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Inside the horizon with AdSÕCFT

Per Kraus
Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA

Hirosi Ooguri
California Institute of Technology 452-48, Pasadena, California 91125, USA

Stephen Shenker
Department of Physics, Stanford University, Stanford, California 94305, USA

~Received 23 February 2003; published 20 June 2003!

Using the eternal BTZ black hole as a concrete example, we show how spacelike singularities and horizons
can be described in terms of AdS/CFT amplitudes. Our approach is based on analytically continuing ampli-
tudes defined in a Euclidean signature. This procedure yields finite Lorentzian amplitudes. The naive diver-
gences associated with the Milne type singularity of BTZ black holes are regulated by ani e prescription
inherent in the analytic continuation and a cancellation between future and past singularities. The boundary
description corresponds to a tensor product of two CFTs in an entangled state, as in previous work. We give
two bulk descriptions corresponding to two different analytic continuations. In the first, only regions outside
the horizon appear explicitly, and so amplitudes are manifestly finite. In the second, regions behind the horizon
and on both sides of the singularity appear, thus yielding finite amplitudes for virtual particles propagating
through the black hole singularity. This equivalence between descriptions only outside and both inside and
outside the horizon is reminiscent of the ideas of black hole complementarity.
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I. INTRODUCTION

It has been a long-standing goal of string or M theory
understand the singularities in spacetime geometry that
flict classical general relativity. Much progress has be
made in understanding static time independent singulari
For example, orbifolds@1#, conifolds@2#, and enhancons@3#
each represent a successful resolution of a classical sing
ity, the latter two requiring nonperturbative~in gs) phenom-
ena.

Much less is known about the fate of nonstatic, space
or null singularities. These are crucial in cosmology and
clude the Friedmann-Robertson-Walker~FRW! big bang and
big crunch singularities. The singularity at the center o
black hole is of this type as well. The conventional wisdo
has been that nonperturbative phenomena would come
play near these singularities. Recently real calculations h
been done in perturbative string theory in mild big bang
big crunch type backgrounds@4–12#. In the examples of cos
mological singularities constructed as time dependent o
folds of Minkowski space, the work of Ref.@8# showed that
tree level amplitudes diverge, due to infinite blueshifts at
singularities. References@13,14# discussed the physica
meaning of these results and argued that in general non
turbative phenomena should be expected around such po

Enough progress has been made in string or M theory
that algorithmically complete nonperturbative definitions
the theory exist in certain backgrounds. These include ma
theory @15#, the AdS conformal field theory~CFT! corre-
spondence@16–18# and its relatives, and, to some exten
string field theory@19#. The hope exists that such definition
could cast some light on the spacelike singularity proble

The AdS/CFT correspondence seems particularly w
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suited to this question because of the great success it has
in elucidating the physics of black holes. In particular t
region outside the horizon of an AdS-Schwarzschild bla
hole is represented holographically by the boundary CFT
finite temperature@20#.

The black hole singularity is behind the horizon and so
first glance the boundary CFT does not seem able to
anything about it. But on closer examination@21–23#, the
boundary degrees of freedom do seem to be able to probe
region of spacetime behind the horizon, implementing
redundancy of description implied by the ideas of black h
complementarity@24#. A particularly clear example of this
building on an old observation of Israel@25#, involves the
boundary description of an eternal AdS-Schwarzschild bl
hole. Such a geometry has two disconnected asympt
boundaries, both approximately AdS. Not surprisingly, th
the holographic description of this geometry involvestwo
decoupled CFTs, one on each boundary@26,27,22#. The only
coupling between CFTs is via the entangled stateuC&, re-
ferred to as the Hartle-Hawking state, in which all expec
tion values are taken. Correlation functions in one CFT
produce the thermal results for correlators outside
horizon of the black hole; the black hole entropy in th
formalism is the entanglement entropy of the stateuC&.1 But
correlation functions involving the expectation values inuC&
of operators in both CFTs should, as Maldacena@22# has
argued, contain some information about the geometry beh
the horizon.

1This formalism has recently been applied to the question of
quantum consistency of de Sitter space by Goheer, Kleban,
Susskind@28#.
©2003 The American Physical Society22-1
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The goal of this paper, building especially on the work
Ref. @22#, is to understand more carefully what kind of b
hind the horizon information is contained in such correlat
and, in particular, what information about the singularity c
be obtained from them.

For simplicity we focus on the 211 case@29#, i.e., the
Bañados-Teitelboim-Zanelli~BTZ! black hole@30#, which is
an orbifold of AdS. The spacelike singularity of the none
tremal, nonrotating BTZ black hole is given locally by
boost orbifold of two-dimensional Minkowski space times
spacelike line. The two-dimensional piece is referred to
the Milne universe, and describes contracting and expan
cones touching at a singularity. The null singularity stud
in Ref. @8# is identical to the singularity of the zero ma
limit of the BTZ black hole.

The natural way to define Lorentzian correlators
boundary operators in either the bulk or boundary desc
tion is via analytic continuation from the Euclidean theo
Because of the freedom to choose integration contours
show that it is possible to describe a given amplitude
being determined by information completely outside the
rizon, or alternatively but equivalently as being determin
by information both inside and outside the horizon. This
reminiscent of the concept of black hole complementa
@24#.2

As we will argue later, these continued amplitudes
expected to be finite and the perturbation expansion for th
well behaved. We then must ask what happens to the br
down expected from the singularities. In the description
volving data only outside the horizon there is nothing
explain. In the description that probes behind the horizon
find, at least in one case, that the singular behavior can
between the future and past singularities.

Another question that arises concerns the intricate bou
ary structure of Lorentzian BTZs. We will argue that desp
the apparent existence of an infinite number of bound
components the boundary CFTs only lie on the original t
boundaries.

We now turn to a more detailed description of the cont
of the paper. Our main task is to show how to explici
perform the analytic continuation of AdS/CFT amplitud
from Euclidean to Lorentzian signature. In principle, w
could try to do this directly at the level of the string world
sheet path integral, but we will instead consider the simp
case of supergravity amplitudes, as these are sufficien
our purposes. The idea is to start from some Euclidean
pergravity amplitude, defined in position space as an inte
tion over the positions of interaction vertices, which are
turn connected by various bulk-boundary and bulk-b
propagators. The amplitudes are labeled by points on
Euclidean boundary torus, corresponding to the location
operators in the boundary CFT.

As we proceed to continue the boundary points to
Lorentzian section, we will have to deform the contour
which the interaction vertices are integrated. This is beca

2Another indication of complementarity in this formalism h
been discussed in Ref.@22#.
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the propagators have singularities in the complex plane,
we must deform the contour to avoid encountering the s
gularities. We obtain a Lorentzian interpretation from t
form of the final contour, as well as ani e prescription for
integrating around the various singularities. Since there
some freedom in how we deform the integration conto
there are a number of different possible Lorentzian interp
tations of the same analytically continued amplitudes,
which we explore two.

The first corresponds to doing the natural contour def
mation with respect to integration over time in the BTZ c
ordinates, which corresponds to a Killing vector of the BT
geometry. This gives a Lorentzian amplitude in which w
integrate vertices over two coordinate patches outside
horizon ~the left and right wedges of the Penrose diagram!,
as well as over two imaginary time segments which can
thought of as imposing the Hartle-Hawking wave functio
In this description, no explicit reference is made to the reg
behind the horizon or to the singularity, and the finiteness
the amplitudes is manifest. The analogous continuation
boundary CFT amplitudes naturally leads to a tensor prod
of two entangled CFTs associated to the boundaries of
two coordinate patches, as in previous work@22,26,27,31#.
So the bulk and boundary description match up nicely, an
neither do the other components of the BTZ geometry m
an appearance.

The first continuation just described is analogous to c
tinuing flat space amplitudes with respect to Rindler tim
whereas our second continuation is analogous to continu
with respect to Minkowski time. For the latter case we intr
duce Kruskal coordinates for BTZ, and perform the natu
continuation with respect to Kruskal time. This leads to
Lorentzian description in which we integrate over a grea
portion of the BTZ geometry than before, including the BT
singularity and beyond. Thei e prescription provided by the
analytic continuation tells us how to integrate the vertic
over the BTZ singularities. Since we effectively go arou
the singularity in the complex plane, a naively divergent
sult is replaced by a finite but complex result. However,
calling that BTZ has both past and future singularities,
show that unphysical imaginary parts cancel between the
singularities, at least in some cases. Thei e prescription and
the cancellation between past and future singularities are
mechanisms that seem to allow a well behaved bound
theory to describe the singular geometry behind the horiz

The possibility of choosing two different contours to d
scribe the same amplitude, one involving data only outs
the horizon, the other involving data behind the horizon,
reminiscent of black hole complementarity ideas. It is str
ing that amplitudes apparently related solely to phenom
outside the horizon can also be used to reconstruct m
properties of the geometry behind the horizon as well
some other phenomena that occur there. We note that t
are phenomena that do not involve breakdown in the per
bative description.

The remainder of this paper is organized as follows.
Sec. II we review the BTZ geometry, its bulk-bounda
propagator, and the reason why we might expect divergen
from the BTZ singularity. In Sec. III we begin investigatin
2-2
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the singularity with two point functions and their relation
spacelike geodesics in the bulk, although we later see
this approach has its limitations. Arguments for the finiten
of analytically continued amplitudes are given in Sec.
The prescription for the analytic continuation from the po
of view of boundary CFT is reviewed in Sec. V. Before d
cussing the analytic continuation in the bulk BTZ geomet
sample computations in Minkowski spacetime are given
Sec. VI. Finally, in Sec. VII we study the BTZ amplitudes
two different ways by continuing with respect to BTZ tim
and Kruskal time, and then discuss the results. As this ma
script was being finished Ref.@32# appeared, which has sig
nificant overlap with this work.

II. REVIEW OF BTZ BLACK HOLE

A. Geometry

Let us recall the construction of the nonrotating BT
black hole. More details, including the rotating case, can
found in Refs.@30,31#. Previous work on string theory o
BTZ includes Refs.@22,31,33,34#. The starting point is AdS3
described as a hyperboloid embedded in a flat spacetime
signature~1, 1, 22!:

x0
21x1

22x2
22x3

251. ~2.1!

We are setting the AdS3 length scale to unity. As usual, w
will actually work with the simply connected covering spa
of Eq. ~2.1!. The BTZ solution is obtained by identifying
points by a boost

x16x2>e62pr 1~x16x2!. ~2.2!

This will result in a nonrotating black hole of massM
5r 1

2 /8GN . The line of fixed points atx15x250 is the black
hole singularity. The local geometry near the singularity
described by the Milne universe times a line. Indeed, solv
Eq. ~2.1! for x3 near the line of fixed points yields

ds2;2dx1
21dx2

21
dx0

2

12x0
2 . ~2.3!

The boost identification in the (x1 ,x2) plane defines the
Milne universe.

To write coordinates that display the symmetries of
spacetime, we break up AdS3 into the following three types
of regions:

region 1: x1
22x2

2>0, x0
22x3

2<0,

region 2: x1
22x2

2>0, x0
22x3

2>0, ~2.4!

region 3: x1
22x2

2<0, x0
22x3

2>0.

We then cover each region by four separate coordin
patches, corresponding to the values ofh1,2561.

Region 1:

x16x25h1

r

r 1
e6r 1f, ~25!
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x36x05h2

Ar 22r 1
2

r 1
e6r 1t.

Region 2:

x16x25h1

r

r 1
e6r 1f,

~2.6!

x36x05h2

Ar 1
2 2r 2

r 1
e6r 1t.

Region 3:

x16x25h1

Ar 22r 1
2

r 1
e6r 1t,

~2.7!

x36x05h2

r

r 1
e6r 1f.

r lives in the range (r 1 ,`) in regions 1 and 3 and (0,r 1)
in region 2. The BTZ identification in these coordinates i

regions 1,2: ~ t,f,r !>~ t,f12p,r !,
~2.8!

region 3: ~ t,f,r !>~ t12p,f,r !.

The metric is

ds252~r 22r 1
2 !dt21

dr2

r 22r 1
2 1r 2 df2. ~2.9!

In string theory there is also a nonvanishingB field, but we
will not need its explicit form.

Noting thatt is a timelike coordinate in region 3, we se
that the BTZ identification~2.8! gives rise to closed timelike

FIG. 1. Two orthogonal cross sections of the AdS3 cylinder,
with BTZ coordinate patches indicated. Both diagrams should
extended periodically in the vertical direction.
2-3
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curves in this region. The desire to avoid these motivated
proposal to truncate the geometry at the singularity@30#. One
goal of the present work is to examine whether such a tr
cation actually occurs in the context of string theory and
AdS/CFT correspondence.

To get a picture of the global structure, it is helpful
display two orthogonal cross sections of the original Ad3
cylinder in Fig. 1, with the various coordinate regions ind
cated. Important for us is the fact that each componen
regions 1 and 3 has a distinct boundary. One might t
expect there to be distinct CFT’s living on each bound
component; we will see in Sec. VII that the actual situation
more subtle.
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B. Propagators and divergences

AdS/CFT correlation functions on the bulk side are co
structed out of bulk-boundary and bulk-bulk propagato
The BTZ versions of these propagators can be obtained f
their AdS3 cousins by the method of images@34#. For the
bulk-boundary propagator we need to specify a ‘‘sourc
point b on the boundary, and a ‘‘sink’’ pointx in the bulk. In
BTZ coordinates, the form of the propagator changes as
move the source and sink points from one region to anot
For a minimally coupled scalar of massm, the bulk-
boundary propagator for both source and sink in region 111

is, up to normalization,
ion
k
an
an

q.
f

K ~111111!~x,b8!5 (
n52`

` 1

F2Ar 22r 1
2

r 1
2 cosh~r 1Dt !1

r

r 1

coshr 1~Df12pn!G 2h1
. ~2.10!

HereDt5t2t8, and similarly forDf. A bulk scalar of massm corresponds to a boundary operator of conformal dimens
2h1511A11m2. Although written for region 111 , in fact K is always given by Eq.~2.10! whenever the source and sin
point are in the same region. Equation~2.10! diverges when the bulk and boundary points are lightlike separated, and soi e
prescription is required. We will see how to obtain the correcti e prescription when we discuss the continuation from Euclide
signature.

To move the sink point to another region, we can analytically continue the propagator. For instance, by examining E~2.5!,
we see that to move the sink point to 112 we should make the replacementt→t2 ip/r 1 . Note that the imaginary shift is hal
the inverse Hawking temperature

b51/TH52p/r 1 . ~2.11!

Making this replacement, the bulk-boundary propagator becomes

K ~112111!~x,b8!5 (
n52`

` 1

FAr 22r 1
2

r 1
2 cosh~r 1Dt !1

r

r 1

coshr 1~Df12pn!G 2h1
. ~2.12!

This propagator is nonsingular, reflecting the fact that 111 and 112 are spacelike separated.
To investigate the behavior of the propagator near the BTZ singularity we now move the sink point to 211 ,

K ~211111!~x,b8!5 (
n52`

` 1

F2Ar 1
2 2r 2

r 1
2 sinh~r 1Dt !1

r

r 1

coshr 1~Df12pn!G 2h1
. ~2.13!
ect
la-
m
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n

This is singular atr 50, since the summation then acts on
n independent quantity. By estimating the number of term
the sum which contribute asr→0, we find that near the
singularity

K ~211111!; f ~Dt !ln r . ~2.14!

The same divergence applies when we approach the si
larity from other regions. The bulk-bulk propagators also
verge logarithmically for the same reason.
n

u-
-

Let us first be very naive and see why we might exp
divergent amplitudes to arise. A typical supergravity calcu
tion of an AdS/CFT amplitude involves a Feynman diagra
composed of propagators and vertices, and an integra
over the positions of the vertices. Divergences can there
arise from the region of integration involving some numb
of vertices approaching the BTZ singularity. In fact, since t
integration measure is*dt df dr r , nonderivative couplings
will yield finite amplitudes after integration. However, a
2-4
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INSIDE THE HORIZON WITH AdS/CFT PHYSICAL REVIEW D67, 124022 ~2003!
interaction with a sufficient number of derivatives will lea
to a divergent integral. The divergences arise due to an
nite blueshifting at the singularity, as in recent examples
time dependent orbifolds of Minkowski space. For the Mil
singularity, divergences in string amplitudes are studied
Ref. @32#. In Sec. VII we will see how the AdS/CFT corre
spondence handles these divergences.

III. PROBING THE SINGULARITY WITH
SPACELIKE GEODESICS

From our knowledge of the bulk-boundary propagator
the various regions, we can make a few preliminary co
ments about how AdS/CFT correlators might probe the s
gularity. We will see later that the situation is considerab
more subtle than these considerations suggest. As a spe
example, consider a two point function with one opera
inserted on the boundary of 111 and another on the bound
ary of 112 . According to the standard AdS/CFT rules, E
~2.12! leads to the two point function@22#

^O112
O111

&

5 (
n52`

`

@cosh~r 1Dt !1coshr 1~Df12pn!#22h1.

~3.1!

Given the BTZ causal structure, correlators involving o
erators in both 111 and 112 might be expected to prob
physics behind the horizon and in particular near the sin
larity. We can make this expectation a bit more precise
using the WKB approximation to see which spacetime g
desics contribute to Eq.~3.1!. Consider for simplicity the
two-point function withDf50. The equation for a spacelik
geodesic is

ṙ 2

r 22r 1
2

2
E2

r 22r 1
2

51, ~3.2!

where˙ denotes a proper time derivative andE is the con-
served energyE5(r 22r 1

2 ) ṫ . Integrating we find

r ~t!5H 6AE22r 1
2 sinh~t2t0!, E2.r 1

2 ,

6Ar 1
2 2E2 cosh~t2t0!, E2,r 1

2 .
~3.3!

For E2.r 1
2 the geodesics cross the singularity atr 50, and

so we focus on theE2,r 1
2 case and choose the1 sign. The

distance of closest approach to the singularity is

r min5Ar 1
2 2E2. ~3.4!

We want to relateE to the values of the boundary time co
ordinates. Integrating the equations fort gives
12402
fi-
f
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-
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Dt5t~`!2t~2`!52
ip

r 1
1

1

r 1
lnH 11

E

r 1

12
E

r 1

J .

~3.5!

The imaginary part2 ib/2 is the correct jump when going
between 111 and 112 . The real partDt r is related tor min
by

r min5
r 1

coshS r 1Dt r

2 D . ~3.6!

In our conventions time runs backward in 112 , which is
consistent with the fact thatr min is invariant under simulta-
neous time translations in the initial and final times.

The WKB approximation to the two-point function i
given bye2S, whereS is the action of the spacelike geodes
passing between the two boundary points. This action is
vergent; using a larger cutoff the regularized action is

S5mDt52m lnS 2r c coshS r 1Dt r

2 D
r 1

D . ~3.7!

We define a renormalized actionSren by subtracting 2m ln rc ,
since this term also arises in pure AdS3. The WKB approxi-
mation to the two point function is then

e2Sren5
C

FcoshS r 1Dt r

2 D G2m . ~3.8!

When we recall that for largem, which is when the WKB
approximation is accurate, 2h1511A11m2'm, we find
that Eq.~3.8! agrees with the leading term in Eq.~3.1!.

We can ask for the time scale at which the geodesic pa
within a proper distanceLP1 of the singularity, which is
when we could expect quantum effects to become import
Restoring the AdS3 length scale, this is

Dtsing;
2LAdS

2

r 1
lnS LAdS

LP1
D . ~3.9!

Another important timescale was pointed out by Ma
dacena@22#. This is the time scale where large fluctuations
the geometry apparently become important. For sufficien
large time separationDt.Dtfluc ~3.8! is inconsistent with
unitarity of the boundary theory, since the correlation sho
not drop belowe2s, wheres is the entropy,

s5
pr 1

2LP1
. ~3.10!

This gives
2-5
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Dtfluc;
p

2

LAdS

mLP1
. ~3.11!

The timeDtfluc marks the onset of fluctuations in the co
relation function of size;exp(2s). A much longer time, the
Poincare´ recurrence timeDt recur;exp(as) marks the onset o
order one fluctuations@22,35#. From the bulk point of view,
an indication of the time scale for fluctuations can be see
the WKB approximation when we recall that we should
ally consider the sum of the actions of the geodesic and
background geometry. The action of the black hole is rela
to its free energy

SBH52~s2bM !52
p

4

r 1

LP1
. ~3.12!

On the other hand, recalling that pure AdS3 has energyM
521/8LP1, the action of thermal AdS3 at inverse tempera
ture b is

SAdS5bM52
p

4

LAdS
2

LP1r 1
. ~3.13!

So for r 1.LAdS the black hole dominates the partition sum
However, this can be overcome by the positive action of
action for the spacelike geodesic. Indeed, the time scale
the geodesic action to become comparable to the black
action recovers~up to a numerical factor! the result~3.11!.

Comparing Eq.~3.9! with Eq. ~3.11!, we see that form
;LAdS, r 1;LAdS@LP1, we haveDtfluc@Dtsing. Therefore,
we might hope to use boundary correlators to probe
physics of the singularity before possible fluctuations in
whole geometry become important. This will turn out to
only indirectly the case.

IV. ANALYTIC CONTINUATION I: FINITENESS
OF AMPLITUDES

The heuristic arguments just given are not sufficient
determine to what extent we can really probe the singula
The divergences arising in time dependent orbifolds
Minkowski space have to do with interactions near the s
gularity. Similarly, in the BTZ case we need to go beyond
two-point function and include interactions in the bulk.

At our current level of understanding, string theory
Lorentzian AdS3 or BTZ is defined by analytic continuatio
from Euclidean signature@36–38#. This is the approach we
will follow; we will discuss later whether this procedure r
ally captures all of the Lorentzian physics.

The Euclidean BTZ metric is given by the replacement
52 i t

ds25~r 22r 1
2 !dt21

dr2

r 22r 1
2 1r 2 df2, ~4.1!

with

t>t1b, ~4.2!
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and b given by Eq. ~2.11!. The radial coordinate is now
restricted to (r 1 ,`). Given the periodicity oft andf, Eq.
~4.1! is topologically a solid torus. The boundary CFT ther
fore lives on a torus parametrized byt andf.

A Euclidean AdS/CFTn-point function is labeled byn
points on the boundary torusGn(t1 ,f1 ,...,tn ,fn). The am-
plitudes are initially defined for realt, or equivalently for
pure imaginaryt. To obtain Lorentzian amplitudes we nee
to perform an analytic continuation int. Continuing a point
to real t gives a point on a boundary component of Loren
ian BTZ, which we can take to be in 111 . As we have
already mentioned, to get from 111 to 112 one takest→t
2 ib/2. So, starting fromt on the imaginary axis we need th
continuations

t→H real, 111 ,

real2 ib/2, 112 .
~4.3!

We will defer to later the question of continuing to oth
boundary components.

We now want to argue that the analytically continued a
plitudes are finite. The argument can be made in terms
either the bulk or boundary descriptions. From the bound
point of view, since we know that our amplitudes correspo
to those of a well behaved CFT on the boundary torus, we
not expect there to arise any unusual singularities in am
tudes even after analytic continuation. We expect correla
functions defined for realt to be analytic int, order by order
in the string loop counting parameter. This follows from
well behaved spectral decomposition~a natural expectation!
or from the perturbative bulk correspondence. This analy
ity implies that singularities will be at most complex cod
mension one. But the kind of singularities induced by effe
such as Eq.~2.14! will in general be of real codimension 1.3

Another way of saying this is that, as we review in the ne
section, Lorentzian amplitudes are manifestly regular and
nite since they can be expressed as expectation values e
ated in the entangled state

uC&5
1

AZ (
n

e2bEn/2un& ^ un&, ~4.4!

whereun& is an energy eigenstate with energyEn in the Hil-
bert space of the CFT andZ is the partition function.

From the bulk point of view, the basic point is that th
Euclidean BTZ geometry is completely smooth, as usual
Euclidean black holes, since the regionr ,r 1 does not ap-
pear. Therefore, string theory or supergravity amplitud
computed in Euclidean signature will be finite, modulo t
usual divergences that occur even for pure AdS3, such as
due to tachyons and so forth, and can be analytically con
ued to Lorentzian signature as above. One may think
there is a possibility that these amplitudes do not have g
asymptotic expansions in the string coupling constant. T

3The tree level Liu-Moore-Seiberg~LMS! amplitudes@8# have
singularities only at complex codimension one, but higher ord
are expected to be generically singular@13,14#.
2-6
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INSIDE THE HORIZON WITH AdS/CFT PHYSICAL REVIEW D67, 124022 ~2003!
however, is not likely. Since the BTZ geometry is an orbifo
of AdS3 , at the tree level, a correlation function in th
former can be expressed as a sum over the correspon
correlation function in the latter under the action of the or
fold group. This sum is manifestly convergent@22#. More-
over, as we will see in the next section, correlation functio
of operators on 111 and 112 can be computed taking int
account interactions taking place outside of the horizon o
Thus we do not expect divergences associated to the si
larity to arise at higher loops either. Of course, field theore
divergences could be rendered finite by stringya8 effects,
but this seems unlikely, especially given the stringy div
gences found in Ref.@8#.

V. ANALYTIC CONTINUATION II: BOUNDARY THEORY

Analytic continuation from Euclidean signature yields
nite amplitudes, and we now want to examine in more de
how this comes about. As we discussed previously, Lore
ian signature divergences seemingly arise from integra
an interaction vertex near the BTZ singularity. We will fin
two different interpretations, corresponding to two differe
contour deformations, for how the singularity is avoided.
the first, interactions only occur in regions 111 and 112 , so
that the region near the singularity never appears in the
culation. In the second interpretation the region near the
gularity does appear, but the analytic continuation provi
an i e prescription which tells us how to go around the s
gularity in the complex plane.

It is useful to begin by reviewing the analytic continuatio
in the boundary theory, following the work of Niemi an
Semenoff@39#. For simplicity, we consider a weakly inter
acting scalar field theory on the Euclidean torus. We cons
the computation of Euclidean time ordered correlation fu
tions

Gn~t1 ,f1 ,...,tn ,fn!

5Tr$e2bHT@X~t1 ,f1!,...,X~tn ,fn!#%

5E
periodic

DX e2SX~t1 ,f1!,...,X~tn ,fn!.

~5.1!

We imagine computing Feynman diagrams in position spa
so we will have interaction vertices integrated over the E
clidean torus. A simple example is the lowest order thr
point function in the presence of alX3 interaction,

G3~t1 ,f1 ,t2 ,f2 ,t3 ,f3!;lE
0

b

dtE
0

2p

df G~t,f,t1 ,f1!

3G~t,f,t2 ,f2!G~t,f,t3 ,f3!.

~5.2!

Now relabelt i5 i t i and t5 i t and consider analytically
continuingGn to the realt i axis. The point is that the propa
gators have singularities for lightlike separated argume
The positions of these singularities in the complext plane
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will move around as we continue int i , and we have to
deform the contour of integration so that no singularit
cross the contour. Singularities occur for

t5t i6~f2f i22pm!1 inb, n,m5 integer. ~5.3!

The t contour of integration originally runs from 0 to2 ib
along the imaginary axis. It is convenient to use translat
invariance to instead take the contour to run from2T to
2T2 ib with T real and positive. The following analysi
applies for any value ofT, but we will eventually takeT
→` since this leads to the simplest real time interpretati

So before doing any analytic continuation, Fig. 2~a!
shows the integration contour and the locations of singul
ties in the integrand. Note that no matter how largeT is, there
are always singularities to the left of the contour due to
periodicity in f.

We have only drawn the singularities due to a sing
propagator to avoid clutter. Now movet i to the real axis. The
locations of singularities move according to Eq.~5.3!. De-
forming the contour to avoid the singularities, we end
with the contour in Fig. 2~b!. We are left with two segments
parallel to the real axis, as well as two segments paralle
the imaginary axis. Singularities on the real axis are avoid
by the usual prescription leading to the Feynman Gree
function.

The result has a simple operator interpretation, which
be found by going through the usual steps relating path in
gral and operator expressions. Normally, we consider c
tours with just a single horizontal component, which leads
expectation values in the vacuum state. If we now ad
second horizontal contour we get a second copy of the fi
theory, with expectation values again computed in
vacuum state. The Hilbert space of the full theory is th
H^ H, whereH is the Hilbert space of the field theory o
the cylinder. Our contour also includes vertical segme
which establish a correlation between the two sectors of
Hilbert space. In particular, the path integral along a verti
segment represents an insertion of the operatore2bH/2, cor-
responding to an imaginary time translation byb/2. So in-
stead of projecting onto the vacuum state of the tensor p
uct theory, we have an entangled state with the entanglem
given by the operatore2bH/2.

More precisely, our result can be written in operator fo
as

Gn5^CuT@X~ t1 ,f1!,...,X~ tn ,fn!#uC&, ~5.4!

FIG. 2. Integration contours for evaluating correlation function
Contour~a! defines a Euclidean amplitude; analytic continuation
real time gives~b!.
2-7
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KRAUS, OOGURI, AND SHENKER PHYSICAL REVIEW D67, 124022 ~2003!
whereuC& is an entangled state inH^ H,

uC&5
1

AZ (
n

e2bEn/2un& ^ un&. ~5.5!

T in Eq. ~5.4! now represents Lorentzian time orderin
Since we have continued to the realt axis, theX operators in
Eq. ~5.4! all represent operators in a single copy of the fie
theory, say the first. It is clear that we can then perform
trace over states in the second copy, and recover a the
expectation value for operators in the first copy,

Gn5Tr$e2bHT@X~ t1 ,f1!,...,X~ tn ,fn!#%. ~5.6!

It is straightforward to generalize the previous argum
to the case where some operators are continued tot5Re
2ib/2. The resulting contour appears as in Fig. 3.

The expression~5.4! is unchanged, except that no
whichever operators were taken tot5Re2ib/2 now appear
as operators in the second copy of the field theory. Fina
we can also consider continuing operators to the vertical s
ments of the final contour. This has the effect of replac
e2bH/2 by a more general operator, and so correspond
changing the state from Eq.~5.5! to something else.

Let us make a few comments about these results. F
although we only explicitly discussed the continuation
diagrams with a single vertex, the argument is easily ge
alized by considering each vertex in turn. Second, it is
portant to note that the continuation instructs us to integ
vertices over the entire contour, including the vertical s
ments. The presence of interactions on the vertical segm
ensures that the energy eigenstates appearing in Eq.~5.5! are
the correct energy eigenstates of the full interacting the
Integrating only over the horizontal segments would yie
energy eigenstates of the free theory.

As noted by Israel@25# shortly after Hawking’s derivation
of black hole radiance~and in the context of AdS/CFT in
Refs. @22,26,27#!, the fact that real time thermal correlato
are naturally interpreted in terms of a tensor product of t
field theories is directly analogous to the fact that const
time hypersurfaces in an eternal black hole geometry n
rally consist of two components on either side of the horiz
In our notation, the two components correspond to 111 and
112 . So the expectation that there should be two bound
theories associated with the two boundaries of 111 and 112

is borne out by analytic continuation.

FIG. 3. Time integration contour for operators on both Lore
zian copies.
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VI. ANALYTIC CONTINUATION III: MINKOWSKI SPACE

There is some additional freedom to analytically contin
bulk amplitudes corresponding to different choices of tim
coordinates. Different choices will lead to different Lorent
ian interpretations of the same correlation functions. Bef
proceeding to the black hole case we will do a warmup
ample.

We start by computing Green’s functions in flat Euclide
space

ds25dt21dx2. ~6.1!

So, for example, the expression analogous to Eq.~5.2! is
now

G3~t1 ,x1 ,t2 ,x2 ,t3 ,x3!;lE
2`

`

dtE
2`

`

dx G~t,x,t1 ,x1!

3G~t,x,t2 ,x2!G~t,x,t3 ,x3!.

~6.2!

The standard procedure is to continue int i52 i t i while ro-
tating the time contour to the realt axis. An i e prescription
follows from taking the contour to be at a small angle w
respect to the real axis, or equivalently, to go around
singularities as in Fig. 4.

The result is that we are to integrate vertices ov
Minkowski spacetime using the Lorentzian propagator

GLor~ t,x,t8,f8!5G~ei ~p/22e!t,x,ei ~p/22e!t8,f8!.
~6.3!

Since the Euclidean propagator is a function ofs25(t
2t8)21(x2x8)2, the rule to obtain the Lorentzian propag
tor is

s2→2~ t2t8!21~x2x8!21 i e. ~6.4!

We can alternatively analytically continue with respect
Rindler time. To do this we transform to polar coordinate

t5r sinu, x5r cosu, ds25dr21r 2 du2. ~6.5!

The Euclidean integration is now*0
` dr r *0

2p du.
Recall that Rindler coordinates cover Minkowski spac

time in four patches

-

FIG. 4. Standard contour rotation defining amplitudes
Minkowski space.
2-8
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INSIDE THE HORIZON WITH AdS/CFT PHYSICAL REVIEW D67, 124022 ~2003!
x6t5H re6h, R,
2re6h, L,
re7h, F,
2re7h, P,

~6.6!

with metric

ds25 H 2r 2 dh21dr2, R,L,
r 2 dh22dr2, F,P. ~6.7!

Note that regionL is obtained from regionR by h→h
2 ip. We will takeh52 iu to be the Rindler coordinate in
regionR ~see Fig. 5!.

Now, the geodesic distance expressed in terms ofr andh
is

s25r 21r 8222rr 8 cosh~h2h8!. ~6.8!

Therefore, singularities in the complexh plane are located a

h5h i1
1

2rr i
cosh21~r 21r i

2!5h i12p in16Re.

~6.9!

With b52p, our integration contour in theh plane and the
location of singularities are precisely the same as in our
lier discussion of continuing correlators on the Euclide
cylinder. Therefore, we can deform the contour as in Fig
~with t replaced byh!. The two horizontal segments no
correspond to integration over regionR and L. The appear-
ance of a tensor product is now seen to be due to the fact
the t50 Minkowski timeslice is a sum ofh50 time slices in
the right and left Rindler patches.

Green’s function computed by continuation in eith
Minkowski or Rindler time should agree, and this inde
follows from the fact that the entangled state arising in
Rindler description

uC&5
1

AZ (
n

e2pEnun&R^ un&L ~6.10!

is equal to the usual Minkowski vacuum@40#. To see that the
two states are the same, consider a path integral on the lo
half Euclidean plane, with prescribed boundary conditio
f(x) on the real axis. This wave functionC@f(x)# defines
the Minkowski vacuum state. On the other hand, we c

FIG. 5. Rindler coordinate patches.
12402
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consider the Hilbert space of wave functions on half of t
real axis, with a Rindler HamiltonianHR corresponding to
rotations about the real axis. The path integral then beco
the transition amplitudêfLue2pHRufR&, wherefL,R are the
boundary conditionsf(x) restricted to the left and righ
halves of the real axis. Inserting a complete set of eigenst
of HR then leads to the equivalence of the two states.

So to summarize, Green’s functions with arguments
regionsR andL can be computed either in the usual fashi
by integrating vertices over all of Minkowski space, or b
just integrating over theR and L wedges with an entangle
ment given by Eq.~6.10!. If we imagine first doing the inte-
gration over the vertical segments of the Rindler contour, t
will result in wave functions inserted ath56`. These wave
functions provide the boundary conditions at the horizo
which bound the two Rindler wedges. Equivalently, the wa
functions can be thought of as providing the ‘‘missing’’ pa
of the integrand from not integrating over theF and P
wedges.

VII. ANALYTIC CONTINUATION IV: BEHIND THE
BLACK HOLE HORIZON

Now we are ready to discuss analytic continuation
compute correlation functions in the Lorentzian BTZ bla
hole.

A. BTZ coordinates

We first consider analytic continuation in BTZ coord
nates~2.9!. This is straightforward and follows closely ou
discussion of analytic continuation in Rindler time. Sing
larities in propagators, occurring, as always, for lightli
separation, are located in the complex time plane at

t5t81Im b6Re. ~7.1!

For instance, for the bulk-boundary propagator given in E
~2.10! the singularities are located at

t5t81Im b1cosh21SA r 2

r 22r 1
2

coshr 1~Df12pn!D .

~7.2!

Euclidean AdS/CFT amplitudes are defined as

An~b18 ,...,bn8!5S )
i 51

n E
0

2p

df iE
r 1

`

dri r iE
C
dti D

3K~x1 ,b18!¯K~xn ,bn8!Gn~x1 ,...,xn!,

~7.3!

where then-point Greens functionGn represents the part o
the amplitude corresponding to bulk-bulk propagators on
Equation~7.3! corresponds to nonderivative interactions, b
the generalization is straightforward. The time integrati
contour C runs down along the imaginary axis from 0
2 ib. As before we use time translation invariance to sh
the contour in the real direction by2T, where we eventually
takeT→`.
2-9
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KRAUS, OOGURI, AND SHENKER PHYSICAL REVIEW D67, 124022 ~2003!
Proceeding as in our other examples, we want to conti
t i8 from the contourC to eithert i85Re or t i85Re2ib/2. Us-
ing the fact that all singularities are located as in Eq.~7.1!,
the contour should be deformed as in Figs. 2 and 3.
region of integration along the real time axis corresponds
111 . Continuing the coordinate in 111 by 2 ib/2 takes us
to region 112 , so the second horizontal time contour rep
sents an integration of this region. The two vertical segme
of the contour establish a correlation between states in
two regions. The entangled state is as in Eq.~5.5!,

uC&5
1

AZ (
n

e2bEn/2un& ^ un&. ~7.4!

By the same argument as in the Minkowski/Rindler examp
this state is equivalent to the one defined by a path inte
on the lower half portion of the Euclidean black hole—t
Hartle-Hawking vacuum. We again remark that the fact t
interaction vertices are to be included on the vertical s
ments of the contour ensures that the energy eigenstate
pearing in Eq.~7.4! are those of the full interacting theory
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If we imagine first doing the integration over the vertic
segments then this leaves us with correlated boundary
ditions for the horizontal segments at large positive a
negative BTZ time. In particular, it gives boundary cond
tions along the past and future horizons in regions 111 and
112 . Since t51` corresponds to the future horizon i
111 and the past horizon in 112 , boundary conditions on
these two horizons are correlated by the rightmost vert
segment. And similarly for the leftmost vertical segment. T
correlated boundary conditions are equivalent to compu
expectation values in the state~7.4!.

Starting from Euclidean propagators expressed in term
Euclidean timet, the arguments of the propagator can
taken to either 111 or 112 by the replacements

t→ H ei ~p/22e!t, 111

e2 i ~p/22e!t1b/2, 112 .
~7.5!

For instance, the bulk-boundary propagator with both ar
ments in 111 is
K ~111111!~x,b8!5 (
n52`

` 1

F2Ar 22r 1
2

r 1
2 cosh~r 1Dt !1

r

r 1

coshr 1~Df12pn!1 i eDt sinh~r 1Dt !G 2h1
. ~7.6!
e
o-

es.
ey
se

cal
Propagators with arguments in distinct regions do not n
an i e prescription, since such propagators are nonsing
due to the spacelike separation of points in 111 and 112 .

The Lorentzian prescription obtained by analytic contin
ation in BTZ time is therefore to integrate vertices over
gions 111 and 112 with propagators given by the rule~7.5!.
Furthermore, we should also integrate over the imagin
time segments shown in Figs. 2 and 3, or equivalently
pose correlated boundary conditions on the horizons bou
ing the two regions. This prescription has also appeare
the recent work@41#.

With this prescription, the regions of the BTZ spacetim
near the singularities do not appear in the computation,
so it is clear that there are no divergences from infinite bl
shifts. All knowledge about physics in other regions besid
111 and 112 is contained in the Hartle-Hawking wav
function.

This approach gives a satisfactory description involv
only regions 111 and 112 , but it is natural to expect tha
there will exist alternative descriptions in which other r
gions of the BTZ spacetime play a role. Here an analo
with our Minkowski spacetime example is helpful. We sa
that we would analytically continue with respect to eith
Rindler or Minkowski time. In the Rindler case, which
analogous to using BTZ coordinates, only the left and ri
wedges appeared in the final result. On the other hand,
full spacetime appears in the Minkowski case, and so
d
ar

-
-

ry
-
d-
in

d
-
s

y

r

t
he
e

would now like to find the analogous continuation for th
BTZ spacetime. This is achieved by working in Kruskal c
ordinates, as we now discuss.

B. Kruskal coordinates

Lorentzian Kruskal coordinates are defined as

x15
11X22T2

12X21T2 cosh~r 1f!,

x25
11X22T2

12X21T2 sinh~r 1f!,

x35
2X

12X21T2 ,

x05
2T

12X21T2 . ~7.7!

Note thatx1
22x2

2>0, as given in Eq.~2.4!, the coordinates do
not cover the regions 3 containing the closed timelike curv
They do cover all of regions 1 and 2. More precisely, th
cover all of regions 1 and 2 displayed in Fig. 1, but not tho
obtained by periodically extending the figures in the verti
direction. The AdS boundaries are atX22T251, and we
approach either the boundaries of 116 or 162 depending on
2-10
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INSIDE THE HORIZON WITH AdS/CFT PHYSICAL REVIEW D67, 124022 ~2003!
whether we approachX22T22150 from negative or posi-
tive values. The BTZ singularities are located atX22T25
21. The metric is

ds25
4

~12X21T2!2 F2dT21dX2

1
r 1

2

4
~11X22T2!2 df2G . ~7.8!

For reference, the relation with BTZ coordinates in 111 is

r 5
11X22T2

12X21T2 r 1 , cosh~r 1t !5
X

AX22T2
, f5f.

~7.9!

The Euclidean signature metric is

ds25
4

~12X22t2!2 Fdt21dX21
r 1

2

4
~11X21t2!2 df2G .

~7.10!

The Euclidean manifold is given by the region 0<X21t2

<1. This metric is nonsingular since the proper length of
f orbit cannot shrink to zero. The metric near where
denominator vanishes is that of AdS in Euclidean Poinc´
coordinates. The boundary of the space isX21t251, giving
a torus.
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Euclidean AdS/CFT amplitudes are now obtained by in
grating vertices over the Euclidean manifold. However, a
lytic continuation to Lorentzian signature is somewhat inco
venient because of the constraint 0<X21t2<1 on the
integration domain. Since the range of theX integration de-
pends ont, one finds a complicated analytic structure for t
t integrand. Instead, it would be much more convenient if
could extend the domain to the full (X,t) plane. This can be
achieved as follows.

We first observe that the metric is invariant under t
antipodal map defined as x→xA52x, where x
5(x1 ,x2 ,x3 ,x4). From Eq.~7.7! with T52 i t we see that
in Kruskal coordinates the antipodal map becomes

X→ X

X21t2 , t→ t

X21t2 . ~7.11!

It follows that the regionX21t2>1 describes a second cop
of Euclidean BTZ, so if we extend our integration domain
the full (X,t) cylinder we will be integrating over two copie
of Euclidean BTZ. It is convenient to do this, and then divi
by an appropriate factor at the end of the calculation.

To see how this works in more detail, we first observe t
under the antipodal map~7.11! Euclidean propagators trans
form asG→(21)2h1G, where the phase depends on ho
we choose to go around the branch cut. For example
transformation law follows immediately for the Euclidea
bulk-boundary propagator from its form
K~x,b8!5 (
n52`

`
~12X22t2!2h1

@2XX812tt82~11X21t2!coshr 1~Df12pn!#2h1
. ~7.12!
e to
or

n

e
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This same transformation law holds for bulk-bulk Euclide
propagators@42,43#. Therefore, the effect of extending th
integration with respect to a given vertex to an integrat
over the full (X,t) plane is to multiply the original result by
the coefficient

11)
i

~21!2h1,i, ~7.13!

where the product overi is a product over propagators a
tached to the vertex in question. To reproduce the orig
result, we should divide by the factor~7.13! after extending
each integration to the two copies of Euclidean BTZ. In t
supergravity limit, in which we are working in this pape
( i2h1,i for is always an integer, and the factor~7.13! is
either 2 or 0. If it is 2, we just have to multiply the factor 1
to each vertex after integrating it over the two copies. On
other hand, if the factor~7.13! is zero, it means that the
contributions from the two copies cancel with each oth
The method of doubling the integration region is then n
simply applicable in such a case, and a subtler analys
n

al

e

e

r.
t
is

required. Of course for many reasons it would be desirabl
find a way to carry out the analytic continuation directly f
a single copy of the Euclidean BTZ with the constraintX2

1t2<1. In the following, we will consider the case whe
( i2h1,i is an even integer.

Now we proceed to analytically continue the Kruskal tim
arguments of our Euclidean amplitudes. The first step,
always, is to locate the singularities in the complexT plane.
There are two kinds of singularities: those from the BT
singularity and those from lightlike separation. The BTZ s
gularities are located on the realT axis at T56A11X2.
Lightlike singularities in a propagatorG(x,x8) occur when
the geodesic distance vanishes,s2(x,x8)50. Examining the
geodesic distances25(Dx0)21(Dx1)22(Dx2)22(Dx3)2

in the coordinates~7.7!, we find that withT8 on the imagi-
nary axis there are two singularities in the complexT plane,
to the left and right of the imaginaryT axis. Therefore, be-
fore doing any analytic continuation, the singularity structu
is as in Fig. 6~a!. Now when we continueT8 to the real axis,
the singularities also migrate to the realT axis. The contour
deformation is therefore similar to that in Minkowski spa
with Minkowski time, and we obtain the contour in Fig. 6~b!.
2-11
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The novel feature is that the continuation tells us how
integrate over both the BTZ singularities as well as the us
lightcone singularities.

Our final result is that we are to integrate over all
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regions 1 and 2 of Lorentzian BTZ in Fig. 1, correspondi
to the full ~X,T! plane. With propagators obtained from E
clidean signature by the substitutiont5ei (p/22e)T. For in-
stance, the Lorentzian bulk-boundary propagator is
K~x,b8!5 (
n52`

`
~12X21T22 i e!2h1

@2XX822~12 i e!TT82~11X22T21 i e!coshr 1~Df12pn!#2h1
. ~7.14!
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Note that the integral domain is over the eight regions
the left side of Fig. 1—four regions between the past and
future singularities, and four more beyond the future sin
larity. We also have to remember that, since we started w
two copies of Euclidean BTZ related to each other by
antipodal map~7.11!, we needed to divide the amplitude b
the factor 2.~We are assuming that( i2h1,i is an even inte-
ger.!

The antipodal transformation

X→ X

X22T2 , T→ T

X22T2 , ~7.15!

maps the regions 122 and 121 , which are beyond the fu
ture singularity, to the regions 111 and 112 . Under this
map, the propagator transforms asG→(21)2h1G. There-
fore, rather than integrating over all the four regions 166 ,
we can restrict the integral to the two regions 111 and 112

and multiply the factor 2. This cancels the factor 1/2 w
introduced earlier to extend the integration to the double
Euclidean BTZ. Thus the net result is that we integrate o
the regions 111 and 112 with the standard propagators as
Eq. ~7.14!. This result is reasonable since the boundaries
these two regions are identified with the (111)-dimensional
spaces for the boundary CFT at finite temperature, as
cussed in Sec. V@22#. If the regions 122 and 121 were
included, we would have had to impose boundary conditi
for these regions and the question would have arisen whe
there are additional boundary CFT’s for these.

The situation is more subtle when the integral runs o
regions of type 2. The antipodal transformation maps 222

and 221 to 211 and 212 , respectively. Under this, the
propagator transforms asG→(21)2h1G* , where the com-

FIG. 6. Integration contours in the Kruskal time plane. In t
left hand figure, singularities on the real axis are due to the B
singularity; those off the real axis are lightcone singularities.
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plex conjugation means that we are using the opposite of
standardi e prescription. For the bulk-boundary propagato
we can see this directly by acting Eq.~7.15! on Eq. ~7.14!,
but it is also true for the boundary-boundary propaga
Thus, if we want to restrict the integral region to be ov
211 and 212 , which are between the past and the futu
singularities in Fig. 1, we need to average over the two
posite i e prescriptions in an appropriate way. We will se
that this is closely related to the cancellation of divergen
at these singularities.

To summarize, the analytic continuation to the Lorentz
BTZ using the Kruskal coordinates shows that amplitud
are expressed in terms of integrals of interaction points o
the regions 1 and 2 between the past and the future sin
larities. For propagators in the region 1, we use the stand
i e prescription. On the other hand, for propagators ending
the region 2, we need to take an appropriate average
signs ofi e.

C. Integrating over the singularities

The divergence of the propagator at the BTZ singular
has been rendered finite by thei e prescription, since 11X2

2T21 i e is nonvanishing on the realT axis. Instead of the
divergent behavior~2.14!, we now have near the singularitie

K; f ~X,T!ln~11X22T21 i e!; f ~Dt !ln~r 16 i e!.

~7.16!

The sign ofi e appearing in the last term depends on fro
which BTZ region we approach the singularity. A naivei e
prescription would consist of adding a small imaginary p
to BTZ time and using the resulting propagator to integr
near the singularity. This procedure leads to the diverg
propagator of Eq.~2.14! and to divergent amplitudes upo
integration over the singularity. But now we see that t
correcti e prescription, written in terms of BTZ coordinate
adds an imaginary part to bothr andt. Adding an imaginary
part to r lets us define the amplitudes by integrating arou
the singularities in the complex plane. Analytic continuati
has also been used previously~though not derived from a
consistent starting point! in the context of quantum field
theory near cosmological singularities, e.g., Ref.@44#.

Let us examine the integration over the singularities
more detail. There are two BTZ singularities—past and
ture with respect to 111 and 112—located at T5

Z
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6A11X2. Expressed in terms of BTZ coordinates, the m
ric near either of the singularities is

ds25r 1
2 dt22

dr2

r 1
2 1r 2 df2 ~7.17!

and the propagators behave as in Eq.~7.16!. Examining Eq.
~7.9!, we see that, since our integration should extend o
both sides of the singularities~if we do not identify the inte-
gration regions using the antipodal map!, in BTZ coordinates
we should integrate over both positive and negativer. Posi-
tive and negativer correspond to the past and future cones
the Milne universe. Note that we do not integrate over
left and right cones of Milne, since these correspond to
gions of type 3, and these are not covered by the Krus
coordinates.

We first consider the future singularity. Approaching t
singularity from 211 we have the relation@compare Eqs.
~2.6! and ~7.7!#

r;
11X22T2

2
. ~7.18!

Therefore, propagators will diverge as ln(r1ie). If we take a
generic derivative interaction, then the integration of a ver
near the singularity will include a piece

E
2r c

r c
dr

lnp~r 1 i e!

~r 1 i e!q , ~7.19!

where r c is the radius where the propagators start to dif
from their leading behavior. Ase→0, Eq. ~7.19! gives a
finite, but generically complex, result.

It is important that the imaginary parts arising from int
gration over the two singularities combine in a manner c
sistent with Hermiticity in the boundary CFT. Withou
checking this explicitly it is clear that this must come abo
since our bulk amplitude is mathematically equivalent to
analytic continuation of the boundary CFT amplitude. But
illustrate the point we can make a simple check. Conside
boundary correlation function for Hermitian operato
Oi(0,f) evaluated att50 on the boundary cylinder. Sinc
the boundary theory is a tensor product, these operators
be associated with either of the CFTs defined on 111 or
112 . Such a correlation function should be real, since
operators are spacelike separated and hence commute. W
we compute the amplitude in the bulk we pick up imagina
parts from integrating over the BTZ singularities. But due
the relationG→(21)2h1G* under the antipodal transfor
mation in the region 2, the imaginary parts cancel betw
the singularities, and the result is purely real as expecte

We have found that correlation functions computed in
BTZ black hole are free from divergences and unphys
imaginary parts because of the cancellation of effects at
past and future singularities. This nonlocal cancellat
mechanism may seem surprising since it contradicts n
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intuition that says that points closer to a singularity sho
feel much more of its effect. More quantitatively, in fla
space a correlator falls similar to some power of the dista
and so if the two singularities are far away the interact
points near the past singularity should make a much sma
effect than the ones near the future singularity. What mak
difference here is the asymptotically AdS boundary condit
of the BTZ black hole, which lets geodesics reflect off t
boundary and be refocused on future points. This make
impossible to effectively separate the two singularities.

D. Defining scattering through the singularity

An extremely interesting question concerns the existe
and behavior of scattering amplitudes for processes wh
particles ‘‘pass through’’ the singularity. This is the situatio
studied in Refs.@4,6–14,32#. The conclusion of this work,
Ref. @8# in particular, is that such scattering amplitudes a
badly behaved in string perturbation theory.

We might suppose that we could study such phenom
using the techniques discussed earlier. In particular we co
study BTZ amplitudes with operators on the boundary
regions 121 and 122 as well as 111 and 112 . Any particle
path between operators on boundaries above and below
singularity will have to pass through the singularity.

Formally we can calculate amplitudes like this by analy
continuation @31#. From Eq. ~2.5! we see that we can
‘‘move’’ an operator from region 111 to 121 by analytically
continuing inf, much as in Eq.~7.9!:

f→ H @0,2p#, 111 ,
@0,2p#2 ib/2, 121 . ~7.20!

The same continuation moves an operator from region 112

to region 122 .
As we argued earlier, because the amplitudes we disc

are analytic int andf we do not expect singular behavior fo
generic operator locations on the boundary of 121 or 122 .
This seems to lead to a conflict with the singular behav
found in the references cited above. It also conflicts with
naive assumption that an analytic continuation for interact
point integrations on a purely real Lorentzian slice of t
BTZ space as in Sec. VII exists for such boundary opera
locations. If this were the case thei e singularities would
pinch the contour at the BTZ singularity and make the in
grated amplitudes infinite in general.

One possible resolution concerns the boundary confor
field theory we might expect to find on the boundary of 121

or 122 . The angular momentum operator that genera
translations off has spectrum unbounded above and belo
So the sum over conformal field theory states is at best c
ditionally convergent. This suggests that correlation fun
tions might not be derivable directly from an operator fo
malism. But this does not resolve the above conflict beca
the analytically continued amplitudes might well define
consistent bulk theory by themselves, without a bound
field theory interpretation.
2-13
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We believe the resolution to this problem lies in an o
struction to performing the analytic continuation of a boun
ary point into region 121 or 122 with physical contours for
the interaction points. We do not have a proof that such
obstruction always exists but all our attempts have enco
tered the same general problem.

This problem is illustrated by the following example. W
work in BTZ coordinates and try to continue points to bo
111 and 121 . 111 corresponds to Ret and Ref; 121

corresponds to Ret and f5Re2ib/2. Now, start from the
Euclidean contour and first continue to the Ret axis for all
points. We can take the contour to have three segments~1!
go from 2T to 1T along the real axis, avoiding the singu
larities in the way which gives the Feynman propagator;~2!
go from 1T to 2T along the real axis and underneath t
singularities;~3! go from 2T to 2T2 ib. Now we would
like to continue some of the boundary points tof5Re
2ib/2 while also moving thef contour of segment~2! down
by 2 ib/2. This cannot be done since thef contour is
pinched. In particular, with the time argument given by se
ment ~2!, singularities along this segment occur at

2Ar 22r 1
2

r 1
2 coshr 1~Dt2 i e!1

r

r 1
coshr 1~Df12pn!50.

~7.21!

Expanding out the first cosh to first order ine, we see that the
imaginary part ofDf changes sign depending on the sign
Dt. In general, both signs ofDt occur, so we will find sin-
gularities just above the realf axis and just below—the
contour is pinched. This prevents us from moving thef con-
tour downwards, unless we ‘‘drag’’ along some extra se
ment attached to the singularities. Other attempts resu
the same pinching of thef contour.

This obstruction prevents us from obtaining a simple p
ture of the Lorentzian signature amplitudes as integrals o
the interaction point locations on a real section of the co
plexified BTZ space. This removes the conflict with oth
approaches that study that formulate the problem on
purely real section. But it also means that the techniques
have developed do not as yet resolve the issues raise
previous work.

E. Remarks

We have seen that a fixed Feynman diagram for corr
tors of boundary operators in the BTZ geometry can be
derstood in two different ways. First, as a Feynman diagr
in which the locations of the interaction vertices are
stricted to the regions outside the horizon. This is the ‘‘R
dler’’ type description. Second, as a diagram in which
locations are integrated over the full region covered
Kruskal coordinates, including regions behind the horiz
and on both sides of the singularities. This is t
‘‘Minkowski’’ type description. This identification suggest
that certain things about physics behind the horizon can
learned from data located outside the horizon. This ide
reminiscent of black hole complementarity.
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In the second description, we integrate over interact
points inside of the horizon as well as outside. Divergen
and unphysical imaginary parts, which could have appea
from an integral near a singularity~and which do appear in
similar computations in the Milne universe@32#!, are can-
celled between the past and future singularities, at leas
one case. At first glance this appears to be disturbingly n
local. But the singularities of eternal AdS-Schwarzsch
black holes are never extremely far apart. Their maxim
separation is of order the AdS radius, no matter how large
mass. The shortest distance simple boundary correlators
resolve is also AdS scale. To observe the isolated, unc
celled singular behavior of one singularity we would have
use probes sensitive to local bulk physics. We expect lo
correlators of bulk supergravity fields to show such singu
behavior.4 Extracting such local bulk physics from th
boundary theory is a notoriously difficult problem. Perha
the very complicated boundary operators necessary to lo
ize quantities in the bulk will allow the well behaved boun
ary theory to display apparently singular bulk behavior.

The factor ~7.13! that each Feynman diagram acquir
under Kruskal analytic continuation starting with two copi
of Euclidean BTZ black holes is a major shortcoming of o
approach. In the supergravity limit, the factor is either 2 o
for each interaction vertex, and we were able to find a way
perform the analytic continuation in the Kruskal coordina
when it is 2. More generally, the factor is a complex-valu
function of mass. The factor cancels out if the interacti
point is in region 1, but it gives rise to a combination ofG
and G* with complex coefficients in region 2. The mas
dependence of these coefficients makes it difficult to perfo
the analytic continuation in the full string theory, though
that case we also need to discuss effects due to twisted
tors, etc. It is desirable to find a way to perform the analy
continuation starting with a single copy of Euclidean BTZ

Our conclusions do not lean heavily on being in thr
spacetime dimensions, and one could extend our argum
to AdS black holes in other dimensions. Actually, much
what we say—minus the CFT interpretation—could also
said for the four-dimensional Schwarzschild solutio
Green’s functions defined in Euclidean signature can be a
lytically continued to Lorentzian signature, and in Krusk
coordinates will naturally lead to an integration over t
black hole singularities.5 One difference is that the
Schwarzschild solution is only an approximate solution
string theory, and so the accuracy of the analytic continua
procedure needs more careful justification. In conclusion,
work illustrates the power of using analytic continuation
define otherwise divergent Lorentzian amplitudes, display
a complementary correspondence between inside and ou
the horizon phenomena in the process.

4Of course such quantities are not gauge invariant, but they m
well be illustrative. In the 211 BTZ situation the simplicity of the
geometry allows cancellations to occur even for bulk correlato
This follows from the antipodal symmetry of bulk-bulk propag
tors.

5A path integral representation for the propagator was discus
from this point of view in Ref.@45#.
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