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Grad-Shafranov equation in noncircular stationary axisymmetric spacetimes
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A formulation is developed for general relativistic ideal magnetohydrodynamics in stationary axisymmetric
spacetimes. We reduce basic equations to a single second-order partial differential equation, the so-called
Grad-ShafranoyGS) equation. Our formulation is most general in the sense that it is applicable even when a
stationary axisymmetric spacetime is noncircular, that is, even when it is impossible to foliate a spacetime with
two orthogonal families of two-surfaces. The GS equation for noncircular spacetimes is crucial for the study of
relativistic stars with a toroidal magnetic field or meridional flow, such as magnetars, since the existence of a
toroidal field or meridional flow violates the circularity of a spacetime. We also derive the wind equation in
noncircular spacetimes, and discuss various limits of the GS equation.
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[. INTRODUCTION cence[30] may wind up the frozen-in magnetic field to am-
plify the toroidal componeni8,9]. A toroidal magnetic field
While most neutron stars have magnetic fields ofmay be generated by the-Q) dynamo during the first few
~10"-10" G, studies of soft gamma-ray repeaters andseconds after the formation of a millisecond pulE&B]. In
anomalous x-ray pulsars suggest that a significant fractioaddition, convective motion may also exist in the interior of
(=10%) of neutron stars is born with larger magnetic fieldsa neutron staf31], which also violates the circularity of the
~10"-10" G [1-4]. The internal magnetic field of a new spacetime[23,24. Thus, we have to consider noncircular
born neutron star may be even largefl0'® G if it is gener-  spacetimes. The degree of noncircularity of the spacetime in
ated by the helical dynam@,5]. A magnetic field of nearly a neutron star with magel, and radiusk, , will be about
maximum strength allowed by the virial theorem10’ G~ ~(M, /R, )vyr and ~0.1-0.01M, /R, )Ry, Wherevye
may be achieved if the central engine of gamma-ray burstis the velocity of the meridional flow an®,, is the ratio of
are neutron starf6—9]. In such super-magnetized neutron the magnetic energy to the gravitational enefg$|.
stars, so-called magnetafg,4], the magnetic fields have The problem to obtain an equilibrium configuration of a
substantial effects on their internal stellar structure. Espemagnetar can be separated into two parts. The first part is the
cially the deformation due to the magnetic stress becomekinstein equations which determine the spacetime geometry
non-negligible[10-13. Since the deformation affects the under a given configuration of matter and electromagnetic
precession, oscillations and the gravitational wave emissiofields. The second part is the matter and electromagnetic field
of neutron star$11,12,14—1§ it is important to investigate equations in a given spacetime geometry. A-®)+ 1 for-
equilibrium configurations of magnetars. malism to solve the Einstein equations under the presence of
General relativistic effects are sizable in the interior of aa spatial Killing vector was developed by Mae@hal.
neutron star, so that any quantitative investigation of thg33,34] and by Sasaki35]. This formalism is similar to the
magnetars has to be based on general relativistic magnetohyell-known 3+1 formalism[44]. Later Gourgoulhon and
drodynamics(MHD) [17-20. Therefore, we have to solve Bonazzola[23] developed a similar but different (21)
the matter and electromagnetic field configurations in at+1 formalism which is more suited for stationary axisym-
curved spacetime, and have to take into account the electronetric spacetimes. So here we focus our attention on the
magnetic energy-momentum as a source of the gravitationalecond problem, i.e., to formulate the equations of motion of
field. So far several works have been devoted to equilibriummatter and electromagnetic fields in a curved spacetime.
configurations of a magnetized star in a stationary axisym- It is well known that the basic equations for a stationary
metric spacetimég10,13,21,22 However these works con- axisymmetric ideal MHD system can be reduced to a single
sider only poloidal magnetic fields for simplicity, since the second-order, nonlinear partial differential equation, the so-
existence of only a poloidal field is compatible with the cir- called Grad-Shafrano(GS equation, for a quantity called
cularity of the spacetim¢23,24]. In a circular spacetime, the flux function,¥. The GS equation was derived in the
there exists a family of two-surfaces everywhere orthogonalNewtonian cas€36], the Schwarzschild spacetime c&3é],
to the plane defined by the two Killing vectors associatedand the Kerr spacetime caf#8,39. The flux function¥ is
with stationarity »*=(d/dt)* and axisymmetry & such that it is constant over each surface generated by rotat-
=(adldp)* [25-27. Thus one may choose the coordinatesing the magnetic field linegor equivalently the flow lines
(x*)=(t,x1,x2,¢) such that the metric components;, about the axis of symmetry and the GS equation determines
Jo2, 931 andgs, are identically zero. As a consequence, thethe transfield equilibrium. Any physical quantities can be cal-
problem is simplified dramatically. culated from the solutiont of the GS equation. However,
However non-negligible toroidal magnetic fields arethe GS equation in noncircular spacetimes has never been
likely to exist in nature. Differential rotation generated dur- derived explicitly.
ing the gravitational collapge28,29 or in the binary coales- In this paper we derive the GS equation explicitly in non-
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circular (i.e., the most generglstationary axisymmetric The electric and magnetic fields in the fluid rest frame are
spacetimes. This is a first step toward the study of equilibdefined as
rium configurations of magnetars. An attempt to solve the

GS equation will be discussed in a subsequent paper. This E,.=F.u", (2.6)
paper is organized as follows. In Sec. Il, we briefly review

the conservation laws in stationary axisymmetric general B,L:_Eeﬂmgu = 2.7
relativistic ideal MHD system§l19,2Q that are used to char- 2 viaps

acterize the matter and electromagnetic field configurations. ] o } ] )
We neglect dissipative effects, which is a reasonable assumpnere €,.q5 is the Levi-Civita antisymmetric tensor with
tion because of the high conductivity and the low viscosity inegi,3= J—g. Equations(2.6) and (2.7) are inverted to give
neutron stars. In Sec. lll, we derive the GS equation in an

un-elucidated form. At this stage it is not clear if the GS Fluv=U,E,—U,E,+ €,,,5u"B”, (2.9
equa.t|on is a second-order dlf'ferentlal'equatmn for the ﬂuxwith E u“=B u*=0. In the ideal MHD, we assume the
function ¥. In Sec. IV, we briefly review the (21)+1 erfectﬂconduétivit <o that

formalism by Gourgoulhon and Bonazzdla3] to describe P Y.

the geometry of noncircular stationary axisymmetric space- E =F u'=0. (2.9
times in a transparent way. We do not, however, discuss the oo

Einstein equations but assume the geometry to be given. Ihe equations of motion for the fluid are given BY".,
Sec. V, we explicitly demonstrate that all physical quantities=0, whereT#" is the total energy-momentum tensor of the
except for the metric can be evaluated from the flux functiorfluid and electromagnetic fields

V. In Sec. VI, we write down the GS equation in the cova-

riant form projected onto the 2-surfad®, spanned byt TH=(p+petp)uu’+pg"”
=const andp = const. We also discuss various limits of the
i : ) . 1 1
GS equation. Finally, we summarize our result in Sec. VII. + . Frafpy — ZQ”VF”BFaﬁ . (2.10
ar

The energy-momentum tensor decomposed in the Xp
+1 form is given in Appendix A, and notation and symbols
are summarized in Appendix B.

We use the unitsc=G=kg=1. Greek_ i_ndi_ces uX(p+pe) ,+(p+petp)ut.,=0 (2.11)
(m,v,,B,---) run from 0 to 3, small Latin indices
(i,j,k,---) from 1 to 3, and capital Latin indicesA(B,  and the Euler equations
C,---) from 1 to 2, wherexX°=t andx®= ¢. The signature
of the 4-metric is &,+,+,+).

Then we obtain the conservation of the fluid energy

(ptpetplus u’+(g*’+u“u”)p,—F*J,=0,

(2.12
Il. BASIC EQUATIONS AND CONSERVATION LAWS where € and p are the internal energy per unit mass and
A. Basic equations for general relativistic pressure, respectively. Eliminating’. , from Egs.(2.1) and
magnetohydrodynamics (21D gives
The basic equations governing a general relativistic ideal ut(p+pe) ,=uup ,, (2.13
MHD system are as followgl7,18. Baryons are conserved,
where
(PUM);#:U"LP,M"’PU'M;M:Q (21) p
_ - . pu=1l+e+— (2.149
wherep is the rest mass densitye., the baryon mass times P

the baryon number densjtand u* is the fluid 4-velocity is the enthalpy per unit mass. Assuming local thermody-

with namic equilibrium, the first law of thermodynamics is given
u,ut=—1. 22 by

The electromagnetic field is governed by the Maxwell equa- de=—pd 1) +TdS (2.15
tions p

Fluva=0, (2.3 ~whereSandT are the entropy per unit mass and the tem-

perature. Then Eq$2.14) and(2.15 imply
Frv =4mJH, (2.4
; ~dp

whereF,,, andJ* are the field strength tensor and the elec- du= 7 +Tds (2.18
tric current 4-vector, respectively. Equati@3) implies the
existence of the vector potentiél,,, Finally we supply the equation of state

F;LV:AV,,U,_A/.L,V- (25) p:p(pvs) (217)
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B. Conservation laws in a stationary axisymmetric spacetime  andB2:= B,B*. Equationg2.24), (2.25 and(2.26 are first

Here we recapitulate the conservation laws derived fronintegrals of the equations of motidrt"”;, =0 alongB,,, 7,
the basic equations in the previous subsection in a sta’[iona@1d &, respectively. In particular, Eq2.25 is a general-
axisymmetric spacetime. There exists two Killing vectors asi2€d Bernouilli's equation. These conserved quantities are
sociated with stationarity and axisymmetry, which we denotd0t mutually independent but there is a relation among them
by »* and &*, respectively. The Lie derivatives of all physi- [19],
cal quantities along the Killing vectors must vanish, e.g., e
Lut=¢guk., —uvér. ,=0. We take »*=(d/at)* and é* D=E-QL. 2.27
= (dlag)* so thatxI=t and x*=¢ are the time and azi- Together with Eqs(2.24—(2.26), this implies that
muthal coordinates associated with the Killing vectayrs
and &*, respectively. Thus all physical quantities are inde-
pendent oft and ¢.

Bekenstein and Orol9,20 showed that a stationary axi-
symmetric system has several conserved quantities alondith Eq. (2.28, we can rewriteE(¥) and L(¥) in Egs.
each flow line. This is a general relativistic generalization of(2.25 and(2.26) as
Ferraro’s integrability conditiof40—42. By exploiting the 1
gauge freedom to makeéA, ,n"=A, ,=0 and A, & _E_ = _
=A,3=0, we can show that the lanagnetic potgnﬂhl E= ptlo— 77 CO(UoBs ~ UsBo), (229
=A,E"=A; as well as the electric potentiab:=A ,7*
=A, are constant along each flow line, i.@f(§"A,) ,
=u*(n"A,) =0 [43]. Henceforth we label the flow line by
¥, which we refer to as the flux function as in the non-
relativistic casg36]. The ¥ =const surfaces are called the Finally, from Egs.(2.13—(2.19 one finds that the entropy
flux surfaces, which are generated by rotating the magnetifer unit massS is conserved along each flow lina/S ,

BZ
—+C(Bo+ 0B =0, (2.29

1
L:/.LU3+ EC(U()B:;_U:;B()). (23@

field lines (or the flow lineg about the axis of symmetry. ~ =0, as a result of the perfect fluid form of the energy-
According to Bekenstein and Or¢f9,2d, one can show Momentum tensor. For a stationary axisymmetric spacetime,
that this implies thatSis a function of¥, S=S(W¥).
In summary, for a given flux functiod, there exists five
Fos=0, (218  conserved quantitiesE(¥), L(¥), Q(¥), C(¥) and
S(W¥). Except for S(¥), there are no perfectly relevant
Foa=QFas, (219  physical interpretations of these quantities. Nevertheless, by
considering several limiting cases, we may associate them
Fa= -V ,=CyV-gpu?, (2.20  with terms that describe their qualitative nature. We may call
E(W) the total energy per unit mads(V) the total angular
Fs=W ,=C\-gpu’, (22)  momentum per unit mas$)(¥) the angular velocity, and
C(W) the magnetic field strength relative to the magnitude
F12=C\—gp(u-Quo), (2.22  of meridional flow. Since these conserved quantities are es-

~sentially the first integrals of the equations of motion, speci-
whereQ(¥) andC() are conserved along each flow line fication of these functions characterizes the configuration of
and hence are functions of the flux functiin The above  tne fluid flow and the electromagnetic field. As we will see in
e_quat|0ns are effectively first mtegrals of the Maxwell_ equa-gec. V, all physical quantities are completely determined
tions(2.3). It may be useful to rewrite the above equations asynce these conserved quantities are given as functions of the
_ flux function¥, provided that the spatial configuration ®f
B#==Cpl(Uuo T Qug)u+ 7"+ 087, (2.23 is known. Therefore the problem reduces to solving an equa-
tion for the flux function that determines the spatial configu-

Note thatQ) (W) is theW derivative of the electric potential, _ . i
ration of ¥, that is, the GS equation.

Q(¥)=-dd/dV¥, and coincides with the angular velocity
de/dt=u®/u®=Q if there is no toroidal fieldF,;,=0 and
C+#0, from Eq. (2.22. In addition, one can show that lll. GRAD-SHAFRANOV EQUATION IN THE
E(W¥), L(¥) andD(W) are also conserved along each flow COMPONENT EXPRESSION

line [19], where The GS equation is given by the transfield component of

CPh— the Euler equation€.12. In this section, we consider thé
D= (Ut Qus), 2.29 derivative of the flux function in the Euler equations, and

B2 B factorize the resulting equation to derive the GS equation.
—E=| u+ —|up+C(up+ ng)_O, (2.25  We express equations in terms of their explicit coordinate
4mp am components, since it is the most straightforward way to in-
B? B corporate the symmetry, e.g.;-() o=(---) 3=0. Accord-
_ 3 ingly, the GS equation is given in the component expression.
L=| u+-—|us+C(up+Quz)—, 2.2 ; X
KT 4mp Uz + C(uot Qua)7 (2.2 A covariant form of the GS equation based on+H®)+1
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formalism, which may be useful for numerical calculations,
will be given in Sec. VI.

Using EQ.(2.16), the Euler equation&.12 can be writ- 4my—g
ten as

Fio \/__gFlZ),l

1
== 4_CP(U3_QUO)(U053_ u3Bo) 1
ppu,. U +pu ,+pu,u’u ,—F,  3"=pTS,=0, 77

(3.2 1
. . == 4—PUO(UOB3—U350)(CQ)"I’,1
where we have used that'S ,=0. First, let us consider the .
x! component of the Euler equatiof&1). The first term can 1
be expressed as + Epu3(u053—ugBo)C'\I{1,
Pﬂul;MU”:PM(Ulul;l‘F u?uy.p) o 1
—pu”| ——CQ(ugB3z—u3By)
0 3 p 4 0P3™ Usbo
—pu(u-Tfou, +u’T3u,), (3.2 m 1
. . , : 1
wherel™? , is the Christoffel symbol. With E¢2.2), the third —pu® 4—C(UOB3—U3BO)} , (3.6
term in Eqg.(3.1) can be transformed as m 1
pULU*p = pUsutu 1+ pusUPu 5 where primes denote differentiation with respectdto Fi-

nally, the | rm in Eq(3.1) giv
= — pa a1+ Uugu®+ uu®+ uzu®) + pus U ally, the last te a3.1) gives

= pu?(Uyp = Upm 1) = p 1~ pU®( o) 1 —pTS;=—pTSV ;. (3.7
—pu3(pug) 1+ puu®(Ue. +Ihu,)

Combining Egs(3.4—(3.7), we have
+puud(uz+T4u,)

=pUP[(pUy) 2= (wUz) 11— ppe 1= pu®(pUo) 1 { __1 [(4ey) 2 (j21y) 1]~ (3P~ Q)
—pu3(,u¢u3),1— PM(U1U1;1+ U2U1;2) C\/—_g
+ U, + 03T, 33 o PU(UgB— UsBo)(CL)
where we have used the faaw#w:o. Thus pu'tting Egs. 1
(3.2 and(3.3) together, and using E¢2.20, we find n EPU3(U053—U350)C'—pTS'}‘I’,l

p(puUy U+t uuéu )

=pU?[ (peUy) 2= (pUp).1]— pu(pup) 1= pu(pus) 1, —pu’| o= %CQ(%BB_%BO)} .
1 0 1 |
= G ()W i) ot Muﬁﬂquogg_uggo)} -0 o
—pu¥(pug) ;. (3.9

Recalling the expressions f& and L given by Eqs.(2.29
Next, the fourth term in Eq(3.1) can be transformed as and (2.30, respectively, we see that the last two terms are
just their derivatives. Therefore, we can factor out #te
1 derivative of the flux function in Eq(3.8) to obtain

477\/—_gF1A( \/__gFAB),B

_FluJ”: - |:10]0_ F13~]3_

1
1 [— = [(Mul),z_(ﬂuz),ﬂ_(Js_QJO)
=P gl (=R, CV9

1
(3.5 +pu’ E'— E(UoBs_UgBo)(CQ)’}
where the second line follows from Eg®.19 and (2.20. 1
From Egs. (2.8) and (2.9, we have F¥?=—(u,B; -pu® L'——W(UoBs—UsBo)C' —pTS ¥ ,=0.
—uzBg)/V—g. Therefore, together with Eq(2.22 that
givesF,, the last term in Eq(3.5) is expressed as (3.9

124026-4



GRAD-SHAFRANOV EQUATION IN NONCIRCULAR . .. PHYSICAL REVIEW D67, 124026 (2003

The same analysis applies to tkecomponent of Eq(3.1),  where the vertical stroke denotes the covariant derivative
and one finds the above equatith9) with the replacement associated with the 3-metrit,, . The coefficienM is deter-
of ¥, by ¥ ,. Therefore, by assuming ,#0 (A=1,2), mined by

the GS equation is given by

1 m, m#=1. (4.5
3B-0J%+ [(puq) o= (mUy) 4] g
CV-g ' '
—pU[E'—A(CQ)']+pu’[L'—AC’] The induced 2-metric ol is given by
+pTS =0, (3.10
H.,=h,—mm,=g,,+n,n,—mm,. (4.6)

where, for convenience, we have introduced an auxiliary
quantity A defined by

1 The covariant derivative associated with the 2-meifig, is
A=—(upgB3z—u3By). (3.11 denoted by a double vertical stroke There is a relation
4 between the determinants as

At this stage, however, it is not clear if E€3.10 gives a

second-order, nonlinear partial differential equation for the —_ _

flux function ¥, since the dependence on the flux function is 9= Nvh=NMH.

unknown. In Sec. V, we explicitly demonstrate that all the
hysical quantities appearing in the above equation can be L L

zxgresseg in terms Op;,p and i?sxA derivatives C:lmd in Sec. Any 4-vector can be decomposed into its prOjectlo_n onto

VI we derive the GS equation in the covariant form and weaw bétioﬁgn;feoggggﬁ]argggldg% and that tam,, . The Kill-

make it explicit that it is indeed a second-order, non-linea’"¥ P

differential equation forV.

(4.7)

p*=Nn*—N#*=Nn*—MN*m*—N¢, (4.9
IV. (2+1)+1 DECOMPOSITION

In this section, we briefly review the (21)+1 formal-
ism of the Einstein equations for stationary axisymmetric Er=Mm*—-M§, 4.9
spacetimes developed by Gourgoulhon and BonaZZ8ha
in order to describe our metric in a covariant fashion. Note
that this formalism is different from the (21)+1 formal-  where the shift vectoN* is (minug the projection ofz*
ism by Maeda, Sasaki, Nakamura, and Miyaj83,34 and  ontoX,, M{ is (minus the projection of¢* onto X, , and
Sasaki[35], which is suitable to the axisymmetric gravita- N4 is the projection ofN* onto 3. For our choice of
tional collapse. Here we adopt the formalism by Gourgoul-coordinates, i.e., fox°=t and x3= ¢, the component ex-
hon and Bonazzola because it is more convenient for &ressions fon”, n,, m* andm, are
spacetime which is not only axisymmetric but also station- o a

ary.
Let n* be the unit timelike 4-vector orthogonal to the n,=(—N,0,0,0, (4.10
=const hypersurfacg, and oriented in the direction of in- g
creasingt,
1 N! N2 N¢
n,=—Nt,. 4.9 w=|
u " n (N’N'N’N)’ (4.1
The lapse functioN is determined by the requirement
nen¥=-1. (4.2 m,=(—MN?,0,0M), (4.12
The 3-metric induced byg,,, on X is given by
1 2
h V:g V+n nV' (43) M — & & i
© u © m O’M’M’M . (4.13
Similarly, letm,, be the unit spacelike 4-vector orthogonal to
the t=const andp = const 2-surfac&.,, and oriented in the
direction of increasingp, Note thatN&= (0N ,NZ,0) andNA=NA+N¢MA.
, The explicit component expressions of*, g,,, h*’,
m,=Mh’¢ ,=Mg|,, (4.4 andh,, are given by
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k 2
(gm gm) NN (4.14 o E(7TOE) oyt Ogx (5.1)
Gio i - —N; hij ' ' 7, (" + Q&) Joot Qo3
_ Then we can decompose the fluid 4-velocity in the coordi-
1 N nate bases as
. N2 N2 ~
(géo o”) _ w15 W= U, (7 + Q) UL+ O +TE, (5.2
g% g i iNi ’ ' ~
_N NN where 7+ Q.¢4=(1,0,00), &+ 6 n*=(©,0,0,1) andu’
h )
N? N2 =(0,u%,u?,0) in the component expressions, and hence
uén,=u¢m,=0 from Egs.(4.10 and(4.12, and
hag Nas Has Msa o
( ): (4.16 u’=u,+0u, (5.3
Noe Naal | —Myg MZ+MyaME
w=ug+Qu,. (5.4
HAB MQME M_§ The decomposition in Eq(5.2) is not conforming to the
HAB  pAS M2 M2 spirit of the (2+1)+ 1 formalism but makes it easy to obtain
( ) _ (4.17) the coefficients,, andu, as shown below.
h%®  h% Mg 1 From Egs.(2.20 and(2.21), the termﬁg is given by
M2 M2 -
U= mcy € Y (5.5
where i,j,k=1,2,3 andA,B=1,2. We can express the
4-metricg,,, in terms ofN, N¢, N’g, M, M§ andH g as where the antisymmetric tenset” is defined by
g,,0x“dx"=—[N?— M?(N¥)2— Ny JN&]dt? €= et fn,mg. 56
—2(M2N‘P—N§\MEA)dtdgp With Egs.(2.23—(2.26), (4.9 and(4.9), the coefficientss,,

N dtd— 2M- . dody® andu, are expressed as
Nz A — <Mz adedX
E-QL Ny D Ny

+Hpgd X dXB+ (M2+ My sM%)dg?, u = e _ 2 (5.7)

(4.18
71 ~
L-OE 4 4 M
where the function$\, N¢, N&, M, M§ and H,g depend ugz—( S ) 77,4: - 77/: + G—E (5.8
only on the coordinatext,x?). Since we only assume that e\ G,C% G,C% ¢

physical quantities are independentd=t andx®= ¢, the
metricg,,, in Eq. (4.18 has some freedom in the choice of
coordinates. We will leave the coordinate freedom unspeci—G __ +0 By ER) = — 200t 02
fied. In Sec. VI the covariant GS equation will be given asan 7 (7,4 28,)(7 §9=" (900 Gos ggg’)é
equation projected ontl,,, . (5.9

whereG, andG, are defined by

Gs=(£,+07,)(E+ 0 n*) =gzt 20 gost O%gq,
V. PHYSICAL QUANTITIES FROM FLUX FUNCTION W (5.10

Provided that the metrig,, is given and the conserved ansz and '\7'2 are defined by
quantitiese(W¥), L(W¥), Q(¥), C(V) andS(V) are given

as functions of¥", all the physical quantities can be evalu- Ns=U¢(Ns ,+QMy ), (5.11)
ated once thé¢effectively 2-dimensionalconfiguration of the

flux functhn v is known (se_e_ Ref.[45] for the qlrcular '\Nﬂz:ag(Mz,ﬁNg - (5.12
casg. In this section, we explicitly demonstrate this fact for

the most general case of noncircular spacetimes. Note that, using Eq(5.5), Nz andl\7|2 are expressed as

A. Fluid 4-velocity u*

Ny = BV 5(Ns o+ QM5 ),  (5.13
First let us consider the fluid 4-velocity". It is useful to > NMCp IBLE A A
prepare two vectorg*+Q&* and é#+ 0 »* constructed
from two Killing vectors »* and &#, and to make them or- ~ AB
. = + . .
thogonal to each otherg*+ Q¢#)(&,+© 7,) =0 by taking Ms=m Cp€ Vg(Ms A+ ONs ») (5.19
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Note also that

M2 T AT i o
= = u Usu —ZU -,

Alf Gnczp Bz [3ar3 SUS A VLS, G7]
(5.15

is the square of the effective AlfmeMach numberM xs
[where the second equality follows from E&.25 below.
At the Alfven point M ,;=1, the numeratot — ® E should
vanish to keep the velocity, finite [46].

Thus, from Egs.(5.2), (5.7), (5.8 and (5.5), given the
metric g,, and the conserved functiong(¥), L(V),
Q(W¥), C(¥) andS(W), the fluid 4-velocityu* can be ob-
tained from the flux functionW and its first derivatived 5
if the densityp and the enthalpy. are additionally known.
The expression fop will be given in the next subsection.
The enthalpyu is then determined as a function pfand &
as will be discussed also in the next subsection.

Once the components af* are known, the (221)+1

decomposition of the fluid 4-velocity is easily performed.

With the help of Eqs(5.2), (4.8) and(4.9), we have

u#=u,n*+u,m+uf, (5.16

where
up,=N(u,+0u,), (5.17
Un=M[(Q—=N®)u,+(1-N*®)u,], (5.18
ué=ué—(u,+Ou)Né—(u,+Qu,)M¥¢.  (5.19

B. Density p and other thermodynamical quantities
p,e, pand T

The pressur@, the internal energy, the enthalpyw and
the temperaturel are functions of the densityp and the
entropySfrom Egs.(2.14), (2.15 and(2.17). Hence, givers
as a function of’, the only remaining quantity to be known
is the densityp.

The densityp is determined by the normalization of
the 4-velocCityu,,u= — G ,u’+ GuZ+Us AUS +2u,U¢( 7,
+QE,)+2uué(£,+07,)=—1, that s,

(E—QL)2+(477)2(L—®E)2 bap |72
_ . _
G, u? G,G2C*p? G,C%
HABW aW g Ny?  My2
T, S e T (5.20
N2M2C2p2 G” G§

This equation is what is called the wind equati@ee Ref.
[45] for the circular case Note thatp contains the first-order
derivativesW , through this equation.

C. Magnetic field B*

The magnetic field is also calculated from the flux func-

tion. With Egs.(2.23, (5.16), (4.89) and (4.9), the (2+1)
+1 decomposition of the magnetic field is given by
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B#=B,n*+B,m“+B¥, (5.21)
where
Bn,=CpN[(G,u,+Ns)(u,+0Ou,)—1], (5.22
Bm=CpM[(G,u,+Ns){(Q—N*)u,
+(1-N¢@)u+N*—Q], (5.23
B¢=Cp[(G,u,+Ns)ué+NE+ QML) (5.29

The magnetic strength is given by
B?=B*B,=C?%?(G,u,+N5)?~G,]
=C?%p?[G,(GauZ+Us U —2uMy) +NZ].
(5.29

The (2+1)+1 decomposition of the energy-momentum ten-
sor is given in Appendix A.

D. Electric current J*

Let us consider the following components of the electric
current:

0

(NMHF) = (NMF) 4,

(5.26

1
~ 4xNMVH 47NM

1
B g WMV 4=
T

(NMF**) 5.
(5.27)

The field strength tensor components appearing in the above
equations are also expressed in terms of the flux function
as

47NM

FOA: (gOOgAB_ gOBgAO)Q\I’,B‘F (QOBgA3_ gO3gAB)\I,'B
+(g%g"—g%g"M)Fy,

1 AnaB
:—m HAB‘FZ—ZE Q\P,B
ApnB
o 2 o MM
N2 M2 | °
NS+ NeME MENEMSegc |Fyyp
N NZM2 | A

(5.28
F3A= (g%%gRB— g3BgAY) O W o+ (g%Bgh3— g3 )W 4

+(g¥gM? - g3grhFy,

A\, B
= NwHAB_w

NE Qv g

124026-7



K. IOKA AND M. SASAKI

2 AnB
I HAB_NEN2
M2 | N NEYE
1 N¢\ 2 N¢NE
B 3 A
" { M—(W) Vi ]
NENEMEeac\F 1y
YRR N 529

whereF , is expressed as

Fi_

JH

CNMp(u®-Qu°)=CNMpu,(1-0Q0).
(5.30

In the above, the first equality follows from E®.22), and
the second from Eqg5.3) and (5.4). Thus,J° and J® are
expressed in terms oF and its first and second derivatives.

E. Auxiliary quantity A

We also need to evaluate the auxiliary quantitydefined
by Eq.(3.1)), that is,

1
A= E(UoB3_U3Bo). (53])

From the expression @* given by Eq.(2.23), we have

1
A=- ECP[Uo(gos"' 933) — U3(9oot 2go3) |-
(5.32

Using the component expressionswf given by Eq.(5.2),
this is rewritten as

1 ~
A== 2—Cplug(g6s— Goodzd) (1~ 2O) + U 7,,(gos

- 1
+0033) —UEE,(doot Q003 1= — ECP[Ug(gga

— Qo029 (1~ Q20) +Ms (oot Qgsa) ], (5.33

where the second line follows from Eqgt.9), (4.9), (5.1
and(5.12. The above form is sufficient fok to be obtained
from the flux function, but it can be further simplified if we
use Egs(5.1) and(5.10. From these equations, we find

(1-Q0)(gods3— 95) = Ge(9oot 2doa)-

Therefore, we obtain

1 1 -
A= E(UoBs_ UgBo) = ECP(Ggug_ Ms)(doot 2d03)-
(5.39

VI. GRAD-SHAFRANOV EQUATION
IN THE COVARIANT FORM

Now we are ready to show that the GS equati®ii0 is
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tion ¥. At the same time, following the spirit of the (2
+1)+1 formalism, we express the GS equation in the co-
variant form with respect to the geometry f,, .

The covariant expression for the GS equation is readily
obtained as

3P-03%+

1
AB
NMGC € (mUsa)|s

—p(u,+Ou,)[E'—A(CQ)']
+p(Ug+Qu,)[L'—AC']+pTS =0, (6.0

where we have replaced—g, u® andu?® in the original GS
equation(3.10 by their (2+1)+1 type expression$4.7),
(5.3 and(5.4), respectively, and, as before, a double vertical
stroke|| denotes the covariant differentiation with respect to
the 2-metricH 5.

In the previous section, we have seen that u,, us and
O (Sec. VA, p, x andT (Sec. V B, J° andJ® (Sec. V D,
and A (Sec. V B are all expressed in terms & and its
derivatives, given the conserved functiog§W¥), L(V),
Q(¥), C(¥) andS(V), and the metrig,,, . In particular,
we have seen thadf andJ® contain the second-order deriva-
tives of ¥, while p (henceu) as well asus 5 contain the
first-order derivatives of. Thus, the GS equatio6.1) is a
second-order, non-linear differential equation by where
the first three terms contain the second-order derivatives.

A. No toroidal field limit

From Egs.(2.20—(2.22), we find that the toroidal field
and the meridional flow vanish ifC|—. Here note that
wB-Qul=u (1-Q0)=C 2-0 in Eq. (2.22 from Egs.
(5.3, (5.4) and (5.8 (and henced) coincides with the angu-
lar velocity de/dt=u/u®=Q). In the absence of the toroi-
dal field and the meridional flow, a spacetime is circular. The
circular limit is expressed d23|

N£—0, M£{—0. (6.2

Therefore, in thelC|— limit, the GS equation(6.1) re-
duces to

3P-03°-pu,[E'—QL'—~CAQ']+pTS =0, (6.3
where the density is determined byE{QL)%/G,u?
—C 12—
=G,u;=1 from Eq.(5.20, and

ca=— 9 0 3)(1 4 |

G 9o0™ 3290 G C%

7 7

(6.9

Here we regardC|— < as the limit of a sequence of models
with [C|<e. The last tern1—(4mu)/(G,C?p)] ' in Eq.
(6.4) can be neglected if the densityis finite. However, in
the case when there is a surface with 0 such as a star and
the flux function¥ is not constant on that surface, the last
term [1—(4mu)/(G,C?)] * diverges near the surface.
Unless one can fine-tune the telm-®E so that its zero

indeed a second-order differential equation for the flux func{oint cancels this divergence, which seems unlikely to be

124026-8
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possible, we should demand the rigid rotat@@n=0 in Eq.
(6.3). This is consistent with Bonazzokt al. [10,21]. Note
that if the flux functionW is constant on the=0 surface,
we may findC that satisfie<C?p— o on the surface.

B. No poloidal field limit

The poloidal field vanishes if we leb — 5W and take a
limit 6—0, as we can see from Eq&.20 and (2.21). In

this process we relabel the flow lines ¥y and replace the
conserved quantities &—E(V), L—L(W¥V), Q—Q(WV),
C—C(¥) andS—S(W¥). In the limit 5—0, the meridional

flow vanishe§1§—>0 from Eq.(5.5). Then we can show that

the spacetime is circular as expressed in B2 [24].
Therefore, in thed—0 limit, the GS equatiori6.1) reduces
to

(u,+Ouy[E'-A(CQ)"]

—(Ug+Qu)[L'—AC']-TS' =0, (6.5
where primes now denote differentiation with respectto
This is an algebraic equation. Here we regdtd-0 as the
limit of a sequence of models witlk #0. If ¥ is exactly
zero, the transfield components of the Euler equati@ri?)
are satisfied regardless of the GS equatisee Sec. Il

Therefore there may exist “isolated” solutions which cannot

be obtained by the limit discussed here.

C. No magnetic field limit

There are two limits for configurations with no magnetic
field. The first way to obtain such configurations is to let

V5% and C—C/38, and take the limits,—0 and 5,
—0, as we can see from Eq2.20 — (2.22. Here note that
- Quo=ug1-00)xC -0 in Eq. (2.22 from Egs.

PHYSICAL REVIEW D67, 124026 (2003

Inu—Inu,—In(E-QL)=0. (6.8

From the definition ofL, Eq. (2.30, we haveCA—L=
— pmuz=—ugu,(E—QL). Then for an isentropic stas’
=0, the GS equation in Ed6.6) is written as
In(E—QL)],

usu (6.9

. d
7~aal”
where we have used the fact thatin(E—(L) can be re-
garded as a function &, sinceE, L and() are functions of
V¥ only. Equation(6.9) is the well-known integrability con-
dition for a rotating fluid[21,47. Note that if we regard
|C|—< as the limit of a sequence of models with| <<,
we should demand the rigid rotatidh’ =0, as discussed in
Sec. VIA.

The second way to obtain configurations with no mag-

netic field is to let¥ — & and C— 5C and take the limit
6—0. In this process we relabel the flow lines ¥ and
replace the conserved quantities Bs>E(V), L—L(V),

Q—Q(¥), C—C(¥) andS—S(P). As we can see from
Egs.(2.20 and(2.21), there exists a meridional flow in this
case. The toroidal field vanishes since in E8.22 u®
-0u’=u (1-00) and u;—(L—OE)/Gu+Ms/G; in
the limit 6—0, from Egs.(5.3), (5.4) and (5.8). The GS
equation in Eq(6.1) reduces to

—pu,(E'— QL") +pugL’'—OE’)
1

+ =
NMC

e"B(uus p)g+pTS =0, (6.10
where primes denote differentiation with respecl\i{o One
can introduce a yet new flux functioft by d¥ =d¥/C to
absorb the functiorC into the definition of the new flux

(5.3), (5.4 and(5.8) (and hence coincides with the angu-  fynctionW. The resulting equation may be directly obtained

the flow lines byW and replace the conserved quantities as

E-EW), L-L(¥), 0-(¥), c—C(¥) and S
—S(W). In the limit 5,—0 and§,— 0, the meridional flow

vanishesu§—0 from Egs.(2.20 and (2.21), so that the
spacetime becomes circular as in E§.2). Therefore, the
GS equation6.1) reduces to

u,[(E-QL)'—Q'(CA-L)]-TS'=0, (6.6

where primes denote differentiation with respectito CA

is given by Eq.6.4), and the density is determined from Eq.

(5.20 as

(E-QL)? )
————=G,u’=1

(6.7)
G,u

Let us see the relation between this limi¥ -0 and|C|
—o0) and the case of a rotating s{&1,47. From Eq.(6.7)
we have the Bernouilli's equation for a rotating fluid as

D. Newtonian limit

In the Newtonian limit, all physical quantities are ex-
panded in power series of the typical fluid velodiy8]. The
metric reduces to

0,,dx“dx’= — (1+2¢)dt>+ (1-2¢)
X (dZ?+dR?+ R%d¢?), (6.11)

where the Newtonian potentidl is of orderO(v?), and we
adopt the cylindrical coordinatet,Z,R,¢). We denote the
3-dimensional velocity by

(6.12
where

(6.13

124026-9
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andv?=v'v;. We regard the internal energyand the pres-

surep to be O(v?). To make the energy density of the elec-

tromagnetic fieldO(v?), we demand

B'~0O(v), B°~0(v?, ¥~O(v), Q~O(v),
(6.19
from Eqgs.(2.8) and(2.18—(2.22).
From Egs.(2.20—(2.22), we find
BA=Cpv”, (6.15
B¢=Cp(v¢—RQ), (6.1

where B#:=R B® and v®:=Rv3. From Egs.(2.30, (5.39
and(2.24), we also have

(2

~ -~ C
LZRU“’—FCAZR(U"’—
4

)~O(v), (6.17

2
v ~
D—1=e+g+?+¢—RQv‘P~O(v2). (6.18

These results are to be compared with the Newtonian results
(note the correspondences between our notation and that of

Ref. [36] as Q«—G, C—4w/F, L~ —H/F,
—1<7).

and D

Let us obtain the Newtonian GS equation, which is of

order O(v). First consider thel® and —QJ° terms in Eq.

PHYSICAL REVIEW D 67, 124026 (2003

0=R20~0(v), (6.22
u,=1~0(1), (6.23
(L—R2Q) [ 4 4\t
I e 1—C—2p) ~0(v), (6.24
E'=(D-1+0L)' ~O(v), (6.25
L'~0(1), (6.26
= Cp;:fRz ~0(v). 6.27)

Then we can show

pu,[E'—~ACQ'—QL']=p[(D—1)'+Rv®Q'].
(6.28
From EQs.(6.27) and(6.17), we may expresp U, as

(6.1). In the Newtonian order, these terms may be evaluated

on the flat background wittN=1 and M=R?. Then
—0J%is found to beO(v?), and the termi® is given by

1 (N
3_ _ _ 4AB - _ *
477NM(MH \I"B)HA et
(6.19
where
A*=R 717 + i 6.2
~ ORRIR  gz2 (6.20

Next consider the"®(uus A)|g term in Eq.(6.1). By using
Egs.(5.19 and(5.5), we have

1
AB
NMCE (WUsa)s

1 M
=— | ————
NMC|NMCp

(6.21)

Finally consider the terms proportional goin Eq. (6.1). To
the lowest order, from Eq$5.1), (5.7), (5.8) and(5.34), we
have

4mA 47 L—Rp* 629
Ugs=— = — .
PP""crR crR C
Using this expression, we can show
pufL'—AC’]
_ 1 [4wL R ;0477
crl\c R
C|/4mL\’ L 4\’ CA 4\’
“a=\ ) THe) "M
1 (477L A4’7T)
— N, U(P_
a7R?\ C c
4L ! R :P 4 ! 6.3
< ”el ) (630

where the second equality follows from E§.17). It is also
easy to show thgg®@uE'—A(CQ)']~0(v?).

Therefore from Eqgs(6.19), (6.21), (6.28 and(6.30), the
GS equation in the Newtonian limit is given by

1 4ar A* P 471'V
C?%p c

! vy
Cp.

= —4mpRY(D—1)' +Rv*Q’]

4L R ;p47r 4L\’ R p 4\’
e Wel\lc] TTUlT
+47R?pTS. (6.3

This is equivalent to the Newtonian GS equation in Ref.

[36].

124026-10
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VIl. SUMMARY Then, using Eqg5.16 and (5.21) the components of the

We have derived the GS equatith1) in noncircular(the energy-momentum tensor in EGi1) are obtained as

most general stationary axisymmetric spacetimes. The GS
equation has been given in the covariant form projected onto e=T*"n,n,=(p+petp)(Uy)>—p
the t=const andp=const 2-surfac&,. We have also de-
rived the wind equatiof(5.20 in noncircular spacetimes. We
have discussed various limits of the GS equatiomtoroidal
field limit, no poloidal field limit, no magnetic field limit and
Newtoman_llmli). o _ _ j=—T#"n,m,=(p+pe+p)upp
To obtain equilibrium configurations of magnetars, we
have to solve the GS equati@8.1). As first glance, it looks
formidable to solve it. One possibility is to take a perturba-
tive approach to solve the GS equation. Unless the magnetic
field is as strong as the maximum magnetic field allowed by
the virial theorem~10'® G [10,11], we may assume weak
magnetic fields compared with gravity. Then the magnetic 1
field may be treated as a small perturbation on an already- + 4—(Bzunu§—BnB’§), (A5)
known nonmagnetized configuration. This approach is simi- m
lar to that developed for slowly rotating star49,50, in
which the perturbation parameter is the angular velocity. s=T*"m,m,=(p+pe+p)(uy)?+p
Work in this direction is in progress. The preliminary study

1
+E [(un)z_ E] Bz_(Bn)z}v (A3)

1
+E(UnUmBZ—Ban), (A4)

jA=—HA,T#"n,=(p+pe+p)uul

indicates that the degree of noncircularity of the spacetime in 1 2 142 2
> . ) +— + -1B“—
a neutron star with massM, and radius R,, is 4o (Um) 2 B~ (Bm)”, (A6)
about  (N¢Ny,)'*~(M, /R,)uye and Mé¢My,)"?
~0.1-0.01M, /R, )Rwm , Wherev e is the velocity of the SP=HA T*m. =(p+ pe+ D) Uu>
meridional flow, Ry, is the ratio of the magnetic energy to " v=(pFpetplnty
the gravitational energy, and the length scale is normalized 1 A A
by the mas$32]. + 17 (BUnus —BmBx), (A7)
ACKNOWLEDGMENTS SPB=HA HB TH7=(p+ pe-+ p)udul + pHAB
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work was supported in part by the Monbukagaku-sho Grant- n i (uAuB+ EHAB B2— BARB (A8)
in-Aid for Scientific Research, Nos. 0066(K.l.) and 4|\ 7202 2TEp

14047214M.S.).
whereu,, un,, u§, B,, By, B§ and B2 are given by Egs.
APPENDIX A: (2+1)+1 DECOMPOSITION OF THE (5.17—(5.19 and(5.22—(5.25), respectively.
ENERGY-MOMENTUM TENSOR

The (2+1)+1 decomposition of the energy-momentum APPENDIX B: SYMBOLS

tensor is . -
Here, we summarize definitions of some of the symbols

we use, which may not be commonly used, with the equation

mY_— Vi (nMm? yee’ A A v MV
T e+ j(n“m"+mn®) + 7 (n"H,"+H,"n") numbers where they are defined or introduced.

+smEmY+ sAMAH "+ H *m?) + $*BH ,#Hy” Quantities conserved along each flow line:
W: Flux function,V:=A &= As,
(A1) ®: Electric potential®:=A , 7= A,,

o . C: “Magnetic field strength” relative to the magnitude of
wheren,, andm,, are the unit timelike and spacelike normals meridional flow, Eqs(2.20—(2.22,

to the 2-surfaceX,,, respectively, andA,B=1,2. For the D: “Fluid energy” per unit mass, Eq42.24) and(2.27),
electromagnetic field in an ideal MHD system, we have from g “Energy” per unit mass, Eqs(2.25 and (2.29),
Egs.(2.8 and (2.9), F*“F’,=(u*u”+g*")B*~B*B" and L: “Angular momentum” per unit mass, Eq$2.26) and
F“'F,,=2B?, and hence (2.30),

Q: “Angular velocity” of the magnetic field line, Q)=

—d®/d¥, Eqg.(2.19,
S: Entropy per unit mass, Eq&.15).
Quantities associated with the metric:
(A2) n*: Killing vector associated with stationarityy*

' =(dlat)*, Eq. (4.9),

41

napE v 1 nrvEaf
FHaR?, — ZO4FPF

1

4

1
( utu’+ Eg’“’) B%—B*B"
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&*: Killing vector associated with axisymmetryé®
=(dldp)*, EQ. (4.9,

n#: Unit timelike 4-vector orthogonal to=const hyper-
surface,;, Eqgs.(4.1),

h,,: 3-metric onX, Egs.(4.3,

m*: Unit spacelike 4-vector orthogonal te=const and
@=const hypersurfacd,, Egs.(4.4),

H,.: 2-metric onX,, Eq.(4.6),

G,: Norm of *+Q¢&*, Eq.(5.9),

®: Quantity such thatt#+® »* is orthogonal to»n*
+Q¢&*, Eq. (5.2,

G;: Norm of &+ 0 »*, Eq.(5.10,

N: Lapse functionN=—»*n,,, Egs.(4.1),

N#: Shift vector,N*=Nn*— »*, Eq. (4.9),

N& : Projection ofN# onto 2, Eq.(4.8),

M=m,¢&", Eqs.(4.4),

M&=Mm#“— ¢4, Eq. (4.9).

Quantities associated with the fluid:

u*: Fluid 4-velocity, Eqs(2.10),

p: Rest mass density, Eg.10),

w: Enthalpy per unit mass, EqR.14),

e: Internal energy per unit mass, EQ.10,

PHYSICAL REVIEW D 67, 124026 (2003

p: Pressure, Eq.2.10),

T: Temperature, Eq2.15),

u,=(u’-0u’/(1-Q0), Eq. (5.2, or Egs.(5.3 and
(5.9,

ug=(u*-Qu%/(1-Q0), Eq. (5.2, or Egs.(5.3 and
(5.9,

up=—n,u*, Egs.(5.16 and(5.17),

Um=m,u*, Egs.(5.16 and(5.18,

u§ : Projection ofu” onto X, , Egs.(5.16 and(5.19),

u4: u? (A=1,2) components af*, Eq.(5.2),

Ns : A component ofu4 defined by Eq(5.12),

My : A component ofu¥ defined by Eq(5.12.

Quantities associated with the electromagnetic field:

E*: Electric field in the fluid rest frame, E@2.6),

B#: Magnetic field in the fluid rest frame, EQ.7),

B,=-n,B“=n,u,e*"*"F 42, Eq.(5.2),

Bn=m,B*=u,m,e*"*FF 42, Eq.(5.20),

B¢ : Projection ofB* ontoX,,, Eq.(5.21),

J#: Electromagnetic current 4-vector, E@.4).

Others:

M 5 - Alfvén Mach number, Eq(5.15),

A: An auxiliary quantity defined by Eq3.11).
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