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de Sitter waves and the zero curvature limit
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We show that a particular set of global modes for the massive de Sitter scalaftliielde Sitter waves
allows us to manage the group representations and the Fourier transform in tMirfladwskian limit. This
is in opposition to the usual acceptance based on a previous result, suggesting the appearance of negative
energy in the limit process. This method also confirms that the Euclidean vacuum, in de Sitter spacetime, is
preferred as far as one wishes to recover ordinary quantum field theory in the flat limit.
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I. INTRODUCTION “causal semigroup” which contracts toward the Poincare
causal semigroufdl4]. In view of the decisive role played by

A major issue in the resurgence of de Sittdf) space group theory in ordinary QFT and in defining de Sitter space
physics motivated by inflation scenarifs2], astronomical —objects as mass or spin, it is really frustrating that one cannot
observatio{3], dS conformal field theoryCFT) correspon- Manage the group representation in the flat limit process. In
dencd4—7], and the study of a simple maximally symmetric thiS paper we propose to amend this drawback.
space with nonvanishing curvature, concerns the status of a 1he Euclidean vacuum has been studied before and
“preferred” vacuum state for the associated quantum fielgSingled out by analyticity requiremenfd3,15, flat space

theory (QFT). The absence of a global timelike Killing vec- P€navior, or further reasons listed [ib6]. Although the Eu-
tor field in de Sitter spacdnonstationary excludes the clidean vacuum seems to be favored, it remains sensible to

“ " ; : . use the whole vacua family, for instance, as tools in order to
natural” choice characterized by the spectrum of a Hamil- . vestigate the effects of trans-Planckian physits]. In

tonlan_operator unlike the Minkowski case. The presence Ofr]]is paper, we reconsider the flat limit through the modes.
a maximal symmetry group does not get rid of this problemiryg 5t imit for a mode is obtained by considering the latter
there exists a family of inequivalent vacua which are all in-,, 2 qomain which is small compared to the inverse of the
variant under the dS grou—10]. _curvature. This process can be applied of course at any point
Nevertheless, thanks to this group, one can study the limig spacetime with different results. The use of ambient space
at vanishing curvature owing to the method of group contracformalism allows us to show in a very simple way that the
tion which allows us to follow the unitary irreducible repre- Eyclidean vacuum is the only vacuum for which the flat limit
sentationgUIR) in that limit. It has been showfi1] that the  yields,in any point of spacetimepositive frequency modes.
representations of the de Sitter group associated with thEurthermore the use of the de Sitter waves shows that the
massive scalar field, i.e., the principal series of SO(1,4)whole free QFT tends toward the flat theory when the cur-
contract(in the zero curvature limjttoward the direct sum of vature vanishes, including the de Sitter Fourier transform
two UIRs of the Poincarggroup associated, respectively, which becomes the ordinary Fourier transform in the limit.
with positive and negative frequencies massive scalar fieldssome of us will show in future works that these de Sitter
namely, waves are also very well adapted to group representations
and spinorial computation.
D,—P(+m)®P(—m). (1) ~ Moreover, our procedure will allow us to reconsider the
significance of the result on group contractions quoted be-

This result could appear as somewhat confusing since it su%ge' In this paper we argue that although Et).canhold it

gests that the curvature is in some sense responsible for t{i9€S not represent the only possibility. Actually, we show
emergence of negative frequency modes in QFT. This is afat the principal series of SO(1,4) can contract toward the
the more disturbing since a recent paper shows that theR®Sitive energy representation of the Poinagreup, a result

modes necessarily occur in the covariant quantization of th&/Nich is, as far as we know, new. ,
minimally coupled scalar fiel§12]. Since, on the level of  'N€ de Sitter waves and ambient space formalism are

two-point functions, the flat limit seems to work perfectly summarized in Sec. Il. The flat_limit is investigated in S_ec.
well, it has been argued that group representation contraél-l' The problem of the contraction of group representations
tions were not adapted for the study of QFI3]. Attempts 1S tackled in Sec. IV. Section V is devoted to some conclud-
have been made in replacing SO(1,4) by the de Sittef"g remarks.

Il. THE DE SITTER WAVES
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My={XeEg|X?= %Bxaxﬁz —H"?}, are boundary values of analytic continuations to suitable do-
mains in the complexified de Sitter spaik :
where *#=diag(1—1,—1,— 1,—1). The (pseudo) sphere
My is obviously invariant under O(1,4). We only consider M ={Z=X+iY € Es+iE5; 7,52°ZP=—H 2}
the connected component of the identity ;604), the so- . , . ) , ,
called de Sitter group. We are in particular interested in thé "€ minimal domains of analyticity which yield single-
flat limit (i.e., H—0) of the massive scalar free quantum valued functions on de Sitter spacetime are the forward and

field and the behavior of the group representation in thid@ckward tubes oM T"=T*NM{Y, whereT*=E;s

limit. —iV*® andV*={XeEs; X°><|[X[?+(X%?}. Details
The free massive scalar field on this spacetime is, in thére given in[13]. . o - .
Wigner sense, aelementary systewhose associated uni- ~ WhenZ varies in7" and¢ lies in the positive con€ ™,

tary irreducible representation belongs to the principal seriethe functions given in E¢2) are globally well defined since
of representations of S{1,4). This UIR is characterized by the imaginary part ofZ.£) is nonpositive. We define the de
the eigenvalue’+ 9/4 of the Casimir operatd®, which is  Sitter waves¢,(X) as the boundary value of the analytic
Iinkezd to the Laplace-Beltrami operator dvi,, through  continuation to the future tube of E(R):

—H*Qy=0y [17]. The contraction of that UIR has already

been studied in a group theoretical contelxt]. The result is $(X)=c,bV(HZ-£)®

usually written in the following way: the massive represen- =c,[B(HX- &)+ 0(—HX-£)e I ™]HX- &5, (3)
tations contract toward the direct sum of the positive energy

and negative energy representations of the Poingesap.  where 6 is the Heaviside function. The real valued constant
We emphasize that this result has been achieved on a puredy is determined by imposing the Hadamard condition on the
group theoretical level through @ hocprocess of contrac-  two-point function. This choice of modes corresponds to the
tion. Although it is from this point of view remarkable that Euclidean vacuum. In terms of de Sitter waves, the two-point
the irreducible representaticzan contracttoward a reduc- function readg§15]:

ible representation, there is no uniqueness in this choice of

contraction procedure. In the framework of QFT this result , , *

played a rather misleading role in order to understand field W(z,z )=C§L(HZ~§)S(HZ )% doy(§),

theory on de Sitter background from our Minkowskian point

of view. Actually, we will see that the negative energy planewhereze 7" andZ’' e 7-. The measurelo (&) on the or-
waves do not appear when the curvature vanishes as soon gifal basisy is chosen to ben? times the natural one induced

the Euclidean vacuum has been chosen. from the R® Lebesgue measure. The calculation, similar to
In [13,19, the authors use a set of global modes, the dehat of[15] yields:

Sitter waves, solutions of the de Sitter Klein-Gordon equa-
tion, which are the formal analogue of the plane waves in \/ H2(12+ 1/4)

Minkowski spacetime. We will see that these modes reduce c,=

v 3 -2 2"
to the usual plane waves when the curvature tends to zero as 2(2m)*(1+e “™)m
far as their analyticity domain has been conveniently chosen.
Let C*={¢eEs; £2=0,£2>0} be the null upper cone of lll. THE FLAT LIMIT OF DE SITTER WAVES

Es. The multivalued functions defined on dS spacetime by ) ) )
Hereafter, we investigate the behavior of the mageX)

X—=(HX- &), £eC™, X-£#0, seC, (2)  under vanishing curvature. We consider a region around any
point X, in which all the distances are small compared to
are solutions of the de Sitter Klein-Gordon equatidf,( H~*. With this assumption we will prove that
+m?+12H2%7) =0, where{ is a positive gravitational cou-

, . . 1
pling with the de Sitter background and lim e(X)= exp —ikx) for X,-£>0,
2 L H—0 V2(2)
s=—-—iv where v=-\4m’H 2+48/-9 R, :
2 2 lim ¢ X)=0 for Xu-£<0. (4)
H—0

corresponds to the principal series of U{Riassive case

The expression defined by EE) is, as a function ofé, In other words, these modes do not generate negative fre-
homogeneous with degreeon C* and thus is entirely de- quency modes in the flat limit, whatever the point around
termined by specifying its values on a well chosen threewhich the limit is computed.

dimensional submanifoldthe so-called orbital bagisy of Due to the homogeneity of the de Sitter space under the
C™. These dS waves, as functions on de Sitter spacetime, age Sitter group action, one can choose a system of coordi-
only locally defined because they are singular on specifimates such thet(“AzH*1 andX4=0. In the neighborhood of
lower dimensional subsets d¥l,;, and multivalued since this point, forH—0, the de Sitter spacetime meets its tan-
(HX- £) can be negative. In order to get a single-valued glo-gent plangthe four-dimensional Minkowski spacetimend

bal definition, they have to be viewed as distributions whichthe coordinateX of this neighborhood read:
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X#=x*+0(H),
(5
X*=H"'+0(1).
Fors~—3—imH™ !, exp(ims)—0 and one obtains:

lim pe(X)=lim ¢, O(HX- &)[HX- &[*.
H—0 H—0

The Heaviside function yields*<0 sinceHX- é=—&* and
finally, for smallH:

0(—&%).

| €4]°
400~ a1

H g XM) —3/2—imH "1
"

| €4
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P(X)= J§661¢§(X)Tﬂ(f)d0y(§)

+ Leczsbg(x)l//(é)doy(é')- ()

In the limit of null curvature, the second integral of the
above expression vanishes and only the positive frequency
remains:

i B e—ikx _ } %
fim yix)= | e

As a consequence, the ordinary Fourier transform is the
flat limit of the de Sitter Fourier transform. Once again, one

This limit exists only for|&,|=1. As a consequence, we use Can see the significance of de Sitter waves which play in de

the orbital basisy=C,UC,, whereC;,C, are defined by
Wy k Wy k
§= Elal_l EC]_! §= Hyayl EC2|

with w,=Vk?+m?. Note that the induced measure gris
dk/(m?w,) and thereforelo (€)= dk/w . We finally obtain
Eq. (4) according to whetheg belongs taC; or C,, i.e., Xa
- ¢ positive or negative.

Sitter space the role of plane waves in Minkowski space,
including a good behavior with respect to the de Sitter group:
one can see easily usira@g(gflx) = ¢4¢(X) that each space
H}, is invariant under the subgroup generated by lthg,
with 0=a<b=3 (see the Appendjx This subgroup, iso-
morphic to SQ(1,3), is the stabilizer oK .

IV. GROUP CONTRACTION

The Minkowski spacetime is the flat limit of the de Sitter

Thus, due to the analyticity condition at the origin of the spacetime with respect to all the objects of QFT. In order to

exp(—imws) term, the negative energy modes @&exponen-

emphasize this fact and clarify the link between our approach

tially) suppressed whereas the positive energy modes givgnd that of 11] we will present the concept of contractions in
the Minkowskian on-shell modes corresponding to a particley slightly different manner from the usual presentation.

of massm.

Let us consider a family of representatidd§ of a group

We insist on the fact that the result leads to pOSitive fre'G into some SpaCeHH and a representatidﬂ ofa groqu’

guency plane waves whatever the point e chooseThis

into a space{. One wants to give a precise meaning to the

choice of modes, which corresponds to the EuclideayssertionuH—U for H—0 (one says that the representa-
vacuum, is the only one having this property. Any Bogoliu-tions UH contract towardJ).

bov transformation on these modes leads to the appearance First, we must have a bijectio—iG’ (which is not a

of conjugate modedfg whose flat limit at some poirXg is

homomorphismconveying the “similarity” between the two

a negative frequency mode as soorBasas been chosen in  groups. Second we need a space, equipped with a topology,

such a way thakg- £<0.

in which all the representations are written. This is obtained

As a consequence, any vacuum different from the Euclidpy writing an injective map\, from H,, to ED’H whereE is

ean vacuum would lead to physically unacceptables topological space containirfg in such a way that for any
Minkowskian QFT. The Euclidean vacuum has therefore t0¢e Hy the limit limHHOAH(:b:h exists inE and be|0ngs to

be preferred with respect to the flat limit criterion.

H.
The de Sitter waves allow us to define a de Sitter Fourier \ye say that the representatiod$' contract towardJ if
transform which becomes the ordinary Fourier transform in

the flat limit. In fact, one can realize the de Sitter one particle
sectorH,, as distributions on spacetime through this de Sitter

Fourier transform: anyse Hy can be written as

P(X)= L y¢§(X)T/f(§>doy(§>, Yel?(y,do,), (6)

Ve Hy, ImAULy=Ugh=Ug limAgy,  (8)
H—0 H—0

where g’ is the element ofG’ identified with ge G by
means ofi.

Let us now return to de Sitter context. Boin Minkowski
space we defin¥ in de Sitter space through E(). We then

see[13] for details. LetX, be a point of de Sitter spacetime can definéAy; : for the de Sitter waveg, we defineA ¢, as
in the neighborhood of which we will proceed to the flat @ function on Minkowski spacetime through

limit. The space’y can then be decomposed infdy
=H},®H? using the decomposition of the orbital basis:

(Ande) (X) = de(X).
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This definition extends linearly té(y through Eq.(7). Then  sult, commonly quoted in these summaries, suggests that the
in view of Eq. (4) we have, at least in a weak sense, for anyappearance of negative energies for a Minkowskian observer

YinHy: is an unavoidable consequence of group theory. For this rea-
) son some authors claimed that the contraction procedure of
lim Ay =T, group representations was not suitable in order to investigate
H=0 the flat limit of dS-QFT. We have shown that this is inexact.

We also conclude that the Euclidean vacuum is preferred as
far as one wishes to recover ordinary QFT in the flat limit. To
dhat end we used the formalism of de Sitter waves which
turned out to be a very convenient tool, possibly as useful in
de Sitter space as the plane waves in Minkowski space.

wheref is a positive frequency wave packet on Minkowski
spacetime.

We now turn to the representations. The de Sitter an
Poincaregroups are identified as explained in the Appendix.
Consider
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=EXD(E anBj+Z ainij—FE aM4T#>. cism.
] 1] N
The representation of the de Sitter group is defined by APPENDIX: IDENTIFICATION OF DE SITTER

AND POINCARE GROUPS
H _ -1
Ug¢(X)=9(an ), We begin with Lie algebras. Let, , be the 5<5 matri-
wheregy, is the 55 matrix defined by ces whose entries,, are defined byanm= Snadmp-
The following matrices are a basis of the Lie algebra
sa(1,4) of the Lie group SQ(1,4):

i
QZEX[{ % aabMab)Hg’

gH:eXF( D agpMaptHY 01#4MM4):
a<b<4 yn

MOb:AOb+ AbO for b:1,2,3,4,
and the representation of the Poincareup is defined by

Ug ()= (g ).

One can easily see that fgre C;:

Mab: Aab_ Aba for O<a<b=4.

The following matrices are a basis of the Lie algeb(a,d
of the Poincaregroup:

(H(gq™X)-§)=(H(g’ "™%)-k+o(H)+1). (9 ,

B] :AOJ +A]0 for J = 1,2,3,

Then Eq.(8) follows and the principal series of representa-
tions of the de S_ltter group contract toward the positive en- Rj=A;—A; for 0<i<j<3,
ergy representation of the Poincageoup. Once again, no
negative energy can appear in this process. Nevertheless this
is not in contradiction with11] for which this series can

contract toward another representation. In fact, in our con;l_h identification b h Lie aloebras is obtained
text, the result of 11] can be recovered by modifying, in e identification between the two Lie algebras is obtaine

. .~ = th h
the following way. One can defind, by A=Ay on Hﬁ' roug
and A, =exp(+im9)A, on Hf . With this operator, one ob- Mo=B; for j=1,23,
tains the result of11] because the artificial exponential term

cancels the natural one which is present in the definition of
¢, thanks to the property of analyticity.

T,=A,4 for ©=0,123.

M”:R,J for O<|<J$3,

V. CONCLUSIONS M, 4=T, for ©=0,1,2,3.

Recently, several papers summarized the theory of irreThe identification between the groups follows, using the ex-
ducible unitary representations of the de Sitter group. A reponential application.
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