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Complex Kerr geometry and nonstationary Kerr solutions

Alexander Burinskii
Gravity Research Group, NSI Russian Academy of Sciences, B. Tulskaya 52, 115191 Moscow, Russia

~Received 5 January 2003; published 24 June 2003!

In the frame of the Kerr-Schild approach, we consider the complex structure of Kerr geometry which is
determined by a complex world line of a complex source. The real Kerr geometry is represented as a real slice
of this complex structure. The Kerr geometry is generalized to the nonstationary case when the current
geometry is determined by a retarded time and is defined by a retarded-time construction via a given complex
world line of source. A general exact solution corresponding to arbitrary motion of a spinning source is
obtained. The acceleration of the source is accompanied by a lightlike radiation along the principal null
congruence. It generalizes to the rotating case, the known Kinnersley class of ‘‘photon rocket’’ solutions.
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I. INTRODUCTION

The complex representation of Kerr geometry, initiated
Newman@1#, has been found to be useful in various pro
lems @2–5#. When considered in the Newman-Penrose f
malism@6,7#, it allows one to get a retarded-time descripti
of the nonstationary Maxwell fields and twisting algebr
ically special solutions of the linearized Einstein equatio
Twisting solutions are represented in this approach
retarded-time fields, which are similar to Lienard-Wiecha
fields. However, they are generated by acomplexsource
moving along a complex world line x0(t) in complex
Minkowski space-timeCM4. The light cones emanatin
from the word line of a source usually play a central role
retarded-time constructions where the fields are defined
the values of a retarded time. In the case of complex wo
line, the corresponding light cone has to be complex wh
complicates the retarded-time scheme.

In this paper, we use the Kerr-Schild approach to the co
plex representation of Kerr geometry, which is based on
Kerr-Schild formalism and the Kerr theorem@8#. This ap-
proach has an advantage in this problem since the K
Schild form of the metricsgmn5hmn22hkmkn contains the
auxiliary Minkowski backgroundhmn, which attaches an ex
act meaning to the complex world linex0(t)PCM4 in
curved Kerr-Schild backgrounds. In addition, the Kerr the
rem allows us to get an explicit representation for the met
the principal null congruence~PNC!, formed by a vector
field km, and the location of the singularity and also to e
press them in asymptotically flat Cartesian coordinates.

This approach allows us to get a class of the exact n
stationary generalizations of the Kerr solution which are
termined by the complex retarded-time construction.

The basic ideas of this approach were published in@5,9–
11#. In @5# this retarded-time construction was applied to d
scribe the boosted Kerr solution. However, application
this approach to accelerating twisting sources encoun
hard obstacles connected with the problem of real the s
In this paper we find the way to solve this problem a
present the class of exact nonstationary Kerr solutions.

For nonrotating sources, such solutions were obtained
lier by Kinnersley@12#. The Kinnersley solutions are radia
tive, and by acceleration of the source they are accompa
by null radiation. This property is present in our solutio
0556-2821/2003/67~12!/124024~11!/$20.00 67 1240
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also and leads to the necessity of giving an interpretation
the origin of this radiation, which enforces a return to the o
problem of the source of the Kerr and Kerr-Newman so
tions.

The main peculiarity of the Kerr geometry is the twistin
geodesic and shear-free PNC. Such congruences are d
mined in Minkowski space-time~parametrized by the nul
Cartesian coordinatesu,v,z,z̄) by the Kerr theorem@7,13–
15# via the solutionY(x) of the equationF50, where
F(Y,l1 ,l2) is an arbitrary analytic function of the projec
tive twistor variables

Y, l15z2Yv, l25u1Yz̄. ~1!

In twistor notation @14#, these variables are defined a
$1,Y,l1 ,l2%5Za/Z0, where Za5$mA, xnsnḂBmB%. One
sees thatY is the ratio of two components of a spinor corr
sponding to the null direction, which is tangent to a null r
of the PNC, while the coordinates$l1 ,l2% are connected to
a shift of this ray from the origin and can be determined
any pointxn lying on this ray. Therefore, these coordinat
fix the position and direction of a null ray in Minkowsk
spaceM4, in accordance with the geometrical meaning o
null twistor, and the scalar functionY(x) determines the null
congruence as a field of null directions inM4. The geometri-
cal meaning of the twistor coordinates is extended toCM4,
where they fix complex null planes, and the real null rays
congruence belong to the intersection of the complex con
gate null planes.

The retarded-time construction is usually based on
space-time links provided by light cones. When consider
the complex retarded-time construction, we set up a link
tween the generating PNC functionF and the world line of a
complex source. In the problem considered there appears
obstacle that the real light cone does not have intersect
with a complex world line. InCM4 light cones split into
families of ‘‘left’’ and ‘‘right’’ complex null planes, which
take over the role of the light cone in the complex retard
time scheme. Each of the ‘‘left’’ null planes is determined
the fixed values of the coordinates$Y,l1 ,l2% and represents
a geometrical realization of the twistor@14#.

In Sec. II we recollect the basic properties of Kerr geo
etry and give a nonformal treatment clarifying its compl
©2003 The American Physical Society24-1
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structure. A consequent treatment based on the Kerr-Sc
formalism is started in Sec. III.

In Appendix A we give the basic necessary relations of
Kerr-Schild formalism, and in Appendix B we give a pro
of the Kerr theorem adapted to the Kerr-Schild formalis
During the proof we obtain some relations that are neces
for subsequent treatment of the real slice procedure descr
in Sec. III. It allows us to integrate the Einstein field equ
tions, which is performed in Sec. IV.

II. COMPLEX STRUCTURE OF KERR GEOMETRY AND
RELATED RETARDED-TIME CONSTRUCTION

A. Appel source and main peculiarities of the real and complex
Kerr geometry

The Kerr singular ring is one of the most remarkabl
peculiarities of the Kerr solution. It is a branch line of spa
on two sheets: ‘‘negative’’ and ‘‘positive’’ where the field
change their signs and directions. There exist Newton
Coulomb analogues of the Kerr solution possessing the K
singular ring. This allows one to understand the origin of t
ring as well as the complex origin of the Kerr source. T
corresponding Coulomb solution was obtained by Appe
1887 by the method of complex shifts@17#.

A pointlike charge e, placed on the complexz axis
(x0 ,y0 ,z0)5(0,0,ia), gives the real Appel potential

fa5Ree/ r̃ . ~2!

Here r̃ is in fact the Kerr complex radial coordinater̃
5PZ215r 1 ia cosu, wherer andu are the oblate spheroi
dal coordinates. It may be expressed in the usual rectang
Cartesian coordinatesx,y,z,t as

r̃ 5@~x2x0!21~y2y0!21~z2z0!2#1/2

5@x21y21~z2 ia !2#1/2. ~3!

The singular line of the solution corresponds tor 5cosu
50, and it is seen that the Appel potentialfa is singular at
the ring z50, x21y25a2. It was shown that this ring is a
branch line of space-time for two sheets, similar to the pr
erties of the Kerr singular ring. Appel potential describ
exactly the electromagnetic e.m. field of the Kerr-Newm
solution @18#.

If the Appel source is shifted to a complex point of spa
(x0 ,y0 ,z0)→(0,0,ia), it can be considered as a mysterio
‘‘particle’’ propagating along acomplex world-line x0

m(t) in
CM4 and parametrized by a complex timet. The complex
source of the Kerr-Newman solution has just the same or
@1,3# and can be described by means of a complex retard
time construction for the Kerr geometry.1

1The objects described by the complex world lines occupy
intermediate position between particle and string. Like a string t
form two-dimensional surfaces or world sheets in space-time@3,19#.
In many respects this source is similar to the ‘‘mysterious’’N52
complex string of superstring theory@19#.
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The Kerr twisting PNCis the second remarkable structu
of Kerr geometry. It is described by a vector fieldkm which
determines the Kerr-Schild ansatz for the metric

gmn5hmn12hkmkn , ~4!

wherehmn is an auxiliary Minkowski space-time and

h5
mr2e2/2

r 21a2 cos2u
. ~5!

This is a remarkably simple form showing that all the co
plication of the Kerr solution is included in the form of th
field km(x) which is tangent to the Kerr PNC. This form
shows also that the metric is singular atr 5cosu50, which
are the focal points of the oblate spheroidal coordinate s
tem.

The field km is null with respect tohmn as well as with
respect to the metricgmn . The Kerr singular ring and a par
of the Kerr PNC are shown in Fig. 1. The Kerr PNC consi
of the linear generators of the surfacesu5const. The region
shown in Fig. 1z,0 corresponds to a ‘‘negative’’ sheet o
space (r ,0) where we set the null rays to be ‘‘in’’-going.

The twisting vortex of the null rays propagates throu
the singular ringr 5cosu50 and get ‘‘out’’ on the ‘‘positive’’
sheet of space (z.0). Indeed, the Kerr congruence cove
the space-time twice, and this picture shows only the hal
the PNC corresponding to 0.u.p/2. It has to be completed
by the part forp/2.u.p which is described by anothe
system of linear generators~having opposite twist!. The two
PNC directions for each pointxmPM4 correspond to the
known twofold quality of the Kerr geometry and to the alg
braically degenerate metrics of typeD.

As is explicitly seen from the expression forh, the Kerr
gravitational field has two-valuedness,h(r )Þh(2r ), and so
also do the other fields on the Kerr background. The ob
coordinate system turns out to be very useful since it a

n
y

FIG. 1. The Kerr singular ring and 3D section of the Kerr pri
cipal null congruence. The singular ring is a branch line of spa
and the PNC propagates from the ‘‘negative’’ sheet of the K
space to the ‘‘positive ’’ one, covering the space-time twice.
4-2
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covers the space twice, forr .0 andr ,0, with the branch
line on the Kerr singular ring.

The appearance of the twisting Kerr congruence may
understood as a track of the null planes of the family
complex light cones emanating from the points of the co
plex world line x0

m(t) @11,3# in the retarded-time construc
tion. It is very instructive to consider the following splittin
of the complex light cones.

B. Splitting of the complex light cone

The complex light coneK with the vertex at some poin
x0, written in spinor form

K5$x:x5x0
m~t!1c L

AsAȦ
m

c̃ R
Ȧ %, ~6!

may be split into two families of null planes: ‘‘left’’ (cL

5const;c̃R5variable) and ‘‘right’’ (c̃R5const;cL
5variable). These are the only two-dimensional planes
are wholly contained in the complex null cone. The rays
the principal null congruence of the Kerr geometry are
tracks of these complex null planes~right or left! on the real
slice of Minkowski space.

The light cone equation in the Kerr-Schild metric coi
cides with the corresponding equation in Minkowski spa
because the null directionskm are null in both metricsgmn

andhmn .
In the null Cartesian coordinates

21/2z5x1 iy , 21/2z̄5x2 iy ,

21/2u5z1t, 21/2v5z2t ~7!

the light cone equation has the formzz̄1uv50. As usual, in
a complex extension toCM4 the coordinatesu andv have to
be considered as complex and the coordinatesz and z̄ as
independent. On the real section, inM4, the coordinatesu
andv take real values andz and z̄ are complex conjugate.

The known splitting of the light cone on the complex nu
planes has a close connection to spinors and twistors.
introducing the projective spinor parameterY5c1/c0 the
equation of a complex light cone with the vertex at the po
x0,

~z2z0!~ z̄2 z̄0!52~u2u0!~v2v0!, ~8!

splits into two linear equations2

z2z05Y~v2v0!, ~9!

2Y~ z̄2 z̄0!5~u2u0! ~10!

describing the ‘‘left’’ complex null planes~the null rays in
the real space!. Another splitting

2It is a generalization of the Veblen and Ruse construction@20,21#
which has been used for the geometrical representation of spin
12402
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2Ỹ~z2z0!5~u2u0!, ~11!

~ z̄2 z̄0!5Ỹ~v2v0!, ~12!

gives the ‘‘right’’ complex null planes.
Thus, the equations of the ‘‘left’’ null planes~10! can be

written in terms of the three parameters

Y, l15z2Yv, l25u1Yz̄, ~13!

as follows:

l15l1
0 , l25l2

0 , ~14!

where

l1
05z02Yv0 , l2

05u01Yz̄0 . ~15!

Denote the values of these parameters at the pointx0. These
three parameters are the projective twistor variables and
important for further consideration since the Kerr theorem
formulated in terms of these parameters. The above split
of the complex light cone equation shows their origin expl
itly. Denote also that in terms of the Kerr-Schild null tetra

e15dz2Ydv, e25dz̄2Ȳdv,

e35du1Ȳdz1Ydz̄2YȲdv,

e45dv1he3, ~16!

the projective twistor parameters take the form

l15xmem
1 ,

l25xm~em
3 2Ȳem

1 !, ~17!

and correspondingly

l1
05x0

mem
1 ,

l2
05x0

m~em
3 2Ȳem

1 !. ~18!

The ‘‘left’’ complex null planes of the complex light cone a
some pointx0 can be expressed in terms of the tetrad
follows:

xL5x0~t!1ae11be3, ~19!

and the null plane equations~14! follow then from Eq.~19!
and the tetrad scalar productse1mem

1 5e1mem
3 5e3mem

3 50.
Similar relations are valid also for the ‘‘right’’ null plane
with the replacemente1→e2.

The ‘‘left’’ null planes of the complex light cones form
complex Kerr congruence which generates all the rays of
principal null congruence on the real space. The ray w
polar directionu,f is the real track of the ‘‘left’’ plane cor-
responding toY5expif tan(u/2) and belonging to the con
that is placed at the pointx0 corresponding tos5a cos(u).
The parameters5Imt has a meaning only in the range
2a<s<a where the cones have real slices. Thus, the cors.
4-3
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plex world line x0(t,s) represents a restricted two
dimensional surface or strip, in complex Minkowski spa
and is really a world sheet.3

The Kerr congruence arises as the real slice of the fam
of the ‘‘left’’ null planes (Y5const) of the complex light
cones which vertices lie on the complex world linex0(t).

The Kerr theorem can be linked to this retarded-time c
struction.

III. KERR THEOREM AND THE RETARDED-TIME
CONSTRUCTION

A. The Kerr theorem

The traditional formulation of the Kerr theorem is follow
ing.

Any geodesic and shear-free null congruence
Minkowski space is defined by a functionY(x) which is a
solution of the equation

F50, ~20!

where F(l1 ,l2 ,Y) is an arbitrary analytic function of the
projective twistor coordinates

Y, l15z2Yv, l25u1Yz̄. ~21!

The congruence is determined then by the vector field

e35du1Ȳdz1Ydz̄2YȲdv5Pkmdxm ~22!

in the null Cartesian coordinatesu,v,z̄,z.4

In the Kerr-Schild backgrounds the Kerr theorem acqui
a broader content@8,9,11#. It allows one to obtain the posi
tion of singular lines, caustics of the PNC, as a solution
the system of equations

F50, dF/dY50, ~23!

and to determine some important parameters of the co
sponding solutions:

r̃ 52dF/dY ~24!

and

P5]l1
F2Ȳ]l2

F. ~25!

The parameterr̃ characterizes a complex radial distance, a
for the stationary Kerr solution it is a typical complex com
bination r̃ 5r 1 ia cosu. The parameterP is connected with
the boost of the source.

3It may be considered as a complex open string with a Euclid

parametrizationt5t1 is,t̄5t2 is, and with end pointsx0(t,
6a) @3,19#.

4The fieldkm is a normalized form ofem
3 with km Reẋ0

m51.
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The proof of the Kerr theorem in the extended versi
adapted to the Kerr-Schild formalism is given in Append
B. Some basic relations of the Kerr-Schild formalism a
given in Appendix A.

Working in CM4 one has to considerY andȲ functionally
independent, as well as the null coordinatesz and z̄. The
coordinatesu andv and the congruence turn out to be com
plex. The corresponding complex null tetrad~A1! may be
considered as a basis ofCM4. The Kerr theorem determine
in this case only the ‘‘left’’ complex structure—the functio
F(Y). The real congruence appears as an intersection w
complex conjugate ‘‘right’’ structure.

B. Quadratic function F „Y… and interpretation of parameters

It is instructive to consider first the stationary case. S
tionary congruences having Kerr-like singularities contain
in a bounded region were considered in@27,10,16#. It was
shown that in this case the functionF must be at most qua
dratic in Y,

F[a01a1Y1a2Y21~qY1c!l12~pY1q̄!l2 , ~26!

where the coefficientsc and p are real constants an
a0 ,a1 ,a2 ,q,q̄, are complex constants. The Killing vector o
the solution is determined as

K̂5c]u1q̄]z1q]z̄2p]v . ~27!

Writing the functionF in the form

F5AY21BY1C, ~28!

one can find two solutions of the equationF50 for the func-
tion Y(x):

Y1,25~2B6D!/2A, ~29!

whereD5(B224AC)1/2.
On the other hand, from Eq.~24!,

r̃ 52]F/]Y522AY2B, ~30!

and consequently

r̃ 5PZ2157D. ~31!

These two roots reflect the known twofoldequality of t
Kerr geometry. They correspond to two different directio
of congruence on positive and negative sheets of the K
space-time. The expression~25! yields

P5pYȲ1q̄Ȳ1qY1c. ~32!

C. Link to the complex world line of the source

The stationary and boosted Kerr geometries are descr
by a straight complex world line with a real three-velocityvW
in CM4:

x0
m~t!5x0

m~0!1jmt; jm5~1,vW !. ~33!

n

4-4
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The gauge of the complex parametert is chosen in such a
way that Ret corresponds to the real timet.

The functionF, quadratic inY, can be expressed in thi
case in the form@27,10,11,5#

F[~l12l1
0!K̂l22~l22l2

0!K̂l1 , ~34!

where the twistor componentsl1 ,l2 with zero indices de-
note their values on the points of the complex world li
x0(t), Eq. ~15!, andK̂ is a Killing vector of the solution

K̂5]tx0
m~t!]m5jm]m . ~35!

Application of K̂ to l1 andl2 yields the expressions

K̂l15]tx0
m~t!em

1 ,

K̂l25]tx0
m~em

3 2Ȳem
1 !. ~36!

From Eq.~25! one obtains in this case

P5K̂r5]tx0
m~t!em

3 , ~37!

where

r5l21Ȳl15xmem
3 . ~38!

Comparing Eqs.~37! and ~32! one obtains the correspon
dence in terms ofp,c,q,q̄,

K̂l15pY1q̄, K̂l25qY1c, ~39!

which allows one to set the relation between the parame
p, c, q, q̄ , andjm, showing that these parameters are co
nected with the boost of the source.

The complex initial position of the complex world lin
x0

m(0) in Eq. ~33! gives six parameters for the solutio
which are connected to the coefficientsa0 ,a1a2. It can be
decomposed asxW0(0)5cW1 idW , wherecW anddW are real three-
vectors with respect to the spaceO(3) rotation. The real par
cW defines the initial position of the source, and the imagin
partdW defines the value and direction of the angular mom
tum ~or the size and orientation of a singular ring!.

It can be easily shown that in the rest frame, whenvW

50, dW 5dW 0, the singular ring lies in the plane orthogonal todW

and has a radiusa5udW 0u. The corresponding angular mo
mentum isJW5mdW 0 .

D. L projection and complex retarded-time parameter

In the form ~26! all the coefficients are constant whi
the form~34! has an extra explicit linear dependence ont via
the terms l1

0@x0(t)# and l2
0@x0(t)#. However, this

dependence is really absent. As a consequence
the relations l1

0@x0(t)#5l1
0@x0(0)#1tK̂l1 , l2

0@x0(t)#

5l2
0@x0(0)#1tK̂l2, the terms proportional tot cancel and

these forms are equivalent.
12402
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The parametert may be defined for each pointx of the
Kerr space-time and plays the role of a complex retard
time parameter. Its value for a given pointx may be defined
by L projection, using the solutionY(x) and forming the
twistor parametersl1 ,l2 which fix a left null plane.

L projection of the pointx on the complex world line
x0(t) is determined by the condition

~l12l1
0!uL50, ~l22l2

0!uL50, ~40!

where the notationuL means that the pointsx andx0(t) are
synchronized by the left null plane~19!,

x2x0~tL!5ae11be3. ~41!

The condition~40! in representation~18! has the form

~xm2x0
m!em

1 uL50, ~xm2x0
m!~em

3 2Ȳem
1 !uL50, ~42!

which shows that the pointsxm andx0
m are connected by the

left null plane spanned by the null vectorse1 ande3.
This left null plane belongs simultaneously to the ‘‘in’

fold of the light cone connected to the pointx and to the
‘‘out’’-fold of the light cone emanating from a point of the
complex world linex0. The point of intersection of this plan
with the complex world linex0(t) gives the value of the
‘‘left’’ retarded time tL , which is in fact a complex scala
function on the~complex! space-timetL(x).

By using the null plane equation~40! one can expressD
of Eq. ~31! in the form

DuL5~u2u0!v̇01~z2z0!ż̄01~ z̄2 z̄0!ż01~v2v0!u̇0

5
1

2
]t~x2x0!25tL2t1vW RW , ~43!

where

vW 5xẆ0, RW 5xW2xW0 . ~44!

It gives a retarded-advanced-time equation:

t5t7 r̃ 1vW RW , ~45!

and a simple expression for the solutionsY(x):

Y15@~u2u0!v̇01~z2z0!ż̄0#/@~v2v0!ż̄02~ z̄2 z̄0!v̇0#

~46!

and

Y25@~u2u0!ż02~z2z0!u̇0#/@~u2u0!v̇01~z2z0!ż̄0#.

~47!

For the stationary Kerr solutionr̃ 5r 1 ia cosu, and one sees
that the second rootY2(x) corresponds to a transfer to th
negative sheet of the metric:r→2r , RW →2RW , with a simul-
taneous complex conjugationia→2 ia.

Introducing the corresponding operations,
4-5
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P: r→2r , RW →2RW , ~48!

C: x0→ x̄0 , ~49!

and also the transfer ‘‘out’’→‘‘in,’’

T: t2t→t2t. ~50!

One can see that the roots and corresponding Kerr con
ences areCPT invariant.

E. Nonstationary case: Real slice

In the nonstationary case, this construction acquires n
peculiarities.

~i! The coefficients of the functionF turn out to be com-
plex variables depending on the complex retarded-time
rameter;

~ii ! ]tx0
m5jm can take complex values, which implie

complex values for the functionP and was an obstacle fo
obtaining the real solutions in the previous investigat
@11#; and

~iii ! K is no longer a Killing vector.
To form the real slice of space-time, we have to consid

along with the ‘‘left’’ complex structure generated by
‘‘left’’ complex world line x0, parameterY, and the left null
planes, an independent ‘‘right’’ structure with the‘‘right
complex world line x̄0, parameterȲ, and the right null
planes, spanned bye2 ande3. These structures can be co
sidered as functionally independent inCM4, but they have to
be complex conjugate on the real slice of space-time.

First, note that for a real point of space-timex and for the
corresponding real null directione3, the values of the func-
tion

r~x!5xmem
3 ~x! ~51!

are real. Next, one can determine the values ofr at the points
of the left and right complex world linesx0

m and x̄0
m by theL

andR projections

rL~x0!5x0
mem

3 ~x!uL ~52!

and

rR~ x̄0!5 x̄0
mem

3 ~x!uR . ~53!

For the ‘‘right’’ complex structure, the pointsx andx̄0( t̄) are
to be synchronized by the right null planex2 x̄0( t̄R)5ae2

1be3. As a consequence of the conditionse1mem
3 5e3mem

3

50, we obtain

rL~x0!5x0
mem

3 ~x!uL5r~x!. ~54!

So long as the parameterr(x) is real, the parameterrL(x0)
will be real, too. Similarly,

rR~ x̄0!5 x̄0
mem

3 ~x!uR5r~x!, ~55!

and consequently
12402
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rL~x0!5r~x!5rR~ x̄0!. ~56!

By using Eqs.~18! and ~51! one obtains

r5l21Ȳl1 . ~57!

Since theL projection~40! determines the values of the le
retarded-time parametertL5(t01 is)uL , the real functionr
acquires an extra dependence on the retarded-time param
tL . It should be noted that the real and imaginary parts
tuL are not independent because of the constraint causedL
projection.

This means that the real functionsr andr0 turn out to be
functions of the real retarded-time parametert05RetL ,
while l1

0 andl2
0 can also depend ons.

These parameters are constant on the left null plan
which yields the relations

~suL!,25~suL!,450, ~ t0uL!,25~ t0uL!,450. ~58!

Similar to the stationary case considered above, we s
restrict the functionF by the expression quadratic inY,

F[~l12l1
0!K22~l22l2

0!K1 , ~59!

where the functionsK1 andK2 are linear inY and depend on
the retarded timet0. It has to lead to the form~26! with the
coefficients depending on the retarded time.

Let us assume that the relationF(Y,t0)50 holds for the
retarded-time evolution]F/]t0uL50. It yields

]F

]t0
5K1] t0

l2
02K2] t0

l1
01~l12l1

0!] t0
K22~l22l2

0!] t0
K1

50. ~60!

As a consequence ofL projection the last two terms cance
and one obtains

~]F/]t0!uL5~K1] t0
l2

02K2] t0
l1

0!uL50, ~61!

which is provided by

K1~ t0!5] t0
l1

0 , K2~ t0!5] t0
l2

0 . ~62!

In the tetrad representation~18! it takes the form

K15] t0
x0

mem
1 , K25] t0

x0
m~em

3 2Ȳem
1 !. ~63!

As a consequence of the relation~25!, one obtains

P5ȲK11K2 , ~64!

which yields for the functionP the real expression

P5] t0
~x0

mem
3 !uL5] t0

rL . ~65!

It is seen thatr(t0)5rL(t0) plays the role of a potential fo
P, similarly to some nonstationary solutions presented in@7#.

It seems that the extra dependence of the functionF on
the nonanalytic retarded-time parameterst0 contradicts the
4-6
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Kerr theorem; however, the nonanalytic part disappears
the analytic dependence onY,l 1 ,l 2 is reconstructed byL
projection. This is explicitly seen for the quadratic form~59!
with coefficients given by Eq.~62!. Indeed, direct differen-
tiation of this form yields the expression

dY5ae11be31cdt0 , ~66!

wherec5(l12l1
0)] t0

K22(l22l2
0)] t0

K1. By L projection

one hascuL50 and the nonanalytic termcdt0 cancels.
Therefore, the differential of the functionY(x) by L projec-
tion satisfies the geodesic and shear-free conditions~B1! pro-
vided by the Kerr theorem. Note that all thereal retarded-
time derivatives on the real space-time are nonanalytic
have to involve the conjugate right complex structure.
particular, the expressions~63! acquire the form

K15em
1 Reẋ0

m , K25~em
3 2Ȳem

1 !Reẋ0
m , ~67!

whereẋ0
m5] t0

x0
m .

IV. SOLUTION OF THE FIELD EQUATIONS

We are now able to obtain a general class of accelera
radiating solutions representing arbitrary nonstationary g
eralizations of the Kerr solution. For simplicity, we shall a
sume that there is no electromagnetic field. As in the Kinn
sley case, the null radiation is described by an incohe
flow of lightlike particles in thee3 direction. The solution of
the field equations is similar to the treatment given for
Kerr-Schild form of the metric in5 @8#

In particular, we have

R245R225R4450. ~68!

If the electromagnetic field is zero we also have

R125R3450. ~69!

The equation

h,4412~Z1Z̄!h,412ZZ̄h50, ~70!

which follows from Eq.~69!, admits the solutions

h5M ~Z1Z̄!/2, ~71!

whereM is a real function, obeying the conditionsM ,450.
Next, the equation

R2350 ~72!

acquires the form

M ,223Z21Z̄Y,3M50. ~73!

The last gravitational field equationR3352P33[2kT33
takes the form

5There are no changes up to Eq.~5.50! of this work.
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DM5Z21Z̄21P33/2, ~74!

where

D5]32Z21Y,3]12Z̄21Ȳ,3]2 , ~75!

which corresponds to the null radiation in the formkTmn

5P33em
3 en

3 .
To integrate Eq.~73! we use the relation~B10! of corol-

lary 1 and obtain the equation

~ logM P3!,250, ~76!

which has the general solution

M5m/P3, ~77!

where

m,45m,250. ~78!

On the real slice the functionsm and P depend on the re-
tarded timet0. The action of the operatorD on the variables
Y, Ȳ, andr is

DY5DȲ50, Dr51. ~79!

From these relations and Eq.~65!, we have Dr
5]r/]t0Dt05PDt051, which yields

Dt05P21. ~80!

SinceM is also a function ofY,Ȳ, and t0, the last equation
~74! takes the form

] t0
M5PZ21Z̄21P33/2. ~81!

It is not really a field equation but a definition of the stres
energy tensorkTm

n 5P33em
3 e3n corresponding to the null ra

diation. Substituting Eq.~77! one obtains two terms:

P335
1

P2u r̃ u2
@26m~] t0

log P!12] t0
m#. ~82!

The first term, proportional to] t0
log P, is connected with the

acceleration. The second term, proportional to] t0
m, de-

scribes the loss of mass by radiation corresponding to
Vaidia ‘‘shining star’’ solution@7,22,23#.

The resulting metric has the form

gmn5hmn1~m/P3!~Z1Z̄!em
3 en

3 . ~83!

Normalizinge3 by introducingkm5e3m/P, one has

ẋ0
mkm51, ~84!

and usingr̃ 5PZ21 we simplify the expressions for the me
ric and stress-energy tensor.

Let us summarize the solutions we have obtained. T
metric is
4-7
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gmn5hmn1m~ r̃ 211 r̄̃ 21!kmkn , ~85!

and the radiation is

kTm
n 5Fkmkn, ~86!

where

F5
1

u r̃ u2
@26m~] t0

log P!12] t0
m#. ~87!

The vector fieldkm is defined by

kmdxm5e3/P5P21~du1Ȳdz1Ydz̄2YȲdv !. ~88!

The function Y(x) is given in terms of the coordinate
u,v,z,z̄, by the equationF(Y)5AY21BY1C50, where
the coefficientsA,B,C are determined by decomposition
the function

F[~l12l1
0!K22~l22l2

0!K1 , ~89!

andP is given by

P~ t0!5K21ȲK15em
3 Reẋ0

m , ~90!

where

l15z2Yv, l25u1Yz̄, ~91!

and

l1
05z02Yv0 , l2

05u01Yz̄0 ~92!

are the values of these variables on the complex world l
and

K15em
1 Reẋ 0

m , K25~em
3 2Ȳem

1 !Reẋ0
m . ~93!

The complex radial coordinate is given by

r̃ 52dF/dY522AY2B. ~94!

The coefficientsA,B,C, the functionsK1 and K2, and the
parameters of the functionP are determined by a given com
plex world linex0

m(t)5$u0(t),v0(t),z0(t),z̄0(t)% and have
a current dependence on the retarded timetuL which is de-
termined byL projection on the given complex world line a
a root of the left null plane equation

l15l1
0 , l25l2

0 . ~95!

Solution of these equations has to be performed for all po
of space-time in the region of interest. This is a nonline
problem with many unknown functions. In the general cas
needs a large body of numerical computations with sub
quent iterative refinement. For the beginning of the iterat
process a starting ‘‘point’’ is necessary, which gives an init
approximation. To obtain it the analytical solutions in t
local regions of short distancesu r̃ u;ut2tu! ẋ0

mkm / ẍ0
mkm can
12402
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be used since all the unknown parameters~for exclusion of
radiation! are determined by the first derivative of the com
plex world line and the nonlinearity caused by acceleration
negligible here. Having at hand the initial fieldY(x), one
can use the following iterative loop scheme of computati

x→Y~x!→$l1 ,l2 ,r%→$t,x0 ,l1
0 ,l2

0%→$P,K1 ,K2%

→F~Y!→$Y~x!,e3%→cycle loop. ~96!

This iterative procedure is needed to refine the data and c
out a progressive extension of the region. The obtained lo
parametersY,K1 ,K2 ,l1

0 ,l2
0 ,A,B,C,F,P,tuL can be imme-

diately extendedalong the raysof the PNC from short dis-
tances to large ones, which allows one to reduce consi
ably the necessary body of computations.

The following example is instructive since it shows th
some of the parameters can be determined analytically; h
ever, an essential nonlinearity is retained which demands
numerical computations.

Example

Let us consider a circular motion of the source in t
(x,y) plane with the direction of angular momentumJW

5maW along thez axis. This example is interesting for astro
physical applications and as a model of circular motion
polarized spinning particles in accelerators. For the b
cases one can assumeuau,ubu. The corresponding comple
world line will be

x0
m~t!5~t,b cosvt0 ,b sinvt0 ,ia !, t5t01 is. ~97!

In null coordinatesu,v,z,z̄ it takes the form

x0~t!5221/2~ ia1t,ia2t,beivt0,be2 ivt0!, ~98!

and we have

ẋ0~t!5221/2~1,21,ibveivt0,2 ibve2 ivt0!. ~99!

The expression forr0 is

r05221/2@t~11YȲ!1b~Ȳeivt01Ye2 ivt0!1 ia~12YȲ!#.

~100!

On the left null plane it has to be real, which leads to

suL5a~12YȲ!/~11YȲ! ~101!

and

r0uL5221/2@ t0~11YȲ!1b~Ȳeivt01Ye2 ivt0!# ,
~102!

and yields

P5 ṙ0uL5221/2~11YȲ!1 i221/2vb~Ȳeivt02Ye2 ivt0!.

~103!

One can also obtain
4-8
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l1
05221/2@beivt01Y~tL2 ia !#,

l2
05221/2@Ybe2 ivt01~tL1 ia !#, ~104!

and

K15221/2@ ibveivt01Y#, K25221/2@12Yibve2 ivt0#.

~105!

The coefficients of the functionF5AY21BY1C take the
form

A5221/2$ ibve2 ivt0@v2221/2~ ia2tL!#

2@ z̄2221/2be2 ivt0#%, ~106!

B52221/2$ ibve2 ivt0@z2221/2be2 ivt0#1 ibveivt0

3@ z̄2221/2beivt0#1~u1v221/2ia !%, ~107!

C5221/2$2 ibveivt0@u2221/2~ ia1tL!#

1@z2221/2beivt0#%. ~108!

However, since these coefficients depend on the param
s5ImtL , which is determined byL projection as a function
of Y, the equationF50 turns out to be nonlinear. The itera
tive procedure is necessary for its solution. The depende
of A,B,C on s has the factorbv. The casebv!1 corre-
sponds to nonrelativistic motion. The dependence ons is
weak whenbv!uYu;1, but grows whenbv;uYu or bv
;u1/Yu. Neglectings in the equationF50, one can obtain
the analytical solutionY(x), which can be used as a firs
approximation. Note also that in the distant zone the role
the rotation parametera becomes weak and the simpler Kin
nersley solution can be used for correction of the parame

Transfer to the Kinnersley solution

For the twist-free, nonrotating Kinnersley case the wo

line is real, Imx050, and the radial distancesr̃ 5 r̄̃ 5r and
the ‘‘right’’ and ‘‘left’’ retarded-time parameters coincidetL
5tR5t0. The retarded-time equation following from E
~45! can be represented in the form

r̃ 52~ t2t0!1vW RW 5~xm2x0
m!ẋ0m . ~109!

It turns out to be real, and in terms of the Kinnersley para
eterssm5xm2x0

m it yields the relation

r̃ 5r 5smẋ0m . ~110!

On the other hand, the real null vectorssm5xm2x0
m are

proportional toe3m, and taking into account Eq.~90! we
have r 5smẋ0m5be3mẋ0m5bP, which yieldsb5r /P and
sm5re3m/P5rkm. This relation shows that our PNC fiel
km coincides with the Kinnersley definition of the PNC,km

5sm/r , in terms of which

] t0
log P5 Ṗ/P5 ẍ0

mkm , ~111!
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and the metric~85! and radiation~86!,~87! take the Kinner-
sley form @12#

gmn5hmn1
2m~ t0!

r
~sm /r !~sn /r !, ~112!

kTm
n 5Fkmkn, F5

1

r 2
@26m~ ẍ0

mkm!12ṁ#. ~113!

V. CONCLUSION

The complex retarded-time construction considered p
mits us to obtain a class of nonstationary rotating solutio
generated by a complex source moving along an arbitr
given complex world line. These solutions represent a na
ral generalization of the Kinnersley class of solutions to
rotating case. The Kerr-Schild approach allows one to
exact expressions for the metric, coordinate system,
PNC, and the positions of singularity for arbitrary motion
a rotating source.

The solutions obtained represent a natural generaliza
of the black hole solutions, and ifm2,e21a2 they have
horizons. However, since the solutions are radiative,
usual black hole interpretation can meet objections, and
additional treatment of this case is necessary, which we
tend to do elsewhere. The solutions can find application
modeling the behavior of spinning astrophysical objects
acceleration and relativistic boosts. They are also interes
for investigation of the relativistic gravitational fields by pa
ticle scattering in ultrarelativistic regimes@5#.

By a21e2.m2 the horizons disappear and there is a n
ked singular ring. This case has attracted attention as a m
of a spinning particle@9,10,18,27,24–26#. In @9,10,27# the
Kerr singular ring was considered as a closed relativis
string forming the source of spinning particle@18#. The non-
stationary Kerr solutions presented allow one to describe
citations of this string. In this case, the ‘‘negative’’ sheet
the Kerr space has to be considered as a sheet of adva
fields belonging to the field of vacuum fluctuations, and th
the e.m. radiation must belong to the zero point field. T
outgoing vortex of the null radiation appears as a result
the resonance of the vacuum field on this relativistic stri
In this case, the energy-momentum tensor has to be reg
ized on the classical level by the known procedure@28#

Treg
mn 5:Tmn:[Tmn2^0uTmnu0&, ~114!

which has to satisfy the condition¹mTreg
mn 50. It corresponds

exactly to a subtraction of this radiation, leading toTreg
mn 50

@9,10#. On the quantum level this procedure is equivalent
the postulate on the absence of radiation for oscillat
strings. This stringy interpretation of the Kerr source will b
considered elsewhere.

The class of solutions presented can easily be genera
to the Kerr-Newman solution and to the sources radiat
electrical charges.

Some other known generalizations of the Kerr solutio
such as the Kerr-Sen solution to low energy string the
@29#, the solution to brokenN52 supergravity@4#, and regu-
4-9
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lar rotating particlelike objects built on the base of Ke
Newman solution@30#, retain the form and the geodesic an
shear-free properties of the Kerr PNC. This means that
Kerr theorem is also valid for these solutions, and that th
can also be generalized to the nonstationary radiating ca

APPENDIX A: BASIC RELATIONS
OF THE KERR-SCHILD FORMALISM

Following the notation of Ref.@8#, the Kerr-Schild null
tetradea5em

a dxm is determined by the relations

e15dz2Ydv, e25dz̄2Ȳdv,

e35du1Ȳdz1Ydz̄2YȲdv,

e45dv1he3, ~A1!

and

gab5ea
mebm5S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D . ~A2!

The vectorse3,e4 are real, ande1,e2 are complex conjugate
The Ricci rotation coefficients are given by

Gbc
a 52em;n

a eb
mec

n . ~A3!

The PNC has thee3 direction as a tangent. It will be geode
sic if and only if G42450 and shear-free if and only ifG422
50. The corresponding complex conjugate terms areG414
50 andG41150.

The inverse~dual! tetrad has the form

]15]z2Ȳ]u ,

]25]z̄2Y]u ,

]35]u2h]4 ,

]45]v1Y]z1Ȳ]z̄2YȲ]u , ~A4!

where]a[,a[ea
m],m .

The parameterZ5Y,15r1 iv is a complex expansion o
the congruencer5expansion andv5rotation. Z is con-
nected to the complex radial distancer̃ by the relation

r̃ 5PZ21. ~A5!

It was shown in@8# that the connection forms in Kerr-Schil
metrics are

G425G42aea52dY2hY,4e4. ~A6!

The congruencee3 is geodesic ifG42452Y,4(12h)50 and
shear-free ifG42252Y,250. Thus, the functionY(x) with
the conditions
12402
e
y
e.

Y,25Y,450 ~A7!

defines a shear-free and geodesic congruence.

APPENDIX B: PROOF OF THE KERR THEOREM AND
TWO COROLLARIES

The proof given below of the Kerr theorem follows th
general scheme sketched in@8#.

Proof. The differential of the functionY in the case of
Y,25Y,450 has the form

dY5Y,aea5Y,1e11Y,3e3. ~B1!

As the first step we work out the form ofY,3. By using the
relations~A4! and their commutators we find

Z,25~Z2Z̄!Y,3 . ~B2!

Straightforward differentiation ofY,3 gives the equation

Y,325~Y,3!2, ~B3!

and by using Eqs.~B2! and ~B3! we obtain the equation

~Z21Y,3!,25Z̄~Z21Y,3!2. ~B4!

This is a first-order differential equation for the functio
Z21Y,3. Its general solution can be obtained by the sub
tution x5Z(Y,3)21 and has the form

Y,35Z~f2Ȳ!21, ~B5!

where f is an arbitrary solution of the equationf,250.
Analogously, by using the relationY,3452ZY,3 one gets
f,450; thereforef may be an arbitrary function satisfyin

f,25f,450. ~B6!

One can also mention that the three projective twistor co
dinatesl15z2Yv, l25u1Yz̄, andY satisfy similar rela-
tions (.),25(.),450. Since the surfacef5const forms a
submanifold ofCM4 that has the complex dimension 3, a
arbitrary functionf satisfying Eq.~2.6! may be presented a
function of three projective twistor coordinatesf
5f(Y,l1 ,l2). Now we can substituteY,3 in Eq. ~B1!,
which implies

Z21~Ȳ2f!dY5f~dz2Ydv !1~du1Ydz̄ !. ~B7!

If an arbitrary analytic functionF(Y,l1 ,l2) is given, then
differentiating the equationF(Y,l1 ,l2)50 and comparing
the result with Eq.~B7!, we find that

PZ2152dF/dY, P5]l1
F2Ȳ]l2

F, ~B8!

where the functionP can also be defined as

P5~f2Ȳ!]l2
F. ~B9!

Corollary 1. The following useful relations are valid:
4-10
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Z̄Z21Y,352~ log P!,2 , P,450. ~B10!

Proof. So long as]2]l2
F50, one sees that

~ log P!,252Z̄~f2Ȳ!21; ~B11!

then Eq.~B5! leads to the first equality of Eq.~B10!. The
relationP,450 follows from Eq.~B8! and the properties o
the twistor componentsY,45(l1),45(l2),450.
.

d

th
io
r,

12402
Corollary 2: The singular region of the congruenc
where the complex divergenceZ blows up, is defined by the
system of equations~23!.
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@26# C.A. López, Phys. Rev. D30, 313 ~1984!.
@27# D. Ivanenko and A.Ya. Burinskii, Izv. Vuzov Fiz.5, 135~1975!

~in Russian!.
@28# B.S. De Witt, Phys. Rep., Phys. Lett.19C, 295 ~1975!.
@29# A. Sen, Phys. Rev. Lett.69, 1006~1992!.
@30# A. Burinskii, E. Elizalde, S. Hildebrandt, and G. Magli, Phy

Rev. D65, 064039~2002!.
4-11


