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Complex Kerr geometry and nonstationary Kerr solutions
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In the frame of the Kerr-Schild approach, we consider the complex structure of Kerr geometry which is
determined by a complex world line of a complex source. The real Kerr geometry is represented as a real slice
of this complex structure. The Kerr geometry is generalized to the nonstationary case when the current
geometry is determined by a retarded time and is defined by a retarded-time construction via a given complex
world line of source. A general exact solution corresponding to arbitrary motion of a spinning source is
obtained. The acceleration of the source is accompanied by a lightlike radiation along the principal null
congruence. It generalizes to the rotating case, the known Kinnersley class of “photon rocket” solutions.
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[. INTRODUCTION also and leads to the necessity of giving an interpretation to
the origin of this radiation, which enforces a return to the old

The complex representation of Kerr geometry, initiated byproblem of the source of the Kerr and Kerr-Newman solu-
Newman[1], has been found to be useful in various prob-tions.
lems[2-5]. When considered in the Newman-Penrose for- The main peculiarity of the Kerr geometry is the twisting
malism[6,7], it allows one to get a retarded-time description geodesic and shear-free PNC. Such congruences are deter-
of the nonstationary Maxwell fields and twisting algebra-mined in Minkowski space-tim¢parametrized by the null
ically special solutions of the linearized Einstein equationsCartesian coordinatas,v,,{) by the Kerr theorenj7,13—
Twisting solutions are represented in this approach ag5] via the solutionY(x) of the equationF=0, where
retarded-time fields, which are similar to Lienard-WiechardF(Y,\,\,) is an arbitrary analytic function of the projec-
fields. However, they are generated bycamplexsource tive twistor variables
moving along acomplex world line ¥(7) in complex
Minkowski space-timeCM#*. The light cones emanating
from the word line of a source usually play a central role in
retarded-time constructions where the fields are defined by
the values of a retarded time. In the case of complex worldn twistor notation [14], these variables are defined as
line, the corresponding light cone has to be complex whicH1,Y, N1, A} =2Z%Z°% where Z*={u”", x’o,55u®}. One
complicates the retarded-time scheme. sees thal is the ratio of two components of a spinor corre-

In this paper, we use the Kerr-Schild approach to the comsponding to the null direction, which is tangent to a null ray
plex representation of Kerr geometry, which is based on thef the PNC, while the coordinatgs ,,\,} are connected to
Kerr-Schild formalism and the Kerr theoref8l]. This ap- a shift of this ray from the origin and can be determined by
proach has an advantage in this problem since the Ker@any pointx” lying on this ray. Therefore, these coordinates
Schild form of the metricg*’= »*"—2hk*k” contains the fix the position and direction of a null ray in Minkowski
auxiliary Minkowski background;*”, which attaches an ex- spaceM?, in accordance with the geometrical meaning of a
act meaning to the complex world lingy(7) e CM* in  null twistor, and the scalar functiori(x) determines the null
curved Kerr-Schild backgrounds. In addition, the Kerr theo-congruence as a field of null directionsMt*. The geometri-
rem allows us to get an explicit representation for the metriccal meaning of the twistor coordinates is extende@td?,
the principal null congruencéPNC), formed by a vector where they fix complex null planes, and the real null rays of
field k#, and the location of the singularity and also to ex-congruence belong to the intersection of the complex conju-
press them in asymptotically flat Cartesian coordinates.  gate null planes.

This approach allows us to get a class of the exact non- The retarded-time construction is usually based on the
stationary generalizations of the Kerr solution which are despace-time links provided by light cones. When considering
termined by the complex retarded-time construction. the complex retarded-time construction, we set up a link be-

The basic ideas of this approach were publishefbig—  tween the generating PNC functiénand the world line of a
11]. In [5] this retarded-time construction was applied to de-complex source. In the problem considered there appears the
scribe the boosted Kerr solution. However, application ofobstacle that the real light cone does not have intersections
this approach to accelerating twisting sources encountensith a complex world line. INCM* light cones split into
hard obstacles connected with the problem of real the slicdamilies of “left” and “right” complex null planes, which
In this paper we find the way to solve this problem andtake over the role of the light cone in the complex retarded-
present the class of exact nonstationary Kerr solutions.  time scheme. Each of the “left” null planes is determined by

For nonrotating sources, such solutions were obtained eathe fixed values of the coordinat€¥,\,\,} and represents
lier by Kinnersley[12]. The Kinnersley solutions are radia- a geometrical realization of the twistfit4].
tive, and by acceleration of the source they are accompanied In Sec. Il we recollect the basic properties of Kerr geom-
by null radiation. This property is present in our solutionsetry and give a nonformal treatment clarifying its complex

Y, N=C—Yv, A,=u+Y{. (1)
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structure. A consequent treatment based on the Kerr-Schilc

formalism is started in Sec. Ill. z
In Appendix A we give the basic necessary relations of the || .- :
Kerr-Schild formalism, and in Appendix B we give a proof K‘==
. ) NI
of the Kerr theorem adapted to the Kerr-Schild formalism. i N
. . . g2\ R
During the proof we obtain some relations that are necessar LA

for subsequent treatment of the real slice procedure describe
in Sec. lll. It allows us to integrate the Einstein field equa-
tions, which is performed in Sec. IV.

Il. COMPLEX STRUCTURE OF KERR GEOMETRY AND
RELATED RETARDED-TIME CONSTRUCTION

A. Appel source and main peculiarities of the real and complex
Kerr geometry

The Kerr singular ringis one of the most remarkable 0o
peculiarities of the Kerr solution. It is a branch line of space g 1. The Kerr singular ring and 3D section of the Kerr prin-
on two sheets: “negative” and “positive” where the fields cjpal null congruence. The singular ring is a branch line of space,

change their signs and directions. There exist Newton angnd the PNC propagates from the “negative” sheet of the Kerr
Coulomb analogues of the Kerr solution possessing the Keipace to the “positive " one, covering the space-time twice.

singular ring. This allows one to understand the origin of this
ring as well as the complex origin of the Kerr source. The  The Kerr twisting PNGs the second remarkable structure
corresponding Coulomb solution was obtained by Appel inof Kerr geometry. It is described by a vector fidti which

1887 by the method of complex shift7]. determines the Kerr-Schild ansatz for the metric
A pointlike chargee, placed on the complex axis
(X0,Y0,20)=(0,0ja), gives the real Appel potential 9,0= 7+ 20KK,,, (4)
$a=Reelr. (2 wherey,, is an auxiliary Minkowski space-time and
Here T is in fact the Kerr complex radial coordinaie mr—e2/2
=PZ l=r+iacosé, wherer and ¢ are the oblate spheroi- = ﬁ 5)
dal coordinates. It may be expressed in the usual rectangular reta“cos’¢

Cartesian coordinatesy,z,t as o _ .
This is a remarkably simple form showing that all the com-

~_ 2 2 211/2 lication of the Kerr solution is included in the form of the
F=lX=x0)"+ (y=¥o)"+ (2= 29)%] 1Ei)eld k,(x) which is tangent to the Kerr PNC. This form
=[x?+y?+(z—ia)?]"2 (3  shows also that the metric is singularrat cos#=0, which

are the focal points of the oblate spheroidal coordinate sys-
The singular line of the solution corresponds rtecosg  tem.
=0, and it is seen that the Appel potentia} is singular at The fieldk* is null with respect toz,,, as well as with
the ringz=0, x?>+y?=a?. It was shown that this ring is a respect to the metrig,,, . The Kerr singular ring and a part
branch line of space-time for two sheets, similar to the propof the Kerr PNC are shown in Fig. 1. The Kerr PNC consists
erties of the Kerr singular ring. Appel potential describesof the linear generators of the surfaags const. The region
exactlythe electromagnetic e.m. field of the Kerr-Newmanshown in Fig. 1z<0 corresponds to a “negative” sheet of
solution[18]. space (<0) where we set the null rays to be “in"-going.

If the Appel source is shifted to a complex point of space The twisting vortex of the null rays propagates through
(X0,Y0,20)—(0,0ja), it can be considered as a mysteriousthe singular ring = cos#=0 and get “out” on the “positive”
“particle” propagating along aomplex world-line ¥(7) in sheet of spacez{>0). Indeed, the Kerr congruence covers
CM* and parametrized by a complex time The complex the space-time twice, and this picture shows only the half of
source of the Kerr-Newman solution has just the same origitihe€ PNC corresponding to06> /2. It has to be completed
[1,3] and can be described by means of a complex retardedy the part forw/2>6>m which is described by another
time construction for the Kerr geometry. system of linear generatotbaving opposite twigt The two

PNC directions for each point“e M* correspond to the
known twofold quality of the Kerr geometry and to the alge-
The objects described by the complex world lines occupy arPraically degenerate metrics of tyfe
intermediate position between particle and string. Like a string they AS is explicitly seen from the expression foy the Kerr
form two-dimensional surfaces or world sheets in spacefiByd).  gravitational field has two-valuednesgy)#h(—r), and so
In many respects this source is similar to the “mysteriots 2 also do the other fields on the Kerr background. The oblate
complex string of superstring theof¢9]. coordinate system turns out to be very useful since it also
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covers the space twice, for>0 andr <0, with the branch —?(§—§o)=(u—uo) (12)
line on the Kerr singular ring. ’
The appearance of the twisting Kerr congruence may be (Z—z())=7(v — ) (12)

understood as a track of the null planes of the family of

complex light cones emanating from the points of the comyives the “right” complex null planes.

plex world line xg(7) [11,3] in the retarded-time construc-  Thus, the equations of the “left” null planed.0) can be
tion. It is very instructive to consider the following splitting written in terms of the three parameters

of the complex light cones.

Y, M={-Yv, \=u+Y{, (13)
B. Splitti f th lex light
plitting of the complex light cone as follows:
The complex light conéC with the vertex at some point
X0, Written in spinor form A=AT, A=\, (14
K={x:x=x4(7)+ ¢ Lo 0/x}, (6)  Where
0_ _ 0__ 2

may be split into two families of null planes: “left” ¢, N1=8o—=Yvo, A;=Up+Y{p. (15

=constyr=variable) ~and  “right” (yr=constyy  Denote the values of these parameters at the pginthese
=variable). These are the only two-dimensional planes thajhree parameters are the projective twistor variables and very
are wholly contained in the complex null cone. The rays ofimportant for further consideration since the Kerr theorem is
the principal null congruence of the Kerr geometry are thesormulated in terms of these parameters. The above splitting
tracks of these complex null plangight or left) on the real  of the complex light cone equation shows their origin explic-

slice of Minkowski space. . ~_itly. Denote also that in terms of the Kerr-Schild null tetrad
The light cone equation in the Kerr-Schild metric coin-

cides with the corresponding equation in Minkowski space el=d¢{—Ydv, e2=d{—Ydo,

because the null directiorig” are null in both metricg,,,,

andz,, . e3=du+YdZ+YdZ—YYdv,

In the null Cartesian coordinates
- e*=dv+he’, (16)
2Vr=x+iy, 2Y%2r=x-iy,
the projective twistor parameters take the form
2YVy=z+t, 2Y%=2z-t (7)

Ni=xter,,

the light cone equation has the fo¥i+uv =0. As usual, in V7
a conqlplex extegsion t6M* the cog?din;[es andv have to No=X(e] - Yey), (a7
be considered as complex and the coordinajtemd? as  and correspondingly
independent. On the real section, M, the coordinates
andv take real values and andfare complex conjugate. Ag:Xge/lu

The known splitting of the light cone on the complex null _
planes has a close connection to spinors and twistors. By \o=x5(e]—Ye,). (18

introducing the projective spinor parametér %/ ¢° the

equation of a complex light cone with the vertex at the point! N€ “eft” complex null planes of the complex light cone at
some pointx, can be expressed in terms of the tetrad as

Xor follows:
(- §o)(Z—Z))=—(U—UO)(U—UO), )] XL=X0(7)+ael+,363, (19
splits into two linear equatioRs and the null plane equatiori44) follow then from Eq.(19)
and the tetrad scalar products“e),=e'“e>=e¥e>=0.
{=4o=Y(v—vo), (9 Similar relations are valid also for the “right” null planes
o with the replacemeng!— e?.
=Y({—¢o)=(u—ug) (10 The “left” null planes of the complex light cones form a

complex Kerr congruence which generates all the rays of the
describing the “left” complex null planesthe null rays in  principal null congruence on the real space. The ray with
the real spage Another splitting polar directiond, ¢ is the real track of the “left” plane cor-
responding toY = expi¢tan(6/2) and belonging to the cone
that is placed at the poing, corresponding tar=a cos().
2lt is a generalization of the Veblen and Ruse construdi@in21] The parametewr=Im7 has a meaning only in the range
which has been used for the geometrical representation of spinors- a< o<a where the cones have real slices. Thus, the com-
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plex world line xq(t,o) represents a restricted two-  The proof of the Kerr theorem in the extended version

dimensional surface or strip, in complex Minkowski space,adapted to the Kerr-Schild formalism is given in Appendix

and is really a world sheét. B. Some basic relations of the Kerr-Schild formalism are
The Kerr congruence arises as the real slice of the familgiven in Appendix A.

of the “left” null planes (Y=const) of the complex light  working inCM* one has to considéfandY functionally

cones which vertices lie on the complex world lirg 7). independent, as well as the null coordinatesnd . The

The Kerr theorem can be linked to this retarded-time CONtuordinatess andv and the congruence turn out to be com-

struction. plex. The corresponding complex null tetrédl1l) may be
considered as a basis 6M*. The Kerr theorem determines
ll. KERR THEOREM AND THE RETARDED-TIME in this case only the “left” complex structure—the function

CONSTRUCTION F(Y). The real congruence appears as an intersection with a

A The Kerr theorem complex conjugate “right” structure.

The traditional formulation of the Kerr theorem is follow- g quadratic function F(Y) and interpretation of parameters

ing. . . . . .
Any geodesic and shear-free null congruence in It is instructive to consider first the stationary case. Sta-

Minkowski space is defined by a functiof(x) which is a f[ionary congruences having Kerr.—like singularities contained
solution of the equation in a bounded region were considered[#v,10,16. It was
shown that in this case the functithmust be at most qua-
F=0, (200  draticinY,

where F(\1,\,,Y) is an arbitrary analytic function of the F=ap+a,Y+a,Y2+(qY+C)\ i~ (pY+aA,, (26)

projective twistor coordinates .
where the coefficientsc and p are real constants and

Y, N=¢—Yo, )\2=u+YZ 21) a9,a1,8,,0,, are complex constants. The Killing vector of
the solution is determined as

The congruence is determined then by the vector field ch&ﬁa&frqaz— 0d, 27

e3=du+YdZ+Yd—Y Ydv = Pk, dx* (22)  writing the functionF in the form

_ _ 2
in the null Cartesian coordinatesv, ¢, ¢.* F=AY“+BY+C, (28)

In the Kerr-Schild backgrounds the Kerr theorem acquireg, o ¢ find two solutions of the equatir- 0 for the func-
a broader conter{i8,9,11]. It allows one to obtain the posi- ion Y(x):
tion of singular lines, caustics of the PNC, as a solution ofI '
the system of equations Y1,=(—B=£A)/2A, (29

F=0, dF/dy=0, (23)  whereA=(B2-4AC)'2
On the other hand, from Eq24),
and to determine some important parameters of the corre- ~
sponding solutions: r=—9dFl9Y=—-2AY-B, (30
Y _4F/dY (24) and consequently
T=PZ l=%A. (3D
and
These two roots reflect the known twofoldequality of the
P=4, |:_7(9x E. (25) Kerr geometry. They correspond to two different directions
! 2 of congruence on positive and negative sheets of the Kerr

~ . o space-time. The expressiga5) yields
The parameter characterizes a complex radial distance, and

for the stationary Kerr solution it is a typical complex com- p= pY7+q—Y+qY+c. (32)

binationT =r +ia cosé. The parameteP is connected with

the boost of the source. C. Link to the complex world line of the source

The stationary and boosted Kerr geometries are described
%It may be considered as a complex open string with a Euclideatby a straight complex world line with a real three-velocﬁty

parametrizationr=t+ico,7=t—io, and with end pointsxo(t,  in CM*:
+a) [3,19]. N
“The fieldk,, is a normalized form o0& with k,, Rex4=1. x6(1)=x5(0)+ &7, &*=(1v). (33)
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The gauge of the complex parameters chosen in such a The parameter may be defined for each pointof the

way that Rer corresponds to the real tinte Kerr space-time and plays the role of a complex retarded-
The functionF, quadratic inY, can be expressed in this time parameter. Its value for a given pointmay be defined
case in the fornj27,10,11,% by L projection, using the solutiolY(x) and forming the
R R twistor parametera ;,\, which fix a left null plane.
F=(A—ADKN,— (A= ADKA 4, (34) L projection of the pointx on the complex world line

. _ o Xo(7) is determined by the condition
where the twistor components; ,\, with zero indices de-

note their values on the points of the complex world line (N—AD[L=0, (A,—AD)| =0, (40

X , Eq.(15), andK is a Killing vector of the solution ) )
o(7), Eq. (19 g where the notatio, means that the pointsandxy(7) are

K=dx41)a,=&"d (35) synchronized by the left null plan@9),
T Iz e
P X—X =ael+ ged. 41
Application ofK to A; and\, yields the expressions ol7)= e +p (41)
. The condition(40) in representatioril8) has the form
KNi=a,x5(7)e,, B
(X =x)ep| =0, (x*—x§)(e,—Ye,)| =0, (42

KN=d.x5(e3—Yey). (36) . _
which shows that the points* andxf are connected by the
From Eq.(25) one obtains in this case left null plane spanned by the null vectar ande®.

This left null plane belongs simultaneously to the “in”-

szpzaTxg(T)ei, (37)  fold of the light cone connected to the poixtand to the
“out”-fold of the light cone emanating from a point of the
where complex world linexy. The point of intersection of this plane
. with the complex world linexy(7) gives the value of the
p=N\o+ Y)\lzx“ei. (38 “left” retarded time 7, which is in fact a complex scalar

. _ function on the(compleX space-timer, (x).
Comparing Eqs(37) and (32) one obtains the correspon- By using the null plane equatio@0) one can expresA

dence in terms op,c,q,q, of Eqg. (31) in the form
Khi=pY+a, Khp=gY+c, (B9 Al=(u=Ug)uo+ (L= Lo+ (£~ Lo)do* (v =v0)Uo
, , 1 -
which allows one to set the relation between the parameters — 4 (x=xg)2= 1~ t+OR, (43

p, ¢, g, q, and&*, showing that these parameters are con- 2
nected with the boost of the source.
The complex initial position of the complex world line Where
x5(0) in Eg. (33 gives six parameters for the solution, L. ..
which are connected to the coefficiersts,a;a,. It can be V=X, R=X—Xo. (44)
decomposed ag,(0)=c+id, wherec andd are real three-

. : It gives a retarded-advanced-time equation:
vectors with respect to the spa®€3) rotation. The real part 9 g

¢ defines the initial position of the source, and the imaginary r=tFr+oR, (45)
partd defines the value and direction of the angular momen- _ _ _
tum (or the size and orientation of a singular ring and a simple expression for the solution§):

It can be easily shown that in the rest frame, when . - .
—0, d=do, the singular ring lies in the plane orthogonatto Y1~ L(U=Uo)vo+ (£= o) Lol/l(v=v0) o= (£~ LoJuvo]
and has a radius=|dy|. The corresponding angular mo- (46)
mentum isJ=md;. and

D. L projection and complex retarded-time parameter Y,=[(u— Uo)Zo_(g— §o)Uo]/[(U_ uo)l')0+ ({— é“o)?o]-

In the form (26) all the coefficients are constant while (47)

the form(34) has an extra explicit linear dependencerona

the terms )‘g[XO(T)] and Ay[xo(7)]. However, this Eorthe stationary Kerr solution=r +ia cos#, and one sees
dependence is really absent. As a consequence @hat the second root,(x) corresponds to a transfer to the
the relations \J[Xo(7)]=\J[Xo(0)]+7KA1, Ng[Xo(7)] negative sheet of the metric— —r, R— — R, with a simul-
=\J[xo(0)]+ 7K\, the terms proportional te cancel and  taneous complex conjugatioa— —ia.

these forms are equivalent. Introducing the corresponding operations,
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P: r——r, R=-R, (48) pL(X0) = p(X) = pr(Xo). (56)
C: XoH;o, (49) By using Eqs.(18) and(51) one obtains
and also the transfer “out>“in,” p=Na+YA;. (57
T t— 7o r—t. (50)  Since thel projection(40) determines the values of the left

retarded-time parametet = (t,+i0)|_, the real functiorp
One can see that the roots and corresponding Kerr congracquires an extra dependence on the retarded-time parameter

ences are€CPT invariant. 7. . It should be noted that the real and imaginary parts of
7|, are not independent because of the constraint causkd by
E. Nonstationary case: Real slice projection.

This means that the real functiopsand p, turn out to be
nctions of the real retarded-time parametgr Rer,

53 0 0
(i) The coefficients of the functioR turn out to be com- Wh_'ll_i A1 and; ca}[n also depen(tj 0? the left null ol
plex variables depending on the complex retarded-time pa- . €se parameters are constant on he left hull planes,
rameter: which yields the relations
n b en e
(i) 9,x5=¢&"* can take complex values, which implies (]0),2=(0]0),2=0, (to|lL),2=(toL),4=0. (58
complex values for the functio”R and was an obstacle for
obtaining the real solutions in the previous investigationSimilar to the stationary case considered above, we shall

In the nonstationary case, this construction acquires new
peculiarities.

[11]; and restrict the functiorF by the expression quadratic ¥
(iii) K is no longer a Killing vector. o o
To form the real slice of space-time, we have to consider, F=(\1—ADKa= (A=K, (59

along with the “left” complex structure generated by a ) . ]
planes, an independent “right” structure with the“right” the retarded time,. It has to lead to the forni26) with the
complex world linexq, parameterY, and the right null coefficients depending on the rgtarded time.
planes, spanned by’ ande®. These structures can be con- Let us assume that the relatiéi{Y,t,)=0 holds for the
sidered as functionally independent@M®*, but they have to retarded-time evolutiodF/dto| =0. It yields
be complex conjugate on the real slice of space-time. =

First, not.e that for a regl pqint of space-timand for the o Klato)\g— K25t0x2+(>\1—x‘§)ator<2— ()\Z—Ag)atOKl
corresponding real null directiog’, the values of the func- 0
tion =0. (60)

el o
p(X) =x"€,(x) (51 As a consequence df projection the last two terms cancel

. . and one obtains
are real. Next, one can determine the values af the points

of the left and right complex world lines; andx4 by thel (9F/dto)|L=(K1d No— Kod AD)|L=0, (61)

andR projections

which is provided by

pL(Xo)=XEe5 (X)L (52)
Ki(to)=di A}, Ka(to)=di 3. (62)

and

_ In the tetrad representatida8) it takes the form

Pr(X0) =X5€5(X)|r. (53) -

_ _ _ Ki=d, xbe,, K,=a, xb(eS—Yey). (63

For the “right” complex structure, the pointsandxy(7) are 0 0

to be synchronized by the right null plame-x,(7g)=a€?>  As a consequence of the relati¢26), one obtains

+Be®. As a consequence of the conditioel‘e’ = e e’

—0, we obtain P=YK;+Ky, (64)
PL(Xo):Xgei(X)|L=P(X)- (54) which yields for the functiorP the real expression
So long as the parametp(x) is real, the parameter, (X,) P:‘?to(xgei)h:ﬁtopb (65

will be real, too. Similarly,
It is seen thap(ty) =p(tp) plays the role of a potential for

pr(Xo) zfgei(x)h: p(X), (55 P, similarly to some nonstationary solutions presentein
It seems that the extra dependence of the funciomn
and consequently the nonanalytic retarded-time parametgyscontradicts the
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Kerr theorem; however, the nonanalytic part disappears and DM :Z—lz—lps 42, (74)
the analytic dependence onl,l, is reconstructed by

projection. This is explicitly seen for the quadratic fo(6®)  where

with coefficients given by Eq62). Indeed, direct differen-

tiation of this form yields the expression D=0d3—Z"1Y,30,—Z 1Y,30,, (75)
dY=ae'+bed+cdt, (66)  which corresponds to the null radiation in the fondT ,,
=Pyeied.
_ 0 0 I “u S .
wherec= (N1~ N\3)d; K= (A2—N3) 0 K. By L projection To integrate Eq(73) we use the relatioiB10) of corol-

one hasc|, =0 and the nonanalytic terncdt, cancels. lary 1 and obtain the equation
Therefore, the differential of the functiovi(x) by L projec- 3
tion satisfies the geodesic and shear-free conditiBtspro- (logMP*),,=0, (76)
vided by the Kerr theorem. Note that all tireal retarded-
time derivatives on the real space-time are nonanalytic an
have to involve the conjugate right complex structure. In _ 3

; . ) M=m/P~, (77
particular, the expression63) acquire the form

Which has the general solution

: — . where
K;=e,Rexf, K,=(e)—Ye,)Rexs, (67)
. m,4:m,2:O. (78)
wherexg = Xg - ) )
On the real slice the functions and P depend on the re-
tarded timety. The action of the operatd on the variables
Y, Y, andp is
We are now able to obtain a general class of accelerating .
radiating solutions representing arbitrary nonstationary gen- DY=DY=0, Dp=1. (79
eralizations of the Kerr solution. For simplicity, we shall as-
sume that there is no electromagnetic field. As in the KinnerFrom these relations and Eq(65, we have Dp
sley case, the null radiation is described by an incoherent dp/dtoDto=PDty=1, which yields
flow of lightlike particles in thee® direction. The solution of _q
the field equations is similar to the treatment given for the Dto=P = (80
Kerr-Schild form of the metric in[8]
In particular, we have

IV. SOLUTION OF THE FIELD EQUATIONS

SinceM is also a function ofY,Y, andtg, the last equation
(74) takes the form
R24= R22=Ry4=0. (68) =
o I M=PZ""Z""P3y2. (81
If the electromagnetic field is zero we also have
It is not really a field equation but a definition of the stress-
R12=Ra4=0. (69) energy tensokT, = P33ef;e3” corresponding to the null ra-

The equation diation. Substituting Eq(77) one obtains two terms:

= = 1
hyast 2(Z+Z)h,4+22Zh=0, (70) P pappl M Aglog Py 2dml. (62
r

which follows from Eq.(69), admits the solutions
. The first term, proportional ta,, log P, is connected with the
h=M(Z+2)/2, (71 acceleration. The second term, proportional dgm, de-
scribes the loss of mass by radiation corresponding to the
Vaidia “shining star” solution[7,22,23.
The resulting metric has the form

whereM is a real function, obeying the conditiod,,=0.
Next, the equation

R23=0 (72) _
U= 7t (MIP3)(Z+Z2)E)E]. (83)
acquires the form
N Normalizinge® by introducingk”=e**/P, one has
M,,—3Z71zY,;M=0. (73 .
xgk,=1, (84

The last gravitational field equatioR;3= —Pg33=—kT33
takes the form and using =PZ~* we simplify the expressions for the met-
ric and stress-energy tensor.
Let us summarize the solutions we have obtained. The
5There are no changes up to E§.50 of this work. metric is
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9= 7,0 M(T 14T Dk k (85)
and the radiation is
kT, =Pk K", (86)
where
1
| |2[ 6m(atolog P)+207t m]. (87)
The vector fieldk, is defined by
k,dx*=e3P=P Y(du+Yd{+Yd{—YYdv). (88

The function Y(x) is given in terms of the coordinates

u,v,{,¢, by the equatiorF(Y)=AY2+BY+C=0, where

the coefficientsA,B,C are determined by decomposition of

the function

F=(\—ADKa— (2= AD)Ky, (89)
andP is given by
P(tg)= K2+YKl e Rexo, (90
where
M={—Yv, Ap=u+Y{, (92)
and
A=00—Yvo, AI=up+ Yo (92

are the values of these variables on the complex world line,

and
Ki=e} Rext, K,=(e3—Yel)Rext. (93)
The complex radial coordinate is given by
r=-dF/dY=—-2AY-B. (94)

The coefficientsA,B,C, the functionsK; andK,, and the
parameters of the functidd are determined by a given com-

plex world linex#(7) ={uo(7),v0(7),4o(7),{o(7)} and have

a current dependence on the retarded tirfyewhich is de-

termined byL projection on the given complex world line as

a root of the left null plane equation

A=A9, A=A, (95)

Solution of these equations has to be performed for all points
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be used since all the unknown parametéos exclusion of
radiation) are determined by the first derivative of the com-
plex world line and the nonlinearity caused by acceleration is
negligible here. Having at hand the initial fiel{x), one
can use the following iterative loop scheme of computation:

X—Y(X)={\1,A2,p}—{7.%0. A} A} —{P Ky, Ky}

—F(Y)—={Y(x),e%}—cycle loop. (96)

This iterative procedure is needed to refine the data and carry
out a progressive extension of the region. The obtained local
parametersy,K,,K,,A?,\9,A,B,C,F,P,7|,_ can be imme-
diately extendedlong the raysof the PNC from short dis-
tances to large ones, which allows one to reduce consider-
ably the necessary body of computations.

The following example is instructive since it shows that
some of the parameters can be determined analytically; how-
ever, an essential nonlinearity is retained which demands the
numerical computations.

Example

Let us consider a circular motion of the source in the
(x,y) plane with the direction of angular momentudn

=ma along thez axis. This example is interesting for astro-
physical applications and as a model of circular motion of
polarized spinning particles in accelerators. For the both
cases one can assun@<|b|. The corresponding complex
world line will be

Xy (7)=(7,bcoswty,bsinwty,ia), 7=tgt+ic. (97)
In null coordinatesu,v,{fit takes the form
Xo(7)=2""4ia+ria—7,be“o be %), (99
and we have
Xo(7)=2"Y3(1,~1,ibwe'®o,—ibwe ). (99

The expression fopg is

po=2"Yr(1+YY)+b(Ye o+ Ye ety +ia(1-YV)].
(100

On the left null plane it has to be real, which leads to
ol =a(l-YY)/(1+YY) (102

and

27 Y151+ YY)+ b(Ye' o+ Y e lelo)],
(102

Po||_:

of space-time in the region of interest. This is a nonlinear
problem with many unknown functions. In the general case iand yields
needs a large body of numerical computations with subse-

quent iterative refinement. For the beginning of the iterative P= p0|
process a starting “point” is necessary, which gives an initial
approximation. To obtain it the analytical solutions in the

local regions of short distancés ~ |t — 7-|<$<6‘k#/§<gk# can

=271+ YY) +i2" YVwb(Ye oY e @l),
(103

One can also obtain

124024-8
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No=2"Ypeelo+Y(7r —ia)], and the metrid85) and radiation(86),(87) take the Kinner-
sley form[12]
0_~»—1/ it H
Ay=2"YqYbe o+ (7 +ia)], (104 ) 2mity) / / .
and g,uv_ nMV+T(O-M r)(o-v r, ( )

K;=2"Yibwe'®o+Y], K,=2"Y41-Yibwe '*]. 1 ) _
KT! =Dk, k", <I>=r—2[—6m(xgk#)+2m]. (113

(109
The coefficients of the functiof =AY2+BY+C take the
form V. CONCLUSION
A=2"Y2fibwe 1“1y — 2~ V2(ja—1.)] The complex retarded-time construction considered per-
mits us to obtain a class of nonstationary rotating solutions
_[z_z—llzbe—iwto]}, (106) g_enerated by a comp_lex source mov_ing along an arbitrary
given complex world line. These solutions represent a natu-
B=—2 Yibwe @[ {— 2~ Y2pe il +jhwe'“to ral generalization of the Kinnersley class of solutions to the
rotating case. The Kerr-Schild approach allows one to get
X[{—2"Ypd o)+ (u+v—2Y%%a)}, (1070  exact expressions for the metric, coordinate system, the
PNC, and the positions of singularity for arbitrary motion of
C=2"YA—ibwe“u—2"Yqia+7)] a rotating source.
o iwt The solutions obtained represent a natural generalization
+[{=2" " he o]} (108 of the black hole solutions, and ih2<e?+a? they have

o=Imr_, which is determined by, projection as a function
of Y, the equatior-=0 turns out to be nonlinear. The itera-
tive procedure is necessary for its solution. The dependen
of A,B,C on o has the factobw. The casébw<<1 corre-
sponds to nonrelativistic motion. The dependenceoors
weak whenbw<|Y|~1, but grows wherbw~|Y| or bo

~|1/Y|. Neglectingo in the equatior==0, one can obtain By a2+e?>m? the horizons disappear and there is a na-

the anglytic_:al solutior¥ (x), WhiCh can be used as a first ed singular ring. This case has attracted attention as a model
approximation. Note also that in the distant zone the role of¢ 4 spinning particlg9,10,18,27,24—26 In [9,10,27 the
the rotation parameter becomes weak and the simpler Kin- o1 singular ring was considered as a closed relativistic

nersley solution can be used for correction of the parameter§trmg forming the source of spinning partigte8]. The non-
stationary Kerr solutions presented allow one to describe ex-

citations of this string. In this case, the “negative” sheet of
For the twist-free, nonrotating Kinnersley case the worldthe Kerr space has to be considered as a sheet of advanced
line is real, Ilk,=0, and the radial distances=T=r and fields belonging to the field of vacuum fluctuations, and thus
the “right” and “left” retarded-time parameters coincidg the e.m. radiation must beIong_ to the zero point field. The
= 7r=1t,. The retarded-time equation following from Eq. outgoing vortex of the null radiation appears as a result of

additional treatment of this case is necessary, which we in-
tend to do elsewhere. The solutions can find application for
Cr‘?\odeling the behavior of spinning astrophysical objects by
acceleration and relativistic boosts. They are also interesting
for investigation of the relativistic gravitational fields by par-
ticle scattering in ultrarelativistic regimgs].

Transfer to the Kinnersley solution

(45) can be represented in the form the resonance of the vacuum field on this relativistic string.
In this case, the energy-momentum tensor has to be regular-
T= —(t—t0)+5lfi=(x“—x6‘)5<o (109 ized on the classical level by the known procedi28]
-
It turns out to be real, and in terms of the Kinnersley param- Treg= THr=TR—=(0[T#"]0), (114

M=y * — M it v | . - o
eterso”=x"-xj it yields the relation which has to satisfy the conditio, T{.,=0. It corresponds

exactly to a subtraction of this radiation, leadingTiy,=0

[9,10]. On the quantum level this procedure is equivalent to

On the other hand. the real null vectosd‘=x“—x* are the postulate on the absence of radiation for oscillating

proportional toe* ,and taking into account qug) we Strings. This stringy interpretation of the Kerr source will be
Cwl _ opedul . . _ considered elsewhere.

h%\fr 3ZPXENkfeTh?(OM IBtP WE'Ch yltildtsﬂ rF/)ECar;d Id The class of solutions presented can easily be generalized

‘kTM ;(;ii i des_\:vith. theISKirnen?arlglr;ys doe\alr?itioﬁ ocf)ut[]e PNE:’I‘e to the Kerr-Newman solution and to the sources radiating

— oM in b £ which electrical charges.
= o/T, Interms ot whic Some other known generalizations of the Kerr solution,

such as the Kerr-Sen solution to low energy string theory
[29], the solution to brokeiN =2 supergravity4], and regu-

T=r=0"x,,. (110
Op

o, logP=P/P=Xfk,,, (112)
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lar rotating particlelike objects built on the base of Kerr- Y,,=Y,,=0 (A7)
Newman solutio30], retain the form and the geodesic and
shear-free properties of the Kerr PNC. This means that théefines a shear-free and geodesic congruence.
Kerr theorem is also valid for these solutions, and that they
can also be generalized to the nonstationary radiating case. APPENDIX B: PROOF OF THE KERR THEOREM AND
TWO COROLLARIES
APPENDIX A: BASIC RELATIONS

OF THE KERR-SCHILD FORMALISM The proof given below of the Kerr theorem follows the

general scheme sketched[BI.

Following the notation of Ref[8], the Kerr-Schild null Proof. The differential of the functior in the case of
tetrade®=efdx* is determined by the relations Y,>=Y,4=0 has the form
el:dg_de, eZZdZ_VdU’ dY=Y,aea=Y,lel+Y,3e3. (Bl)

As the first step we work out the form of,5. By using the

- _ _
e’=du+Yd{+Ydl—YYdo, relations(A4) and their commutators we find

4 _ 3 —
e*=dv+he y (Al) Z,ZZ(Z_Z)Y,3. (82)
and Straightforward differentiation oY, gives the equation
Y,32=(Y,3)2, (B3)

Jab=€5€p, = (A2) and by using Eqs(B2) and (B3) we obtain the equation

o O -, O
o O O -
=~ O O O
S B O O

(Z7YY,3),2=Z(Z71Y,3)2. (B4)

The vectore®,e* are real, an@!,e? are complex conjugate. This is a first-order differential equation for the function
The Ricci rotation coefficients are given by Z71Y,5. Its general solution can be obtained by the substi-
. . tution x=2(Y,3) ! and has the form
be= — €60 € - (A3) o
. . . Y13:Z(¢_Y)_l1 (BS)
The PNC has the® direction as a tangent. It will be geode-
sic if and only ifI',,,=0 and shear-free if and only If,,,  where ¢ is an arbitrary solution of the equatio#,,=0.
=0. The corresponding complex conjugate termslafg,  Analogously, by using the relatiol,;,= —ZY,; one gets

=0 andI',;,=0. ®,,=0; therefore¢p may be an arbitrary function satisfying
The inverse(dual) tetrad has the form

_ ¢12= ¢!4=O' (BG)
d1=0,~Ydy, . _— ,
One can also mention that the three projective twistor coor-
dr=d7—Yd,, dinatesh1=¢—Yv, A,=u-+Y{, andY satisfy similar rela-
tions (.),»=(.),,=0. Since the surfaceb=const forms a
d3=dy—hdy,, submanifold ofCM* that has the complex dimension 3, an
arbitrary function¢g satisfying Eq.(2.6) may be presented as
54:(90+y(;g+75?_ YYd,, (A4) function of three projective twistor coordinatesb
=¢(Y,NA1,N2). Now we can substitutér,; in Eq. (B1),
whered,=,,=€4d,, . which implies
The parameteZ=Y,;=p+iw is a complex expansion of _ _
the congruencep=expansion andw=rotation. Z is con- Z7H Y= ¢)dY=¢(d{—Ydv)+(du+Yds). (B7)

nected to the complex radial distancdy the relation If an arbitrary analytic functioE(Y,\;,),) is given, then

differentiating the equatiofr(Y,\1,A,)=0 and comparing

T_p7-1
r=pPz " (AS) the result with Eq(B7), we find that
It was shown i8] that the connection forms in Kerr-Schild 1 B =
metrics are PZ '=—dF/dY, P=q, F-Yd,F, (B8)
[ =T 46%=—dY—hY, e (A6)  Where the functiorP can also be defined as
The congruence? is geodesic if" 4,,= —Y,4(1—h)=0 and P=(¢—7)(9)\2F. (B9)
shear-free ifl"4,,=—Y,,=0. Thus, the functior¥(x) with
the conditions Corollary 1. The following useful relations are valid:

124024-10
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ZZ Y ,3=—(logP),, P,4=0. (B10)
Proof. So long as&z&kzeo, one sees that
(logP),,=—Z(¢=Y) " (B1Y)

then Eq.(B5) leads to the first equality of EqB10). The
relationP,,=0 follows from Eq.(B8) and the properties of
the twistor component¥,,=(\1),4=(\2),4=0.

PHYSICAL REVIEW 67, 124024 (2003

Corollary 2: The singular region of the congruence,
where the complex divergen@blows up, is defined by the
system of equation&3).
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