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Black holes in a compactified spacetime
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We discuss the properties of a 4-dimensional Schwarzschild black hole in a spacetime where one of the
spatial dimensions is compactified. As a result of the compactification the event horizon of the black hole is
distorted. We use Weyl coordinates to obtain the solution describing such a distorted black hole. This solution
is a special case of the Israel-Khan metric. We study the properties of the compactified Schwarzschild black
hole, and develop an approximation which allows one to find the size, shape, surface gravity, and other
characteristics of the distorted horizon with a very high accuracy in a simple analytical form. We also discuss
the possible instabilities of a black hole in compactified space.
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[. INTRODUCTION Papapetrou metrics, was discussed by My8tsIn this pa-
per he also made some general remarks concerning compac-

Black hole solutions in a compactified spacetime havdification of the 4-dimensional Schwarzschild metric. Some
been studied in many publications. A lot of attention wasof the properties of compactified 4-dimensional Schwarzs-
paid to Kaluza-Klein higher-dimensional black holes. By child metrics were also considered in RE3]. For a recent
compactifying black hole solutions along Killing directions discussion of higher-dimensional black holes on cylinders
one obtains lower-dimensional solutions of Einstein equasee Ref[9].
tions with additional scalar, vector and other fie(dse, e.g., In this paper we study a solution describing a
Ref. [1], and references therginThe generation of black 4-dimensional Schwarzschild black hole in a spacetime
hole and black string solutions by the Kaluza-Klein proce-yhere one of the dimensions is compactified. This solution is
dure was extensively used in string the¢sge, e.g., Ref2], 3 special case of the Israel-Khan mefd®], where an infi-
and references therein S _ _ nite set of equal mass rods is placed along the axis of sym-

The solution which we consider in this paper is of a dif- metry so that the distance between any two of the adjacent
ferent nature. We study a Schwarzschild black hole in &ods is the same. Each of these rods is a source for a har-
spacetime with one compactified spatial dimension. This dimonic function, the Newtonian potential of the Schwarzs-
mension does not coincide with any Killing vector; for this child black hole. The general properties of this solution were
reason the black hole metric is distorted as a result of comgiscyssed by Korotkin and Nicol4lll]. As a result of the
pactification. compactification, the event horizon of the black hole is dis-

The recent interest in compactified spacetimes with blackorted. In our paper we focus our attention on the properties
holes is connected with brane-world models. The generaf the distorted horizon. We use Weyl coordinates to obtain a
properties of black holes in the Randall-Sundrum modekojution describing such a distorted black hole. This ap-
were discussed in Refs[4,5]. In the latter paper a proach to the study of axisymmetric static black holes is well
4-dimensional C-metric was used to obtain an exact known and was developed long ago by Geroch and Hartle
(3+1)-dimensional black hole solution in AdS spacetime[12] (see also Ref[18]).> In Weyl coordinates, the metric
with the Randall-Sundrum brane. Black holes in RS branegescribing a distorted 4-dimensional black hole contains 2
worlds were discussed in a number of publicatitses, e.g.,  arbitrary functions. One of them, playing the role of gravita-
Ref.[6], and references thergin tional potential, obeys a homogeneous linear equation. Be-

Black hole solutions in a spacetime with compactified di-cause of the linearity, one can present the solution as a linear
mensions are also interesting in connection with other typesyperposition of the unperturbed Schwarzschild gravitational
of brane models, which were considered historically first inpotential and its perturbation. After this, the second function
Ref.[7]. In the Arkani-Hamed-Dimopoulos—DvalitADD)  \which enters the solution can be obtained by simple integra-
type of brane worlds the tension of the brane can be not veryjon. To find the gravitational potential one can either use the

|arge. If one negleCtS.itS action on the graVitationa! field of aGreen’s function method or expand a solution into a series
black hole, one obtains a black hole in a spacetime where

some of the dimensions are compactified. Compactificationr————

of a special class of solutions, generalized Majumdar- 1o generalization of this approach to the case of electrically
charged distorted 4D black holes see REIS8,14). A generalization
of the Weyl method to higher-dimensional spacetimes was dis-
*Email address: frolov@cita.utoronto.ca cussed in Ref.15]. An initial value problem for 5D black holes was
TEmail address: frolov@phys.ualberta.ca discussed in Ref$16,17).
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over the eigenmodes. We discuss both of the methods since _ 1 8(p)
they give two different convenient representations for the AU=47j, j= ETWZ/M)’ (7)
solution. We develop an approximation which allows one to
find the size, shape, surface gravity and other characteristiGgnere
of the distorted horizon with very high accuracy in a simple
analytical form. We study properties of compactified 1, |x|=1,
Schwarzschild black holes and discuss their possible insta- O(x)= 0, [x|>1 (8
bility. ' '
The paper is organized as follows. We recall the main-l-he corresponding solution is
properties of 4D distorted black holes in Sec. Il. In Sec. Il P g
we obtain the solution for a static 4-dimensional black hole 1 (™ dz’
in a spacetime with 1 compactified dimension. In Sec. IV, we UgR,Z)=— _f —_—
study this solution. In particular we discuss its asymptotic 2)-m JR?+(z2-2")
form at large distances, and the size, form and shape of the —
horizon. We conclude the paper by general remarks in Sec. __ Eln VIM=2)"™+R°—Z+M 9)
v 27 JM+2)+R?-Z2-M
1l. FOUR-DIMENSIONAL WEYL BLACK HOLES The ﬁntegral representatiqn in the rlght hand side Of(E):]lS
obtained by using the 3-dimensional Green'’s function for Eq.
A. Weyl form of the Schwarzschild metric (5), which is of the form
A static axisymmetric 4-dimensional metric in the canoni-
cal Weyl coordinates takes the forh2,15,1§ GO(x.x')= :
dS’=—e?dT2+e 2Y[e?(dR?+dZ?)+ R%d¢?], (1) 4mx=x|
1 1
whereU andV are functions ofR and Z. This metric is a - = > .
solution of vacuum Einstein equations if and only if these 47 JR*+R'?—2RR cog yy— ') +(Z~Z")
functions obey the equations (10)
(?2_U+ 1 EJr&Z—U—O @ Sometimes the solutiof®) is presented in another equivalent
dR? "RIR ' 9Z% 7 form
1 (L—M
V g=R(U%—-U2%), V,=2RURU . ©) — Tl 2
R RTY7Z Z RY Z UgR,2) 2In Vil (11
Let 1
== — + = — .
d|2:dR2+R2dlﬂ2+dZZ (4) L 2(L++L )1 L, VR +(Z+M) (12)

be an auxiliary 3-dimensional flat metric, then solutions ofThe functionV¢(R,Z) for the Schwarzschild metric can be
Eqg. (2) coincide with axially symmetric solutions of the found either by solving Eq(3) or by direct change of the
3-dimensional Laplace equation coordinates

AU=0, (5) R=r(r—2M)sing, Z=(r—M)cos#. (13

whereA is a flat Laplace operator in the metfi). It is easy One has
to check that Eq(2) plays the role of the integrability con-

dition for the linear first order equatior{8). The regularity Ve(R.Z)= Eln L?—M? 14
condition implies that at regular points of the symmetry axis S 2\ L2—9?)"
R=0
1
limV(R,Z)=0. (6) 77=§(L+—L_). (15

R—0

In the coordinatesR,Z) the black hole horizoi is the line

In fact, if V(0,Zy) =0 at any pointZ, of the Z axis then Eq. segment-M<Z<M of theR=0 axis

(3) implies thatV(0,2)=0 at any other point of th& axis

which is connected witlz,,. ,
For a four-dimensional Schwarzschild metric, the function B. A distorted black hole

U is the potential of an infinitely thin finite rod of mass 1/2  General static axisymmetric distorted black holes were

per unit length located at M<Z<M portion of theZ axis  studied in Ref[12]. A distorted black hole is described by a
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static axisymmetric Weyl metric with a regular Killing hori- It is a sphere deformed in an axisymmetric manner. The sur-
zon. One can write the solutioJ(V) for a distorted black face gravityx is constant over the horizon surface
hole as

eU
=Uc+ =Vt V K= . (24)
U=UstU, V=VgtV, (16) aM,

where Ug,Vg) is the Schwarzschild solution with maks
Since bothV and Vg vanish at the axilR=0 outside the . 4D COMPACTIFIED SCHWARZSCHILD
horizon, the functionV has the same property. The function BLACK HOLE
U obeys the homogeneous equati@n while the equations A. Compactified Weyl metric
for V follow from Eq. (3). One of these equations is of the |5 \hat follows it is convenient to rewrite the Weyl metric
form (1) in the dimensionless forrd = L2ds?,

V ;=2R(UggU ;+Us,0 g+ 0 g0 5). 17 ds?=—e?Vdt?+ e 2[e?V(dp?+d2?) + p?d¢?], (25)

Near the horizon0 is regular, whileUgg=0O(R™!) and  wherelL is the scale parameter of the dimensionality of the

Ugz=0(1). Thus near the horizok ,~20U ,. Integrating ~ ength and
this relation along the horizon froldi=—-M to Z=M and

using the relationd/(0,—M)=V(0,M)=0, we obtain that = T p=
U has the same valueat both ends of the line segmeiit L

By integrating the same equation along the segriefrom ) . . .
the end point to an arbitrary point df one obtains for are dimensionless coordinates. We shall also use instead of

—M<Z<M massM its dimensionless version=M/L. The Schwarzs-
child solution(9) can then be rewritten as

(26)

R j—
ooz

Z
L

V(0,2)=2[0(0,2) —ul]. (18
1 | V(u=2%+p°~z+pu -
) Ug(p,2)=— = log . 2
Geroch and Hartl¢12] demonstrated that if) is a regular 2 \/m_z_ﬂ

smooth solution of Eq(5) in any small open neighborhood
of H (including H itself) which takes the same valueson o i o
both ends of the segmeH then the solution is regular at the FOr |Z|> p, the gravitational potentials remains finite at

horizon and describes a distorted black hole. the symmetry axis
Using the coordinate transformation
1 z—pu
R=e"\r(r—2My)siné, (19) Us(0.2)=5 In a |z > . (28)
Z=¢e"(r—My)cos¥, For |z|<pu, the gravitational potentidlg is divergent atp
- =0. The leading divergent term is
and defining
Mo=Me™ (20) U 1 | pz 29
— , i .

0 S(p,Z) 2 n 4(/*’*2_22)7 |Z| M ( )

it is possible to recast the metiit) of a distorted black hole
into the form We will now obtain a new solution describing a
Schwarzschild black hole in a space in which theoordi-
nate is compactified. We will call this solution a compactified
SchwarzschildCS) metric. For this purpose we assume that
o . the coordinate’ is periodic with a period ZL. We shall use
+e2(V=Urur2(qg2+ e~ ?Vsirt od ¢p?). (21)  the radius of compactificatioh as the scale factor.
Our space manifold\! has topologyS'x R? and we are
In these coordinates, the event horizon is described by thoking for a solution of Eq(5) on M which is periodic in
equationr =2M,, and the 2-dimensional metric on its sur- z with the period 27, ze (— r, ). The source for this solu-
face is tion is an infinitely thin rod of the linear density 1/2 located
. . along z axis in the interval  u,u), <. This problem
dy?=4Mj[e*V Vde?+e 2V UsiPgdp?]. (22 can be solved by two different methods, either by using
Green's functions or by expanding a solution into a series

. A -1
4= —eZU( 1- —ztﬂo)dTZJre?(VU*“)( 1- —2';/'0> dr?

The horizon surface has area over the eigenmodes. We discuss both of the methods since
5 they give two different convenient representations for the
A=167Mj. (23)  solution. We begin with the method of Green’s functions.
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B. 3D Green’s function and hence it behaves as if the space had one dimension less.

To obtain this solution we proceed as follows. Our first!t IS Obviously a result of compactification. ,
step is to obtain a 3-dimensional Green'’s funct@ﬁﬁ) on In _the reduptlon procedure this cre_ates a technlcal prob-
the manifold M. It can be done, for example, by the method lem since th'e integral ovev becomes divergent. It is easy to
of images applied to the Green'’s function for Ef) which deal with this problem as follows. Denote
gives the series representation fﬁﬁ). It is more conve-

nient to use another method which gives the integral repre- 1 1
g g p Gséia)(X,Xr):Gs\j,reg)(X,X!)_i_

sentation. For this purpose we note that the flat 87m2L?2 (B2+b2)e2’
3-dimensional Green’s function can be obtained by the di- (39)
mensional reduction from the 4-dimensional one. Namely, let
X=(X,Y,Z,W) .
2 2 2 2 2 2 GeI X, X" )= 1 sinh/3
dh*=dX“=dX*+dY*+dZ°+dW-, (30 M 1 87°L2| B coshB—cosz—7')
then 1

. (40

V0

1 ©
G(S)(x,x’)5m=j dWGH(X,X"), (31
X—X e
i Here b is any positive number. Far=1, G} does not

wherex=(X,Y,Z), depend orb and coincides with Eq.31). At large 8 the term
G{{;"®9 has asymptotic behavior 8~ 2.
@ 1 We also have
GHWIXX")= s ——, 32
( ) 4,”_2 |X—X’ |2 ( )
» dw 1 [¢®+b*] O [(a—1)/2]
andG™(X,X") is the Green’s function for the Laplace op- f,w (B2+b)*2 2\[x I'(al2)
erator
1/ 1 1 5 o
AGGH (X, X" )=— Y X—X"). (33 ~ m‘F'nz—Eln(O’ +b%)
Denote +0(a—1). (41
GE)(x X,):i D 1 Here o?=(x—x')?+(y—y’)?. By omitting unimportant
MAT 4 2, (Z—2'+27Ln)2+B?’ (divergen} constant we regularize the expression for the in-

(34)  tegral. By using the reduction procedu@l) we get

where @ w e 1
Gj(x,x’):f dWG®IX,X") — ————In(0?+b?).
B2=(X—X')2+(Y=Y)2+(W-W)2% (35 —o 167°L
(42
The functionG({} is periodic inZ with the period 27L and is
a Green's function on the manifold1. The sum can be C. Integral representation for the gravitational potential

calculated explicitly by using the relation ) ) ) _
To obtain the potentialJ(p,z) which determines the

5 1 - sinh(27b) black hole metric we need to integra®3)(x,x’) with re-
5 = — . (36 spect tox’ along the interval t M,M) at R’=0 axis. It is

== (a+n)+b" b cosl{2wb)—cog2ma) convenient to use the representatid) and to change the

order of integrals. We use the integra>*1,0<u<m,—

Thus one has

<z<r)
1 sinh dz' 2 +7
G X") = ., @7 f“ z ntz
M 87°L23 [coshB—cogz—2')] B p——— ) arctanp ta >
where B=B/L. This Green’s function has a pole gt=z + 7 u+z—)
—z'=0, that is when the pointX and X' coincide. At far
distance,8>L, this Green’s function has asymptotic +arcta+ptar( '“_Z)
2
GM(X x')~—2—2—1 (39
M 8mLB’ +m‘?(u—2—77)], (43
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wherep=+/(a+1)/(a—1). We understand arctan to be the Note that a functior®(z/u) which enters the source term
principal value and included functions to get the correct [see Eqs(7), (8)] allows the following Fourier decomposi-
value over the entire intervat w<z<w. We also change tion on the circle:
the parameter of integratioV to w=W/L and take into
account that the integrand is an even functionwofAfter

these manipulations we obtain ®(Z/'“):a°+k21 acogkz), (5D
1 (= [UB2) M where
U(p,z)=— —f dw -
(,D ) TJ)o B B2+ b2 2
M .
ap=—, a=—sin(ku). (52
+£In(p2+ b?), (44) m 7k
Using the Fourier decomposition far
where
UB.z2)=Vp.2)+V(B.,~2), (45) U(;o,Z)=Uo(p)+kZl Uk(p)cogkz), (53
coshB+1 ut+z . i , . .
V(B,z)=arcta - ta we obtain the following equations for the radial functions
sinhgB 2 ]
Ui(p):
+7H ut+z— ).
H d?Uy  1dU, 8(p)
Note that nowg which enters Eqs(44) and (45) is dp? + ; E_k U=a p (54)
B=\w?+ p?. (46)  Fork>0 the solutions of these equations which are decreas-
) o . ing at infinity are
A representation similar to Eq44) can be written for the
Schwarzschild potentidl g U (p)=—aKo(kp), (55)
1 (= UB,z ; ; _ ;
Ud(p,2)=— ;f dw s(B ), (47) ;/;/hereK,,(z) is MacDonald function. Fok=0 the solution
where Uo(p)=agIin(p). (56)
Us(B,2)=Vs(B,2) +Vs(B, ~2), (48 Thus the gravitational potential allows the following series

representation:

ntz
Vs B,2) = arctan ——
B
One can check that this integral really gives expres&xmn
Using these representations we obtain the following ex-
pression for the quantitﬁl(z) =U(0,2) —Ug(0,2) which de-
termines the properties of the event horizon

_ _ o - wherey~0.57721 is Euler’s constant. Substituting these as-
To obtain the redshift factou it is sufficient to calculate ymptotics into Eq(57) and combining the terms one obtains
U(z) forz=pu

U(p,2)="=Inp- 22 n(k”) cogk2)Ko(kp). (57)

This representation is very convenient for studying the
asymptotics of the gravitational potential near the horizon.
For smallp one has

+7, (58

L{(w Z) —Ug(w, z) M )

w21/
(49

k
—Ko<kp>~ln(7”

) p ml o1
=0(pw). (50) U(p,2)~ In§+y @(z/,u)—;(ln E-I—y
- - i - 1.& Ink _
D. Series representation for the gravitational potential + = 2 T[s|r[ k(u+2z)]+sink(u—2)1].
For numerical calculations of the gravitational potential -
and study of its asymptotics near the black hole horizon it is (59)

convenient to use another representation Upmamely, its
Fourier decomposition with respect to the periodic variable Using the relation(see Eq.(5.5.1.24 in Ref.[20])
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“ Ink -7 1 X
> ~ Sink)=——(y+In 27-r)+— In —SII’]—FZ
= 2m
(60)
valid for 0O=x<2m, one gets fotz|<pu
1 |1 nt+z mt+z
U(p,2)~In ;+—In(47r)+ In—smTF ?)
1 M=z =2z
+5Inl—sin——T (?) (62)

Using asymptotic(29) of the Schwarzschild potentidl g

near horizon, one can presenﬁ(z)=limpH0[U(p,z)
—Ug(p,2)] in the region|z|< u in the form

i) e

where the functiorf(x) is defined by

U(z)z%ln(4w)+%ln

1 ) X
f(x)=—2xsmx1“2(—>. (63
ar o
It has the following properties:
{o)=1, | T|=2, t(m=0 64

In fact, in the interval 8=x=<1r it can be approximated by a
linear function

X
f(x)~1—— (65)
a

with an accuracy of order of 1%.
Making similar calculations fofz|=u one obtains

. |2+ n
U(02)=" In(am+=in| ——2 Iz~ n
( ,z)—; n( 7-r)+§ n (|Z|—M) > In EEYS
f
2
(66)
An approximate value ofJ(0,z) in this region is
[27—(|z[+m)](|2] -
0z2)~— In 4 +
D02~ Intém [ e el
E. Solutions

To find the gravitational potentidl(p,z) one can use
either its integral representatiqd4) or the serieg57). We
used both methods. Integral@4) were evaluated using
MAPLE, while the serieq57) were implemented irc code
using fast Fourier transforiti-FT) techniques. Both methods

PHYSICAL REVIEW D67, 124025 (2003

cient. The functiorV(p,z) was recovered by direct integra-
tion of differential equation3) by finite differencing inZ
direction. The gravitational potential(p,z), function
V(p,z), and their equipotential surfaces for two different
values ofu are shown in Fig. 1.

IV. PROPERTIES OF CS BLACK HOLES

A. Large distance asymptotics

Let us first analyze the asymptotic behavior of the CS
metric at large distancg. For this purpose we use the inte-
gral representatiori44) for U. It is easy to check that the
integrand expression at largeis of order ofO(8?) and
hence the integral is of order pf 1. Thus the In-term in the
square brackets in E¢44) is leading at infinity so that

y73
U(pyz)|p~>oo~;|np- (68)
Using Eq.(3) we also get
2
72
V(p2)|, a3 Inp. (69)

The metric(25) in the asymptotic regiop—  is of the form
dSZZ _pZ(M/'n')dt2+p—Z(M/w)(l—p/W)(dp2+ dZZ)
_|_p—2(,u/77)p2d ¢2_ (70)

The proper size of a closed Killing trajectory for the vector
d, is
CZZZWLP*(M/#)(P#/W)' (71)

The metric(70) coincides with the special casa;=a,) of
the Kasner solutiofl19]

dsZZ _pZaodt2+pZaldp2+p2a2dZZ+p2a3d ¢2’ (72)
a1+ 1:a2+a3+ ao,
(ay+1)°=a3+a3+a3.

One can rewrite the metri¢69) by using the proper-
distance coordinate For smallu

1-ulm
1= —, (73
M
a
and the metric in thed, ¢) sector takes the form
“ 2
di+{1— ;) 12d 2. (74)

Thus the metric of the CS black hole has an angle defigit 2
at infinity.

give results which agree with high accuracy, but of course The asymptotic form of the metric can be used to deter-

the c implementation is much more computationally effi-

mine the mass of the system. L&, be a timelike Killing
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FIG. 1. Compactified Schwarzschild black hole solutionser 0.5 (left) and w= 2.0 (right). The surface plots show the gravitational
potential U(p,z) (top) and the functionV(p,z) (bottom); contours represent equipotential surfacedJoftop/red andV (bottom/blue,

correspondingly.

vector and® be a 2D surface lying inside= const hypersur-
face, then the Komar mass is defined as

1 .
m= Efzgﬁs do,,. (75

For simplicity we choose> so thatt=const andp=pg
=const. For this choice

1
_ 1 1+2a
d(rw—iﬁﬁuﬁ p, %

PO dzdg,

2ag—1
g,u;vz_zaopoao 5([),u5111]1

(76)
grr=2a5p, 2 Lol oyl

Substituting these expressions into E@5) and taking the

integral we getm= . Since all our quantities are normal-

ized by the radius of compactificatidny we obtain that the
Komar mass of our system =1L u.

B. Redshift factor, surface gravity, and proper distance between
black hole poles

Using Eg.(62), we obtain for the redshift facton the
expression

n 1
u=;|n(477)+ zlnf(,u). (77

Figure 2(left) shows dependence of the redshift faatiaon
parametenw. Using the approximatiof65) we can write

1—ﬁ).
v

The redshift factou has maximumu,

M 1
u~—In(4m)+ zIn (78)
T 2

u, =In(4m)— %{1+ In2+In[In(4m)]}~1.22 (79

at
wy=m{1-1[2 In(4m)]}~2.52. (80)

For u>pu, the functionu rapidly falls down, becoming
negative and logarithmically divergent at= .
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04] 05 1 1£u 2 255 3

FIG. 2. Redshift factou (left) and the irreducible mass,= u exp(—u) as functions ofw.

In the same approximation we get the following expres- C. Size and shape of the event horizon
sions for the irreducible mags, and the surface gravity: The surface area of the distorted horiz@®) written in
|12 unitsL? is
— — ~ —uplm —_—
e 1 2(ulm) m where u is the irreducible masg1). The shape of the ho-
= I ”ﬂ(zﬂ L= P 82 rizon is determined by thehape function
For u— 1, they behave agy—> and k—0. Figure 2 Fz)=U(z2)—u. (87)

(right) shows the irreducible mass, as a function ofu.

Another invariant characteristic of the solution is the properFigure 4(left) shows a plot of exF(z)] for several values
distance between the “north polez=, and “south pole,” of u. By multiplying the 2-metric on the horizody? by
z=—u, along a geodesic connecting these poles and lying2x,) 2 one obtains the metric of the 2-surface which has

outside the black hole. This distanbge) is the topology of a spher&® and the surface aream The
metric describing this distorted sphere is
|(/-L):2fwdzeiu(0’z) dZ do?
g do?= erMZ_ 2 e (u’- 22)7. (88)
~2(am)#in Moz [ T
m “ (z—pn)(2m—2z—p) The Gaussian curvature of the metdo? is K= R, where
R is the Ricci scalar curvature. It is given by the expression
o[22 N
=2\ — M E((,D,k)"r‘Z/.L HF(QD,k)_(W_,U,), KZe*Z}'(Z){l_i_(MZ_ZZ)[FI_2(]:!)2]_42]_-r}. (89)
83  ,-

where

1
=Vil—ulm, K=—x. (84 081
T T (a2

0.6
HereF(¢,k) andE(¢,k) are the elliptic integrals of the first
and second kind, respectively. In particular one has 0]
[(0)=2m, |(m)=m/2. (85)
0.2

Figure 3 showd/(27) as a function ofu. It might be sur-
prising that in the limitw— 7, when the coordinate distance

Az between the poles tends to 0, the proper distance betwet 05 1 b 2 25 3
them remains finite. This happens because in the same limit
the surface gravity tends to 0. FIG. 3.1/(2m) as a function ofu.
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xp(F(2)
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z/mu
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0.6 08
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FIG. 4. The shape function eixp(z)] (left) and the Gaussian curvature of the horizofz) (right) for different values ofu.

The Gauss-Bonnet formula gives B d¢p?
dI?=(r% +a?)| F(x)dx?+=——/, (95
F(X)
f d?>xJoK =4 (90)
where
For the unperturbed black holé=1. As a result of defor-
mation, the CS black hole haé>1 at the polesz==*pu, E(x)= ~ B2 B= a (96)

andK<1 at the “equatorial planez=0. Figure 4(right), [2 2

which showsK(z) for different values ofu, illustrates this f+¥a

feature. This kind of behavior can be easily understood as gerer . =M + \M2—aZ gives the position of the event ho-
result of self-attraction of the black hole because of the Comrizon, andM anda are the mass and the rotation parameter of
pactification of the coordinate the Kerr black hole. The line eleme(@2), (93) is obtained

Using approximation(65) allows one to obtain simple from the above by coordinate redefinitias ux and ana-
analytical expressions for the shape function and the Gaus;sytic continuationa=i8, with a=(u/27)(1— u/m) Y2

1—x?

ian curvature. Equation®2) and(77) give

‘ Mtz n—Zz
3 1I 2 2 1I L u?—2z2
N T T2 amrw)
(91
Let us write the metrido? in the form
d¢?
do?=F(2)dZ2+ ———, 92
then in this approximation one has
1 1
F(z2)~ (93

+
w’—7> " Ax(1—pulw)
while the Gaussian curvature is

_ 16m2(7m— p)?[ (27— )2+ 32%]
- [(2m—p)?=2]°

99

The Gaussian curvature is positive in the intefzk u.

Denote byl the proper length of the equatorial circum-
ference, and by, the proper length of a closed geodesic
passing through both polég = u of the black hole horizon.
Then one has

Vi—plm

|eq(m~2w—1_“/(2w), (97)

i
27 \/1—,u/77) 1
where E(k) is the complete elliptic integral of the second

kind. One hasl¢{(0)=I,,4{0)=27 and the surface is a
round sphere. Fop— m the lengthd ¢q—0 andl pge— .

Ipole(ﬂ)”“'E(

D. Embedding diagrams for a distorted horizon

The metric(92) can be obtained as an induced geometry
on a surface of rotatiod embedded in a 3-dimensional Eu-
clidean space. Let

dI2=dh?+dr2+r2d¢? (98)

It is interesting to note that the horizon geometry of thebe the metric of the Euclidean space and the surkadee
CS black hole coincidegup to a constant factpwith the  determined by an equatidn=h(r), then the induced metric
geometry on the 2D surface of the horizon of the Euclidearpn 2 is
4D Kerr black hole. This fact can be easily checked since the )
induced 2D geometry of the horizon of the Kerr black hole is ﬁ)

dr

(see, e.g., EQ3.5.4 in Ref.[18)) do?=

1+

dr2+r2dg2. (99
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L[] R N N N
FIG. 5. Embedding diagrams for the surface of the black hole horizon. By rotating a curve from a family shown at the plot around a

horizontal axis one obtains surface isometric to the surface of a black hole described by thedoretrifferent curves correspond to
different values ofw. The largeru the more oblate is the form of the curve.

By comparing this metric with Eq92) we get makes the horizon prolated grows with the black hole mass.
For large masg.= 7/2 the black hole deformation becomes
1 profound. The pole parts of the horizon, that is parts close to
r= Fa (100 z=—,4 andz=p, attract one another. As a result of this
F(2) attraction the Gaussian curvature of regions close to black
dh'2 (dr\2 hole poles grows, while the Gaussian curvature in the “equa-
(_) (_) =F(2). (101) torial” region falls down and the surface of the horizon is
dz dz “flattened down” in this region. For large value of the mass

u, the “flattening” effects occur for a wide range of the
parameter. Such a black hole is reminiscent of a cigar or a
part of the cylinder with two sharpened ends.
dh £ We did not include any branes in our consideration. How-
i /F— R (102 ever, we should note_ that the surfage-0 is a solution of _
dz 4F3 the Nambu-Goto action for a test brane. This can be easily
seen, as the solution we discussed is symmetric around the
Figure 5 shows the embedding diagrams for the distortedurfacez=0, which implies that its extrinsic curvature van-
horizon surfaces of a compactified black hole for differentishes there. At far distances the induced gravitational field on
values ofu. The larger is the valug the more oblate is the theZ=0 submanifold is asymptotically a solution of vacuum
surface of the horizon. For large close to it has a cigar-  (2+1)-dimensional Einstein equations. It is not so for re-
like form. gions close to the black hole. This “violation” of the vacuum
(2+1)-dimensional Einstein equations for the induced met-
E. p—ar limit ric makes the existence of the {2)-dimensional black

Let us now discuss the properties of the spacetime in tth’le on the brane p.ossmle_. o : -
limiting case u— . This limit can be easily taken in the In our work we did not find any indications of instability

series representatiofb7) for the gravitational potential. of a black hole which m_ight bg_interpreted as connected with
Since sin@k)=0 for k>0, only the logarithmic term sur- the _Greg(_)ry-LafIamme_|nstab|I|t_[322,23_]._ It may not be sur-
vives in this limit. ThusU(p,2)=Inp. Since the limiting P1ISINg since these kinds of instabilities are expected in
metric is invariant under translations in thélirection, it has spacetimes with higher number of dimensiofsge, e.g.

: : _ Refs.[21,24-28).
the form of the Kasner solutioY0) with ».= and reads On the other hand, a solution describing a black hole in a

ds?= — p2dt?+dp?+d 2+ d 2 (103  compactified spacetime may be unstable for a different rea-
son. The nature of this instability is the following. In our
This is a Rindler metric with two dimensions orthogonal to setup we fix a radius of compactificatian In a flat space-

These equations imply the following differential equation for
h(z2):

the acceleration direction being compactified time we can choose parametearbitrarily and the energy of
the system, being equal to zero, does not depend on this
ze(—mm), ¢e(-mm). (104 choice. The situation is different in the presence of a black

hole. Consider a black hole of a given area, that is with a
fixed parameteM. Since the black hole entropy, which is
R2 proportional to the area, remains unchanged for quasistation-
dS=— FdT2+dRZ+ dZ2+L2d ¢ (105  ary adiabatic processes, one may consider different states of
a black hole with a giveM. L plays a role of an indepen-
dent parameter, specifying a solution. In particular one has

Restoring the dimensionality we can write this metric as

V. DISCUSSION

The obtained results can be summarized as follows. If the M (4:7)~ ML)
size of a black hole is much smaller that the size of compac- MOZW—' (106)
tification, its distortion is small. The deformation which V1—=M/(wL)

124025-10
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2.5

M/MO
1.5

057

FIG. 6. M as a function oL for fixed M.

This relation shows that for fixeMl , the energy of the sys-
temM depends on compactification radiusThe plot of the
functionM (L) is shown in Fig. 6. Fob =L, =1.345V, the
massM has maximumM =M, =3.387M,. At the corre-
sponding valuew, =2.52 the functionu(u) has its maxi-
mum. Thus if one starts with a system with>L, then a
positive variation of parametér will decrease the energy of

PHYSICAL REVIEW D67, 124025(2003

the system. In this case the lowest energy state corresponds
to L—oo, so that a stable solution will be an isolated
Schwarzschild black hole in an empty spacetime without any
compactifications. In the opposite cake<L, the energy
decreases wheh—0. In this limit M~=L and hence it
corresponds to a limiting solution— 7. The limiting met-

ric is given by Eq.(105). The corresponding spacetime is a
2D torus compactification of the Rindler metric.

This argument, based on the energy consideration, indi-
cates a possible instability of a compactified spacetime with
a black hole with respect to compactified dimension either
“unwrapping” completely or being “swallowed” by a black
hole. While “unwrapping” of the extra dimension may be
prevented by the usual stabilization mechanisms, the other
instability regime might not be so benign. It is interesting to
check whether this conjecture is correct by standard pertur-
bation analysis.
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