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Can power corrections be reliably computed in models with extra dimensions?

J. F. Oliver, J. Papavassiliou, and A. Santamaria
Departament de Fı´sica Teo`rica and IFIC, Universitat de Vale`ncia–CSIC, Dr. Moliner 50, E-46100 Burjassot (Vale`ncia), Spain

~Received 11 February 2003; published 11 June 2003!

We critically reexamine the issue of power-law running in models with extra dimensions. The analysis is
carried out in the context of a higher-dimensional extension of QED, with the extra dimensions compactified
on a torus. It is shown that a naiveb function, which simply counts the number of modes, depends crucially
on the way the thresholds of the Kaluza-Klein modes are crossed. To solve these ambiguities we turn to the
vacuum polarization, which, due to its special unitarity properties, guarantees the physical decoupling of the
heavy modes. This latter quantity, calculated in the context of dimensional regularization, is used for connect-
ing the low energy gauge coupling with the coupling of theD-dimensional effective field theory. We find that
the resulting relation contains only logarithms of the relevant scales, and no power corrections. If, instead, hard
cutoffs are used to regularize the theory, one finds power corrections, which could be interpreted as an
additional matching between the effective higher-dimensional model and some unknown, more complete
theory. The possibility of estimating this matching is examined in the context of a toy model. The general
conclusion is that, in the absence of any additional physical principle, the power corrections depend strongly on
the details of the underlying theory. Possible consequences of this analysis for gauge coupling unification in
theories with extra dimensions are briefly discussed.

DOI: 10.1103/PhysRevD.67.125004 PACS number~s!: 11.10.Kk, 11.10.Hi, 12.10.Dm, 12.10.Kt
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I. INTRODUCTION

The study of models with extra dimensions has receive
great deal of attention recently@1–4#, mainly because of the
plethora of theoretical and phenomenological ideas ass
ated with them, and the flexibility they offer for realizin
new, previously impossible, field-theoretic constructio
One of the most characteristic features of such models is
of ‘‘early unification:’’ the running of gauge couplings i
supposed to be modified so strongly by the presence of
tower of Kaluza-Klein ~KK ! modes that instead of bein
logarithmic it becomes linear, quadratic, etc., depending
the number of extra dimensions@5–21#. Specifically, it has
been widely argued that the gauge couplings run asmd,
whered is the number of compact extra dimensions. Thus
the extra dimensions are sufficiently large, such behavio
the couplings could allow for their unification at accessib
energies, of the order of a few TeV, clearly an exciting p
sibility.

The assertion that gauge couplings display power-
running is based on rather intuitive arguments: In modifi
minimal subtraction (MS) schemes the QEDb function is
proportional to the number of ‘‘active’’ flavors, namely th
number of particles lighter than the renormalization sca
Using this argument, and just counting the number of mo
lighter than m, one easily finds that the ‘‘b function’’ of
QED in models with extra dimensions grows asmd. This
behavior is also justified by explicit calculations of th
vacuum polarization of the photon using hard cutoffs; sin
the cutoff cannot be removed, due to the no
renormalizability of the theory, it is finally identified with th
renormalization scale, a procedure which eventually lead
a similar conclusion@6,7# ~but with the final coefficient ad-
justed by hand in order to match the naive expectation
MS).
0556-2821/2003/67~12!/125004~14!/$20.00 67 1250
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Even though these arguments are plausible, the im
tance of their consequences requires that they should be
tinized more carefully@22#. In particular, the argument base
on MS running is rather tricky. As is well known, theMS
scheme, because of its mass independence, does not s
decoupling, already at the level of four-dimensional theori
Instead, decoupling has to beimposedby hand every time a
threshold is passed: one builds an effective theory below
threshold,m, and matches it to the theory above the thre
old. This matching is carried out by requiring that som
physical amplitude or Green’s function~i.e. the effective
charge! is the same when calculated using either theory
energies whereboth theories are reliable, namely atQ2 much
below the threshold. Then, since the renormalization sc
m, is still a free parameter, one choosesm aroundm, in order
to avoid large logarithms in the matching equations. In
case of gauge couplings andMS schemes with Tr$I Dirac%
54 one finds~at one loop! that gauge couplings are continu
ous atm5m. This statement is, however, extremely sche
dependent: just by choosing Tr$I Dirac%52D/2 it is completely
modified~see for instance@23#!. In addition to these standar
ambiguities, a new complication arises in the context
higher-dimensional models. In particular, the aforemention
procedure requires that the different scales be widely se
rated in order to avoid the result that higher dimension
erators, generated in the process of matching, become im
tant. However, the condition of having well-separat
thresholds is rather marginally satisfied in the case of
infinite tower of KK modes withMn5nMc (Mc is the com-
pactification scale!. In fact, as we will see in detail later, th
results obtained for ab function that just counts the numbe
of active modes depend very strongly on the prescript
chosen for the way the various thresholds are crossed.

As has been hinted above, the deeper reason behind t
additional types of ambiguities is the fact that gauge theo
©2003 The American Physical Society04-1
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in more than 4 dimensions, compactified or not, are
renormalizable. At the level of the 4-dimensional theory w
an infinite number of KK modes the non-renormalizabil
manifests itself by the appearance of extra divergences,
countered when summing over all the modes. If the theor
not compactified the non-renormalizability is even more e
dent, since gauge couplings in theories withd extra dimen-
sions have dimension 1/M d/2. Therefore, gauge theories i
extra dimensions should be treated as effective field theo
~EFT’s!. Working with such theories presents several di
culties, but, as we have learned in recent years, they can
be very useful. In the case of quantum field theories in ex
dimensions, there is no alternative: basic questions, suc
the calculation of observables or the unification of couplin
can only be addressed in the framework of EFT’s. Howev
before attempting to answer specific questions related to
running of couplings in the extra-dimensional theories, o
should first clarify the type of EFT one is going to use, sin
there are, at least, two types of EFT@24#: In one type, known
as the ‘‘Wilsonian EFT’’~WEFT! @25#, one keeps only mo-
menta below some scaleL, while all the effects of higher
momenta or heavy particles are encoded in the coupling
the effective theory. This method is very intuitive and lea
by definition, to finite results at each step; however, the p
ence of the cutoff in all expressions makes the method c
bersome to use, and in the particular case of gauge the
difficult to reconcile with gauge invariance. The WEFT a
proach has already been applied to the problem of runnin
couplings in theories with compact extra dimensions,
only for the case of scalar theories@21#. Within the context of
another type of EFT, often termed ‘‘continuum effective fie
theories’’~CEFT’s! ~see for instance@24,26–31#!, one allows
the momenta of particles to vary up to infinity, but hea
particles are removed from the spectrum at low energies
in the WEFT case the effects of heavier particles are
sorbed into the coefficients of higher dimension operato
Since the momenta are allowed to be infinite, divergen
appear, and therefore the CEFT needs to undergo both r
larization and renormalization. In choosing the spec
scheme for carrying out the above procedures particular
is needed. Whereas in principle one could use any sche
experience has shown that the most natural scheme
studying the CEFT’s is dimensional regularization with min
mal subtraction@24,26–31#. CEFT’s are widely used in
physics: for example, when in the context of QCD one ta
about 3, 4 or 5 active flavors, one is implicitly using th
latter type of effective theory@27,32#. Moreover, most of the
analyses of grand unification@28,33# resort to CEFT-type
constructions: one has a full theory at the grand unifi
theory ~GUT! scale, then an effective field theory below th
GUT scale standard model or minimal supersymmetric s
dard model is built, and then yet another effective fie
theory below the Fermi scale~just QED 1 QCD!. In these
cases the complete theory is known, and the CEFT langu
is used only in order to simplify the calculations at low e
ergies and to control the large logarithms which appear w
there are widely separated scales. Nevertheless, CEFT’s
useful even when the complete theory is not known, or wh
the connection with the complete theory cannot be wor
12500
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out; this is the case of chiral perturbation theory (xPT) @34–
37# ~for more recent reviews see also@29,38,39#!.

It is important to maintain a sharp distinction between t
two types of EFT mentioned above, i.e. Wilsonian or co
tinuum, because conceptually they are quite different. Ho
ever, perhaps due to the fact that the language is in
common to both types of theories, it seems that they
often used interchangeably in the literature, especially w
employing cutoffs within the CEFT framework. In particula
since the couplingsa i have dimensions@a i #5M 2n, when
computing loops one generally obtains effects which grow
(Lna i)

m, whereL is the formal CEFT cutoff, and as such
void of physics. As a consequence, physical observa
should be made as independent of these cutoffs as pos
by introducing as many counterterms as needed to renor
ize the answer. Not performing these renormalizations c
rectly, or identifying naively formal cutoffs with the physica
cutoffs of the effective theory, can lead to completely no
sensical results~see for instance@40,41#!. This type of pitfall
may be avoided by simply using dimensional regularizati
since the latter has the special property of not mixing ope
tors with different dimensionalities.

The usual way to treat theories with compactified ex
dimensions is to define them as a 4-dimensional theory w
a truncated tower of KK modes at some large but otherw
arbitraryNs , a procedure which effectively amounts to usin
a hard cutoff in the momenta of the extra dimensions. Th
physical quantities calculated in this scheme depend exp
itly on the cutoffNs , which is subsequently identified with
some physical cutoff. However, as already commented,Ns
plays the role of a formal cutoff, and is therefore plagu
with all the aforementioned ambiguities. Identification of th
formal cutoff with a universal physical cutoff can give th
illusion of predictability, making us forget that we are dea
ing with a non-renormalizable theory with an infinite numb
of parameters, which can be predictive only at low energ
where higher dimension operators may be neglected.

In this paper we want to analyze the question of the r
ning of gauge couplings in theories with compact dimensio
from the CEFT ‘‘canonical’’ point of view. We hasten t
emphasize that even the CEFT presents conceptual prob
in theories with compactified dimensions. Specifically,
mentioned above, in the CEFT approach the~virtual! mo-
menta are allowed to vary up to infinity; however, momen
related to the compactified extra dimensions turn out to
KK masses in the 4-dimensional compactified theory, wh
it is supposed that one keeps only particles lighter than
relevant scale. Thus, truncating the KK series amounts
cutting off the momenta of the compactified dimension
Therefore, in order to define a true ‘‘non-cutoff’’ CEF
scheme we are forced to keep all KK modes. Our main m
tivation is to seriously explore this approach, and investig
both its virtues and its limitations for the problem at han
We hope that this study will help us identify more clear
which quantities can and which cannot be computed in
fective extra-dimensional theories.

The paper is organized as follows. In Sec. II we discu
the usual arguments in favor of power-law running of gau
couplings and show that they depend crucially on the w
4-2
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KK thresholds are crossed. In particular we show that a o
loop b function which simply counts the number of mod
diverges for more than 5 dimensions, if the physical way
passing thresholds dictated by the vacuum polarization fu
tion ~VPF! is imposed.

In Sec. III we introduce a theory with one fermion an
one photon in 41d dimensions, with the extrad ones com-
pactified. This theory, which is essentially QED in 41d di-
mensions, serves as a toy model for studying the issu
power corrections and the running of the coupling in a d
nite framework.

In Sec. IV we study the question of decoupling KK mod
in the aforementioned theory by analyzing the behavior
the VPF of the~zero-mode! photon. Since, as commente
above, decoupling the KK modes one by one is problema
we study the question of how to decouple all of them at on
To accomplish this we consider the VPF of the photon w
all KK modes included, and study how it reduces atQ2

!Mc to the standard QED VPF with only one light mod
Since the entire KK tower is kept untruncated, the theory
of course non-renormalizable; therefore, to compute the V
we have to regularize and renormalize it in the spirit of t
CEFT, in a similar way that observables are defined inxPT.
As in xPT, it is most convenient to use dimensional regul
ization with minimal subtraction, in order to maintain a be
ter control on the mixing among different operators. Ho
ever, at the level of the 4-dimensional theory the no
renormalizability manifest itself through the appearance
divergent sums over the infinite KK modes, and dimensio
regularization does not seem to help in regularizing the
The dimensional regularization of the VPF is eventually
complished by exploiting the fact that its UV behavior coi
cides with that found when thed extra dimensions have no
been compactified.1 To explore this point we first resort t
the standard unitarity relation~optical theorem!, which re-
lates the imaginary part of the VPF to the total cross sec
in the presence of the KK modes; the latter is finite beca
the phase space truncates the series. ForQ2@Mc

2 the uncom-
pactified result for the imaginary part of the VPF is rapid
reached, i.e. after passing a few thresholds. We then com
the real part of the one-loop VPF in the non-compact the
in 41d dimensions, where, of course, we can directly u
dimensional regularization to regularize it~since no KK re-
duction has taken place!. For later use we also present resu
in which the same quantity is evaluated by using hard c
offs. Finally, we show that the UV divergences of the on
loop VPF are indeed the same in both the~torus!-
compactified and uncompactified theories. Therefore,
order to regularize the VPF in the compactified theory w
an infinite number of KK modes it is sufficient to split th
VPF into two pieces, an ‘‘uncompactified’’ piece, corr
sponding to the case where the extra dimensions are tre
on the same footing as the four usual ones, and a piece w

1This is in a way expected, since for very largeQ2@Mc51/Rc the
compactification effects should be negligible. Note, however, t
this is not always the case; a known exception is provided by
orbifold compactification@22#.
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contains all compactification effects. We show that this lat
piece is UV and IR finite and proceed to evaluate it, while
UV divergences remain in the former, which we evalua
using dimensional regularization.

The results of previous sections are used in Sec. V
define an effective chargeaeff(Q) which can be continuously
extrapolated fromQ2!Mc to Q2@Mc . We use this effective
charge to study the matching of couplings in the low ene
effective theory~QED! to the couplings of the theory con
taining an infinite of KK modes. In the context of dimen
sional regularization we find that this matching contains o
the standard logarithmic running frommZ to the compactifi-
cation scaleMc , with no power corrections. On the othe
hand, if hard cutoffs are used to regularize the VPF in
non-compact space, one does find power corrections, w
may be interpreted as an additional matching between
effectiveD541d dimensional field theory and some mo
complete theory. We discuss the possibility of estimating t
matching in the EFT without knowing the details of the fu
theory. This point is studied in a simple extension of o
original toy model, by endowing the theory considered~QED
in 41d compact dimensions! with an additional fermion
with massM f@Mc , which is eventually integrated out.

II. CROSSING THRESHOLDS

The simplest argument~apart from the purely dimensiona
ones! in favor of power-law running in theories with extr
dimensions is based on the fact that inMS-like schemes the
b function is proportional to the number of active mode
Theories withd extra compact dimensions contain, in ge
eral, a tower of KK modes. In particular, if we embed QE
in extra dimensions we find that electrons~also photons!
have a tower of KK modes with massesMn

25(n1
21n2

21

•••1nd
2)Mc

2 with ni integer values andMc51/Rc the com-
pactification scale. The exact multiplicity of the spectru
depends on the details of the compactification proced
~torus, orbifold, etc.!. As soon as we cross the compactific
tion scale, the KK modes begin to contribute, and theref
one expects that theb function of this theory will start to
receive additional contributions from them. In a gene
renormalization scheme satisfying decoupling one can
ively write

b5(
n

b0f S m

Mn
D , ~2.1!

wherem is the renormalization scale,b0 is the contribution
of a single mode, andf (m/M ) is a general step function tha
decouples the modes asm crosses the different threshold
namely f (m/M )→0, m!M , and f (m/M )→1, m@M . For
instance inMS schemesf (m/M )[u(m/M21) whereu(x)
is the step function. Then one finds@Vd52pd/2/G(d/2)#

b5 (
n,m/Mc

b0'b0E dVdnd21dn5b0

Vd

d S m2

Mc
2D d/2

.

~2.2!

t
e
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This argument, simple and compelling as it may seem, c
not be trusted completely because inMS schemes the decou
pling is put in by hand. Therefore, other types of schemes
which decoupling seems natural, have been studied in
literature. For instance, in Ref.@7# the VPF of the photon a
Q250 was calculated in the presence of the infinite tower
KK modes by using a hard cutoff in proper time, and t
result was used to compute theb function; in that case the
modes decouple smoothly. In addition, after adjusting
cutoff by hand one can reproduce the aforementioned re
obtained inMS. One can easily see that this procedure

equivalent to the use of the functionf (L/M )[e2Mn
2/L2

to
decouple the KK modes:

b5(
n

b0e2Mn
2/L2

'b0S p
L2

Mc
2D d/2

. ~2.3!

If one chooses by handmd5G(11d/2)Ld, the sum in Eq.
~2.3! agrees exactly with the sum obtained if one uses a sh
step function. Even though this particular way of decoupl
KK modes appears naturally in some string scenarios@4,42–
44#, it hardly appears compelling from the field theory po
of view; this procedure is not any better conceptually th
the sharp step-function decoupling of modes: one obtain
smoothb function because one uses a smooth function
decouple the KK modes.

These two ways of decoupling KK modes, due to the v
sharp step-like behavior they impose, lead to a finite resu
Eq. ~2.1! for any number of extra dimensions. One
tempted to ask, however, what would happen if one were
use a more physical way of passing thresholds. In fact, he
particles decouple naturally and smoothly in the VPF,
cause they cannot be produced physically. Specifically
QED in 4 dimensions at the one-loop level, the imagina
part, IP(q2), of the VPFP(q2) is directly related, via the
optical theorem, to the tree level cross sectionss for the
physical processese1e2→ f 1 f 2, by

IP~s!5
s

e2
s~e1e2→ f 1 f 2!. ~2.4!

Given a particular contribution to the spectral functi
IP(s), the corresponding contribution to the renormaliz
vacuum polarization functionPR(q2) can be reconstructe
via a once-subtracted dispersion relation. For example,
the one-loop contribution of the fermionf, choosing the on-
shell renormalization scheme, one finds~if q is the physical
momentum transfer withq2,0, as usual we defineQ2[
2q2)

PR~Q!5Q2 E
4mf

2

`

ds
1

s~s1Q2!

1

p
IP~s!

5
a

p
35

1

15

Q2

mf
2

1OS Q4

mf
4D , Q2/mf

2→0,

1

3
lnS Q2

mf
2D 2

5

9
1OS mf

2

Q2D , Q2/mf
2→`,

~2.5!
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wherea[e2/(4p). The above properties can be extended
the QCD effective charge@45#, with the appropriate modifi-
cations to take into account the non-Abelian nature of
theory, and provide a physical way for computing the mat
ing equations between couplings in QCD at quark m
thresholds. One computes the VPF of QCD withnf flavors
and that of QCD withnf21 flavors, and requires that th
effective charge is the same forQ2!mf in the two theories.
This procedure gives the correct relation between the c
plings in the two theories@23,46,47#. However, one can eas
ily see that this cannot work for more than one extra dim
sion. To see that, let us consider the decoupling funct
f (m/M ) provided by the one-loop VPF, which, as explaine
captures correctly the physical thresholds. The correspon
f (m/M ) may be obtained by differentiatingPR(Q) once
with respect toQ2; it is known @48# that the answer can b
well approximated by a simpler function of the form
f (m/M )5m2/(m215M2). We see immediately that if we
insert this last function in Eq.~2.1! and perform the sum ove
all KK modes the result is convergent only for one ex
dimension~with a coefficient which is different from the on
obtained with the renormalization schemes mentioned
lier!, while it becomes highly divergent for several extra d
mensions. We conclude therefore that the physical way
decoupling thresholds provided by the VPF seems to lea
a divergentb function in more than one extra dimension. A
we will see, this is due to the fact that, in order to prope
define the one-loop VPF ford.1, more than one subtractio
is needed.

III. A TOY MODEL

To be definite we will consider a theory with one fermio
and one photon in 41d dimensions, in which thed extra
dimensions are compactified on a torus of equal radiiRc
[1/Mc . The Lagrangian is given by

Ld52
1

4
FMNFMN1 i c̄gMDMc1Lct , ~3.1!

whereM50, . . . ,3, . . . ,31d. We will also use greek letters
to denote four-dimensional indicesm50, . . . ,3. DM5]M
2 ieDAM is the covariant derivative witheD the coupling in
41d dimensions which has dimension@eD#51/M d/2. After
compactification, the dimensionless gauge coupling in f
dimensions,e4, and the dimensionful 41d coupling are re-
lated by the compactification scale2

e45eDS Mc

2p D d/2

. ~3.2!

EvidentlyeD is determined from the four-dimensional gau
coupling and the compactification scale, but in the unco
pactified space we can regard it as a free parameter~like f p

in xPT). FinallyLct represents possible gauge invariant o

2Note that the factors 2p depend on the exact way the extra d
mensions are compactified~on a circle, orbifold, etc.!.
4-4
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erators with dimension 21D or higher, which are in genera
needed for renormalizing the theory; they can be compu
only if a more complete theory, from which our effectiv
theory originates, is given. For instance, by computing
VPF we will see that anLct of the form

Lct5
c1

Ms
2

DMFMKDNFNK1••• ~3.3!

is needed to make it finite.
The spectrum after compactification contains a pho

~the zero mode of the four-dimensional components of
gauge boson!, the d extra components of the gauge bos
remaining in the spectrum asd massless real scalars, a tow
of massive vector bosons with massesMn

25(n1
21n2

21•••

1nd
2)Mc

2 , niPZ, niÞ0, 2[d/2] massless Dirac fermion
~here the symbol@x# represents the closest integer tox
smaller than or equal tox), and a tower of massive Dira
fermions with masses also given by the above mass form
Note that this theory does not lead to normal QED at l
energies, first because thed extra components of the gaug
boson remain in the spectrum, and second because in 41d
dimensions the fermions have 4•2[d/2] components, which
remain as zero modes, leading at low energy to a theory w
2[d/2] Dirac fermions. In theD541d theory these will arise
from the trace of the identity of theg matrices, which just
counts the number of components of the spinors. To ob
QED as a low energy theory one should project out the c
rect degrees of freedom by using some more appropr
compactification ~for instance, orbifold compactification
can remove the extra components of the photon from the
energy spectrum, and leave just one Dirac fermion!. How-
ever this is not important for our discussion of the VPF;
just have to remember to drop the additional factors 2[d/2] to
make contact with usual QED with only one fermion. The
ries of this type, with all particles living in extra dimension
are called theories with ‘‘universal extra dimensions’’@49#
and have the characteristic that all the effects of the
modes below the compactification scale cancel at tree l
due to the conservation of the KK numbers. In particular, a
contrary to what happens in theories where gauge and s
fields live in the bulk and fermions in the brane@50,51#, no
divergences associated with summations over KK towers
pear at the tree level. Finally, the couplings of the elect
KK modes to the standard zero-mode photon are unive
and dictated by gauge invariance. The couplings among
KK modes can be found elsewhere@52,53#; they will not be
important for the discussion of the VPF that we present h

IV. THE VACUUM POLARIZATION IN THE PRESENCE
OF KK MODES

In this section we study in detail the behavior of the on
loop VPF in the theory defined above for general values
the numberd of extra dimensions The main problems w
want to address are~i! the general divergence structure of t
VPF, ~ii ! a demonstration that it is possible to regulate
UV divergences using dimensional regularization,~iii ! the
appearance of non-logarithmic~power! corrections, and~iv!
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their comparison to the analogous terms obtained when
sorting to a hard-cutoff regularization.

A. The imaginary part of the vacuum polarization

One can try to compute the VPF of the zero-mode pho
directly in a theory with infinite KK fermionic modes. How
ever, one immediately sees that, in addition to the logar
mic divergences that one finds in QED, new divergences
encountered when summing over the infinite number of K
modes. One can understand the physical origin of these
vergences more clearly by resorting to the unitarity relat
~heres denotes the center-of-mass energy available for
production process!:

IP (d)~s!5
s

e4
2 (

n
s~e1e2→ f n

1 f n
2!

5
a4

3 (
n,nth

S 11
2Mn

2

s DA124Mn
2/s,

~4.1!

where n,nth represents the sum over all the electron K
modes such that 4(n1

21n2
21•••1nd

2)Mc
2,s, and a4

5e4
2/(4p). This sum can be evaluated approximately fors

@Mc
2 by replacing it by an integral; then we obtain

IP (d)~s!'
a4

231d

~d12!p (d11)/2

G„~d15!/2… S s

Mc
2D d/2

. ~4.2!

It turns out that this last result captures the behavior of
same quantity when the extra dimensions are not comp
this is so because, at high energies, the effects of the c
pactification can be neglected. In fact, this result may
deduced on simple dimensional grounds: as commented
gauge coupling in 41d dimensions has dimension 1/M d/2;
therefore one expects thatIP (d)(s) will grow with s as
(s/M2)d/2, which is what we obtained from the explicit ca
culation. To see how rapidly one reaches this regime we
plot the exact result ofIP (d)(s) together with the asymptotic
value. As we can see in Fig. 1, the asymptotic limit
reached very fast, especially for higher dimensions. For p
tical purposes one can reliably use the asymptotic value s
after passing the first threshold,Q.2Mc , incurring errors
which are below 10%.

Now we can try to obtain the real part by using a disp
sion relation like the one used in 4-dimensional QED, i
Eq. ~2.5!. However, one immediately sees that it will need
number of subtractions which depends on the value ofd.
Thus, for just one extra dimension, as in 4-dimensio
QED, one subtraction is enough, ford52 and d53 two
subtractions are needed, and so on. This just manifests
non-renormalizability of the theory, and in the effective fie
theory language, the need for higher dimension opera
acting as counterterms. Even though this ‘‘absorptive’’ a
proach is perfectly acceptable, it would be preferable to h
a way of computing the real part directly at the Lagrang
4-5
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level ~by computing loops, for instance!. As commented in
the Introduction, to accomplish this we will use dimension
regularization.

B. The vacuum polarization in uncompactified
4¿d dimensions

When using dimensional regularization to compute
VPF in uncompactified space, to be denotedPuc, simple
dimensional arguments suggest that one should typically
tain contributions of the form

Puc~Q!}e4
2S 2p

Q

Mc
D d

,

since the two vertices in the loop provide a factoreD
2 , whose

dimensions must be compensated by the only available s
in the problem, namelyQ2. In the above formula we hav
used the relation of Eq.~3.2! in order to trade offeD for e4.
The omitted coefficient in front will be generally divergen
and will be regularized by lettingd→d2e.

FIG. 1. IP (d)(Q) as compared with the asymptotic value (d
51,2,3). Q is given in units ofMc .
12500
l

e

b-

le

Let us compute the VPFPuc
MN(q) in uncompactified

space, assuming that, if necessary, the dimensions wil
continued to complex values. We have that

Puc
MN~q!5 ieD

2 E d41dk

~2p!41d
TrH gM

1

k”
gN

1

k”1q”
J , ~4.3!

which by gauge invariance assumes the standard form

Puc
MN~q!5~q2gMN2qMqN!Puc~q!.

If we now were to use that, inD dimensions, Tr@gMgN#
52[D/2]gMN, we would find that the low energy limit has a
extra 2[d/2] factor, which, as commented, is an artifact of t
torus compactification: there are 2[d/2] too many fermions in
the theory. Therefore we simply drop this factor by han
Moreover, we use Eq.~3.2! and employ the proper-time pa
rametrization in intermediate steps, thus arriving at

Puc~Q!5
e4

2

2p2 S p

Mc
2D d/2E

0

1

dxx~12x!

3E
0

` dt

t11d/2
exp$2tx~12x!Q2%

5
e4

2

2p2

pd/2G2~21d/2!

G~41d!
GS 2

d

2D S Q2

Mc
2D d/2

.

~4.4!

A simple check of this result may be obtained by comp
ing its imaginary part. To that end we letQ2→2q22 i e with
q2.0. Then

I$2q22 i e%d/252~q2!d/2sin
dp

2
.

Now we can use thatG(2d/2)G(11d/2)52p/sin(dp/2) to
write

IPuc~q!5a4

2pd/2G2~21d/2!

G~41d!G~11d/2! S q2

Mc
2D d/2

5
a4

231d

~d12!p (d11)/2

G„~d15!/2… S q2

Mc
2D d/2

which agrees with our previous result of Eq.~4.2!.
For odd values ofd, the one-loopPuc(Q) computed

above is finite, since theG(2d/2) can be calculated by ana
lytic continuation. This result is expected in a way, since
an odd number of dimensions, by Lorentz invariance, th
are no appropriate gauge invariant operators able to ab
any possible infinities generated in the one-loop VPF; t
would require operators which give contributions that go li
Qd. Notice, however, that at higher ordersPuc(Q) will even-
tually become divergent. For instance, in five dimensions
two loops, the VPF should go asQ2, since there are four
elementary vertices. The divergences generated by these
4-6
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tributions could be absorbed in an operator such as the
considered in the previous section, namelyDMFMKDNFNK .
On the other hand, whend is even,G(2d/2) has a pole, and
subtractions are already needed at one loop. To compute
divergent and finite parts in a well-defined way we will u
dimensional regularization, i.e. we will assume thatd→d
2e. Notice however that, unlike in 4 dimensions, we do n
need to introduce an additional scale at this point, i.e.
equivalent of the ’t Hooft mass scalem: Mc plays the role of
m, and can be used to keepe4 dimensionless. After expand
ing in e we find a simple pole accompanied by the us
logarithm:

Puc~Q!}S Q2

Mc
2D d/2H 2

2

e
1 ln~Q2/Mc

2!1•••J . ~4.5!

Here the ellipsis represents a finite constant. Now, to ren
malize this result we must introduce higher dimension ope
tors ~for instance, ifd52 the operatorDMFMKDNFNK will
do the job! which could absorb the divergent piece. T
downside of this, however, is that we also have to introd
an arbitrary counterterm,k, corresponding to the contribu
tion of the higher dimension operator; thus we obtain a fin
quantity proportional to log(Q2/Mc

2)1k. Note that, sincek is
arbitrary, we can always introduce back a renormalizat
scale and write log(Q2/Mc

2)1k5log(Q2/m2)1k(m) with
k(m)5k1 log(m2/Mc

2). It is also important to remark that, i
the case of an odd number of dimensions, although at
loop we do not need any counterterm to make the VPF fin
higher dimensional operators could still be present and af
its value.

In the case of uncompactified space, it is interesting
compare the above result with that obtained by regulariz
the integral using a hard cutoff. To study this it is enough
carry out the integral of Eq.~4.4!, with a cutoff in t0
51/L2:

Puc~Q!5
e4

2

2p2 S p

Mc
2D d/2E

0

1

dxx~12x!

3E
t0

` dt

t11d/2
exp$2tx~12x!Q2%. ~4.6!

Then, ford51,2,3 we obtain

Puc
(1)~Q!5

e4
2

2p2 S 2
3p2Q

64Mc
1

ApQ2

15McL
1

ApL

3Mc
D , ~4.7!

Puc
(2)~Q!5

e4
2

2p2 FpL2

6Mc
2

1
pQ2

30Mc
2 S log~Q2/L2!1g2

77

30D G ,

~4.8!

Puc
(3)~Q!5

e4
2

2p2 S 5p3Q3

768Mc
3

2
p3/2Q2L

15Mc
3

1
p3/2L3

9Mc
3 D . ~4.9!
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As we can see, the pieces that are independent of
cutoff are exactly the same ones we obtained using dim
sional regularization. But, in addition, we obtain a series
contributions that depend explicitly on the cutoff. For i
stance we find corrections to the gauge coupling which
have asLd, and just redefine the gauge coupling we star
with @54#. In the case of 5 dimensions we also generat
term linear inQ2; however it is suppressed by 1/L, and
therefore it approaches zero for largeL. In the case of 6
dimensions we obtain the same logarithmic behavior
found with dimensional regularization, and the result can
cast in identical form, if the cutoff is absorbed in the appr
priate counterterm. For 7 dimensions we also find diverg
contributions which go asQ2. This means that, when usin
cutoffs, higher dimension operators in the derivative exp
sion ~e.g. operators giving contributions varying asQ2 or
higher! are necessary to renormalize the theory and mus
included. In the case of dimensional regularization this ty
of operator is not strictly needed at one loop; however, no
ing forbids them in the Lagrangian, and they could appea
‘‘finite counterterms.’’ If one were to identify theL in the
above expressions with a physical cutoff, one might get
impression that, contrary to the dimensional regularizat
approach where arbitrary counterterms are needed, one c
now obtain all types of contributions with only one add
tional parameter, namelyL. This is not true however: the
regulator function is arbitrary; we have simply chosen o
among an infinity of possibilities. By changing the regulat
function we can change the coefficients of the different c
tributions at will, except for those few contributions that a
independent ofL. These latter are precisely the ones w
have obtained by using dimensional regularization. Th
even when using cutoffs one has to add counterterms f
higher dimension operators, absorb the cutoff, and exp
the result in terms of a series of unknown coefficients. T
lesson is that with dimensional regularization we obtain
calculable pieces, while the non-calculable pieces are rel
to higher dimensional terms in the Lagrangian.

What we will demonstrate next is that the one-loop VP
in the compactified theory on a torus can be renormali
exactly like the VPF in the uncompactified theory; this w
allow us to compute it for any number of dimensions, a
examine its behavior for large and for small values of t
Q2.

C. The vacuum polarization in d compact dimensions

From the four-dimensional point of view the vacuum p
larization tensor in the compactified theory is

Pmn~q2!5(
n

ie4
2E d4k

~2p!4
TrH gm

1

k”2mn

gn
1

k”1q”2mn
J

with mn
25(n1

21n2
21•••1nd

2)Mc
2 ; for simplicity we have

assumed a common compactification radiusR51/Mc for all
the extra dimensions. The sum overn denotes collectively
the sum over all the modesni52`, . . . ,1`. The contri-
bution of each mode to this quantity seems quadratic
divergent, as in ordinary QED; however, we know that gau
4-7
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invariance converts it to only logarithmically divergent. Bu
in addition, the sum over all the modes makes the ab
expressions highly divergent. Instead of attempting to co
pute it directly, we will add and subtract the contribution
the vacuum polarization function of the uncompactifi
theory in 41d dimensions:

Pmn~q!5@Pmn~q!2Puc
mn~q!#1Puc

mn~q!

5Pfin
mn~q!1Puc

mn~q!. ~4.10!

Here we have already taken into account the relation
tween the coupling in 41d dimensions and the four
dimensional coupling and have restricted the external L
entz indices to the 4-dimensional ones. Depending on
value ofd the vacuum polarization can be highly diverge
~naively asLd12, and after taking into account gauge inva
ance asLd). However, we can use dimensional regulariz
tion ~or any other regularization scheme! to make it finite.
The important point is that the quantityPfin

mn(Q) is UV and
IR finite and can be unambiguously computed.

Instead of doing the two calculations from scratch,
will do the following:

~i! We will first compute the compactified expression
using Schwinger’s proper time,t, to regularize the UV di-
vergences.

~ii ! We will show that the UV behavior of the compact
fied theory,t→0, is just the behavior of the uncompactifie
theory.

~iii ! Therefore, to computePfin
mn(Q) it is sufficient to com-

putePmn(Q) and then subtract its most divergent contrib
tion whent→0. We will see that it is sufficient to make
finite.

After a few manipulationsPmn(Q) can be written as

Pmn~q!5~q2gmn2qmqn!P~q!,

where@7#

P~Q!5
e4

2

2p2 (
n
E

0

1

dxx~12x!

3E
0

`dt

t
exp$2t@x~12x!Q21mn

2#%.

P(Q) can be written in terms of the function

ū3~t![ (
n52`

1`

e2n2t5Ap

t
ū3S p2

t D
as

P~Q!5
e4

2

2p2E0

1

dxx~12x!E
0

`dt

t

3expH 2tx~12x!
Q2

Mc
2J ū3

d~t!,
12500
e
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-

where we have rescaledt in order to removeMc from the
ū3(t) function. This last expression forP(Q) is highly di-
vergent in the UV (t→0), because in that limit theū3(t)
function goes asAp/t. Then, if we define, as in Eq.~4.10!,
Pfin5P2Puc, we have

Pfin~Q!5
e4

2

2p2E0

1

dxx~12x!E
0

`dt

t
expH 2tx~12x!

Q2

Mc
2J

3F ū3
d~t!2S p

t D d/2G ,
which is completely finite for any number of dimensions.
fact, the last term provides a factor

Fd~t![ū3
d~t!2S p

t D d/2

→
t→0

2dS p

t D d/2

expH 2
p2

t J
that makes the integral convergent in the UV, while for lar
t this function goes to 1 quite fast. In this region the integ
is cut off by the exponential of momenta; so we can think
the exponential exp$2tx(12x)Q2/Mc

2% as providing a cutoff
for t.4Mc

2/Q2, and Fd(t) as providing a cutoff fort
,p2. With this in mind, we can estimatePfin(Q) as

Pfin~Q!'
e4

2

2p2 (
n
E

0

1

dxx~12x!E
p2

4Mc
2/Q2dt

t

52
e2

2p2

1

6
log

Q2p2

4Mc
2

, Q2,4Mc
2/p2; ~4.11!

it is just the ordinary running of the zero mode. AsQ2 grows,
the upper limit of integration is smaller than the lower lim
and then we expect thatPfin(Q) should vanish. In that region
P(Q) will be dominated completely byPuc(Q).

Let us evaluatePfin(Q) for any number of extra dimen
sions. To this end we will approximate the functionFd(t) as
follows:

Fd~t!5H 2dS p

t D d/2

expH 2
p2

t J , t,p,

112dexp$2t%2S p

t D d/2

, t.p.

~4.12!

The matching point att5p makes the function continuous
In Fig. 2 we display the exact functionFd(t) ~solid! and the
approximation above~dashed! for d51,2,3. The approxima-
tion is very good except in a small region around the mat
ing point t5p. This can be further improved by addin
more terms from the expansions of theū(t) functions.

The approximate expression of Eq.~4.12! can be used to
obtain semianalytical expansions forPfin

d (Q) for small Q2

~we definew[Q2/Mc
2):
4-8
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Pfin
(1)~Q!5

e4
2

2p2
@20.33520.167log~w!

10.463Aw20.110w1•••#, ~4.13!

Pfin
(2)~Q!5

e4
2

2p2
@20.15920.167log~w!

20.105w~ log~w!21.75!1•••#, ~4.14!
o

th

12500
Pfin
(3)~Q!5

e4
2

2p2
@20.093720.167log~w!10.298w

20.202Aw31•••#. ~4.15!

To see how good these approximate results are, we
compare with the exact results that can be obtained whed
51. In this case we have
Pfin
(1)~Q!5

e4
2

2p2E0

1

dxx~12x! (
n51

` E
0

`dt

t
exp$2tx~12x!w%2S p

t D 1/2

expH 2
n2p2

t J
5

e4
2

2p2E0

1

dxx~12x! (
n51

`
2

n
exp$22pnAx~12x!w%

5
e4

2

2p2E0

1

dxx~12x!„22log$12exp@22pAx~12x!w#%…. ~4.16!
ri-

e
-
ex-

by

di-
This last expression can be expanded forw!1, and the in-
tegral overx can then be performed analytically, yielding

Pfin
(1)~Q!'

e4
2

2p2 S 1

18
@526log~2p!#2

1

6
logw

1
3p2

64
Aw2

p2

90
w1••• D , ~4.17!

which is in excellent agreement with our approximation@see
Eq. ~4.13!#.

Equation~4.16! can also be used to obtain the behavior
Pfin

(1)(Q) for w@1. In this limit we obtain

Pfin
(1)~Q!'

e4
2

2p2

3z~5!

p4

Mc
4

Q4
, Q2@Mc

2 .

For higher dimensions things are more complicated, but
behavior is the same, and we find

FIG. 2. Exact values ofFd(t) ~solid! as compared with the
approximation discussed in the text~dashed! for d51,2,3.
f

e

Pfin
(d)~Q!'

e4
2

2p2

4dG~21d/2!

p41d/2
Kd

Mc
4

Q4
, Q2@Mc

2 ,

whereKd is of the order of unity and is determined nume
cally @K15z(5)51.037,K251.165,K351.244#. However,
since the uncompactified contribution grows as (Q2/Mc

2)d/2

it is obvious that the contributions toP (d)(Q) from Pfin
(d)(Q)

will be completely irrelevant forQ2@Mc
2 .

Adding the finite and the uncompactified contributions w
find that for Q2!Mc

2 the uncompactified contribution ex
actly cancels the corresponding piece obtained from the
pansion ofPfin

(d)(Q) @the Aw piece for d51, the wlog(w)
piece ford52, or theAw3 piece ford53]. Then, forQ2

!Mc
2 and choosingm5Mc we finally find

P (d)~Q!5
e4

2

2p2 Fa0
(d)2

1

6
logS Q2

Mc
2D 1a1

(d) Q2

Mc
2

1•••G ,

Q2!Mc
2 , ~4.18!

with the coefficients for 1,2 and 3 extra dimensions given

d 1 2 3

a0
(d) 20.335 20.159 20.0937

a1
(d) 20.110 0.183 0.298

As we will see below, in general the coefficientsa1
(d) can

be affected by non-calculable contributions from higher
4-9
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mension operators in the effective Lagrangian, which
have not included.

The following comments related to Eq.~4.18!, which is
valid only in the dimensional regularization scheme we
using, are now in order:

~i! From Eq.~4.18! we see that for smallQ2, as expected
we recover the standard logarithm with the correct coe
cient, independently of the number of extra dimensions
addition, interestingly enough, we can also compute the c
stant term. Thus, although the full theory in 41d dimensions
is non-renormalizable and highly divergent, the low ene
limit of the VPF calculated in our dimensional regularizati
scheme is actually finite: when seen from low energies
compactified extra dimensions seem to act as an ultrav
regulator for the theory.

~ii ! When the energy begins to grow, we start seeing
fects suppressed byQ2/Mc

2 , which are finite, at one loop, fo
any number of dimensions except ford52. This is so be-
cause the gauge couplings have dimensions 1/M d/2, and
therefore, the one-loop VPF goes like 1/M d.

~iii ! For d51 one finds that, because of gauge and L
entz invariance, there are no possible counterterms of
dimension. The VPF must be finite, and that is precisely
result one obtains with dimensional regularization. This
course changes if higher loops are considered: for insta
two-loop diagrams go like 1/M2, and, in general, we expec
that they will have divergences, which, in turn, should
absorbed in the appropriate counterterms. In principle
presence of these counterterms could pollute our result; h
ever, the natural size of these counterterms, arising at
loops, should be suppressed compared to the finite contr
tions we have computed.

~iv! For d52 one finds that the VPF goes as 1/M2, al-
ready at one loop, and that the result is divergent. The di
gences have to be absorbed in the appropriate counter
coming from higher dimension operators in the higher
mensional theory. The immediate effect of this is that
coefficient of theQ2 term in P (2)(Q) becomes arbitrary, its
value depending on the underlying physics beyond the c
pactification scale.

~v! For d.2 all loop contributions to theQ2 term are
finite, simply because of the dimensionality of the couplin
This, however, does not preclude the existence of finite co
terterms, which could be generated by physics beyond
compactification scale, that is, contributions from operat
suppressed by two powers of the new physics scale like
operator in Eq.~3.3!.

For Q2@Mc
2 the full VPF is completely dominated by th

uncompactified contribution:

P (1)~Q!52
e4

2

2p2

3p2

64AQ2

Mc
2
,

P (2)~Q!5
e4

2

2p2

p

30

Q2

Mc
2
logS Q2

Mc
2D ,
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Q2@Mc
2 ,

P (3)~Q!5
e4

2

2p2

5p3

768S Q2

Mc
2D 3/2

.

As before, the VPF could also receive non-calculable c
tributions from higher dimension operators which we ha
not included; in fact, ford52, these are needed to renorma
ize the VPF. How large can these non-calculable contri
tions be? Since ourD-dimensional theory is an effectiv
theory valid only forQ2!Ms

2 , even aboveMc the results
will be dominated by the lowest power ofQ2. In the case of
d51, the first operator that one can write down goes asQ2;
therefore we expect that the one-loop contribution, of or
AQ2, that we have computed will completely dominate t
result, as long as we do not stretch it beyond the applicab
of the effective Lagrangian approach. Ford52, counter-
terms are certainly needed at orderQ2; still one can hope
that the result will be dominated by the logarithm~as hap-
pens with chiral logarithms in thexPT). For d53 ~and
higher!, the one loop result grows as (Q2)d/2; however there
could be operators giving contributions of orderQ2 with
unknown coefficients~in fact, although in dimensional regu
larization those are not needed, they must be include
cutoffs are used to regularize the theory!. Therefore, unless
for some reason they are absent from the theory, the re
will be dominated by those operators.

V. MATCHING OF GAUGE COUPLINGS

Using the VPF constructed in the previous section we
define a higher dimensional analogue of the conventio
QED effective charge@55,56#, which will enter in any pro-
cess involving off-shell photons, e.g.

1

aeff~Q!
[

1

a4
@11P (d)~Q!#uMSd

, ~5.1!

wherea45e4
2/(4p). We remind the reader thate4 denotes

the ~dimensionless! coupling of the four-dimensional theor
including all KK modes; it is directly related to the gaug
coupling in the theory withd extra dimensions by Eq.~3.2!.
The subscriptMSd means that the VPF has been regulariz
using dimensional regularization inD541d2e dimen-
sions, and that divergences, when present, are subtracte
cording to theMS procedure.

To determine the relation betweena4 and the low energy
coupling in QED, we have to identify the effective charg
computed in the compactified theory with the low ener
effective charge, at some low energy scale~for instanceQ2

5mZ
2!Mc

2), where both theories are valid. In that limit w
can trust our approximate results of Eq.~4.18!, and write
4-10
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1

aeff~mZ!
5

1

a4
1

2

p
a0

(d)2
2

3p
logS mZ

Mc
D . ~5.2!

This equation connects the low energy QED coupling w
the coupling in the compactifiedD-dimensional theory, regu
larized by dimensional regularization. Note that this equat
is completely independent of the way subtractions are p
formed to remove the poles in 1/e. These poles appear onl
~and only for an even number of dimensions! in the contri-
butions proportional toQd, which vanish forQ→0. Equa-
tion ~5.2! contains, apart from a finite constant, the stand
logarithmic running frommZ to the compactification scal
Mc . It is interesting to notice that, in this approach, t
logarithm comes from the finite piece, and should theref
be considered as an infrared~IR! logarithm. When seen from
scales smaller thanMc , these logarithms appear to have
UV origin, while, when seen from scales aboveMc , they
appear as having an IR nature.

It is important to emphasize that, in this scheme,
gauge coupling no longer runs above the compactifica
scale. This seems counter-intuitive, but it is precisely w
happens inxPT when using dimensional regularization:f p

does not run, it just renormalizes higher dimensional ope
tors @26#.

Now we can use Eq.~5.2! to write the effective charge a
all energies in terms of the coupling measured at low en
gies:

1

aeff~Q!
[

1

aeff~mZ!
1

1

a4
@P (d)~Q!2P (d)~mZ!#uMSd

.

~5.3!

Note that the last term is independent ofa4 due to the im-
plicit dependence ofP (d) on it. Equation~5.3! has the form
of a momentum-subtracted definition of the coupling; in fa
in four dimensions it is just the definition of the momentum
subtracted running coupling. Ford51 and at one loop,
P (d)(Q)2P (d)(mZ) is finite, andaeff(Q) can still be inter-
preted as a momentum-subtracted definition of the coupl
For d.1, however, Eq.~5.3! involves additional subtrac
tions, a fact which thwarts such an interpretation.

For Q2!Mc
2 we can expandP (d)(Q) and obtain

1

aeff~Q!
[

1

aeff~mZ!
2

2

3p
logS Q

mZ
D1OS Q2

Mc
2D ,

which is nothing but the standard expression for the effec
charge in QED, slightly modified by small corrections
order Q2/Mc

2 . However, as soon asQ2/Mc
2 approaches

unity, the effects of the compactification scale start to app
in aeff(Q), forcing it to deviate dramatically from the loga
rithmic behavior, as shown in Fig. 3.

The crucial point, however, is that this effective char
cannotbe interpreted anymore as the running coupling~as
can be done in four dimensions! since it may receive contri
butions from higher dimension operators; in fact some
them are needed to define this quantity properly. These c
tributions have nothing to do with the gauge coupling wh
12500
n
r-

d

e
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r-

,

g.

e

ar

f
n-

is defined as the coefficient of the operatorF2. In particular,
one should not use this quantity to study gauge coup
unification. Instead, one could use Eq.~5.2!, which relates
the coupling measured at low energies with the one app
ing in the D-dimensional Lagrangian valid at energiesMc
,Q,Ms . This relation involves a logarithmic correction
which is the only contribution that can be reliably comput
without knowing the physics beyondMs .

It is instructive to see what happens if instead of dime
sional regularization we use hard cutoffs to regularize
uncompactified part of the VPF as in Eqs.~4.6!–~4.9!. Then,
when using cutoffs, one can define an ‘‘effective charge’’
in Eq. ~5.1!:

1

aeff~Q!
[

1

a4~L!
@11P (d)~Q!#uL , ~5.4!

where a4(L) now is the coupling constant in the theo
regularized with cutoffs and the subscriptL indicates that
the VPF has been regularized with cutoffs. The use of aL
dependent coupling obviously implies the WEFT formu
tion, in which the cutoff is not removed from the theory. O
the other hand, in the CEFT formulation one should ren
malize the coupling constant by adding the appropriate co
terterms and then take the limitL→`. This usually brings
in a new scale at which the coupling is defined, and wh
effectively replacesL in the previous equation. Notice als
that ford52 in Eq. ~4.8! there are logarithmic contribution
proportional to Q2, which cannot be removed whenL
→`. The same is true ford.2, but with dependencies
which are proportional toL (d22). This just manifests the
need for higher dimensional operators, as was already c
in the dispersive approach, to define the effective cha
properly. As one can see, the full VPF contains a term t
goes asLd and is independent ofQ. This piece survives
whenQ→0, and thus we obtain~we assumemZ

2!Q2)

1

aeff~mZ!
5

1

a4~L!
1

2

3pd SAp
L

Mc
D d

1
2

p
a0

(d)

2
2

3p
logS mZ

Mc
D . ~5.5!

FIG. 3. The ‘‘effective charge’’ against the energy scale ford
51 ~solid!, d52 ~short dash!, d53 ~long dash!.
4-11



w

ry
F

le

ra
re
ffi
hm
al
w

di
et
ca
n
in

ay
o
.

of

in
te
th
s
o
in
a-
vi-

n is
for

r
ral
q.

en

l

re

in
ls
nts
r
ne

by

n 5

in
-

he
nd
on-

b-
ted
ec-
al-
V

the
the
n-

-
r-
a

there
the

d to
the
i-

ned
e it.
are
lar-
nd

.
ry,
IR

OLIVER, PAPAVASSILIOU, AND SANTAMARIA PHYSICAL REVIEW D 67, 125004 ~2003!
Sinceaeff(mZ) should be the same in the two schemes,
find the following relation betweena4 anda4(L):

1

a4
5

1

a4~L!
1

2

3pd SAp
L

Mc
D d

. ~5.6!

If one identifiesL with the onset of a more complete theo
beyond the compactification scale, but at which the E
treatment is still valid, i.e. if one assumes thatL;MG
!Ms , MG being this new scale, Eq.~5.6! could be reinter-
preted as a matching equation between the couplinga4 of
our effective theory and the coupling of the theory at sca
MG , a4(MG). Equation~5.6! generically tells us that one
expects corrections which go as (MG /Mc)

d. However, with-
out knowledge of the full theory beyondMG , the meaning
of MG @or evena4(MG)] is unclear. In particular, if the new
theory is some grand unified theory in extra dimensions,MG
will be, in general, not just one single mass, but seve
masses of the same order of magnitude, related by diffe
coefficients. In the case of logarithmic running those coe
cients can be neglected, because they give small logarit
next to the large logarithms containing the common sc
However, in the case of contributions which depend on po
ers of the new physics scale the situation is completely
ferent, and the presence of several masses could compl
change the picture of unification. Cutoffs can give an indi
tion of the presence of power corrections, but the coefficie
of these corrections cannot be computed without know
the details of the full theory.

To see this point more clearly, we add to our 41d dimen-
sional theory an additional fermion with massM f satisfying
Ms@M f@Mc , such that compactification corrections m
be neglected, and compute its effects on the coupling c
stant for Mc

2!Q2!M f
2 , using dimensional regularization

We have

P f
(d)~Q!5

e4
2

2p2 S p

Mc
D d/2

G~2d/2!E
0

1

dxx~12x!

3@M f
21x~12x!Q2#d/2. ~5.7!

By expanding forQ2!M f and integrating overx we obtain

P f
(d)~Q!5

e4
2

2p2 SAp
M f

Mc
D d

GS 2
d

2D S 1

6
1

d

60

Q2

M f
2D .

~5.8!

For odd values ofd we can use the analytic continuation
the G function to obtain a finite result. For even values ofd
we will allow a slight departure from the integer value
order to dimensionally regularize the integral. Clearly, in
grating out the heavy fermion gives power corrections to
gauge coupling. In addition, it also generates contribution
the higher dimension operators, e.g. contributions prop
tional toQ2 and higher powers. As can be seen by compar
with Eqs. ~4.6!–~4.9! these power corrections are qualit
tively similar to those calculated using a hard cutoff. E
dently, in the context of a more complete theory~in this case,
given the existence of a heavy fermion!, power corrections
12500
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may be encountered even if the dimensional regularizatio
employed. However, as one can easily see by setting,
example,d51 in Eq. ~5.8!, the coefficients of the powe
corrections obtained knowing the full theory are in gene
different from those obtained using a hard cutoff, e.g. E
~4.7!. In fact, no choice ofL in Eq. ~4.7! can reproduce all
the coefficients appearing in Eq.~5.8!.

The situation is somewhat similar to what happens wh
xPT with SU(2)^ SU(2) is matched toxPT with SU(3)
^ SU(3). In theSU(2)^ SU(2) theory, just by dimensiona
arguments, one can expect corrections likemK

2 / f p
2 . But can

one compute them reliably without even knowing that the
are kaons?

VI. CONCLUSIONS

We attempted a critical discussion of the arguments
favor of power-law running of coupling constants in mode
with extra dimensions. We showed that the naive argume
lead to an arbitraryb function depending on the particula
way chosen to cross KK thresholds. In particular, if o
chooses the physical way of passing thresholds provided
the vacuum polarization function of the photon, ab function
that counts the number of modes is divergent for more tha
dimensions.

We studied the question of decoupling of KK modes
QED with 41d ~compact! dimensions by analyzing the be
havior of the VPF of the photon. We computed first t
imaginary part of the VPF by using unitarity arguments, a
found that it rapidly reaches the value obtained in a n
compact theory~only a few modes are necessary!. We also
showed that it grows as (s/Mc

2)d/2, exhibiting clearly the
non-renormalizability of theories in extra dimensions. To o
tain the full VPF, one can use an appropriately subtrac
dispersion relation. Instead, we use the full quantum eff
tive field theory, with the expectation, suggested by the c
culation of the imaginary part of the VPF, that the bad U
behavior of the theory is captured by the behavior of
uncompactified theory. To check this idea, we computed
VPF in the uncompactified theory, regularized by dime
sional regularization (d→d2«). We found that, after ana
lytical continuation, the one loop VPF is finite, and propo
tional to Qd for an odd number of dimensions, and has
simple pole, proportional toQd, for an even number of di-
mensions. This result can be understood easily, because
are no possible Lorentz and gauge invariant operators in
Lagrangian able to absorb a term likeQd for odd d. For d
even it shows that higher dimension operators are neede
regularize the theory. As a check we also recovered
imaginary part of the VPF in the limit of infinite compact
fication radius.

For comparison with other approaches, we also obtai
the VPF in the case that a hard cutoff is used to regulariz
We found that the pieces that do not depend on the cutoff
exactly the same as those obtained by dimensional regu
ization, while the cutoff dependent pieces are arbitrary, a
can be changed at will by changing the cutoff procedure

Next we computed the VPF in the compactified theo
and showed that it can be separated into a UV and an
4-12
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finite contribution and the VPF calculated in the uncomp
tified theory; as was shown previously, the latter can be c
trolled using dimensional regularization. The finite part
more complicated, but can be computed numerically for a
number of dimensions. Also, some analytical approximati
were obtained for the low and the high energy limits (Q
!Mc and Q@Mc respectively!. Adding these two pieces
together with the counterterms coming from higher dime
sion operators, we obtain a finite expression for an effec
charge which can be extrapolated continuously fromQ
!Mc to Q@Mc ; however, its value does depend on high
dimension operator couplings.

Decoupling of all KK modes in this effective charge
smooth and physically meaningful, and the low energy lo
rithmic running is recovered. We use this effective charge
connect the low energy couplings@i.e. aeff(mZ)] with the
coupling of the theory including all KK modes, regularize
by dimensional regularization. We find that this matchi
involves only the standard logarithmic running frommZ to
the compactification scaleMc . In particular, no power cor-
rections appear in this matching. However, if cutoffs are u
to regularize the VPF in the non-compact space, one d
find power corrections, exactly as expected from naive
mensional analysis. In the EFT language one could inter
these corrections as an additional matching between the
ev

tt

d

. B

c-
,’’
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fective D dimensional field theory and some more comple
theory. The question is how reliably can this matching
estimated without knowing the complete theory. By addi
to our theory an additional fermion withM f@Mc , and inte-
grating it out, we argue that power corrections cannot
computed without knowing the details of the comple
theory, in which theD dimensional theory is embedded
Some examples in which this matching can, in principle,
computed are some 5D GUT’s and string mod
@8,14,20,57–59#, and the recently proposed de-construct
extra dimensions@18,60–63#. For the question of unification
of couplings this result seems rather negative, at least w
compared with standard grand unified theories, where ga
coupling unification can be tested without knowing their d
tails. Alternatively, one can approach this result from a m
optimistic point of view, and regard the requirement of low
energy unification of couplings as a stringent constraint
the possible extra-dimensional extensions of the SM.
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