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Thermal one- and two-graviton Green’s functions in the temporal gauge

F. T. Brandt, B. Cuadros-Melgar, and F. R. Machado
Instituto de Fı´sica, Universidade de Sa˜o Paulo, Sa˜o Paulo, SP 05315-970, Brazil

~Received 15 October 2002; revised manuscript received 24 March 2003; published 11 June 2003!

The thermal one- and two-graviton Green’s functions are computed using a temporal gauge. In order to
handle the extra poles which are present in the propagator, we employ an ambiguity-free technique in the
imaginary-time formalism. For temperaturesT high compared with the external momentum, we obtain the
leadingT4 as well as the subleadingT2 and log(T) contributions to the graviton self-energy. The gauge fixing
independence of the leadingT4 terms as well as the Ward identity relating the self-energy with the one-point
function are explicitly verified. We also verify the ’t Hooft identities for the subleadingT2 terms and show that
the logarithmic part has the same structure as the residue of the ultraviolet pole of the zero temperature
graviton self-energy. We explicitly compute the extra terms generated by theprescription polesand verify that
they do not change the behavior of the leading and sub-leading contributions from thehard thermal loop
region. We discuss the modification of the solutions of the dispersion relations in the graviton plasma induced
by the subleadingT2 contributions.

DOI: 10.1103/PhysRevD.67.125006 PACS number~s!: 11.15.2q, 11.10.Wx
m

i
ti
l

let
ro

te
to
r-

g
g

he
in
d
s
en
ls
ng
r

n
in

tu
e
e
nc
t
e
d

al
n

case.
ral
in
rgy
y
the
ral.
e

e

his
an
la-

to
the

ard
he
m-
um

ib-
e-
ral

a
or-

w
nly
We
ing
rip-
.
n

em-
ith

ton
l

I. INTRODUCTION

One of the main motivations for the first attempts to co
pute the self-energy at finite temperature was the study
dispersion relations of a graviton plasma and the related
teresting phenomena of antidamping and wave propaga
@1,2#. For temperaturesT high compared with the externa
momentum, but well below the Planck scale, the comp
tensor structure of the leading one-loop contributions, p
portional toT4, was calculated for the first time in Ref.@2#.
Later some subleading contributions of orderT2 were com-
puted, including the contributions of thermal scalar mat
and radiation@3#, and subsequently all terms proportional
T4, T2 and log(T) were computed taking into account the
mal loops of gravitons@4#.

When the internal graviton lines are included, the gau
dependence which arises from the choice of gauge fixin
the gravitational action becomes an issue. In Ref.@4# the
graviton self-energy was computed employing t
Feynman–de Donder gauge with an arbitrary gauge fix
parameter. While the subleading contributions are gauge
pendent, the leadingT4 contributions to the self-energy a
well as to the one-point function are gauge fixing indep
dent and satisfy the Ward identity. This last property is a
true for the contributions from matter and radiation, bei
consistent with a gauge invariant effective action for ha
thermal loops interacting with gravity.

One can go further into the question of gauge depende
by considering a class of non-covariant gauges of the k
that has been employed in gravity at zero tempera
@5–10#. At finite temperature non-covariant temporal gaug
would be even more appropriate, since Lorentz covarianc
already broken by the heat bath but the rotational invaria
is preserved. Despite the other well known advantages of
temporal gauge, finite temperature calculations have b
performed only in Yang-Mills theories both in imaginary an
in the real time formalisms@11–17#. This can be partially
understood in view of the complexity of the gravitation
interaction and so explicit calculations in non-covaria
0556-2821/2003/67~12!/125006~15!/$20.00 67 1250
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gauges have been restricted to the zero temperature
Another reason for the lack of popularity of the tempo
gauge in gravity is that, in contrast with the situation
Yang-Mills theory, the zero temperature graviton self-ene
is not transverse@7,8#. However, this should not be a ver
important concern in the finite temperature case where
transversality property is expected to be violated in gene
A more important difficulty in the temporal gauge is th
problem of spurious singularities arising from then50
terms in the Matsubara sums@18#, which is even more sever
in the case of gravity in view of the higher powers ofn in the
denominator of the temporal gauge graviton propagator. T
situation was improved after the development of
ambiguity-free technique to perform perturbative calcu
tions at finite temperature in the temporal gauge@15,16#.
Originally this technique was tested using zeta functions
compute the Matsubara sums and later it was applied to
calculation of the gluon self-energy using the stand
method of introducing thermal distributions by replacing t
Matsubara frequency sum with a contour integral in the co
plex plane of the zero component of the internal moment
@19#.

The purpose of the present work is to apply the Le
brandt’s prescription to the calculation of the thermal on
and two-graviton Green’s functions in a class of tempo
gauges. We will show explicitly how this approach leads to
well defined result which can be expressed in terms of f
ward scattering amplitudes of thermal gravitons@20# plus
contributions from prescription poles. We will also sho
how the ghost interactions effectively decouple leaving o
thermal gravitons in the forward scattering amplitudes.
provide the explicit results for the leading and sub-lead
hard thermal loop contributions and show that the presc
tion poles do not change the hard thermal loop behavior

In Sec. II we will present the Lagrangian for the gravito
field and the corresponding Feynman rules in a class of t
poral gauges. We will also illustrate the basic approach w
the simplest one-loop calculation, namely the one-gravi
function ~tadpole!. In Sec. III we describe how the therma
©2003 The American Physical Society06-1
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BRANDT, CUADROS-MELGAR, AND MACHADO PHYSICAL REVIEW D67, 125006 ~2003!
graviton self-energy can be split in two parts. The first p
arises from the on-shell poles of thermal graviton, and
expressed in terms of forward scattering amplitudes, w
the second part is generated by poles in the complex en
plane which are characteristic of the temporal gauge p
scription. We obtain from the forward scattering amplitud
the leadingT4 and the subleadingT2 and logT contributions.
In Sec. IV we explicitly calculate the contributions from th
prescription poles and compare the results with the high t
perature limit of the forward scattering expression. In Sec
we employ the hard thermal loop results, up to the suble
ing T2 contributions, to investigate the modification of th
solutions of the dispersion relations in a gravitational plasm
We will discuss our results in Sec. VI.

II. LAGRANGIAN, FEYNMAN RULES AND BASIC
DEFINITIONS

The graviton fieldfmn can be defined as a small pertu
bation around the flat space-time metric,hmn , as follows:

gmn~x!5hmn1kfmn~x!, k2532pG. ~2.1!

Here G is Newton’s constant andgmn is the metric tensor.
The Einstein Lagrangian density is given by

L5
2

k2
A2ggmnRmn ~2.2!

whereRmn is the Ricci tensor given by

Rmn5]nGma
a 2]aGmn

a 2Gmn
a Gab

b 1Gmb
a Gna

b

Gmn
a 5

1

2
gab~]mgbn1]ngbm2]bgmn!. ~2.3!

It is clear from the previous expressions that the Einst
Lagrangian is an infinity series in powers ofk ~an infinity
number of terms arises both from the inverse metricgmn and
from the determinantg). Each powerkn will come out mul-
tiplied by a combination of tensor scalar products ofn tensor
fields f and two derivatives]f. Performing a systematic
expansion in powers of the coupling constantk, it is
straightforward to obtain the tree-level Feynman rules co
sponding to the terms which are quadratic, cubic, etc.@30#.
Before we show the explicit form of these vertices, let
recall that the invariance of the Einstein action under gen
coordinate transformations~gauge transformations! imply
the existence of Ward identities relating all the vertices do
to the quadratic term~see Appendix A!. The identity given
by Eq.~A10! shows explicitly the usual problem of invertin
the free quadratic part of a gauge invariant Lagrangian. F
lowing the standard procedure of introducing a gauge fix
condition and ghost fields, we add the following two terms
the Einstein Lagrangian@21#

Lf ix52
1

2a
hmn~nrfrm!~nsfsn! ~2.4!

and
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Lghost52nmxn
dfmn

d«l
hl, ~2.5!

wherexm andhm are the gravitational Faddeev-Popov gho
vector fields,nm is the axial vector anda is a constant gauge
parameter. Using Eq.~A3!, we obtain the following explic-
itly form for the ghost Lagrangian:

Lghost5xn$nl]n1hlnn•]1k@nmfml]n1fnln•]

1nm~]lfmn!#%hl. ~2.6!

Notice that, unlike Yang-Mills theory, ghosts remain coupl
to the gravitons even for the choicea50. However, our
explicit calculation will show that the decoupling occu
when the loop integrations are performed.

TABLE I. The 14 independent tensors built fromhmn , km and
um[nm /n0 and satisfying the symmetry conditionsT mn,rs

i

5T nm,rs
i 5T mn,sr

i 5T rs,mn
i .

T mn,rs
1 5hmrhns1hmshnr

T mn,rs
2 5hmrunus1hmsunur1hnrumus1hnsumur

T mn,rs
3 5umunurus

T mn,rs
4 5hmnhrs

T mn,rs
5 5hmnurus1hrsumun

T mn,rs
6 5

1
k•u

@(hmrkn1hnrkm)us1(hmskn1hnskm)ur

1(hmrun1hnrum)ks1(hmsun1hnsum)kr#

T mn,rs
7 5

1
k•u

(kmunurus1knumurus1krumunus1ksumunur)

T mn,rs
8 5

1

k2
(hmrknks1hmsknkr1hnrkmks1hnskmkr)

T mn,rs
9 5

1

k2
(kmknurus1krksumun)

T mn,rs
10 5

1

(k•u)2
@(kmun1knum)(krus1ksur)#

T mn,rs
11 5

1

k2k•u
(umknkrks1unkmkrks1urkmknks1uskmknkr)

T mn,rs
12 5

1

k4
kmknkrks

T mn,rs
13 5

1

k2
(hmnkrks1hrskmkn)

T mn,rs
14 5

1
k•u

@hmn(krus1urks)1hrs(kmun1umkn)#
6-2
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We have now all the basic ingredients to perform pert
bative calculations in thermal gravity. The graviton propag
tor can now be obtained inverting the quadratic term ofL
1Lf ix . Our choice of gauge fixing is such that even the b
graviton propagator is already dependent on 14 indepen
t

os
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tensors as shown in Table I~we will employ this same
basis in order to obtain the tensor structure of the ther
self-energy! @31#. Using this tensor basis it is possib
to obtain the following compact form for the graviton prop
gator
s at
s,
Dlb,rs~k!5
1

~k21 i e!H I lb,rs
1 2

1

D22
I lb,rs

2 1a
k4

n0
2~k•u!2 FT lb,rs

8 1
k2

~k•u!2T lb,rs
12 2T lb,rs

11 G J , ~2.7!

where

I mn,rs
1 5

1

4
~dmkdnl1dmldnk!~drkdsl1drldsk!,

I mn,rs
2 5dmkdnkdrldsl , dmn5hmn2

kmun

k•u
,

are convenient linear combinations of the tensors in Table I. As we can see the graviton propagator has the usual polek250
as well as the poles atk•u5k050. The first and second order terms ink yield the following three and four graviton vertice
respectively:

Vab,rl,dg
3 ~k1 ,k2 ,k3!5

k

4
„$k2•k3@hab~hrlhdg2hrdhlg!14had~hbrhgl2hrlhbg!#

12k2a@k3b~hlghrd2hrlhdg!12k3r~hblhdg22hbdhlg!#

12k2r@2k3ahblhdg1k3l~2hbghad2habhdg!#12k2dk3r~habhlg22hblhag!%

1symmet. on~a↔b!,~r↔l!,~d↔g!…1permut. of~k1 ,a,b!,~k2 ,r,l!,~k3 ,d,g!, ~2.8!

Vab,rl,dg,ts
4 ~k1 ,k2 ,k3 ,k4!5

k2

16
„$k3•k4@~habhrl22harhbl!~hdghts2hdthgs!18~hadhbr1harhbd2habhdr!

3~hlghts2hsghtl!18hrthad~hbghsl2hbshgl!#14k3a~2k4rhbl2k4bhrl!

3~hdghts2hdthgs!116~k3rk4ahbd2k3ak4bhdr!~hgshlt2hglhts!18~k3ak4d1k3dk4a!

3~hrlhbg22hglhbr!hts116k3ak4d@hrt~2hbshgl2hbghsl!1hgs~2hrthbl2hrlhbt!#

216k3dk4ahrthbghsl12~k3tk4dhgs2k3dk4ghts!~habhrl22harhbl!

18~k3tk4dhgl2k3dk4ghlt!~2hbshar2hrshab!%

1symmet. on~a↔b!,~r↔l!,~d↔g!,~t↔s!…

1permut. of~k1 ,a,b!,~k2 ,r,l!,~k3 ,d,g!,~k4 ,ts!. ~2.9!
of
al

by
We have verified that these vertices are in agreement with
Ward identities described in Appendix A.

Finally, the quadratic and the interacting term in the gh
Lagrangian~2.6! yields the ghost propagator

D lm
ghost~k!5 i F 1

2~n.k!2 klnm2
1

n.k
hlmG ~2.10!

and the graviton-ghost-ghost vertex
he

t

Vmk,rn
Ggg ~k1 ,k2 ,k3!5 ik~hrmhnkn.k21hrknmk2n

1hnknmk1r!1m↔k, ~2.11!

respectively.

A. The one-point function

In order to introduce our notation and the basic method
calculation we will rederive here the result for the therm
one-point function. The one-point function is interesting
6-3
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BRANDT, CUADROS-MELGAR, AND MACHADO PHYSICAL REVIEW D67, 125006 ~2003!
itself, since it is directly related to the energy momentu
tensor derived from the effective action@2#. It also provides
the simplest non-trivial example of a one-loop calculation
gravity. Indeed, in contrast with the zero temperature ca
the finite temperature one-point function is non-zero, be
exactly proportional toT4. For that reason it will play an
important rôle in the Ward identities obeyed by the ha
thermal loop Green’s functions.

The relevant diagrams are shown in Fig. 1. Using
imaginary time formalism@18#, Eqs.~2.10! and ~2.11! give
the following contribution for the ghost loop diagram show
in Fig. 1~a!:

Gmn
ghost5kT(

q0

E dD21qW

~2p!D21
hmn , q052p inT,

n50,61,62, . . . . ~2.12!

Throughout this work the Matsubara sums like that one
Eq. ~2.12! will be computed using the standard and eleg
relation @18#

T(
q0

f ~q0!5E
2 i`1d

i`1d dq0

2p i
@ f ~q0!1 f ~2q0!#

1

2
cothS q0

2TD
5E

2 i`1d

i`1d dq0

2p i
@ f ~q0!1 f ~2q0!#

3S 1

2
1

1

eq0/T21
D . ~2.13!

In general, the vacuum part of the amplitudes@terms which
arise from the factor 1/2 inside the parentheses of Eq.~2.13!#
may be divergent in the limitD→4 and so the arbitrary
dimensionD provides a regulator for the vacuum piece
the thermal Green’s functions as usual@22#.

The tadpole diagram provides the simplest example o
effective decoupling of the ghost graviton interaction in t
temporal gauge~this is not a trivial property at non-zer
temperature!. Indeed, substituting Eq.~2.13! into Eq. ~2.12!
we can see that the vacuum piece vanishes as a conseq
of the identity

FIG. 1. Diagrams contributing to the one-graviton function
the one-loop approximation. The curly lines represent gravitons
the dashed lines represent ghosts.
12500
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E dD21qW uqW ur50. ~2.14!

The thermal piece also vanishes since we can close the
tour in the right-hand side of theq0 plane without enfolding
any poles.

The contribution from the graviton loop in Fig. 1~b! is a
little bit more involved. After some straightforward tens
algebra we obtain from Eqs.~2.7! and ~2.8! the following
result:

Gmn5kT(
q0

E dD21qW

~2p!D21

D

8

3F2~D23!
qmqn

q2
2~D25!hmnG . ~2.15!

It is interesting to notice that the gauge parametera from the
graviton propagator has already canceled out at the integ
level.

Let us now compute Eq.~2.15! with the help of formula
~2.13!. As in the case of the ghost loop diagram, the con
bution proportional tohmn vanishes. The dimensional regu
larized vacuum piece will also vanish and we are left w
only the following expression:

Gmn52kE
2 i`1d

i`1d dq0

2p i

1

eq0 /T21
E d3qW

~2p!3

qmqn

q2
.

~2.16!

Closing the contour in the right hand side plane the pole
q05uqW u gives the following contribution

Gmn52kE
0

` duqW u

~2p!3

uqW u3

euqW u/T21
E dVq̂mq̂nU

q05uqW u

,

~2.17!

where we have introducedq̂m5qm /uqW u and*dV is the inte-
gration over all directions ofqW . Finally, using the formula
@23#

E
0

` xn21

ex/T21
dx5G~n!z~n!Tn ~2.18!

we obtain

Gmn52k
p2T4

30 E dV

4p
q̂mq̂nU

q05uqW u

52k
p2T4

90
~4umun2hmn!, ~2.19!

where we have employed the quantityu[(1,0,0,0), which
coincides with the vector representing the local rest frame
the plasma and was introduced in Table I.

d

6-4
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FIG. 2. Diagrams contributing to the graviton self-energy. The curly lines represent gravitons and the dashed lines represent gh
external momentumk is inward.
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III. THERMAL FORWARD SCATTERING
CONTRIBUTIONS TO THE GRAVITON SELF-ENERGY

The diagrams which contribute to the graviton self-ene
are shown in Fig. 2. The relevant Feynman rules for
propagators and vertices are all given in the previous sec
Let us first consider the ghost loop diagram shown in F
2~a!. As we can see from the structure of the ghost propa
tor in Eq. ~2.10! the integrand will involve a combination o
fractions of the following type:
ry
en
es
m
a

n

in

12500
y
e
n.
.
a-

1

~q•u!m@~k1q!•u#n
, m,n50,1,2. ~3.1!

Before trying to perform the loop momentum integratio
explicitly it is convenient to simplify the integrand usin
well known algebraic identities and change of variab
which may reduce the number of terms considerably. Inde
we have found that using a partial fraction decomposition
the quantities shown in Eq.~3.1! and a shiftq→q2k in
the resulting partial fractions containing powers of@(q
1k)•u#21, leads to the simplest possible result given by
Pmn,ab
gh 5T(

q0

E dqD21

~2p!D21 Fk2k•qumunuaub

k•u3q•u
2

1

2

k2umunqaub

k•u2q•u
1

1

2

umknuaqb

k•uq•u
2

1

2

k•qumknuaub

k•u2q•u
2

1

2

umqnuaqb

q•u2

1
1

2

umqnkaub

k•uq•u
1

1

2
hamhbn1

1

2

qmunkaub

k•uq•u
2

1

2

k•qumunkaub

k•u2q•u
1

1

2

k•qqmunuaub

k•uq•u2
2

1

2

k2umqnuaub

k•u2q•u

1
1

2

k•qumqnuaub

k•uq•u2
2

1

2

qmunqaub

q•u2
2

1

2

qmunuaqb

q•u2
2

1

2

umqnqaub

q•u2
1

1

2
hanhbm2

1

2

k2qmunuaub

k•u2q•u
1

1

2

umknqaub

k•uq•u

1
1

2

kmunuaqb

k•uq•u
1

1

2

kmunqaub

k•uq•u
2

1

2

k•qkmunuaub

k•u2q•u
1

1

2

umqnuakb

k•uq•u
2

1

2

k•qumunuakb

k•u2q•u
1

1

2

qmunuakb

k•uq•u

2
1

2

k2umunuaqb

k•u2q•u
1

1

2

k•qumunuaqb

k•uq•u2
2

1

2

k•q2umunuaub

k•u2q•u2
1

1

2

k•qumunqaub

k•uq•u2 G . ~3.2!
r
y

ved
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This procedure~partial fractions and then shifts! has been
employed previously in the case of the Yang-Mills theo
@17#. In contrast with the present thermal gravity result giv
by Eq.~3.2!, the axial gauge Yang-Mills ghost loop vanish
at the integrand level. Notice that the partial fraction deco
position is justified since the integrands are regularized
cordingly.

Let us now consider the diagrams shown in Figs. 2~b! and
2~c!. An important difference between these diagrams a
the ghost loop is that while the ghost loop containsonly the
poles atq050, the structure of the graviton propagator
Eq. ~2.7! is such that there arealso the usual simple poles in
the right hand side plane located atq05uqW u andq05uqW 1kW u
2k0 for the diagram in Fig. 2~b! and at q05uqW u for the
diagram in Fig. 2~c! ~notice thatk0 is an imaginary quantity
-
c-

d

at this stage of the calculation!. In order to use the contou
method of integration described in Sec. II A, we will emplo
the following prescription for the poles atq050 @15#:

1

q0
r → lim

m→0

q0
r

~q0
22m2!r . ~3.3!

With this prescription the temporal gauge poles are mo
away from the imaginary axis and we are allowed to emp
the formula~2.13!. The q0 integral can then be performe
closing the contour of integration in the right hand side of t
q0 plane, as we did in the previous section in the case of
one point function. The contributions from theprescription
poleslocated atq05m will be analyzed in the next section
6-5
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We now follow the steps explained in Appendix A of Re
@17#. Basically this consists of the use of Eq.~2.13! taking
into account only the contributions from the poles located
the right hand side plane atq05uqW u and q05uqW 1kW u2k0.
to

en
rly

E
d

o

b
th
-
ib

e

12500
n

Then, in the residues from the poles atuqW 1kW u2k0 we per-
form the shift qW→qW 2kW and use the property coth(x1k0)
5coth(x). This yields the following expression in terms o
thermalforward scattering amplitudes:
~3.4!
uge

con-

ich

n-

Eq.

ults
where the factor 1/2 in front of the curly brackets takes in
account the symmetry of the graphs in Figs. 2~b! and 2~c!. It
is understood that the external graviton lines with mom
tum q are contracted with the tensor given by the cu
bracket of Eq.~2.7!.

We remark that the gauge parameter dependence of
~3.4! involves only linear terms ina. This can be understoo
since the quadratic powers ofa which could in principle
arise from the propagator in Eq.~2.7! do not have the on-
shell poles. Another interesting property of Eq.~3.4! is that it
does not involvethermal ghosts.

The forward scattering expression in Eq.~3.4! is very
convenient when considering thehard thermal loopcontri-
butions which arise from the region where the internal m
mentumq is of the order of the temperatureT, which is large
compared to the external momentumk. In this regime we can
expand the denominators in Eq.~3.4! as follows:

1

k262k•q
56

1

2k•q
2

k2

~2k•q!2 1•••. ~3.5!

The leading hard thermal loop contribution is obtained
considering all the integrands which are of degree two in
internal momentaq. After some straightforward but very te
dious algebra we were able to express the leading contr
tion in the following rather compact form:

Pmn,ab
lead uFS52k2

p2T4

30 E dV

4p

1

2 F S k•
]

]q̂
D q̂mq̂nq̂aq̂b

q̂•k

2hmaq̂nq̂b2hnaq̂mq̂b2hmbq̂nq̂a

2hnbq̂mq̂aG
q05uqW u

, ~3.6!

where we have employed the formula~2.18! and q̂ have the
same meaning as in Eq.~2.19!.

One can easily verify that this leadingT4 contribution is
related to the one-graviton function in Eq.~2.19! by the Ward
identity in Eq.~A5! ~this result is also in agreement with th
-

q.

-

y
e

u-

calculations performed in the Feynman–de Donder ga
@2,4#!. Since we expect that the leadingT4 contributions are
generated by a gauge independent effective action, the
tributions from the prescription poles in Eq.~3.3! should not
modify the leadingT4 behavior. This will be confirmed by
our explicit calculation in the next section.

Let us now consider the subleading contributions wh
are generated when we expand the integrand of Eq.~3.4! up
to terms of degree zero inq. By power counting these will be
of orderT2. In order to obtain the full tensor structure ge
erated by the expression~3.4! it is convenient to use the
following tensor decomposition:

Pmnab5(
l 51

14

ClT l
mn,ab , ~3.7!

where the tensorsT l
mn,ab are given in Table I. The coeffi-

cientsCl are obtained solving the system of 14 equations

(
l 51

14

~T i
mn,abTlmn,ab!Cl5P i , i 51,2, . . .,14, ~3.8!

where the quantitiesP i are the following projections of the
graviton self-energy:

P i5Pmn,abT i
mn,ab , i 51, . . .,14. ~3.9!

Each one of these projections can be expanded using
~3.5!. The integrals over the modulus ofqW can be easily
performed using Eq.~2.18! ~they yield theT2 factor! and the
angular integrals are all straightforward. Inserting the res
for P i into Eq. ~3.8! and solving forCl , we obtain
6-6
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d
-

where

L~k!5
k0

2ukW u
log

k01ukW u

k02ukW u
21. ~3.11!

There are some properties of theT2 contributions which are
12500
worth stressing. Firstly, theT2 contributions show their
gauge dependence explicitly through the gauge parametea.
Each of these gauge parameter dependent terms have
powers of momentum relative to the correspondi
a-independent ones~the correct mass dimension is provide
by n0

2 in the denominators!. Secondly, the simple Ward iden
6-7
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tity satisfied by the leadingT4 contributions is no longer true
for the sub-leading contributions. In Appendix B we deri
the more general ’t Hooft identities and we verify that t
following identity is satisfied:

xmnl
(0) PT2

mnab
52xmnl

(1)T2
V2mnab ~3.12!

wherexmnl
(1) is represented by the diagram shown in Fig.

The T2 contribution to xmnl
(1) is computed in detail in

Appendix B.
We have proceeded even further with the hard ther

loop expansion of Eq.~3.4! and computed the contribution
from the integrands of degree minus 2 inq. After integration
these yield the logT terms. We have verified that the logT
contributions of all the projectionsP i @see Eq.~3.9!# are
simply related to the corresponding projections of the ult
violet divergent part of zero temperature graviton se
energy. The zero temperature results were computed u
the gauge choicea50 in @8#. Settinga50 in our general
result we have verified that

Pmn,ab
log uFS5 log~T!Pmn,ab

e , ~3.13!

wherePmn,ab
e is the residue of the ultraviolet divergent ze

temperature contribution computed inD5422e dimen-
sions. The verification of this property in the case of grav
formulated in the temporal gauge complements similar
sults obtained in the Feynman–de Donder gauge@4# as well
as in the case of the Yang-Mills theory@17,24#. Since our
calculation has been performed for arbitrary values ofa, we
present complete results in Appendix C.

IV. THE CONTRIBUTIONS FROM PRESCRIPTION
POLES

Let us now consider the terms that arise from the po
located atq05m, wherem is the quantity introduced in Eq
~3.3!. It is convenient to express these contributions direc
in terms of the projections defined by Eq.~3.9!. Each one of
the 14 projections can be expressed as follows:

P i
presc5 lim

m→0
(
r 51

4

T(
q0

E dD21qW F f i
r~k0 ,kW•qW ,qW 2,kW2!

q2~q1k!2

1gi
r~k0 ,kW•qW ,qW 2,kW2!G ~q0!r

~q0
22m2!r

, i 51,2, . . . ,14,

~4.1!

FIG. 3. The source-ghost diagram. The solid and wavy line
the left represents the external source.
12500
.

al

-
-
ng

-

s

y

where f i
r andgi

r are polynomials in their arguments, and th
denominatorsq0

r have been replaced according to the p
scription ~3.3!. This is the most general form of the inte
grands from the diagrams with gluon or ghost loops. Not
that, in particular, the ghost loop expression given by E
~3.2! yields, after projection, contributions of the kind give
by thegi

r terms above, which contains no on-shell poles.
The parameterm regulates the originally ill defined sum

and also makes possible the use of the formula~2.13!, since
now the integrand is regular along the imaginaryq0 axis.
Hence Eq.~4.1! can be rewritten as

P i
presc5 lim

m→0
(
r 51

4 E
2 i`1e

i`1e dq0

2p i E dD21qW
1

2
cothS q0

2TD
3H ~q0!r

~q0
22m2!r F f i

r~k0 ,kW•qW ,qW 2,kW2!

q2~q1k!2 G1q↔2qJ .

~4.2!

We have employed Eq.~2.14! and so the dimensionally regu
larized integration of thegi

r terms has vanished. This impo
tant property shows how the ghosts are effectively decoup
at finite temperature.

Performing theq0 integration by closing the integratio
contour at right-hand side plane, we obtain, from Eq.~4.2!,

P i
presc5 lim

m→0
(
r 51

4
dr 21

dm r 21
cothS m

2TD
3E dD21qW Gr~m,k0 ,kW•qW ,qW 2,kW2!. ~4.3!

In order to obtain the limitm→0, we need the following
expansions of the coth and its derivatives:

cothS m

2TD5
2T

m
1O~m!,

d

dm
cothS m

2TD52
2T

m2 1
1

6

1

T
1O~m2!,

d2

dm2 cothS m

2TD5
4T

m31O~m!,

d3

dm3 cothS m

2TD52
12T

m4 2
1

60

1

T3 1O~m2!. ~4.4!

An important property of the contribution of the prescriptio
poles is that all the temperature dependence arises only
the expansions of the hyperbolic cotangent shown abov
odd powersof T. Therefore, the results obtained in the pr
vious section for the leadingT4 and sub-leadingT2 and
log(T) are not modified by the temporal gauge prescriptio

It remains to be verified that the limitm→0 is well de-
fined. Our explicit calculations show that the results for
projections do not involve inverse powers ofm. Using the

n
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symmetry of the angular integrals all the inverse powers om
cancel and we obtain finite results given by

P i
presc5TE dD21qW

Fi
1~k0 ,kW•qW ,qW 2,kW2!

qW 6@2k0
21~qW 1kW !2#5@2k0

21~qW 2kW !2#5

1
1

TE dD21qW
Fi

2~k0 ,kW•qW ,qW 2,kW2!

qW 4@2k0
21~qW 1kW !2#3@2k0

21~qW 2kW !2#3

1
1

T3E dD21qW
Fi

3~k0 ,kW•qW ,qW 2,kW2!

qW 2@2k0
21~qW 1kW !2#@2k0

21~qW 2kW !2#
.

~4.5!

All these integrals are regular and can be done. In Appen
D we show in an explicit example a closed form result. F
i 58,10,11,12 we obtainP i

presc50, which is in agreemen
with the ’t Hooft identity given by Eq.~B5!. We also show
that P i

presc50 for i 57,9,13,14. Though the non-vanishin
integrals (i 51,2,3,4,5,6) introduce an extra temperature
pendence, it is clear that they do not change the behavio
the hard thermal loop expressions obtained in the prev
section.

We remark that these non-vanishing integrals include b
the thermal and the zero temperature contributions~notice
that the integrands contains a coth instead of the purely t
mal part involving the Bose-Einstein distribution!. Had we
computed the thermal part separately we would be left w
contributions which are divergent whenm→0 as well as the
inverse powers ofT. Since the dimensional regularization
employed only for the space part of the integrals, the vacu
part also contains inverse powers ofm ~only the fully dimen-
sionally regularized zero temperature calculation is well
fined in the limit m→0 @15#!. It is remarkable that the in
verse powers ofm in the thermal part are exactly canceled
the corresponding ones in the vacuum part and we are
only with the inverse powers of the temperature. This pr
erty indicates that some of the ill-defined inverse powers
m have been replaced by a thermal regulated expressio
order to understand why these prescription dependent p
are not well defined whenT→0, one should notice thatm is
a dimensionful parameter which was made ‘‘small’’ in th
12500
ix
r

-
of
s

th

r-

h

m

-

ft
-
f
In
rts

sense thatm!T. Therefore, the prescription-dependent r
sults cannot be extended to the regionT→0.

V. DISPERSION RELATIONS IN A GRAVITON PLASMA

The sub-leading hard thermal loop contributions prop
tional toT2 will produce modifications in the solution of th
dispersion relations describing the wave propagation i
graviton plasma. The dispersion relations were carefully
vestigated in the case of the leadingT4 contributions@2#. The
inclusion of sub-leading contributions has been considere
the Feynman–de Donder gauge@4#. Although the sub-
leading modification of the solutions of the dispersion re
tions are suppressed by a factorGT2!1, in relation to the
order one part arising from theT4 contributions, one may be
interested to know how the gauge dependence of the grav
self-energy will affect these solutions~the one-graviton func-
tion, which also contributes to the dispersion relations,
no sub-leading gauge dependent contributions at the o
loop order considered here!. In Yang-Mills theories, the
problem of gauge-~in! dependence is well understood since
theorem was proved by Kobes, Kunstatter and Reb
~KKR! @25#. In a one-loop calculation, the gauge depe
dences of the location of the poles of the gluon propaga
are explained in terms of the KKR identities. A well know
example of this problem is the gauge dependence of the p
mon damping constant~see@26# for a recent review! and its
solution by the Braaten and Pisarski resummation sche
@27#. As far as we know, a complete analysis of this proble
in the case of gravity, is still missing. Therefore, we belie
that it is important to investigate how gauge dependent
graviton propagator is and whether it is possible to extr
gauge independent information. In this regard, it is rema
able that the one-loop calculations of the QCD damping c
stant, in the axial gauge, though incomplete, satisfy som
the necessary conditions required by any physical quan
being both gauge independent and positive@12#.

With this motivation, let us apply our axial gauge resu
in the dispersion relations associated with thetransverse
traceless componentsof theJacobi equationfor small distur-
bances in the graviton plasma@2#. Proceeding as in Ref.@4#,
the results given in Eq.~3.10! ~as well as the correspondin
leadingT4 contributions! yields the following dispersion re
lations for the three transverse traceless modes:
k2F11
16pGT2k2

15

a

n0
2G516pGrF S 5

9
1

1

2
r 4L2

1

6
r 2D1

5k2

p2T2 S r 2L1
5

16
r 4L2

5

48
r 22

1

12
1

1

3

1

r 2D G ,

k2F11
16pGT2k2

15

a

n0
2 S 11

8

3

1

r 2D G516pGrF S 2

9
22r 4L1

2

3
r 21

10

9

1

r 2D
1

5k2

p2T2 S 2
13

8
r 2L2

5

4
r 4L1

5

12
r 21

7

12
1

2

3

1

r 2D G , r5
p2

30
T4 ,
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k2F11
16pGT2k2
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n0
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1

r 4 1
32

9

1

r 2D G516pGrF S 8

9
13r 4L2r 21
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1
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5k2
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4
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15

8
r 4L

2
5

8
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1
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1

1
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4

9

1

r 4D G , r 2[
k2

kW2
, ~5.1!
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whereL(k) is given by Eq.~3.11!.
Let us now solve these relations in the region of r

values ofk0 andkW , which is relevant for the propagation o
waves, and then compare with the corresponding solut
previously obtained in the Feynman–de Donder gauge.
convenient to introduce the dimensionless quantitiesk̄2

[ukW u2/(16pGr), v̄2[v2/(16pGr) and n̄0
2[n0

2/(16pGr).
We will also choosen0

25v2 so that the scale of the gaug
fixing is compatible with the momentum scale. For interm
diate values ofk̄ and v̄, the dispersion relations have to b
solved numerically and the results are qualitatively similar
the ones shown in Fig. 3 of Ref.@4#. In order to discuss the
specific issue of gauge dependence in terms of well defi
analytic expressions, we will consider the asymptotic regi
of very small and very large values ofk̄,v̄. In the limit k̄
→0 the solution of the dispersion relations~5.1! gives the
following result for theplasma frequency~this is the mini-
mum frequency above which propagating waves are s
ported by the plasma!

~v̄pl
axial!25

22

45F11S 25

6
28a D 2pGT2

15 G , ~5.2!

where we have neglected higher powers ofGT2. From Eqs.
~4.15! of Ref. @4# the same limitk̄→0 yields

~v̄pl
cov.!25

22

45F12S 14

5
1~12j! D 32pGT2

15 G , ~5.3!

were j is the gauge parameter in the class of covari
gauges andj51 defines the Feynman–de Donder gauge e
ployed in Ref.@4#. An important property of these results
that, in both classes of gauges, there is the same strong
pendence on the gauge parameter. In order to understan
behavior, let us reintroduce the dimensionful parame
16pGr5(8/15)p3GT4. Then, in both classes of gauge
one can see that the gauge dependent subleading corre
is of order (GT4)(GT2) which is of the same order as th
two-loop corrections, not included in this calculation. There
fore, the subleading contributions to the plasma freque
constitute only a partial result at the one-loop order.

In the limit of high frequencies, v̄2; k̄2@1 the
asymptotic behavior of the solutions is described by thether-

mal masses m̄I
2[v̄ I

22 k̄I
2 (I 5A,B,C). Using Eqs.~5.1! it is

straightforward to obtain the following results:

~m̄A
axial!25

5

9 F11
8

5
k̄2pGT2G , ~5.4!
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~m̄B
axial!25

A10

3 F11A10k̄
4pGT2

15 G k̄ ~5.5!

and

~m̄C
axial!25

2A21

9 F11
4

7
k̄2pGT2G k̄. ~5.6!

When the same derivation is performed using Eqs.~4.15! of
Ref. @4#, for arbitrary values of the gauge parameterj, one
obtains the following results:

~m̄A
cov.!25

5

9 F12~92j!
32pGT2

15 G , ~5.7!

~m̄B
cov.!25

A10

3 F12~12j!
16pGT2

15 G k̄ ~5.8!

and

~m̄C
cov.!25

2A21

9 F11j
16pGT2

15 G k̄. ~5.9!

All these explicit examples clearly show the main diffe
ences between these two distinct classes of gauges. It i
markable that the axial gauge subleading contributions c
tain extra powers ofk̄ which makes them larger than th
corresponding corrections in the covariant gauges, of or
(GT4)(GT2). Notice, however, that the hard thermal loo
condition, k2!T2, implies thatk̄2GT2!1 so that the sub-
leading contributions will not exceed the leading ones. As
as the gauge dependences are concerned, we remark
there are no gauge parameter dependences in the axial g
results~for the choicen0

25v2.ukW u2). While this property is
consistent with the necessary requirement that any phys
quantity should satisfy, the same is not true when the ma
m̄I (I 5A,B,C) are computed in the covariant gauges.

VI. DISCUSSION

In this paper we have explicitly computed the therm
one- and two-graviton functions in the temporal gauge.
have applied Leibbrandt’s@15# prescription to deal with the
temporal gauge poles at finite temperature. This calcula
provides a rather non-trivial explicit verification of the gau
invariance properties of the hard thermal loop contributio
Indeed, the leadingT4 behavior is in agreement with prev
ous calculations in covariant gauges. The subleading co
6-10
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butions of orderT2 have a gauge dependence in agreem
with the ’t Hooft identities. We have also compared our logT
contributions with the residue of the ultraviolet pole of t
dimensionally regularized zero temperature graviton s
energy, given in Ref.@8#, and found that they are the sam
~this property has also been verified in the Feynman
Donder gauge@4#!. Our results also include the full gaug
parameter dependence, as shown in Appendix C.

Our explicit calculation indicates that the temporal gau
may be consistently employed even in the highly non-triv
case of thermal gravity. The form of the prescription poles
Eq. ~3.3! do not change the hard thermal loop behavior
our main result given by Eq.~3.4!. An important property of
this forward scattering amplitude is that, as opposite to
covariant gauges, it does not involvethermal ghostsand the
gauge parameter dependence is linear ina.

In the analysis of the dispersion relations we have
cluded the hard thermal loop subleading contributions p
portional toT2 and compared the structure of the gauge
pendence with similar calculations which were perform
earlier in the Feynman gauge. As expected from general
mal arguments there are gauge dependent contribut
which arises from the subleadingT2 terms in the graviton
self-energy. By power counting, some of the gauge dep
dent terms are of the same order as the two-loop contr
tions. However, the subleading terms, when computed in
axial gauge, are such that their contributions to
asymptotic masses are enhanced by extra powers ofk̄ and
have a weaker gauge dependence. This behavior is analo
to what happens in QCD, where the plasmon damping c
stant ~which also is subleading in the temperature! has a
weaker gauge dependence when computed in non-cova
gauges.
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APPENDIX A: WARD IDENTITIES

In this appendix we derive the identities which must
satisfied by the vertex functions generated from an ac
which is invariant under coordinate transformations. Th
identities provide an important consistency check of
gravitational Feynman rules as well as the leading high te
perature thermal Green’s functions.

The invariance of an actionScan be expressed as follow

dS5E d4x
dL~x!

dfmn~x!
dfmn~x!50. ~A1!

Let us choose the following coordinate transformation w
an infinitesimal parameterd«m(x):

x8m5xm1d«m~x!.

Performing the transformation in the metric
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gmn8 ~x8!5
]xa

]x8m

]xb

]x8n
gab

5gmn~x!2gan~x!]md«a2gam~x!]nd«a

5gmn8 ~x!1d«l]lgmn8 ~x!, ~A2!

we obtain

gmn8 ~x!2gmn~x![dgmn

5kdfmn

52gms]nd«s2gns]md«s2d«l~]lgmn!

52]nd«m2]md«n2k@fms~]nd«s!

1fns~]md«s!1d«l~]lfmn!#, ~A3!

where we have used Eq.~2.1!. Inserting Eq.~A3! into Eq.
~A1! and using integration by parts, we obtain

E d4xd«l~hnl]m1hml]n!
dL

dfmn

52kE d4xd«l@]nfml1]mfnl1~]lfmn!#
dL

dfmn
.

~A4!

Taking functional derivatives of Eq.~A4! one obtains the
following Ward identities in momentum space:

1

k
xmnl

0 ~k1!Vab
2mn~k1 ,k2!

52xmnabl
1 ~k1 ,k2!V1mn~k11k250! ~A5!

1

k
xmnl

0 ~k1!V abdg
3mn ~k1 ,k2 ,k3!

52xmnabl
1 ~k1 ,k2!V dg

2mn ~k11k2 ,k3!

2xmndgl
1 ~k1 ,k3!V ab

2mn ~k11k3 ,k2! ~A6!

1

k
xmnl

0 ~k1!V abdgts
4mn ~k1 ,k2 ,k3 ,k4!

52xmnabl
1 ~k1 ,k2!V dgts

3mn ~k11k2 ,k3 ,k4!

2xmndgl
1 ~k1 ,k3!V abts

3mn ~k11k3 ,k2 ,k4!

2xmntsl
1 ~k1 ,k4!V abdg

3mn ~k11k4 ,k2 ,k3!,

~A7!

where

xmnl
0 ~k1!5k1mhnl1k1nhml ~A8!

xmnabl
1 ~k1 ,k2!5k1nhamhlb1k1mhalhnb

1k2lhamhbn , ~A9!
6-11
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and the verticesVn are the momentum space expressions
thenth functional derivatives computed atfmn50 ~momen-
tum conservation is understood in all identities!.

In the case of a tree-level action there is no one-po
‘‘vertex’’ V1mn and so the quadratic term satisfies the tra
versality condition

xmnl
0 ~k1!Vab

2mn~k1 ,k2!50. ~A10!

This may not be the case for an effective gauge invar
Lagrangian. Indeed, it is well known that the one-gravit
function is non-zero at finite temperature.

APPENDIX B: GRAVITATIONAL ’T HOOFT IDENTITIES

The imaginary time formalism at finite temperature fo
lows closely the corresponding formalism atT50. Conse-
quently, the ’t Hooft identities at finiteT would be identical
to the ones atT50, if there were no 1-particle tadpole con
tributions ~such terms vanish atT50 in the dimensional
regularization scheme!. However, since the tadpole is exact
proportional toT4, it will not affect the identities involving
the sub-leading contributions. To derive these, we start fr
the action

I 5E d4xd4yfmn~x!Ssub
mnab~x2y!fab~y!

1E d4xd4yJmn~x!Xmnl~x2y!hl~y!1•••. ~B1!

Here Ssub
mnab denotes the tree order quadratic term plus

sub-leading contributions to the graviton 2-point functi
and Xmnl represents the tensor generated by a gauge tr
formation of the graviton field which is given to lowest o
der, in the momentum space, by Eq.~A8!. Jmn is an external
source,hl represents the ghost field and the••• stand for
terms which are not relevant for our purpose. The ’t Ho
identity involving the graviton self-energy function is a co
sequence of the Becchi-Rouet-Stora-Tyutin~BRST! invari-
ance of the actionI:

E d4x
dI

dJmn~x!

dI

dfmn~x!
50. ~B2!

In general, Eq.~B2! implies the ’t Hooft identity

XmnlSsub
mnab50, ~B3!

which can be written to second order as

Xmnl
(0) Psub

mnab52Xmnl
(1) V2mnab, ~B4!

whereV2mnab satisfies the identity~A10!. Using Eq.~A10!
we see that Eq.~B4! leads immediately to the ’t Hooft iden
tity

xmnl
(0) ~k!Psub

mnab~k,u!xabd
(0) ~k!50. ~B5!
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It is straightforward to show that the identity~B5! implies
that Psub85Psub105Psub115Psub1250 and so these projec
tions have a temperature behavior which is at most prop
tional to T4.

In order to verify~3.12! we need to calculate the tenso
xmnl

(1) which appears in~B4!. In this way we need the source
graviton-ghost vertex which can be obtained from the L
grangian@28#

LS5kJmnDmnlel. ~B6!

Using the transformationdgmn5kDmnlel we obtain

52 i
k

2
@halhbnk2m1hamhblk2n1hamhbnk3l#1a↔b.

~B7!

The diagram in Fig. 3 can now be calculated using ver
~B7! and Feynman rules~2.7!, ~2.10! and ~2.11!. Expanding
xmnl

(1) in the base shown in Table II and using the forwa
scattering method as we did for the one- and two-gravi
functions, we obtain the followingleading T2 contribution
for xmnl

(1) :

xmnl
(1) 5

T2

18
k0@hlnum1hlmun22umunul#. ~B8!

Contracting~B8!! with V2mnab yields

xmnl
(1) V2mnab5

T2

18
k0$2k•u~kaub1kbua!1k•u

3~2habkl2hlbka2hlakb!1k2~halub

1hblua22uaubul!2kl~kaub1kbua!

22k•u2habul%. ~B9!

TABLE II. Ten independent tensors base.

kmknkl

umunul

klumun

ulkmkn

kmunul1knumul

umknkl1unkmkl

hmnkl

hmnul

kmhnl1knhml

umhnl1unhml
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Using the result forPT2
mnab , which can be obtained inserting Eq.~3.10! into Eq. ~3.7!, we have verified that the contractio

with xmnl
(0) yields Eq.~B9! with opposite sign in complete agreement with Eq.~3.12!.

APPENDIX C: log T CONTRIBUTIONS FOR ARBITRARY VALUES OF a

In this appendix we complement the result presented in Eq.~3.13! and include the contributions proportional to the gau
parametera. We have obtained the following results for the 14 projections@see Eq.~3.9!#:

P1
log5

k2k4

15p2 log~T!F 1

32
~1312y22304y2363!2

1

28

a

n0
2

k2~4336y321948y221272y139!G
P2

log52
k2k4

15p2 ~y21!log~T!F 1

16
~8y2113!2

1

14

a

n0
2

k2~1332y22928y219!G
P3

log5
k2k4

15p2 ~y21!2log~T!F17

16
2

1

28

a

n0
2

k2~76y11!G
P4

log5
k2k4

15p2 log~T!F 1

32
~352y22464y223!2

1

7

a

n0
2

k2~y21!~1084y22243y21!G
P5

log52
k2k4

15p2 ~y21!log~T!F 1

16
~56y159!1

1

7

a

n0
2

k2~y21!~174y11!G
P6

log5
4k2k4

3p2 log~T!y~y21!

P7
log5P8

log5P9
log5P10

log5P11
log5P12

log50

P13
log5

2k2k4

3p2 log~T!y2~y21!

P14
log50, ~C1!

where we are using the quantityy[k0
2/k2 in order to compare with the zero temperature results of Ref.@8#.

In terms of these projections, the coefficients of the transverse traceless components of the graviton self-energy, a
for instance, in Ref.@2#, can be written as

cA5
k2k4

15p2 log~T!F5

2
y212y1

19

64
2a

k0
2

n0
2 S 24

7
1

39

56

1

yD G
cB5

k2k4

15p2 log~T!F5y21
1

8
y2

181

64
1a

k0
2

n0
2 S 135

7
1

3

8

1

y
2

333y

14 D G
cC5

k2k4

15p2 log~T!F11

6
y22

25

6
y2

71

192
1a

k0
2

n0
2 S 53

21
2

168

56

1

y
1

115

6
y2

542

21
y2D G . ~C2!
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These expressions show that the dispersion relations associated with the transverse traceless modes will, in genera
dependent at this order of perturbation theory.

APPENDIX D

As an example of the calculation shown in Sec. IV B we will calculate a contribution of the prescription poles f
projectionP6

presc. This contribution can be written as

P6
presc5

k2

k0
T(

q0

E dD21qW

~2p!D21

1

2

~D23!D

D22 FqW 41~522D !k0
41~2D26!k0

2~kW21qW 2!1kW422qW 2kW2

q0~q1k!2 G . ~D1!

Using the prescription~3.3! and Eq.~2.13! we obtain

P6
presc5

k2

k0
lim
m→0

E
2 i`1e

i`1e dq0

4p i E dD21qW

~2p i !D21
cothS q0

2TDD

2

~D23!

D22 H q0@qW 41~522D !k0
41~2D26!k0

2~kW21qW 2!1kW422qW 2kW2#

~q0
22m2!~q1k!2

1q↔2qJ . ~D2!

Closing the integration contour at right-hand side plane and expanding in terms of a power series inm we obtain

P6
presc5k2TE dD21qW

~2p i !D21

D

2

~D23!

D22 H ~2D26!k0
2~qW 21kW2!1~522D !k0

41~kW22qW 2!2

@k0
22~qW 1kW !2#2

1kW↔2kWJ
5k2TE dD21qW

~2p i !D21

D~D23!

D22 F2~2D26!k4
2~qW 212kW2!1~522D !k4

41qW 414~kW•qW !2

~k4
21qW 2!2 G ~D3!

wherek45 ik0 and we have performed a shiftqW→qW 2kW . In the limit D→4 we obtain

P6
presc5

2k2T

p
uk4u~ uk4u22kW2!. ~D4!

The contributions to the projectionsP7
presc, P9

presc, P13
prescandP14

prescare obtained in a similar way and we find that they vani
However, for the projectionsP1

presc, P2
presc, P3

presc, P4
prescandP5

prescwe have more involved expressions containing inve
powers ofT as in Eq.~4.5!.
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