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Using the eternal BTZ black hole as a concrete example, we show how spacelike singularities and horizons
can be described in terms of AAS/CFT amplitudes. Our approach is based on analytically continuing ampli-
tudes defined in a Euclidean signature. This procedure yields finite Lorentzian amplitudes. The naive diver-
gences associated with the Milne type singularity of BTZ black holes are regulated by @nescription
inherent in the analytic continuation and a cancellation between future and past singularities. The boundary
description corresponds to a tensor product of two CFTs in an entangled state, as in previous work. We give
two bulk descriptions corresponding to two different analytic continuations. In the first, only regions outside
the horizon appear explicitly, and so amplitudes are manifestly finite. In the second, regions behind the horizon
and on both sides of the singularity appear, thus yielding finite amplitudes for virtual particles propagating
through the black hole singularity. This equivalence between descriptions only outside and both inside and
outside the horizon is reminiscent of the ideas of black hole complementarity.
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I. INTRODUCTION suited to this question because of the great success it has had
in elucidating the physics of black holes. In particular the
It has been a long-standing goal of string or M theory toregion outside the horizon of an AdS-Schwarzschild black
understand the singularities in spacetime geometry that ahole is represented holographically by the boundary CFT at
flict classical general relativity. Much progress has beerfinite temperaturg20].
made in understanding static time independent singularities. The black hole singularity is behind the horizon and so at
For example, orbifold$1], conifolds[2], and enhancons]  first glance the boundary CFT does not seem able to say
each represent a successful resolution of a classical singulanything about it. But on closer examinatipp1-23, the
ity, the latter two requiring nonperturbativi gs) phenom-  boundary degrees of freedom do seem to be able to probe the
ena. region of spacetime behind the horizon, implementing the
Much less is known about the fate of nonstatic, spacelikeedundancy of description implied by the ideas of black hole
or null singularities. These are crucial in cosmology and in-complementarity{24]. A particularly clear example of this,
clude the Friedmann-Robertson-WalkERW) big bang and  building on an old observation of Israg?5], involves the
big crunch singularities. The singularity at the center of aboundary description of an eternal AdS-Schwarzschild black
black hole is of this type as well. The conventional wisdomhole. Such a geometry has two disconnected asymptotic
has been that nonperturbative phenomena would come intsoundaries, both approximately AdS. Not surprisingly, then,
play near these singularities. Recently real calculations havihe holographic description of this geometry involvies
been done in perturbative string theory in mild big bang ordecoupled CFTs, one on each bound@,27,23. The only
big crunch type backgroundd—12]. In the examples of cos- coupling between CFTs is via the entangled sidty re-
mological singularities constructed as time dependent orbiferred to as the Hartle-Hawking state, in which all expecta-
folds of Minkowski space, the work of Reff8] showed that tion values are taken. Correlation functions in one CFT re-
tree level amplitudes diverge, due to infinite blueshifts at thproduce the thermal results for correlators outside the
singularities. Reference$13,14 discussed the physical horizon of the black hole; the black hole entropy in this
meaning of these results and argued that in general nonpefsrmalism is the entanglement entropy of the sfdtp® But
turbative phenomena should be expected around such pointsorrelation functions involving the expectation valueg¥)
Enough progress has been made in string or M theory sof operators in both CFTs should, as Maldac¢da] has
that algorithmically complete nonperturbative definitions ofargued, contain some information about the geometry behind
the theory exist in certain backgrounds. These include matrixhe horizon.
theory [15], the AdS conformal field theoryCFT) corre-
spondenceg16-1§ and its relatives, and, to some extent,
string field theory[19]. The hope exists that such definitions IThis formalism has recently been applied to the question of the
could cast some light on the spacelike singularity problem. quantum consistency of de Sitter space by Goheer, Kleban, and
The AdS/CFT correspondence seems particularly welBusskind28].
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The goal of this paper, building especially on the work ofthe propagators have singularities in the complex plane, and
Ref.[22], is to understand more carefully what kind of be- we must deform the contour to avoid encountering the sin-
hind the horizon information is contained in such correlatorsggularities. We obtain a Lorentzian interpretation from the
and, in particular, what information about the singularity canform of the final contour, as well as dmr prescription for
be obtained from them. integrating around the various singularities. Since there is

For simplicity we focus on the 21 case[29], i.e., the some freedom in how we deform the integration contour,
Barados-Teitelboim-ZanelliBTZ) black hole[30], which is  there are a number of different possible Lorentzian interpre-
an orbifold of AdS. The spacelike singularity of the nonex-tations of the same analytically continued amplitudes, of
tremal, nonrotating BTZ black hole is given locally by a which we explore two.
boost orbifold of two-dimensional Minkowski space times a  The first corresponds to doing the natural contour defor-
spacelike line. The two-dimensional piece is referred to asnation with respect to integration over time in the BTZ co-
the Milne universe, and describes contracting and expandingrdinates, which corresponds to a Killing vector of the BTZ
cones touching at a singularity. The null singularity studiedgeometry. This gives a Lorentzian amplitude in which we
in Ref. [8] is identical to the singularity of the zero mass integrate vertices over two coordinate patches outside the
limit of the BTZ black hole. horizon (the left and right wedges of the Penrose diagram

The natural way to define Lorentzian correlators ofas well as over two imaginary time segments which can be
boundary operators in either the bulk or boundary descripthought of as imposing the Hartle-Hawking wave function.
tion is via analytic continuation from the Euclidean theory. In this description, no explicit reference is made to the region
Because of the freedom to choose integration contours wkehind the horizon or to the singularity, and the finiteness of
show that it is possible to describe a given amplitude ashe amplitudes is manifest. The analogous continuation of
being determined by information completely outside the hoboundary CFT amplitudes naturally leads to a tensor product
rizon, or alternatively but equivalently as being determinedof two entangled CFTs associated to the boundaries of the
by information both inside and outside the horizon. This istwo coordinate patches, as in previous wp2,26,27,31
reminiscent of the concept of black hole complementaritySo the bulk and boundary description match up nicely, and in
[24].2 neither do the other components of the BTZ geometry make

As we will argue later, these continued amplitudes arean appearance.
expected to be finite and the perturbation expansion for them The first continuation just described is analogous to con-
well behaved. We then must ask what happens to the breakinuing flat space amplitudes with respect to Rindler time,
down expected from the singularities. In the description in-whereas our second continuation is analogous to continuing
volving data only outside the horizon there is nothing towith respect to Minkowski time. For the latter case we intro-
explain. In the description that probes behind the horizon weluce Kruskal coordinates for BTZ, and perform the natural
find, at least in one case, that the singular behavior cancetontinuation with respect to Kruskal time. This leads to a
between the future and past singularities. Lorentzian description in which we integrate over a greater

Another question that arises concerns the intricate boundportion of the BTZ geometry than before, including the BTZ
ary structure of Lorentzian BTZs. We will argue that despitesingularity and beyond. Thiee prescription provided by the
the apparent existence of an infinite number of boundaranalytic continuation tells us how to integrate the vertices
components the boundary CFTs only lie on the original twoover the BTZ singularities. Since we effectively go around
boundaries. the singularity in the complex plane, a naively divergent re-

We now turn to a more detailed description of the contentult is replaced by a finite but complex result. However, re-
of the paper. Our main task is to show how to explicitly calling that BTZ has both past and future singularities, we
perform the analytic continuation of AAS/CFT amplitudesshow that unphysical imaginary parts cancel between the two
from Euclidean to Lorentzian signature. In principle, we singularities, at least in some cases. Therescription and
could try to do this directly at the level of the string world- the cancellation between past and future singularities are the
sheet path integral, but we will instead consider the simplemechanisms that seem to allow a well behaved boundary
case of supergravity amplitudes, as these are sufficient faheory to describe the singular geometry behind the horizon.
our purposes. The idea is to start from some Euclidean su- The possibility of choosing two different contours to de-
pergravity amplitude, defined in position space as an integrascribe the same amplitude, one involving data only outside
tion over the positions of interaction vertices, which are inthe horizon, the other involving data behind the horizon, is
turn connected by various bulk-boundary and bulk-bulkreminiscent of black hole complementarity ideas. It is strik-
propagators. The amplitudes are labeled by points on thing that amplitudes apparently related solely to phenomena
Euclidean boundary torus, corresponding to the locations obutside the horizon can also be used to reconstruct many
operators in the boundary CFT. properties of the geometry behind the horizon as well as

As we proceed to continue the boundary points to thesome other phenomena that occur there. We note that these
Lorentzian section, we will have to deform the contour onare phenomena that do not involve breakdown in the pertur-
which the interaction vertices are integrated. This is becauskative description.

The remainder of this paper is organized as follows. In
Sec. Il we review the BTZ geometry, its bulk-boundary
2Another indication of complementarity in this formalism has propagator, and the reason why we might expect divergences
been discussed in ReR22]. from the BTZ singularity. In Sec. Ill we begin investigating
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the singularity with two point functions and their relation to r2_r2+
spacelike geodesics in the bulk, although we later see that X3*Xg= p———e" "L
this approach has its limitations. Arguments for the finiteness M+
of analytically continued amplitudes are given in Sec. IV. Region 2:

Y . . . . gion 2:
The prescription for the analytic continuation from the point
of view of boundary CFT is reviewed in Sec. V. Before dis- r
cussing the analytic continuation in the bulk BTZ geometry, X1EXp= My e="+,
sample computations in Minkowski spacetime are given in *
Sec. VI. Finally, in Sec. VIl we study the BTZ amplitudes in 7
two different ways by continuing with respect to BTZ time X3 Xo= ﬂzietut‘
and Kruskal time, and then discuss the results. As this manu-
script was being finished R€f32] appeared, which has sig- )
nificant overlap with this work. Region 3:

Il. REVIEW OF BTZ BLACK HOLE X1 Xp= 7]1r—+etr+ta

+

A. Geometry

Let us recall the construction of the nonrotating BTZ
black hole. More details, including the rotating case, can be
found in Refs.[30,31. Previous work on string theory on

(2.6

(2.7)

BTZ includes Refs[22,31,33,34 The starting pointis Ad$s T livesin the ranger(, ,=) in regions 1 and 3 and (0,)
described as a hyperboloid embedded in a flat spacetime wiih region 2. The BTZ identification in these coordinates is

signature(+, +, ——):

regions 1,2: (t,¢,r)=(t,¢+2m,r),

X5+ x2—x5—x3=1. (2.1) (2.8
region 3: (t,¢,r)=(t+2m,¢,r).
We are setting the AdSlength scale to unity. As usual, we o
will actually work with the simply connected covering space The metric is
of Eq. (2.1). The BTZ solution is obtained by identifying dr2
points by a boost d52=—(r2—r2+)dt2+r2_r +r2dg¢?. 2.9
+

X1+ X=e 2™ 4 (X + Xy).

(2.2
In string theory there is also a nonvanishiBdield, but we

This will result in a nonrotating black hole of masd || not need its explicit form.

=17 /8Gy .. The line of fixed points at;=x,=0 is the black  Noting thatt is a timelike coordinate in region 3, we see
hole singularity. The local geometry near the singularity isthat the BTZ identificatior{2.8) gives rise to closed timelike

described by the Milne universe times a line. Indeed, solving

Eq. (2.1 for x5 near the line of fixed points yields

2
X 24—
d?~—dx2+dx2+ iz. 2.3 *
— 20
The boost identification in thex{,x,) plane defines the 34— 3—
Milne universe.
To write coordinates that display the symmetries of the
spacetime, we break up Ad#to the following three types 2
of regions:
region 1: x2—x3=0, x3—x3<0, )
—+
region 2: x3—x3=0, x3—x5=0, (2.4)
344 3.+
region 3: x2—x5<0, x2—x5=0.
We then cover each region by four separate coordinatg 204
patches, corresponding to the valuesygf,= = 1.

Region 1:

r FIG. 1. Two orthogonal cross sections of the AdS/linder,
X1EXp= 771r_ eiuﬁb, (25) with BTZ coordinate patches indicated. Both diagrams should be
"

extended periodically in the vertical direction.
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curves in this region. The desire to avoid these motivated the B. Propagators and divergences
proposal to truncate the geometry at the singuld@g}. One
goal of the present work is to examine whether such a trun- AdS/CFT correlation functions on the bulk side are con-
cation actually occurs in the context of string theory and thestructed out of bulk-boundary and bulk-bulk propagators.
AdS/CFT correspondence. The BTZ versions of these propagators can be obtained from
To get a picture of the global structure, it is helpful to their AdS; cousins by the method of imagé34]. For the
display two orthogonal cross sections of the original AdS bulk-boundary propagator we need to specify a “source”
cylinder in Fig. 1, with the various coordinate regions indi- point b on the boundary, and a “sink” point in the bulk. In
cated. Important for us is the fact that each component oBTZ coordinates, the form of the propagator changes as we
regions 1 and 3 has a distinct boundary. One might themove the source and sink points from one region to another.
expect there to be distinct CFT’s living on each boundaryFor a minimally coupled scalar of masws, the bulk-
component; we will see in Sec. VII that the actual situation isboundary propagator for both source and sink in region 1

more subtle. is, up to normalization,
” 1
KT+ led(x,b" )= D, T (2.10
n=—o r2_r§_ r +
— >—coshr ;At)+ —coshr, (A¢+2mn)
re ry

HereAt=t—t’, and similarly forA¢. A bulk scalar of massn corresponds to a boundary operator of conformal dimension
2h., =1+ 1+ m?. Although written for region 1 , in factK is always given by Eq(2.10 whenever the source and sink
point are in the same region. Equati¢hl0 diverges when the bulk and boundary points are lightlike separated, and so an
prescription is required. We will see how to obtain the corregirescription when we discuss the continuation from Euclidean
signature.

To move the sink point to another region, we can analytically continue the propagator. For instance, by examit@iriy, Eq.
we see that to move the sink point tg 1 we should make the replaceméntt—i/r, . Note that the imaginary shift is half
the inverse Hawking temperature

B=1Ty=2m7lr, . (2.12)

Making this replacement, the bulk-boundary propagator becomes

©

1
K-t (x,b)= > ” (2.12
n=—c r2—r2 r ’
>—coshr ;At)+ —coshr, (A¢+2mn)
re ry
This propagator is nonsingular, reflecting the fact that Jand 1, _ are spacelike separated.
To investigate the behavior of the propagator near the BTZ singularity we now move the sink point {o 2
” 1
K(2++1++)(X,b’): 2 . (213)
n=—c r2—r2 r 2
+
[— >—Sinh(r L At)+ —coshr , (A¢+2mn)
re ry

This is singular at =0, since the summation then acts on an  Let us first be very naive and see why we might expect
n independent quantity. By estimating the number of term indivergent amplitudes to arise. A typical supergravity calcula-
the sum which contribute as—0, we find that near the tion of an AdS/CFT amplitude involves a Feynman diagram
singularity composed of propagators and vertices, and an integration
K@+ 1o ) f(AD)InT. 2.14 over the positions.of the 'vertices.. Di'verge'nces can therefore
arise from the region of integration involving some number
The same divergence applies when we approach the sing@f vertices approaching the BTZ singularity. In fact, since the
larity from other regions. The bulk-bulk propagators also di-integration measure ifdt d¢ dr r, nonderivative couplings
verge logarithmically for the same reason. will yield finite amplitudes after integration. However, an
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interaction with a sufficient number of derivatives will lead

to a divergent integral. The divergences arise due to an infi- ir 1 1+ .
nite blueshifting at the singularity, as in recent examples of At=t(®)—t(—»)=——+ —In i
time dependent orbifolds of Minkowski space. For the Milne + T+ _E
singularity, divergences in string amplitudes are studied in r

(3.5

The imaginary part-iB/2 is the correct jump when going
between 1 , and 1, _. The real partAt, is related tor ,
M

by
r+At,) '

Min= 7 Ar \
COS%

2

Ref.[32]. In Sec. VII we will see how the AdS/CFT corre-
spondence handles these divergences.

Ill. PROBING THE SINGULARITY WITH
SPACELIKE GEODESICS

From our knowledge of the bulk-boundary propagator in
the various regions, we can make a few preliminary com-
ments about how AdS/CFT correlators might probe the sin-
gularity. We will see later that the situation is considerably
more subtle than these considerations suggest. As a specifi¢ our conventions time runs backward in 1, which is
example, consider a two point function with one operatorconsistent with the fact that,;, is invariant under simulta-

(3.6

inserted on the boundary of, 1. and another on the bound-
ary of 1, . According to the standard AdS/CFT rules, Eq.
(2.12 leads to the two point functiof22]

(O, O1,))

= > [coshr,At)+coshr.(A¢p+2mn)] 2"+,

n=-—ow

(3.9

Given the BTZ causal structure, correlators involving op-

erators in both 1, and 1, = might be expected to probe

neous time translations in the initial and final times.

The WKB approximation to the two-point function is
given bye ™S, whereSis the action of the spacelike geodesic
passing between the two boundary points. This action is di-
vergent; using a large cutoff the regularized action is

r o At,
2

2re cosl‘(

My

S=mA7r=2min

(3.7)

We define a renormalized acti@y., by subtracting ninr,
since this term also arises in pure AdS he WKB approxi-
mation to the two point function is then

physics behind the horizon and in particular near the singu-

larity. We can make this expectation a bit more precise by
using the WKB approximation to see which spacetime geo-

desics contribute to Eq3.1). Consider for simplicity the
two-point function withA ¢=0. The equation for a spacelike
geodesic is

P2

i E?

2_ .2
re—rs

=1, (3.2

2_ .2
re—r<

where’ denotes a proper time derivative a&ds the con-
served energfE=(r?—r2)t. Integrating we find

) i\/Ez—rz+ sinh(7— 7g), E2>|'2+, 33
T)= .
+\r2 —EZcosir— 1), E?<r2.

For E?>r? the geodesics cross the singularityrat0, and
so we focus on th&2<r? case and choose the sign. The
distance of closest approach to the singularity is

Fmin= V> —E2. (3.9

We want to relateE to the values of the boundary time co-
ordinates. Integrating the equations fagives

C

~Sien—
e r+Atr)

(3.9

2m*

2

COS}’(

When we recall that for largen, which is when the WKB
approximation is accurate,h2 =1+ \1+m?~m, we find
that Eq.(3.8) agrees with the leading term in E@.1).

We can ask for the time scale at which the geodesic passes
within a proper distancd p; of the singularity, which is
when we could expect quantum effects to become important.
Restoring the Ad$length scale, this is

2L34s

Atsing~ (39)

LAdS)
I Lpi/
Another important timescale was pointed out by Mal-
dacend?22]. This is the time scale where large fluctuations in
the geometry apparently become important. For sufficiently

large time separatiodt> Aty (3.8) is inconsistent with
unitarity of the boundary theory, since the correlation should
not drop belowe™S, wheres is the entropy,

g

s= TR

(3.10

This gives
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and B given by Eq.(2.11). The radial coordinate is now
restricted to (., ,0). Given the periodicity ofr and ¢, Eq.

(4.1 is topologically a solid torus. The boundary CFT there-
fore lives on a torus parametrized byand ¢.

A Euclidean AdS/CFTn-point function is labeled by
points on the boundary tor@,, (71, ¢1,-..,7,¢n). The am-
plitudes are initially defined for reat, or equivalently for
jpure imaginaryt. To obtain Lorentzian amplitudes we need
to perform an analytic continuation in Continuing a point

The timeAt;,. marks the onset of fluctuations in the cor-
relation function of size-exp(—s). A much longer time, the
Poincarerecurrence time\t ..~ exp@s marks the onset of
order one fluctuationg22,35. From the bulk point of view,
an indication of the time scale for fluctuations can be seen i
the WKB approximation when we recall that we should re-

ally consider the sum of the actions of the geodesic and thi® realt gives a point on a boundary component of Lorentz-

background geometry. The action of the black hole is related! BTZ, Whi.Ch we can take to be in.1.. As we have
to its free energy already mentioned, to get from,1 to 1, _ one takes—t

—ipB/2. So, starting front on the imaginary axis we need the

r continuations
+

Sgn=—(5— M) = —%L—Pl. (3.12

real, 1,,,

= rea—ipg/2, 1,_. “.3

On the other hand, recalling that pure Adigas energyM
—1/8Lp4, the action of thermal AdSat inverse tempera-
ture B is

We will defer to later the question of continuing to other
boundary components.

We now want to argue that the analytically continued am-
plitudes are finite. The argument can be made in terms of
either the bulk or boundary descriptions. From the boundary
point of view, since we know that our amplitudes correspond
So forr, >L 5ys the black hole dominates the partition sum. to those of a well behaved CFT on the boundary torus, we do
However, this can be overcome by the positive action of thenot expect there to arise any unusual singularities in ampli-
action for the spacelike geodesic. Indeed, the time scale faudes even after analytic continuation. We expect correlation
the geodesic action to become comparable to the black holeinctions defined for redlto be analytic irt, order by order
action recoversgup to a numerical factgrthe result(3.17). in the string loop counting parameter. This follows from a

Comparing Eq.3.9 with Eqg. (3.11), we see that fom  well behaved spectral decompositita natural expectation
~Lads: I+ ~Lags>Lp1, We havedty, > Atgn,. Therefore, or from the perturbative bulk correspondence. This analytic-
we might hope to use boundary correlators to probe théty implies that singularities will be at most complex codi-
physics of the singularity before possible fluctuations in themension one. But the kind of singularities induced by effects
whole geometry become important. This will turn out to besuch as Eq(2.14 will in general be of real codimension®1.
only indirectly the case. Another way of saying this is that, as we review in the next
section, Lorentzian amplitudes are manifestly regular and fi-
nite since they can be expressed as expectation values evalu-
ated in the entangled state

™ L,ZAdS
Sads=BM = — Ao,

(3.13

IV. ANALYTIC CONTINUATION I: FINITENESS
OF AMPLITUDES

The heuristic arguments just given are not sufficient to 1
determine to what extent we can really probe the singularity. W)= \/_Z’E e P57 n)[n),
The divergences arising in time dependent orbifolds of "

Minkowski space have to do with interactions near the Sin'where|n> is an energy eigenstate with enery in the Hil-
gularity. Similarly, in the BTZ case we need to go beyond they,q space of the CFT and is the partition function.
two-point function and include interactions in the bulk. From the bulk point of view, the basic point is that the

At our current level of understanding, string theory in g,cjidean BTZ geometry is completely smooth, as usual for
Lorentman AdS or BTZ is defined by a}nalytlc continuation g ,clidean black holes, since the regiorir, does not ap-
from Euclidean signaturf36-38. This is the approach we pear Therefore, string theory or supergravity amplitudes
will follow; we will discuss Iater whethe_r this procedure re- computed in Euclidean signature will be finite, modulo the
ally captures all of the Lorentzian physics. usual divergences that occur even for pure AdSuch as
The Euclidean BTZ metric is given by the replacement ,q {6 tachyons and so forth, and can be analytically contin-
-7 ued to Lorentzian signature as above. One may think that
there is a possibility that these amplitudes do not have good
asymptotic expansions in the string coupling constant. This,

(4.9

dr?

dsz=(r2—ri)d7-2+r2_r2 +r2dg¢?, (4.1)
+
with The tree level Liu-Moore-Seiberd_-MS) amplitudes[8] have
singularities only at complex codimension one, but higher orders
T=71+p, (4.2 are expected to be generically singulas,14.

124022-6



INSIDE THE HORIZON WITH AdS/CFT PHYSICAL REVIEW D67, 124022 (2003

however, is not likely. Since the BTZ geometry is an orbifold [t x x|t
of AdS;, at the tree level, a correlation function in the * x
former can be expressed as a sum over the correspondin _g T ~ T

fold group. This sum is manifestly convergd@2]. More-
over, as we will see in the next section, correlation functions
of operators on 1, and 1,_ can be computed taking into ~ ~T-1P - % )

account interactions taking place outside of the horizon only. (a) (b)

Thus we do not expect divergences associated to the singu-

larity to arise at higher loops either. Of course, field theoretic FIG. 2. Integration contours for evaluating correlation functions.
divergences could be rendered finite by stringy effects, Contour(a) defines a Euclidean amplitude; analytic continuation to
but this seems unlikely, especially given the stringy diver-real time givesb).

gences found in Ref8].

correlation function in the latter under the action of the orbi- * ‘ A e
X X

will move around as we continue i), and we have to
) deform the contour of integration so that no singularities
V. ANALYTIC CONTINUATION II: BOUNDARY THEORY cross the contour. Singularities occur for
Analytic continuation from Euclidean signature yields fi-

nite amplitudes, and we now want to examine in more detail t=t=(¢—¢i—27m)+inB, n,m=integer. (5.3

how this comes about. As we discussed previously, Lorentzi_het contour of integration originally runs from 0 te i3

ian_signatu_re divergences seemingly arise_from inte_zgr_atin%long the imaginary axis. It is convenient to use translation
an interaction vertex near the BTZ singularity. We will find . )

two different interpretations, corresponding to two different'm/a”am:e to instead take the contour to run frefT to

contour deformations, for how the singularity is avoided. In_T_."B with T real and positive. T_he following analysis
oo . . . applies for any value off, but we will eventually taker
the first, interactions only occur in regions 1 and 1, _, so

: : . : — since this leads to the simplest real time interpretation.
that the region near the singularity never appears in the cal So before doing any analytic continuation, Fig@)?2

culation. In the second interpretation the region near the SN Ows the integration contour and the locations of singulari

gularity does appear, but the analytic continuation prowde%es in the integrand. Note that no matter how lafgs, there

anie prescription which tells us how to go around the sin- ; "
gularity in the complex plane. are aIvyays_ singularities to the left of the contour due to the
periodicity in ¢.

It is useful to begin by reviewing the analytic continuation We have only drawn the singularities due to a single

in the boundary theory, following the work of Niemi and . .
Semenoff(39]. For simplicity, we consider a weakly inter- propagator to avoid clutter. Now movgto the real axis. The
: y locations of singularities move according to E§.3). De-

acting scalar field theory on the Euclidean torus. We conside brming the contour to avoid the singularities, we end up

:ir;en;:omputatlon of Euclidean time ordered correlation funCWith the contour in Fig. &). We are left with two segments

parallel to the real axis, as well as two segments parallel to

Gt b1, ) the imaginary axis. Singularities on the real axis are avoided

ML L e by the usual prescription leading to the Feynman Green’s
=Tr{e PHT[X(71,b1),... X(Th, ) 1} function.

The result has a simple operator interpretation, which can

:f DX & SX(7y, 1), X7 ). be found by going through _the usual steps relating path inte-

periodic gral and operator expressions. Normally, we consider con-

tours with just a single horizontal component, which leads to

expectation values in the vacuum state. If we now add a

- . . . . o second horizontal contour we get a second copy of the field
We imagine computing Feynman diagrams in position space[heory with expectation valuges again Compl)ali/ted i the

so we will have interaction vertices integrated over the Eu- . .
g vacuum state. The Hilbert space of the full theory is then

gg?ria}r;;g{i%sn' iﬁ tsr:rengl;:é(r?crgpﬁ&st?ri;?%ﬁ?n,order threeH®H, _WhereH is the Hilbert space of the fie_Id theory on
the cylinder. Our contour also includes vertical segments
P om which establish a correlation between the two sectors of the
G3(Tl!¢lv7’21¢21731¢3)~)\f dff do G(7,¢,71,¢1) Hilbert space. In particular, the path integral along a vertical
0 0 segment represents an insertion of the operatdt'’?, cor-
responding to an imaginary time translation . So in-
XG(7,¢:72,42)C(7. .73, b3). stegd of p?ojecting ont% theyvacuum state of tﬁftensor prod-
(5.2 uct theory, we have an entangled state with the entanglement
given by the operatoe™#H2,

Now relabel7;=it; and =it and consider analytically ~ More precisely, our result can be written in operator form
continuingG,, to the realt; axis. The point is that the propa- gs

gators have singularities for lightlike separated arguments.
The positions of these singularities in the compteplane G =(V[T[X(t1,b1),... X(tn, ) 1| ¥), (5.9

(5.2
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X X |_t [t [t
X X
M\
-T A\ e T hed
NS X X
-T-ipr2 % )\
| X X FIG. 4. Standard contour rotation defining amplitudes in

-T-iB Minkowski space.

FIG. 3. Time integration contour for operators on both Lorent-

zian copies. VI. ANALYTIC CONTINUATION Ill: MINKOWSKI SPACE

_ There is some additional freedom to analytically continue
where|¥) is an entangled state IH®H, bulk amplitudes corresponding to different choices of time
coordinates. Different choices will lead to different Lorentz-

1 _BEf ian interpretations of the same correlation functions. Before

W)= TZE e PEn)®|[n). (5.5  proceeding to the black hole case we will do a warmup ex-
ample.

We start by computing Green'’s functions in flat Euclidean

T in Eq. (5.4 now represents Lorentzian time ordering.
Since we have continued to the realxis, theX operators in
Eq. (5.4 all represent operators in a single copy of the field

space

— 2 2
theory, say the first. It is clear that we can then perform the ds’=dr?+dx*, (6.3)
trace over states in the second copy, and recover a thermal _ _
expectation value for operators in the first copy, So, for example, the expression analogous to B¢ is

now
Go=Tr{e A T[X(ty, b0, X(t )T} (5.6

It is straightforward to generalize the previous argument 3 Tl*xl'TZ’X2'T3’X3)~)‘J7wdTJ7de G(7,X,71,%1)
to the case where some operators are continuet=tee
—iB/2. The resulting contour appears as in Fig. 3. X G(7,X,79,X2)G(T7,X,73,X3).
The expression(5.4) is unchanged, except that now 6.2
whichever operators were taken tte Re—iB/2 now appear '
as operators in the second copy of the field theory. Finall . . L .
we cgn also consider Continuingyoperators to the ve%tical seyThe standard procedure is to continuetiis —i7; while ro-

ments of the final contour. This has the effect of replacin ating the time contour to the realaxis. Anie prescription.
e A2 by a more general operator, and so corresponds t llows from taking the contour to be at a small angle with

changing the state from E¢6.5) to something else. rgspect _t_o the real_axis, or equivalently, to go around the

Let us make a few comments about these results. Firsfﬁ'ngma”t'eS as in Fig. 4. . .
although we only explicitly discussed the continuation of .The re;ult IS _that we are fo integrate vertices over
diagrams with a single vertex, the argument is easily genelM'nkOWSk' spacetime using the Lorentzian propagator
alized by considering each vertex in turn. Second, it is im- _ _
portant to note that the continuation instructs us to integrate ~ Gror(t.X,t',¢")=G(&'(™?7 9, x,e! (™27’ o).
vertices over the entire contour, including the vertical seg- (6.3
ments. The presence of interactions on the vertical segments
ensures that the energy eigenstates appearing itbEfjare ~ Since the Euclidean propagator is a function of=(r
the correct energy eigenstates of the full interacting theory— 7')2+ (x—x')2, the rule to obtain the Lorentzian propaga-
Integrating only over the horizontal segments would yieldtor is
energy eigenstates of the free theory.

As noted by Isradl25] shortly after Hawking’s derivation o’ —(t—t")2+ (x—x")*+ie. (6.9
of black hole radiancéand in the context of AdS/CFT in
Refs.[22,26,27), the fact that real time thermal correlators
are naturally interpreted in terms of a tensor product of tw
field theories is directly analogous to the fact that constan
time hypersurfaces in an eternal black hole geometry natu- ) 2 oo
rally consist of two components on either side of the horizon. T=rsing, x=rcosf, ds’=dr’+r?de. (6.9
In our notation, the two components correspond ta Jand
1, . So the expectation that there should be two boundarffhe Euclidean integration is nof dr rfﬁ”de.
theories associated with the two boundaries of Jand 1, _ Recall that Rindler coordinates cover Minkowski space-
is borne out by analytic continuation. time in four patches

We can alternatively analytically continue with respect to
indler time. To do this we transform to polar coordinates
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consider the Hilbert space of wave functions on half of the
real axis, with a Rindler Hamiltoniakhlz corresponding to
rotations about the real axis. The path integral then becomes
the transition amplitudég, |e” ™R ¢g), wheree  are the
boundary conditionsp(x) restricted to the left and right
halves of the real axis. Inserting a complete set of eigenstates
of Hg then leads to the equivalence of the two states.

So to summarize, Green’s functions with arguments in
regionsR andL can be computed either in the usual fashion
by integrating vertices over all of Minkowski space, or by
just integrating over th&® and L wedges with an entangle-
ment given by Eq(6.10. If we imagine first doing the inte-
gration over the vertical segments of the Rindler contour, this

FIG. 5. Rindler coordinate patches.

9 will result in wave functions inserted gt= * . These wave

re-7 R, - . o .
et L functions provide the boundary conditions at the horizons

X+t= y = (6.9  Which bound the two Rindler wedges. Equivalently, the wave
re*”, F, functions can be thought of as providing the “missing” part
—re*7, P, of the integrand from not integrating over the and P

, : wedges.
with metric
—r2 d7]2+dr2, RL, VII. ANALYTIC CONTINUATION IV: BEHIND THE
ds?= (6.7) BLACK HOLE HORIZON

r2dy?—dr?, F,P.
Now we are ready to discuss analytic continuation to

Note that regionL is obtained from regiorR by #—#%  compute correlation functions in the Lorentzian BTZ black
—ia. We will take = —i6 to be the Rindler coordinate in ).
regionR (see Fig. 5.
. Now, the geodesic distance expressed in termsaofd A BTZ coordinates
is
We first consider analytic continuation in BTZ coordi-
o?=r?+r'?=2rr' cost{n—n’). (6.8 nates(2.9). This is straightforward and follows closely our
) o discussion of analytic continuation in Rindler time. Singu-
Therefore, singularities in the complexplane are located at |grities in propagators, occurring, as always, for lightlike

1 separation, are located in the complex time plane at
n=n+ Fcosh‘l(rzﬂiz): 7 +2min+ *Re.
i
(6.9

t=t'+Im B*=Re. (7.1

For instance, for the bulk-boundary propagator given in Eq.
With 8= 24, our integration contour in thg plane and the (2.10 the singularities are located at
location of singularities are precisely the same as in our ear-
lier discussion of continuing correlators on the Euclidean
cylinder. Therefore, we can deform the contour as in Fig. 2 t
(with t replaced byz). The two horizontal segments now
correspond to integration over regiéhandL. The appear-
ance of a tensor product is now seen to be due to the fact th&uclidean AAS/CFT amplitudes are defined as
thet=0 Minkowski timeslice is a sum of=0 time slices in .
the right and left Rindler patches. 2m *

Green’s function computed by continuation in either i[[l fo dd; fr+dri rifcdti)

Minkowski or Rindler time should agree, and this indeed
follows from the fact that the entangled state arising in the XK(X1,b7) - K(Xp, b)) Gp(Xq,... Xn),
Rindler description (7.3

2

:t’+lm,8+cosh‘1( 5 2coshr+(A¢+27m)).
r2—r?

(7.2

An(by,....b))=

where then-point Greens functioli,, represents the part of
the amplitude corresponding to bulk-bulk propagators only.
Equation(7.3) corresponds to nonderivative interactions, but
is equal to the usual Minkowski vacuu0]. To see that the the generalization is straightforward. The time integration
two states are the same, consider a path integral on the loweentour C runs down along the imaginary axis from O to
half Euclidean plane, with prescribed boundary conditions—iB. As before we use time translation invariance to shift
¢(x) on the real axis. This wave functiobi[ ¢(x)] defines the contour in the real direction by T, where we eventually
the Minkowski vacuum state. On the other hand, we cariake T—c.

1
|‘I’>:\/_—Z; e "Fn[n)r@ [Ny, (6.10
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Proceeding as in our other examples, we want to continue If we imagine first doing the integration over the vertical
t{ from the contourC to eithert{ =Re ort{ =Re—ig/2. Us-  segments then this leaves us with correlated boundary con-
ing the fact that all singularities are located as in Efj1), ditions for the horizontal segments at large positive and
the contour should be deformed as in Figs. 2 and 3. Thaegative BTZ time. In particular, it gives boundary condi-
region of integration along the real time axis corresponds tdions along the past and future horizons in regions Jand
1, .. Continuing the coordinate in,1, by —iB/2 takesus 1._. Sincet=+% corresponds to the future horizon in
to region 1, _, so the second horizontal time contour repre-1, . and the past horizon in 1, boundary conditions on
sents an integration of this region. The two vertical segmentthese two horizons are correlated by the rightmost vertical
of the contour establish a correlation between states in theegment. And similarly for the leftmost vertical segment. The
two regions. The entangled state is as in Eq5), correlated boundary conditions are equivalent to computing
expectation values in the staté.4).
1 Starting from Euclidean propagators expressed in terms of
W)= \/_E’Z e P n)®|n). (7.4 Euclidear? timer, the arguger?tsgof the pFr)opagator can be
n .
taken to either 1, or 1, _ by the replacements

By the same argument as in the Minkowski/Rindler example,

this state is equivalent to the one defined by a path integral g(m2-eay 1, .

on the lower half portion of the Euclidean black hole—the T e ity g2, 1 (7.5
Hartle-Hawking vacuum. We again remark that the fact that P

interaction vertices are to be included on the vertical seg-

ments of the contour ensures that the energy eigenstates dper instance, the bulk-boundary propagator with both argu-
pearing in Eq(7.4) are those of the full interacting theory. mentsin 1 . is

0

1
K(1++1++)(x,b’): E TR
n=—o |'2_|—2+ r . - +
- ri coshr  At)+ :coshr+(A¢+27rn)+|eAtsmI’(r+At)

(7.9

Propagators with arguments in distinct regions do not needould now like to find the analogous continuation for the
an ie prescription, since such propagators are nonsingulaBTZ spacetime. This is achieved by working in Kruskal co-

due to the spacelike separation of points in,dand 1, _ . ordinates, as we now discuss.
The Lorentzian prescription obtained by analytic continu-
ation in BTZ time is therefore to integrate vertices over re- B. Kruskal coordinates
gions 1, ; and 1, _ with propagators given by the ru(&.s). Lorentzian Kruskal coordinates are defined as
Furthermore, we should also integrate over the imaginary
time segments shown in Figs. 2 and 3, or equivalently im- 1+ X2-T2
pose correlated boundary conditions on the horizons bound- X1= WCOSV(H@,
ing the two regions. This prescription has also appeared in
the recent work41]. 1+ X2—T2
With this prescription, the regions of the BTZ spacetime Xo= msink{uq&),

near the singularities do not appear in the computation, and
so it is clear that there are no divergences from infinite blue-

shifts. All knowledge about physics in other regions besides Xg= %
1,, and 1,_ is contained in the Hartle-Hawking wave 1-X+T
function. o7
This approach gives a satisfactory description involving _
only regions 1 , and 1, _, but it is natural to expect that X=X T 7.7

there will exist alternative descriptions in which other re-

gions of the BTZ spacetime play a role. Here an analogyNote thatx{ —x5=0, as given in Eq(2.4), the coordinates do
with our Minkowski spacetime example is helpful. We saw not cover the regions 3 containing the closed timelike curves.
that we would analytically continue with respect to either They do cover all of regions 1 and 2. More precisely, they
Rindler or Minkowski time. In the Rindler case, which is cover all of regions 1 and 2 displayed in Fig. 1, but not those
analogous to using BTZ coordinates, only the left and rightobtained by periodically extending the figures in the vertical
wedges appeared in the final result. On the other hand, thdirection. The AdS boundaries are ¥t—T2=1, and we
full spacetime appears in the Minkowski case, and so wepproach either the boundaries af 1or 1. _ depending on
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whether we approack?—T?—1=0 from negative or posi-
tive values. The BTZ singularities are locatedXt—T?=
—1. The metric is

dSZ:(l—XZ—‘FTZ)Z[ —dT2+ dXZ

2

r
+Z+(1+X2—T2)2d¢2 . (7.9
For reference, the relation with BTZ coordinates in lis
1+X2-T12 X B
r= th COSNI’J)—W, qb—qb
(7.9
The Euclidean signature metric is
d2=— o ld2rdxes E(1+x2+72)2d¢>2 :
(1_X2_ 7_2)2 4
(7.10

The Euclidean manifold is given by the regiors®X?+ 72

PHYSICAL REVIEW D67, 124022 (2003

Euclidean AdS/CFT amplitudes are now obtained by inte-
grating vertices over the Euclidean manifold. However, ana-
lytic continuation to Lorentzian signature is somewhat incon-
venient because of the constraint=®?+ 72<1 on the
integration domain. Since the range of tkentegration de-
pends onr, one finds a complicated analytic structure for the
Tintegrand. Instead, it would be much more convenient if we
could extend the domain to the fulK(7) plane. This can be
achieved as follows.

We first observe that the metric is invariant under the
antipodal map defined as x—xa=-—X, where X
=(X1,X2,X3,X4). From Eq.(7.7) with T=—i7 we see that
in Kruskal coordinates the antipodal map becomes

X T
It follows that the regiorX?+ 7°=1 describes a second copy
of Euclidean BTZ, so if we extend our integration domain to
the full (X, 7) cylinder we will be integrating over two copies
of Euclidean BTZ. It is convenient to do this, and then divide
by an appropriate factor at the end of the calculation.
To see how this works in more detail, we first observe that

<1. This metric is nonsingular since the proper length of theunder the antipodal maf¥.11) Euclidean propagators trans-
¢ orbit cannot shrink to zero. The metric near where theform asG— (—1)?"+G, where the phase depends on how
denominator vanishes is that of AdS in Euclidean Poincareve choose to go around the branch cut. For example this

coordinates. The boundary of the spacXis =
a torus.

1, giving

[

(1-X2—7

transformation law follows immediately for the Euclidean
bulk-boundary propagator from its form

2)2h+

K(x,b")= >,

n=w [2XX' + 277 — (1+ X2+ 7?)coshr , (A p+27rn) ]2+

(7.12

This same transformation law holds for bulk-bulk Euclideanrequired. Of course for many reasons it would be desirable to
propagatord42,43. Therefore, the effect of extending the find a way to carry out the analytic continuation directly for
integration with respect to a given vertex to an integrationa smgle copy of the Euclidean BTZ with the constrajtt
over the full (X,7) plane is to multiply the original result by +7°<1. In the following, we will consider the case when

the coefficient

1+ [T (=12,

(7.13

where the product overris a product over propagators at- gularities are located on the red@laxis atT==*

2;2h. ; is an even integer.

Now we proceed to analytically continue the Kruskal time
arguments of our Euclidean amplitudes. The first step, as
always, is to locate the singularities in the compleglane.
There are two kinds of singularities: those from the BTZ
singularity and those from lightlike separation. The BTZ sin-

VI+X2,

tached to the vertex in question. To reproduce the originalLightlike singularities in a propagatds(x,x’) occur when

result, we should divide by the fact6r.13 after extending

each integration to the two copies of Euclidean BTZ. In thegeodesic distancer?=

the geodesic distance vanishe$(x,x’)=0. Examining the
(Axg)?+ (Ax1)*— (Axp)?— (Axs)?

supergravity limit, in which we are working in this paper, in the coordinates$7.7), we find that withT’ on the imagi-

2i2h, ; for is always an integer, and the fact6f.13 is

nary axis there are two singularities in the compleglane,

either 2 or O. If it is 2, we just have to multiply the factor 1/2 to the left and right of the imaginary axis. Therefore, be-
to each vertex after integrating it over the two copies. On thdore doing any analytic continuation, the singularity structure
other hand, if the facto(7.13 is zero, it means that the is as in Fig. 6a). Now when we continu@’ to the real axis,
contributions from the two copies cancel with each otherthe singularities also migrate to the réfahxis. The contour
The method of doubling the integration region is then notdeformation is therefore similar to that in Minkowski space
simply applicable in such a case, and a subtler analysis iwith Minkowski time, and we obtain the contour in Figb.
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The novel feature is that the continuation tells us how toregions 1 and 2 of Lorentzian BTZ in Fig. 1, corresponding

integrate over both the BTZ singularities as well as the usualo the full (X,T) plane. With propagators obtained from Eu-

lightcone singularities. clidean signature by the substitutiar=e'(™2~9T. For in-
Our final result is that we are to integrate over all of stance, the Lorentzian bulk-boundary propagator is

o0

, (1-X*+T?—ie)®+
K(x.b")= 2 , - , 2_12., 2h,
n=-o [2XX'=2(1—-ie)TT —(1+X*=T*+ie)coshr ,(Ap+2mn)]-"+

(7.149

Note that the integral domain is over the eight regions inplex conjugation means that we are using the opposite of the
the left side of Fig. 1—four regions between the past and thetandardi e prescription. For the bulk-boundary propagator,
future singularities, and four more beyond the future singuwe can see this directly by acting E(..15 on Eq.(7.14),
larity. We also have to remember that, since we started witlput it is also true for the boundary-boundary propagator.
two copies of Euclidean BTZ related to each other by theThus, if we want to restrict the integral region to be over
antipodal map7.11), we needed to divide the amplitude by 2, . and 2, _, which are between the past and the future
the factor 2.(We are assuming that;2h, ; is an even inte- singularities in Fig. 1, we need to average over the two op-

ger) positeie prescriptions in an appropriate way. We will see
The antipodal transformation that this is closely related to the cancellation of divergences
at these singularities.
X T To summarize, the analytic continuation to the Lorentzian
X—>Y2_—Tz, THYTTZ, (7.19 BTZ using the Kruskal coordinates shows that amplitudes

are expressed in terms of integrals of interaction points over

the regions 1 and 2 between the past and the future singu-
maps the regions 1. and 1 ., which are beyond the fu- larities. For propagators in the region 1, we use the standard
ture singularity, to the regions. 1, and 1, _. Under this ie prescription. On the other hand, for propagators ending in
map, the propagator transforms @s—(—1)?"+G. There- the region 2, we need to take an appropriate average over
fore, rather than integrating over all the four regions.], signs ofie.
we can restrict the integral to the two regions,land 1, _
and multiply the factor 2. This cancels the factor 1/2 we
introduced earlier to extend the integration to the double of
Euclidean BTZ. Thus the net result is that we integrate over The divergence of the propagator at the BTZ singularity
the regions 1 , and 1, _ with the standard propagators as in has been rendered finite by the prescription, since + X?
Eq. (7.14. This result is reasonable since the boundaries of- T2+ e is nonvanishing on the redl axis. Instead of the
these two regions are identified with the{1)-dimensional divergent behavio¢2.14), we now have near the singularities
spaces for the boundary CFT at finite temperature, as dis-

C. Integrating over the singularities

cussed in Sec. \[22). If the regions 1 _ and 1 . were K~f(X,T)In(1+X?=T?+ie)~f(At)In(r+ *ie).
included, we would have had to impose boundary conditions (7.16

for these regions and the question would have arisen whether

there are additional boundary CFT's for these. The sign ofie appearing in the last term depends on from

The situation is more subtle when the integral runs ovekyhich BTZ region we approach the singularity. A naive
regions of type 2. The antipodal transformation maps 2 prescription would consist of adding a small imaginary part
and 2., to 2,, and 2, _, respectively. Under this, the to BTZ time and using the resulting propagator to integrate
propagator transforms @&—(—1)*"+G*, where the com- near the singularity. This procedure leads to the divergent

propagator of Eq(2.14 and to divergent amplitudes upon
i IT integration over the singularity. But now we see that the
correcti e prescription, written in terms of BTZ coordinates,
N . adds an imaginary part to bothandt. Adding an imaginary

b N part tor lets us define the amplitudes by integrating around

x < x X the singularities in the complex plane. Analytic continuation
has also been used previougijrough not derived from a
(@) (b) consistent starting pointin the context of quantum field

theory near cosmological singularities, e.g., Ré#].
FIG. 6. Integration contours in the Kruskal time plane. In the Let us examine the integration over the singularities in
left hand figure, singularities on the real axis are due to the BTZmore detail. There are two BTZ singularities—past and fu-
singularity; those off the real axis are lightcone singularities. ture with respect to 1, and 1, —located at T=
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+/1+X2. Expressed in terms of BTZ coordinates, the met-intuition that says that points closer to a singularity should
ric near either of the singularities is feel much more of its effect. More quantitatively, in flat
space a correlator falls similar to some power of the distance
and so if the two singularities are far away the interaction
points near the past singularity should make a much smaller
effect than the ones near the future singularity. What makes a
) o difference here is the asymptotically AdS boundary condition
and the propagators behave as in E416. Examining Eq.  of the BTZ black hole, which lets geodesics reflect off the
(7.9, we see that, since our integration should extend ovepoyndary and be refocused on future points. This makes it

both sides of the singularitigf we do not identify the inte-  jnnossible to effectively separate the two singularities.
gration regions using the antipodal maim BTZ coordinates

we should integrate over both positive and negativeosi-
tive and negative correspond to the past and future cones of D. Defining scattering through the singularity

the Milne universe. Note that we do not integrate over the An extremely interesting question concerns the existence
left and right cones of Milne, since these correspond to re- y 94

gions of type 3, and these are not covered by the Kruskaﬁmd behavior of scattering amplitudes for processes where
coordinates ' particles “pass through” the singularity. This is the situation

. . . . . studied in Refs[4,6—14,32. The conclusion of this work,
sinV\iJelafrlirtilt ﬁgﬁf'g‘?r t\r/]vee fﬁ::/r: tsf:zg?el?;;%}ﬁ?gr%ro;%h|Egsthe Ref. [8] in particular, is that such scattering amplitudes are
g * P as- badly behaved in string perturbation theory.
(2.6) and(7.7)]

We might suppose that we could study such phenomena
using the techniques discussed earlier. In particular we could
1+X?—T? study BTZ amplitudes with operators on the boundary of
r~— (7.18 regions1 , and1 _aswellas 1, and 1, _ . Any particle
path between operators on boundaries above and below the

o singularity will have to pass through the singularity.
Therefore, propagators will diverge asrlit(e). If we take a Formally we can calculate amplitudes like this by analytic

generic derivative interaction, then the integration of a verteX., ntinuation [31]. From Eq. (2.5 we see that we can

near the singularity will include a piece “move” an operator from region 1, to 1_, by analytically
continuing in¢, much as in Eq(7.9):

dr?
ds’=r? dtz—r—2+r2d¢2 (7.17)

+

Jrc rlnp(r+ie) 719
(rfied . S
$=110,27]-iB12, 1_, . (7.20

e

wherer . is the radius where the propagators start to differ
from their leading behavior. A#—0, Eq. (7.19 gives a
finite, but generically complex, result. The same continuation moves an operator from region 1
It is important that the imaginary parts arising from inte- to region 1 _.
gration over the two singularities combine in a manner con- As we argued earlier, because the amplitudes we discuss
sistent with Hermiticity in the boundary CFT. Without are analytic irnt and¢ we do not expect singular behavior for
checking this explicitly it is clear that this must come about,generic operator locations on the boundary of lor 1__ .
since our bulk amplitude is mathematically equivalent to theThis seems to lead to a conflict with the singular behavior
analytic continuation of the boundary CFT amplitude. But tofound in the references cited above. It also conflicts with a
illustrate the point we can make a simple check. Consider aaive assumption that an analytic continuation for interaction
boundary correlation function for Hermitian operators point integrations on a purely real Lorentzian slice of the
0,(0,¢) evaluated at=0 on the boundary cylinder. Since BTZ space as in Sec. VIl exists for such boundary operator
the boundary theory is a tensor product, these operators cdocations. If this were the case the singularities would
be associated with either of the CFTs defined an, lor  pinch the contour at the BTZ singularity and make the inte-
1, . Such a correlation function should be real, since allgrated amplitudes infinite in general.
operators are spacelike separated and hence commute. WhenOne possible resolution concerns the boundary conformal
we compute the amplitude in the bulk we pick up imaginaryfield theory we might expect to find on the boundary of,1
parts from integrating over the BTZ singularities. But due toor 1__. The angular momentum operator that generates
the relationG— (—1)?"+G* under the antipodal transfor- translations ofp has spectrum unbounded above and below.
mation in the region 2, the imaginary parts cancel betweetso the sum over conformal field theory states is at best con-
the singularities, and the result is purely real as expected. ditionally convergent. This suggests that correlation func-
We have found that correlation functions computed in thetions might not be derivable directly from an operator for-
BTZ black hole are free from divergences and unphysicamalism. But this does not resolve the above conflict because
imaginary parts because of the cancellation of effects at ththe analytically continued amplitudes might well define a
past and future singularities. This nonlocal cancellationconsistent bulk theory by themselves, without a boundary
mechanism may seem surprising since it contradicts naivéeld theory interpretation.
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We believe the resolution to this problem lies in an ob- In the second description, we integrate over interaction
struction to performing the analytic continuation of a bound-points inside of the horizon as well as outside. Divergences
ary point into region 1, or 1__ with physical contours for ~and unphysical imaginary parts, which could have appeared
the interaction points. We do not have a proof that such affom an integral near a singularitand which do appear in
obstruction always exists but all our attempts have encoursimilar computations in the Milne univer4&2]), are can-
tered the same general problem. celled between the past and future singularities, at least in

This problem is illustrated by the following example. We One case. At first glance this appears to be disturbingly non-

work in BTZ coordinates and try to continue points to both local. But the singularities of eternal AdS-Schwarzs_chiId
1., and 1 ,. 1,, corresponds to Reand Res: 1 . black holes are never extremely far apart. Their maximum
n . 1

conesponds to Reand ¢~Re_ifl2. Now start rom the  S2PAIANS.f b the S radlus, o materhow rge e
Euclidean contour and first continue to the tRexis for all ) p y

. . resolve is also AdS scale. To observe the isolated, uncan-
points. We can take the contour to have three segméhts: . ) : _
. . ; celled singular behavior of one singularity we would have to
go from —T to + T along the real axis, avoiding the singu-

larities in the way which gives the Feynman propagaey: use probes sensitive to Ioca! bu_Ik physics. We expect local
go from +T to —T along the real axis and underneath thecorrela}tors of bqu_ supergravity fields to ShOW such singular
singularities:(3) go from —T to —T—i 8. Now we would behavior* Extracting such_ local t_Ju_Ik physics from the

ke to cont}nue some of the bounda}y points ¢o=Re boundary theory is a notoriously difficult problem. Perhaps

o X . the very complicated boundary operators necessary to local-
I/5/2 while also moving theb contour of segmer(@) down ;¢ g jantities in the bulk will allow the well behaved bound-
by —iB/2. This cannot be done since thg contour is

pinched. Ir_1 partic_u_lar, with the_ time argument given by seg-aryTT: %gcttgr?ffg ﬂﬁgpggiw);z;‘ngﬁg %ﬂ;gﬂaﬁgﬁires
ment(2), singularities along this segment occur at under Kruskal analytic continuation starting with two copies
of Euclidean BTZ black holes is a major shortcoming of our
r2— r2+ r approach. In the supergravity limit, the factor is either 2 or O
= coshr. (At—ie)+ —coshr,(A¢+2mn)=0.  for each interaction vertex, and we were able to find a way to
+ * (7.21) perform the analytic continuation in the Kruskal coordinates
' when it is 2. More generally, the factor is a complex-valued
function of mass. The factor cancels out if the interaction
Expanding out the first cosh to first orderdépwe see that the point is in region 1, but it gives rise to a combination ®f
imaginary part ofA¢ changes sign depending on the sign ofand G* with complex coefficients in region 2. The mass
At. In general, both signs akt occur, so we will find sin-  gependence of these coefficients makes it difficult to perform
gularities just above the reap axis and just below—the the analytic continuation in the full string theory, though in
contour is pinched. This prevents us from moving #heon-  that case we also need to discuss effects due to twisted sec-
tour downwards, unless we “drag” along some extra seg+ors, etc. It is desirable to find a way to perform the analytic
ment attached to the singularities. Other attempts result igontinuation starting with a single copy of Euclidean BTZ.
the same pinching of theé contour. Our conclusions do not lean heavily on being in three
This obstruction prevents us from obtaining a simple pic-spacetime dimensions, and one could extend our arguments
ture of the Lorentzian signature amplitudes as integrals ovelg AdS black holes in other dimensions. Actually, much of
the interaction point locations on a real section of the comyhat we say—minus the CFT interpretation—could also be
plexified BTZ space. This removes the conflict with othersaid for the four-dimensional Schwarzschild solution.
approaches that study that formulate the problem on thigreen’s functions defined in Euclidean signature can be ana-
purely real section. But it also means that the techniques Wgtically continued to Lorentzian signature, and in Kruskal
have developed do not as yet resolve the issues raised #pordinates will naturally lead to an integration over the
previous work. black hole singularitie3. One difference is that the
Schwarzschild solution is only an approximate solution of
string theory, and so the accuracy of the analytic continuation
i ] procedure needs more careful justification. In conclusion, our
We have seen that a fixed Feynman diagram for correlayork jllustrates the power of using analytic continuation to
tors of boundary operators in the BTZ geometry can be ungefine otherwise divergent Lorentzian amplitudes, displaying

derstood in two different ways. First, as a Feynman diagrany complementary correspondence between inside and outside
in which the locations of the interaction vertices are re-the horizon phenomena in the process.

stricted to the regions outside the horizon. This is the “Rin-

dler” type description. Second, as a diagram in which the——

locations are integrated over the full region covered by 4o¢ course such quantities are not gauge invariant, but they may
Kruskal coordinates, including regions behind the horizonye| pe illustrative. In the 2 1 BTZ situation the simplicity of the
and on both sides of the singularities. This is thegeometry allows cancellations to occur even for bulk correlators.

“Minkowski” type description. This identification suggests This follows from the antipodal symmetry of bulk-bulk propaga-
that certain things about physics behind the horizon can bgys.

learned from data located outside the horizon. This idea is®A path integral representation for the propagator was discussed
reminiscent of black hole complementarity. from this point of view in Ref[45].

E. Remarks
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