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Black holes in a compactified spacetime
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We discuss the properties of a 4-dimensional Schwarzschild black hole in a spacetime where one of the
spatial dimensions is compactified. As a result of the compactification the event horizon of the black hole is
distorted. We use Weyl coordinates to obtain the solution describing such a distorted black hole. This solution
is a special case of the Israel-Khan metric. We study the properties of the compactified Schwarzschild black
hole, and develop an approximation which allows one to find the size, shape, surface gravity, and other
characteristics of the distorted horizon with a very high accuracy in a simple analytical form. We also discuss
the possible instabilities of a black hole in compactified space.
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I. INTRODUCTION

Black hole solutions in a compactified spacetime ha
been studied in many publications. A lot of attention w
paid to Kaluza-Klein higher-dimensional black holes. B
compactifying black hole solutions along Killing direction
one obtains lower-dimensional solutions of Einstein eq
tions with additional scalar, vector and other fields~see, e.g.,
Ref. @1#, and references therein!. The generation of black
hole and black string solutions by the Kaluza-Klein proc
dure was extensively used in string theory~see, e.g., Ref.@2#,
and references therein!.

The solution which we consider in this paper is of a d
ferent nature. We study a Schwarzschild black hole in
spacetime with one compactified spatial dimension. This
mension does not coincide with any Killing vector; for th
reason the black hole metric is distorted as a result of c
pactification.

The recent interest in compactified spacetimes with bl
holes is connected with brane-world models. The gen
properties of black holes in the Randall-Sundrum mo
were discussed in Refs.@4,5#. In the latter paper a
4-dimensional C-metric was used to obtain an exa
(311)-dimensional black hole solution in AdS spacetim
with the Randall-Sundrum brane. Black holes in RS bra
worlds were discussed in a number of publications~see, e.g.,
Ref. @6#, and references therein!.

Black hole solutions in a spacetime with compactified
mensions are also interesting in connection with other ty
of brane models, which were considered historically first
Ref. @7#. In the Arkani-Hamed–Dimopoulos–Dvali–~ADD!
type of brane worlds the tension of the brane can be not v
large. If one neglects its action on the gravitational field o
black hole, one obtains a black hole in a spacetime wh
some of the dimensions are compactified. Compactifica
of a special class of solutions, generalized Majumd
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Papapetrou metrics, was discussed by Myers@3#. In this pa-
per he also made some general remarks concerning com
tification of the 4-dimensional Schwarzschild metric. Som
of the properties of compactified 4-dimensional Schwar
child metrics were also considered in Ref.@8#. For a recent
discussion of higher-dimensional black holes on cylind
see Ref.@9#.

In this paper we study a solution describing
4-dimensional Schwarzschild black hole in a spaceti
where one of the dimensions is compactified. This solutio
a special case of the Israel-Khan metric@10#, where an infi-
nite set of equal mass rods is placed along the axis of s
metry so that the distance between any two of the adjac
rods is the same. Each of these rods is a source for a
monic function, the Newtonian potential of the Schwarz
child black hole. The general properties of this solution we
discussed by Korotkin and Nicolai@11#. As a result of the
compactification, the event horizon of the black hole is d
torted. In our paper we focus our attention on the proper
of the distorted horizon. We use Weyl coordinates to obtai
solution describing such a distorted black hole. This a
proach to the study of axisymmetric static black holes is w
known and was developed long ago by Geroch and Ha
@12# ~see also Ref.@18#!.1 In Weyl coordinates, the metric
describing a distorted 4-dimensional black hole contain
arbitrary functions. One of them, playing the role of gravit
tional potential, obeys a homogeneous linear equation.
cause of the linearity, one can present the solution as a lin
superposition of the unperturbed Schwarzschild gravitatio
potential and its perturbation. After this, the second funct
which enters the solution can be obtained by simple integ
tion. To find the gravitational potential one can either use
Green’s function method or expand a solution into a se

1For generalization of this approach to the case of electric
charged distorted 4D black holes see Refs.@13,14#. A generalization
of the Weyl method to higher-dimensional spacetimes was
cussed in Ref.@15#. An initial value problem for 5D black holes wa
discussed in Refs.@16,17#.
©2003 The American Physical Society25-1
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over the eigenmodes. We discuss both of the methods s
they give two different convenient representations for
solution. We develop an approximation which allows one
find the size, shape, surface gravity and other characteri
of the distorted horizon with very high accuracy in a simp
analytical form. We study properties of compactifie
Schwarzschild black holes and discuss their possible in
bility.

The paper is organized as follows. We recall the m
properties of 4D distorted black holes in Sec. II. In Sec.
we obtain the solution for a static 4-dimensional black h
in a spacetime with 1 compactified dimension. In Sec. IV,
study this solution. In particular we discuss its asympto
form at large distances, and the size, form and shape o
horizon. We conclude the paper by general remarks in S
V.

II. FOUR-DIMENSIONAL WEYL BLACK HOLES

A. Weyl form of the Schwarzschild metric

A static axisymmetric 4-dimensional metric in the cano
cal Weyl coordinates takes the form@12,15,18#

dS252e2UdT21e22U@e2V~dR21dZ2!1R2df2#, ~1!

whereU and V are functions ofR and Z. This metric is a
solution of vacuum Einstein equations if and only if the
functions obey the equations

]2U

]R2 1
1

R

]U

]R
1

]2U

]Z2 50, ~2!

V,R5R~U ,R
2 2U ,Z

2 !, V,Z52RU,RU ,Z . ~3!

Let

dl25dR21R2dc21dZ2 ~4!

be an auxiliary 3-dimensional flat metric, then solutions
Eq. ~2! coincide with axially symmetric solutions of th
3-dimensional Laplace equation

DU50, ~5!

whereD is a flat Laplace operator in the metric~4!. It is easy
to check that Eq.~2! plays the role of the integrability con
dition for the linear first order equations~3!. The regularity
condition implies that at regular points of the symmetry a
R50

lim
R→0

V~R,Z!50. ~6!

In fact, if V(0,Z0)50 at any pointZ0 of the Z axis then Eq.
~3! implies thatV(0,Z)50 at any other point of theZ axis
which is connected withZ0.

For a four-dimensional Schwarzschild metric, the functi
U is the potential of an infinitely thin finite rod of mass 1
per unit length located at2M<Z<M portion of theZ axis
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DU54p j , j 5
1

4p

d~r!

r
Q~z/M !, ~7!

where

Q~x!5H 1, uxu<1,

0, uxu.1.
~8!

The corresponding solution is

US~R,Z!52
1

2E2M

M dZ8

AR21~Z2Z8!2

52
1

2
lnFA~M2Z!21R22Z1M

A~M1Z!21R22Z2M
G . ~9!

The integral representation in the right hand side of Eq.~9! is
obtained by using the 3-dimensional Green’s function for E
~5!, which is of the form

G(3)~x,x8!5
1

4pux2x8u

5
1

4p

1

AR21R8222RR8cos~c2c8!1~Z2Z8!2
.

~10!

Sometimes the solution~9! is presented in another equivale
form

US~R,Z!5
1

2
lnS L2M

L1M D , ~11!

L5
1

2
~L11L2!, L65AR21~Z6M !2. ~12!

The functionVS(R,Z) for the Schwarzschild metric can b
found either by solving Eq.~3! or by direct change of the
coordinates

R5Ar ~r 22M !sinu, Z5~r 2M !cosu. ~13!

One has

VS~R,Z!5
1

2
lnS L22M2

L22h2 D , ~14!

h5
1

2
~L12L2!. ~15!

In the coordinates (R,Z) the black hole horizonH is the line
segment2M<Z<M of the R50 axis.

B. A distorted black hole

General static axisymmetric distorted black holes w
studied in Ref.@12#. A distorted black hole is described by
5-2
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BLACK HOLES IN A COMPACTIFIED SPACETIME PHYSICAL REVIEW D67, 124025 ~2003!
static axisymmetric Weyl metric with a regular Killing hor
zon. One can write the solution (U,V) for a distorted black
hole as

U5US1Û, V5VS1V̂, ~16!

where (US ,VS) is the Schwarzschild solution with massM.
Since bothV and VS vanish at the axisR50 outside the
horizon, the functionV̂ has the same property. The functio
Û obeys the homogeneous equation~2!, while the equations
for V̂ follow from Eq. ~3!. One of these equations is of th
form

V̂,Z52R~US,RÛ ,Z1US,ZÛ ,R1Û ,RÛ ,Z!. ~17!

Near the horizonÛ is regular, whileUS,R5O(R21) and
US,Z5O(1). Thus near the horizonV̂,Z;2Û ,Z . Integrating
this relation along the horizon fromZ52M to Z5M and
using the relationsV̂(0,2M )5V̂(0,M )50, we obtain that
Û has the same valueu at both ends of the line segmentH.
By integrating the same equation along the segmentH from
the end point to an arbitrary point ofH one obtains for
2M<Z<M

V̂~0,Z!52@Û~0,Z!2u#. ~18!

Geroch and Hartle@12# demonstrated that ifÛ is a regular
smooth solution of Eq.~5! in any small open neighborhoo
of H ~including H itself! which takes the same valuesu on
both ends of the segmentH, then the solution is regular at th
horizon and describes a distorted black hole.

Using the coordinate transformation

R5euAr ~r 22M0!sinu, ~19!

Z5eu~r 2M0!cosu,

and defining

M05Me2u, ~20!

it is possible to recast the metric~1! of a distorted black hole
into the form

dS252e22ÛS 12
2M0

r DdT21e2(V̂2Û1u)S 12
2M0

r D 21

dr2

1e2(V̂2Û1u)r 2~du21e22V̂sin2udf2!. ~21!

In these coordinates, the event horizon is described by
equationr 52M0, and the 2-dimensional metric on its su
face is

dg254M0
2@e2(Û2u)du21e22(Û2u)sin2udf2#. ~22!

The horizon surface has area

A516pM0
2 . ~23!
12402
he

It is a sphere deformed in an axisymmetric manner. The
face gravityk is constant over the horizon surface

k5
eu

4M0
. ~24!

III. 4D COMPACTIFIED SCHWARZSCHILD
BLACK HOLE

A. Compactified Weyl metric

In what follows it is convenient to rewrite the Weyl metr
~1! in the dimensionless formdS25L2ds2,

ds252e2Udt21e22U@e2V~dr21dz2!1r2df2#, ~25!

whereL is the scale parameter of the dimensionality of t
length and

t5
T

L
, r5

R

L
, z5

Z

L
~26!

are dimensionless coordinates. We shall also use instea
massM its dimensionless versionm5M /L. The Schwarzs-
child solution~9! can then be rewritten as

US~r,z!52
1

2
logFA~m2z!21r22z1m

A~m1z!21r22z2m
G . ~27!

For uzu.m, the gravitational potentialUS remains finite at
the symmetry axis

US~0,z!5
1

2
ln

z2m

z1m
, uzu.m. ~28!

For uzu<m, the gravitational potentialUS is divergent atr
50. The leading divergent term is

US~r,z!;
1

2
ln

r2

4~m22z2!
, uzu<m. ~29!

We will now obtain a new solution describing
Schwarzschild black hole in a space in which theZ coordi-
nate is compactified. We will call this solution a compactifi
Schwarzschild~CS! metric. For this purpose we assume th
the coordinateZ is periodic with a period 2pL. We shall use
the radius of compactificationL as the scale factor.

Our space manifoldM has topologyS13R2 and we are
looking for a solution of Eq.~5! on M which is periodic in
z with the period 2p, zP(2p,p). The source for this solu-
tion is an infinitely thin rod of the linear density 1/2 locate
along z axis in the interval (2m,m), m<p. This problem
can be solved by two different methods, either by us
Green’s functions or by expanding a solution into a ser
over the eigenmodes. We discuss both of the methods s
they give two different convenient representations for
solution. We begin with the method of Green’s functions.
5-3
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B. 3D Green’s function

To obtain this solution we proceed as follows. Our fi
step is to obtain a 3-dimensional Green’s functionGM

(3) on
the manifoldM. It can be done, for example, by the meth
of images applied to the Green’s function for Eq.~5! which
gives the series representation forGM

(3) . It is more conve-
nient to use another method which gives the integral rep
sentation. For this purpose we note that the
3-dimensional Green’s function can be obtained by the
mensional reduction from the 4-dimensional one. Namely,
X5(X,Y,Z,W)

dh25dX25dX21dY21dZ21dW2, ~30!

then

G(3)~x,x8![
1

4pux2x8u
5E

2`

`

dWG(4)~X,X8!, ~31!

wherex5(X,Y,Z),

G(4)~X,X8!5
1

4p2

1

uX2X8u2
, ~32!

andG(4)(X,X8) is the Green’s function for the Laplace op
erator

D (4)G(4)~X,X8!52d4~X2X8!. ~33!

Denote

GM
(4)~X,X8!5

1

4p2 (
n52`

`
1

~Z2Z812pLn!21B2
,

~34!

where

B25~X2X8!21~Y2Y8!21~W2W8!2. ~35!

The functionGM
(4) is periodic inZ with the period 2pL and is

a Green’s function on the manifoldM. The sum can be
calculated explicitly by using the relation

(
2`

`
1

~a1n!21b2 5
p

b

sinh~2pb!

cosh~2pb!2cos~2pa!
. ~36!

Thus one has

GM
(4)~X,X8!5

1

8p2L2b

sinhb

@coshb2cos~z2z8!#
, ~37!

where b5B/L. This Green’s function has a pole atb5z
2z850, that is when the pointsX andX8 coincide. At far
distance,b@L, this Green’s function has asymptotic

GM
(4)~X,X8!;

1

8p2L2b
, ~38!
12402
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and hence it behaves as if the space had one dimension
It is obviously a result of compactification.

In the reduction procedure this creates a technical pr
lem since the integral overw becomes divergent. It is easy t
deal with this problem as follows. Denote

GM
(4,a)~X,X8!5GM

(4,reg)~X,X8!1
1

8p2L2

1

~b21b2!a/2
,

~39!

GM
(4,reg)~X,X8!5

1

8p2L2 F 1

b

sinhb

coshb2cos~z2z8!

2
1

Ab21b2G . ~40!

Here b is any positive number. Fora51, GM
(4,a) does not

depend onb and coincides with Eq.~31!. At largeb the term
GM

(4,reg) has asymptotic behavior;b22.
We also have

E
2`

` dw

~b21b2!a/2
5

1

2Ap

@s21b2# (12a)/2G@~a21!/2#

G~a/2!

;
1

p F 1

a21
1 ln 22

1

2
ln~s21b2!G

1O~a21!. ~41!

Here s25(x2x8)21(y2y8)2. By omitting unimportant
~divergent! constant we regularize the expression for the
tegral. By using the reduction procedure~31! we get

GM
(3)~x,x8!5E

2`

`

dWGM
(4,reg)~X,X8!2

1

16p2L
ln~s21b2!.

~42!

C. Integral representation for the gravitational potential

To obtain the potentialU(r,z) which determines the
black hole metric we need to integrateGM

(3)(x,x8) with re-
spect tox8 along the interval (2M ,M ) at R850 axis. It is
convenient to use the representation~42! and to change the
order of integrals. We use the integral (a.1,0,m,p,2p
,z,p)

E
2m

m dz8

a2cos~z82z!
5

2

Aa221
H arctanFp tanS m1z

2 D G
1pq~m1z2p!

1arctanFp tanS m2z

2 D G
1pq~m2z2p!J , ~43!
5-4
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wherep5A(a11)/(a21). We understand arctan to be th
principal value and includeq functions to get the correc
value over the entire interval2p,z,p. We also change
the parameter of integrationW to w5W/L and take into
account that the integrand is an even function ofw. After
these manipulations we obtain

U~r,z!52
1

pE0

`

dwS U~b,z!

b
2

m

Ab21b2D
1

m

2p
ln~r21b2!, ~44!

where

U~b,z!5V~b,z!1V~b,2z!, ~45!

V~b,z!5arctanFcoshb11

sinhb
tanS m1z

2 D G
1pq~m1z2p!.

Note that nowb which enters Eqs.~44! and ~45! is

b5Aw21r2. ~46!

A representation similar to Eq.~44! can be written for the
Schwarzschild potentialUS

US~r,z!52
1

pE0

`

dw
US~b,z!

b
, ~47!

where

US~b,z!5VS~b,z!1VS~b,2z!, ~48!

VS~b,z!5arctanS m1z

b D .

One can check that this integral really gives expression~27!.
Using these representations we obtain the following

pression for the quantityÛ(z)5U(0,z)2US(0,z) which de-
termines the properties of the event horizon

Û~z!52
1

p
E

0

`

dwS U~w,z!2US~w,z!

w
2

m

Aw211
D .

~49!

To obtain the redshift factoru it is sufficient to calculate
Û(z) for z5m

u5Û~m!. ~50!

D. Series representation for the gravitational potential

For numerical calculations of the gravitational potentialU
and study of its asymptotics near the black hole horizon i
convenient to use another representation forU, namely, its
Fourier decomposition with respect to the periodic variablz.
12402
-
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Note that a functionQ(z/m) which enters the source term
@see Eqs.~7!, ~8!# allows the following Fourier decomposi
tion on the circle:

Q~z/m!5a01 (
k51

`

akcos~kz!, ~51!

where

a05
m

p
, ak5

2

pk
sin~km!. ~52!

Using the Fourier decomposition forU

U~r,z!5U0~r!1 (
k51

`

Uk~r!cos~kz!, ~53!

we obtain the following equations for the radial functio
Uk(r):

d2Uk

dr2 1
1

r

dUk

dr
2k2Uk5ak

d~r!

r
. ~54!

For k.0 the solutions of these equations which are decre
ing at infinity are

Uk~r!52akK0~kr!, ~55!

whereKn(z) is MacDonald function. Fork50 the solution
is

U0~r!5a0ln~r!. ~56!

Thus the gravitational potentialU allows the following series
representation:

U~r,z!5
m

p
ln r22(

k51

`
sin~km!

pk
cos~kz!K0~kr!. ~57!

This representation is very convenient for studying t
asymptotics of the gravitational potential near the horiz
For smallr one has

2K0~kr!; lnS kr

2 D1g, ~58!

whereg'0.57721 is Euler’s constant. Substituting these
ymptotics into Eq.~57! and combining the terms one obtain

U~r,z!;F ln
r

2
1gGQ~z/m!2

m

p S ln
1

2
1g D

1
1

p (
k51

`
ln k

k
@sin@k~m1z!#1sin@k~m2z!##.

~59!

Using the relation~see Eq.~5.5.1.24! in Ref. @20#!
5-5
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(
k51

`
ln k

k
sin~kx!5

x2p

2
~g1 ln 2p!1

p

2
lnU1

p
sin

x

2
G2S x

2p D U
~60!

valid for 0<x,2p, one gets foruzu<m

U~r,z!; ln
r

p
1

m

p
ln~4p!1

1

2
lnU1

p
sin

m1z

2
G2S m1z

2p D U
1

1

2
lnU1

p
sin

m2z

2
G2S m2z

2p D U. ~61!

Using asymptotic~29! of the Schwarzschild potentialUS

near horizon, one can presentÛ(z)5 limr→0@U(r,z)
2US(r,z)# in the regionuzu<m in the form

Û~z!5
m

p
ln~4p!1

1

2
lnF f S m1z

2 D f S m2z

2 D G , ~62!

where the functionf (x) is defined by

f ~x!5
1

p2 x sinxG2S x

p D . ~63!

It has the following properties:

f ~0!51, f S p

2 D5
1

2
, f ~p!50. ~64!

In fact, in the interval 0<x<p it can be approximated by
linear function

f ~x!'12
x

p
~65!

with an accuracy of order of 1%.
Making similar calculations foruzu>m one obtains

U~0,z!5
m

p
ln~4p!1

1

2
lnF f S uzu1m

2 D
f S uzu2m

2 D G1
1

2
ln

uzu2m

uzu1m
.

~66!

An approximate value ofU(0,z) in this region is

U~0,z!'
m

p
ln~4p!1

1

2
lnF @2p2~ uzu1m!#~ uzu2m!

@2p2~ uzu2m!#~ uzu1m!G .
~67!

E. Solutions

To find the gravitational potentialU(r,z) one can use
either its integral representation~44! or the series~57!. We
used both methods. Integrals~44! were evaluated using
MAPLE, while the series~57! were implemented inC code
using fast Fourier transform~FFT! techniques. Both method
give results which agree with high accuracy, but of cou
the C implementation is much more computationally ef
12402
e

cient. The functionV(r,z) was recovered by direct integra
tion of differential equation~3! by finite differencing inZ
direction. The gravitational potentialU(r,z), function
V(r,z), and their equipotential surfaces for two differe
values ofm are shown in Fig. 1.

IV. PROPERTIES OF CS BLACK HOLES

A. Large distance asymptotics

Let us first analyze the asymptotic behavior of the C
metric at large distancer. For this purpose we use the inte
gral representation~44! for U. It is easy to check that the
integrand expression at larger is of order ofO(b22) and
hence the integral is of order ofr21. Thus the ln-term in the
square brackets in Eq.~44! is leading at infinity so that

U~r,z!ur→`;
m

p
ln r. ~68!

Using Eq.~3! we also get

V~r,z!ur→`;
m2

p2 ln r. ~69!

The metric~25! in the asymptotic regionr→` is of the form

ds252r2(m/p)dt21r22(m/p)(12m/p)~dr21dz2!

1r22(m/p)r2df2. ~70!

The proper size of a closed Killing trajectory for the vect
]z is

Cz52pLr2(m/p)(12m/p). ~71!

The metric~70! coincides with the special case (a15a2) of
the Kasner solution@19#

ds252r2a0dt21r2a1dr21r2a2dz21r2a3df2, ~72!

a1115a21a31a0 ,

~a111!25a2
21a3

21a0
2 .

One can rewrite the metric~69! by using the proper-
distance coordinatel. For smallm

l 5
r12m/p

12
m

p

, ~73!

and the metric in the (r,f) sector takes the form

dl21S 12
m

p D 2

l 2df2. ~74!

Thus the metric of the CS black hole has an angle deficitm
at infinity.

The asymptotic form of the metric can be used to det
mine the mass of the system. Letj (t)

m be a timelike Killing
5-6
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FIG. 1. Compactified Schwarzschild black hole solutions form50.5 ~left! andm52.0 ~right!. The surface plots show the gravitation
potentialU(r,z) ~top! and the functionV(r,z) ~bottom!; contours represent equipotential surfaces ofU ~top/red! and V ~bottom/blue!,
correspondingly.
l-
vector andS be a 2D surface lying insidet5const hypersur-
face, then the Komar massm is defined as

m5
1

4pES
j (t)

m;ndsmn . ~75!

For simplicity we chooseS so that t5const andr5r0
5const. For this choice

dsmn5
1

2
d [m

0 dn]
1 r0

112a1dzdf,

jm;n522a0r0
2a021d [m

0 dn]
1 , ~76!

jm;n52a0r0
22a121d0

[md1
n] .

Substituting these expressions into Eq.~75! and taking the
integral we getm5m. Since all our quantities are norma
ized by the radius of compactificationL, we obtain that the
Komar mass of our system isM5Lm.
12402
B. Redshift factor, surface gravity, and proper distance between
black hole poles

Using Eq. ~62!, we obtain for the redshift factoru the
expression

u5
m

p
ln~4p!1

1

2
ln f ~m!. ~77!

Figure 2~left! shows dependence of the redshift factoru on
parameterm. Using the approximation~65! we can write

u'
m

p
ln~4p!1

1

2
lnS 12

m

p D . ~78!

The redshift factoru has maximumu*

u* 5 ln~4p!2
1

2
$11 ln 21 ln@ ln~4p!#%'1.22 ~79!

at

m* 5p$121/@2 ln~4p!#%'2.52. ~80!

For m.m* the function u rapidly falls down, becoming
negative and logarithmically divergent atm5p.
5-7
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FIG. 2. Redshift factoru ~left! and the irreducible massm05m exp(2u) as functions ofm.
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In the same approximation we get the following expre
sions for the irreducible massm0 and the surface gravityk:

m05m exp~2u!'m~4p!2m/pS 12
m

p D 21/2

, ~81!

k5
e22u

4m
'

1

4m
~2p!2(m/p)S 12

m

p D . ~82!

For m→p, they behave asm0→` and k→0. Figure 2
~right! shows the irreducible massm0 as a function ofm.
Another invariant characteristic of the solution is the prop
distance between the ‘‘north pole,’’z5m, and ‘‘south pole,’’
z52m, along a geodesic connecting these poles and ly
outside the black hole. This distancel (m) is

l ~m!52E
m

p

dze2U(0,z)

'2~4p!2m/pE
m

p

dzA~z1m!~2p2z1m!

~z2m!~2p2z2m!

52Ap22m2E~w,k!12mAp1m

p2m
F~w,k!2~p2m!,

~83!

where

w5A12m/p, k5
1

A12~m/p!2
. ~84!

HereF(w,k) andE(w,k) are the elliptic integrals of the firs
and second kind, respectively. In particular one has

l ~0!52p, l ~p!5p/2. ~85!

Figure 3 showsl /(2p) as a function ofm. It might be sur-
prising that in the limitm→p, when the coordinate distanc
Dz between the poles tends to 0, the proper distance betw
them remains finite. This happens because in the same
the surface gravity tends to 0.
12402
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C. Size and shape of the event horizon

The surface area of the distorted horizon~23! written in
units L2 is

A516pm0
2 , ~86!

wherem0 is the irreducible mass~81!. The shape of the ho-
rizon is determined by theshape function

F~z!5Û~z!2u. ~87!

Figure 4~left! shows a plot of exp@F(z)# for several values
of m. By multiplying the 2-metric on the horizondg2 by
(2m0)22 one obtains the metric of the 2-surface which h
the topology of a sphereS2 and the surface area 4p. The
metric describing this distorted sphere is

ds25e2F dz2

m22z2 1e22F~m22z2!
df2

m2 . ~88!

The Gaussian curvature of the metricds2 is K5 1
2 R, where

R is the Ricci scalar curvature. It is given by the expressi

K5e22F(z)$11~m22z2!@F922~F8!2#24zF8%. ~89!

FIG. 3. l /(2p) as a function ofm.
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FIG. 4. The shape function exp@F(z)# ~left! and the Gaussian curvature of the horizonK(z) ~right! for different values ofm.
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The Gauss-Bonnet formula gives

E d2xAsK54p. ~90!

For the unperturbed black holeK51. As a result of defor-
mation, the CS black hole hasK.1 at the poles,z56m,
and K,1 at the ‘‘equatorial plane’’z50. Figure 4~right!,
which showsK(z) for different values ofm, illustrates this
feature. This kind of behavior can be easily understood a
result of self-attraction of the black hole because of the co
pactification of the coordinatez.

Using approximation~65! allows one to obtain simple
analytical expressions for the shape function and the Ga
ian curvature. Equations~62! and ~77! give

F5
1

2
lnF f S m1z

2 D f S m2z

2 D
f ~m!

G'
1

2
lnF11

m22z2

4p~p2m!G .
~91!

Let us write the metricds2 in the form

ds25F~z!dz21
df2

m2F~z!
, ~92!

then in this approximation one has

F~z!'
1

m22z2 1
1

4p2~12m/p!
~93!

while the Gaussian curvature is

K'
16p2~p2m!2@~2p2m!213z2#

@~2p2m!22z2#3 . ~94!

The Gaussian curvature is positive in the intervaluzu,m.
It is interesting to note that the horizon geometry of t

CS black hole coincides~up to a constant factor! with the
geometry on the 2D surface of the horizon of the Euclide
4D Kerr black hole. This fact can be easily checked since
induced 2D geometry of the horizon of the Kerr black hole
~see, e.g., Eq.~3.5.4! in Ref. @18#!
12402
a
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dl25~r 1
2 1a2!F F̃~x!dx21

df2

F̃~x!
G , ~95!

where

F̃~x!5
1

12x2
2b2, b5

a

Ar 1
2 1a2

. ~96!

Here r 15M1AM22a2 gives the position of the event ho
rizon, andM anda are the mass and the rotation parameter
the Kerr black hole. The line element~92!, ~93! is obtained
from the above by coordinate redefinitionz5mx and ana-
lytic continuationa5 ib, with a5(m/2p)(12m/p)21/2.

Denote byl eq the proper length of the equatorial circum
ference, and byl pole the proper length of a closed geodes
passing through both polesuzu5m of the black hole horizon.
Then one has

l eq~m!'2p
A12m/p

12m/~2p!
, ~97!

l pole~m!'4ES im

2pA12m/p
D ,

where E(k) is the complete elliptic integral of the secon
kind. One hasl eq(0)5 l pole(0)52p and the surface is a
round sphere. Form→p the lengthsl eq→0 andl pole→`.

D. Embedding diagrams for a distorted horizon

The metric~92! can be obtained as an induced geome
on a surface of rotationS embedded in a 3-dimensional Eu
clidean space. Let

dl25dh21dr21r 2df2 ~98!

be the metric of the Euclidean space and the surfaceS be
determined by an equationh5h(r ), then the induced metric
on S is

ds25F11S dh

dr D
2Gdr21r 2df2. ~99!
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FIG. 5. Embedding diagrams for the surface of the black hole horizon. By rotating a curve from a family shown at the plot a
horizontal axis one obtains surface isometric to the surface of a black hole described by the metricds2. Different curves correspond to
different values ofm. The largerm the more oblate is the form of the curve.
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By comparing this metric with Eq.~92! we get

r 5
1

AF~z!
, ~100!

S dh

dzD
2

1S dr

dzD
2

5F~z!. ~101!

These equations imply the following differential equation f
h(z):

dh

dz
5AF2

F82

4F3
. ~102!

Figure 5 shows the embedding diagrams for the disto
horizon surfaces of a compactified black hole for differe
values ofm. The larger is the valuem the more oblate is the
surface of the horizon. For largem close top it has a cigar-
like form.

E. µ\p limit

Let us now discuss the properties of the spacetime in
limiting casem→p. This limit can be easily taken in th
series representation~57! for the gravitational potentialU.
Since sin(pk)50 for k.0, only the logarithmic term sur
vives in this limit. ThusU(r,z)5 ln r. Since the limiting
metric is invariant under translations in thez direction, it has
the form of the Kasner solution~70! with m5p and reads

ds252r2dt21dr21dz21df2. ~103!

This is a Rindler metric with two dimensions orthogonal
the acceleration direction being compactified

zP~2p,p!, fP~2p,p!. ~104!

Restoring the dimensionality we can write this metric as

dS252
R2

L2 dT21dR21dZ21L2df2. ~105!

V. DISCUSSION

The obtained results can be summarized as follows. If
size of a black hole is much smaller that the size of comp
tification, its distortion is small. The deformation whic
12402
d
t

e

e
c-

makes the horizon prolated grows with the black hole ma
For large massm>p/2 the black hole deformation become
profound. The pole parts of the horizon, that is parts close
z52m and z5m, attract one another. As a result of th
attraction the Gaussian curvature of regions close to bl
hole poles grows, while the Gaussian curvature in the ‘‘eq
torial’’ region falls down and the surface of the horizon
‘‘flattened down’’ in this region. For large value of the ma
m, the ‘‘flattening’’ effects occur for a wide range of th
parameterz. Such a black hole is reminiscent of a cigar or
part of the cylinder with two sharpened ends.

We did not include any branes in our consideration. Ho
ever, we should note that the surfaceZ50 is a solution of
the Nambu-Goto action for a test brane. This can be ea
seen, as the solution we discussed is symmetric around
surfaceZ50, which implies that its extrinsic curvature van
ishes there. At far distances the induced gravitational field
theZ50 submanifold is asymptotically a solution of vacuu
(211)-dimensional Einstein equations. It is not so for r
gions close to the black hole. This ‘‘violation’’ of the vacuum
(211)-dimensional Einstein equations for the induced m
ric makes the existence of the (211)-dimensional black
hole on the brane possible.

In our work we did not find any indications of instabilit
of a black hole which might be interpreted as connected w
the Gregory-Laflamme instability@22,23#. It may not be sur-
prising since these kinds of instabilities are expected
spacetimes with higher number of dimensions~see, e.g.,
Refs.@21,24–26#!.

On the other hand, a solution describing a black hole i
compactified spacetime may be unstable for a different r
son. The nature of this instability is the following. In ou
setup we fix a radius of compactificationL. In a flat space-
time we can choose parameterL arbitrarily and the energy o
the system, being equal to zero, does not depend on
choice. The situation is different in the presence of a bla
hole. Consider a black hole of a given area, that is with
fixed parameterM0. Since the black hole entropy, which
proportional to the area, remains unchanged for quasistat
ary adiabatic processes, one may consider different state
a black hole with a givenM0 . L plays a role of an indepen
dent parameter, specifying a solution. In particular one h

M05
M ~4p!2M /(pL)

A12M /~pL !
. ~106!
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BLACK HOLES IN A COMPACTIFIED SPACETIME PHYSICAL REVIEW D67, 124025 ~2003!
This relation shows that for fixedM0 the energy of the sys-
temM depends on compactification radiusL. The plot of the
functionM (L) is shown in Fig. 6. ForL5L* 51.345M0 the
massM has maximumM5M* 53.3877M0. At the corre-
sponding valuem* 52.52 the functionu(m) has its maxi-
mum. Thus if one starts with a system withL.L* then a
positive variation of parameterL will decrease the energy o

FIG. 6. M as a function ofL for fixed M0.
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12402
the system. In this case the lowest energy state corresp
to L→`, so that a stable solution will be an isolate
Schwarzschild black hole in an empty spacetime without a
compactifications. In the opposite caseL,L* the energy
decreases whenL→0. In this limit M'pL and hence it
corresponds to a limiting solutionm→p. The limiting met-
ric is given by Eq.~105!. The corresponding spacetime is
2D torus compactification of the Rindler metric.

This argument, based on the energy consideration, i
cates a possible instability of a compactified spacetime w
a black hole with respect to compactified dimension eit
‘‘unwrapping’’ completely or being ‘‘swallowed’’ by a black
hole. While ‘‘unwrapping’’ of the extra dimension may b
prevented by the usual stabilization mechanisms, the o
instability regime might not be so benign. It is interesting
check whether this conjecture is correct by standard per
bation analysis.
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