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Spontaneous symmetry breaking in noncommutative field theories
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The spontaneous symmetry breaking of rotationalO(N) symmetry in noncommutative field theory is inves-
tigated in a 211 dimensional model of scalar fields coupled through a combination of quartic and sextuple
self-interactions. There are five possible orderings of the fields in the sextuple interaction and two for the
quartic interaction. At one loop, we prove that for some choices of these orderings there is the absence of
IR-UV mixing and the appearance of massless excitations. A supersymmetric extension of the model is also
studied. Supersymmetry puts additional constraints on the couplings but for any givenN there is a Moyal
ordering of the superfields for which the requirement for the existence of Goldstone bosons is satisfied. For
some ordering and whenN→` we find evidence that the model is renormalizable to all orders in perturbation
theory. We also consider a generic chiral model in 311 dimensions whose superpotential is invariant under
local gauge transformations. We find that for any value ofN there is no one loop correction to the pion mass
and that, at two loops, there are no pion mass corrections for slowly varying superfields so that the Goldstone
theorem holds true. We also find a new purely noncommutative coupling which gives contributions starting at
orderN22 loops.
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I. INTRODUCTION

Noncommutative quantum field theory has been int
sively studied during recent years~for a review, see@1#!. At
first, the idea of noncommutativity was motivated by t
hope that its introduction~and the ensuing nonlocality!
would allow for the construction of theories with improve
ultraviolet behavior. This expectation was not satisfied
noncommutative theories exhibit ultraviolet divergences
the same sort as those found in the commutative situat
However, nowadays there are other motivations, com
mainly from string theory and quantum gravity, which mai
tain the keen interest in the subject. Being intrinsically no
local these models present many unusual aspects which
serve painstaking investigation. Their main characteristic
the appearance of an infrared~IR! singularity ~also referred
to as UV-IR mixing@2#! which may ruin some of the prop
erties that a well defined quantum field theory is required
possess. For instance, perturbative renormalizability is u
ally lost in noncommutative theories although it is regain
in the supersymmetric case~see@3,4# and@5,6# for studies in
nongauge and gauge theories, respectively!.
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Another aspect that deserves better understanding is
effect of these IR singularities on the mechanism of symm
try breakdown and the appearance of Goldstone boson
noncommutative field theory. Previous studies unveiled so
interesting features. For the four dimensional linear sig
model it has been shown that, at one loop, spontane
breakdown may occur for theU(N) theory but not forO(N)
if N5” 2. It is also worth mentioning that the Goldstone the
rem holds only if the field ordering in the quartic Moya
product is consistent with local symmetry@7#. Other proper-
ties of theO(2) case have also been studied in@8,9# and the
results for theU(N) case have been extended to two loo
@10#. Attempts to go to higher loops require an IR regula
which can no longer be removed@11#. Thus, only certain
noncommutative extensions preserve the main feature
their commutative counterparts. One may ask whether
depends upon the dimensionality of space-time or on
nature of the interaction or on both. This paper provid
further understanding of this problem by means of some s
cific examples.

We start by studying the spontaneous symmetry break
of the continuousO(N) symmetry in a three dimensiona
theory and in a supersymmetric version of it, with the aim
learning about the role played by supersymmetry.

In the nonsupersymmetric case we find that there i
class of field orderings for which no UV-IR mixing occurs
one loop. Unlike the four dimensional case this does
require gauge invariant couplings. Interestingly enough,
condition for the elimination of UV divergences, in the pl
nar sector of the pion two point function, also secures
cancellation of the would-be IR divergence, in the nonpla
sector, and, at the same time, enforces the appearanc
massless excitations. This mechanism is absent in the
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dimensional case. We remark that it is possible to extend
nonsupersymmetric model by adding a purely noncomm
tive interaction, i.e., one with no commutative analogue
gives loop contributions starting at orderN22 so it is not
relevant for our one loop results. It also exists in supersp
but gives no contribution to the supersymmetric case. Its
outside the context of spontaneous symmetry breaking
serves further investigation.

While in four dimensions supersymmetry removes a d
gerous IR quadratic singularity, in our three dimensional c
it just further restricts the class of allowed models. Moreov
for a specific Moyal ordering we find evidence of its reno
malizability to any order in the limitN→`.

As far as noncommutative four dimensional theories
concerned, we shall be dealing with effective supersymm
ric field models which arise as the low energy limit of com
pactified string or M theory. Usually the tree level exchan
of heavy fields leads to nonrenormalizable interactions in
effective potential of the light fields. In the supersymmet
case, the decoupling of the heavy fields leads to correct
to the effective superpotential@12# and to the Ka¨hler poten-
tial of the light fields@13#. On the other hand, the dynamic
of D3-branes may be described, for slowly varying fields,
a Born-Infeld type action in which the transverse radial e
citations are a set of scalar fields@14#. In the supersymmetric
case one finds a chiral superfield in a specific superpote
@15#. In view of this it is natural to analyze the noncomm
tative versions of such theories and to study the validity
n
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the Goldstone theorem for them, since they provide ext
sions of realistic string models. We assume that the inte
tion can be approximated by a general superpotential@17#
which allows for a localO(N) gauge symmetry. It will be
shown that, at one loop, there are no corrections to the p
mass so that the Goldstone theorem holds true. Then, u
supersymmetry alone, we go to two loops and show that
slowing varying superfields there are, again, no pion m
corrections. Thus, supersymmetry enables us to transpos
N52 barrier found for the purely bosonic quartic interacti
@7#.

This paper is organized as follows. In Sec. II the nonco
mutative version of theO(N) scalar model with quartic and
sextuple interactions is presented, and the spontaneous
metry breaking is studied. Section III contains a discuss
of its supersymmetric version in superspace. Finally, in S
IV we discuss the spontaneous symmetry breaking of a ch
superfield in a generic superpotential in four dimensions. T
conclusions are left to Sec. V.

II. THE NONCOMMUTATIVE f6 MODEL

We start our analysis by considering the possible spo
neous breakdown of theO(N) symmetry in ad dimensional
model described by the action~subscripts from the beginning
and the middle of the latin alphabet run from 1 toN and from
1 to N21, respectively!
S5E ddxF2
1

2
fahfa1

m2

2
fafa2

g

4
~ l 1fa* fa* fb* fb1 l 2fa* fb* fa* fb!2

l

6
~h1fa* fa* fb* fb* fc* fc

1h2fa* fa* fb* fc* fc* fb1h3fa* fa* fb* fc* fb* fc1h4fa* fb* fc* fa* fb* fc1h5fa* fb* fc* fa* fc* fb!G .
~1!
en-
the

he
,

tion
The * indicates the Moyal product, which satisfies

E ddxf1~x!* f2~x!•••fn~x!

5E ddk1

~2p!d
•••

ddkn

~2p!d
~2p!ddd~k11•••1kn!

3expS i(
i , j

ki`kj Df1~k1!f2~k2!•••fn~kn!. ~2!

Here,ki`kj5kimkj numn/2, andumn52unm is the antisym-
metric constant matrix characterizing the underlying no
commutativity. Thel 1 ,l 2 ,h1 ,h2 , . . . ,h5 are real numbers
-

satisfying the conditionsl 11 l 251 and h11h21•••1h5
51, so that there are two quartic and five sextuple indep
dent interaction couplings. For constant fields, obeying
condition fafa5a2, the minimal value of the action is
achieved for

a25
1

2l
~2g1Ag214m2l!. ~3!

Assuming that the field configuration that minimizes t
action is of the form (0,0, . . . ,a) we redefine the fields
(p i ,s1a), so that the new fieldss,p i have zero vacuum
expectation values. In terms of these new fields the ac
takes the form
3-2
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S5E ddxH 2
1

2
p ihp i2

1

2
s~h2m2!s2~2la31ga!s* p i* p i2S 10

3
la31gaDs* s* s2F S l

6
aa21

g

4
l 1Dp i* p i* p j* p j

1S l

6
~32a!a21

g

4
l 2Dp i* p j* p i* p j1S l

6
a2b1

g

2
l 1Ds* s* p i* p i1S l

6
a2~182b!1

g

2
l 2Ds* p i* s* p i

1S 5

2
la21

g

4Ds* s* s* s G1•••J , ~4!
n
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wherem254m222ga254la412ga2, the ellipsis denotes
terms of fifth and sixth order in the fields,a53h112(h2
1h3)1h5, and b518h1114h2112h316h418h5. Notice
that condition~3! implies that thep i fields ~pions! are mass-
less in the tree approximation, in accord with the Goldsto
theorem.

From the action~4! we can obtain the momentum spa
Feynman rules. For the propagators we have

^s~p1!s~p2!&5~2p!dd~p11p2!
i

p1
22m2

, ~5!

^p i~p1!p j~p2!&5~2p!dd~p11p2!
id i j

p1
2

, ~6!

whereas the vertices carry trigonometric factors:

p i~p1!p j~p2!pk~p3!p l~p4!

→2 ir1@cos~p1`p2!cos~p3`p4!d i j dkl

1cos~p1`p3!cos~p2`p4!d ikd j l

1cos~p1`p4!cos~p2`p3!d i l dk j#

2 ir2@cos~p1`p31p2`p4!d i j dkl

1cos~p1`p21p3`p4!#d ikd j l

1cos~p1`p21p4`p3!d i l dk j], ~7!

p j~p1!p j~p2!s~p3!s~p4!

→2 i @r3cos~p1`p2!cos~p3`p4!

1r4cos~p1`p31p2`p4!#, ~8!

s~p1!* p i~p2!* p i~p3!→2 i ~4la312ga!cos~p2`p3!,
~9!

where r15(4l/3)a2a12gl1 , r25(32a)(4l/3)a2

12gl2 , r35(2l/3)a2b12gl1, and r45(2l/3)a2(182b)
12gl2.

To study quantum corrections to the pion’s mass
should introduce the renormalizationsfa→(11dz)

1/2fa ,
m2→m21dm2, l→l1dl and g→g1dg . The reparametri-
zations of the ‘‘relative’’ couplingsl and h ~i.e., l i→ l i1d l i
and hi→hi1dhi with (d l i5(dhi50) are, of course, also
12500
e

e

done but they do not show up in our calculations. The c
responding counterterm Lagrangian is, therefore,

Lct52
1

2
p i~dzh2dm21dga21dla4!p i

2
1

2
s~dzh2dm213dga215dla4!s

1~dm2a2dga32dla5!s1•••, ~10!

where the ellipsis stands for other interaction terms obtai
from Eq. ~4! by replacingl and g by dl and dg , respec-
tively. Some of these counterterms are depicted in Fig
where thes andp propagators are represented by contin
ous and dashed lines, respectively.

We begin our one loop analysis of spontaneous break
of the O(N) symmetry in 211 dimensions by considering
the condition for the vanishing of the vacuum expectat
value ofs ~the gap equation!. It is found to read

dm22dga22dla45~10a2l13g!E d3k

~2p!3

i

k22m2

1~N21!~2a2l1g!E d3k

~2p!3

i

k2
,

~11!

thus fixing the above linear combination of counterterms.@In
the remainder of this paper all superficially divergent in
grals are implicitly assumed to be regularized. The prec
form of the regularization is irrevelant, as far as it obeys
usual ~additive! rules employed in the calculation of Feyn
man amplitudes.# It should be observed that this combinatio
coincides with thep field mass counterterm. The gap equ
tion ~11! is graphically represented in Fig. 2.

We next examine the one loop corrections to the pio
two point function which are shown in Fig. 3. We denote t
contribution from the graph with the dashed line loop
I 1(p), that from the solid line loop asI 2(p), and that from
the loop with two internal lines asI 3(p). One has that
3-3
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I 1~p!5d i j S la2

3
@~2N24!a112#1g~Nl112l 2! D E d3k

~2p!3

1

k2
1d i j S 2la2

3
@a1~32a!~N21!#1gl11gl2~N21! D

3E d3k

~2p!3

e2ik`p

k2
, ~12!

I 2~p!5d i j S 1

3
la2b1gl1D E d3k

~2p!3

1

k22m2
1d i j S 1

3
la2~182b!1gl2D E d3k

~2p!3

e2ik`p

k22m2
, ~13!

I 3~p!54d i j ~2la31ga!2E d3k

~2p!3

cos2~k`p!

~k1p!2~k22m2!
. ~14!

Therefore, at one loop altogether we have

d i j H S 2la2

3
@62a1~a23!~N21!#1g~Nl112l 22N11! D E d3k

~2p!3

1

k2
2S 10la21~32 l 1!g2

la2

3
b D

3E d3k

~2p!3

1

k22m2
1S 2la2

3
@a1~32a!~N21!#1gl11gl2~N21! D E d3k

~2p!3

cos~2k`p!

k2

1S 1

3
la2~182b!1gl2D E d3k

~2p!3

cos~2k`p!

k22m2
14~2la31ga!2E d3k

~2p!3

cos2~k`p!

~k1p!2~k22m2!
1dzp

2J . ~15!
s
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As *d3k@1/(k22m2)21/k2# is finite, from the above result
it follows that the UV divergences in the planar contributio
may be eliminated if

2la2

3
@62a1~a23!~N21!#1g~Nl112l 22N11!

510la21~32 l 1!g2
la2

3
b. ~16!

To prevent the IR-UV mixing in the nonplanar parts also o
must have

2la2

3
@a1~32a!~N21!#1gl11gl2~N21!

52S 1

3
la2~182b!1gl2D . ~17!

Actually, we notice that Eq.~16! implies Eq.~17! and vice
versa, i.e., UV divergences and IR-UV mixing in the pio
two point functions are simultaneously eliminated. Mor
over, in addition to leading to a finite result, condition~16!
@or ~17!# also ensures that the resulting expression vanis
for p50. Indeed, after imposing Eq.~16!, the expression
~15! may be rewritten as
12500
e
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d i j H S 1

3
la2~182b!1gl2D E d3k

~2p!3

m2 cos~2p`k!

k2~k22m2!

2S 10la21~32 l 1!g2
la2

3
b D E d3k

~2p!3

m2

k2~k22m2!

14~2la31ga!2E d3k

~2p!3

cos2~k`p!

~k1p!2~k22m2!
J , ~18!

which is finite and vanishes atp50. This result is a pecu-
liarity of the 211 dimensional world where there are at mo
linear UV divergences~for the one loop graphs that we hav
considered!. To see why this is so, notice that in the comm
tative version of the model the sum

pion mass counterterm1I 1~0!1I 2~0! ~19!

is finite, namely, no infinite pion wave function renormaliz
tion is necessary. Now, it is clear that if by adjusting t
parameters of the model a subsum of the integrals occur

FIG. 1. Structure of counterterms in the noncommutativef6

model. Continuous and dashed lines represent thes andp i fields,
respectively.
3-4
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SPONTANEOUS SYMMETRY BREAKING IN . . . PHYSICAL REVIEW D67, 125003 ~2003!
in Eq. ~19! is made finite then with the same choice of p
rameters the subsum of the remaining integrals will also
finite. In the noncommutative model that we are dealing w
the two sets of integrals correspond to the planar and n
planar parts of the graphs contributing to Eq.~19!. The ap-
pearance of the Goldstone bosons is a straightforward
sequence of the fact that the pion two point function is fin
at p50 ~no infrared divergence!. Thereforep can be made
zero directly in the integrands of Eq.~15!, leading to the
same expression as in the commutative case.

In 311 dimensionsl50 is necessary for renormalizabi
ity, the divergences are quadratic, and although Eq.~15! still
vanishes atp50 the UV convergence of the planar part d
mands, for generalp, that the left hand side of Eq.~16! be
equal to

2~2la31ga!2

m2
. ~20!

This new equation strongly restricts the dynamics so that
class of allowed models requiresN52 andl 152 as proved
in @7#.

Returning to the model under analysis, we observe
for a givenN Eq. ~16! expressesl in terms ofg, for general
values ofa, b, andl 1. However, for arbitrary nonzerol and
g Eq. ~16! is satisfied if

l 15
N

N21
and b51216N22a~N22!. ~21!

To complete the investigation of the existence of t
IR-UV mixing, one has to study also the behavior of t
othern point functions that have positive superficial degre
of divergence. In the case of thes field two point function
one finds that the vanishing of infrared quadratic divergen
now demands that

10la21g1~N21!S la2

3
~182b!1gl2D50. ~22!

The discussion may be extended to the one loop calc
tions of the three and four point functions. One finds that
relevant contributions arise from the vertices with five a
six fields. In that situation, the new parameters which co
into play are enough to eliminate the possible IR-UV mixin
One may conclude that, as far as renormalizability is c
cerned, the model is consistent up to one loop, for any va
of N.

FIG. 2. Gap equation in the noncommutativef6 model.
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It is possible to generalize the action~1! by adding to it an
interaction that is purely noncommutative in character a
whose existence is due to theO(N) symmetry. For a givenN
it has the form

E ddxea1 . . . aNfa1* •••* faN
. ~23!

Clearly, Eq.~23! vanishes in the commutative case, while
the noncommutative one it is only nonvanishing for oddN.
After the shift, it contributes to Eq.~4! with a term like

Ne i 1••• i N21p i 1* •••* p i N21* s. ~24!

For N54 this contribution starts at two loops, whereas f
generalN it starts atN22 loops. So the modification of the
action implied by the addition of Eq.~23! does not alter our
former conclusions, which were derived at one loop lev
but may become relevant at higher loop levels.

III. SUPERSYMMETRIC VERSION IN 2 ¿1 DIMENSIONS

A simple supersymmetric extension of the model stud
in the last section is provided by the superfield action

S5E d5zS 1

2
FaD2Fa1

1

2
mFaFa

2
g

4
@ f Fa* Fa* Fb* Fb1~12 f !Fa* Fb* Fa* Fb# D .

~25!

Here,D5]/]u2 i ū]” , D̄5g0D, ua , a51,2 (ū[ug0), are
Grassmann variables,D25 1

2 D̄D, and the superfieldF has
the decomposition

F5f1 ūc1
ūu

2
F, ~26!

wherec is an N component Majorana spinor andf and F
are (N component! scalar fields. In terms of field compo
nents the Lagrangian reads

FIG. 3. One-loop contributions to the pion two-point function
the noncommutativef6 model.
3-5
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L5
1

2
]mf]mf1

i

2
c̄]”c1

1

2
F22mFf1

m

2
c̄c1

g

2
f @Fa* fa1fa* Fa#* fb* fb1

g

2
~12 f !@Fa* fb1fa* Fb#* fa* fb

2
g

2
f c̄a* ca* fb* fb2

g

4
f @c̄a* fa1fa* c̄a#* @cb* fb1fb* cb#2

g

2
~12 f !@c̄a* cb* fa* fb2ca* c̄b* fa* fb

1c̄a* fb* ca* fb#. ~27!

By integrating outF ~or, alternatively, by eliminating it through the use of the equations of motion! one obtains quartic and
sextuple self-interactions with definite strengths.

In what follows we will work directly with the action~25!. Classically, it possessesO(N) symmetry and its potential par
has a minimum at a constant value of the superfielduau5Am/g. As in the nonsupersymmetric case, to break theO(N)
symmetry we suppose that one of fields~for the sake of concreteness,FN) has a nonzero vacuum expectation valuea. All
other fields have zero vacuum expectation values. Then we make the changesFa5p i for iÞN andFN5s1a. The super-
fields p i ,s have zero vacuum expectation values. In terms of the new variables the action can be cast as

S@p i ,s#5E d5zS 1

2
p iD

2p i1
1

2
s~D222m!s2

g

4
s* s* s* s2gas* s* s2gap i* p i* s

2
g

4
@ f p i* p i* p j* p j1~12 f !p i* p j* p i* p j #2

g

2
@ f p i* p i* s* s1~12 f !p i* s* p i* s# D . ~28!

The counterterm Lagrangian is

Lct5
1

2
dzp iD

2p i1
1

2
dzsD2s1

1

2
~2a2dg1dm!p ip i1

1

2
~23a2dg1dm!s21~dma2dga3!s2

dg

4
s* s* s* s2dgs* s* sa

2dgp i* p i* sa2
dg

4
@ f p i* p i* p j* p j1~12 f !p i* p j* p i* p j #2

dg

2
@ f p i* p i* s* s1~12 f !p i* s* p i* s#, ~29!
n

io

in

e
rt
w

fo

u-

s
r-

in
se,
the renormalization being done through the replaceme
p i→(11dz)p i , s→(11dz)s, m→m1dm, g→g1dg,
and f→ f 1d f . The propagators corresponding to the act
~28! at a5Am/g are

^p i~x1 ,u1!p j~x2 ,u2!&52 i
D2

h
d i j d

5~z12z2!, ~30!

^s~x1 ,u1!s~x2 ,u2!&52 i
D21m

h1m2
d i j d

5~z12z2!, ~31!

where d5(z12z2)5d3(x12x2)d( ū12 ū2)d(u12u2) and m
52ga2. We adopt a graphical notation similar to the one
Sec. II. Thus, we represent thep field propagator by a
dashed line, and thêss& propagator by a solid one. Th
trigonometric factors associated with the cubic and qua
vertices are the same as in the previous section, and we
not list them here. Now, however, we have to make the
lowing identifications:

p field bilinear counterterm:id i j (dm2dga21dzD
2),

s field bilinear counterterm:i (dm23dga21dzD
2),

s field tadpole counterterm:i (2dga31dma).
The vanishing of the vacuum expectation value of thes

superfield leads to the the gap equation
12500
ts

n

ic
ill

l-

3gaE d3k

~2p!3

1

k22m2
1ga~N21!

3E d3k

~2p!3

1

k2
1 i ~dma2dga3!50. ~32!

As before, this condition is not affected by the noncomm
tativity and implies that

dma2dga35ga~N21!E d3k

~2p!3

i

k2

13gaE d3k

~2p!3

i

k22m2
. ~33!

Concerning thep superfield two point function, one find
that, graphically, the condition for the cancellation of dive
gent corrections to thêp ip j& propagator is the same as
Fig. 3. Adopting the same convention as in the previous ca
it reads

I 1~p!1I 2~p!1I 3~p!1I ct5finite. ~34!

An explicit calculation yields
3-6
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I 1~p!5d i j g@ f N12~12 f !#E d3k

~2p!3

1

k2

1d i j g@ f 1~12 f !~N21!#E d3k

~2p!3

e2ik`p

k2
,

I 2~p!5d i j g fE d3k

~2p!3

1

k22m2

1d i j g~12 f !E d3k

~2p!3

e2ik`p

k22m2
,

I 3~p!52g2a2d i j E d3k

~2p!3

cos2~k`p!

k2~k22m2!
~D21m!.

~35!

Hence, the coefficient ofD2 turns out to be

dz52g2a2E d3k

~2p!3

cos2~k`p!

k2~k22m2!
52

g2a2

A2pm
1O~up!.

~36!

This integral is finite and nonsingular atp→0, and, there-
fore, we have only a finite wave function renormalization f
the p i fields.

The correction to the mass of the pion superfield,Sm , is
the sum of the D2-independent parts o
I 1(p),I 2(p),I 3(p),I ct . It is given by the relation

Sm5E d3k

~2p!3 H 1

k2
~22N!~12 f !1

1

k22m2
~ f 22!

1
e2ik`p

k2
~N22!~12 f !1

e2ik`p

k22m2
~22 f !J ~37!

and is both UV finite and without dangerous IR-UV mixin
if (2 2N)(12 f )522 f , i.e., if f 5N/(N21). At this value
of f, we get

Sm5m2
22N

N21E d3k

~2p!3

12cos~2k`p!

k2~k22m2!
, ~38!

which vanishes atp50, as required.
The above result suggests that, sincef→1 for large N,

only the first quartic ordering in Eq.~25! survives in this
limit. This indicates that the use of the 1/N expansion be-
comes appropriate and that by proceeding along the l
described in@4# one may prove renormalizability to all or
ders.

Our analysis can easily be extended to the case in w
the basic superfields belong to a representation of theU(N)
group. For the fundamental representation, similarly to
nonsupersymmetric situation, one finds that Goldston
theorem holds if a gauge invariant Moyal ordering of t
12500
r

es

h

e
’s

basic fields is adopted. For the adjoint representation th
are additional difficulties due to the matrix character of t
superfields.

IV. GENERIC CHIRAL MODEL IN 3 ¿1 DIMENSIONS

As discussed in Sec. I, we next consider a genericO(N)
chiral model whose action is given by

S5E d8zF̄aFa2S E d6zW~Fa!1H.c.D , ~39!

whereW is the superpotential. In order to be invariant und
local transformations we must have an even number of
perfields, so that we can take complex combinations of th
As for the Moyal ordering it must be of the form
•••* Fa* Fa* Fa11* Fa11* •••. We then restrictN to be
even and the superpotential to be given by

W~Fa!5S 2
m

2 DFaFa1 (
k52

`
lk

k
~Fa* Fa!* k. ~40!

Consideration of other orderings brings no essential mod
cations since, as we will show, the vanishing of the two po
function of the pion field at zero momentum is complete
enforced by the chirality of the pion superfield.

For a constant chiral superfield, satisfying the conditi
FaFa5a2, the minimum of the superpotential is achieve
for

2
m

2
1 (

k52

`

lk~a2!k2150. ~41!

As usual, to break theO(N) symmetry we perform the shif
Fa→(p i ,s1a), after which the superpotential can be r
written as

W~p i ,s!52
m

2
s21 (

k52

`
lk

k S F ~2k!!

3!~2k23!!
a2k23s* s* s

1
~2k!!

4!~2k24!!
a2k24s* s* s* sG

1ka2k24F2~k21!as1
~2k22!~2k23!

2
s* sG

* p i* p i1
k~k21!

2
a2(k22)~p i* p i !

2D1 . . . ,

~42!

where only quadratic, cubic, and quartic terms have b
explicitly displayed. Then the fields acquires a mass

m52m1 (
k52

`
lk

k

~2k!!

~2k22!!
a2k22, ~43!

while the kinetic term takes the form*d8z(p̄ ip i1s̄s).
To cancel the divergences we introduce a counterterm

tion of the form
3-7
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Sct5E d8zdz~p̄ ip i1s̄s!1H E d6zF S 2
dm

2
1 (

k52

`
dlk

k

~2k!!

2~2k22!!
a2k22Ds21S 2dma12(

k52

`

dlka
2k21Ds

1S 2
1

2
dma1 (

k52

`

dlka
2k21Dp ip i1 (

k52

`
dlk

k S F ~2k!!

3!~2k23!!
a2k23s* s* s1

~2k!!

4!~2k24!!
a2k24s* s* s* s1 . . . G

1kF2~k21!a2k23s1
~2k22!~2k23!

2
a2k24s* s G* p i* p i1

k~k21!

2
a2(k22)~p i* p i !

2D1•••G1H.c.J . ~44!
r-
pa

e
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The nonvanishing propagators for the chiral superfieldsp i
ands read, as usual,

^p ip̄ j&5d i j

1

h
d8~z12z2!,

^ss̄&5
1

h2m2
d8~z12z2!,

^ss&5
mD2

4h~h2m2!
d8~z12z2!. ~45!

There are alsoD2,D̄2 factors associated with the chiral ve
tices according to the standard Feynman rules in supers
@16#. Observe also that the propagator^p ip j&50.

The ^p ip̄ j& propagator will be represented by a dash
line and the^ss& propagator by a solid one. Thed (s)
symbol corresponds to a factorD2 (D̄2) associated with the

^s̄s̄& (^ss&) propagator, while all otherD factors are asso
ciated with vertices by the usual rules in superspace@16#.
The trigonometric factors in the vertices have the same st
ture as in the models seen before. The vertexs* p i* p j car-
ries a factor

d i j cos~p1`p2!, ~46!

while for the vertexs* s* s one finds

@cos~p1`p2!1cos~p2`p3!1cos~p1`p3!#, ~47!

where p1 ,p2 ,p3 are three incoming momenta. The vert
p i* p j* pk* p l has a factor

2l$d i j dkl@cos~p1`p2!cos~p3`p4!#

1d ikd j l @cos~p1`p3!cos~p2`p4!#

1d i l d jk@cos~p1`p4!cos~p2`p3!#%, ~48!

whereas for the vertexp i* p j* s* s it turns out to be

d i j cos~p1`p2!cos~p3`p4!. ~49!

Furthermore, thep field mass counterterm and thes tadpole
counterterm are, respectively,
12500
ce

d

c-

2d i j S 2dma12(
k52

`

dlka
2k21D

and

dma22(
k52

`

dlka
2k21. ~50!

The gap equation signifying thats has vanishing expectatio
value is depicted in Fig. 4. Notice that the supergraph incl
ing one sp ip j vertex vanishes becausêp i(z1)p j (z2)&
50. The gap equation is then the same as in the comm
tive case. The tadpole graph gives a contribution prop
tional to

mE d6zs~z!
D̄2D2D̄2

64h~h2m2!
d8~z2z8!uz5z8

52mE d8zs~z!
1

~h2m2!
d4~x2x8!ux5x8

50, ~51!

which vanishes as in the commutative case. The vanishin
due only to supersymmetry, since all noncommutative trig
metric factors have disappeared. Therefore, vanishing of
counterterm contribution leads to

dma22(
k52

`

dlka
2k2150, ~52!

fixing the relation among the counterterms. It also coincid
with the pion mass counterterm implying that it vanishes

The only one loop contribution to the pion mass ren
malization is given by the supergraph shown in Fig. 5. T
contribution of this supergraph turns out to be proportiona

FIG. 4. Gap equation in generic chiral model in 311 dimen-
sions.
3-8
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E d8zp i~z!p i~z!
1

~h2m2!
d8~z2z8!uz5z8 , ~53!

which also vanishes due to the chirality ofp i . Had we used
other orderings this expression would contain nontriv
phase factors but, nevertheless, would still vanish for
same reason~i.e., the chirality of the pion field!. Therefore
we conclude that at one loop order there is no mass re
malization, and this is entirely due to the chirality of th
superfieldp i . This is in contrast to the supersymmetric ca
in three dimensions, where a nonvanishing contribution w
found. There the superfields are real and no chirality ar
ment is available.

Just using supersymmetry and chirality arguments allo
us to go beyond one loop straightforwardly. At two loops w
have to consider the supergraphs with twop i external lines
which are drawn in Fig. 6. The supergraphs in Figs. 6a,
6c, and 6d contain tadpolelike loop contributions consist
of one propagator̂s(z)s(z)& or ^s̄(z)s̄(z)&. Since they are
proportional to D2D̄2D2d8(z2z8)uz5z8 or D̄2D2D̄2d8(z
2z8)uz5z8 , they both vanish.

FIG. 5. One loop contribution to the pion two-point function
generic chiral model in 311 dimensions.

FIG. 6. Two-loop contributions to the pion two-point function
generic chiral model in 311 dimensions.
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The supergraphs in Figs. 6e, 6f, 6g, 6h, 6i, 6j, and 6k h
equal numbers ofD2 andD̄2 factors; hence, afterD-algebra
transformations, their contributions are proportional
*d8zp ip i , which is equal to zero due to the chirality ofp i .
The supergraphs depicted in Figs. 6l, 6m, and 6n are pro
tional to D2d12D

2d12 and to D̄2d12D̄
2d12. Both structures

give vanishing contributions after integration by parts. F
nally, the supergraph drawn in Fig. 6o is proportional
*d4up iD

2p i5*d2up ihp i and vanishes for slowly varying
superfields. We thus conclude that there are no loop cor
tions to the pion mass for slowing varying superfields. Th
the Goldstone theorem is satisfied at one and two loop o
for the O(N) supersymmetric chiral superfield whose inte
actions are compatible with gauge invariance. Notice that
vanishing of these corrections is due to the supersymm
and not to relations among the coupling constants. In f
this is a generalization of the nonrenormalization theorem
supersymmetric theories@16# to the noncommutative con
text.

We can also consider the purely noncommutative inter
tion ~23! in superspace. Its contribution to Eq.~42! is similar
to that of~24! but its loop constributions always vanish sin
^p ip j&50. So it also is not relevant for the results just d
rived.

V. CONCLUSIONS

In this work, the mechanism of spontaneous symme
breaking and the appearance of Goldstone bosons wer
vestigated in connection with several noncommutative fi
models.

We first studied the spontaneous breakdown of the c
tinuousO(N) symmetry in a noncommutative scalar mod
with quartic and sextuple interactions. For 211 dimensions,
there is a class of field orderings for which the model turn
out to be renormalizable, up to one loop. The linear com
nation of couterterms fixed by the gap equation equals
p-field mass counterterm. Moreover, for the pion two po
function, a single condition suffices to ensure~i! cancellation
of the UV divergences,~ii ! cancellation of the IR diver-
gences arising from the UV-IR mixing, and~iii ! the appear-
ance of massless excitations. As shown, this is a peculia
of the 211 dimensional world. In 311 dimensions, renor-
malizability called for the elimination of the sextuple inte
actions while the UV convergence of the planar part restr
the dynamics as already found in@7#. In 211 dimensions
supersymmetry restricts even further the class of allow
models while, on the other hand, it renders the theory ren
malizable to all orders in the limitN→`.

Second, we studied a generic chiral model in 311 dimen-
sions with a localO(N) gauge theory. We argue that th
model, although not renormalizable by power counting, m
provide a realistic description of the low energy limit o
compactified string or M theory. There are no one loop c
rections to the pion mass, while the same holds for two lo
in the limit of slowly varying superfields. Supersymmet
enabled us to go through theN52 barrier existing for purely
bosonic interactions@7#.
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We also found a purely noncommutative interacti
which preserves theO(N) symmetry and is present in an
dimension. It starts contributing atN22 loops so that it is
not relevant for our one loop analysis. It clearly deserv
further study to understand its properties.

Also relevant is the phenomenon of spontaneous brea
of gauge symmetry in noncommutative supersymme
gauge theories. Its study is in progress.
s
d

n

a,

.

J.

rgy

12500
s

g
c

ACKNOWLEDGMENTS

This work was partially supported by Fundac¸ão de Am-
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