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de Sitter waves and the zero curvature limit
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We show that a particular set of global modes for the massive de Sitter scalar field~the de Sitter waves!
allows us to manage the group representations and the Fourier transform in the flat~Minkowskian! limit. This
is in opposition to the usual acceptance based on a previous result, suggesting the appearance of negative
energy in the limit process. This method also confirms that the Euclidean vacuum, in de Sitter spacetime, is
preferred as far as one wishes to recover ordinary quantum field theory in the flat limit.
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I. INTRODUCTION

A major issue in the resurgence of de Sitter~dS! space
physics motivated by inflation scenarios@1,2#, astronomical
observation@3#, dS conformal field theory~CFT! correspon-
dence@4–7#, and the study of a simple maximally symmetr
space with nonvanishing curvature, concerns the status
‘‘preferred’’ vacuum state for the associated quantum fi
theory ~QFT!. The absence of a global timelike Killing vec
tor field in de Sitter space~nonstationary! excludes the
‘‘natural’’ choice characterized by the spectrum of a Ham
tonian operator unlike the Minkowski case. The presence
a maximal symmetry group does not get rid of this proble
there exists a family of inequivalent vacua which are all
variant under the dS group@8–10#.

Nevertheless, thanks to this group, one can study the l
at vanishing curvature owing to the method of group contr
tion which allows us to follow the unitary irreducible repr
sentations~UIR! in that limit. It has been shown@11# that the
representations of the de Sitter group associated with
massive scalar field, i.e., the principal series of SO(1,
contract~in the zero curvature limit! toward the direct sum o
two UIRs of the Poincare´ group associated, respectivel
with positive and negative frequencies massive scalar fie
namely,

Dn→P~1m! % P~2m!. ~1!

This result could appear as somewhat confusing since it
gests that the curvature is in some sense responsible fo
emergence of negative frequency modes in QFT. This is
the more disturbing since a recent paper shows that th
modes necessarily occur in the covariant quantization of
minimally coupled scalar field@12#. Since, on the level of
two-point functions, the flat limit seems to work perfect
well, it has been argued that group representation cont
tions were not adapted for the study of QFT@13#. Attempts
have been made in replacing SO(1,4) by the de Si
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‘‘causal semigroup’’ which contracts toward the Poinca´
causal semigroup@14#. In view of the decisive role played by
group theory in ordinary QFT and in defining de Sitter spa
objects as mass or spin, it is really frustrating that one can
manage the group representation in the flat limit process
this paper we propose to amend this drawback.

The Euclidean vacuum has been studied before
singled out by analyticity requirements@13,15#, flat space
behavior, or further reasons listed in@16#. Although the Eu-
clidean vacuum seems to be favored, it remains sensibl
use the whole vacua family, for instance, as tools in orde
investigate the effects of trans-Planckian physics@1,2#. In
this paper, we reconsider the flat limit through the mod
The flat limit for a mode is obtained by considering the lat
on a domain which is small compared to the inverse of
curvature. This process can be applied of course at any p
of spacetime with different results. The use of ambient sp
formalism allows us to show in a very simple way that t
Euclidean vacuum is the only vacuum for which the flat lim
yields, in any point of spacetime, positive frequency modes
Furthermore the use of the de Sitter waves shows that
whole free QFT tends toward the flat theory when the c
vature vanishes, including the de Sitter Fourier transfo
which becomes the ordinary Fourier transform in the lim
Some of us will show in future works that these de Sit
waves are also very well adapted to group representat
and spinorial computation.

Moreover, our procedure will allow us to reconsider t
significance of the result on group contractions quoted
fore. In this paper we argue that although Eq.~1! canhold it
does not represent the only possibility. Actually, we sh
that the principal series of SO(1,4) can contract toward
positive energy representation of the Poincare´ group, a result
which is, as far as we know, new.

The de Sitter waves and ambient space formalism
summarized in Sec. II. The flat limit is investigated in Se
III. The problem of the contraction of group representatio
is tackled in Sec. IV. Section V is devoted to some conclu
ing remarks.

II. THE DE SITTER WAVES

The de Sitter space is conveniently seen as a hyperbo
embedded in a five-dimensional time oriented Minkows
spaceE5:
©2003 The American Physical Society28-1
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MH5$XPE5uX25habXaXb52H22%,

wherehab5diag(1,21,21,21,21). The ~pseudo-! sphere
MH is obviously invariant under O(1,4). We only consid
the connected component of the identity SOo(1,4), the so-
called de Sitter group. We are in particular interested in
flat limit ~i.e., H→0) of the massive scalar free quantu
field and the behavior of the group representation in t
limit.

The free massive scalar field on this spacetime is, in
Wigner sense, anelementary systemwhose associated un
tary irreducible representation belongs to the principal se
of representations of SOo~1,4!. This UIR is characterized by
the eigenvaluen219/4 of the Casimir operatorQ0 which is
linked to the Laplace-Beltrami operator onMH through
2H2Q0[hH @17#. The contraction of that UIR has alread
been studied in a group theoretical context@11#. The result is
usually written in the following way: the massive represe
tations contract toward the direct sum of the positive ene
and negative energy representations of the Poincare´ group.
We emphasize that this result has been achieved on a p
group theoretical level through anad hocprocess of contrac
tion. Although it is from this point of view remarkable tha
the irreducible representationcan contracttoward a reduc-
ible representation, there is no uniqueness in this choic
contraction procedure. In the framework of QFT this res
played a rather misleading role in order to understand fi
theory on de Sitter background from our Minkowskian po
of view. Actually, we will see that the negative energy pla
waves do not appear when the curvature vanishes as so
the Euclidean vacuum has been chosen.

In @13,15#, the authors use a set of global modes, the
Sitter waves, solutions of the de Sitter Klein-Gordon eq
tion, which are the formal analogue of the plane waves
Minkowski spacetime. We will see that these modes red
to the usual plane waves when the curvature tends to ze
far as their analyticity domain has been conveniently chos

Let C 15$jPE5 ;j250,j0.0% be the null upper cone o
E5. The multivalued functions defined on dS spacetime b

X°~HX•j!s, jPC 1, X•jÞ0, sPC, ~2!

are solutions of the de Sitter Klein-Gordon equation (hH
1m2112H2z)f50, wherez is a positive gravitational cou
pling with the de Sitter background and

s52
3

2
2 in where n5

1

2
A4m2H22148z29 PR,

corresponds to the principal series of UIR~massive case!.
The expression defined by Eq.~2! is, as a function ofj,
homogeneous with degrees on C 1 and thus is entirely de
termined by specifying its values on a well chosen thr
dimensional submanifold~the so-called orbital basis! g of
C 1. These dS waves, as functions on de Sitter spacetime
only locally defined because they are singular on spec
lower dimensional subsets ofMH and multivalued since
(HX•j) can be negative. In order to get a single-valued g
bal definition, they have to be viewed as distributions wh
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are boundary values of analytic continuations to suitable
mains in the complexified de Sitter spaceMH

(c) :

MH
(c)5$Z5X1 iYPE51 iE5 ;habZaZb52H22%.

The minimal domains of analyticity which yield single
valued functions on de Sitter spacetime are the forward
backward tubes ofMH

(c) : T 65T6ùMH
(c) , where T65E5

2 iV6 and V65$XPE5 ; X0.,AiXi21(X4)2%. Details
are given in@13#.

WhenZ varies inT 1 andj lies in the positive coneC 1,
the functions given in Eq.~2! are globally well defined since
the imaginary part of (Z.j) is nonpositive. We define the d
Sitter wavesfj(X) as the boundary value of the analyt
continuation to the future tube of Eq.~2!:

fj~X![cnbv~HZ•j!s

5cn@u~HX•j!1u~2HX•j!e2 ips#uHX•jus, ~3!

whereu is the Heaviside function. The real valued consta
cn is determined by imposing the Hadamard condition on
two-point function. This choice of modes corresponds to
Euclidean vacuum. In terms of de Sitter waves, the two-po
function reads@15#:

W~z,z8!5cn
2E

g
~HZ•j!s~HZ8•j!s* dsg~j!,

whereZPT 1 andZ8PT 2. The measuredsg(j) on the or-
bital basisg is chosen to bem2 times the natural one induce
from the R5 Lebesgue measure. The calculation, similar
that of @15# yields:

cn5A H2~n211/4!

2~2p!3~11e22pn!m2
.

III. THE FLAT LIMIT OF DE SITTER WAVES

Hereafter, we investigate the behavior of the modefj(X)
under vanishing curvature. We consider a region around
point XA in which all the distances are small compared
H21. With this assumption we will prove that

lim
H→0

fj~X!5
1

A2~2p!3
exp~2 ikx! for XA•j.0,

lim
H→0

fj~X!50 for XA•j,0. ~4!

In other words, these modes do not generate negative
quency modes in the flat limit, whatever the point arou
which the limit is computed.

Due to the homogeneity of the de Sitter space under
de Sitter group action, one can choose a system of coo
nates such thatXA

45H21 andXA
m50. In the neighborhood of

this point, forH→0, the de Sitter spacetime meets its ta
gent plane~the four-dimensional Minkowski spacetime!, and
the coordinatesX of this neighborhood read:
8-2
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Xm5xm1o~H !,
~5!

X45H211o~1!.

For s;2 3
2 2 imH21, exp(2ips)→0 and one obtains:

lim
H→0

fj~X!5 lim
H→0

cn u~HX•j!uHX•jus.

The Heaviside function yieldsj4,0 sinceHX•j.2j4 and
finally, for smallH:

fj~X!.
uj4us

A2~2p!3 S 11
Hjmxm

uj4u D 23/22 imH21

u~2j4!.

This limit exists only foruj4u51. As a consequence, we us
the orbital basisg5C1øC2, whereC1 ,C2 are defined by

j5S vk

m
,

k

m
,21DPC1 , j5S vk

m
,
k

m
,1DPC2 ,

with vk5Ak21m2. Note that the induced measure ong is
dk/(m2vk) and thereforedsg(j)5dk/vk . We finally obtain
Eq. ~4! according to whetherj belongs toC1 or C2, i.e., XA
•j positive or negative.

Thus, due to the analyticity condition at the origin of th
exp(2ips) term, the negative energy modes are~exponen-
tially! suppressed whereas the positive energy modes
the Minkowskian on-shell modes corresponding to a part
of massm.

We insist on the fact that the result leads to positive f
quency plane waves whatever the point XA we choose. This
choice of modes, which corresponds to the Euclide
vacuum, is the only one having this property. Any Bogol
bov transformation on these modes leads to the appear
of conjugate modesfj* whose flat limit at some pointXB is
a negative frequency mode as soon asB has been chosen i
such a way thatXB•j,0.

As a consequence, any vacuum different from the Euc
ean vacuum would lead to physically unaccepta
Minkowskian QFT. The Euclidean vacuum has therefore
be preferred with respect to the flat limit criterion.

The de Sitter waves allow us to define a de Sitter Fou
transform which becomes the ordinary Fourier transform
the flat limit. In fact, one can realize the de Sitter one parti
sectorHH as distributions on spacetime through this de Si
Fourier transform: anycPHH can be written as

c~X!5E
jPg

fj~X!c̃~j!dsg~j!, c̃PL2~g,dsg!, ~6!

see@13# for details. LetXA be a point of de Sitter spacetim
in the neighborhood of which we will proceed to the fl
limit. The spaceHH can then be decomposed intoHH

5H H
1

% H H
2 using the decomposition of the orbital basis:
12402
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c~X!5E
jPC1

fj~X!c̃~j!dsg~j!

1E
jPC2

fj~X!c̃~j!dsg~j!. ~7!

In the limit of null curvature, the second integral of th
above expression vanishes and only the positive freque
remains:

lim
H→0

c~x!5E e2 ikx

A2~2p!3
c̃~k!

dk

vk
.

As a consequence, the ordinary Fourier transform is
flat limit of the de Sitter Fourier transform. Once again, o
can see the significance of de Sitter waves which play in
Sitter space the role of plane waves in Minkowski spa
including a good behavior with respect to the de Sitter gro
one can see easily usingfj(g

21X)5fgj(X) that each space
H H

i is invariant under the subgroup generated by theMab

with 0<a,b<3 ~see the Appendix!. This subgroup, iso-
morphic to SOo(1,3), is the stabilizer ofXA .

IV. GROUP CONTRACTION

The Minkowski spacetime is the flat limit of the de Sitt
spacetime with respect to all the objects of QFT. In order
emphasize this fact and clarify the link between our appro
and that of@11# we will present the concept of contractions
a slightly different manner from the usual presentation.

Let us consider a family of representationsUH of a group
G into some spacesHH and a representationU of a groupG8
into a spaceH. One wants to give a precise meaning to t
assertionUH→U for H→0 ~one says that the represent
tions UH contract towardU).

First, we must have a bijectionG→ iG8 ~which is not a
homomorphism! conveying the ‘‘similarity’’ between the two
groups. Second we need a space, equipped with a topo
in which all the representations are written. This is obtain
by writing an injective mapAH from HH to E.H whereE is
a topological space containingH in such a way that for any
fPHH the limit limH→0 AHf5h exists inE and belongs to
H.

We say that the representationsUH contract towardU if

;cPHH , lim
H→0

AHUg
Hc5Ug8h5Ug8 lim

H→0
AHc, ~8!

where g8 is the element ofG8 identified with gPG by
means ofi.

Let us now return to de Sitter context. Forx in Minkowski
space we defineX in de Sitter space through Eq.~5!. We then
can defineAH : for the de Sitter wavesfj we defineAHfj as
a function on Minkowski spacetime through

~AHfj!~x!5fj~X!.
8-3
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This definition extends linearly toHH through Eq.~7!. Then
in view of Eq. ~4! we have, at least in a weak sense, for a
c in HH :

lim
H→0

AHc5 f ,

where f is a positive frequency wave packet on Minkows
spacetime.

We now turn to the representations. The de Sitter a
Poincare´ groups are identified as explained in the Append
Consider

g5expS (
ab

aabMabD °
i

g8

5expS (
j

a0 jBj1(
i j

a i j Ri j 1(
m

am4TmD .

The representation of the de Sitter group is defined by

Ug
Hc~X!5c~gH

21X!,

wheregH is the 535 matrix defined by

gH5expS (
a,b,4

aabMab1H(
m

am4Mm4D ,

and the representation of the Poincare´ group is defined by

Ug8c~x!5c~g821x!.

One can easily see that forj PC1:

~H~gH
21X!•j!5~H~g821x!•k1o~H !11!. ~9!

Then Eq.~8! follows and the principal series of represen
tions of the de Sitter group contract toward the positive
ergy representation of the Poincare´ group. Once again, no
negative energy can appear in this process. Nevertheless
is not in contradiction with@11# for which this series can
contract toward another representation. In fact, in our c
text, the result of@11# can be recovered by modifyingAH in
the following way. One can defineÃH by ÃH5AH on HH

1

and ÃH5exp(1ips)AH on HH
2 . With this operator, one ob

tains the result of@11# because the artificial exponential ter
cancels the natural one which is present in the definition
fj thanks to the property of analyticity.

V. CONCLUSIONS

Recently, several papers summarized the theory of i
ducible unitary representations of the de Sitter group. A
00
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sult, commonly quoted in these summaries, suggests tha
appearance of negative energies for a Minkowskian obse
is an unavoidable consequence of group theory. For this
son some authors claimed that the contraction procedur
group representations was not suitable in order to investig
the flat limit of dS-QFT. We have shown that this is inexa
We also conclude that the Euclidean vacuum is preferred
far as one wishes to recover ordinary QFT in the flat limit.
that end we used the formalism of de Sitter waves wh
turned out to be a very convenient tool, possibly as usefu
de Sitter space as the plane waves in Minkowski space.
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APPENDIX: IDENTIFICATION OF DE SITTER
AND POINCARE GROUPS

We begin with Lie algebras. LetDa,b be the 535 matri-
ces whose entriesanm are defined byanm5dnadmb .

The following matrices are a basis of the Lie algeb
so~1,4! of the Lie group SOo(1,4):

M0b5D0b1Db0 for b51,2,3,4,

Mab5Dab2Dba for 0,a,b<4.

The following matrices are a basis of the Lie algebra p~1,3!
of the Poincare´ group:

Bj5D0 j1D j 0 for j 51,2,3,

Ri j 5D i j 2D j i for 0, i , j <3,

Tm5Dm4 for m50,1,2,3.

The identification between the two Lie algebras is obtain
through

M0 j.Bj for j 51,2,3,

Mi j .Ri j for 0, i , j <3,

Mm4.Tm for m50,1,2,3.

The identification between the groups follows, using the
ponential application.
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