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Grad-Shafranov equation in noncircular stationary axisymmetric spacetimes

Kunihito Ioka and Misao Sasaki
Department of Earth and Space Science, Osaka University, Toyonaka 560-0043, Japan

~Received 10 March 2003; published 25 June 2003!

A formulation is developed for general relativistic ideal magnetohydrodynamics in stationary axisymmetric
spacetimes. We reduce basic equations to a single second-order partial differential equation, the so-called
Grad-Shafranov~GS! equation. Our formulation is most general in the sense that it is applicable even when a
stationary axisymmetric spacetime is noncircular, that is, even when it is impossible to foliate a spacetime with
two orthogonal families of two-surfaces. The GS equation for noncircular spacetimes is crucial for the study of
relativistic stars with a toroidal magnetic field or meridional flow, such as magnetars, since the existence of a
toroidal field or meridional flow violates the circularity of a spacetime. We also derive the wind equation in
noncircular spacetimes, and discuss various limits of the GS equation.
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I. INTRODUCTION

While most neutron stars have magnetic fields
;1012–1013 G, studies of soft gamma-ray repeaters a
anomalous x-ray pulsars suggest that a significant frac
(*10%) of neutron stars is born with larger magnetic fie
;1014– 1015 G @1–4#. The internal magnetic field of a new
born neutron star may be even larger*1016 G if it is gener-
ated by the helical dynamo@2,5#. A magnetic field of nearly
maximum strength allowed by the virial theorem;1017 G
may be achieved if the central engine of gamma-ray bu
are neutron stars@6–9#. In such super-magnetized neutro
stars, so-called magnetars@2,4#, the magnetic fields have
substantial effects on their internal stellar structure. Es
cially the deformation due to the magnetic stress beco
non-negligible @10–13#. Since the deformation affects th
precession, oscillations and the gravitational wave emiss
of neutron stars@11,12,14–16#, it is important to investigate
equilibrium configurations of magnetars.

General relativistic effects are sizable in the interior o
neutron star, so that any quantitative investigation of
magnetars has to be based on general relativistic magne
drodynamics~MHD! @17–20#. Therefore, we have to solv
the matter and electromagnetic field configurations in
curved spacetime, and have to take into account the ele
magnetic energy-momentum as a source of the gravitati
field. So far several works have been devoted to equilibri
configurations of a magnetized star in a stationary axisy
metric spacetime@10,13,21,22#. However these works con
sider only poloidal magnetic fields for simplicity, since th
existence of only a poloidal field is compatible with the c
cularity of the spacetime@23,24#. In a circular spacetime
there exists a family of two-surfaces everywhere orthogo
to the plane defined by the two Killing vectors associa
with stationarity hm5(]/]t)m and axisymmetry jm

5(]/]w)m @25–27#. Thus one may choose the coordinat
(xm)5(t,x1,x2,w) such that the metric componentsg01,
g02, g31 andg32 are identically zero. As a consequence, t
problem is simplified dramatically.

However non-negligible toroidal magnetic fields a
likely to exist in nature. Differential rotation generated du
ing the gravitational collapse@28,29# or in the binary coales-
0556-2821/2003/67~12!/124026~13!/$20.00 67 1240
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cence@30# may wind up the frozen-in magnetic field to am
plify the toroidal component@8,9#. A toroidal magnetic field
may be generated by thea-V dynamo during the first few
seconds after the formation of a millisecond pulsar@2,5#. In
addition, convective motion may also exist in the interior
a neutron star@31#, which also violates the circularity of the
spacetime@23,24#. Thus, we have to consider noncircul
spacetimes. The degree of noncircularity of the spacetim
a neutron star with massM* and radiusR* , will be about
;(M* /R* )vMF and ;0.1–0.01(M* /R* )RM , wherevMF
is the velocity of the meridional flow andRM is the ratio of
the magnetic energy to the gravitational energy@32#.

The problem to obtain an equilibrium configuration of
magnetar can be separated into two parts. The first part is
Einstein equations which determine the spacetime geom
under a given configuration of matter and electromagn
fields. The second part is the matter and electromagnetic
equations in a given spacetime geometry. A (211)11 for-
malism to solve the Einstein equations under the presenc
a spatial Killing vector was developed by Maedaet al.
@33,34# and by Sasaki@35#. This formalism is similar to the
well-known 311 formalism @44#. Later Gourgoulhon and
Bonazzola@23# developed a similar but different (211)
11 formalism which is more suited for stationary axisym
metric spacetimes. So here we focus our attention on
second problem, i.e., to formulate the equations of motion
matter and electromagnetic fields in a curved spacetime.

It is well known that the basic equations for a stationa
axisymmetric ideal MHD system can be reduced to a sin
second-order, nonlinear partial differential equation, the
called Grad-Shafranov~GS! equation, for a quantity called
the flux function,C. The GS equation was derived in th
Newtonian case@36#, the Schwarzschild spacetime case@37#,
and the Kerr spacetime case@38,39#. The flux functionC is
such that it is constant over each surface generated by r
ing the magnetic field lines~or equivalently the flow lines!
about the axis of symmetry and the GS equation determ
the transfield equilibrium. Any physical quantities can be c
culated from the solutionC of the GS equation. However
the GS equation in noncircular spacetimes has never b
derived explicitly.

In this paper we derive the GS equation explicitly in no
©2003 The American Physical Society26-1
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circular ~i.e., the most general! stationary axisymmetric
spacetimes. This is a first step toward the study of equi
rium configurations of magnetars. An attempt to solve
GS equation will be discussed in a subsequent paper.
paper is organized as follows. In Sec. II, we briefly revie
the conservation laws in stationary axisymmetric gene
relativistic ideal MHD systems@19,20# that are used to char
acterize the matter and electromagnetic field configuratio
We neglect dissipative effects, which is a reasonable assu
tion because of the high conductivity and the low viscosity
neutron stars. In Sec. III, we derive the GS equation in
un-elucidated form. At this stage it is not clear if the G
equation is a second-order differential equation for the fl
function C. In Sec. IV, we briefly review the (211)11
formalism by Gourgoulhon and Bonazzola@23# to describe
the geometry of noncircular stationary axisymmetric spa
times in a transparent way. We do not, however, discuss
Einstein equations but assume the geometry to be given
Sec. V, we explicitly demonstrate that all physical quantit
except for the metric can be evaluated from the flux funct
C. In Sec. VI, we write down the GS equation in the cov
riant form projected onto the 2-surfaceS tw spanned byt
5const andw5const. We also discuss various limits of th
GS equation. Finally, we summarize our result in Sec. V
The energy-momentum tensor decomposed in the (211)
11 form is given in Appendix A, and notation and symbo
are summarized in Appendix B.

We use the units c5G5kB51. Greek indices
(m,n,a,b,•••) run from 0 to 3, small Latin indices
( i , j ,k,•••) from 1 to 3, and capital Latin indices (A,B,
C,•••) from 1 to 2, wherex05t andx35w. The signature
of the 4-metric is (2,1,1,1).

II. BASIC EQUATIONS AND CONSERVATION LAWS

A. Basic equations for general relativistic
magnetohydrodynamics

The basic equations governing a general relativistic id
MHD system are as follows@17,18#. Baryons are conserved

~rum! ;m5umr ,m1rum
;m50, ~2.1!

wherer is the rest mass density~i.e., the baryon mass time
the baryon number density! and um is the fluid 4-velocity
with

umum521. ~2.2!

The electromagnetic field is governed by the Maxwell eq
tions

F [mn;a]50, ~2.3!

Fmn
;n54pJm, ~2.4!

whereFmn andJm are the field strength tensor and the ele
tric current 4-vector, respectively. Equation~2.3! implies the
existence of the vector potentialAm ,

Fmn5An,m2Am,n . ~2.5!
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The electric and magnetic fields in the fluid rest frame
defined as

Em5Fmnun, ~2.6!

Bm52
1

2
emnabunFab , ~2.7!

where emnab is the Levi-Civita antisymmetric tensor with

e01235A2g. Equations~2.6! and ~2.7! are inverted to give

Fmn5umEn2unEm1emnabuaBb, ~2.8!

with Emum5Bmum50. In the ideal MHD, we assume th
perfect conductivity, so that

Em5Fmnun50. ~2.9!

The equations of motion for the fluid are given byTmn
;n

50, whereTmn is the total energy-momentum tensor of th
fluid and electromagnetic fields

Tmn5~r1re1p!umun1pgmn

1
1

4p S FmaFn
a2

1

4
gmnFabFabD . ~2.10!

Then we obtain the conservation of the fluid energy

um~r1re! ,m1~r1re1p!um
;m50 ~2.11!

and the Euler equations

~r1re1p!um
;nun1~gmn1umun!p,n2FmnJn50,

~2.12!

where e and p are the internal energy per unit mass a
pressure, respectively. Eliminatingum

;m from Eqs.~2.1! and
~2.11! gives

um~r1re! ,m5mumr ,m , ~2.13!

where

m511e1
p

r
~2.14!

is the enthalpy per unit mass. Assuming local thermo
namic equilibrium, the first law of thermodynamics is give
by

de52p dS 1

r D1TdS, ~2.15!

whereS and T are the entropy per unit mass and the te
perature. Then Eqs.~2.14! and ~2.15! imply

dm5
dp

r
1TdS. ~2.16!

Finally we supply the equation of state

p5p~r,S!. ~2.17!
6-2
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B. Conservation laws in a stationary axisymmetric spacetime

Here we recapitulate the conservation laws derived fr
the basic equations in the previous subsection in a statio
axisymmetric spacetime. There exists two Killing vectors
sociated with stationarity and axisymmetry, which we den
by hm andjm, respectively. The Lie derivatives of all phys
cal quantities along the Killing vectors must vanish, e.
L ju

m5jnum
;n2unjm

;n50. We takehm5(]/]t)m and jm

5(]/]w)m so thatx05t and x35w are the time and azi
muthal coordinates associated with the Killing vectorshm

and jm, respectively. Thus all physical quantities are ind
pendent oft andw.

Bekenstein and Oron@19,20# showed that a stationary ax
symmetric system has several conserved quantities a
each flow line. This is a general relativistic generalization
Ferraro’s integrability condition@40–42#. By exploiting the
gauge freedom to makeAm,nhn5Am,050 and Am,njn

5Am,350, we can show that the magnetic potentialC
ªAmjm5A3 as well as the electric potentialFªAmhm

5A0 are constant along each flow line, i.e.,um(jnAn) ,m
5um(hnAn) ,m50 @43#. Henceforth we label the flow line by
C, which we refer to as the flux function as in the no
relativistic case@36#. The C5const surfaces are called th
flux surfaces, which are generated by rotating the magn
field lines ~or the flow lines! about the axis of symmetry.

According to Bekenstein and Oron@19,20#, one can show
that

F0350, ~2.18!

F0A5VFA3 , ~2.19!

F3152C ,15CA2gru2, ~2.20!

F235C ,25CA2gru1, ~2.21!

F125CA2gr~u32Vu0!, ~2.22!

whereV(C) andC(C) are conserved along each flow lin
and hence are functions of the flux functionC. The above
equations are effectively first integrals of the Maxwell equ
tions~2.3!. It may be useful to rewrite the above equations

Bm52Cr@~u01Vu3!um1hm1Vjm#. ~2.23!

Note thatV(C) is theC derivative of the electric potential
V(C)52dF/dC, and coincides with the angular velocit
dw/dt5u3/u05V if there is no toroidal fieldF1250 and
CÞ0, from Eq. ~2.22!. In addition, one can show tha
E(C), L(C) andD(C) are also conserved along each flo
line @19#, where

2D5m~u01Vu3!, ~2.24!

2E5S m1
B2

4pr Du01C~u01Vu3!
B0

4p
, ~2.25!

L5S m1
B2

4pr Du31C~u01Vu3!
B3

4p
, ~2.26!
12402
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ªBmBm. Equations~2.24!, ~2.25! and ~2.26! are first

integrals of the equations of motionTmn
;n50 alongBm , hm

and jm , respectively. In particular, Eq.~2.25! is a general-
ized Bernouilli’s equation. These conserved quantities
not mutually independent but there is a relation among th
@19#,

D5E2VL. ~2.27!

Together with Eqs.~2.24!–~2.26!, this implies that

B2

r
1C~B01VB3!50. ~2.28!

With Eq. ~2.28!, we can rewriteE(C) and L(C) in Eqs.
~2.25! and ~2.26! as

2E5mu02
1

4p
CV~u0B32u3B0!, ~2.29!

L5mu31
1

4p
C~u0B32u3B0!. ~2.30!

Finally, from Eqs.~2.13!–~2.15! one finds that the entropy
per unit massS is conserved along each flow line,umS,m
50, as a result of the perfect fluid form of the energ
momentum tensor. For a stationary axisymmetric spaceti
this implies thatS is a function ofC, S5S(C).

In summary, for a given flux functionC, there exists five
conserved quantities,E(C), L(C), V(C), C(C) and
S(C). Except for S(C), there are no perfectly relevan
physical interpretations of these quantities. Nevertheless
considering several limiting cases, we may associate th
with terms that describe their qualitative nature. We may c
E(C) the total energy per unit mass,L(C) the total angular
momentum per unit mass,V(C) the angular velocity, and
C(C) the magnetic field strength relative to the magnitu
of meridional flow. Since these conserved quantities are
sentially the first integrals of the equations of motion, spe
fication of these functions characterizes the configuration
the fluid flow and the electromagnetic field. As we will see
Sec. V, all physical quantities are completely determin
once these conserved quantities are given as functions o
flux functionC, provided that the spatial configuration ofC
is known. Therefore the problem reduces to solving an eq
tion for the flux function that determines the spatial config
ration of C, that is, the GS equation.

III. GRAD-SHAFRANOV EQUATION IN THE
COMPONENT EXPRESSION

The GS equation is given by the transfield componen
the Euler equations~2.12!. In this section, we consider thexA

derivative of the flux function in the Euler equations, a
factorize the resulting equation to derive the GS equati
We express equations in terms of their explicit coordin
components, since it is the most straightforward way to
corporate the symmetry, e.g., (•••) ,05(•••) ,350. Accord-
ingly, the GS equation is given in the component express
A covariant form of the GS equation based on (211)11
6-3
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formalism, which may be useful for numerical calculation
will be given in Sec. VI.

Using Eq.~2.16!, the Euler equations~2.12! can be writ-
ten as

rmum;nun1rm ,m1rumunm ,n2Fmn Jn2rTS,m50,
~3.1!

where we have used thatumS,m50. First, let us consider the
x1 component of the Euler equations~3.1!. The first term can
be expressed as

rmu1;mum5rm~u1u1;11u2u1;2!

2rm~u0G10
m um1u3G13

m um!, ~3.2!

whereGmn
a is the Christoffel symbol. With Eq.~2.2!, the third

term in Eq.~3.1! can be transformed as

ru1umm ,m5ru1u1m ,11ru1u2m ,2

52rm ,1~11u0u01u2u21u3u3!1ru1u2m ,2

5ru2~u1m ,22u2m ,1!2rm ,12ru0~mu0! ,1

2ru3~mu3! ,11rmu0~u0;11G01
m um!

1rmu3~u3;11G31
m um!

5ru2@~mu1! ;22~mu2! ;1#2rm ,12ru0~mu0! ,1

2ru3~mu3! ,12rm~u1u1;11u2u1;2!

1rm~u0G01
m um1u3G13

m um!, ~3.3!

where we have used the factumum;n50. Thus putting Eqs.
~3.2! and ~3.3! together, and using Eq.~2.20!, we find

r~mu1;mum1m ,11u1umm ,m!

5ru2@~mu1! ;22~mu2! ;1#2ru0~mu0! ,12ru3~mu3! ,1 ,

52
1

CA2g
@~mu1! ;22~mu2! ;1#C ,12ru0~mu0! ,1

2ru3~mu3! ,1 . ~3.4!

Next, the fourth term in Eq.~3.1! can be transformed as

2F1mJm52F10J
02F13J

32
1

4pA2g
F1A~A2gFAB! ,B

5~VJ02J3!C ,11
1

4pA2g
F12~A2gF12! ,1 ,

~3.5!

where the second line follows from Eqs.~2.19! and ~2.20!.
From Eqs. ~2.8! and ~2.9!, we have F1252(u0B3

2u3B0)/A2g. Therefore, together with Eq.~2.22! that
givesF12, the last term in Eq.~3.5! is expressed as
12402
, 1

4pA2g
F12~A2gF12! ,1

52
1

4p
Cr~u32Vu0!~u0B32u3B0! ,1

52
1

4p
ru0~u0B32u3B0!~CV!8C ,1

1
1

4p
ru3~u0B32u3B0!C8C ,1 ,

2ru0F2
1

4p
CV~u0B32u3B0!G

,1

2ru3F 1

4p
C~u0B32u3B0!G

,1

, ~3.6!

where primes denote differentiation with respect toC. Fi-
nally, the last term in Eq.~3.1! gives

2rTS,152rTS8C ,1 . ~3.7!

Combining Eqs.~3.4!–~3.7!, we have

H 2
1

CA2g
@~mu1! ,22~mu2! ,1#2~J32VJ0!

2
1

4p
ru0~u0B32u3B0!~CV!8

1
1

4p
ru3~u0B32u3B0!C82rTS8J C ,1

2ru0Fmu02
1

4p
CV~u0B32u3B0!G

,1

2ru3Fmu31
1

4p
C~u0B32u3B0!G

,1

50. ~3.8!

Recalling the expressions forE and L given by Eqs.~2.29!
and ~2.30!, respectively, we see that the last two terms
just their derivatives. Therefore, we can factor out thex1

derivative of the flux function in Eq.~3.8! to obtain

H 2
1

CA2g
@~mu1! ,22~mu2! ,1#2~J32VJ0!

1ru0FE82
1

4p
~u0B32u3B0!~CV!8G

2ru3FL82
1

4p
~u0B32u3B0!C8G2rTS8J C ,150.

~3.9!
6-4
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The same analysis applies to thex2 component of Eq.~3.1!,
and one finds the above equation~3.9! with the replacemen
of C ,1 by C ,2 . Therefore, by assumingC ,AÞ0 (A51,2),
the GS equation is given by

J32VJ01
1

CA2g
@~mu1! ,22~mu2! ,1#

2ru0@E82L~CV!8#1ru3@L82LC8#

1rTS850, ~3.10!

where, for convenience, we have introduced an auxili
quantityL defined by

L5
1

4p
~u0B32u3B0!. ~3.11!

At this stage, however, it is not clear if Eq.~3.10! gives a
second-order, nonlinear partial differential equation for
flux functionC, since the dependence on the flux function
unknown. In Sec. V, we explicitly demonstrate that all t
physical quantities appearing in the above equation can
expressed in terms ofC and itsxA derivatives, and in Sec
VI we derive the GS equation in the covariant form and
make it explicit that it is indeed a second-order, non-line
differential equation forC.

IV. „2¿1…¿1 DECOMPOSITION

In this section, we briefly review the (211)11 formal-
ism of the Einstein equations for stationary axisymme
spacetimes developed by Gourgoulhon and Bonazzola@23#,
in order to describe our metric in a covariant fashion. N
that this formalism is different from the (211)11 formal-
ism by Maeda, Sasaki, Nakamura, and Miyama@33,34# and
Sasaki@35#, which is suitable to the axisymmetric gravita
tional collapse. Here we adopt the formalism by Gourgo
hon and Bonazzola because it is more convenient fo
spacetime which is not only axisymmetric but also statio
ary.

Let nm be the unit timelike 4-vector orthogonal to thet
5const hypersurfaceS t and oriented in the direction of in
creasingt,

nm52Nt,m . ~4.1!

The lapse functionN is determined by the requirement

nmnm521. ~4.2!

The 3-metric induced bygmn on S t is given by

hmn5gmn1nmnn . ~4.3!

Similarly, letmm be the unit spacelike 4-vector orthogonal
the t5const andw5const 2-surfaceS tw and oriented in the
direction of increasingw,

mm5Mhm
n w ,n5Mw um , ~4.4!
12402
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where the vertical strokeu denotes the covariant derivativ
associated with the 3-metrichmn . The coefficientM is deter-
mined by

mmmm51. ~4.5!

The induced 2-metric onS tw is given by

Hmn5hmn2mmmn5gmn1nmnn2mmmn . ~4.6!

The covariant derivative associated with the 2-metricHmn is
denoted by a double vertical strokei . There is a relation
between the determinants as

A2g5NAh5NMAH. ~4.7!

Any 4-vector can be decomposed into its projection o
S tw , the component parallel tonm and that tomm . The Kill-
ing vectors are decomposed as

hm5Nnm2Nm5Nnm2MNwmm2NS
m , ~4.8!

jm5Mmm2MS
m , ~4.9!

where the shift vectorNm is ~minus! the projection ofhm

onto S t , MS
m is ~minus! the projection ofjm onto S tw , and

NS
m is the projection ofNm onto S tw . For our choice of

coordinates, i.e., forx05t and x35w, the component ex-
pressions fornm, nm , mm andmm are

nm5~2N,0,0,0!, ~4.10!

nm5S 1

N
,
N1

N
,
N2

N
,
Nw

N D , ~4.11!

mm5~2MNw,0,0,M !, ~4.12!

mm5S 0,
MS

1

M
,
MS

2

M
,

1

M D . ~4.13!

Note thatNS
m5(0,NS

1 ,NS
2 ,0) andNA5NS

A1NwMS
A .

The explicit component expressions ofgmn, gmn , hmn,
andhmn are given by
6-5
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S g00 g0 j

gi0 gi j
D 5S NkN

k2N2 2Nj

2Ni hi j

D , ~4.14!

S g00 g0 j

gi0 gi j D 5S 2
1

N2
2

Nj

N2

2
Ni

N2
hi j 2

NiNj

N2

D , ~4.15!

S hAB hA3

h3B h33
D 5S HAB 2MSA

2MSB M21MSAMS
AD , ~4.16!

S hAB hA3

h3B h33D 5S HAB1
MS

AMS
B

M2

MS
A

M2

MS
B

M2

1

M2

D , ~4.17!

where i , j ,k51,2,3 and A,B51,2. We can express th
4-metricgmn in terms ofN, Nw, NS

A , M, MS
A andHAB as

gmndxmdxn52@N22M2~Nw!22NS ANS
A#dt2

22~M2Nw2NS
AMS A!dtdw

22NS AdtdxA22MS AdwdxA

1HABdxAdxB1~M21MS AMS
A!dw2,

~4.18!

where the functionsN, Nw, NS
A , M, MS

A and HAB depend
only on the coordinate (x1,x2). Since we only assume tha
physical quantities are independent ofx05t andx35w, the
metric gmn in Eq. ~4.18! has some freedom in the choice
coordinates. We will leave the coordinate freedom unsp
fied. In Sec. VI the covariant GS equation will be given as
equation projected ontoS tw .

V. PHYSICAL QUANTITIES FROM FLUX FUNCTION C

Provided that the metricgmn is given and the conserve
quantitiesE(C), L(C), V(C), C(C) andS(C) are given
as functions ofC, all the physical quantities can be eval
ated once the~effectively 2-dimensional! configuration of the
flux function C is known ~see Ref.@45# for the circular
case!. In this section, we explicitly demonstrate this fact f
the most general case of noncircular spacetimes.

A. Fluid 4-velocity uµ

First let us consider the fluid 4-velocityum. It is useful to
prepare two vectorshm1Vjm and jm1Qhm constructed
from two Killing vectorshm andjm, and to make them or
thogonal to each other (hm1Vjm)(jm1Qhm)50 by taking
12402
i-
n

Q52
jn~hn1Vjn!

hm~hm1Vjm!
52

g031Vg33

g001Vg03
. ~5.1!

Then we can decompose the fluid 4-velocity in the coor
nate bases as

um5uh~hm1Vjm!1uj~jm1Qhm!1ũS
m , ~5.2!

wherehm1Vjm5(1,0,0,V), jm1Qhm5(Q,0,0,1) andũS
m

5(0,u1,u2,0) in the component expressions, and hen
ũS

mnm5ũS
mmm50 from Eqs.~4.10! and ~4.12!, and

u05uh1Quj , ~5.3!

u35uj1Vuh . ~5.4!

The decomposition in Eq.~5.2! is not conforming to the
spirit of the (211)11 formalism but makes it easy to obta
the coefficientsuh anduj as shown below.

From Eqs.~2.20! and ~2.21!, the termũS
m is given by

ũS
m5

1

NMCr
emnC ,n , ~5.5!

where the antisymmetric tensoremn is defined by

emn5emnabnamb . ~5.6!

With Eqs.~2.23!–~2.26!, ~4.8! and ~4.9!, the coefficientsuh
anduj are expressed as

uh5
E2VL

Ghm
2

ÑS

Gh
5

D

Ghm
2

ÑS

Gh
, ~5.7!

uj52
~L2QE!

Gjm
S 4pm

GhC2r
D S 12

4pm

GhC2r
D 21

1
M̃S

Gj
, ~5.8!

whereGh andGj are defined by

Gh52~hm1Vjm!~hm1Vjm!52~g0012Vg031V2g33!,

~5.9!

Gj5~jm1Qhm!~jm1Qhm!5g3312Qg031Q2g00,
~5.10!

and ÑS andM̃S are defined by

ÑS5ũS
m~NS m1VMS m!, ~5.11!

M̃S5ũS
m~MS m1QNS m!. ~5.12!

Note that, using Eq.~5.5!, ÑS andM̃S are expressed as

ÑS5
1

NMCr
eABC iB~NS A1VMS A!, ~5.13!

M̃S5
1

NMCr
eABC iB~MS A1QNS A!. ~5.14!
6-6
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Note also that

MAlf
2
ª

4pm

GhC2r
5

4pmr

B2
S Gjuj

21ũS
AũS A22ujM̃S1

ÑS
2

Gh
D ,

~5.15!

is the square of the effective Alfve´n Mach numberMAlf
@where the second equality follows from Eq.~5.25! below#.
At the Alfvén point MAlf 51, the numeratorL2QE should
vanish to keep the velocityuj finite @46#.

Thus, from Eqs.~5.2!, ~5.7!, ~5.8! and ~5.5!, given the
metric gmn and the conserved functionsE(C), L(C),
V(C), C(C) andS(C), the fluid 4-velocityum can be ob-
tained from the flux functionC and its first derivativesC ,A
if the densityr and the enthalpym are additionally known.
The expression forr will be given in the next subsection
The enthalpym is then determined as a function ofr andC
as will be discussed also in the next subsection.

Once the components ofum are known, the (211)11
decomposition of the fluid 4-velocity is easily performe
With the help of Eqs.~5.2!, ~4.8! and ~4.9!, we have

um5unnm1ummm1uS
m , ~5.16!

where

un5N~uh1Quj!, ~5.17!

um5M @~V2Nw!uh1~12NwQ!uj#, ~5.18!

uS
m5ũS

m2~uh1Quj!NS
m2~uj1Vuh!MS

m . ~5.19!

B. Density r and other thermodynamical quantities
p, e, µ and T

The pressurep, the internal energye, the enthalpym and
the temperatureT are functions of the densityr and the
entropyS from Eqs.~2.14!, ~2.15! and~2.17!. Hence, givenS
as a function ofC, the only remaining quantity to be know
is the densityr.

The densityr is determined by the normalization o
the 4-velocityumum52Ghuh

21Gjuj
21ũS AũS

A12uhũS
m(hm

1Vjm)12ujũS
m(jm1Qhm)521, that is,

2
~E2VL !2

Ghm2
1

~4p!2~L2QE!2

GjGh
2C4r2 S 12

4pm

GhC2r
D 22

1
HABC ,AC ,B

N2M2C2r2
1

ÑS
2

Gh
2

M̃S
2

Gj
521. ~5.20!

This equation is what is called the wind equation~see Ref.
@45# for the circular case!. Note thatr contains the first-orde
derivativesC ,A through this equation.

C. Magnetic field Bµ

The magnetic field is also calculated from the flux fun
tion. With Eqs. ~2.23!, ~5.16!, ~4.8! and ~4.9!, the (211)
11 decomposition of the magnetic field is given by
12402
.

-

Bm5Bnnm1Bmmm1BS
m , ~5.21!

where

Bn5CrN@~Ghuh1ÑS!~uh1Quj!21#, ~5.22!

Bm5CrM @~Ghuh1ÑS!$~V2Nw!uh

1~12NwQ!uj%1Nw2V#, ~5.23!

BS
m5Cr@~Ghuh1ÑS!uS

m1NS
m1VMS

m#. ~5.24!

The magnetic strength is given by

B25BmBm5C2r2@~Ghuh1ÑS!22Gh#

5C2r2@Gh~Gjuj
21ũS AũS

A22ujM̃S!1ÑS
2 #.

~5.25!

The (211)11 decomposition of the energy-momentum te
sor is given in Appendix A.

D. Electric current Jµ

Let us consider the following components of the elect
current:

J05
1

4pNMAH
~NMAHF0A! ,A5

1

4pNM
~NMF0A! uuA ,

~5.26!

J35
1

4pNMAH
~NMAHF3A! ,A5

1

4pNM
~NMF3A! uuA .

~5.27!

The field strength tensor components appearing in the ab
equations are also expressed in terms of the flux functionC
as

F0A5~g00gAB2g0BgA0!VC ,B1~g0BgA32g03gAB!C ,B

1~g01gA22g02gA1!F12

52
1

N2 FHAB1
MS

AMS
B

M2 GVC ,B

1
1

N2 FNwHAB2
MS

ANS
B

M2 GC ,B

2F S NS
B1NwMS

B

N2 D eB
A1

MS
ANS

BMS
CeBC

N2M2 GF12

AH
,

~5.28!

F3A5~g30gAB2g3BgA0!VC ,B1~g3BgA32g33gAB!C ,B

1~g31gA22g32gA1!F12

52
1

N2 FNwHAB2
NS

AMS
B

M2 GVC ,B
6-7
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2H F 1

M2
2S Nw

N D 2GHAB2
NS

ANS
B

N2M2J C ,B

1XH F 1

M2
2S Nw

N D 2GMS
B2

NwNS
B

N2 J eB
A

1
NS

ANS
BMS

CeBC

N2M2 CF12

AH
, ~5.29!

whereF12 is expressed as

F12

AH
5CNMr~u32Vu0!5CNMruj~12VQ!.

~5.30!

In the above, the first equality follows from Eq.~2.22!, and
the second from Eqs.~5.3! and ~5.4!. Thus, J0 and J3 are
expressed in terms ofC and its first and second derivative

E. Auxiliary quantity L

We also need to evaluate the auxiliary quantityL defined
by Eq. ~3.11!, that is,

L5
1

4p
~u0B32u3B0!. ~5.31!

From the expression ofBm given by Eq.~2.23!, we have

L52
1

4p
Cr@u0~g031Vg33!2u3~g001Vg03!#.

~5.32!

Using the component expressions ofum given by Eq.~5.2!,
this is rewritten as

L52
1

4p
Cr@uj~g03

2 2g00g33!~12VQ!1ũS
mhm~g03

1Vg33!2ũS
mjm~g001Vg03!#52

1

4p
Cr@uj~g03

2

2g00g33!~12VQ!1M̃S~g001Vg33!#, ~5.33!

where the second line follows from Eqs.~4.8!, ~4.9!, ~5.1!
and~5.12!. The above form is sufficient forL to be obtained
from the flux function, but it can be further simplified if w
use Eqs.~5.1! and ~5.10!. From these equations, we find

~12VQ!~g00g332g03
2 !5Gj~g001Vg03!.

Therefore, we obtain

L5
1

4p
~u0B32u3B0!5

1

4p
Cr~Gjuj2M̃S!~g001Vg03!.

~5.34!

VI. GRAD-SHAFRANOV EQUATION
IN THE COVARIANT FORM

Now we are ready to show that the GS equation~3.10! is
indeed a second-order differential equation for the flux fu
12402
-

tion C. At the same time, following the spirit of the (2
11)11 formalism, we express the GS equation in the c
variant form with respect to the geometry ofS tw .

The covariant expression for the GS equation is read
obtained as

J32VJ01
1

NMC
eAB~muSA! uuB

2r~uh1Quj!@E82L~CV!8#

1r~uj1Vuh!@L82LC8#1rTS850, ~6.1!

where we have replacedA2g, u0 andu3 in the original GS
equation~3.10! by their (211)11 type expressions~4.7!,
~5.3! and~5.4!, respectively, and, as before, a double verti
strokei denotes the covariant differentiation with respect
the 2-metricHAB .

In the previous section, we have seen thatuh , uj , uS
A and

Q ~Sec. V A!, r, m andT ~Sec. V B!, J0 andJ3 ~Sec. V D!,
and L ~Sec. V E! are all expressed in terms ofC and its
derivatives, given the conserved functionsE(C), L(C),
V(C), C(C) andS(C), and the metricgmn . In particular,
we have seen thatJ0 andJ3 contain the second-order deriva
tives of C, while r ~hencem) as well asuS A contain the
first-order derivatives ofC. Thus, the GS equation~6.1! is a
second-order, non-linear differential equation forC, where
the first three terms contain the second-order derivatives

A. No toroidal field limit

From Eqs.~2.20!–~2.22!, we find that the toroidal field
and the meridional flow vanish ifuCu→`. Here note that
u32Vu05uj(12VQ)}C22→0 in Eq. ~2.22! from Eqs.
~5.3!, ~5.4! and~5.8! ~and henceV coincides with the angu-
lar velocity dw/dt5u3/u05V). In the absence of the toroi
dal field and the meridional flow, a spacetime is circular. T
circular limit is expressed as@23#

NS
A→0, MS

A→0. ~6.2!

Therefore, in theuCu→` limit, the GS equation~6.1! re-
duces to

J32VJ02ruh@E82VL82CLV8#1rTS850, ~6.3!

where the density is determined by (E2VL)2/Ghm2

5Ghuh
251 from Eq.~5.20!, and

CL52
L2QE

Gh
~g001Vg03!S 12

4pm

GhC2r
D 21

. ~6.4!

Here we regarduCu→` as the limit of a sequence of mode
with uCu,`. The last term@12(4pm)/(GhC2r)#21 in Eq.
~6.4! can be neglected if the densityr is finite. However, in
the case when there is a surface withr50 such as a star an
the flux functionC is not constant on that surface, the la
term @12(4pm)/(GhC2r)#21 diverges near the surface
Unless one can fine-tune the termL2QE so that its zero
point cancels this divergence, which seems unlikely to
6-8
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possible, we should demand the rigid rotationV850 in Eq.
~6.3!. This is consistent with Bonazzolaet al. @10,21#. Note
that if the flux functionC is constant on ther50 surface,
we may findC that satisfiesC2r→` on the surface.

B. No poloidal field limit

The poloidal field vanishes if we letC→dĈ and take a
limit d→0, as we can see from Eqs.~2.20! and ~2.21!. In
this process we relabel the flow lines byĈ and replace the

conserved quantities asE→E(Ĉ), L→L(Ĉ), V→V(Ĉ),

C→C(Ĉ) andS→S(Ĉ). In the limit d→0, the meridional
flow vanishesũS

A→0 from Eq.~5.5!. Then we can show tha
the spacetime is circular as expressed in Eq.~6.2! @24#.
Therefore, in thed→0 limit, the GS equation~6.1! reduces
to

~uh1Quj!@E82L~CV!8#

2~uj1Vuh!@L82LC8#2TS850, ~6.5!

where primes now denote differentiation with respect toĈ.
This is an algebraic equation. Here we regardC→0 as the
limit of a sequence of models withCÞ0. If C is exactly
zero, the transfield components of the Euler equations~2.12!
are satisfied regardless of the GS equation~see Sec. III!.
Therefore there may exist ‘‘isolated’’ solutions which cann
be obtained by the limit discussed here.

C. No magnetic field limit

There are two limits for configurations with no magne
field. The first way to obtain such configurations is to

C→d1Ĉ and C→Ĉ/d2 and take the limitd1→0 and d2
→0, as we can see from Eqs.~2.20! – ~2.22!. Here note that
u32Vu05uj(12VQ)}C22→0 in Eq. ~2.22! from Eqs.
~5.3!, ~5.4! and~5.8! ~and henceV coincides with the angu
lar velocity dw/dt5u3/u05V). In this process we relabe

the flow lines byĈ and replace the conserved quantities

E→E(Ĉ), L→L(Ĉ), V→V(Ĉ), C→C(Ĉ) and S

→S(Ĉ). In the limit d1→0 andd2→0, the meridional flow
vanishesũS

A→0 from Eqs. ~2.20! and ~2.21!, so that the
spacetime becomes circular as in Eq.~6.2!. Therefore, the
GS equation~6.1! reduces to

uh@~E2VL !82V8~CL2L !#2TS850, ~6.6!

where primes denote differentiation with respect toĈ, CL
is given by Eq.~6.4!, and the density is determined from E
~5.20! as

~E2VL !2

Ghm2
5Ghuh

251. ~6.7!

Let us see the relation between this limit (C→0 and uCu
→`) and the case of a rotating star@21,47#. From Eq.~6.7!
we have the Bernouilli’s equation for a rotating fluid as
12402
t

t

s

ln m2 ln uh2 ln~E2VL !50. ~6.8!

From the definition ofL, Eq. ~2.30!, we haveCL2L5
2mu352u3uh(E2VL). Then for an isentropic starS8
50, the GS equation in Eq.~6.6! is written as

u3uh5
d

dV
@2 ln~E2VL !#, ~6.9!

where we have used the fact that2 ln(E2VL) can be re-
garded as a function ofV, sinceE, L andV are functions of

Ĉ only. Equation~6.9! is the well-known integrability con-
dition for a rotating fluid@21,47#. Note that if we regard
uCu→` as the limit of a sequence of models withuCu,`,
we should demand the rigid rotationV850, as discussed in
Sec. VI A.

The second way to obtain configurations with no ma

netic field is to letC→dĈ and C→dĈ and take the limit

d→0. In this process we relabel the flow lines byĈ and

replace the conserved quantities asE→E(Ĉ), L→L(Ĉ),

V→V(Ĉ), Ĉ→Ĉ(Ĉ) andS→S(Ĉ). As we can see from
Eqs.~2.20! and ~2.21!, there exists a meridional flow in thi
case. The toroidal field vanishes since in Eq.~2.22! u3

2Vu05uj(12VQ) and uj→(L2QE)/Gjm1M̃S /Gj in
the limit d→0, from Eqs.~5.3!, ~5.4! and ~5.8!. The GS
equation in Eq.~6.1! reduces to

2ruh~E82VL8!1ruj~L82QE8!

1
1

NMĈ
eAB~muS A! uuB1rTS850, ~6.10!

where primes denote differentiation with respect toĈ. One

can introduce a yet new flux functionC̃ by dC̃5dĈ/Ĉ to
absorb the functionĈ into the definition of the new flux

function C̃. The resulting equation may be directly obtain
from the Euler equations for a perfect fluid.

D. Newtonian limit

In the Newtonian limit, all physical quantities are e
panded in power series of the typical fluid velocity@48#. The
metric reduces to

gmndxmdxn52~112f!dt21~122f!

3~dZ21dR21R2dw2!, ~6.11!

where the Newtonian potentialf is of orderO(v2), and we
adopt the cylindrical coordinate (t,Z,R,w). We denote the
3-dimensional velocity by

v i
ª

ui

u0
5

dxi

dt
, ~6.12!

where

u0512f1
v2

2
~6.13!
6-9
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andv25v iv i . We regard the internal energye and the pres-
surep to beO(v2). To make the energy density of the ele
tromagnetic fieldO(v2), we demand

Bi;O~v !, B0;O~v2!, C;O~v !, V;O~v !,

~6.14!

from Eqs.~2.8! and ~2.18!–~2.22!.
From Eqs.~2.20!–~2.22!, we find

BA5CrvA, ~6.15!

Bŵ5Cr~v ŵ2RV!, ~6.16!

where Bŵ
ªR B3 and v ŵ

ªR v3. From Eqs.~2.30!, ~5.34!
and ~2.24!, we also have

L5R v ŵ1CL5RS v ŵ2
CBŵ

4p
D;O~v !, ~6.17!

D215e1
p

r
1

v2

2
1f2RVv ŵ;O~v2!. ~6.18!

These results are to be compared with the Newtonian res
~note the correspondences between our notation and th
Ref. @36# as V↔G, C↔4p/F, L↔2H/F, and D
21↔J).

Let us obtain the Newtonian GS equation, which is
order O(v). First consider theJ3 and 2VJ0 terms in Eq.
~6.1!. In the Newtonian order, these terms may be evalua
on the flat background withN51 and M5R2. Then
2VJ0 is found to beO(v3), and the termJ3 is given by

J352
1

4pNM S N

M
HABC ,BD

uuA
52

1

4pR2
D* C,

~6.19!

where

D* 5R
]

]R

1

R

]

]R
1

]2

]Z2
. ~6.20!

Next consider theeAB(muS A) iB term in Eq.~6.1!. By using
Eqs.~5.19! and ~5.5!, we have

1

NMC
eAB~muS A! uuB

5
1

NMC S m

NMCr
C ,AD

uuB
HAB

5
1

4pR2 F 4p

C2r
D* C1

4p

C
¹S 1

Cr D •¹CG .

~6.21!

Finally consider the terms proportional tor in Eq. ~6.1!. To
the lowest order, from Eqs.~5.1!, ~5.7!, ~5.8! and~5.34!, we
have
12402
lts
of

f

d

Q5R2V;O~v !, ~6.22!

uh51;O~1!, ~6.23!

uj52
~L2R2V!

R2 S 4p

C2r
D S 12

4p

C2r
D 21

;O~v !, ~6.24!

E85~D211VL !8;O~v !, ~6.25!

L8;O~1!, ~6.26!

L52
Cr ujR

2

4p
;O~v !. ~6.27!

Then we can show

ruh@E82LCV82VL8#5r@~D21!81Rv ŵV8#.

~6.28!

From Eqs.~6.27! and ~6.17!, we may expressr uj as

r uj52
4pL

CR2
52

4p

CR2

L2R v ŵ

C
. ~6.29!

Using this expression, we can show

ruj@L82LC8#

52
1

CR2 S 4pL

C
2Rv ŵ

4p

C D
3

C

4p F S 4pL

C D 8
2LS 4p

C D 8
1CLS 4p

C D 8G
52

1

4pR2 S 4pL

C
2Rv ŵ

4p

C D
3F S 4pL

C D 8
2Rv ŵS 4p

C D 8G , ~6.30!

where the second equality follows from Eq.~6.17!. It is also
easy to show thatrQuj@E82L(CV)8#;O(v3).

Therefore from Eqs.~6.19!, ~6.21!, ~6.28! and ~6.30!, the
GS equation in the Newtonian limit is given by

S 12
4p

C2r
D D* C2

4p

C
¹S 1

Cr D •¹C

524prR2@~D21!81Rv ŵV8#

2S 4pL

C
2Rv ŵ

4p

C D F S 4pL

C D 8
2Rv ŵS 4p

C D 8G
14pR2rTS8. ~6.31!

This is equivalent to the Newtonian GS equation in R
@36#.
6-10
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VII. SUMMARY

We have derived the GS equation~6.1! in noncircular~the
most general! stationary axisymmetric spacetimes. The G
equation has been given in the covariant form projected o
the t5const andw5const 2-surfaceS tw . We have also de-
rived the wind equation~5.20! in noncircular spacetimes. W
have discussed various limits of the GS equation~no toroidal
field limit, no poloidal field limit, no magnetic field limit and
Newtonian limit!.

To obtain equilibrium configurations of magnetars, w
have to solve the GS equation~6.1!. As first glance, it looks
formidable to solve it. One possibility is to take a perturb
tive approach to solve the GS equation. Unless the magn
field is as strong as the maximum magnetic field allowed
the virial theorem;1018 G @10,11#, we may assume wea
magnetic fields compared with gravity. Then the magne
field may be treated as a small perturbation on an alrea
known nonmagnetized configuration. This approach is si
lar to that developed for slowly rotating stars@49,50#, in
which the perturbation parameter is the angular veloc
Work in this direction is in progress. The preliminary stu
indicates that the degree of noncircularity of the spacetim
a neutron star with massM* and radius R* , is
about (NS

mNSm)1/2;(M* /R* )vMF and (MS
mMSm)1/2

;0.1– 0.01(M* /R* )RM , wherevMF is the velocity of the
meridional flow,RM is the ratio of the magnetic energy t
the gravitational energy, and the length scale is normali
by the mass@32#.
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APPENDIX A: „2¿1…¿1 DECOMPOSITION OF THE
ENERGY-MOMENTUM TENSOR

The (211)11 decomposition of the energy-momentu
tensor is

Tmn5enmnn1 j ~nmmn1mmnn!1 j A~nmHA
n1HA

mnn!

1smmmn1sA~mmHA
n1HA

mmn!1sABHA
mHB

n ,

~A1!

wherenm andmm are the unit timelike and spacelike norma
to the 2-surfaceS tw , respectively, andA,B51,2. For the
electromagnetic field in an ideal MHD system, we have fro
Eqs. ~2.8! and ~2.9!, FmaF a

n 5(umun1gmn)B22BmBn and
FmnFmn52B2, and hence

1

4p S FmaFn
a2

1

4
gmnFabFabD

5
1

4p F S umun1
1

2
gmnDB22BmBnG . ~A2!
12402
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Then, using Eqs~5.16! and ~5.21! the components of the
energy-momentum tensor in Eq.~A1! are obtained as

e5Tmnnmnn5~r1re1p!~un!22p

1
1

4p F H ~un!22
1

2J B22~Bn!2G , ~A3!

j 52Tmnnmmn5~r1re1p!unum

1
1

4p
~unumB22BnBm!, ~A4!

j A52HA
mTmnnn5~r1re1p!unuS

A

1
1

4p
~B2unuS

A2BnBS
A!, ~A5!

s5Tmnmmmn5~r1re1p!~um!21p

1
1

4p F H ~um!21
1

2J B22~Bm!2G , ~A6!

sA5HA
mTmnmn5~r1re1p!umuS

A

1
1

4p
~B2umuS

A2BmBS
A!, ~A7!

sAB5HA
mHB

nTmn5~r1re1p!uS
AuS

B1pHAB

1
1

4p F S uS
AuS

B1
1

2
HABDB22BS

ABS
BG , ~A8!

whereun , um , uS
m , Bn , Bm , BS

m andB2 are given by Eqs.
~5.17!–~5.19! and ~5.22!–~5.25!, respectively.

APPENDIX B: SYMBOLS

Here, we summarize definitions of some of the symb
we use, which may not be commonly used, with the equa
numbers where they are defined or introduced.

Quantities conserved along each flow line:
C: Flux function,CªAmjm5A3,
F: Electric potential,FªAmhm5A0,
C: ‘‘Magnetic field strength’’ relative to the magnitude o

meridional flow, Eqs.~2.20!–~2.22!,
D: ‘‘Fluid energy’’ per unit mass, Eqs.~2.24! and ~2.27!,
E: ‘‘Energy’’ per unit mass, Eqs.~2.25! and ~2.29!,
L: ‘‘Angular momentum’’ per unit mass, Eqs.~2.26! and

~2.30!,
V: ‘‘Angular velocity’’ of the magnetic field line,V5

2dF/dC, Eq. ~2.19!,
S: Entropy per unit mass, Eqs.~2.15!.
Quantities associated with the metric:
hm: Killing vector associated with stationarity,hm

5(]/]t)m, Eq. ~4.8!,
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jm: Killing vector associated with axisymmetry,jm

5(]/]w)m, Eq. ~4.9!,
nm: Unit timelike 4-vector orthogonal tot5const hyper-

surfaceS t , Eqs.~4.1!,
hmn : 3-metric onS t , Eqs.~4.3!,
mm: Unit spacelike 4-vector orthogonal tot5const and

w5const hypersurfaceS tw , Eqs.~4.4!,
Hmn : 2-metric onS tw , Eq. ~4.6!,
Gh : Norm of hm1Vjm, Eq. ~5.9!,
Q: Quantity such thatjm1Qhm is orthogonal tohm

1Vjm, Eq. ~5.1!,
Gj : Norm of jm1Qhm, Eq. ~5.10!,
N: Lapse function,N52hmnm , Eqs.~4.1!,
Nm: Shift vector,Nm5Nnm2hm, Eq. ~4.8!,
NS

m : Projection ofNm onto S tw , Eq. ~4.8!,
M5mmjm, Eqs.~4.4!,
MS

m5Mmm2jm, Eq. ~4.9!.
Quantities associated with the fluid:
um: Fluid 4-velocity, Eqs.~2.10!,
r: Rest mass density, Eqs.~2.10!,
m: Enthalpy per unit mass, Eq.~2.14!,
e: Internal energy per unit mass, Eq.~2.10!,
a,

ak

y-

,

ck

12402
p: Pressure, Eq.~2.10!,
T: Temperature, Eq.~2.15!,
uh5(u02Qu3)/(12VQ), Eq. ~5.2!, or Eqs. ~5.3! and

~5.4!,
uj5(u32Vu0)/(12VQ), Eq. ~5.2!, or Eqs. ~5.3! and

~5.4!,
un52nmum, Eqs.~5.16! and ~5.17!,
um5mmum, Eqs.~5.16! and ~5.18!,
uS

m : Projection ofum onto S tw , Eqs.~5.16! and ~5.19!,

ũS
m : uA (A51,2) components ofum, Eq. ~5.2!,

ÑS : A component ofũS
m defined by Eq.~5.11!,

M̃S : A component ofũS
m defined by Eq.~5.12!.

Quantities associated with the electromagnetic field:
Em: Electric field in the fluid rest frame, Eq.~2.6!,
Bm: Magnetic field in the fluid rest frame, Eq.~2.7!,
Bn52nmBm5nmunemnabFab/2, Eq. ~5.21!,
Bm5mmBm5ummnemnabFab/2, Eq. ~5.21!,
BS

m : Projection ofBm onto S tw , Eq. ~5.21!,
Jm: Electromagnetic current 4-vector, Eq.~2.4!.
Others:
MAlf : Alfvén Mach number, Eq.~5.15!,
L: An auxiliary quantity defined by Eq.~3.11!.
.

,
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