2,4]). Since we expect that the leadii§ contributions are

is understood that the external graviton lines with momengenerated by a gauge independent effective action, the con-

tum g are contracted with the tensor given by the curlytributions from the prescription poles in E@.3) should not

bracket of Eq(2.7). modify the leadingT* behavior. This will be confirmed by
We remark that the gauge parameter dependence of Egy explicit calculation in the next section.

(3.4) involves only linear terms im. This can be understood Let us now consider the subleading contributions which

since the quadratic powers of which could in principle . generated when we expand the integrand of Ed) up

arise from the propagator in E.7) do not have the on- ¢, terms of degree zero i By power counting these will be

shell poles. Another interesting property of E8.4) is thatit ¢ or4er T2, In order to obtain the full tensor structure gen-

does not mvolvethermal_ ghosts L . erated by the expressiof8.4) it is convenient to use the
The forward scattering expression in E@®.4) is very following tensor decomposition:

convenient when considering therd thermal loopcontri-
butions which arise from the region where the internal mo-
mentumgq is of the order of the temperatuffie which is large

compared to the external momentlin this regime we can 14
expand the denominators in E®.4) as follows: [[#reB="> C /11" #, 3.7
=1
11 k2 N 35
k*+2k-q "~ 2k-q (2k-q)* ' ' where the tensorg?*”*? are given in Table I. The coeffi-

The leading hard thermal loop contribution is obtained byCIentSCI are obtained solving the system of 14 equations

considering all the integrands which are of degree two in the
internal momentay. After some straightforward but very te-

dious algebra we were able to express the leading contribu- 14
tion in the following rather compact form: |21 (T{“"“le'wlaﬁ)clzni ,i=1,2,...,14, (3.9
Hlead | -« ’7T2T4 @l i q,uqvqaqﬁ o . . i
uv,eflIFS 30 | 47 2 a9 q-k where the quantitie$l; are the following projections of the

graviton self-energy:
- nuaquﬁ_ nvaquﬁ_ npﬁqvqa

- nvﬁaﬁ-aal ’ (36) Hi :H,U«V,aﬂ,TiMV’aB’ i=1,...14. (39)
qO=|d|

where we have employed the formua18 andq have the ~Each one of these projections can be expanded using Eq.
same meaning as in E(R.19. (3.5. The integrals over the modulus of can be easily

One can easily verify that this leadifig’ contribution is  performed using E(2.18) (they yield theT? facton and the
related to the one-graviton function in E§.19 by the Ward  angular integrals are all straightforward. Inserting the results
identity in Eq.(A5) (this result is also in agreement with the for II; into Eq. (3.8 and solving forC,, we obtain
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[ 4 2 4
cl’= KLgft S K 1, SK 1, 1a,lem
k2 |12 192i2] 36" 576k2 144" 3002
KoL(k) (7 25K?) 25Kk° 1K' 1 4
cp[KL (7 B BK 1k 1, e,
k¢ |32 192§2] 576+ 18k2 36 45,2
(KBL(k) (15 175k?| 175k® 55k° 1k* 1 4
c§2= 9—() — = ——T——T+—T+—k2——%k4 K2T?
kK6 |16 192k2] 576k6 288)4 18K2 9 152
[ 1 5 K\KLK 4 a 1 5 k* 5
T_|(_ -, 2" L T RA K2R kA = D T 2| 272
Ca ( 16+192|22) 2 15n0(k Kk 12") 5762 " 288¢ | T
(25 KeL(k) 1. 25Kk& 5 k* 1. 1
cf: — 6() T 2 2 0 e 8 4|<2k2+—|<4 T?
192 g6 18 576K+ 2882 9 15no 3
(7 25 K2\K'L(k) 25K* 1k> 4
:k% 35T 7055 _,—()-‘r—_,——i-—_)———a ara
32 192§2) g4 5764 18K2  45y2
(15 175K%|K°L(k) 175k® 55Kk* 1Kk® 1 4
Cl=kg - =+ ﬁ( )+—T+ —————— ik2 K2T?
16 192g2) g6 5766 288k4 18k2 18 15n
2 (13 31K 25 KKL(k) 25K' 13K 1 (4, 11 \al| ,,
Ci =K |t st — =~ = — = | =K+ =K? | = | «°T
1196 96§2  192)4) g2 5764 1442 487125 90 n2
12 [[15 55k2 175k*\Kk*L(k) 175k® 65 k* 11k? 2 «
Co =K | et 55t 0s sl = moace s 555w K| KT
16 322 192k4) g4+ 576kS  144)4 T2§2  45p2
2 (23 55k? 175k*|K'L(k) 175k® 65 k' 23Kk* 1 4« 4
Clo=K| | =+ ==+=|— === =2+ K2+ = k2 K2T?
32 32K2 192p4) K4 5766 1444 2882 12 15n2
o kK3 1, 35Kk* 175K’ k2L(k)+175k4+35k2 1, 2ap,
) 2 242 1924 g2 5764 96 |2 24" 1502
2 K'Y [1 29k* 95k* 175Kk° 175k* 155k* 5 2 a_
C12:_,_ —+_T+_T+_T L T e o M on A A A k2 K2T2
k2| \ 6 24K2 484 1926 5764 288K2 24 45p2
1 5k 25k*\KkL(k) 25k* 5 k¥ (14.. 1 \«a
C =k e | ———— = — 2o = — | K+ 5K | | k2T
16 48k2 1924 K2 5764 2882 3 né
25 kSL(k) 25k* 5 k* 1 1 af . 14
T2 o _ 2t e 2 - 2, =2 | 22
Cl=Ko| “ 1o Th76Re 28852 18 15 2( kT (310
[
where worth stressing. Firstly, thél? contributions show their
. gauge dependence explicitly through the gauge parameter
L (k)= ko Ko+ K| 31 Each of these gauge parameter dependent terms have two
(k)= 2|k| gk0—|IZ|_ ' (3.19 powers of momentum relative to the corresponding

a-independent onehe correct mass dimension is provided

There are some properties of tfié contributions which are by n3 in the denominatojs Secondly, the simple Ward iden-
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wheref{ andg] are polynomials in their arguments, and the
denominatorsy, have been replaced according to the pre-
scription (3.3). This is the most general form of the inte-
grands from the diagrams with gluon or ghost loops. Notice
that, in particular, the ghost loop expression given by Eg.
(3.2 yields, after projection, contributions of the kind given

FIG. 3. The source-ghost diagram. The solid and wavy line orby theg; terms above, which contains no on-shell poles.

the left represents the external source.

The parametep regulates the originally ill defined sums
and also makes possible the use of the fornt@la3, since

tity satisfied by the leadin@* contributions is no longer true now the integrand is regular along the imaginagy axis.
for the sub-leading contributions. In Appendix B we derive Hence Eq.(4.1) can be rewritten as
the more general 't Hooft identities and we verify that the

following identity is satisfied: S i ot e %I leaECOﬂ_(ﬂ)
(0) [rraB_ _ (T2 2uvap ' poor=1 i 2mi 2 >T
XILV}\ T2 T XMV)\ \% (313 o
(do)" | fi(ko,k-9,q%k?)
where y1), is represented by the diagram shown in Fig. 3. X D | qrR? +ge—q).
The T? contribution to x{!), is computed in detail in 0
Appendix B. 4.2

We have proceeded even further with the hard therm
loop expansion of Eq.3.4) and computed the contributions
from the integrands of degree minus 2qrAfter integration
these yield the lod terms. We have verified that the Idg
contributions of all the projection$l; [see Eq.(3.9)] are
simply related to the corresponding projections of the ultra-
violet divergent part of zero temperature graviton self-

a\lNe have employed E@2.14 and so the dimensionally regu-
larized integration of thg] terms has vanished. This impor-
tant property shows how the ghosts are effectively decoupled
at finite temperature.

Performing theq, integration by closing the integration

contour at right-hand side plane, we obtain, from Eg2),

energy. The zero temperature results were computed using 4

the gauge choicer=0 in [8]. Settinga=0 in our general

result we have verified that

I1%9  slrs=log(T)IT

mv,af

wherell? , ,; is the residue of the ultraviolet divergent zero
temperature contribution computed D=4-2¢ dimen-
sions. The verification of this property in the case of gravity

(3.13

r—1 m
[1P"*% |im — cotl’( —)
i I,L*)O'Z]' dlul’*l 2T

« j GG (ko K- GLGLRD). (43

In order to obtain the limitu—0, we need the following
expansions of the coth and its derivatives:

formulated in the temporal gauge complements similar re-

sults obtained in the Feynman—de Donder gaudes well cotf( i) = E +O(w),
as in the case of the Yang-Mills theof%7,24]. Since our 2T M
calculation has been performed for arbitrary values pfve g
i i 2T 11
present complete results in Appendix C. d—cot)—( %) B ; +6 T+O(M2),

IV. THE CONTRIBUTIONS FROM PRESCRIPTION
POLES

Let us now consider the terms that arise from the poles
located atgy= u, whereu is the quantity introduced in Eq.
(3.3. It is convenient to express these contributions directly
in terms of the projections defined by E§.9). Each one of

the 14 projections can be expressed as follows:

4 M k.o a2 k2
.| fi(kg,k-q,9%,k
Hipresc: IimE TE leql: |( 02 q q2 )
u—0r=1 " do q°(gq+k)
T (@0)"
+gf(k0,k~q,q2,k2)l—, i=1,2,...
' (95— 1)’

4.1

(4.9

An important property of the contribution of the prescription
poles is that all the temperature dependence arises only from
the expansions of the hyperbolic cotangent shown above as
odd powersof T. Therefore, the results obtained in the pre-
vious section for the leadingd* and sub-leadingr? and
log(T) are not modified by the temporal gauge prescription.
It remains to be verified that the limg—0 is well de-
fined. Our explicit calculations show that the results for all
projections do not involve inverse powers @f Using the
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symmetry of the angular integrals all the inverse powerg of sense thaju<T. Therefore, the prescription-dependent re-

cancel and we obtain finite results given by sults cannot be extended to the regiba>0.
1 T2 V. DISPERSION RELATIONS IN A GRAVITON PLASMA
Hpresc:Tf dD_lG—» FL(kgvk'quzykz) _ _ . .
I q6[—k(2,+(q+k)2]5[—k(2,+(q—k)2]5 . The sub-le_adlng hard the-rrnal_ Ioop_ contr|but|o_ns propor-
tional to T? will produce modifications in the solution of the
) Fz(ko,g,a,azlgz) dispersion relations describing the wave propagation in a
+ —f P-lg= 5 L TR graviton plasma. The dispersion relations were carefully in-
T q*[—ko+(q+Kk)*1P[—ks+(q—Kk)**  vestigated in the case of the leadififycontributiong2]. The
L inclusion of sub-leading contributions has been considered in
1( o1 Fi(ko.k-q,02,k?) the Feynman—de Donder gaudd]. Although the sub-
* Ff qaz[_k§+(a+|z)2][_kg+(a_|z)z] : leading modification of the solutions of the dispersion rela-

tions are suppressed by a fac®f?<1, in relation to the
(4.5 order one part arising from tHE* contributions, one may be
) _interested to know how the gauge dependence of the graviton
All these integrals are regular and can be done. In Appendixelf-energy will affect these solutiorithe one-graviton func-
D we show in an explicit example a closed form result. Fortjon, which also contributes to the dispersion relations, has
i=8,10,11,12 we obtaidIP"**=0, which is in agreement no sub-leading gauge dependent contributions at the one-
with the 't Hooft identity given by Eq(B5). We also show |oop order considered hereln Yang-Mills theories, the
that ITP"**<=0 for i=7,9,13,14. Though the non-vanishing problem of gaugéin) dependence is well understood since a
integrals (=1,2,3,4,5,6) introduce an extra temperature detheorem was proved by Kobes, Kunstatter and Rebhan
pendence, it is clear that they do not change the behavior gKKR) [25]. In a one-loop calculation, the gauge depen-
the hard thermal loop expressions obtained in the previoudences of the location of the poles of the gluon propagator
section. are explained in terms of the KKR identities. A well known
We remark that these non-vanishing integrals include botlexample of this problem is the gauge dependence of the plas-
the thermal and the zero temperature contributiomgtice ~ mon damping constarisee[26] for a recent reviewand its
that the integrands contains a coth instead of the purely thesolution by the Braaten and Pisarski resummation scheme
mal part involving the Bose-Einstein distributiorHad we  [27]. As far as we know, a complete analysis of this problem,
computed the thermal part separately we would be left withn the case of gravity, is still missing. Therefore, we believe
contributions which are divergent when—0 as well as the that it is important to investigate how gauge dependent the
inverse powers of’. Since the dimensional regularization is graviton propagator is and whether it is possible to extract
employed only for the space part of the integrals, the vacuungauge independent information. In this regard, it is remark-
part also contains inverse powersgofonly the fully dimen-  able that the one-loop calculations of the QCD damping con-
sionally regularized zero temperature calculation is well destant, in the axial gauge, though incomplete, satisfy some of
fined in the limit x—0 [15]). It is remarkable that the in- the necessary conditions required by any physical quantity,
verse powers ofi in the thermal part are exactly canceled by being both gauge independent and posifil/2].
the corresponding ones in the vacuum part and we are left With this motivation, let us apply our axial gauge results
only with the inverse powers of the temperature. This propin the dispersion relations associated with tin@nsverse
erty indicates that some of the ill-defined inverse powers ofraceless components the Jacobi equatiorior small distur-
n have been replaced by a thermal regulated expression. lances in the graviton plasma]. Proceeding as in Ref4],
order to understand why these prescription dependent partBe results given in Eq3.10 (as well as the corresponding
are not well defined wheli—0, one should notice that is  leadingT* contribution$ yields the following dispersion re-
a dimensionful parameter which was made “small” in the lations for the three transverse traceless modes:

2 1+167TGT2k2a 16mG 5+14|_ 12+52 2L+5 i 5, 1+11
1—5n_g_77p§§r 6 =12\ 16 - a8 12" 3r2)|
2 +16wGT2k2a 1+81 16mG 2 24L+22+101
15n_(2)§r_2_77p§r§r§r_2
+5|<2 13 5 54 5.0, 7 21 _772T4
I R T R ) L T
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=167Gp

8+34L +281 5k2 2L+154L
g T3Pt oot | gLt g

41 ) k?
tg e ,rfﬁ, (5.0

whereL (k) is given by Eq.(3.11).

Let us now solve these relations in the region of real
values ofky and K, which is relevant for the propagation of
waves, and then compare with the corresponding solutiongnd
previously obtained in the Feynman—de Donder gauge. It is
convenient to introduce the dimensionless quantilrlés
=|k|%(167Gp), w —w2/(167TGp) andn3=n3/(167Gp).
We will also choosc:‘n2 w? so that the scale of the gauge
fixing is Compat|ble Wlth the momentum scale. For interme-
diate values ok and w, the dispersion relations have to be
solved numerically and the results are qualitatively similar to

1+

( aX|aI)2

}_ (5.5

2./21

axialy2_
(g2 ==y

c k. (5.6)

4_
1+ 7k277GT2

When the same derivation is performed using Egsl5 of
Ref. [4], for arbitrary values of the gauge paramegferone
obtains the following results:

the ones shown in Fig. 3 of R€f4]. In order to discuss the 5 327G T2
specific issue of gauge dependence in terms of well defined (m°°” )%= 5 1-(9- g)T} (5.7
analytic expressions, we will consider the asymptotic reg|ons
of very small and very large values &fw. In the limit k J10 167G T2
—0 the solution of the dispersion relatioffs.1) gives the (m °0v 2= {1 (1- )—}? (5.8
following result for theplasma frequencythis is the mini- 3 15
mum frequency above which propagating waves are sup- nd
ported by the plasma
22 (25 27GT2 — 2\21]  16aGT?|_

axiah2 covnN2__ — Y -

(op )" =7z/1 (g a) 5 } (5.2 (M) =—g—|1+é—— k. (5.9
where we have neglected higher powerszdf?. From Egs. All these explicit examples clearly show the main differ-
(4.19 of Ref. [4] the same limitk—0 yields ences between these two distinct classes of gauges. It is re-

markable that the axial gauge subleading contributions con-
—cov. 2_2 327TGT2 tain extra powers ok which makes them larger than the
(@p™) 45 tA=9|——| 63 corresponding corrections in the covariant gauges, of order

(GT*(GT?). Notice, however, that the hard thermal loop

were ¢ is the gauge parameter in the class of covariangondition, k2< T2, implies thatk?’GT2<1 so that the sub-
gauges and=1 defines the Feynman—de Donder gauge emteading contributions will not exceed the leading ones. As far
ployed in Ref.[4]. An important property of these results is as the gauge dependences are concerned, we remark that
that, in both classes of gauges, there is the same strong dgrere are no gauge parameter dependences in the axial gauge
pendence on the gauge parameter. In order to understand ﬂ?l%ults(for the ch0|ceno o ~|k|2) While this property is

behavior, let us reintroduce the dimensionful paramete Eonsistent with the necessary requirement that any physical

3~ T4
16mGp=(8/15)m"GT". Then, in both classes of gauges, gnantlty should satisfy, the same is not true when the masses
one can see that the gauge dependent subleading correcti

is of order GT*)(GT2) which is of the same order as the ™ (I =A,B,C) are computed in the covariant gauges.
two-loop correctionsnot included in this calculation. There-
fore, the subleading contributions to the plasma frequency VI. DISCUSSION

constitute only a partial result at the one-loop order. In this paper we have explicitly computed the thermal

In the limit of high frequencies,w’~k®>1 the gne. and two-graviton functions in the temporal gauge. We
asymptotic behavior of the solutions is described bythiee-  15ve applied LeibbrandtEl5] prescription to deal with the
mal masses Z,Z—EZ (I=A,B,C). Using Egs(5.1) itis  temporal gauge poles at finite temperature. This calculation
straightforward to obtain the following results: provides a rather non-trivial explicit verification of the gauge
invariance properties of the hard thermal loop contributions.
Indeed, the leadind* behavior is in agreement with previ-

8—
1+ = k2 GT?|, e ; : :
ous calculations in covariant gauges. The subleading contri-

(maX|aI)2

(5.9
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butions of orderT? have a gauge dependence in agreement X axB
with the 't Hooft identities. We have also compared ourTog 9,,(X")=— —Yap
contributions with the residue of the ultraviolet pole of the Ix"# 9x

dimensionally regularized zero temperature graviton self-

energy, given in Ref[8], and found that they are the same

(this property has also been verified in the Feynman—de

Donder gaugdg4]). Our results also include the full gauge

parameter dependence, as shown in Appendix C. we obtain
Our explicit calculation indicates that the temporal gauge

may be consistently employed even in the highly non-trivial 9’ (X)—g,,(X)=5g

case of thermal gravity. The form of the prescription poles in ~*” r r

Eqg. (3.3 do not change the hard thermal loop behavior of =K,

our main result given by Eq3.4). An important property of

this forward scattering amplitude is that, as opposite to the

= gp,v(x) - gav(x)a,u,asa_ ga#(x)avésa

=0,,(x)+8e"d,9,,,(X), (A2)

== g/.w'[?v580—_ gvoﬁp,asa—_ 58)\((9)\g,u,v)

covariant gauges, it does not involtleermal ghostand the =—0,88,— 3,08 ,— k[ b,,(9,567)
gauge parameter dependence is lineat.in rooR a
In the analysis of the dispersion relations we have in- +¢,0(0,08%)+ 88Ny bui)],  (A3)

cluded the hard thermal loop subleading contributions pro- ) )
portional toT? and compared the structure of the gauge deWhere we have used E@.1). Inserting Eq.(A3) into Eq.
pendence with similar calculations which were performed(Al) and using integration by parts, we obtain

earlier in the Feynman gauge. As expected from general for-

mal arguments there are gauge dependent contributions f d*X SN 7,00, + 7,00 )5_£

which arises from the subleadififf terms in the graviton AT 5

self-energy. By power counting, some of the gauge depen- S
dent terms are of the same order as the two-loop contribu- = _Kf d*X SN, + Iy bop+ (In ) =
tions. However, the subleading terms, when computed in the . . L
axial gauge, are such that their contributions to the (A4)

asymptotic masses are enhanced by extra poweks afd

have a weaker gauge dependence. This behavior is analogol@king functional derivatives of EqA4) one obtains the
to what happens in QCD, where the plasmon damping confollowing Ward identities in momentum space:

stant (which also is subleading in the temperajuteas a

. . 1
weaker gauge dependence when computed in non-covariant -0 2uv
gauges. KX/,W}\(kl)VaB (kq,k2)
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1 2uv
APPENDIX A: WARD IDENTITIES ~ Xuvon (K1, k) V(i kg kp) - (AB)

In this appendix we derive the identities which must be 1, v
satisfied by the vertex functions generated from an action Xun(K)V g5y r0(Ke Ko K3, Ka)
which is invariant under coordinate transformations. These
identities provide an important consistency check of the =—X,lwam(kl,kz)Vs“fs’ym(kﬁ Ky ,k3,ky)
gravitational Feynman rules as well as the leading high tem- 1 3uv
perature thermal Green’s functions. = Xpvopn (K1, Ka) Vs o (Ky+Ks Kz Ky)
The invariance of an actiofcan be expressed as follows: v
P = Xhvron(Ke K V32 g5 (Ky Ky K Ks),
SL(X)
5= f d4x—(5¢>w(x)=0. (A1) (A7)
06 ,,(X)
where
Let us choose the following coordinate transformation with 0
an infinitesimal parametese ,(X): X (K1) = Kg 70+ Ky 7,0 (A8)
X! =xt+ 5eH(X). Xiva,@)\(kl K2) =K1, 70, pt Kauan 708
Performing the transformation in the metric + Ko Dau Mgy » (A9)
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and the vertice®" are the momentum space expressions for TABLE II. Ten independent tensors base.
the nth functional derivatives computed &t,,=0 (momen-
tum conservation is understood in all identilies kK, Ky
In the case of a tree-level action there is no one-point u,u,uy
“vertex” V" and so the quadratic term satisfies the trans- kyu,u,
versality condition uk,k,
Kk, u,uy +k,u,uy
Xo (k) V2" (K kp) =0. (A10) UK Ky + UK Ky
77,u.vk)\
This may not be the case for an effective gauge invariant 70Ux
Lagrangian. Indeed, it is well known that the one-graviton Ky 770+ K700
function is non-zero at finite temperature. Uy, 7op+ U, 7,00

APPENDIX B: GRAVITATIONAL 'T HOOFT IDENTITIES ) ) ) ) ) )
It is straightforward to show that the identif85) implies

The imaginary time forma}lism at fiqite temperature fol- that IT ,g= 1< b1 Heupi= Heups=0 and so these projec-
lows closely the corresponding formalism B&0. Conse-  tions have a temperature behavior which is at most propor-
quently, the 't Hooft identities at finitd would be identical tional to T%.
to the ones aT =0, if there were no 1-particle tadpole con-  |n order to verify(3.12 we need to calculate the tensor
tributions (such terms vanish at=0 in the dimensional XE}V)A which appears ifiB4). In this way we need the source-

regularization schemeHowever, since the tadpole is exactly graviton-ghost vertex which can be obtained from the La-
proportional toT#, it will not affect the identities involving grangian[28]

the sub-leading contributions. To derive these, we start from

the action ‘CS: KJ,U,VDIU'V}\E)\. (BG)
| :f d*XAY b, (X) SEEE(X—Y) s(Y) Using the transformatiodg,,,= «D ,,, €" we obtain
k2 1.
+ [ dixaty 00X, n 0y A o)+ @D 5
k]
Here S24# denotes the tree order quadratic term plus the uv ap
sub-leading contributions to the graviton 2-point function k
andX,,,, represents the tensor generated by a gauge trans- 3
formation of the graviton field which is given to lowest or-
der, in the momentum space, by E48). J*” is an external K
source, 7" represents the ghost field and the stand for = ~ 1 5[ 7ax 78:K2u T TapprKast NanpKar]+ @ B
terms which are not relevant for our purpose. The 't Hooft (B7)
identity involving the graviton self-energy function is a con-
sequence of the Becchi-Rouet-Stora-TyutBRST) invari-  The diagram in Fig. 3 can now be calculated using vertex
ance of the actior: (B7) and Feynman rule€.7), (2.10 and (2.11). Expanding
x5\ in the base shown in Table Il and using the forward
” 6l 6l o B2 scattering method as we did for the one- and two-graviton
X&]W(X) 8¢,,(X) B (B2) functions, we obtain the followindeading T contribution
for x() :
In general, Eq(B2) implies the 't Hooft identity 2
1) — _
X,u,V)\SéLquaB: O, (BS) X/,w)\ 18k0[ ﬂxuu,ﬂ' 77)\/J,ull ZU;LUVU)\]' (Bs)
which can be written to second order as Contracting(B8)) with V2#<# yields
XLy P = = XE v, (B4)

) vzwﬁ—Tzk 2k-u(kug+k k
Xpivh =18 ol 2k-u(k ugtkgu,) +k-u
whereV?#8 satisfies the identityA10). Using Eq.(A10)

we see that Eq(B4) leads immediately to the 't Hooft iden- X (270K = M gKa— M aKp) FKA(n 0 Ug
ti
ty +ﬂﬂxua_ZUQUBU)\)_k)\(kauB‘FkBua)

XONOTTE R (k,u) x(9s(k) = 0. (B5) — 2K U2 gty - (BY)
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Using the result foﬂ“”“’g which can be obtained inserting E®.10 into Eq.(3.7), we have verified that the contraction

with x{7), yields Eq. (Bg) with opposite sign in complete agreement with Ej12).

APPENDIX C: log T CONTRIBUTIONS FOR ARBITRARY VALUES OF a

In this appendix we complement the result presented in&@3 and include the contributions proportional to the gauge
parameterr. We have obtained the following results for the 14 projectimee Eq(3.9]:

2k4

9= 2 log(T)| 3 (1313/2 304y — 363 — 55— k*(4336/°~1948/° - 1272/ +39)

la
28'12

2k4

1
199=— 52y~ Dlog(T)| 7 (8y 113)———k2(1332y2 928/—19)

214

17 1
log__ 2
I3 6 28 2k (76y+1)

2k4
I179= 15.2109(T)

32(3525/2 464y — 23)—E—k2(y 1)(1084y%— 243y — 1)]

2k4

n{gg “ —(y— 1)Iog(T) (56y+59)+£—k2(y 1)(174y+1)
1572 n

log 4k%K4
== log(T)y(y— 1)

Hl7og Hlog Hlog Hlog Hlog Hlog

2k2k?

M35= 5= log(My*(y-1)

H log__ (Cl)

where we are using the quantiyy= kglk2 in order to compare with the zero temperature results of F3f.
In terms of these projections, the coefficients of the transverse traceless components of the graviton self-energy, as defined,
for instance, in Ref[2], can be written as

_K2k4| T'5 2y s 19 k§(24 391

Ca” 1572 09D Y Y T g 51 7 Tey

_K2k4| T-5 1181 k2 135 31 33y

CB_15777°9() A v “2\T Tey 1a

_K2k4| T 11 . 25 71 K3(53 1681 115 542 -
cc= 15,2109 5V "5V Te e zlai sey T Y Y €2
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These expressions show that the dispersion relations associated with the transverse traceless modes will, in general, be gaug
dependent at this order of perturbation theory.

APPENDIX D

As an example of the calculation shown in Sec. IV B we will calculate a contribution of the prescription poles for the
projectionII£™*. This contribution can be written as

q*+(5—2D)kg+ (2D — 6)k3(k?+ g?) + k*— 20%Kk?
do(q+k)?

2 D-135 _
e < d°~'q 1(D-3)D

Ko @ (271-)D_15 D-2 D

Using the prescriptiori3.3) and Eq.(2.13 we obtain

K2 Jmf dqof d°-1q k(qO)D(D—e,)[qo[<i4+(5—2D)|<3‘+(2D—6)k(2)(|22+<32)+|24—2<32|22]
[1E%%= —1lim — |

- cotn ===
Ko, o) —iz+e 4mi ) (27i)P~17 \2T/2 D=2 (95— 1) (a+k)?

+q<—>—q]. (D2)

Closing the integration contour at right-hand side plane and expanding in terms of a power sgrie® iabtain

1= A2 a2 2 _ 4, (P2 22\2
ngresc:Ksz d®'q D(D—3>[<2D 6)k3(G2+K?) + (5—2D)kg+ (K*—q?) }

— — +ke—k
(2mi)P~12 D=2 [k3—(q+k)?]2

d®~'q D(D-3)| —(2D—6)k3(g?+2k?) +(5—2D)kj+q*+4(k-q)?
=K2Tf . = (D3)
(27i)P~t D=2 (ki+9%)?
wherek, =ik, and we have performed a shit-q—K. In the limit D—4 we obtain
T R
TIE%% ——[Ky| (| ka|*—K?). (D4)

w

The contributions to the projectiod$b™*, T15*¢, T175>andI1}, *‘are obtained in a similar way and we find that they vanish.

However, for the projectionBl{®¢, TI5™%¢ T15"°%¢ T15"®*¢and I1£"***we have more involved expressions containing inverse
powers ofT as in Eq.(4.5).
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