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Semiclassical wormholes
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Smooth-throat wormholes are treated as possessing quantum fluctuation energy with a scalar massive field as
its source. The heat kernel coefficients of the Laplace operator are calculated in the background of the
arbitrary-profile throat wormhole with the help of the zeta-function approach. Two specific profiles are con-
sidered. Some arguments are given that wormholes may exist. It serves as a solution of semiclassical Einstein
equations in the range of specific values of the length, a certain radius of the wormhole’s throat, and a constant
of nonminimal connection.
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I. INTRODUCTION

Great interest in the space-time of wormholes dates b
at least to 1916@1#. Subsequent activity was initiated by bo
classical works of Einstein and Rosen in 1935@2# in the
context of black hole space-time structure and the later se
of works by Wheeler in 1955@3# with his excellent idea of
creating everything from nothing. The more recent interes
the topic of wormholes has been rekindled by the works
Morris and Thorne@4# and Morris, Thorne, and Yurtsever@5#
who made use of the concept of wormholes in a scien
discussion of ‘‘time machine.’’ These authors construc
and investigated a class of objects they referred to as ‘‘
versable wormholes.’’ Their work led to a flurry of activity i
wormhole physics@6#.

It is well known that the central problem of traversab
wormholes is connected with the unavoidable violation
the null energy condition. This means that the matter wh
should be a source of this object has to possess some e
properties. For this reason the traversable wormhole ca
be represented as a self-consistent solution of Einste
equations with the usual classical matter as a source bec
the usual matter is sure to satisfy all energy conditions. O
way out is to use quantum fields in the framework of sem
classical quantum gravity. The point is that the vacuum
erage value of the energy-momentum tensor of quan
fluctuations may violate energy conditions. Self-consist
wormholes in the framework of semiclassical quantum gr
ity have been studied in Ref.@7#. In our recent paper@8# we
have considered the possibility of a self-consistent solu
of semiclassical Einstein equations for a specific kind
wormhole—a short-throat flat-space wormhole. The mo
represents two identical copies of Minkowski space w
spherical regions excised from each copy, and with bou
aries of these regions to be identified. The space-time of
model is flat everywhere except a two-dimensional singu
spherical surface. The vacuum average of the energy
quantum fluctuations of a massive scalar field with a n
minimal connection serves as a source for this space-t
Owing to the fact that this space-time is flat everywhere
complete set of wave modes of the massive scalar field
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be constructed and ground state energy can be calculate
this paper we present a calculation of the full energy of
quantum fluctuations rather than the energy density and
use the Einstein’s equations with the quantum source o
without a classical contribution. We found that the energy
fluctuations as a function of the radius of throata may pos-
sess a minimum if the nonminimal connection constanj
.0.123. Utilization of the Einstein equations at the min
mum gives the stable configurations of the wormhole. F
instance, in the case of a conformal connection,j51/6, we
found a relation between the radiusa of the wormhole and
massm of the scalar field:am'0.16. The Einstein equation
say that the wormhole has a radius of throata'0.0141l Pl
and the mass of scalar fieldm'11.35mPl . Therefore, this
kind of wormhole, if it exists, may possess a sub-Planck
radius of throat and it may be created by a massive sc
field with super-Planckian mass. Obviously, the validity
the results obtained are restricted by the model taken–sh
throat flat-space wormhole.

The goal of this paper is to consider the wormholes w
more real geometry of the throat and the energy of quan
fluctuations of a massive scalar field as a source of this ba
ground. The main problem in this case has a rather m
ematical character. Even for the simple profile of a throa
becomes impossible to obtain a full set of solutions o
radial equation in order to find the energy density of quant
fluctuations in close form. Nevertheless, it is possible
make some predictions about the existence of the wormh
by considering the heat kernel coefficients@8#. In fact, the
crucial point is the existence of the negative minimum of t
zero point energy. The sufficient condition for the zero po
energy to have negative minimum is that the heat ker
coefficientsB2 andB3 be positive@8#. This gives a condition
for the parameters of the model. More precisely, if a ba
ground is described by a parametert with a dimension of
length and the domain where the space-time is ‘‘main
curved is defined by this parameter, then for the small size
the curved domain,t→0, the zero point energy shows th
following behavior:

Eren'2
B2 ln~tm!2

32p2
,

and in opposite limitt→` we have
©2003 The American Physical Society20-1
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Eren'2
B3

32p2m2
.

If both these conditions are satisfied one can expect
the system will stay in a minimum of energy which is cha
acterized by specific values of parameters of wormholes
a constant of the nonminimal connectionj. The next step is
the utilization of Einstein’s equations with the energ
momentum tensor of quantum fluctuations as a source.
integration over the volume of thet2t component of this
equation gives an additional relation between the parame
of the wormhole and zero point energy, using which we o
tain the size of a wormhole and the mass of a scalar fiel
terms of the Planck length and Planck mass correspondin
At the beginning we may expect@8# that the size of the
wormhole and the mass of field will be in the Planck sca
For this reason we are interested only in finding the dom
of the wormhole’s parameters and the constant nonmini
connectionj for different models of the wormhole’s profile

The manifest expression for coefficientB2 exists for an
arbitrary background, but this is not the case for coeffici
B3. For this reason we adopt here the zeta-regulariza
approach~see Sec. III!, in the frame of which it is possible to
calculate the heat kernel coefficients and zero point ene
itself. We pursue here another goal—to evolve the ze
function approach for situations where it is impossible to fi
the full set of solutions of the radial equation in closed for
We find a method to calculate the heat kernel coefficient
the background of a wormhole with an arbitrary profile
the throat by using the WKB approach. Moreover, we obt
expressions for an arbitrary heat kernel coefficients and
reproduce them in manifest form up toB3 for an arbitrary
profile of a wormhole’s throat.

The organization of the paper is as follows. In Sec. II
consider the geometry of a wormhole with a smooth thro
In Sec. III we discuss the method of the zeta function for
calculation of zero-point energy. The WKB approach for t
scalar massive field is considered in Sec. IV. The heat ke
coefficients are obtained in Sec. V. We calculate them
manifest form for an arbitrary profile of throat. The speci
profiles of throat are investigated in Secs. VI and VII. In S
VIII we discuss the results obtained. The Appendix conta
some technical formulas which are too complicated to rep
duce them in the text.

We use units\5c5G51. The signature of the space
time, the sign of the Riemann and Ricci tensors, are the s
as in the book by Hawking and Ellis@9#.

II. A TRAVERSABLE WORMHOLE
WITH A SMOOTH THROAT

The metric of a space-time of wormhole which is und
consideration has the form

ds252dt21dr21r 2~r!~du21sin2udw2!. ~1!

The radial variabler changes from2` to 1`. In the paper
we restrict ourselves to wormholes with a symmetric thro
12402
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which means thatr (2r)5r (1r). The radiusa of a throat is
defined as follows:a5r (0). We suppose that far from the
wormhole’s throat the space-time becomes Minkowski
that is

lim
r→6`

r 2~r!

r2
51.

The nonzero components of the Ricci tensor and the sc
curvature have the following form:

R r
r52

2r 9

r
,

R u
u5R w

w52
211r 821rr 9

r 2
,

R52
2~211r 8212rr 9!

r 2
.

The energy-momentum tensor corresponding to this me
has a diagonal form from which we observe that the sou
of this metric possesses the following energy density a
pressure:

«52
211r 8212rr 9

8pr 2
,

pr5
211r 82

8pr 2
,

pu5pw5
r 9

8pr
.

In the paper we obtain general formulas for space-time~1!
with an arbitrary symmetric functionr (r) obeying the above
Minkowskian condition. Two specific kinds of throat’s pro
file will be considered. In the first model the profile of th
throat has the following form:

r ~r!5Ar21a2, ~2!

where a is the radius of a throat which characterizes t
wormhole’s size. The embedding into the three-dimensio
Euclidean space of the section of the space-time by sur
t5const,u5p/2 is plotted in Fig. 1~I! for two different val-
ues of the radius of the throat. In Euclidean space with
lindrical coordinates (r ,w,z) this surface may be found in
parametric form from relationsr 5r (r), z8(r)5A12r 82.
In this background there is the only nonzero componen
the Ricci tensor which reads

R r
r52

2a2

~r21a2!2
.

The second model has been considered in Ref.@10# and it
is characterized by the following profile of a throat:
0-2
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FIG. 1. ~I! represents the sectiont5const,u5p/2 of the worm-
hole’s space-time with the profile functionr (r)5Ar21a2 for two
different values of the radius of the throat. The next three figu
illustrate the wormhole with the profile of the throatr (r)
5r coth(r/t)2t1a. ~II ! and ~III ! illustrate that thea andt are the
radius and the length of the throat, accordingly. In the last fig
two wormholes with differenta but with the same ratio of the radiu
and the length of the throat are depicted. It is seen that the pa
etera characterizes the ‘‘size’’ of the wormhole anda describes the
‘‘form’’ of the wormhole.
12402
r ~r!5r cothS r

t D2t1a. ~3!

This model possesses a more interesting structure. Ther
two parameterst anda. The latter parameter is the radius
the throat. In this model we may introduce another param
which may be called the length of the throat. The point
that the functionr (r) turns into a linear function ofr start-
ing from distancer.t/2 and the space-time becomes a
proximately Minkowskian. Therefore, the length of th
throat l 5t. Using new variablesy5r/a, a5t/a, one re-
writes the functionr in the form

r ~y!5aFy cothS y

a D2a11G .
The parametera is the ratio of the length and the radius
the throat. This parameter will play the main role in o
analysis. It allows us to consider wormholes of differe
forms, which are with different ratios of the radius an
length of the throat.

In Fig. 1~II–IV ! the sectionst5const, u5p/2 of this
wormhole space-time are shown for different values ofa and
t. Namely in Fig. 1~II ! we represent two wormholes with th
same radius of the throat but with different lengths, and v
versa in Fig. 1~II !, where we depict two wormholes with th
same length of the throat but with different radii of throat.
last picture Fig. 1~IV ! two wormholes with the same ratio o
length and the radius of the throat, but with different valu
of the throats’ radii, are depicted. Therefore, the size of
wormhole with the same ratio of the length and the radius
the throat is managed by parametera. The parametera de-
scribes the wormhole’s form.

III. ZERO POINT ENERGY:
ZETA-FUNCTION APPROACH

We exploit the zeta function regularization approa
@12,11# developed in Ref.@13# and calculate the zero poin
energy of the massive scalar field in this background. Le
repeat some main formulas from those papers. In the fra
work of this approach the zero point energy,

E~s!5
1

2
m2s(

j
(
(n)

~l (n), j
2 1m2!1/22s5

1

2
m2szLS s2

1

2D ,

~4!

of the scalar massive fieldF is expressed in terms of the ze
function

zLS s2
1

2D5(
j

(
(n)

~l (n), j
2 1m2!1/22s ~5!

of the Laplace operatorL52n1m21jR. Here n

5gkl¹k¹l is the three-dimensional operator. The eigenvalu
l (n), j1m2 of operatorL are found from the boundary con
dition which looks as follows:

C (n)~l,R!50, ~6!

s

e

m-
0-3
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where R denotes some boundary parameter. The soluti
l5l (n), j of this equation depend on the numbers (n), and
additionally they have the indexj 51,2, . . . , which numer-
ates the solutions of the boundary equation. Therefore,
zeta function is a sum of expressions which depend on z
of function C (n) . Next, according to Ref.@13# we convert
the series overj in the zeta function to the integral and arriv
at the formula

E~s!52
1

2
m2s(

(n)

cosps

p

3E
m

`

dk~k22m2!1/22s
]

]k
ln C (n)~ ik,R!, ~7!

where the functionC (n) in imaginary axes appears.
Expression~7! is divergent in the limits→0 we are in-

terested in. For renormalization we subtract fromE(s) all
termsEdiv(s) which will survive in the limitm→`:

Ediv~s!5 lim
m→`

E~s!

and we define the renormalized energy as follows:

Eren5 lim
s→0

@E~s!2Ediv~s!#. ~8!

Because the pole structure of the zeta function does not
pend on the value of the parameters, it is obvious that in
limit m→` the divergent part will have the structure of th
DeWitt-Schwinger expansion, which has the following form

Ediv~s!5
1

2 S m

mD 2s 1

~4p!3/2GS s2
1

2D H B0m4G~s22!

1B1/2m
3GS s2

3

2D1B1m2G~s21!

1B3/2mGS s2
1

2D1B2G~s!J , ~9!

whereBa are the heat kernel coefficients. In order to extr
the divergent part of the energy we use the following pro
dure @13#. We subtract from and add to the integrand t
uniform expansion of lnC up to m0. We denote this expan
sion as (lnC(n))

as. Therefore, according to this, we represe
the energy as the sum

E~s!5Ef in~s!1Eas~s! ~10!

of the finite ~in the limit s→0) part

Ef in~s!52
1

2
m2s(

(n)

cosps

p

3E
m

`

dk~k22m2!1/22s
]

]k
@~ ln C (n)~ ik,R!

2~ ln C (n)~ ik,R!!as#, ~11!
12402
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and the remains, which will be obtained from the unifor
expansion part

Eas~s!52
1

2
m2s(

(n)

cosps

p

3E
m

`

dk~k22m2!1/22s
]

]k
@ ln C (n)~ ik,R!#as.

The last expression contains all terms which will survive
the limit m→`.

Taking into account the obtained expressions in Eq.~8!
we arrive at the formula

Eren5Ef in1Eas
f in , ~12a!

where

Ef in5Ef in~0!52
1

2p (
(n)

E
m

`

dkAk22m2
]

]k

3$ ln C (n)~ ik,R!2@ ln C (n)~ ik,R!#as%, ~12b!

Eas
f in5 lim

s→0
@Eas~s!2Ediv~s!#. ~12c!

The divergent partEdiv is given by Eq.~9!.
The finite partEf in is calculated numerically. The secon

part, in practice, is found in the following way. By using th
uniform expansion (lnC(n))

as we calculate in manifest form
the Eas(s) and after that we take the limitm→` in the
expression obtained~the pole structure does not change!. All
terms which will survive in this limit constitute the DeWitt
Schwinger expansion~9! which we have to subtract in Eq
~12c!. This way of calculation is more preferable because
may obtain the heat kernel coefficients in the manifest fo
The calculations of heat kernel coefficients in framework
this approach shows that the approach is suitable for bo
smooth background and for manifolds with singular surfa
of codimensions one@8# and two@14#, the general formulas
which were obtained in Refs.@15# and @16#.

In consideration of the above we may find the zero-po
energy for the large and small sizes of wormhole@8#. Let the
parametera characterize the size of the wormhole. In th
case theEren/m is a dimensionless function and it depen
on the parameterma and some additional dimensionless p
rameters which characterize the form of wormhole. For
ample, in the first model~2! there is only the parametera,
which is the radius of the wormhole’s throat, and it chara
terizes at the same time the size of the wormhole as a wh
Therefore in this model theEren/m depends onma and there
are no additional parameters. In the second model~3! there is
an additional parametera5t/a except parameterma. For
this reason the dependence of the zero point energyEren/m
on the mass is the same as parametera. Because for renor-
malization we subtracted all terms of the asymptotic o
mass expansion up toB2 the asymptoticma→` is the fol-
lowing:
0-4
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Eren

m
'2

B3

32p2m3
52

b3

32p2~ma!3
. ~13!

In the opposite case,ma→0, the behavior of the energy i
defined by coefficientB2 @see also Eq.~41!#:

Eren

m
'2

ln~ma!2

32p2m
B252

ln~ma!2

32p2~ma!
b2 . ~14!

Here b3 and b2 are dimensionless heat kernel coefficien
which may depend on the additional parameters. There
from these expressions we obtain the following sufficie
condition that the zero point energy has a minimum: bothB2
andB3 have to be positive. An additional condition may b
obtained from Einstein’s equations~see Secs. VI and VII!.

IV. MASSIVE SCALAR FIELD IN WORMHOLES
BACKGROUND: THE WKB APPROACH

We consider the massive scalar quantum field in t
background as a source for this space-time. In the framew
of the approach used one has to find the spectrum of
Laplace operatorL:

~2n1jR!F5l2F.

Taking into account the spherical symmetry of the pro
lem we represent the equation in the following form:

F5Yl
m~u,w!f,

where Yl
m(u,w) are the spherical harmonics,l 50,1,2, . . .

andmP@2 l ,l #. The radial part of the wave function is th
subject for the equation

S ]r
21

2r 8

r
]r2

l ~ l 11!

r 2
2jRD f52l2f. ~15!

To find the spectruml we have to impose some appr
priate boundary conditions. It does not matter what kind
boundary condition will be imposed because at the end of
calculation we will tend this boundary to infinity. We use th
Dirichlet boundary condition in the spheres with rad
R: r56R. For simplifying formulas we will work here
with the functionz(s)5m2szL(s). With this notations the
regularized ground state energy reads

E~s!5
1

2 S m

mD 2s

zS s2
1

2D .

Because we need the solution for the imaginary ene
only @see Eq.~7!#, we change the integrand variable in th
radial equation~15! to an imaginary axis,l→ ink, and res-
cale for simplicity the radial variable,rk→x. Therefore we
arrive at the following equation (n5 l 11/2):

f̈12
r k̇

r k
ḟ2n2S 11

1

r k
2D f1S 1

4r k
2

2jRkD f50, ~16!
12402
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where the dot is the derivative with respect tox; r k
25r 2k2

andRk5R/k2.
A general solution of the radial equation~16! is the super-

position of two linearly independent solutions

C̄~ ink,x!5C1f1~x!1C2f2~x!. ~17!

The first functionf1 tends to infinity far from the throat, for
r→`, and the second one tends to zero. We consider
behavior of the functions only for one part of space-tim
namely, withr.0. The behavior of the solutions in the se
ond part of space-time with negativer is found as a continu-
ation of the solutions from the positive part of space-tim
Now we impose the Dirichlet boundary condition at sphe
r56R:

C̄~ ink,1R!5C1f1~1R!1C2f2~1R!50,

C̄~ ink,2R!5C1f1~2R!1C2f2~2R!50.

The solution of this system exists if and only if the followin
condition is satisfied:

C l~ ink,R!5f1~1R!f2~2R!2f1~2R!f2~1R!50.
~18!

The contribution from the second term in the equati
above is exponentially small compared to the first one in
limit R→`. In order to see this let us find the uniform e
pansion of solutionsf1 and f2. Moreover, we need this
expansion for the renormalization and the calculation of
heat kernel coefficients. Let us represent a solutionf in the
exponential form

f~x!5
1

A2an
eS(x), ~19!

wherea5r (0), andsubstitute it in the radial equation~16!.
One obtains a nonlinear equation

S̈1Ṡ212
r k̇

r k
Ṡ2n2S 11

1

r k
2D 1S 1

4r k
2

2jRkD 50.

We represent now the solution in the WKB expansi
form

S5 (
n521

`

n2nSn ,

and substitute it in the equation above. This gives the follo
ing chain of equations:

Ṡ2156A11
1

r k
2

, ~20a!

Ṡ052
1

2

S̈21

Ṡ21

2
r k̇

r k
, ~20b!
0-5
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Ṡ152
1

2Ṡ21
F S̈01Ṡ0

212
r k̇

r k
Ṡ01

1

4r k
2

2jRkG , ~20c!

Ṡn1152
1

2Ṡ21
F S̈n1 (

k50

n

ṠkṠn2k12
r k̇

r k
ṠnG ,

n51,2, . . . . ~20d!

There are two solutions to this chain that correspond to
sign in the first equation. The plus sign gives the grow
~for positive coordinater) solution which we mark ‘‘1 ’’ and
the minus sign gives solution which tends to zero at infin
which we mark by the sign ‘‘2. ’’ Therefore

f1~1R!f2~2R!5
1

2an
eS1(1R)1S2(2R).

To find an expansion for the sumS1(1R)1S2(2R) we
need the following properties of functionS6(x):

Ṡ2n21
2 ~x!52Ṡ2n21

1 ~x!,

Ṡ2n
2 ~x!51Ṡ2n

1 ~x!,

and

Ṡ2n21
6 ~x!51Ṡ2n21

6 ~2x!,

Ṡ2n
6 ~x!52Ṡ2n

6 ~2x!,

where n50,1, . . . . Thefirst two equations are the cons
quence of the structure of the chain and the last two eq
tions are due to the symmetry of the metric functionr k(x)
5r k(2x).

Taking into account these properties of symmetry we h

S1~1x!1S2~2x!5 (
n50

`

n122nFC2n21
1 1C2n21

2

1E
2x

1x

Ṡ2n21
1 dxG1 (

n50

`

n22n

3FC2n
1 1C2n

2 12E
x0

1x

Ṡ2n
1 dxG ,

~21!

S1~1x!1S2~1x!5 (
n50

`

n122n@C2n21
1 1C2n21

2 #

1 (
n50

`

n22nFC2n
1 1C2n

2

12E
x0

1x

Ṡ2n
1 dxG , ~22!

Here theCn are the constant of the integration of syste
~20!.
12402
e
g
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Therefore we may express the combination we need~21!
in terms of Eq.~22!:

S1~1x!1S2~2x!5S1~1x!1S2~1x!

1 (
n50

`

n122nE
2x

1x

Ṡ2n21
1 dx.

To find the combinationS1(1x)1S2(1x) we use the
Wronskian condition. Because these solutions are indep
dent, they obey the equation (ak5ak)

W„f1~x!,f2~x!…5
k

r k
2

.

The origin of this relation is the following. Suppose w
try to find the scalar Green function of the Klein-Gordo
equation:

~gmn¹m¹n2m22jR!G~x,x8!5
d4~x,x8!

A2g~x!
~23!

in background~1!. It is very easy to extract the time and th
angular dependence of the Green function

G~x,x8!5E
2`

1`dv

2p (
l 50

`

(
m52 l

l

Yl
m~u,w!Yl

2m

3~u8,w8!e2 iv(t2t8)f~r,r8!,

and we arrive at the equation for the radial part of the Gre
function which reads (l25v22m2)

H ]r
21

2r 8

r
]r1l22

l ~ l 11!

r 2
2jRJ f~r,r8!5

d~r2r8!

r 2

or in dimensionless variables (l→ ink, kr→x)

H ]x
212

r k̇

r k
]x2n2S 11

1

r k
2D 1S 1

4r k
2

2jRkD J f~x,x8!

5
kd~x2x!

r k
2

.

As usual we represent the radial Green function in st
dard form:

f~x,x8!5u~x82x!f1~x!f2~x8!1u~x2x8!f2~x!f1~x8!,

wheref1 and f2 are two linearly independent solutions o
the homogenous equation andf1 tends to infinity for r
→` andf2 tends to 0. The Wronskian condition appears
we substitute the radial Green function to the radial equa
above:

W„f1~x!,f2~x8!…5
k

r k
2

.

0-6
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Therefore, if two functionsf1 andf2 describe the system
they have to obey this Wronskian condition.

For the solution in exponential form~19! this condition
gives

eS1(x)1S2(x)5
2nak

r k
2

1

Ṡ1~x!2Ṡ2~x!
.

The denominator on the right-hand side~rhs! has the follow-
ing form:

Ṡ1~x!2Ṡ2~x!52(
n50

`

n122nṠ2n21
1 .

Taking into account these two expressions above we arriv
the formula

S1~x!1S2~2x!5 ln~ak!2
1

2
ln~Ṡ21

2 r k
4!

1 (
n50

`

n122nE
2x

1x

Ṡ2n21
1 dx

2 lnH 11 (
n51

`

n22n
Ṡ2n21

1

Ṡ21
1 J . ~24!

The main achievements and peculiarities of this expr
sion are as follows:~i! the rhs is expressed in terms of d
rivative of functionsSn

1 , we do not need to find the con
stants of integration in the chain of equations~20!; ~ii ! the
odd and even power ofn are separated, which leads to th
separation of the contribution to heat kernel coefficients w
integer and half-integer indices;~iii ! the rhs is expressed i
terms of functionsSn with odd indices only. The first three
functions Ṡ2n21 are listed in the Appendix, formula~A1a!.
We would like to note that this formula is valid for an arb
trary, but symmetric,r (r)5r (2r), metric coefficient.

From this expression we may conclude that the contri
tion from the second term in condition~18! is exponentially
small compared with the first one. Indeed, the main WK
term in Eq.~24! gives the following contribution:

f1~1R!f2~2R!'
k

2n

1

Ṡ21
1 r k

2
expH 1nE

2kR

1kR

Ṡ21
1 dxJ ,

f1~2R!f2~1R!'
k

2n

1

Ṡ21
1 r k

2
expH 2nE

2kR

1kR

Ṡ21
1 dxJ .

Because the functionṠ21
1 is positive for arbitraryR we ob-

serve that the second expression gives an exponentially s
~for R→`) contribution compared with the first one and w
will omit it in what follows.

V. HEAT KERNEL COEFFICIENTS

Let us now proceed to an evaluation of the heat ker
coefficients~HKC!. The formula~24! allows us to find HKC
12402
at

s-

h

-

all

l

in general form for arbitrary indices. Taking into account t
above discussions we have the following expression for
zeta function:

zS s2
1

2D52m2s
2 cosps

p (
l 50

`

n222sE
m/n

`

dk

3S k22
m2

n2 D 1/22s
]

]k
$S1~1R!1S2~2R!%.

~25!

To find the heat kernel coefficients we use the unifo
expansion given by Eq.~24!. As it will be clear later, the odd
powers ofn will give a contribution to HKC with integer
indices and even powers ofn produce the contribution to
HKC with half-integer indices. The well-known asymptot
expansion of the zeta function in three dimensions has
form

zasS s2
1

2D5
1

~4p!3/2

1

GS s2
1

2D (
l 50

` H m422lBlG~s1 l 22!

1m322lBl 11/2GS s1 l 2
3

2D J . ~26!

For simplicity we introduce the density of HKC with intege
indicesB̄l by the relation

Bl5E
2R

1R

drB̄l~r!

and first of all we will obtain formulas for this density.
Let us consider the part of Eq.~24! with an odd degree of

n. The contribution to the zeta function is the following:

zas
oddS s2

1

2D52m2s
2 cosps

p (
l 50

`

n222s

3Em
n

`

dkS k22
m2

n2 D 1/22s
]

]k

3H (
p50

`

n122pE
2kR

1kR

Ṡ2p21
1 ~x!dxJ .

We change now the variable of integrationx5kr and take
the derivative with respect tok:

zas
oddS s2

1

2D52m2s
2 cosps

p (
l 50

`

n222s

3Em
n

`

dkkS k22
m2

n2 D 1/22s

3 (
p50

`

n122pE
2R

1R

s2p21~k,r!dr.
0-7
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The first four functionss2p21 are listed in the Appendix
formula~A2a!. The general structure of these functions is t
following:

s2p215 (
n50

2p

a2p21,nz2p2n2(1/2),

where a2p21,n are the functions of r (r), and z51
1k2r 2(r).

Next, we integrate overk using the formula

E
m/a

`

dkkS k22
m2

n2 D (1/2)2s

~11k2r 2!2q

5
1

2
r 2s23n2312s12q~n21m2r 2!3/2 2s2q

3

GS 3

2
2sDGS q2

3

2
1sD

G~q!

and obtain the following expression for the odd part of t
zeta function:

zas
oddS s2

1

2D5
m2s

GS s2
1

2D E2R

1R

dr

3(
l 50

`

(
p50

`

(
n50

2p

a2p21,nr 2s23

3
G~s1p1n21!

GS p1n1
1

2D
n2n11

~n21m2r 2!s1p1n21
.

~27!

By using the binomial of Newton we reduce the power
n in the denominator

(
l 50

`
n2n11

~n21m2r 2!s1p1n21

5
1

2 (
q50

n

~2m2r 2!n2q
n!

q! ~n2q!!

Z~s1p1n212q!

G~s1p1n212q!
,

~28!

where

Z~s!52G~s!(
l 50

`
n

~n21m2r 2!s
.

12402
e

f

To obtain the HKC we need asymptotic~over massm)
expansion of the zeta function. The asymptotic expansion
the functionZ(s) was obtained in Ref.@17# and it has the
form below

Z~s!5~mr!22s (
l 521

`

Al~s!~mr!22l , ~29a!

A21~s!5G~s21!, ~29b!

Al~s!52
~21! l

l !
G~ l 1s!zHS 2122l ,

1

2D , ~29c!

where thezH(a,b) is the Hurwitz zeta function.
Taking into account formulas~28! and ~29! one has the

following asymptotic series for an odd part of the zeta fun
tion:

zas
oddS s2

1

2D
5

1

2GS s2
1

2D E2R

1R

dr(
l 50

`

(
p50

l

(
n50

2p

(
q50

n

a2p21,n

3m422l r 22l 11
G~p1n211s!

GS p1n1
1

2D
n!

q! ~n2q!!

3~21!n2q
Al 2p21~s1p1n212q!

G~s1p1n212q!
.

As was expected at the beginning this is a series o
even degrees of mass and it gives a contribution to the H
with integer indices. Comparing the above expression w
the general equation~26! we obtain the general formula fo
the arbitrary HKC coefficient with an integer index

B̄l~r!

5
4p3/2

G~s1 l 22! (
p50

l

(
n50

2p

(
q50

n

a2p21,nr 22l 11

3
G~p1n211s!

GS p1n1
1

2D
n! ~21!n2q

q! ~n2q!!

3
Al 2p21~s1p1n212q!

G~s1p1n212q!
. ~30!

Therefore, to obtain the HKC with indexl we have to take
into account expansion up ton122l .
0-8
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Let us now proceed to the HKC with half-integer indice
To find them we have to take into account the part of E
~24! with even powers ofn in an expression for the zet
function ~25!. The general form of the even part is

@S1~x!1S2~2x!#even

5 ln~ak!2
1

2
ln~Ṡ21

2 r k
4!2 lnH 11 (

n51

`

n22n
Ṡ2n21

1

Ṡ21
1 J

5 (
p50

`

n22pE2p , ~31!

where the first four functionsE2p are listed in the Appendix
formula ~A1b!.

We substitute now expansion~31! in the expression for
the zeta function:

zas
evenS s2

1

2D52m2s
2 cosps

p (
l 50

`

n222s

3Em
n

`

dkS k22
m2

n2 D 1/22s
]

]k (
p50

`

n22pE2p ,

and take the derivative with respect to thek:

zas
evenS s2

1

2D52m2s
2 cosps

p (
l 50

`

n222s

3Em
n

`

dkkS k22
m2

n2 D 1/22s

(
p50

`

n22ps2p .

~32!

The functionss2p have the following structure:

s2p5 (
n50

2p

a2p,nz2p2n21,

wherez511k2r 2(R). The first three coefficients are liste
in manifest form in the Appendix@see Eq.~A2b!#. The coef-
ficientsa2p,n depend on the parametersR anda and do not
depend on the variable of integrationk. Going the same way
as we did for the HKC with integer indices we obtain t
following asymptotic expression for the even part of the z
function:

zas
evenS s2

1

2D
5

1

2GS s2
1

2D (
l 50

`

(
p50

l

(
n50

2p

(
q50

n

a2p,nm322l r 22l
12402
.
.

a

3

GS p1n2
1

2
1sD

G~p1n11!

n!

q! ~n2q!!
~21!n2q

3

Al 2p21S s1p1n2
1

2
2qD

GS s1p1n2
1

2
2qD .

As was expected the even part of the zeta function is
series over odd powers of mass and, therefore, it gives c
tributions to HKC with half-integer indices. Comparing th
expression with the general asymptotic series for the z
function we obtain the following formula for the HKC with
half-integer indices:

Bl 11/25
4p3/2

GS s1 l 2
3

2D (
p50

l

(
n50

2p

(
q50

n

a2p,nr 22l

3

GS p1n2
1

2
1sD

G~p1n11!

n! ~21!n2q

q! ~n2q!!

3

Al 2p21S s1p1n2
1

2
2qD

GS s1p1n2
1

2
2qD . ~33!

We would like to note that the right-hand side of formul
~30! and ~33! does not depend, in fact, on thes, which is
confirmed by straightforward calculations.

These formulas look very complicated but calculati
may be done easily using a simple program in the pack
MATHEMATICA . Indeed, the functionsṠ2

1(x) andE2n may be
found by using formulas~20! and~31!. The functionssn are
obtained from the following relations:

s2n21~k,r!5
1

k

]

]k
@kṠ2n21

1 ~x!ux5kr#,

s2n~k,R!5
1

k

]

]k
@E2n~x!ux5kR#.

The first four HKC coefficient~density! with integer indi-
ces are listed below
0-9
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B̄054pr 2, ~34a!

B̄15
8p

3
@r 821rr 9#18pS j2

1

6D @211r 8212rr 9#, ~34b!

B̄25
8pj2

r 2
@211r 8212rr 9#21

8pj

3r 2
@~211r 82!2r ~2517r 82!r 917r 2r 8r (3)13r 3r (4)#

2
2p

315r 2
@2~221117r 84!26r ~235159r 82!r 9121r 2~7r 82124r 8r (3)!1210r 3r (4)#, ~34c!

B̄35
16pj3

3r 4
@211r 8212rr 9#31

8pj2

3r 4
@~211r 82!2~119r 82!22r ~211r 82!~2519r 82!r 922r 2~28r 92116r 82r 92

23r 8r (3)13r 83r (3)!12r 3~14r 8r 9r (3)23r (4)13r 82r (4)!12r 4~5r (3) 216r 9r (4)!#

2
4pj

315r 4
@242~211r 82!~1115r 82!12r ~22521105r 821859r 84!r 922r 2~2525r 9212517r 82r 922420r 8r (3)

1808r 83r (3)!13r 3~308r 9311354r 8r 9r (3)2175r (4)1271r 82r (4)!121r 4~27r (3) 2127r 9r (4)213r 8r (5)!2105r 5r (6)#

2
p

45045r 4
@4~257229009r 8219341r 86!24r ~26006215015r 82162039r 84!r 9113r 2~24620r 92132943r 82r 92

24620r 8r (3)111564r 83r (3)!2286r 3~308r 9311139r 8r 9r (3)2105r (4)1223r 82r (4)!2429r 4~47r (3) 2124r 9r (4)

274r 8r (5)!112012r 5r (6)#. ~34d!
l
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h
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th
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ve
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e is
In the above formulas the functionr depends on the radia
coordinater whereas the heat kernel coefficients with ha
integer indices,

B1/2524p3/2r 2, ~35a!

B3/2528p3/2j@211r 8212rr 9#1
p3/2

3
@2413r 8216rr 9#,

~35b!

B5/25
28p3/2j2

r 2
@211r 8212rr 9#22

2p3/2j

3r 2
@4~211r 82!

210r ~2213r 82!r 923r 2~4r 9223r 8r (3)!16r 3r (4)#

1
p3/2

120r 2
@2~216115r 84!25r ~232163r 82!r 9

210r 2~5r 92214r 8r (3)!190r 3r (4)#, ~35c!

depend on the radial functionr at boundaryr 5r (R). From
Eqs. ~34! and ~35! we observe that the HKCBl and Bl 11/2
are polynomial inj with degreel.

It is well known @11# that the heat kernel coefficients wit
integer indices consist of two parts. The first part is an in
gral over the volume and another one is an integral over
boundary. We obtained a slightly different representation
12402
-
e
r

this coefficient as an integral overr. But it is easy to see tha
they are in agreement. Indeed, let us consider, for exam
coefficientB1. According to the standard formula we have

B15S 1

6
2j D E

V
RdV1

1

3ES
tr KdSU

r51R

1
1

3ES
tr KdSU

r52R

.

The volume contribution is exactly the same as we ha
already obtained~34b!. Surface contribution from above for
mula is

1

3ES
tr KdSr51R1

1

3ES
tr KdSr52R5

16p

3
r 8rU

r5R

.

From our result~34b! we get the same expression

8p

3 E
2R

1R

@r 821rr 9#dr5
8p

3 E
2R

1R

@rr 8#8dr5
16p

3
rr 8U

r5R

.

It is not so difficult to verify that the heat kernel coefficien
up toB2 are in agreement with general expressions. Ther
no general expressions for higher coefficients.
0-10
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According to Ref.@8# the condition sufficient for the ex
istence of the self-consistent wormholes may be formula
in terms of two heat kernel coefficients

B25E
2`

1`

drB̄25h2,2j
21h2,1j1h2,0,

B35E
2`

1`

drB̄35h3,3j
31h3,2j

21h3,1j1h3,0.

Namely, bothB2 andB3 have to be positive@18#. The coef-
ficientshk,l of the polynomials depend on the structure of t
wormhole. Therefore the problem reduces to an analysi
the polynomial inj of second and third degrees, the coef
cients of which depend on the structure of the wormho
space-time. Wormholes with different forms may exist f
different values of nonminimal connectionj. For somej the
above polynomials will be positive for specific forms
wormholes.

VI. MODEL OF THE THROAT: R„r…ÄAr2¿a2

In this section we consider in detail the specific model
the wormhole with the following profile of the throatr (r)
5Ar21a2. From the general expressions~34! we obtain the
density of heat kernel coefficients with integer indices wh
are

B̄054pr 2,

B̄15
8pa2

r 2 S j2
1

6D1
8p

3
,

B̄25
2p

315r 6
~1103a42796a2r 218r 4!2

8a2p

3r 6
~17a2212r 2!

3j1
8pa4

r 5
j2,

B̄352
2p

45045r 10
~2583561a623157438a4r 2

1751820a2r 42480r 6!1
4a2p

315r 10
~47263a4257464a2r 2

113540r 4!j2
8a4p

3r 10
~73a2262r 2!j21

16pa6

3r 10
j3.

Integrating overr from 2R to 1R we obtain the HKC.
Here we reproduce their expansions in the limitR→` up to
terms 1/R,

B05
8pR3

3
18pa2R, ~36a!
12402
d

of

s
r

f

B1'
16pR

3
18p2aS j2

1

6D2
16pa2

R S j2
1

6D ,

~36b!

B2'
p2

20a
~60j2220j13!2

32p

315R
, ~36c!

B3'
p2

4032a3
~5880j326300j212226j2257!.

~36d!

The formulas for the first three coefficients with half integ
indices may be found from the general expression~35!. Here
we have listed them with their expansions for large value
R,

B1/2524p3/2r 2524p3/2~R21a2!,

B3/2'2
p3/2

3
2

p3/2a2~8j21!

60R2
,

B5/2'2
p3/2

60R2
.

Let us now proceed to the renormalization and calculat
of the zero point energy. As noted in Sec. III@see Eq.~12!#
we have to subtract all terms which will survive in the lim
m→`. According to the general asymptotic structure of t
zeta function given by Eq.~26!, in this limit the first five
terms survive, namely the HKC up toB2. Because the zero
point energy is proportional to the zeta function we m
speak about renormalization of the zeta function. Accord
to Eq. ~12! we take the asymptotic expansion for the ze
function up ton23 @in the limit m→` these terms give the
asymptotic~over m) expansion~26! up to the heat kerne
coefficientB2] and subtract its expansion overm up to B2
from it. After taking the limit s→0 we observe that this
difference will giveEas

f in ~12c!. First of all we consider this
part and later we will simplify the finite part~12b!.

We should like to make a comment. In the problem und
consideration we have two different scales:R and a which
give us two dimensionless parametersmR and ma. To ex-
tract terms for renormalization we turn mass to infini
which means the Compone wavelength of a scalar bo
turns to zero and becomes smaller than all scales of
model. In other words, it means that we turn to infinity bo
parametersmR andma. After renormalization we will turn
mR to infinity separately in order to obtain the part whic
does not depend on the boundary.

Let us consider separately two parts of the asympto
expansion of the zeta function according to the odd and e
powers ofn. First of all we consider the odd part whic
gives the HKC with integer indices. All singularities are co
tained in the first three terms in Eq.~26! with B0 ,B1 ,B2.
After subtracting these singularities,s→0 and we obtain
some infinite power series over parametersmr and ma.
Next, we have to integrate overr and mR→`. For this
0-11
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reason we have to obtain some expression instead of a s
to take this limit easily. It is impossible to take this lim
directly in a series. We will use the Abel-Plana formula
extract the main contribution from a series in this limit. T
rest will be a good expression for numerical calculatio
Moreover, from this remaining part we will extract term
which will be divergent in the limitma→0 to analyze our
formulas.

Our starting formula for the odd part of the zeta functi
is Eq. ~27! which, cut up top52, is

zas,2
oddS s2

1

2D5
m2s

GS s2
1

2D E2R

1R

dr(
l 50

`

(
p50

2

(
k50

2p

a2p21,k

3r 2s23
G~s1p1k21!

GS p1k1
1

2D
n2k11

~n21m2r 2!s1p1k21
.

~37!

Expanding the denominator with the help of the formula

~11x2!2s5 (
n50

`
~21!n

n!

G~n1s!

G~s!
x2n,

we represent Eq.~37! in the following forms:

zas,2
oddS s2

1

2D5
1

~4p!3/2

1

GS s2
1

2D
3E

2R

1R

drm2s(
n50

`

(
p50

2

m2nf n,p~s!, ~38!

where

f n,p~s!58p3/2
~21!n

n!
r 2n23(

k50

2p

a2p21,k

3
G~n1p1k1s21!

GS p1k1
1

2D zHS 2n12p12s23,
1

2D .

In order to make formulas more readable we make eve
thing dimensionless but save the same notations. At any
ment we may repair dimensional parameters by changinR
→mR ana→ma. In this case we rewrite the expression f
the zeta function~37! in the following form:

zas,2
oddS s2

1

2D5
m

~4p!3/2

m2s

GS s2
1

2D E2R

1R

dr (
n50

`

(
p50

2

f n,p~s!.

~39!

From this expression we observe that forp50 the first
three terms are divergent withn50,1,2; for p51 the first
12402
ries

.

y-
o-

two terms withn50,1 and at last forp52 the only term is
divergent withn50. We recall that

G~s2n!s→05
~21!n

n! S 1

s
1C~n11! D1O~s!,

zH~s11,q!s→05
1

s
2C~q!1O~s!.

For this reason we represent the zeta function~37! in the
following form ~for s→0):

zas,2
oddS s2

1

2D5
m

~4p!3/2

1

GS s2
1

2D
3E

2R

1R

drH r 2s(
n50

2

f n,0~s!1 (
n53

`

f n,0~0!J
~40a!

1
m

~4p!3/2

1

GS s2
1

2D
3E

2R

1R

drH r 2s(
n50

1

f n,1~s!1 (
n52

`

f n,1~0!J ~40b!

1
m

~4p!3/2

1

GS s2
1

2D
3E

2R

1R

drH r 2sf 0,2~s!1 (
n51

`

f n,2~0!J ~40c!

and we will analyze each part separately.
To illustrate the calculations we consider in details t

first part~40a!. First of all it is not difficult to find the mani-
fest form of a singular part in the limits→0:

(
n50

2

f n,0~s!54pr 2G~s22!1
p

3
G~s21!1

7p

120r 2
G~s!

1pr 2@2314g18 ln ~2!#1
p

3
@112 ln~2!

124zR8 ~21!#2
p

120r 2
@2712 ln~2!

21680zR8 ~23!#.

We observe that this term gives a contribution toB0 , B1 ,
andB2 according to the gamma functions. For renormaliz
tion we have to subtract from this expression the first th
terms according to our scheme.

There is one important moment which is crucial for o
analysis. The above formula contains all terms which surv
0-12
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in the limit s→0 for an arbitrary mass of field. For reno
malization we have to subtract asymptotic expansion in
form ~26!. There is a difference in factorr 2s. For this reason
after the renormalization factor

~r 2s21!S 4pr 2G~s22!1
p

3
G~s21!1

7p

120r 2
G~s!D

s→0

5F2pr 22
p

3
1

7p

120r 2G ln r 2

appears. If we take into account all terms in Eq.~40! we
obtain the following contribution:

ln~r 2!S 1

2
B̄02B̄11B̄2D . ~41!

Exactly the same structure was observed before in R
@17,8#. This term defines the behavior of energy for a sm
wormhole because it is maximally divergent for a sm
wormhole.

Therefore the renormalized contribution is

(
n50

2

f n,0
ren~s!5F2pr 22

p

3
1

7p

120r 2G ln r 21pr 2@2314g

18 ln~2!#1
p

3
@112 ln~2!124zR8 ~21!#

2
p

120r 2
@2712 ln~2!21680zR8 ~23!#.

We represent the finite part in the following form:

(
n53

`

f n,0~0!5
8p

r 2 (
l 50

`

n3H lnS 11
r 2

n2D 2
r 2

n2
1

1

2

r 4

n4

1
r 2

n2 F lnS 11
r 2

n2D 2
r 2

n2G J
by using a standard series representation for the Hurwitz
function. To find a more suitable form for these series we
the Abel-Plana formula and obtain

(
l 50

`

n2F lnS 11
r 2

n2D 2
r 2

n2G
52

1

2
r 2 ln~r 2!2r 2F2 ln~2!1g2

1

2G
12E

0

` dnn

e2pn11
lnU12

r 2

n2U ,

12402
e
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(
l 50

`

n3F lnS 11
r 2

n2D 2
r 2

n2
1

1

2

r 4

n4G
5

1

4
r 4 ln~r 2!2

1

24
r 21r 4F2 ln~2!1g2

1

8G
22E

0

` dnn3

e2pn11
lnU12

r 2

n2U .
Taking into account these formulas we have

(
n50

2

f n,0~0!1 (
n53

`

f n,0
ren~0!

516pE
0

` dnn3

e2pn11
H lnU12

n2

r 2U1
n2

r 2
2

n2

r 2
lnU12

n2

r 2UJ .

We now integrate this formula overr from 2R to 1R
according to Eq.~40a! and take the limitR→`. After this
we arrive at the expression

~40a!2
m

16p2
f a52

m

16p2
$ f a

sing1va%,

where

f a
sing5

7p2

60a
ln~a!1

p2

a S 7

120
1

1

10
ln~2!114zR8 ~23! D .

The manifest form of the regular contribution is written o
in the Appendix@see Eq.~A3!#. We extracted all terms with
a logarithm and that which is singular fora→0 and collected
them in f a

sing . The remaining part,va , is a regular contri-
bution.

Using the same procedure for the second and third p
we obtain the following expressions:

~40b!52
m

16p2
f b52

m

16p2
$ f b

sing1vb%,

where

f b
sing5p2F216aS j2

1

6D1
1

a S 2

3
j2

1

6D G ln~a!

1
1

a F2
1

3
@1124zR8 ~21!#j1

1

9
@1118zR8 ~21!#G .

~40c!52
m

16p2
f c52

m

16p2
$ f c

sing1vc%,

where
0-13



NAIL R. KHUSNUTDINOV PHYSICAL REVIEW D 67, 124020 ~2003!
FIG. 2. The plot of the summary contributions:f 5 f a1 f b1 f c and vs5va1vb1vc for j5
1
6 : ~a! summary contributionf and ~b!

regular partvs .
2 2

tri

a

s

y

f c
sing5

p

a F6j22
8

3
j1

7

20G ln~a!1
p

a F1

2
~27112g

136 ln 2!j21
1

6
~15216g248 ln 2!j

1
1

360
~21431126g1378 ln 2!G .

The manifest form of the regular contributionsvb andvc are
out in the Appendix@Eq. ~A3!#.

Putting together all the contributions in Eq.~40! we obtain

zodd
ren52

m

16p2 S ln~a2!p2H 1

a F3j222j1
3

20G
18aS j2

1

6D J 1v D ,

where

v5va1vb1vc1
p2

a F1

2
~27112g136 ln 2!j2

2
1

6
~213148zR8 ~21!116g148 ln 2!1

1

180

3~2411360zR8 ~21!12520zR8 ~23!163g

1207 ln 2!G .
In Fig. 2 we reproduce a plot of the sum of all three con
butions: f 5 f a1 f b1 f c , vs5va1vb1vc for j5 1

6 .
Let us now proceed to the contribution from an even p

of the zeta function. We start from Eq.~32! and do not take
the limit of great mass. Integrating overk we obtain the
following expression for this even part:
12402
-

rt

zas
evenS s2

1

2D5
m2s

GS s2
1

2D (
l 50

`

(
p50

1

(
k50

2p

a2p,kr
2s23

3

GS s1p1k2
1

2D
G~p1k11!

n2k11

~n21m2r 2!s1p1k21/2
.

~42!

Herer is taken at the pointR. Now we pass to dimensionles
variables~with the same notations! and have

zas
evenS s2

1

2D5
m

~4p!3/2GS s2
1

2D (
p50

1

(
k50

2p

a2p,k

3
~4p!3/2

r 3

GS s1p1k2
1

2D
G~p1k11!

fp,k , ~43!

where

fp,k5(
l 50

`
n2k11

~n21m2r 2!s1p1k2 1/2
.

Analytical continuations→0 in this series may be easil
done by using the Abel-Plana formula:

f0,052
1

3
r 31

1

24
r 22r E

r

`

dnnEx~n!

2
2

r
E

0

r n3dn

A12
n2

r 2

Ex~n!,
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f1,052r 1
2

r E0

r

dnn@3Ex~n!

1nEx8~n!#A12
n2

r 2
,

f1,1522r 1
2

r E0

r

dnn@6Ex~n!16nEx8~n!

1n2Ex9~n!#A12
n2

r 2
,

f1,252
5

3
r 1

2

r E0

r

dnnF8Ex~n!112nEx8~n!

14n2Ex9~n!1
1

3
n3Ex-~n!GA12

n2

r 2
,

where

Ex~n!5
1

e2pn11
.

Now we substitute these formulas in Eq.~43! and take the
limit R→`. In this limit all integrals in expressions forfp,k
are smaller than the 1/r . Taking into account thata0,0;r and
a1,k;r 2 we obtain in this limit~we repair dimensional vari
ables!

zas
evenS s2

1

2D5
m

~4p!3/2GS s2
1

2D H m3B1/2GS s2
3

2D

1mB3/2GS s2
1

2D1OS 1

R1aD J .

Therefore after renormalization~subtracting these two
terms! we take the limitR→` and obtain zero contribution
from this even part

z ren
evenS s2

1

2D50.

Thus there is the only contribution from the odd pa
Collecting all terms together we arrive at the following e
pression for zero point energy:

Eren52
m

32p2 S ln~ma!2p2H 1

maF3j22j1
3

20G
18maS j2

1

6D J 1V D , ~44!

where

V5v132p(
l 50

`

n2E
1/n

`

dyS y22
1

n2D 1/2
]

]y
$S1~1mR!

1S2~2mR!2@S1~1mR!1S2~2mR!#3
uni.exp.%R→` ,

~45!
12402
.

andk5my.
The main problem now is the calculation of the last te

in the expression forV. Let us simplify the expression an
show that in the limitR→` the divergent parts are can
celled. Indeed, let us consider the first five terms of unifo
expansion

@S1~R!1S2~2R!#3
uni.exp.

5 (
n50

2

n122nE
2kR

1kR

Ṡ2n21
1 dx1 (

n50

1

n22nE2n .

It is very easy to take the limit in the part with an even pow
of n by using the manifest form ofE2n listed in the Appen-
dix. The only term which gives the nonzero contribution
E0,

E0uR→`522 ln~kR!1 ln~ka!1O~R22!,

E2uR→`5O~R22!.

The part with an odd power ofn in the uniform expansion
brings the single linear onR divergent contribution coming
from Ṡ21

1 :

2~kR!n.

Therefore in the limitR→` the uniform expansion gives th
following divergent contribution:

2~kR!n22 ln~kR!1 ln~ka!.

Because later we have to take the derivative with respectk
we may rewrite this expression in the following way:

2~kR!n2 ln~ka!.

To take the limit of a large box inS1(1R)1S2(2R) let
us reduce the radial equation to a standard form of the s
tering problem by changing the form of the radial functio
f→c/r (r). In this case the equation reads

F2
d2

dr2
1

l ~ l 11!

r21a2
1

a2~122j!

~r21a2!2 Gc5l2c. ~46!

This equation looks similar to the equation of a scatter
problem in one dimension@do not forget thatrP(2`,
1`)] with a non-singular symmetric potential

Vl~r,a!5
l ~ l 11!

r21a2
1

a2~122j!

~r21a2!2
. ~47!

From a standard theory of one-dimensional scattering
know that there are two independent solutions which h
the following properties@as opposite to traditional notation
f(x) we use the solutionsf(2x) to make coincidence with
the functions we use#

f1~r!'H s11~l!e2 ilr, r→1`,

e2 ilr1s12~l!eilr, r→2`,
0-15
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f2~r!'H s21~l!e2 ilr1eilr, r→1`,

s22~l!eilr, r→2`,

wheresaa(l) constitute thes matrix of the scattering prob
lem. Due to the symmetry of the potential the components
the matrix obey the relations225s11.

Now we change energy to an imaginary axis:l→ ikn and
obtain

f1~1R!f2~2R!R→`5s11
2 ~ ikn!e2knR.

Therefore

@S1~1R!1S2~2R!#R→`5 ln@f1~1R!f2~2R!#R→`

5 ln@s11
2 ~ ikn!#12kRn,

and the divergent parts in Eq.~45! are cancelled. Thus we
arrive at the following expression forV:

V5v132p(
l 50

`

n2E1
n

`

dyS y22
1

n2D 1/2
]

]y H ln@ys11
2 ~ iynm!#

2 (
n50

2

n122nE
2`

1`

@Ṡ2n21
1 2d0,n#dxJ . ~48!

Thus we express the finite part of the zero point energ
terms of thes matrix of the scattering problem, namely
terms of the transmission coefficient of the barrier in
imaginary axis. A similar relation was found by Bordag
Ref. @13#. The potentialVl(r,a) of the scattering problem
has the following properties:

Vl~0,a!5
l ~ l 11!1122j

a2

2the height of the barrier,

E
2`

1`

Vl~r,a!dr5
p@2l ~ l 11!1122j#

2a

2the work against the potential barrier.

~49!

Therefore the zero point energy has the form~44!, where
the functionV is given by expression~48!. We note that
according to@17,8# the factor before the logarithm term i
Eq. ~44! is (B22B1)R→` . The origin of this structure ha
been already noted in Eq.~41!.

Now we analyze qualitatively without exact numeric
calculations the behavior of energy for the small and la
radii of the throat. According to Eqs.~14! and ~13! the zero
point energy in 311 dimensions has the following behavio
for small and large values of the throat:

Eren'2
B2ln~am!2

32p2
, a→0,
12402
f

n

e

Eren'2
B3

32p2m2
, a→`,

or in manifest form

Eren'2
m

32

ln~ma!2

ma F3j22j1
3

20G , a→0, ~50!

Eren'2
m

32

1

~ma!3

1

4032

3@5880j326300j212226j2257#, a→`.

~51!

It is easy to verify that the coefficient after the logarithm
Eq. ~50!, which is the contribution fromB2 in the limit R
→`, is never to be zero or negative. It is always positiv
For this reason the zero point energy is positive for a sm
radius of the throat for an arbitrary constant of the nonc
formal couplingj. In the domain of the large radius of th
throat the expression in the square brackets in Eq.~51!,
which is the contribution fromB3 in the limit R→`, may
change its sign. It is positive forj.0.266~energy negative!
and negative~energy positive! in the opposite case. There
fore we conclude that there is a minimum of ground st
energy if constantj.0.266. The situation is opposite tha
which appeared in our last paper@8#, where the energy for a
large value of the throat~which was defined byB5/2) was
always positive, but for a small radius of the throat it cou
change its sign.

Let us now consider the semiclassical Einstein equatio

Gmn5
8pG

c4
^Tmn&

ren, ~52!

whereGmn is the Einstein tensor, and̂Tmn& is the renormal-
ized vacuum expectation values of the stress-energy tens
the scalar field. The total energy in a static space-time
given by

E5E
V
« Ag(3)d3x,

where«52^Tt
t& ren52Gt

tc4/8pG is the energy density, and
the integral is calculated over the whole space. In the sph
cally symmetric metric~1! we obtain

E52
c4

2GE
2`

`

Gt
tr 2~r!dr52

c4pa

2G
. ~53!

The zero point energy has the following form:

Eren52
\c

a
f ~ma,j!. ~54!

In the self-consistent case the total energy must coinc
with the ground state energy of the scalar field. Equat
Eqs.~54! and ~53! gives

c4a

2G
5

\c

a
f ~ma,j!,
0-16
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or

a5 l PA2 f ~ma,j!.

Considering this equation at the minimum of the zero po
energy we obtain some value of the wormhole’s radius. T
concrete value of the radius may be found from an ex
numerical calculation of the zero point energy as a funct
of ma. But without this calculation we conclude that th
wormholes with the throat’s profile~2! may exist for j
.0.266.

VII. THE MODEL OF THE THROAT:
r „r…Är coth „rÕt…Àt ¿a

We will not reproduce here the density for heat kern
coefficients in manifest form due to their complexity. Th
may be found from general formulas~34!. There are two
parameters in this modela and a5t/a. The dimensional
parametera characterizes this kind of wormhole as a who
A small value of this parameter indicates the small size o
wormhole. The dimensionless parametera characterizes the
form of wormhole—its ratio of the length and the radius
the throat. By changing the integration variabler5xa we
observe that coefficientsB2 andB3 have the following struc-
ture which is clear from dimensional consideration:

B25E
2`

1`

drB̄25
1

a
@b2,2j

21b2,1j1b2,0#,

B35E
2`

1`

drB̄35
1

a3
@b3,3j

31b3,2j
21b3,1j1b3,0#,

where bk,l depend on thea5t/a only. We note thatb2,2
.0 as it is seen from Eq.~34c!. Therefore we may analyz
the zero point energy for different values of the parametera.
From the general point of view we have the following b
havior of the zero point energy for the small size of wor
hole that is for the small value ofa→0:

Eren'2
ln~ma!2

32p2
B252

ln~ma!2

32p2a
@b2,2j

21b2,1j1b2,0#.

~55!
Using the general expression for coefficientB2 it is pos-

sible to find in manifest form the polynomial inj in Eq. ~55!
for a great value ofa→` ~a small radius of the wormhole
throat compared with its length!:

Eren'2
A3a ln~ma!2

240a
@30j2210j11#, ~56!

and for small value ofa→0 ~a small length of the wormhole
throat compared with its radius!:

Eren'2
~152p2!ln~ma!2

1350paa
@240j2280j17#. ~57!

The numerical calculations of the discriminantD5b2,1
2

24b2,2b2,0 of the polynomial inj as a function ofa is
12402
t
e
ct
n

l

.
a

-

shown in Fig. 3. From this figure and Eqs.~56! and~57! we
conclude that the discriminant is always negative for ar
trary values ofa. It means that the zero point energy
always positive for a small wormhole for an arbitrary co
stant of the nonminimal couplingj and an arbitrary ratio of
the length of throat and its radius.

The behavior of zero point energy for a large size of t
wormhole (a→`) has the following form:

Eren'2
B3

32p2m2

52
1

32p2m2a3
@b3,3j

31b3,2j
21b3,1j1b3,0#.

~58!

The zero point energy will get a minimum for some value
a if the above expression will be negative. Let us consid
the polynomial

P5b3,3j
31b3,2j

21b3,1j1b3,0 ~59!

for different values ofa starting from a small value of it. The
zero point energy will get a minimum if this polynomial i
positive. In the limita→0 we have, approximately,

a3P'
512p~4524p2!

135
aj32S 256p~2122p2!

189

1
256p~4524p2!

135
a D j21S 512p~2122p2!

945

1
224p~4524p2!

675
a D j2

368p~2122p2!

6615

1
44p~4524p2!

2025
a.

FIG. 3. The discriminantD5b2,1
2 24b2,2b2,0 of the polynomial

in j as function ofa. It is always negative for all values ofa. It
means that the zero point energy is always positive for a small v
of the radius of the throat.
0-17
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In this expression we saved terms up toa23. This polyno-
mial in the limita→0 has two complex roots and one is re

j'
5~2122p2!

14~4524p2!

1

a
.

Because the coefficient withj3 is positive the polynomials
will be positive for all

j.
5~2122p2!

14~4524p2!

1

a
.

Therefore, for small values ofa5t/a we have alow bound-
ary for parameterj where the wormhole may exist@see Fig.
4~I!#. The greatera the smaller the low boundary ofj. For
a.1.136 the conformal connectionj51/6 will be greater
than the low boundary. At the pointa51.26 two domains
appear where the polynomial is positive. The first domain
0.188,j,0.841 and the second isj.0.841 @see Fig. 4~II !
for a.1.26]. The low boundary of the second domain w
increase for greatera and it disappears fora51.65. At this
point the coefficientsb3,350 and the polynomial turns out t
be a parabola@see Fig. 4~III !# with a positive part in the
domain: 20.088,j,0.358. For greatera we obtain the
upper boundary ofj where the polynomial is positive be
cause the coefficient withj3 is negative. Starting froma
51.65 we have two domains where the polynomial is po
tive @see Fig. 4~IV !#. First one closes to20.088,j,0.358
and another one is smaller than some negative value oj.
For a52.08 the high boundary of the second domain w
coincide with the low boundary of the first domain and w
get the only domain where the polynomial is positivej
,0.309. For a greater value ofa this high boundary ofj
tends to be constant@see Fig. 4~V!#. Indeed, in the limita
→` we have

P'p2Aa

3F25j31
5

2
j22

1

2
j1

1

21G ~60!

and it is positive for allj,0.254. We would like to note tha
for a.1.136 the polynomial is positive forj51/6.

Let us consider now what condition gives the Einstei
equations. The energy corresponding for this configuratio

FIG. 4. The plots of the polynomialPa3 for different values of
the ratioa5t/a.
12402
,

s

i-

l

is

E52
c4

2GE
2`

`

Gt
tr 2~r!dr52

2c4

G F12
152p2

18
aGa.

~61!

Equating this energy with zero point energy

Eren52
\c

a
f ~am,a,j!,

we obtain the relation

F12
152p2

18
aGa25 l P

2 f ~am,a,j!.

To find parameters of stable wormholes of this kind we ha
to consider this equation at the minimum of the functi
f (am,a,j). Because the functionf (am,a,j) at the mini-
mum is positive, we conclude that the stable wormhole m
exist for a,18/(152p2)53.5. Fora53.5 the polynomial
is equal to zero forj50.278. Therefore the stable worm
holes with this profile of the throat may exist only fort/a
,3.5. This upper boundary depends on the model of
throat. For example, the wormhole with the profile of t
throat,

r ~r!5r tan
r

t
1a,

gives another boundary, namely,t/a,36/(p226)59.3.
Specific values oft,a and a region ofj may be found by
numerical calculation of the functionf (am,a,j).

VIII. CONCLUSION

In the paper we analyzed the possibility of the existen
of the semiclassical wormholes with the metric~1! and the
throat’s profile given by Eqs.~2!,~3!. Our approach consist
of considering two heat kernel coefficientsB2 and B3. We
developed a method for the calculation of the heat ker
coefficient and obtained a general expression for an arbit
coefficient in the background~1!. The first seven coefficients
in manifest form for an arbitrary profile of the throat a
given by Eqs.~34! and~35!. The sufficient condition for the
existence of a wormhole is positivity of bothB2 and B3.
Some additional conditions may follow from thet2t com-
ponent of the Einstein’s equations.

The common property of both models is that the ze
point energy for a small size of wormhole is always positi
for arbitrary constantj. This statement is opposite that ob
tained for the zero length throat model in Ref.@8#. The be-
havior of the zero point energy for a large wormhole cr
cially depends on the nonminimal couplingj and parameters
of the model. We show that the wormholes with the fi
profile of the throat may be a self-consistent solution
semiclassical Einstein’s equations if the constant of nonm
mal connectionj.0.266. This type of wormhole is charac
terized by the only parametera, which is the radius of the
wormhole’s throat. The space outside of the throat poly
mially tends to be Minkowkian and there is no way to defi
the length of the throat. We would like to note that the min
0-18
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mal connectionj50 and the conformal connectionj51/6
do not obey this condition.

The second model of the wormhole’s throat~3! is charac-
terized by two parameterst anda. The latter is the radius o
the wormhole’s throat and the first is the length of the thro
It is possible to introduce the length of the throat because
space outside the throat becomes Minkowskian expon
tially fast. A suitable illustration for this statement is Fi
1~III !. The existence of this kind of wormhole crucially d
pends on the parameterj and the ratio of the length and th
radius of the throat:a5t/a. The general condition fora
follows from Einstein’s equations, namelya,3.5. The
wormhole with a very small parametera may be self-
consistent, considered by a scalar massive field with a la
value ofj;1/a. The scalar field with conformal connectio
j51/6 may self-consistently describe wormholes witht/a
P(1.136,3.5). Forj50 we obtain another intervalt/a
P(1.473,3.5).

We would like to note that in the limit of zero length o
the throata5t/a→0 there is no connection with the resul
of our last paper@8#, where we considered a wormhole wi
zero length of throat. The point is that the model conside
in that paper was singular at the beginning. The scalar
vature was singular at the throat and there was a sing
surface with codimension one. For this case in Ref.@15# the
general formulas for heat kernel coefficients were obtai
which cannot be found to be a limited case of expression
the smooth background@11#. The reason for this lies in the
following. The heat kernel coefficients are defined as an
pansion of the heat kernel over some dimension param
which must be smaller than the characteristic scale of
background. For a smooth background we may make
ratio small by taking the appropriate value of the expans
t

e
lu
si-
er
-

da

12402
t.
e

n-

ge

d
r-
ar

d
r

x-
ter
e
is
n

parameter, but a singular background has at the begin
the zero value of the background’s scale. This leads to a
form of heat kernel coefficients. Furthermore, in the limit
large boxR→` in this background the coefficientB5/2 sur-
vives and it defines the behavior of energy for large wor
hole.

Another interesting achievement of the paper is devel
ing the zeta-function approach@13#. The radial equation in
this background~15! cannot be solved in close form even fo
the simple profile of the throat~2!. We obtain the genera
formula for the asymptotic expansion of solutions~24!, using
which we found the heat kernel coefficients~34!, ~35! in
general form. After renormalization the zero point ener
may be expressed in terms of theS matrix of the scattering
problem~44!, ~48!. More precisely, we need only the tran
mission coefficients11 of the barrier~47!, ~49!. The point is
that the radial equation for the massive scalar field in
background~1! looks like a one-dimensional Schro¨dinger
equation~46! for a particle with potential~47!. This potential
depends on both the orbital momentuml of a particle and a
nonminimal coupling constantj, as well as on the radius o
the throata of the wormhole.

In the first model the domain ofj for which the energy
may possess a minimum is limited from below. The reas
for this is connected with the fact that the effective mass

me f f
2 5m21jR5m22

2ja2

~r21a2!2

may change its sign for somej limited from below. The
same situation occurs in the short-throat flat-space wormh
@8# where the scalar curvature is negative, too. This is not
case for the second model. The scalar curvature in this m
R52
6y214a25a21@4y21a~2415a!#cosh~2y/a!22y~2215a!sinh~2y/a!

t2 sinh4~y/a!@12a1y coth~y/a!#2
ex-
irst
n-
may change its sign, depending on the parameters of
model. For smalla it is negative but starting froma54/3
the domain aroundy50 appears, where the curvature b
comes positive. This domain becomes larger for larger va
of a and for a great enough the curvature is, in fact, po
tive. It is in qualitative agreement with the above consid
ation. Indeed for small values ofa ~negative scalar curva
ture! we obtained alow boundary forj and vice versa for
large values ofa ~positive scalar curvature! we obtained an
upperboundary forj.
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APPENDIX

In this appendix we reproduce in manifest form some
pressions which are rather long to reproduce in the text. F
of all let us consider the first five terms of uniform expa
sion:

S1~x!1S2~2x!5 ln~ak!2
1

2
ln~Ṡ21

2 r k
4!

1 (
k50

`

n122kE
2x

1x

Ṡ2k21
1 dx

2 lnH 11 (
k51

`

n22k
Ṡ2k21

1

Ṡ21
1 J

5 (
k50

`

n122kE
2x

1x

Ṡ2k21
1 dx1 (

k50

`

n22kE2k .
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The coefficients with odd powers ofn read~we give the integrands only!

@n1#:Ṡ21
1 5A11

1

r k
2
,

@n21#:Ṡ1
152

j~211r k8
212r kr k9!

r kA11r k
2

1
~211r k8

2!12r kr k912r k
2~2113r k8

2!16r k
3r k92r k

414r k
5r k9

8r k~11r k
2!5/2

,

@n23#:Ṡ3
152

j2~211r k8
212r kr k9!2

2r k~11r k
2!3/2

2
j

8r k~11r k
2!7/2

$2~211r k8
2!214r k~11r k8

2!r k922r k
2~128r k8

217r k8
422r k9

228r k8r k
(3)!

12r k
3@~7231r k8

2!r k912r k
(4)#1r k

4~21211r k8
2112r k8

424r k9
2112r k8r k

(3)!12r k
5@~528r k8

2!r k914r k
(4)#24r k

6~2r k9
2

1r k8r k
(3)!14r k

7r k
(4)%1

1

128r k~11r k
2!11/2

$2~211r k8
2!214r k~113r k8

2!r k914r k
2~2118r k8

219r k8
413r k9

218r k8r k
(3)!

14r k
3@~7143r k8

2!r k912r k
(4)#12r k

4~23117r k8
22294r k8

4140r k9
2188r k8r k

(3)!

1r k
5@4~152136r k8

2!r k9140r k
(4)#14r k

6~2125r k8
21120r k8

4123r k9
2156r k8r k

(3)!14r k
7@~132168r k8

2!r k9118r k
(4)#

2r k
8~1124r k8

218r k9
2248r k8r k

(3)!18r k
9@2~112r k8

2!r k917r k
(4)#232r k

10~r k9
21r k8r k

(3)!116r k
11r k

(4)%, ~A1a!

and the coefficients with even powers ofn are

@n0#:E05 ln~ak!2
1

2
ln~Ṡ21

2 r k
4!,

@n22#:E252
Ṡ1

1

Ṡ21
1

. ~A1b!

The functionssp are defined by the relation

]

]k
@S1~x!1S2~2x!#5

]

]k H (
p50

`

n122pE
2kR

1kR

Ṡ2p21
1 ~x!dx1 (

k50

`

n22kE2kJ
5 (

p50

`

n122pE
2R

1R

s2p21~kr!dr1 (
p50

`

n22ps2p .

Here is a list of the first four functionssp with odd indices@herer 5r (r) andz511k2r 2(r)]

s215rz21/2,

s15z23/2r Fj~211r 8212rr 9!1
1

8
$124rr 9%G1z25/2

3r

4
@23r 821rr 9#1z27/2F25

8
rr 82G ,

s35z25/2
3r

2 Fj2~211r 8212rr 9!21j
1

4
$~211r 82!~1112r 82!22r ~2518r 82!r 924r 2~2r 921r 8r (3)!14r 3r (4)%

1
1

64
$1124r 82216r ~112r 82!r 9132r 2~r 921r 8r (3)!216r 3r (4)%G1z27/2

5r

4 Fj$219~211r 82!r 82

23r ~115r 82!r 912r 2~3r 9215r 8r (3)!%1
1

8
$2r 82~191120r 82!1r ~31200r 82!r 922r 2~15r 92122r 8r (3)!12r 3r (4)%G
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1z29/2
175r

8 Fjr 82~211r 8212rr 9!1
1

200
$1014r 84138r 2r 921r 82~252832rr 9!156r 2r 8r (3)%G

1z211/2F1989rr 82

32
~23r 821rr 9!G1z213/2F12155rr 84

128 G ,
s55z27/2

5r

2 Fj3~211r 8212rr 9!31
j2

8
$~211r 82!2~31112r 82!112r ~211r 8!~11r 8!~415r 82!r 924r 2~227r 92

148r 82r 92226r 8r (3)126r 83r (3)!124r 3~22r 9322r 8r 9r (3)2r (4)1r 82r (4)!18r 4~5r (3) 216r 9r (4)!%1
j

64
$~211r 82!

3~31224r 821960r 84!22r ~2392860r 8211424r 84!r 918r 2~254r 921186r 82r 92269r 8r (3)180r 83r (3)!

18r 3~12r 93132r 8r 9r (3)111r (4)!216r 4~11r (3) 2115r 9r (4)13r 8r (5)!116r 5r (6)%1
1

512
$11112r 821960r 8424r ~9

1424r 821192r 84!r 9116r 2~21r 921106r 82r 92128r 8r (3)148r 83r (3)!264r 3~7r 93127r 8r 9r (3)1r (4)16r 82r (4)!

132r 4~9r (3) 2113r 9r (4)14r 8r (5)!232r 5r (6)%G1z29/2
7r

8 F5j2~211r 8212rr 9![ 229r 841r 82~29215rr 9!

13rr 9~2112rr 9!120r 2r 8r (3)] 1
j

4
$2~211r 82!r 82~14512628r 82!1r ~21522839r 8212592r 84!r 912r 2~128r 92

1643r 82r 921191r 8r (3)1284r 83r (3)!22r 3~150r 931638r 8r 9r (3)15r (4)1165r 82r (4)!18r 4~7r (3) 2112r 9r (4)

17r 8r (5)!%1
1

64
$2r 82~14515256r 82120160r 84!13r ~511776r 82117952r 84!r 924r 2~113r 9218440r 82r 92

1166r 8r (3)13864r 83r (3)!14r 3~676r 9312816r 8r 9r (3)15r (4)1756r 82r (4)!28r 4~58r (3) 2193r 9r (4)146r 8r (5)!

18r 5r (6)%G1z211/2
9r

16F175r 82j2~211r 8212rr 9!21
j

4
$~211r 82!r 82~175115054r 82!12rr 82~441311976r 82!r 9

214r 2~19r 921813r 82r 92128r 8r (3)1414r 83r (3)!14r 3~133r 931638r 8r 9r (3)1221r 82r (4)!%1
1

64
$r 82~175130108r 82

1393408r 84!28rr 82~2119188298r 82!r 914r 2~133r 92165998r 82r 921196r 8r (3)131264r 83r (3)!216r 3~628r 93

12729r 8r 9r (3)1791r 82r (4)!18r 4~69r (3) 21110r 9r (4)154r 8r (5)!%G1z213/2
11r

32 F221jr 82$237~211r 82!r 82

29r ~115r 82!r 912r 2~9r 9215r 8r (3)!%1
1

8
$2r 84~81771332178r 82!1rr 82~19891396718r 82!r 924r 2r 82~21015r 92

110168r 8r (3)!12r 3~631r 9312782r 8r 9r (3)1815r 82r (4)!%G1z215/2
13rr 82

128 F12155jr 82~211r 8212rr 9!

1
1

8
$r 82~1215512052348r 82!21484372rr 82r 914r 2~34503r 92116880r 8r (3)!%G1z217/2F3727125rr 84

512
~23r 821rr 9!G

1z219/2F7040125rr 86

1024 G , ~A2a!

and here is a list of the first three functionssp with even indices@r 5r (R) andz511k2r 2(R)]

s052r 2z21,

s252z222r 2F1

8
~124rr 9!1j~211r 8212rr 9!G2z23r 2@23r 821rr 9#2z24F15r 2r 82

4 G ,
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s452z23r 2F4j2~211r 8212rr 9!21j$~211r 82!~116r 82!22r ~2415r 82!r 922r 2~4r 921r 8r (3)!12r 3r (4)%

1
1

16
$1112r 8224r ~314r 82!r 918r 2~3r 9212r 8r (3)!28r 3r (4)%G2z243r 2Fj@211~211r 82!r 8222r ~115r 82!r 9

1r 2~4r 9215r 8r (3)!#1
1

8
$2~114r 82!~21115r 82!12r ~1153r 82!r 91r 2~217r 92222r 8r (3)!1r 3r (4)%G

2z25r 2F30jr 82~211r 8212rr 9!1
1

4
$3r 82~51172r 82!2432rr 82r 914r 2~5r 9217r 8r (3)!%G

2z26F565r 2r 82

8
~23r 821rr 9!G2z27F1695r 2r 84

16 G . ~A2b!

Here are the functionsva , vb andvc with definitions of the corresponding integrals:

va5p2F2
2

3
a132a3E

0

1 dnn

e2pna11
S A12n21n2lnF n

11A12n2G D G ,

vb52
5

3
p4a21ap2F216~g12 ln 2!j1

4

3
~312g!G28p2a ln~2a!@12tanh~pa!#~122j!232p2ajV1

1
4

3
p2a@V116V224paV312paV425p2a2V5#,

vc5U11U21U31U41U51U6 . ~A3!
Here we introduced five functions forvb

V15
pa

2 E
0

1 ln~2an!

cosh2~pan!
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1 ndn

e2pan11
F lnS n

11A12n2D 1
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11A12n2G ,
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@nA12n22arccosn#,

and six forvc
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229p4
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0

1

f 1~an!arccosndn,
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U25paE
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U35paE
1

`

f 5~an!
dn
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1
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U55
p2

8 E
1

` f 6~n211!dn

n4 cosh2~pan!

1
3p2
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0

1 f 6dn

cosh2~pan!
F lnS n

11A12n2D
1
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1

1
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~11A12n2!2G ,

where

f 1~n!5
4p
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@14595P2~n!243638P3~n!147736P4~n!

217680P5~n!#,

f 3~n!5
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5948p
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f 6~n!532pj22
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P2~n!5
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2
Sc~n!,

P3~n!5p2FSc~n!1
1

8
nSc8~n!G ,
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2
Sc~n!1
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1
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