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Can power corrections be reliably computed in models with extra dimensions?
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We critically reexamine the issue of power-law running in models with extra dimensions. The analysis is
carried out in the context of a higher-dimensional extension of QED, with the extra dimensions compactified
on a torus. It is shown that a naiy&function, which simply counts the number of modes, depends crucially
on the way the thresholds of the Kaluza-Klein modes are crossed. To solve these ambiguities we turn to the
vacuum polarization, which, due to its special unitarity properties, guarantees the physical decoupling of the
heavy modes. This latter quantity, calculated in the context of dimensional regularization, is used for connect-
ing the low energy gauge coupling with the coupling of bxelimensional effective field theory. We find that
the resulting relation contains only logarithms of the relevant scales, and no power corrections. If, instead, hard
cutoffs are used to regularize the theory, one finds power corrections, which could be interpreted as an
additional matching between the effective higher-dimensional model and some unknown, more complete
theory. The possibility of estimating this matching is examined in the context of a toy model. The general
conclusion is that, in the absence of any additional physical principle, the power corrections depend strongly on
the details of the underlying theory. Possible consequences of this analysis for gauge coupling unification in
theories with extra dimensions are briefly discussed.
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I. INTRODUCTION Even though these arguments are plausible, the impor-
tance of their consequences requires that they should be scru-
The study of models with extra dimensions has received #énized more carefully22]. In particular, the argument based
great deal of attention recenfl§—4], mainly because of the on MS running is rather tricky. As is well known, tHéS
plethora of theoretical and phenomenological ideas assocscheme, because of its mass independence, does not satisfy
ated with them, and the flexibility they offer for realizing decoupling, already at the level of four-dimensional theories.
new, previously impossible, field-theoretic constructions.instead, decoupling has to mposedby hand every time a
One of the most characteristic features of such models is thahreshold is passed: one builds an effective theory below the
of “early unification:” the running of gauge couplings is threshold,m, and matches it to the theory above the thresh-
supposed to be modified so strongly by the presence of theld. This matching is carried out by requiring that some
tower of Kaluza-Klein(KK) modes that instead of being physical amplitude or Green’s functiofi.e. the effective
logarithmic it becomes linear, quadratic, etc., depending oehargg is the same when calculated using either theory, at
the number of extra dimensioh§-21]. Specifically, it has energies wherboththeories are reliable, namely @ much
been widely argued that the gauge couplings runuds  below the threshold. Then, since the renormalization scale,
whereg is the number of compact extra dimensions. Thus, ify, is still a free parameter, one choogesroundm, in order
the extra dimensions are sufficiently large, such behavior ofo avoid large logarithms in the matching equations. In the
the couplings could allow for their unification at accessiblecase of gauge couplings ardS schemes with T pirac
energies, of the order of a few TeV, clearly an exciting pos-=4 gne finds(at one loop that gauge couplings are continu-
sibility. ous atu=m. This statement is, however, extremely scheme
The assertion that gauge couplings display power-lawyependent: just by choosing{Tp;ac = 2272 it is completely
running is based on rather intuitive arguments: In modifiedyqgified(see for instancg23]). In addition to these standard
minimal subtraction MS) schemes the QEIB function is  ambiguities, a new complication arises in the context of
proportional to the number of “active” flavors, namely the higher-dimensional models. In particular, the aforementioned
number of particles lighter than the renormalization scaleprocedure requires that the different scales be widely sepa-
Using this argument, and just counting the number of modegated in order to avoid the result that higher dimension op-
lighter thanu, one easily finds that the 8 function” of  erators, generated in the process of matching, become impor-
QED in models with extra dimensions grows a$. This  tant. However, the condition of having well-separated
behavior is also justified by explicit calculations of the thresholds is rather marginally satisfied in the case of an
vacuum polarization of the photon using hard cutoffs; sincenfinite tower of KK modes wittM,,=nM_ (M, is the com-
the cutoff cannot be removed, due to the non-pactification scale In fact, as we will see in detail later, the
renormalizability of the theory, it is finally identified with the results obtained for # function that just counts the number
renormalization scale, a procedure which eventually leads tef active modes depend very strongly on the prescription
a similar conclusioni6,7] (but with the final coefficient ad- chosen for the way the various thresholds are crossed.
justed by hand in order to match the naive expectation in As has been hinted above, the deeper reason behind these
MS). additional types of ambiguities is the fact that gauge theories
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in more than 4 dimensions, compactified or not, are nobut; this is the case of chiral perturbation theogP{) [34—
renormalizable. At the level of the 4-dimensional theory with37] (for more recent reviews see alg29,38,39).

an infinite number of KK modes the non-renormalizability |t is important to maintain a sharp distinction between the
manifests itself by the appearance of extra divergences, efiwo types of EFT mentioned above, i.e. Wilsonian or con-
countered when summing over all the modes. If the theory igsinuum, because conceptually they are quite different. How-
not compactified the non-renormalizability is even more evi-ever, perhaps due to the fact that the language is in part
dent, since gauge couplings in theories witkextra dimen- common to both types of theories, it seems that they are
sions have dimension %2, Therefore, gauge theories in often used interchangeably in the literature, especially when
extra dimensions should be treated as effective field theorieemploying cutoffs within the CEFT framework. In particular,
(EFT’s). Working with such theories presents several diffi-since the couplingsy; have dimension§a;]=M ™", when
culties, but, as we have learned in recent years, they can alsomputing loops one generally obtains effects which grow as
be very useful. In the case of quantum field theories in extrd A"«;)™, whereA is the formal CEFT cutoff, and as such is
dimensions, there is no alternative: basic questions, such a®id of physics. As a consequence, physical observables
the calculation of observables or the unification of couplingsshould be made as independent of these cutoffs as possible
can only be addressed in the framework of EFT’s. Howeverby introducing as many counterterms as needed to renormal-
before attempting to answer specific questions related to thige the answer. Not performing these renormalizations cor-
running of couplings in the extra-dimensional theories, ongectly, or identifying naively formal cutoffs with the physical
should first clarify the type of EFT one is going to use, sincecutoffs of the effective theory, can lead to completely non-
there are, at least, two types of EEX]: In one type, known sensical resultésee for instancf40,41]). This type of pitfall

as the “Wilsonian EFT"(WEFT) [25], one keeps only mo- may be avoided by simply using dimensional regularization,
menta below some scalk, while all the effects of higher since the latter has the special property of not mixing opera-
momenta or heavy particles are encoded in the couplings dbrs with different dimensionalities.

the effective theory. This method is very intuitive and leads, The usual way to treat theories with compactified extra
by definition, to finite results at each step; however, the presdimensions is to define them as a 4-dimensional theory with
ence of the cutoff in all expressions makes the method cuna truncated tower of KK modes at some large but otherwise
bersome to use, and in the particular case of gauge theoriegbitraryNg, a procedure which effectively amounts to using
difficult to reconcile with gauge invariance. The WEFT ap- a hard cutoff in the momenta of the extra dimensions. Thus,
proach has already been applied to the problem of running gfhysical quantities calculated in this scheme depend explic-
couplings in theories with compact extra dimensions, buitly on the cutoffNg, which is subsequently identified with
only for the case of scalar theorigal]. Within the context of some physical cutoff. However, as already commenbéd,
another type of EFT, often termed “continuum effective field plays the role of a formal cutoff, and is therefore plagued
theories”(CEFT’9 (see for instancf24,26—-31), one allows  with all the aforementioned ambiguities. Identification of this
the momenta of particles to vary up to infinity, but heavyformal cutoff with a universal physical cutoff can give the
particles are removed from the spectrum at low energies. Aslusion of predictability, making us forget that we are deal-
in the WEFT case the effects of heavier particles are abing with a non-renormalizable theory with an infinite number
sorbed into the coefficients of higher dimension operatorsof parameters, which can be predictive only at low energies,
Since the momenta are allowed to be infinite, divergenceshere higher dimension operators may be neglected.
appear, and therefore the CEFT needs to undergo both regu- In this paper we want to analyze the question of the run-
larization and renormalization. In choosing the specificning of gauge couplings in theories with compact dimensions
scheme for carrying out the above procedures particular cafeom the CEFT “canonical” point of view. We hasten to

is needed. Whereas in principle one could use any schememphasize that even the CEFT presents conceptual problems
experience has shown that the most natural scheme fan theories with compactified dimensions. Specifically, as
studying the CEFT's is dimensional regularization with mini- mentioned above, in the CEFT approach th&tual) mo-

mal subtraction[24,26—-3]1. CEFT's are widely used in menta are allowed to vary up to infinity; however, momenta
physics: for example, when in the context of QCD one talksrelated to the compactified extra dimensions turn out to be
about 3, 4 or 5 active flavors, one is implicitly using this KK masses in the 4-dimensional compactified theory, where
latter type of effective theor}27,32. Moreover, most of the it is supposed that one keeps only particles lighter than the
analyses of grand unificatiof28,33 resort to CEFT-type relevant scale. Thus, truncating the KK series amounts to
constructions: one has a full theory at the grand unifiectutting off the momenta of the compactified dimensions.
theory (GUT) scale, then an effective field theory below the Therefore, in order to define a true “non-cutoff” CEFT
GUT scale standard model or minimal supersymmetric stanscheme we are forced to keep all KK modes. Our main mo-
dard model is built, and then yet another effective fieldtivation is to seriously explore this approach, and investigate
theory below the Fermi scalgust QED + QCD). In these both its virtues and its limitations for the problem at hand.
cases the complete theory is known, and the CEFT languad&e hope that this study will help us identify more clearly
is used only in order to simplify the calculations at low en-which quantities can and which cannot be computed in ef-
ergies and to control the large logarithms which appear whefective extra-dimensional theories.

there are widely separated scales. Nevertheless, CEFT’s are The paper is organized as follows. In Sec. Il we discuss
useful even when the complete theory is not known, or wherthe usual arguments in favor of power-law running of gauge
the connection with the complete theory cannot be workeaouplings and show that they depend crucially on the way
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KK thresholds are crossed. In particular we show that a onecontains all compactification effects. We show that this latter
loop 3 function which simply counts the number of modes piece is UV and IR finite and proceed to evaluate it, while all
diverges for more than 5 dimensions, if the physical way ofUV divergences remain in the former, which we evaluate
passing thresholds dictated by the vacuum polarization fundising dimensional regularization.
tion (VPF) is imposed. The results of previous sections are used in Sec. V to
In Sec. Il we introduce a theory with one fermion and define an effective charge.(Q) which can be continuously
one photon in 4 & dimensions, with the extrd ones com-  extrapolated fronQ*<M_ to Q*>M. . We use this effective
pactified. This theory, which is essentially QED in-4 di-  charge to study the matching of couplings in the low energy
mensions, serves as a toy model for studying the issue diffective theory(QED) to the couplings of the theory con-
power corrections and the running of the coupling in a defitaining an infinite of KK modes. In the context of dimen-
nite framework. sional regularization we find that this matching contains only
In Sec. IV we study the question of decoupling KK modesthe standard logarithmic running from; to the compactifi-
in the aforementioned theory by analyzing the behavior ofation scaleM., with no power corrections. On the other
the VPF of the(zero-modg photon. Since, as commented hand, if hard cutoffs are used to regularize the VPF in the
above, decoupling the KK modes one by one is problematichon-compact space, one does find power corrections, which
we study the question of how to decouple all of them at oncemay be interpreted as an additional matching between the
To accomplish this we consider the VPF of the photon witheffective D=4+ 6 dimensional field theory and some more
all KK modes included, and study how it reduces@t complete theory. We discuss the possibility of estimating this
<M_, to the standard QED VPF with only one light mode. matching in the EFT without knowing the details of the full
Since the entire KK tower is kept untruncated, the theory igheory. This point is studied in a simple extension of our
of course non-renormalizable; therefore, to compute the VPRriginal toy model, by endowing the theory conside(@ED
we have to regularize and renormalize it in the spirit of thein 4+ & compact dimensionswith an additional fermion
CEFT, in a similar way that observables are defineg®¥.  With massM¢>M., which is eventually integrated out.
As in xPT, it is most convenient to use dimensional regular-
ization with minimal _sgbtraction, in _order to maintain a bet- Il. CROSSING THRESHOLDS
ter control on the mixing among different operators. How-
ever, at the level of the 4-dimensional theory the non- The simplest argumeriapart from the purely dimensional
renormalizability manifest itself through the appearance ofnes in favor of power-law running in theories with extra
divergent sums over the infinite KK modes, and dimensionatlimensions is based on the fact thatis-like schemes the
regularization does not seem to help in regularizing themg function is proportional to the number of active modes.
The dimensional regularization of the VPF is eventually ac-Theories withé extra compact dimensions contain, in gen-
complished by exploiting the fact that its UV behavior coin- eral, a tower of KK modes. In particular, if we embed QED
cides with that found when thé& extra dimensions have not in extra dimensions we find that electrof@so photons
been compactified. To explore this point we first resort to have a tower of KK modes with massé42=(n?+n3+
the standard unitarity relatiofoptical theorem which re- ... +n2)M2 with n; integer values ant .= 1/R, the com-
lates the imaginary part of the VPF to the total cross sectiopactification scale. The exact multiplicity of the spectrum
in the presence of the KK mOdeS; the latter is finite becausgepends on the details of the Compactification procedure
the phase space truncates the series@PerM? the uncom-  (torus, orbifold, etd. As soon as we cross the compactifica-
pactified result for the imaginary part of the VPF is rapidly tion scale, the KK modes begin to contribute, and therefore
reached, i.e. after passing a few thresholds. We then compuihe expects that thg function of this theory will start to
the real part of the one-loop VPF in the non-compact theoryeceive additional contributions from them. In a general
in 4+ 6 dimensions, where, of course, we can directly userenormalization scheme satisfying decoupling one can na-
dimensional regularization to regularize(#ince no KK re- jvely write
duction has taken plageFor later use we also present results
in which the same quantity is evaluated by using hard cut- u
offs. Finally, we show that the UV divergences of the one- ﬁzz ,Bof(—), (2.1
loop VPF are indeed the same in both thorusg- n M
compactified and uncompactified theories. Therefore, in
order to regularize the VPF in the compactified theory withwhere u is the renormalization scal@, is the contribution
an infinite number of KK modes it is sufficient to split the of a single mode, antl(x/M) is a general step function that
VPF into two pieces, an “uncompactified” piece, corre- decouples the modes as crosses the different thresholds,
sponding to the case where the extra dimensions are treateamely f(4/M)—0, u<M, and f(u/M)—1, u>M. For
on the same footing as the four usual ones, and a piece whidhstance inMS schemed (u/M)= (/M —1) whered(x)
is the step function. Then one finfi€ s=2 7T (5/2)]

This is in a way expected, since for very laQé>M .= 1/R, the QO w2 ol2
compactification effects should be negligible. Note, however, that B= E Bo*ﬂof dgﬁnﬁfld n=,80—§ — .
this is not always the case; a known exception is provided by the n<wp/Mc g Mg

orbifold compactificatiorf22]. (2.2

125004-3



OLIVER, PAPAVASSILIOU, AND SANTAMARIA PHYSICAL REVIEW D 67, 125004 (2003

This argument, simple and compelling as it may seem, canwherea=e?/(4). The above properties can be extended to
not be trusted completely becauseMi® schemes the decou- the QCD effective chargp45], with the appropriate modifi-
pling is put in by hand. Therefore, other types of schemes, ircations to take into account the non-Abelian nature of the
which decoupling seems natural, have been studied in th#heory, and provide a physical way for computing the match-
literature. For instance, in Rdf7] the VPF of the photon at ing equations between couplings in QCD at quark mass
Q?=0 was calculated in the presence of the infinite tower ofthresholds. One computes the VPF of QCD withflavors
KK modes by using a hard cutoff in proper time, and theand that of QCD withn;— 1 flavors, and requires that the
result was used to compute tifefunction; in that case the effective charge is the same f@?<m; in the two theories.
modes decouple smoothly. In addition, after adjusting thernis procedure gives the correct relation between the cou-
cutoff by hand one can reproduce the aforementioned resul!;”ngS in the two theorief23,46,47. However, one can eas-
obtained inMS. One can easily see that this procedure iy see that this cannot work for more than one extra dimen-
equivalent to the use of the functidfA/M)=e "M*" to  sion. To see that, let us consider the decoupling function
decouple the KK modes: f(n/M) provided by the one-loop VPF, which, as explained,
52 captures correctly the physical thresholds. The corresponding
2.3 f(u/M) may be obtained by differentiatinflz(Q) once
with respect toQ?; it is known [48] that the answer can be
well approximated by a simpler function of the form
If one chooses by hand’=T(1+ 8/2)A°, the sum in EQ.  f(u/M)=u2/(u2+5M2). We see immediately that if we
(2.3 agrees exactly with the sum obtained if one uses a shafpsert this last function in Eq2.1) and perform the sum over
step function. Even though this particular way of decouplingy kk modes the result is convergent only for one extra

KK modes appears naturally in some string scenddo$2— — qinension(with a coefficient which is different from the one
44, it hardly appears compelling from the field theory point obtained with the renormalization schemes mentioned ear-

of view; this procedure is not any better conceptually thaqier), while it becomes highly divergent for several extra di-

the sharp step-function decoupling of modes: one obtains g . .
smooth B8 function because one uses a smooth function tgensions. We conclude therefore that the physical way of

decouple the KK modes. decoupling thresholds provided by the VPF seems to lead to

These two ways of decoupling KK modes, due to the verya divgrgentﬁ fqnqtion in more than one gxtra dimension. As
sharp step-like behavior they impose, lead to a finite result i’ Will see, this is due to the fact that, in order to properly
Eq. (2.1) for any number of extra dimensions. One is _deflne the one-loop VPF faf>1, more than one subtraction
tempted to ask, however, what would happen if one were tés needed.
use a more physical way of passing thresholds. In fact, heavy
particles decouple naturally and smoothly in the VPF, be- . ATOY MODEL
cause they cannot be produced physically. Specifically, in o ] ] ) .
QED in 4 dimensions at the 0ne_|oop |eve|, the imaginary To be def|n|te we will ConS|der a theory Wlth one ferm|0n
part, 311(q?), of the VPFII(g?) is directly related, via the @nd one photon in 4 & dimensions, in which th& extra
optical theorem, to the tree level cross sectiondor the  dimensions are compactified on a torus of equal rayii
physical processes"e™—f*f~, by =1/M.. The Lagrangian is given by

2
=3 o N po| ms
- 0 0 MZ

c

S . e 1 MN i aM
3H(s)=;a(e e —f"f). (2.4 L‘5=—ZF Funtiygy "Dyt Ly, (3.1

Given a particular contribution to the spectral functionwhereM=0,...,3,...,3 . We will also use greek letters
JI1(s), the corresponding contribution to the renormalizedto denote four-dimensional indiceg=0, ...,3. Dy=du
vacuum polarization functioblz(g?) can be reconstructed —iepA,, is the covariant derivative witkp the coupling in
via a once-subtracted dispersion relation. For example, fo4+ & dimensions which has dimensi¢rp]=1/M %2, After

the one-loop contribution of the fermidhchoosing the on- compactification, the dimensionless gauge coupling in four
shell renormalization scheme, one fin@fsq is the physical dimensionsg,, and the dimensionful 4 & coupling are re-

momentum transfer witlg><0, as usual we defin@?=  lated by the compactification scéle
_ A2
q°) M, | 72
MR(Q)=Q? fw ds—— =a11(s) e4:eD(§) ' o2
= s———— —JIl(s
R am? s(s+Q?) T

Evidently ep is determined from the four-dimensional gauge

1 Q? Q* 2 coupling and the compactification scale, but in the uncom-
— =40l = Q?%/mZ—0 o - :
15 m2 m4)’ fr pactified space we can regard it as a free paraniiiterf .
2y f f in xPT). Finally £, represents possible gauge invariant op-
T |1 [Q?* 5 m? _—
§In — —§+O | Q“/mf— oo,
mg Q

Note that the factors 2 depend on the exact way the extra di-
(2.5 mensions are compactifigdn a circle, orbifold, etg.

125004-4



CAN POWER CORRECTIONS BE RELIABLY COMPUTED.. .. PHYSICAL REVIEW B7, 125004 (2003

erators with dimension 2D or higher, which are in general their comparison to the analogous terms obtained when re-
needed for renormalizing the theory; they can be computedorting to a hard-cutoff regularization.

only if a more complete theory, from which our effective
theory originates, is given. For instance, by computing the

) A. The imaginary part of the vacuum polarization
VPF we will see that arC; of the form

One can try to compute the VPF of the zero-mode photon

(o MK~ N directly in a theory with infinite KK fermionic modes. How-
Lct:WDMF D Fnkt+ - (3.3  ever, one immediately sees that, in addition to the logarith-
s mic divergences that one finds in QED, new divergences are
is needed to make it finite. encountered when summing over the infinite number of KK

The spectrum after compactification contains a photorfnedes. One can understand the physical origin of these di-
(the zero mode of the four-dimensional components of th&/€rgences more clearly by resorting to the unitarity relation
gauge boson the & extra components of the gauge boson(heres denotes the center-of-mass energy available for the
remaining in the spectrum asmassless real scalars, a tower Production procegs
of massive vector bosons with masdg=(n+n3+ - - -
+n3)MZ, njeZ, n;#0, 2192 massless Dirac fermions BH(ﬁ)(s)ziz S oete -t f)

(here the symbolx] represents the closest integer xo e;
smaller than or equal t&), and a tower of massive Dirac

fermions with masses also given by the above mass formula. @, 2M2
Note that this theory does not lead to normal QED at low =3 > o1+ n) \/1—4Mn7/s,
energies, first because tl#eextra components of the gauge N<Nth S

boson remain in the spectrum, and second because-ié 4 (4.3)

dimensions the fermions have 292 components, which
remain as zero modes, leading at low energy to a theory with/N€ré n<ny represents th% sum over aI2I the electron KK
2192 Dirac fermions. In thed =4+ & theory these will arise  Modes  such that 4G+ - +nHMZ<s, and a,
from the trace of the identity of the matrices, which just =€4/(4m). This sum can be evaluated approximately sor
counts the number of components of the spinors. To obtai#> Mg by replacing it by an integral; then we obtain
QED as a low energy theory one should project out the cor-
rect degrees of freedom by using some more appropriate ay (6+2)mo*D2[ g o2
compactification (for instance, orbifold compactifications IO (s)~ 35 T 2 |2 (4.2
can remove the extra components of the photon from the low 2 (6+5)12) Mz
energy spectrum, and leave just one Dirac fermidtow-
ever this is not important for our discussion of the VPF; we Itturns out that this last result captures the behavior of the
just have to remember to drop the additional factdf$Pto ~ same quantity when the extra dimensions are not compact;
make contact with usual QED with only one fermion. Theo-this is so because, at high energies, the effects of the com-
ries of this type, with all particles living in extra dimensions, pactification can be neglected. In fact, this result may be
are called theories with “universal extra dimensiorjg9]  deduced on simple dimensional grounds: as commented, the
and have the characteristic that all the effects of the KKgauge coupling in 4 & dimensions has dimension/";
modes below the compactification scale cancel at tree levdherefore one expects that1(?(s) will grow with s as
due to the conservation of the KK numbers. In particular, ands/M?)¥2, which is what we obtained from the explicit cal-
contrary to what happens in theories where gauge and scalaulation. To see how rapidly one reaches this regime we can
fields live in the bulk and fermions in the braf0,51, no  plot the exact result dI1(°(s) together with the asymptotic
divergences associated with summations over KK towers ap/alue. As we can see in Fig. 1, the asymptotic limit is
pear at the tree level. Finally, the couplings of the electrorreached very fast, especially for higher dimensions. For prac-
KK modes to the standard zero-mode photon are universdical purposes one can reliably use the asymptotic value soon
and dictated by gauge invariance. The couplings among thafter passing the first threshol@®>2M_, incurring errors
KK modes can be found elsewhd®2,53; they will not be  which are below 10%.
important for the discussion of the VPF that we present here. Now we can try to obtain the real part by using a disper-
sion relation like the one used in 4-dimensional QED, i.e.
IV. THE VACUUM POLARIZATION IN THE PRESENCE Eq. (2.5. However, one immediately sees that it will need a
OF KK MODES number of subtractions which depends on the values.of
Thus, for just one extra dimension, as in 4-dimensional
In this section we study in detail the behavior of the one-QED, one subtraction is enough, fé=2 and 6=3 two
loop VPF in the theory defined above for general values oBubtractions are needed, and so on. This just manifests the
the numbers of extra dimensions The main problems we non-renormalizability of the theory, and in the effective field
want to address ai@) the general divergence structure of the theory language, the need for higher dimension operators
VPF, (ii) a demonstration that it is possible to regulate theacting as counterterms. Even though this “absorptive” ap-
UV divergences using dimensional regularizatidii,) the  proach is perfectly acceptable, it would be preferable to have
appearance of non-logarithmipowe corrections, andiv) a way of computing the real part directly at the Lagrangian
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Let us compute the VPHIMN(q) in uncompactified
space, assuming that, if necessary, the dimensions will be
continued to complex values. We have that

d4* % 1 1
MN =ie2f —Tr{ M= N— , (4.3
uc (Q) D (277)4+5 7 ky k+q ( )

which by gauge invariance assumes the standard form
Q I (@)= (a?g"N=aMg™) I a).

If we now were to use that, ilD dimensions, TryMyN]
=2[P2lgMN " e would find that the low energy limit has an
extra 292 factor, which, as commented, is an artifact of the
torus compactification: there aré”?! too many fermions in
the theory. Therefore we simply drop this factor by hand.
Moreover, we use E(q3.2) and employ the proper-time pa-
rametrization in intermediate steps, thus arriving at

82 1
J dxx(1—x)
0

,{Q)= c
° Q)=

w
2
MC

© d
xf 71+7:5/2 exp{ — 7x(1—x)Q%

0

T og2  T(4+6)

ed w2122+ 5/2) ( 5)
s T3

4.4

A simple check of this result may be obtained by comput-
ing its imaginary part. To that end we I8¢ — —g?—i e with

T s i s e 5 Q q°>0. Then
FIG. 1. J11(9(Q) as compared with the asymptotic valué ( PP, oo spp. OT
=1,2,3).Q s given in units ofM. H-g"—ie}"=—-(q9) S'n7-

level (by computing loops, for instangeAs commented in  Now we can use thdt(— §/2)['(1+ 6/2) = — «/sin(67/2) to
the Introduction, to accomplish this we will use dimensionalwrite
regularization.

jHuc(q):aél 2775/2r2(2+5/2) q_2 N
B. The vacuum polarization in uncompactified [(4+0)I'(1+6/2) |v|§
4+ 6 dimensions
When using dimensional regularization to compute the _ (5+2)m>" D" q_2 "
VPF in uncompactified space, to be denoldg,, simple 2870 T((6+5)2) Mg

dimensional arguments suggest that one should typically ob- ) .

tain contributions of the form which agrees with our previous result of E¢.2).

For odd values ofé, the one-loopll,(Q) computed
g above is finite, since thE(— 6/2) can be calculated by ana-

) ' lytic continuation. This result is expected in a way, since in
an odd number of dimensions, by Lorentz invariance, there
are no appropriate gauge invariant operators able to absorb

since the two vertices in the loop provide afacﬂzér, whose any possible infinities generated in the one-loop VPF; this

dimensions must be compensated by the only available scalgould require operators which give contributions that go like
in the problem, namely?. In the above formula we have Q°. Notice, however, that at higher orddis(Q) will even-

used the relation of Eq3.2) in order to trade ofey for e,. tually become divergent. For instance, in five dimensions at

The omitted coefficient in front will be generally divergent, two loops, the VPF should go @32, since there are four

and will be regularized by letting— 56— e. elementary vertices. The divergences generated by these con-

Huc(Q)oceﬁ(szg
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tributions could be absorbed in an operator such as the one As we can see, the pieces that are independent of the
considered in the previous section, namblyFMKDNF . cutoff are exactly the same ones we obtained using dimen-
On the other hand, whefiis even,I'(— 6/2) has a pole, and sional regularization. But, in addition, we obtain a series of
subtractions are already needed at one loop. To compute tlentributions that depend explicitly on the cutoff. For in-
divergent and finite parts in a well-defined way we will use stance we find corrections to the gauge coupling which be-
dimensional regularization, i.e. we will assume that-8  have asA?, and just redefine the gauge coupling we started
— €. Notice however that, unlike in 4 dimensions, we do notwith [54]. In the case of 5 dimensions we also generate a
need to introduce an additional scale at this point, i.e. théerm linear inQ? however it is suppressed byAl/ and
equivalent of the 't Hooft mass scale M. plays the role of therefore it approaches zero for large In the case of 6
., and can be used to keep dimensionless. After expand- dimensions we obtain the same logarithmic behavior we
ing in € we find a simple pole accompanied by the usualfound with dimensional regularization, and the result can be
logarithm: cast in identical form, if the cutoff is absorbed in the appro-
priate counterterm. For 7 dimensions we also find divergent
Q2 o2 contributions which go a?. This means that, when using
HUC(Q)oc(—Z) ‘— —+In(Q2/M§)+ -1, (49 cutoffs, higher dimension operators in the derivative expan-
M € sion (e.g. operators giving contributions varying % or
highen are necessary to renormalize the theory and must be
Here the ellipsis represents a finite constant. Now, to renofincluded. In the case of dimensional regularization this type
malize this result we must introduce higher dimension operaof operator is not strictly needed at one loop; however, noth-
tors (for instance, if6=2 the operatoDFMD"Fyy will  ing forbids them in the Lagrangian, and they could appear as
do the job which could absorb the divergent piece. The “finite counterterms.” If one were to identify the in the
downside of this, however, is that we also have to introduceabove expressions with a physical cutoff, one might get the
an arbitrary countertermy, corresponding to the contribu- impression that, contrary to the dimensional regularization
tion of the higher dimension operator; thus we obtain a finiteapproach where arbitrary counterterms are needed, one could
quantity proportional to log?/M2)+ «. Note that, sincec is  now obtain all types of contributions with only one addi-
arbitrary, we can always introduce back a renormalizatiortional parameter, namelj. This is not true however: the
scale and write Io@2/M§)+K=Iog(Q2/,u2)+K(,u) with regulator function is arbitrary; we have simply chosen one
k(u)= K+|og(,f/|v|§), It is also important to remark that, in among an infinity of possibilities. By changing the regulator
the case of an odd number of dimensions, although at onkinction we can change the coefficients of the different con-
loop we do not need any counterterm to make the VPF finitefributions at will, except for those few contributions that are
higher dimensional operators could still be present and affedndependent ofA. These latter are precisely the ones we
its value. have obtained by using dimensional regularization. Thus,
In the case of uncompactified space, it is interesting t@ven when using cutoffs one has to add counterterms from
compare the above result with that obtained by regularizindiigher dimension operators, absorb the cutoff, and express
the integral using a hard cutoff. To study this it is enough tothe result in terms of a series of unknown coefficients. The
carry out the integral of Eq(4.4), with a cutoff in 7,  lesson is that with dimensional regularization we obtain all
=1/A2: calculable pieces, while the non-calculable pieces are related
to higher dimensional terms in the Lagrangian.
o2 4 What we will demonstrate next is that the one-loop VPF
f dxx(1—x) in the compactified theory on a torus can be renormalized
0 exactly like the VPF in the uncompactified theory; this will
allow us to compute it for any number of dimensions, and
examine its behavior for large and for small values of the

» dr ,
XJ Tl+5lzeXp{_TX(l_X)Q I (4.9 Q2
TO .

C

e}
Huc(Q) = 2_772

T
2
Mc

Then, for6=1,2,3 we obtain C. The vacuum polarization in 6 compact dimensions
From the four-dimensional point of view the vacuum po-

D e2 [ 372Q JmQ? @A larization tensor in the compactified theory is
Mec(Q="—| ~&am, "1sma 3w, )0 4D
K 1 1
e (q?)=2, ie} T v ¥
2 2 2 n (277) k_mn k+¢]_mn
H(Z)(Q):i ﬂ-l—i(Iog(QzlAz)-f— _7_7)
v 2% 6MZ  30M2 30/ | with m2=(n3+n2+...+n%M?2; for simplicity we have
4.9 assumed a common compactification radRss1/M;, for all
the extra dimensions. The sum ouerdenotes collectively
. 9121 573Q% #32Q2A  732A3 the'sum over all the modens,_: —%, ... ,+o. The contri.-
IQ)=—— - + (4.9 bution of each mode to this quantity seems quadratically
uc 2 3 3 3 . . :
27\ 768M ¢ 15M¢ IM¢ divergent, as in ordinary QED; however, we know that gauge
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invariance converts it to only logarithmically divergent. But, where we have rescaledin order to removeM . from the

in additi_on, thg sum over all the modes makes_ the above,(7) function. This last expression fdi(Q) is highly di-
expressions highly divergent. Instead of attempting to ComK/ergent in the UV ¢—0), because in that limit thgg(’r)

pute it directly, we will add and subtract the contribution of ; —— . : .
the vacuum polarization function of the uncompactiﬁedfunciIon goes as/m/. Then, if we define, as in E¢4.10,
M, =11-11I,., we have

theory in 4+ § dimensions:

v — v _TTMV mv 2 . 2
M+(q) = [T1#7(q) = T142() ]+ T14(q) T d—Texp{—Tx(l—X)Q—z]
~T1f2(0)+ T4, (4.10 2o o7 M

12
Here we have already taken into account the relation be- X Eg(q-)_(z) }
tween the coupling in 465 dimensions and the four- T
dimensional coupling and have restricted the external Lor-
entz indices to the 4-dimensional ones. Depending on thwhich is completely finite for any number of dimensions. In
value of § the vacuum polarization can be highly divergentfact, the last term provides a factor
(naively asA °*2, and after taking into account gauge invari-
ance as\®). However, we can use dimensional regulariza- N 82r—0 [ o\ 812 2
tion (or any other regularization schejm® make it finite. F s T)Egg( 7-)_(_) N 25( _) exp[ — _}
The important point is that the quantify#’(Q) is UV and T T T
IR finite and can be unambiguously computed.
Instead of doing the two calculations from scratch, wethat makes the integral convergent in the UV, while for large
will do the following: 7 this function goes to 1 quite fast. In this region the integral
(i) We will first compute the compactified expression by is cut off by the exponential of momenta; so we can think of
using Schwinger’s proper time;, to regularize the UV di-  the exponential eXp-x(1-X)Q%MZ} as providing a cutoff
vergences. for r>4M§/Q2, and Fs(7) as providing a cutoff forr
(i) We will show that the UV behavior of the compacti- < 2. With this in mind, we can estimatd;,(Q) as
fied theory,7—0, is just the behavior of the uncompactified

theory. e3 1 am2g2dr

(iii ) Therefore, to computlH ;' (Q) it is sufficient to com- Hin(Q)~ — > J dxx(l—x)f C
pute IT*”(Q) and then subtract its most divergent contribu- 27 n Jo L T
tion whent—0. We will see that it is sufficient to make it 5 5

=——> 00—, T, .
After a few manipulationgI#”(Q) can be written as 2726 4AM? ¢
nv — (A2 MY MY
1" (a)=(a%g a*a”)Ii(a), it is just the ordinary running of the zero mode. @3 grows,

where[7] the upper limit of integration is smaller than the lower limit,

and then we expect thak;,(Q) should vanish. In that region
o2 L I1(Q) will be dominated completely b¥l ,(Q).
__4 _ Let us evaluatdl;,(Q) for any number of extra dimen-
nQ)=— dxx(1 fin
@ 272 zn: fo XH(1=x) sions. To this end we will approximate the functiby(r) as

follows:
o\ 92 2
— expy — —¢, 71T,
T T

-\ o2
1+256Xp{—7'}—(;) . T>T.

><fx—dTexp[—r[x(l—x)Q2+mﬁ]}.
o 7
20

I1(Q) can be written in terms of the function Fs(r)=

+o 2
win= 5 o= 7a| )
" The matching point at= 7 makes the function continuous.
as In Fig. 2 we display the exact functidhg(7) (solid) and the
approximation abovédashedfor §=1,2,3. The approxima-
9121 1 wdr ftion is very good except in a small reg_ion around the mr_:ttch—
H(Q):—zf dxx(1—-x) | — ing point 7=a. This can be further improved by adding
2m=Jo o more terms from the expansions of thér) functions.
2 The approximate expression of Ed.12 can be used to
Xexpl —mX(1—X) —2] 9§( 7, obtain semianalytical expansions fﬁf‘?n(Q) for small Q?
Mg (we definew=Q?/M?):
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2 2
e
Q)= —[ 0.335-0.167logw) %.?R(Q)——[ 0.0937-0.167logw) + 0.298v

+0.463)w—0.11GW+ - - -], (4.13 —0.2020w3+ - - -]. (4.15

2

e2
2
Q)= 2—[ 0.159-0.167logw) To see how good these approximate results are, we can

compare with the exact results that can be obtained when
—0.105v(log(w) —1.795+ - - -], (4.14 =1. In this case we have

2,2

1/2 .
%?(Q)—_J dxx(1- X)z J —EXp{ (11— X)W}Z( ) exp{—n ]

T

2 o)
e 1 2
= dxx(l—x)E —exp[—27nyx(1—x)w}
2m2Jo A=1 N

2
e 1
=2—“2f0 dxx(1—x) (= 2log{1—ex — 2mX(1T—x)w]}). (4.16
T
|
This last expression can be expandedvfe&_l, and 'thel in- - eﬁ 45T (2+ 812) M‘c‘ , ,
tegral overx can the2n be performed analytically, yielding Q) ~ 2772 W 5@, Q>M¢,
1 1
%.%3<Q>~—( 1515~ 6log(2m)] - Glogw

whereK 4 is of the order of unity and is determined numeri-
3772 w? cally [K;=¢(5)=1.037,K,=1.165,K;=1.244). However,
T oWt (417 since the uncompactified contribution grows &(M?2) %2

54" 90
it is obvious that the contributions d(®(Q) from H%‘,?(Q)
which is in excellent agreement with our approximatieae  will be completely irrelevant f0Q2>M2

Eq. (4.13]. Adding the finite and the uncompactified contributions we
(Equatlon(4 16 can also be used to obtain the behavior offind that for Q2<M? the uncompactified contribution ex-
H/(Q) for w=1. In this limit we obtain actly cancels the correspondmg piece obtained from the ex-

- e4 37(5) M - pansion of[1{(Q) [the Vw piece for 5=1, the wlog(w)
5/(Q)~ o2 4 — Q&>MZ. piece for §=2, or the w® piece for §=3]. Then, for Q2
™ 7 Q <M?2 and choosing.= M we finally find

For higher dimensions things are more complicated, but the

behavior is the same, and we find 2 5 5

i DHA S
0.6
>3 Q%<M?2, (4.18
0.5
=2
Fs 04
03 / with the coefficients for 1,2 and 3 extra dimensions given by
02 7
. 1 5 1 2 3
ay) -0.335 —0.159 —0.0937
2 4 6 8 al® -0.110 0.183 0.298
1

FIG. 2. Exact values of 4(7) (solid) as compared with the As we will see below, in general the coefficierts’ can
approximation discussed in the textashed for 5§=1,2,3. be affected by non-calculable contributions from higher di-
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mension operators in the effective Lagrangian, which we Q2>M§,
have not included.
The following comments related to E@.18), which is
valid only in the dimensional regularization scheme we are 2 3
using, are now in order: 114)(Q) = € 57
(i) From Eq.(4.18 we see that for smalD?, as expected, 272 768
we recover the standard logarithm with the correct coeffi-
cient, independently of the number of extra dimensions. In

addition, interestingly enough, we can also compute the con-  aq pefore, the VPF could also receive non-calculable con-
stant term. Thus, although the full theory if-® dimensions iy, tions from higher dimension operators which we have
IS non—renormahzable and.h|ghly Q|verg¢nt, the low ENeIYot included: in fact, fow=2, these are needed to renormal-

limit of the VPF calculated in our dimensional regularization ., 1,4 VPF’ How I’arge cah these non-calculable contribu-

scheme is actually finite: when seen from low energies th‘?ions be? Since oub-dimensional theory is an effective

compactified extra dimensions seem to act as an uItraviol%eor valid onl forQ2<M2 even aboveM.. the results
regulator for the theory. y y s’ ¢

(i) When the energy begins to grow, we start seeing efwaI be dominated by the lowest power 6. In the case of

2272 . - 5=1, the first operator that one can write down goe®3as
;enCtSniunggﬁssfgifeé géh?chheaﬁg.«zltze' _?_Lgsnfslzgpbzr therefore we expect that the one-loop contribution, of order
cazse the gauge couplings ha\[/)e dimehsiorM % and JQ?, that we have computed will c_ompletely domin:_ate t.h.e
therefore, the one-loop VPF goes likeMl] result, as long as we do not stretch it beyond the applicability

' ' of the effective Lagrangian approach. Fé=2, counter-

(ii) For =1 one finds that, because of gauge and I‘Or'terms are certainly needed at ord@f; still one can hope

entz invariance, there are no possible counterterms of thi : : i )
dimension. The VPF must be finite, and that is precisely the ear:sthvxe/it:wescur:r;\;”Ilobear(ijt(r)]rrrr]:sr,]a};e?hbyPt‘P)e Ilc;%?rétf:(%s (r;?]%
result one obtains with dimensional regularization. This of? 9 X y

i 512.
course changes if higher loops are considered: for instancaighey, the one loop result grows aQf) % however there

! : 2 : could be operators giving contributions of ord®? with
two-loop diagrams go like M<, and, in general, we expect o . S .
that they will have divergences, which, in turn, should beunknown coefficientsin fact, although in dimensional regu-

. - - arization those are not needed, they must be included if
absorbed in the appropriate counterterms. In principle théutoffs are used to regularize the theorJherefore, unless

presence of these counterterms could pollute our result; ho or some reason they are absent from the theorv. the result
ever, the natural size of these counterterms, arising at twQ . . y Y
L - Will be dominated by those operators.
loops, should be suppressed compared to the finite contribu-
tions we have computed.
(iv) For =2 one finds that the VPF goes asvi, al-

ready at one loop, and that the result is divergent. The diver- V. MATCHING OF GAUGE COUPLINGS

gences have to be absorbed in the appropriate counterterm sing the VPF constructed in the previous section we can
coming from higher dimension operators in the higher di-efine a higher dimensional analogue of the conventional

mensional theory. The immediate effect of this is that thegep effective chargé5s,56, which will enter in any pro-
coefficient of theQ? term inI12)(Q) becomes arbitrary, its cess involving off-shell photons, e.g.

value depending on the underlying physics beyond the com-
pactification scale.

3/2
Q2

2
M Cc

(v) For 6>2 all loop contributions to th&? term are 1 1
finite, simply because of the dimensionality of the couplings. ———=—[1+11"(Q)]|ws, (5.2
This, however, does not preclude the existence of finite coun- 2en(Q)  as

terterms, which could be generated by physics beyond the

compactification scale, that is, contributions from operators ) ,

suppressed by two powers of the new physics scale like th@herea,=ez/(4m). We remind the reader thay denotes

operator in Eq(3.3). the (dimensionlesscoupling of the four-dimensional theory
For Q2>M§ the full VPF is completely dominated by the including all KK modes; it is directly related to the gauge

uncompactified contribution: coupling in the theory withy extra dimensions by E@3.2).

The subscripMS; means that the VPF has been regularized

using dimensional regularization iD=4+ 6—e€ dimen-

& 322 [Q2 sions, and that divergences, when present, are subtracted ac-

nOQ)=-— =1/ cording to theMS procedure.

272 64 M2 To determine the relation between and the low energy
coupling in QED, we have to identify the effective charge
computed in the compactified theory with the low energy

eﬁ 7 Q2 Q2 effective charge, at some Iow_energy sc_(itﬂ instanc_eQ_2
Q)= — 7= —5log| — |, =m2<M?2), where both theories are valid. In that limit we
22 30 Mz Mg can trust our approximate results of E4.18), and write
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1 1 2(5) 2I m; 5.2 1o
anm) a7 39w G2

127.8
This equation connects the low energy QED coupling with
the coupling in the compactifidd-dimensional theory, regu- 1577
larized by dimensional regularization. Note that this equation
is completely independent of the way subtractions are per-,; ¢
formed to remove the poles inel/These poles appear only
(and only for an even number of dimensipms the contri-
butions proportional taQ?, which vanish forQ—0. Equa-
tion (5.2) contains, apart from a finite constant, the standard
logarithmic running fromm; to the compactification scale FIG. 3. The “effective charge” against the energy scale dor
M.. It is interesting to notice that, in this approach, the_4 (solid), 5=2 (short dash 6=3 (long dash.
logarithm comes from the finite piece, and should therefore
be considered as an infraré) logarithm. When seen from
scales smaller thahl, these logarithms appear to have an

UV origin, while, when seen from scales aboM;, they unification. Instead, one could use E&.2), which relates

appear as having an IR nature. . . ! .
It is important to emphasize that, in this scheme, thethe coupling measured at low energies with the one appear

gauge coupling no longer runs above the compactificatimlnng| in the D-dimensional Lagrangian valid at energisk;

scale. This seems counter-intuitive, but it is precisely What<Q<MS' This relation involves a logarithmic correction,

happens inyPT when using dimensional regularizaticy; which is the only contribution that can be reliably computed

does not run, it just renormalizes higher dimensional operaw'tho.m. knowmg the physics beyortd ;. o .
It is instructive to see what happens if instead of dimen-

tors [26], sional regularization we use hard cutoffs to regularize the

Now we can use Eq5.2) to write the effective charge at - .
all energies in terms of the coupling measured at low energncompgctmed part of the VPF asin 5@5-6)‘(_4-9)- Then,"
gies: when using cutoffs, one can define an “effective charge” as

in Eq. (5.2):

is defined as the coefficient of the operafdt In particular,
one should not use this quantity to study gauge coupling

1 1 1
— _ (5) ) —
2 Q) a1 Q=IO (my) s, 11

(5.3) aeff(Q) a4(A)[1+H(5)(Q)]|Aa (5-4)

Note that the last term is independent®f due to the im- . } .

plicit dependence ofI(? on it. Equation(5.3) has the form  Where a,(A) now is the coupling constant in the theory
of a momentum-subtracted definition of the coupling; in fact,/égularized with cutoffs and the subscript indicates that

in four dimensions it is just the definition of the momentum-the VPF has been regularized with cutoffs. The use df a
subtracted running coupling. Fos=1 and at one loop, dependent coupling obviously implies the WEFT formula-
Q) —11)(my) is finite, anda.s(Q) can still be inter- tion, in which the_ cutoff is not remove(_j from the theory. On
preted as a momentum-subtracted definition of the couplinghe other hand, in the CEFT formulation one should renor-
For §>1, however, Eq(5.3 involves additional subtrac- malize the coupling constant by adding the appropriate coun-

tions, a fact which thwarts such an interpretation. terterms and then take the limk—oco. This usually brings
For Q2<M2 we can expandl(?(Q) and obtain in a new scale at which the coupling is defined, and which
Cc

effectively replaces\ in the previous equation. Notice also

1 1 2 o) Q2 that for =2 in Eq.(4.8) there are logarithmic contributions
= ——Iog(—)+(9 =1, proportional to Q?, which cannot be removed when
ae(Q)  aer(Mz) 3w ~Img M2 —o, The same is true fos>2, but with dependencies

which are proportional to\(°~2). This just manifests the

which is nothing but the standard expression for the effectivéieed for higher dimensional operators, as was already clear
charge in QED, slightly modified by small corrections of in the dispersive approach, to define the effective charge
order Q¥M2. However, as soon aQ*M?Z approaches properly. As one can see, the full VPF contains a term that
unity, the effects of the compactification scale start to appeagoes asA? and is independent of). This piece survives
in aer(Q), forcing it to deviate dramatically from the loga- whenQ—0, and thus we obtaifwe assumenz<Q?)
rithmic behavior, as shown in Fig. 3.

The crucial point, however, is that this effective charge

cannotbe interpreted anymore as the running coupliag 1 — 1 + 2 (\/Ei §+ Ea(a)

can be done in four dimensionsince it may receive contri- aer(Mz)  as(A)  3mo Mc) 7 °
butions from higher dimension operators; in fact some of 5 m

them are needed to define this quantity properly. These con- _ _|og(_z) _ (5.5
tributions have nothing to do with the gauge coupling which 37 T\ M
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Since a4(mM;) should be the same in the two schemes, wamay be encountered even if the dimensional regularization is
find the following relation between, and a,(A): employed. However, as one can easily see by setting, for
5 example,5=1 in Eq. (5.8), the coefficients of the power
i_ 1 n i \/—A)( corrections obtained knowing the full theory are in general
s ag(A) 376 7 M. different from those obtained using a hard cutoff, e.g. Eq.
(4.7). In fact, no choice ofA in Eq. (4.7) can reproduce all
If one identifiesA with the onset of a more complete theory the coefficients appearing in E¢5.9).
beyond the compactification scale, but at which the EFT The situation is somewhat similar to what happens when
treatment is still valid, i.e. if one assumes that-M¢g  \PT with SU(2)®SU(2) is matched toyPT with SU(3)
<Mjs, Mg being this new scale, E¢5.6) could be reinter- ¢ SU(3). In theSU(2)® SU(2) theory, just by dimensional
preted as a matching equation between the couphp®f  arguments, one can expect corrections likg/f2 . But can

our effective theory and the coupling of the theory at scalegne compute them reliably without even knowing that there
Mg, a4(Mg). Equation(5.6) generically tells us that one zre kaons?

expects corrections which go asl/M,)°. However, with-
out knowledge of the full theory beyond s, the meaning
of Mg [or evena,(Mg)] is unclear. In particular, if the new

theory is some grand unified theory in extra dimensidg, We attempted a critical discussion of the arguments in
will be, in general, not just one single mass, but severatayor of power-law running of coupling constants in models
masses of the same order of magnitude, related by differeffith extra dimensions. We showed that the naive arguments
coefficients. In the case of logarithmic running those coeffi{ead to an arbitrary3 function depending on the particular
cients can be neglected, because they give small logarithmgay chosen to cross KK thresholds. In particular, if one
next to the large logarithms containing the common scaleghooses the physical way of passing thresholds provided by
However, in the case of contributions which depend on powthe vacuum polarization function of the photongdunction
ers of the new physics scale the situation is completely diftnat counts the number of modes is divergent for more than 5
ferent, and the presence of several masses could completedymensions.
change the picture of unification. Cutoffs can give an indica- \\e studied the question of decoupling of KK modes in
tion of the presence of power corrections, but the coefficient@ED with 4+ & (compact dimensions by analyzing the be-
of these corrections cannot be computed without knowinghavior of the VPE of the photon. We computed first the
the details of the full theory. _ imaginary part of the VPF by using unitarity arguments, and
To see this point more clearly, we add to our & dimen-  foynd that it rapidly reaches the value obtained in a non-
sional theory an additional fermion with malsk SatiSfying compact theor)(omy a few modes are necesshrWe also
M¢>M¢>M., such that compactification correction_s may showed that it grows ass(M 5)6/2, exhibiting clearly the
be neglectezd, and compute ts effects on the coupling coryion-renormalizability of theories in extra dimensions. To ob-
stant for M¢<Q?*<M¢, using dimensional regularization. tain the full VPF, one can use an appropriately subtracted
We have dispersion relation. Instead, we use the full quantum effec-
tive field theory, with the expectation, suggested by the cal-
culation of the imaginary part of the VPF, that the bad UV
behavior of the theory is captured by the behavior of the
uncompactified theory. To check this idea, we computed the
X[MZ+x(1-x)Q?]72. (5.7  VPF in the uncompactified theory, regularized by dimen-
) ) ) ) sional regularization §&— é—¢). We found that, after ana-
By expanding forQ*<M; and integrating ovex we obtain |ytical continuation, the one loop VPF is finite, and propor-
5 tional to Q° for an odd number of dimensions, and has a
}+ o Q simple pole, proportional t®?, for an even number of di-
6 60Mm? mensions. This result can be understood easily, because there
(5.8  are no possible Lorentz and gauge invariant operators in the
Lagrangian able to absorb a term li¥ for odd 8. For &
For odd values o6 we can use the analytic continuation of even it shows that higher dimension operators are needed to
theI" function to obtain a finite result. For even valueséof regularize the theory. As a check we also recovered the
we will allow a slight departure from the integer value in imaginary part of the VPF in the limit of infinite compacti-
order to dimensionally regularize the integral. Clearly, inte-fication radius.
grating out the heavy fermion gives power corrections to the For comparison with other approaches, we also obtained
gauge coupling. In addition, it also generates contributions tehe VPF in the case that a hard cutoff is used to regularize it.
the higher dimension operators, e.g. contributions proporwe found that the pieces that do not depend on the cutoff are
tional toQ? and higher powers. As can be seen by comparingxactly the same as those obtained by dimensional regular-
with Egs. (4.6)—(4.9) these power corrections are qualita- ization, while the cutoff dependent pieces are arbitrary, and
tively similar to those calculated using a hard cutoff. Evi- can be changed at will by changing the cutoff procedure.
dently, in the context of a more complete thedrythis case, Next we computed the VPF in the compactified theory,
given the existence of a heavy fermjopower corrections and showed that it can be separated into a UV and an IR

(5.6)

VI. CONCLUSIONS

2 512
{7(Q)= %(Mic) I'(-4/2) foldxx(l—x)

e M\ [ 6
Q)= “(J?M—i) F(—z

2n?
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finite contribution and the VPF calculated in the uncompac{ective D dimensional field theory and some more complete
tified theory; as was shown previously, the latter can be contheory. The question is how reliably can this matching be
trolled using dimensional regularization. The finite part isestimated without knowing the complete theory. By adding
more complicated, but can be computed numerically for anyo our theory an additional fermion witkl;>M, and inte-
number of dimensions. Also, some analytical approximationgrating it out, we argue that power corrections cannot be
were obtained for the low and the high energy Iimi@ ( computed without knowing the details of the complete
<M. and Q> M, respectively. Adding these two pieces, theory, in which theD dimensional theory is embedded.
together with the counterterms coming from higher dimen-Some examples in which this matching can, in principle, be
sion operators, we obtain a finite expression for an effectiveomputed are some 5D GUT's and string models
charge which can be extrapolated continuously fr@m [8,14,20,57-58 and the recently proposed de-constructed
<M, to Q>M_; however, its value does depend on higherextra dimension§18,60—63. For the question of unification
dimension operator couplings. of couplings this result seems rather negative, at least when
Decoupling of all KK modes in this effective charge is compared with standard grand unified theories, where gauge
smooth and physically meaningful, and the low energy loga€oupling unification can be tested without knowing their de-
rithmic running is recovered. We use this effective charge tdails. Alternatively, one can approach this result from a more
connect the low energy couplindse. a.4(m;)] with the  optimistic point of view, and regard the requirement of low-
coupling of the theory including all KK modes, regularized energy unification of couplings as a stringent constraint on
by dimensional regularization. We find that this matchingthe possible extra-dimensional extensions of the SM.
involves only the standard logarithmic running framy to
the _compactifica_tion_scalmc . In particular, no power cor- ACKNOWLEDGMENTS
rections appear in this matching. However, if cutoffs are used
to regularize the VPF in the non-compact space, one does This work has been funded by the Spanish MCyT under
find power corrections, exactly as expected from naive dithe Grants BFM2002-00568 and FPA2002-00612; and by the
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these corrections as an additional matching between the eV01-94.
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