PHYSICAL REVIEW D 67, 125003 (2003

Spontaneous symmetry breaking in noncommutative field theories

H. O. Girotti*
Instituto de Fsica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brazil

M. Gomes' A. Yu. Petrovf V. O. Rivellest A. J. da Silva
Instituto de Fsica, Universidade de ®aPaulo, Caixa Postal 66318, 05315-970,03@aulo SP, Brazil
(Received 27 November 2002; published 9 June 2003

The spontaneous symmetry breaking of rotatidd@N) symmetry in noncommutative field theory is inves-
tigated in a 2-1 dimensional model of scalar fields coupled through a combination of quartic and sextuple
self-interactions. There are five possible orderings of the fields in the sextuple interaction and two for the
quartic interaction. At one loop, we prove that for some choices of these orderings there is the absence of
IR-UV mixing and the appearance of massless excitations. A supersymmetric extension of the model is also
studied. Supersymmetry puts additional constraints on the couplings but for any Nitlegre is a Moyal
ordering of the superfields for which the requirement for the existence of Goldstone bosons is satisfied. For
some ordering and whed— o we find evidence that the model is renormalizable to all orders in perturbation
theory. We also consider a generic chiral model in B dimensions whose superpotential is invariant under
local gauge transformations. We find that for any valué&dhere is no one loop correction to the pion mass
and that, at two loops, there are no pion mass corrections for slowly varying superfields so that the Goldstone
theorem holds true. We also find a new purely noncommutative coupling which gives contributions starting at
orderN—2 loops.
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[. INTRODUCTION Another aspect that deserves better understanding is the
effect of these IR singularities on the mechanism of symme-
Noncommutative quantum field theory has been inteniry breakdown and the appearance of Goldstone bosons in
sively studied during recent yeaffor a review, seg¢l]). At noncommutative field theory. Previous studies unveiled some
first, the idea of noncommutativity was motivated by theinteresting features. For the four dimensional linear sigma
hope that its introductionfand the ensuing nonlocality model it has been shown that, at one loop, spontaneous
would allow for the construction of theories with improved breakdown may occur for thg(N) theory but not folrO(N)
ultraviolet behavior. This expectation was not satisfied asf N+ 2. It is also worth mentioning that the Goldstone theo-
noncommutative theories exhibit ultraviolet divergences ofrem holds only if the field ordering in the quartic Moyal
the same sort as those found in the commutative situatiorproduct is consistent with local symmefry]. Other proper-
However, nowadays there are other motivations, comingies of theO(2) case have also been studied 8] and the
mainly from string theory and quantum gravity, which main- results for theU(N) case have been extended to two loops
tain the keen interest in the subject. Being intrinsically non{10]. Attempts to go to higher loops require an IR regulator
local these models present many unusual aspects which desich can no longer be removddl]. Thus, only certain
serve painstaking investigation. Their main characteristic is\oncommutative extensions preserve the main features of
the appearance of an infraréldR) singularity (also referred their commutative counterparts. One may ask whether this
to as UV-IR mixing[2]) which may ruin some of the prop- depends upon the dimensionality of space-time or on the
erties that a well defined quantum field theory is required tanature of the interaction or on both. This paper provides
possess. For instance, perturbative renormalizability is usufurther understanding of this problem by means of some spe-
ally lost in noncommutative theories although it is regainedcific examples.
in the supersymmetric cassee[3,4] and[5,6] for studies in We start by studying the spontaneous symmetry breaking
nongauge and gauge theories, respectjvely of the continuousO(N) symmetry in a three dimensional
theory and in a supersymmetric version of it, with the aim of
learning about the role played by supersymmetry.
*Email address: hgirotti@if.ufrgs.br In the nonsupersymmetric case we find that there is a
"Email address: mgomes@fma.if.usp.br class of field orderings for which no UV-IR mixing occurs at
*Also at Department of Theoretical Physics, Tomsk State Pedaone loop. Unlike the four dimensional case this does not
gogical University, Tomsk 634041, Russia. Email addressrequire gauge invariant couplings. Interestingly enough, the
petrov@tspu.edu.ru; petrov@fma.if.usp.br condition for the elimination of UV divergences, in the pla-
SAlso at Center for Theoretical Physics, Massachusetts Institute afar sector of the pion two point function, also secures the
Technology, Cambridge, MA 02139-4307. Email address:cancellation of the would-be IR divergence, in the nonplanar
rivelles@Ins.mit.edu; rivelles@fma.if.usp.br sector, and, at the same time, enforces the appearance of
IEmail address: ajsilva@fma.if.usp.br massless excitations. This mechanism is absent in the four
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dimensional case. We remark that it is possible to extend ththe Goldstone theorem for them, since they provide exten-
nonsupersymmetric model by adding a purely noncommutasions of realistic string models. We assume that the interac-
tive interaction, i.e., one with no commutative analogue. lttion can be approximated by a general superpotefitid)
gives loop contributions starting at orddr—2 so it is not  which allows for a localO(N) gauge symmetry. It will be
relevant for our one loop results. It also exists in superspacghown that, at one loop, there are no corrections to the pion
but gives no contribution to the supersymmetric case. Its rolenass so that the Goldstone theorem holds true. Then, using
outside the context of spontaneous symmetry breaking desupersymmetry alone, we go to two loops and show that for
serves further investigation. slowing varying superfields there are, again, no pion mass
While in four dimensions supersymmetry removes a dancorrections. Thus, supersymmetry enables us to transpose the
gerous IR quadratic singularity, in our three dimensional cas@|=2 barrier found for the purely bosonic quartic interaction
it just further restricts the class of allowed models. Moreover[7],
for a specific Moyal ordering we find evidence of its renor-  This paper is organized as follows. In Sec. Il the noncom-
malizability to any order in the limiN— c. mutative version of th©(N) scalar model with quartic and
As far as noncommutative four dimensional theories al’%extume interactions is presented, and the spontaneous sym-
concerned, we shall be dealing with effective supersymmetmetry breaking is studied. Section Il contains a discussion
ric field models which arise as the low energy limit of com- of its supersymmetric version in superspace. Finally, in Sec.
pactified string or M theory. Usually the tree level exchangey we discuss the spontaneous symmetry breaking of a chiral

of heavy fields leads to nonrenormalizable interactions in theyperfield in a generic superpotential in four dimensions. The
effective potential of the light fields. In the supersymmetric conclusions are left to Sec. V.

case, the decoupling of the heavy fields leads to corrections
to the effective superpotentifl2] and to the Kaler poten-

tial of the light fields[13]. On the other hand, the dynamics
of D3-branes may be described, for slowly varying fields, by
a Born-Infeld type action in which the transverse radial ex- We start our analysis by considering the possible sponta-
citations are a set of scalar fielt4]. In the supersymmetric neous breakdown of th@(N) symmetry in ad dimensional
case one finds a chiral superfield in a specific superpotentiahodel described by the actigaubscripts from the beginning
[15]. In view of this it is natural to analyze the noncommu- and the middle of the latin alphabet run from IN@nd from
tative versions of such theories and to study the validity ofl to N—1, respectively

Il. THE NONCOMMUTATIVE ~ ¢® MODEL

1 w? g A
- E ¢aD d’a+ ? ¢a¢a_Z(| 1¢a* ¢a* ¢b* ¢b+ I 2¢a* ¢b* ¢a* ¢b) _g(h1¢a* ¢a* ¢b* ¢b* ¢c* ¢c

S= f ddx

+ h2¢a* d’a* d’b* ¢c* ¢c* ¢b+ hSd’a* d’a* ¢b* ¢c* ¢b* ¢c+ h4¢a* ¢b* ¢c* ¢a* ¢b* ¢c+ h5¢a* ¢b* ¢c* ¢a* d’c* ¢b) .

1)

The* indicates the Moyal product, which satisfies satisfying the conditiond,+1,=1 and hy+h,+---+hs
=1, so that there are two quartic and five sextuple indepen-
dent interaction couplings. For constant fields, obeying the
condition ¢,¢,=a2, the minimal value of the action is

f A% (X)* Py(X) - - - Pp(X) achieved for

(2m)989(ky+ - - - +kp)

J d%;, d%,
(2m?  (2m)¢

1
a®=—-(= g+ Vg*+4u®)). 3

d1(Ky) a(ka) - - - dn(kp). (2)

Assuming that the field configuration that minimizes the
action is of the form (0,0...,a) we redefine the fields,
Here, ki/\k; =k k;,0*"2, and§*’=— 6" is the antisym- (m;,0+a), so that the new fields, 7; have zero vacuum
metric constant matrix characterizing the underlying non-expectation values. In terms of these new fields the action
commutativity. Thel,l,,hs,hs, ... hs are real numbers takes the form

><exp(i2 ki/\K;
i<
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d 2 3 3 )\ 2 g
S= dx ——7Ti|:\77i——0'(|:|—ll )0’—(2)\61 +ga)(r*77i*7ri— —3)\3 +ga g*o*0— —Eaa +—|1 7Ti*7Ti*7Tj*7Tj
2 gl * * * 4+ | = 2 +—| * g* * + | = 2 — J,——I * * g*
+ —6(3 Cl)a | 2 | i ’ﬂj T ”j 6a,3 2 1| 0O* O* ™ T 6a(18 ﬂ) 2 2 | O* ™ OF T
2 9
+ Aa“+ | oxg*o*og |+, (4)

wherem?=4u2—2ga?=4xa*+2ga?, the ellipsis denotes done but they do not show up in our calculations. The cor-
terms of fifth and sixth order in the fieldgg=3h;+2(h, responding counterterm Lagrangian is, therefore,
+h3)+hg, and B=18h;+ 14h,+12h;+6h,+ 8hs. Notice
that condition(3) implies that ther; fields (piong are mass-
less in the tree approximation, in accord with the Goldstone
theorem.

1
Lo= = 5 (80— 8,2+ dga’+ s,at)
From the action4) we can obtain the momentum space

Feynman rules. For the propagators we have

(a(P)a(p)=2mI8(P+P)5—s, (5
py—m

.
<m<pl>m<pz>>=<2w>d5<p1+p2>'p—;, ®)
1

whereas the vertices carry trigonometric factors:

mi(P1) 7 (P2) m(P3) 7 (P4)

— —ips[cogp:1/\po)cos P/ \pa) i O
+cog p1/\p3)cog P,/ \Pa) Sik ;)
+c0gP1/\P4) COLP2/\P3) i 6]

—ip,[ cogp1/\p3+ P2/ \P4) §ij Sy

+cogP1/\p2+ Pa/\pa) 16k

+cog p1/\po+ Pa/\P3) 8 il (7)
mi(P1) 7 (P2) o(P3)o(Pa)

— —i[ pscog p1/\p,)cog p3/\p4)
+ pacog p1/\ps+ P2/ \pa)l, (8)

a(py)* mi(po)* mi(ps)— —i(4Na’+2ga)cog pz/\pa),(g)

where  p;=(4N/3)a%a+2gl;,  p,=(3—a)(4\/3)a?
+2gl,, ps=(27\/3)a?B+2gl,, and p,=(2\/3)a*(18— B)
+2gl,.

1
—50(8,0=6,2+385a°+58a") o

+(8,2a— 852~ 8@%) 0+, (10)

where the ellipsis stands for other interaction terms obtained
from Eq. (4) by replacing\ andg by 6, and §y, respec-
tively. Some of these counterterms are depicted in Fig. 1,
where theo and 7 propagators are represented by continu-
ous and dashed lines, respectively.

We begin our one loop analysis of spontaneous breaking
of the O(N) symmetry in 2+1 dimensions by considering
the condition for the vanishing of the vacuum expectation
value of o (the gap equation It is found to read

8,2— 84a°— 8,a*=(10a’\ +3 )J dk
2—dga”— ) a"= — =
weTem T V) emP -t

ki
(2a)% k2’
(11)

+(N—1)(2a2)\+g)f

thus fixing the above linear combination of counterterfirs.

the remainder of this paper all superficially divergent inte-
grals are implicitly assumed to be regularized. The precise
form of the regularization is irrevelant, as far as it obeys the
usual (additive) rules employed in the calculation of Feyn-
man amplitudeg.lt should be observed that this combination
coincides with ther field mass counterterm. The gap equa-
tion (11) is graphically represented in Fig. 2.

To study quantum corrections to the pion’s mass we We next examine the one loop corrections to the pion’s

should introduce the renormalizations,— (1+ &,)?¢,,

two point function which are shown in Fig. 3. We denote the

wl—ul+ 8,2, \—\+ 6, andg—g+ &y. The reparametri- contribution from the graph with the dashed line loop as

zations of the “relative” couplings andh (i.e., I;—I;+ 4,

I1(p), that from the solid line loop ak,(p), and that from

and h;—h;+ éh; with 24l;=26h;=0) are, of course, also the loop with two internal lines alg(p). One has that
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s d®k 1 ' 2\a?
I1(p)=24 T[(ZN—4)a+12]+g(Nll+2I2) f (277)3?4—5( 3 [a+(3—a)(N=21)]+gl;+gl,(N—-1)
d3k eZiKAp
S — 12
XJ (2m)% K2 (12)
' 1 ) 3 1 ' 1 ) 3k e2ik/\p
|2(p):5 §)\a B+g|1 f Wm'ﬁ‘& §)\a (18—,8)+g|2 f (ZT)‘?’W, (13)
N d3k cog(k/\p)
I3(p)=46"(2 a8 2 . 14
3(P) (2 a’+ga) f (277 (Kt p 2= (14
Therefore, at one loop altogether we have
' 2na? d3k 5 Aa?
8 3 [6-a+(a=3)(N=1)]+g(Nl;+2I,~N+1) f P 108a®+(3-11)g— -8
d3k 1 2\a? d®k cog2k/\p)
xf 2 k2—m2+< 3 [a+(3—a)(N—l)]+gI1+gI2(N—1))f 2m)? 2
1 d3k coq2k/\p) d3k cog(k/\p)
T\ a2(19_ 3 2 2
+ 3)\a (18 ,8)+g|2)J' 2m? K +4(2\a°+ga) j 2m)? (k+p)2(k2—m2)+5zp } (15

it follows that the UV divergences in the planar contributions &'

As [d3K[ 1/(k?—m?) — 1/k?] is finite, from the above results |
may be eliminated if

2)\a?
3

[6—a+(a—3)(N=1)]+g(Nl;+2l,—N+1)

\a
:1o>\a2+(3—|1)g—73. (16)

§)\a2(18—ﬂ)+glz

2
10na%+(3—14)g— )\?aﬁ) f

) +4(2>\a3+ga)2f

f d®k  m? cog2p/\k)
2m)°® K3(k*-m?)

d3k m?

(27)3 KA(K2—m?)

d®k  cog(k/\p)
(2m)° (k+p)*(k*—m?)

| o

which is finite and vanishes g@=0. This result is a pecu-
liarity of the 2+1 dimensional world where there are at most
To prevent the IR-UV mixing in the nonplanar parts also onelinear UV divergencesfor the one loop graphs that we have

must have consideregl To see why this is so, notice that in the commu-
tative version of the model the sum
2\ a2 pion mass counterterinl 1(0) +1,(0) (19
3 [a+(B=a)(N=1)]+gl;+gl(N-1)

is finite, namely, no infinite pion wave function renormaliza-
tion is necessary. Now, it is clear that if by adjusting the

1
=—|=\a%(18—pB)+gl,]|. parameters of the model a subsum of the integrals occurring

3 17
= —i69(—0,2 + 0ga® + ra* — 8,p7)

= —i(d,2a — d4a® — 65a®)

S |
Actually, we notice that Eq16) implies Eq.(17) and vice
versa, i.e., UV divergences and IR-UV mixing in the pion
two p.omt fu_qctmns are smultanepusly ehmmate_d_. More- —i(=0,0 +369a2 + 58yat — §,p%)
over, in addition to leading to a finite result, conditiGt6)
[or (17)] also ensures that the resulting expression vanishes FIG. 1. Structure of counterterms in the noncommutatife

for p=0. Indeed, after imposing Ed16), the expression model. Continuous and dashed lines represenutlaamd ; fields,
(15 may be rewritten as respectively.

- %
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FIG. 2. Gap equation in the noncommutati$é model. FIG. 3. One-loop contributions to the pion two-point function in
the noncommutativeb® model.

in Eq. (19) is made finite then with the same choice of pa-

rameters the subsum of the remaining integrals will also be | g possible to generalize the actié) by adding to it an
finite. In the noncommutative model that we are dealing withiieraction that is purely noncommutative in character and

the two sets of integrals correspond to the planar and nonRynese existence is due to thEN) symmetry. For a giveN
planar parts of the graphs contributing to E&9). The ap- it has the form

pearance of the Goldstone bosons is a straightforward con-
sequence of the fact that the pion two point function is finite
at p=0 (no infrared divergenge Thereforep can be made
zero directly i_n the integrands of Euj_15), leading to the j dixeL NG % .. % (23)
same expression as in the commutative case. 1 N
In 3+1 dimensions\ =0 is necessary for renormalizabil-

ity, the divergences are quadratic, and although(E8). still  Clearly, Eq.(23) vanishes in the commutative case, while in
vanishes ap=0 the UV convergence of the planar part de-the noncommutative one it is only nonvanishing for ddd

manolls, for genera, that the left hand side of Eq16) be  After the shift, it contributes to Eq4) with a term like
equal to

i
2(27a%+ga)? Newmmyr iy 1 29

. (20

m For N=4 this contribution starts at two loops, whereas for
generaIN it starts atN— 2 loops. So the modification of the
action implied by the addition of Eq23) does not alter our
former conclusions, which were derived at one loop level,

algut may become relevant at higher loop levels.

This new equation strongly restricts the dynamics so that th
class of allowed models requirds=2 andl,=2 as proved
in [7].

Returning to the model under analysis, we observe th
for a givenN Eq. (16) expressea in terms ofg, for general
values ofe, B, andl,. However, for arbitrary nonzerno and Ill. SUPERSYMMETRIC VERSION IN 2 +1 DIMENSIONS

g Eq. (16) is satisfied if . . . .
A simple supersymmetric extension of the model studied

in the last section is provided by the superfield action

li=y—7 and B=12+6N-2a(N-2). (2]

N 2 1

To complete the investigation of the existence of the S_f d z(2<baD Pat Z’Mq)""q)al

IR-UV mixing, one has to study also the behavior of the

othe_rn point functions that have pc_:sitive supe_rficial d(_agrees _g[fq)a*q)a*q)b*@ml_ F)D % D D+ D] |
of divergence. In the case of thefield two point function 4

one finds that the vanishing of infrared quadratic divergences (25)
now demands that

Here,D=d/d6—i64, D=y,D, 6,, a=1,2 (6=6°), are

) a? Grassmann variable@2=%5D, and the superfield® has
10ha“+g+(N—1) T(lS—,B)+g|2 =0. (22 the decomposition

The discussion may be extended to the one loop calcula-
tions of the three and four point functions. One finds that the Y
relevant contributions arise from the vertices with five and O=g¢+0y+ 7F, (26)
six fields. In that situation, the new parameters which come
into play are enough to eliminate the possible IR-UV mixing.
One may conclude that, as far as renormalizability is conwhere ¢ is anN component Majorana spinor argl and F
cerned, the model is consistent up to one loop, for any valuare (N component scalar fields. In terms of field compo-
of N. nents the Lagrangian reads
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1 i— 1, H— g g
L=50,00 ¢+ Spbyp+ SF = uF ¢+ Zyht SHFax dat da*Fal* du* dpt+ 5 (1= H[Fax dpt dax Fol* da* dp

— 2 bt by g 1T bart b Bl (1% b+ byt U] — 3 (1= D)0t b o tha* T b o

+ Ya* Po* Ya* Pl 27)

By integrating outF (or, alternatively, by eliminating it through the use of the equations of mptioe obtains quartic and
sextuple self-interactions with definite strengths.

In what follows we will work directly with the actioni25). Classically, it possess&3(N) symmetry and its potential part
has a minimum at a constant value of the superfleld= Ju/g. As in the nonsupersymmetric case, to break @)
symmetry we suppose that one of fieldsr the sake of concretenesby) has a nonzero vacuum expectation vadudll
other fields have zero vacuum expectation values. Then we make the chklapges for i#N and®y=o+a. The super-
fields 7; ,o have zero vacuum expectation values. In terms of the new variables the action can be cast as

1 2 1 2 9
S[ﬂ'i,a]ZJ’ d°z E’]TiD ’7Ti+§0'(D —Z,LL)O'—ZO'*O'*O'*O'—QaO'*O'*U—gaWi*’JTi*O'

—g[fﬂi*ﬂ'i*7Tj*7Tj+(1—f)ﬂTi*Wj*Wi*ﬂj]—g[fﬂ'i*ﬂi*(f*(f‘l'(l—f)’7Ti*0'*7Ti*O'] . (29
The counterterm Lagrangian is

2 1 > 1 2 1 2 2 3 &
Lct:§5z7TiD ’Tl‘i+§§ZO'D o+ 5(—a“dy+ 5M)7Ti7Ti+§(—3a 8¢+ 6,)0°+(5,a— 54a )O'—ZO'*O'*O'*G'— O4o* o* oa

2
9 2
—6g17i*77i*0'a—z[f77i*17i*77]-*7Tj+(1—f)17i*771-*wi*wj]—?[fm*7Ti*cr*cr+(1—f)17i*a'*77i*0'], (29
|
the renormalization being done through the replacements d3k
mi—(1+8)m, o—(1+8)0, u—u+du, g—g+ 49, g j 3 2+ga(N—1)
and f—f+ &f. The propagators corresponding to the action (2m)° k*=m
(28) ata=+u/g are d3k 1
X —+i(5,a—8,a%=0. (32
) J(zw)?‘k2 (987 0420) 32

D

(mi(X1,01)mj(X2,0,))=—1i ﬁ‘sij ®(z3-2,), (30
As before, this condition is not affected by the noncommu-
tativity and implies that

D*+m
<0'(X1:01)0'(X2102)>:_|—26ij5 (21—25), (3D d3k i
L+m S,a— 5ga3=ga(N—1)f —
(2m)° k2
where 5%(z;—2,) = 83(X, — %) 8( 61— 6,) 8(6,— 6,) and m dk i
=2ga?. We adopt a graphical notation similar to the one in +3gaJ (2m)° K- (33

Sec. Il. Thus, we represent the field propagator by a
dashed line, and théoa) propagator by a solid one. The ) ) _ _ _
trigonometric factors associated with the cubic and quartic C°ncering ther superfield two point function, one finds
vertices are the same as in the previous section, and we wiftat: graphically, the condition for the cancellation of diver-
not list them here. Now, however, we have to make the fol-9€nt corrections to them;m;) propagator is the same as in
lowing identifications: Fig. 3. Adopting the same convention as in the previous case,

w field bilinear countertermi:s;(8,— 8,a°+ 8,0?), it reads

o field bilinear countertermi(5,—384a%+ §,D?),

o field tadpole counterterni(— 8,a’+ 8,a). I1(p) +12(p) +13(p) + 1 =finite. (34)
The vanishing of the vacuum expectation value of éhe
superfield leads to the the gap equation An explicit calculation yields
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1 basic fields is adopted. For the adjoint representation there
l1(p)=8"g[fN+2(1— f)]j are additional difficulties due to the matrix character of the
(2m )3 K2 superfields.
2|k/\p
+8g[f+(1—f)(N— 1)]f , IV. GENERIC CHIRAL MODEL IN 3 +1 DIMENSIONS
3 k2

As discussed in Sec. |, we next consider a gen@iibl)
chiral model whose action is given by

1
I2(p)=8"gf f _
(2m )3 K2 —m? s=f d8z<1>aq>a—(fdﬁzvv(q>a)+H.c. , (39
3k e2ikAp
+8lg(1— f)J 2 3 whereW is the superpotential. In order to be invariant under
(2m)° k= local transformations we must have an even number of su-
perfields, so that we can take complex combinations of them.
- d’k cog(k/\p) As for the Moyal ordering it must be of the form
l3(p)=2g°a”s" (D“+m). ook DD, * Do, -. We then restrictN to be
(27)3 K3(k2—m?) . )
(35) even and the superpotential to be given by
Hence, the coefficient d? turns out to be W(d,)= 2)@ D, + E (q) * D) k_ (40)
3 2,2
s =292a2f d°k  cos'(k/\p) __9a +0(6p). Consideration of other orderings brings no essential modifi-
‘ (2m)3 K3(k?2—m?) V27m cations since, as we will show, the vanishing of the two point

(36)  function of the pion field at zero momentum is completely
enforced by the chirality of the pion superfield.

This integral is finite and nonsingular pt—0, and, there- For a constant chiral superfield, satisfying the condition
fore, we have only a finite wave function renormalization for ® ,®,=a?, the minimum of the superpotential is achieved
the 7r; fields. for
The correction to the mass of the pion superfi€g, is .
the sum of the DZ?-independent parts  of © k1
11(p),12(p),13(P),l¢. It is given by the relation —5+ 2 M(@)<i=0 (42)
d3k | 1 1 As usual, to break th®(N) symmetry we perform the shift
_f o (2 N)(1—f)+ (f 2) ®,—(m;,0+a), after which the superpotential can be re-
(2m)° written as
e2ik/\p e2ik/\p .
(N=2)(1-H+———=(@2-f) (37 oM e s M| R pg
k?—m W(,0o) 50 +k§2 K 3!(2k—3)!a o* o* o
and is both UV finite and without dangerous IR-UV mixing (2k)! oka
if (2—-N)(1-f)=2—f, i.e., if f=N/(N—1). At this value +ma groxo*o
of f, we get
(2k—2)(2k—3)
2k—4 — R,
2 N &k 1—cos2k/\p) +ka 2(k—1)ac+ > o* o
e SR @9
(2m)°  ko(k"—m") k(k—1)

a2 (e my)?

* Tk T+

L]

which vanishes ap=0, as required.

The above result suggests that, siffeel for large N, (42
only the first quartic ordering in Eq25) survives in this i i i
limit. This indicates that the use of theNL/expansion be- Where only quadratic, cubic, and quartic terms have been

comes appropriate and that by proceeding along the line8XPlicitly displayed. Then the field acquires a mass

described in4] one may prove renormalizability to all or- o
ders A (2K)! _
: w2 G (43
Our analysis can easily be extended to the case in which = k (2k—2)!

the basic superfields belong to a representation ofJtfg)

group. For the fundamental representation, similarly to thevhile the kinetic term takes the forlfﬂgz(w 77,+(w)
nonsupersymmetric situation, one finds that Goldstone’s To cancel the divergences we introduce a counterterm ac-
theorem holds if a gauge invariant Moyal ordering of thetion of the form
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- 5, < O\ (2K -
_ 8 . 6 _r Tk 2k—2 _ 2k—1
Set J' d 252(77,77,+0'0')+[ f d Z[( 5 +k22 K 202k=2)1 a 5Ma+2k22 S\ a o
1 - " (2k)! (2k)!
_ - k=1 Tk 2k—3 2k—4
25Ma+k22 o\ @ )Tl’l’ﬂl‘l‘gz K ([3!(2k_3)!a (7*0'*0'+4!(2k_4)!a orogroro+ ...
2k—2)(2k—3 k(k—1
+kl2(k—1)a% 3¢+ %8.%740’*0' * ko + ( )az(kiz)(’ﬁi*'ﬁi)z +.-. +H.C.J. (44)
|
The nonvanishing propagators for the chiral superfietds *
and o read, as usual, - 5”-( —-s,a+2> 6)\ka2"‘1)
k=2
— 1
<7Ti771>:5ij558(21—22), and
— 1 s,a—22, onal 50
(00 = —— F(2-20), k222, N 50
5 The gap equation signifying that has vanishing expectation
. mD value is depicted in Fig. 4. Notice that the supergraph includ-
(o0)= A0(0—m?) 21-2,). (45 ing one omm; vertex vanishes becauser;(z;)m;(z2))

There are als®?,D? factors associated with the chiral ver-
tices according to the standard Feynman rules in superspag

[16]. Observe also that the propagafer; 7;)=0.

The(a-ri;j) propagator will be represented by a dashed

line and the(oo) propagator by a solid one. TH® (O)

symbol corresponds to a factbr* (D?) associated with the
(oo) ({oa)) propagator, while all otheb factors are asso-

ciated with vertices by the usual rules in superspfds.

The trigonometric factors in the vertices have the same struc-

ture as in the models seen before. The vetrtexr;* m; car-
ries a factor

8ij cogp1/\pa), (46)
while for the vertexo* o* o one finds
[cog p;/\p2) +cod po/\ps) +cogp;/\ps)],  (47)

where p;,p»,p3 are three incoming momenta. The vertex

mi* m* mex m has a factor

—M\{8ij Sl cod p1/\p,)cog ps/\pa)]
+ i 5[ cog p1/\p3)cod po/\pa) ]

+ 8 O cog p1/\pa)cog p/\py) 1}, (48)
whereas for the vertex* m* o* o it turns out to be
8ij cogp1/\p,)cogP3/\py). (49)

Furthermore, ther field mass counterterm and thetadpole
counterterm are, respectively,

=0. The gap equation is then the same as in the commuta-
tive case. The tadpole graph gives a contribution propor-

nal to
D?D?D2
6 - - _ !
de 20(2)6 O 8(z—2')| -z
:—mf d820'(Z)( )54()( X")|x=xr

=0, (51)
which vanishes as in the commutative case. The vanishing is
due only to supersymmetry, since all noncommutative trigo-
metric factors have disappeared. Therefore, vanishing of the
counterterm contribution leads to

o]

s,a—2>, o\@a? =0, (52)
k=2

fixing the relation among the counterterms. It also coincides
with the pion mass counterterm implying that it vanishes.
The only one loop contribution to the pion mass renor-
malization is given by the supergraph shown in Fig. 5. The
contribution of this supergraph turns out to be proportional to

+ — X =0

FIG. 4. Gap equation in generic chiral model iA-2 dimen-
sions.
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The supergraphs in Figs. 6e, 6f, 6g, 6h, 6i, 6j, and 6k have
equal numbers ob? andD? factors; hence, afteD-algebra
transformations, their contributions are proportional to

TN\ /] Jd8za;7;, which is equal to zero due to the chirality of .
The supergraphs depicted in Figs. 61, 6m, and 6n are propor-

tional to D26,,D%6;, and to D?5,,D?8;,. Both structures
give vanishing contributions after integration by parts. Fi-
nally, the supergraph drawn in Fig. 60 is proportional to
fd*0m;D?m,=[d?6m, 0 and vanishes for slowly varying
superfields. We thus conclude that there are no loop correc-
tions to the pion mass for slowing varying superfields. Then
the Goldstone theorem is satisfied at one and two loop order

other orderings this expression would contain nontrivialfor.the O(N) super_symm_etrlc ch|ra'l sup'erfleld whpse Inter-
phase factors but, nevertheless, would still vanish for thé@ctions are compatible W'th gauge invariance. Notice that the
same reasofi.e., the chirality of the pion field Therefore vanishing of these corrections is due to the supersymmetry

we conclude that at one loop order there is no mass renofi—nd ot to relat!ong among the coupling constants. In fact,
malization, and this is entirely due to the chirality of the this is a generalization of the nonrenormalization theorem of

superfieldsr; . This is in contrast to the supersymmetric Casesgxp;ersymmetrlc theoriefl6] to the noncommutative con-

in three dimensions, where a nonvanishing contribution wa Wi | der th | tative int
found. There the superfields are real and no chirality argu-. € can aiso consider the purely honcommutative Interac-
tion (23) in superspace. Its contribution to E42) is similar

ment is available. that of(24) but its | tributi I ish si
Just using supersymmetry and chirality arguments allow o that of(24) utits loop constributions always vanish since
mmj)=0. So it also is not relevant for the results just de-

us to go beyond one loop straightforwardly. At two loops we.
have to consider the supergraphs with twoexternal lines

which are drawn in Fig. 6. The supergraphs in Figs. 6a, 6b,
6¢, and 6d contain tadpolelike loop contributions consisting

of one propagatofe(z)o(2)) or ((z)(2)). Since they are

FIG. 5. One loop contribution to the pion two-point function in
generic chiral model in 3 1 dimensions.

1
85— ) - _ ot ,
f d Z7T|(Z)7T,(Z)(D_m2) (z—2"),=y, (B3

which also vanishes due to the chirality ®f. Had we used

V. CONCLUSIONS

proportional to D?D?D?5%(z—2')|,—,, or D?D?D?8%(z In this work, the mechanism of spontaneous symmetry

—2')|,=,, they both vanish. breaking and the appearance of Goldstone bosons were in-
vestigated in connection with several noncommutative field
models.

| We first studied the spontaneous breakdown of the con-
A Q @ @ tinuousO(N) symmetry in a noncommutative scalar model
o ’ ) ' with quartic and sextuple interactions. Fot2 dimensions,
c there is a class of field orderings for which the model turned
. out to be renormalizable, up to one loop. The linear combi-
(Q nation of couterterms fixed by the gap equation equals the
} m-field mass counterterm. Moreover, for the pion two point
' function, a single condition suffices to ensuiecancellation
of the UV divergences(ii) cancellation of the IR diver-
N N gences arising from the UV-IR mixing, aridi) the appear-
h P . ance of massless excitations. As shown, this is a peculiarity
oo @ --m-- --\/I/\-- of the 2+1 dimensional world. In 3-1 dimensions, renor-
’ ad ) malizability called for the elimination of the sextuple inter-

‘ ! ! ! ' actions while the UV convergence of the planar part restricts
the dynamics as already found [ii]. In 2+1 dimensions
@ S 4 v supersymmetry restricts even further the class of allowed
C oy k models while, on the other hand, it renders the theory renor-
malizable to all orders in the limi— o,

Second, we studied a generic chiral model in Bdimen-
sions with a localO(N) gauge theory. We argue that this
1 m n model, although not renormalizable by power counting, may
provide a realistic description of the low energy limit of
m compactified string or M theory. There are no one loop cor-
N rections to the pion mass, while the same holds for two loops

in the limit of slowly varying superfields. Supersymmetry
FIG. 6. Two-loop contributions to the pion two-point function in enabled us to go through tiNe=2 barrier existing for purely
generic chiral model in 3 1 dimensions. bosonic interaction§7].
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