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Semiclassical wormholes

Nail R. Khusnutdinot
Department of Physics, Kazan State Pedagogical University, Mezhlauk 1, Kazan 420021, Russia
(Received 3 February 2003; published 19 June 2003

Smooth-throat wormholes are treated as possessing quantum fluctuation energy with a scalar massive field as
its source. The heat kernel coefficients of the Laplace operator are calculated in the background of the
arbitrary-profile throat wormhole with the help of the zeta-function approach. Two specific profiles are con-
sidered. Some arguments are given that wormholes may exist. It serves as a solution of semiclassical Einstein
equations in the range of specific values of the length, a certain radius of the wormhole’s throat, and a constant
of nonminimal connection.
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[. INTRODUCTION be constructed and ground state energy can be calculated. In
this paper we present a calculation of the full energy of the
Great interest in the space-time of wormholes dates bacuantum fluctuations rather than the energy density and we
at least to 19161]. Subsequent activity was initiated by both use the Einstein’s equations with the quantum source only,
classical works of Einstein and Rosen in 192j in the  Without a classical contribution. We found that the energy of
context of black hole space-time structure and the later seri€§ictuations as a function of the radius of threatay pos-
of works by Wheeler in 19553] with his excellent idea of s€ss a minimum if the nonminimal connection constant
creating everything from nothing. The more recent interest in>0.123. Utilization of the Einstein equations at the mini-
the topic of wormholes has been rekindled by the works ofmum gives the stable configurations of the wormhole. For
Morris and Thorng4] and Morris, Thorne, and Yurtsevgs] instance, in the case of a conformal connectién,1/6, we
who made use of the concept of wormholes in a scientifidound a relation between the radiasof the wormhole and
discussion of “time machine.” These authors constructednassm of the scalar fieldam~0.16. The Einstein equations
and investigated a class of objects they referred to as “trasay that the wormhole has a radius of thraat0.0141p,
versable wormholes.” Their work led to a flurry of activity in and the mass of scalar field~11.35mp,. Therefore, this
wormhole physicg6]. kind of wormhole, if it exists, may possess a sub-Planckian
It is well known that the central problem of traversable radius of throat and it may be created by a massive scalar
wormholes is connected with the unavoidable violation offield with super-Planckian mass. Obviously, the validity of
the null energy condition. This means that the matter whictthe results obtained are restricted by the model taken—short-
should be a source of this object has to possess some exotltroat flat-space wormhole.
properties. For this reason the traversable wormhole cannot The goal of this paper is to consider the wormholes with
be represented as a self-consistent solution of Einstein'gore real geometry of the throat and the energy of quantum
equations with the usual classical matter as a source becauggctuations of a massive scalar field as a source of this back-
the usual matter is sure to satisfy all energy conditions. Onground. The main problem in this case has a rather math-
way out is to use quantum fields in the framework of semi-ematical character. Even for the simple profile of a throat it
classical quantum gravity. The point is that the vacuum avbecomes impossible to obtain a full set of solutions of a
erage value of the energy-momentum tensor of quanturmradial equation in order to find the energy density of quantum
fluctuations may violate energy conditions. Self-consistenfluctuations in close form. Nevertheless, it is possible to
wormholes in the framework of semiclassical quantum gravimake some predictions about the existence of the wormholes
ity have been studied in Rdf7]. In our recent pap€i8] we by considering the heat kernel coefficien8. In fact, the
have considered the possibility of a self-consistent solutiorgrucial point is the existence of the negative minimum of the
of semiclassical Einstein equations for a specific kind ofzero point energy. The sufficient condition for the zero point
wormhole—a short-throat flat-space wormhole. The modeknergy to have negative minimum is that the heat kernel
represents two identical copies of Minkowski space withcoefficientsB, andB3 be positive[8]. This gives a condition
spherical regions excised from each copy, and with boundfor the parameters of the model. More precisely, if a back-
aries of these regions to be identified. The space-time of thiground is described by a parametewith a dimension of
model is flat everywhere except a two-dimensional singulatength and the domain where the space-time is “mainly”
spherical surface. The vacuum average of the energy afurved is defined by this parameter, then for the small size of
guantum fluctuations of a massive scalar field with a nonthe curved domainy—0, the zero point energy shows the
minimal connection serves as a source for this space-timdollowing behavior:
Owing to the fact that this space-time is flat everywhere, a

complete set of wave modes of the massive scalar field can Erene _ B, In(7m)?
32m2
*Electronic address: nk@dtp.ksu.ras.ru and in opposite limitr—« we have
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B which means that(— p)=r(+ p). The radius of a throat is
defined as followsa=r(0). We suppose that far from the
wormhole’s throat the space-time becomes Minkowskian,
tis

ren_ _ "9
327°m?

If both these conditions are satisfied one can expect thgpa
the system will stay in a minimum of energy which is char- r2(p)
acterized by specific values of parameters of wormholes and lim
a constant of the nonminimal connectiénThe next step is pote P
the utilization of Einstein’s equations with the energy- o
momentum tensor of quantum fluctuations as a source. ThEN€ nonzero components of the Ricci tensor and the scalar
integration over the volume of the-t component of this curvature have the following form:
equation gives an additional relation between the parameters op7
of the wormhole and zero point energy, using which we ob- RP=—_"_
tain the size of a wormhole and the mass of a scalar field in P
terms of the Planck length and Planck mass correspondingly.
At the beginning we may expe¢8] that the size of the p —1+r"24rr"

— = @000
wormhole and the mass of field will be in the Planck scale. Roy=R = r2 '
For this reason we are interested only in finding the domain
of the wormhole’s parameters and the constant nonminimal /2 "
. . , . 2(—=1+r"=+2rr")
connectioné for different models of the wormhole’s profile. R=— .
The manifest expression for coefficieB exists for an r2

arbitrary background, but this is not the case for coefficient . ] )
B,. For this reason we adopt here the zeta-regularizatioff "€ energy-momentum tensor corresponding to this metric
approach(see Sec. I)l, in the frame of which it is possible to has a diagonal form from which we observe that the source
calculate the heat kernel coefficients and zero point energ9f this metric possesses the following energy density and
itself. We pursue here another goal—to evolve the zetaPréssure:
function approach for situations where it is impossible to find ' ,
the full set of solutions of the radial equation in closed form. e _ 1+ro+ar
We find a method to calculate the heat kernel coefficients in 8r? '
the background of a wormhole with an arbitrary profile of
the throat by using the WKB approach. Moreover, we obtain —14r2
expressions for an arbitrary heat kernel coefficients and we Py=——5—
reproduce them in manifest form up By for an arbitrary 8
profile of a wormhole’s throat.

The organization of the paper is as follows. In Sec. Il we _ _r_”
consider the geometry of a wormhole with a smooth throat. Po=Pe=grr
In Sec. Il we discuss the method of the zeta function for the
calculation of zero-point energy. The WKB approach for the  In the paper we obtain general formulas for space-tibre
scalar massive field is considered in Sec. IV. The heat kerng¥ith an arbitrary symmetric function(p) obeying the above
coefficients are obtained in Sec. V. We calculate them idMinkowskian condition. Two specific kinds of throat's pro-
manifest form for an arbitrary profile of throat. The specific file will be considered. In the first model the profile of the
profiles of throat are investigated in Secs. VI and VII. In Sec throat has the following form:
VIII we discuss the results obtained. The Appendix contains
some technical formulas which are too complicated to repro- r(p)=\p*+a’, )
duce them in the text.

We use unitsh=c=G=1. The signature of the space-
time, the sign of the Riemann and Ricci tensors, are the sa
as in the book by Hawking and EIl[®].

2 1

where a is the radius of a throat which characterizes the
ormhole’s size. The embedding into the three-dimensional
uclidean space of the section of the space-time by surface

t=constp= /2 is plotted in Fig. 1) for two different val-

ues of the radius of the throat. In Euclidean space with cy-

Il. ATRAVERSABLE WORMHOLE lindrical coordinates 1{,¢,z) this surface may be found in
WITH A SMOOTH THROAT parametric form from relations=r(p), z'(p)=+1-r'2

In this background there is the only nonzero component of

The metric of a space-time of wormhole which is under > .
the Ricci tensor which reads

consideration has the form

2
ds?= —dt2+dp2+r2(p)(de2+sirPade?). (1) oo 2
P (p2+a2)2
The radial variablep changes front- to +cc. In the paper The second model has been considered in Réf.and it

we restrict ourselves to wormholes with a symmetric throatjs characterized by the following profile of a throat:
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FIG. 1. (1) represents the sectidn- constp= /2 of the worm-
hole’s space-time with the profile functiarip) = \/p2+ aZ for two

different values of the radius of the throat. The next three figures

illustrate the wormhole with the profile of the throat(p)

=p cothp/n)—7+a. (Il) and(Ill) illustrate that thea and 7 are the

PHYSICAL REVIEW D67, 124020(2003

r(p)=p cotl‘(é) —r+a. 3)

This model possesses a more interesting structure. There are
two parameters anda. The latter parameter is the radius of
the throat. In this model we may introduce another parameter
which may be called the length of the throat. The point is
that the functiorr (p) turns into a linear function of start-

ing from distancep> 7/2 and the space-time becomes ap-
proximately Minkowskian. Therefore, the length of the
throatl = r. Using new variabley=p/a, a=r7/a, one re-
writes the functiorr in the form

y
ycotl-(;)—cwrl

The parametew is the ratio of the length and the radius of
the throat. This parameter will play the main role in our
analysis. It allows us to consider wormholes of different
forms, which are with different ratios of the radius and
length of the throat.

In Fig. 1(1I-1V) the sectionst=const, 6= /2 of this
wormhole space-time are shown for different valuea ahd
7. Namely in Fig. 1Il) we represent two wormholes with the
same radius of the throat but with different lengths, and vice
versa in Fig. Ul), where we depict two wormholes with the
same length of the throat but with different radii of throat. In
last picture Fig. UIV) two wormholes with the same ratio of
length and the radius of the throat, but with different values
of the throats’ radii, are depicted. Therefore, the size of the
wormhole with the same ratio of the length and the radius of
the throat is managed by paramegefThe parametew de-
scribes the wormhole’s form.

r(y)=a

Ill. ZERO POINT ENERGY:
ZETA-FUNCTION APPROACH

We exploit the zeta function regularization approach
[12,11] developed in Ref[13] and calculate the zero point
energy of the massive scalar field in this background. Let us
repeat some main formulas from those papers. In the frame-
work of this approach the zero point energy,

1 1 1
E(s)=5 %2 2 (\y* m2>1’2—5=5u235£( s— 5) ,
4
of the scalar massive fiel} is expressed in terms of the zeta

function

{r

!
s=5| =2 X (A +m)Hs ®)
2) F T

of the Laplace operatorC=—A+m?+¢R. Here A

radius and the length of the throat, accordingly. In the last figure=g¥'V,V is the three-dimensional operator. The eigenvalues
two wormholes with differen& but with the same ratio of the radius X\ () ;+ m? of operatorZ are found from the boundary con-
and the length of the throat are depicted. It is seen that the parangtition which looks as follows:

etera characterizes the “size” of the wormhole anddescribes the

“form” of the wormhole.
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where R denotes some boundary parameter. The solutionand the remains, which will be obtained from the uniform

A=N\(n),; Of this equation depend on the numbeny,(and
additionally they have the indep}=1,2, . . ., which numer-

ates the solutions of the boundary equation. Therefore, the 9
zeta function is a sum of expressions which depend on zeros Eas(S)=~ 5 >
of function ¥ ,. Next, according to Ref.13] we convert

the series overin the zeta function to the integral and arrive

at the formula

1
E(s)=— 5u™2

(m 7

* J
xf dk(kz—mz)l’z‘sﬂln\If(n)(ik,R), (7)
m

expansion part

COSTs

(n) m
o0 . [? .
X fm dk(k?>—m?)%2 S%[In W oy (ik,R)J2S.

The last expression contains all terms which will survive in
the limit m—oo.

Taking into account the obtained expressions in .
we arrive at the formula

E'®"=Eq,+ELL (129

where the functionV’ ) in imaginary axes appears.
Expression(7) is divergent in the limits—0 we are in-

terested in. For renormalization we subtract fré&ts) all

termsEY"(s) which will survive in the limitm—oo:

where

_ . _ B 1 2 % 5 4
Edv(s)= lim E(s) Efin=Erin(0)=— 5~ = mdk k*—m =

m— oo
. B . a
and we define the renormalized energy as follows: XU ik, R) = [InW (K, R) 1%, (12D)
E'en=lim[E(s) — EW(s)]. 8) ELS = lim[E.g(s)—E¥*(s)]. (129
s—0 s—0

Because the pole structure of the zeta function does not d
pend on the value of the parameters, it is obvious that in th
limit m—o the divergent part will have the structure of the
DeWitt-Schwinger expansion, which has the following form:

2s
Ediv(s):%(%) 1
(477)3/2F(S— 5)

She divergent parE?" is given by Eq.(9).

€ The finite partE¢;, is calculated numerically. The second
part, in practice, is found in the following way. By using the
uniform expansion (¥ ,)* we calculate in manifest form
the E;q(S) and after that we take the limin—o in the
expression obtainedhe pole structure does not changall
terms which will survive in this limit constitute the DeWitt-
Schwinger expansiof®) which we have to subtract in Eq.
(120. This way of calculation is more preferable because we
may obtain the heat kernel coefficients in the manifest form.
The calculations of heat kernel coefficients in framework of
this approach shows that the approach is suitable for both a
smooth background and for manifolds with singular surfaces
of codimensions ong8] and two[14], the general formulas

L which were obtained in Ref$15] and[16].
whereB,, are the heat kernel coefficients. In order to extract In consideration of the above we may find the zero-point

the divergent part of the energy we use the fo!lowing ProCegnergy for the large and small sizes of wormhde Let the
dure [13]. We subtract from and add to the integrand thep,rametera characterize the size of the wormhole. In this
uniform expansion of I up tom®. We denote this expan- case theE™m is a dimensionless function and it depends
sion as (In¥(,)*. Therefore, according to this, we representp, the parametena and some additional dimensionless pa-
the energy as the sum rameters which characterize the form of wormhole. For ex-
ample, in the first mode(2) there is only the parametex;
which is the radius of the wormhole’s throat, and it charac-
terizes at the same time the size of the wormhole as a whole.
Therefore in this model thE™"/m depends oma and there
are no additional parameters. In the second m@jehere is

an additional parameter=7/a except parametema. For
this reason the dependence of the zero point enef§ym

on the mass is the same as paramateBecause for renor-
malization we subtracted all terms of the asymptotic over
mass expansion up B, the asymptotiana— o is the fol-
lowing:

[Bom“r(s— 2)

+B,m?T(s—1)

3
+By,m°l| s— 5

1
+ Bg,zml"( s——|+ BZF(S)] , 9

2

E(s)=Efin(s)+Eas(s) (10)

of the finite(in the limit s—0) part

1 COSTS

Efin(s)=— Eﬂzs(n) p-

X f:dk(kz—mz)l’z‘saik[(ln W (1) (ik,R)
—(InW (1 (ik,R))?], (11)
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Eren B, bs where the dot is the derivative with respectdo rZ=r2k?
= 5 (13)  andR=RIK>.
32m°m 327°(ma) A general solution of the radial equati¢b6) is the super-

In the opposite casena— 0, the behavior of the energy is position of two linearly independent solutions

defined by coefficienB, [see also Eq4l)]:

W (i vk, X)=Cyh1(X) + Coh(X). (17
2 2
Eren% _ In(ma) = In(ma) ,. (14) The first functione, tends to infinity far from the throat, for
m 327°m 32w?(ma) p—o, and the second one tends to zero. We consider the

behavior of the functions only for one part of space-time,
Here b; and b, are dimensionless heat kernel coefficientsnamely, withp>0. The behavior of the solutions in the sec-
which may depend on the additional parameters. Thereforgnd part of space-time with negatipes found as a continu-
from these expressions we obtain the following sufficientation of the solutions from the positive part of space-time.
condition that the zero point energy has a minimum: ith  Now we impose the Dirichlet boundary condition at spheres
andB; have to be positive. An additional condition may be p= +R:
obtained from Einstein’s equatiorisee Secs. VI and VI
(i vk, + R)=Cyby(+R)+Cprho(+R) =0,
IV. MASSIVE SCALAR FIELD IN WORMHOLES
BACKGROUND: THE WKB APPROACH W (i vk, — R)=Cy1(—R) + Cpby( — R)=0.

We consider the massive scalar qpantum field in thISI'he solution of this system exists if and only if the following
background as a source for this space-time. In the frameworgOndition is satisfied:
of the approach used one has to find the spectrum of the '

Laplace operator: W (i vk,R) = ¢b(+R) dho( — R) — b1 (— R) ho( +R) =0.
1

(—A+ER)D=\2D. (18

The contribution from the second term in the equation
above is exponentially small compared to the first one in the
limit R—oc. In order to see this let us find the uniform ex-
D=YM(0,0)¢ pansior) of solutionsp, and_ 4)2_. Moreover, we ne<_ad this

’ ' expansion for the renormalization and the calculation of the

heat kernel coefficients. Let us represent a soluthoim the
exponential form

Taking into account the spherical symmetry of the prob-
lem we represent the equation in the following form:

where Y["(6,¢) are the spherical harmonick=0,1,2 . ..
andme|[ —1,I]. The radial part of the wave function is the
subject for the equation

= S(x)
2 10+ 0" Gt 9

—ER | p=—2\%9. (15)

2 —
p r p r2

wherea=r(0), andsubstitute it in the radial equatiqi6).

To find the spectrun\ we have to impose some appro- One obtains a nonlinear equation

priate boundary conditions. It does not matter what kind of - 1 1
boundary condition will be imposed because at the end of the St 'SZ+ZB'S— 21+ +| — - R, | =0.
calculation we will tend this boundary to infinity. We use the Mg rz) |\ 4rd

Dirichlet boundary condition in the spheres with radii
R: p==R. For simplifying formulas we will work here We represent now the solution in the WKB expansion
with the function £(s)=m?5/,(s). With this notations the form
regularized ground state energy reads .
u\® | 1 S= 2 vhs,
=0-3lm| 43

m

. ) ) and substitute it in the equation above. This gives the follow-
Because we need the solution for the imaginary energyhg chain of equations:

only [see Eq.(7)], we change the integrand variable in the

radial equation15) to an imaginary axis\—ivk, and res- _ 1
cale for simplicity the radial variableggk— x. Therefore we Si=x\/1+ 3, (209
arrive at the following equationy=1+1/2): I
;;'s+sz¢ 2 141 b+ L $=0, (16) S 154 (20b)
T -V ) 5 = il =—a T — T
M ré arg “ 25, Ik

124020-5
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_ Therefore we may express the combination we n@dgl
S =— 28 S+ 50+ 2_50+ _ng , (200 in terms of Eq.(22):
- k
) SH(+x)+S (=x)=S"(+x)+S (+X)
S, = S+ é 5.5+ 2.5 - +x
Sne1= 25 ,| " k=0 SkSn-k rkSn ' + Eo vl’znf S _,dx.
n= -X

n=12,.... 200 15 find the combinationS™ (+x)+S™(+x) we use the

There are two solutions to this chain that correspond to th¥Vronskian condition. Because these solutions are indepen-
sign in the first equation. The plus sign gives the growingdent, they obey the equatioay= ak)
(for positive coordinate) solution which we mark *+" and

the minus sign gives solution which tends to zero at infinity 5
which we mark by the sign +.” Therefore W(1(x), ¢2(x))= r2’
b (+R)dy(—R)= —— 1 _~ ST (+R)+ST(-R) The _origin of this relation is the_ following. Suppose we
2av try to find the scalar Green function of the Klein-Gordon
equation:
To find an expansion for the suBf (+R)+S (—R) we q
need the following properties of functid® (x): S, x")
- . (9*"V,V,— m?— ER)G(X, X' ) = ——= (23
Son-1(X)==S3,_1(x), V=9(x)
S (x)= + & in backgroundl). It is very easy to extract the time and the
San(X) =+ (%), angular dependence of the Green function
and
G '—J+dw2 Z Y™(9,0)Y]
Séjnfl(x):"'szinfl(_x)y (xx")= 21 < 1 (0,9)Y,
Son(X¥)=—S55(—x), X (8", e (p,p"),
wheren=0,1, ... . Thefirst two equations are the conse- and we arrive at the equation for the radial part of the Green

quence of the structure of the chain and the last two equaunction which readsX?= w?—m?)
tions are due to the symmetry of the metric functiqux)

=1 (—=x) , 21 [(1+1) .. O(p=p")
Taking into account these properties of symmetry we have {‘7er T‘?er)‘z_ 2 —&R d(p.p")= 2

o0

ST +X)+S (—x)= >, v Ch +Co or in dimensionless variabled (~ivk, kp—X)
0

= a2+2fka o 112 ][ 2 Rt p(x,x")
+x, —dy—V — —— X, X
R AT e
—X n=0
x B kSo(x—X)
X C;n+cgn+2J’ S;ndx|, o2
Xo
(22 As usual we represent the radial Green function in stan-
dard form:
ST +S (1= 2 v Co -1t Cop BOXX')= 00X =) b1 () bo(X' )+ B(X—X') b(X) b (X'),
% where ¢, and ¢, are two linearly independent solutions of
+E v~ 2" C5.+Cop the homogenous equation ant tends to infinity forp
n=0 —o0 and ¢, tends to 0. The Wronskian condition appears if
i we substitute the radial Green function to the radial equation
+2 J S;,dx|, (220  above:
X0
. . k
Here theC,, are the constant of the integration of system W(p1(X),a(X"))= 2
(20). Mk

124020-6
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Therefore, if two functionsp, and ¢, describe the system, in general form for arbitrary indices. Taking into account the

they have to obey this Wronskian condition. above discussions we have the following expression for the
For the solution in exponential forrfl9) this condition  zeta function:
gives .
1 2 cosws o
— 2 2-2s
S—=|=—m dk
eS 0+s (0= 2vay i : : ) ‘ 2) T IZO g miv
ré ST(x)—S7(x) a1
2_ . + —_
The denominator on the right-hand si@ths) has the follow- x| k Vz) &k{s (+R)+S(-R)}.
ing form:
(25
ST()-S (=22 v S .. To find the heat kernel coefficients we use the uniform
n=0 expansion given by Eq24). As it will be clear later, the odd

owers of v will give a contribution to HKC with integer

Taking into account these two expressions above we arrive dices and even powers of produce the contribution to

the formula HKC with half-integer indices. The well-known asymptotic
1 . expansion of the zeta function in three dimensions has the
S (x)+S (—x)=In(ay) — E|n(s%1r‘k‘) form
> 1 1 1 -
X, _ 2= 4-2| _

£y V1_2nf 5 dx g“as(s 2) = 2 [m B[(s+1-2)

n=0 —X F S— —

_ 2
- Sgh—l

_ -2n 3

In{l+,§1 14 SJ_rl . (24) +m32|B|+1/2F(S+|_§)]. (26)

_ The main achievements and peculiarities of this expresgqy simplicity we introduce the density of HKC with integer
sion are as follows(i) the rhs is expressed in terms of de- . dicesB. by the relation

rivative of functionsS , we do not need to find the con- "0 CeSEI DY the Tefatio
stants of integration in the chain of equatidi2®); (ii) the +R
odd and even power af are separated, which leads to the B,=f . dpB(p)

separation of the contribution to heat kernel coefficients with
integer and half-integer indice§ii) the rhs is expressed in ' . . . .

. i A ) and first of all we will obtain formulas for this density.
terms of functionsS, with odd indices only. The first three Let us consider the part of E@4) with an odd degree of

functionsS,,, are listed in the Appendix, formuléAla). ,, The contribution to the zeta function is the following:
We would like to note that this formula is valid for an arbi-

trary, but symmetricr (p) =r(—p), metric coefficient. _ odd 1 ,,2 COSTS ” -
From this expression we may conclude that the contribu- as |ST5|/=—m s > A
tion from the second term in conditiqi8) is exponentially T 1=0
small compared with the first one. Indeed, the main WKB . 2\ 12-s
term in Eq.(24) gives the following contribution: X fm dk( K2— _2) %
m 14
k 1 +kR, "
P1(+R)Ppo( —R)~ =— - exp{+vj S’ dx), ~ kR,
2v S5t r2 R x{ > VHpJ S5 1 (x)dx
p=0 kR
k 1 +kR, . . .
$1(—R)po(+R)~ — ——exp — ,,f S*odx|. We change now the variable of integrati®skp and take
2v gt rk ~KkR the derivative with respect tkr
Because the functioS", is positive for arbitraryR we ob- oadl . 1)\, 2cosms i 225
serve that the second expression gives an exponentially small as (ST /=M T =7
(for R—<0) contribution compared with the first one and we
will omit it in what follows. - m?| 27°
X f m dkk k2——2
V. HEAT KERNEL COEFFICIENTS v g
Lgt us now proceed to an evaluation of the.heat kernel % 2 vl‘z”fmszp,l(k,p)dp.
coefficients(HKC). The formula(24) allows us to find HKC p=0 -R

124020-7
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The first four functionss,,_; are listed in the Appendix, To obtain the HKC we need asymptotiover massm)

formula(A2a). The general structure of these functions is theexpansion of the zeta function. The asymptotic expansion of
the function Z(s) was obtained in Refl17] and it has the

following:
form below
2p
SZp—le azp—l,nzfpinf(llz), *
e 2(s)=(mn~% 2 A(9)(mn~?, (299
where «,, 1, are the functions ofr(p), and z=1
+Kr%(p).
Next, we integrate ovek using the formula A_i(s)=T'(s—1), (29b)
(— )! 1
A(s)=2——T'(I+s)¢y 1—2I,§ , (2909

m2| (V28
f dkk( k?— —2) (1+k?r2)d
m/a 14
:Er25—3v—3+25+ZQ( 24+ m2r2)3/2-s-a where thely(a,b) is the Hurwitz zeta function.
Taking into account formulag28) and (29) one has the
following asymptotic series for an odd part of the zeta func-

3 3 -
_ _Z tion:
F(Z S)F(q 5 +s
r
(Q) ( 1)
odd s— —
and obtain the following expression for the odd part of the as 2
zeta function: 1 2p
1 +R
[ 03 S S S
-R =0 p=0 n=0 g=0
1 m2s +R ZF(S— —)
oddl «__ | _ 2
as | ST 5 _—f dp
2 1\ J-r
F(S_E) ><m472|r72|+11“(p~|—n—1+s) n!
1} gl(n—q)!
> 2 r p"r‘ﬂ'f‘z
><(_:L)rH:|A,,p,1(erern—l—q).
I'(s+p+n—1) p2ntl I'(s+p+n—-1-q)
1 (V2+m2r2)s+p+n71'
F( p+n+ 2 As was expected at the beginning this is a series over
even degrees of mass and it gives a contribution to the HKC

(27)  with integer indices. Comparing the above expression with
the general equatiof26) we obtain the general formula for

By using the binomial of Newton we reduce the power ofthe arbitrary HKC coefficient with an integer index

v in the denominator

*© 2n+1 E(P)
E 4732 I 2p n
=0 (p2+mdr2)stptn-1i oIt
( “T(st1-2) Z Z Z @2p—1nf
1 nl  Zs+p+n—-1-q)
- 2 2\n—q —_ I(—1)"d
"2 Z mre) gl(n—op! I'(s+p+n—-1-q)’ L(p+n 113) n.'(( 2 I
q'(n—q)!
(28 r p+n+§
where A_p-i(stp+n—1-q) (30
I'(s+tp+n—-1—-q)
Z(s)= 21"(5)2 - Therefore, to obtain the HKC with inddxwe have to take
=0 (12 + m2r2)S into account expansion up o~ 2'.
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Let us now proceed to the HKC with half-integer indices. 1
To find them we have to take into account the part of Eq. Il p+n- §+5) n
(24) with even powers ofv in an expression for the zeta X ' i I(_l)nfq
function (25). The general form of the even part is IF(ptn+1) q!(n—q)!
1
[S"(x)+S7(—x) %" Alp-1 S+p+n_§_q)
1. Son1 1
_ _ - 2 4y —2n_<4n _
=In(ay) 2In(S_1rk) In|1+nz1 v —.S+l] ' stp+n 5 q)
=2 v PEy, 31) o
p=0 As was expected the even part of the zeta function is the

series over odd powers of mass and, therefore, it gives con-
where the first four functiong,, are listed in the Appendix, tributions to HKC with half-integer indices. Comparing this

formula (Alb). expression with the general asymptotic series for the zeta
We substitute now expansiai8l) in the expression for function we obtain the following formula for the HKC with
the zeta function: half-integer indices:
1 2 COSTS
gr;en( s— _) _m2s Z V2—Zs 2o 2 n
2 T =0 4m -2l
B|+1/2:—3 E E Qop nl
w m2 1/2—s P o Il s+1— _) p=0 n=0 g=0
2_ _ -2p 2
xjgdk<k V2> e pzo” Eop,
1
ivati ; Iptn—5+s _
and take the derivative with respect to tkie P 2 ) nl(-1)"4

I'(ptn+1) g'(n—q)!

1 2COSTTS — ., 1
g‘ge”(s— §>=—m25 = I:EO p2=2s Aprfl S+p+n_E_Q)
X 1 (33

2 1/2—s = )

o I's+tp+tn—5—

Xdekk( kz——> > v s, P 2 1

- 14 p=0
(32

We would like to note that the right-hand side of formulas
The functionss,, have the following structure: (30) and (33) does not depend, in fact, on tlse which is
confirmed by straightforward calculations.
These formulas look very complicated but calculation
o — 2 o gPN-1 may be done easily using a simple program in the package
2T Taen ’ MATHEMATICA . Indeed, the function§; (x) andE,, may be
found by using formula$20) and(31). The functionss, are
wherez=1+Kk?r?(R). The first three coefficients are listed obtained from the following relations:
in manifest form in the Appendiksee Eq(A2b)]. The coef-
ficients a,, , depend on the parameteRsanda and do not
depend on the variable of integratitnGoing the same way

: o s . 10 .

as we did for the 'HKC Wlth'lnteger indices we obtain the Son_1(k,p)= ” @[kgn—l(x)h:kp],
following asymptotic expression for the even part of the zeta

function:

1 190
s 3) San(K R)= 3 (B0 -kl
o 2p n
_ 1 > D azp, m3—2! 2
1) =0 p=0n=04d=0 The first four HKC coefficientdensity with integer indi-
2I'l s— & :
2 ces are listed below
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Bo=4mr?, (34a
— 87 ) 1 )
Blz?[r’ +rr’]+ 8w &5 [—14+r""+2rr"], (34b)
_ 87 8
B,= ¢ [—1+r'2+2rr"]%+ —f[(—1+r’2)—r(—5+7r’2)r”+7r2r’r(3)+3r3r(4)]
r

"4 —6r(—35+59'2)r"+21r2(7r'?+24r 'r Gy + 2103 (9], (340

—  167é& 8me?

3= [—1+r"2+2rr" P+

3r4

——[(=14r"?)2(1+9r'%) = 2r(=1+r1'?)(=5+9r'?)r"—2r%(—8r"?+ 16r'*r"?

—3r'r®+3r 3G+ 2r3(14r 'rr®—3r®+ 3r 2 (M) 4+ 2r4(5r 3 24 6171 4)]

31&4[ -

+808 '3r(3)+3r3(308 "3+ 1354 "r"r - 175 M+ 271 '2r ) + 22r4(27r ) 24+ 277" r (D — 13 "1 O)) —

" 25045 4[4( 572—9009 "%+ 9341 '%) —4r(—

1+r'2)(1+15r'%)+2r(— 252+ 105 "2+ 859 '4)r

" —2r2(—525"2+2517% ' 2r"2— 420 '3

105 5r(8)]

6006— 15015 2+ 62039 '4)r"+ 13r2(— 4620 "2+ 32943 'r"?

— 4620 'r®+ 11564 '3r(3) —286-3(30& "3+ 1139 'r"r @) — 105 D+ 223 '2r () — 429 4(47r ®) 24 24r "¢ ()

—74r'r(®))+120125r (0)7.

(340

In the above formulas the functiandepends on the radial this coefficient as an integral over But it is easy to see that
coordinatep whereas the heat kernel coefficients with half-they are in agreement. Indeed, let us consider, for example,

integer indices,

Bl/2: _4773/2r2 (353
3/2
Byp= —8m %[ — 14124 211"+ ——[—4+3r' 2+ 6rr"],
(35b)
81T3/2 2 3/2
Bs)o= ¢ [—1+r'2+2rr"]?— 5[4( 1+r1'?)

—10{(—2+3r’2)r”—3r2(4r"2—3r’r(3))+6r3r(4)]

3/2

12 2[2( 16+ 15r'4)—5r(—32+63r"?)r”

—10r2(5r"2—14r'r®))+90r3r 47, (350
depend on the radial functianat boundaryr =r(R). From
Egs. (34) and (35 we observe that the HK®, and B, 1/,
are polynomial in¢ with degreel.

It is well known[11] that the heat kernel coefficients with

coefficientB,. According to the standard formula we have

1 1
Blz(g—f) JVRdV+ §LtrKdS‘
ke
3)s"

The volume contribution is exactly the same as we have
already obtained34b). Surface contribution from above for-
mula is

p=+R

p=-R

!

— T

3 r

1
_J’ tr KdSp:+R+

1fthS
3]s S|t =

3J)s =R

From our resul{34b) we get the same expression

8w (R 2 "d _87TJ'+R g _1677 )
3 7R[r +rr'”] pP="73 7R[rr ] p—TI’I’

p=R

integer indices consist of two parts. The first part is an intedt is not so difficult to verify that the heat kernel coefficients
gral over the volume and another one is an integral over thep toB, are in agreement with general expressions. There is
boundary. We obtained a slightly different representation fomo general expressions for higher coefficients.
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According to Ref[8] the condition sufficient for the ex- 167R 1\ 167a? 1
istence of the self-consistent wormholes may be formulated Bi~ T+87T i —) Y 5/
in terms of two heat kernel coefficients (36b)
32:J+de§2:h22§2+ h1€+h 0 B il 6052 — 206+ 3 32m 36
e : ' ' 2~ 50 (6067~ 206+3) — oo, (369
e 3 2 w?
Bs= f dpBs=h3 26"+ h3 6"+ h3 1§+ hap. By~ (58803 — 63002+ 22266 — 257).

- 4032%°

36
Namely, bothB, andB; have to be positiv§18]. The coef- (389
ficientshy | of the polynomials depend on the structure of theThe formulas for the first three coefficients with half integer
wormhole. Therefore the problem reduces to an analysis dhdices may be found from the general expresgiB). Here
the polynomial iné of second and third degrees, the coeffi- we have listed them with their expansions for large value of
cients of which depend on the structure of the wormhole'sR,
space-time. Wormholes with different forms may exist for

different values of nonminimal connectign For some¢ the Bip=—4mY4?=—47%(R?+a?),
above polynomials will be positive for specific forms of
wormholes. w2 73%2(8£—1)
By~ — 73— T e
VI. MODEL OF THE THROAT: R(p)=p?+a?
In this section we consider in detail the specific model of Beo~ — w2
the wormhole with the following profile of the throa{p) 527 eoR2’

= /p?+a?. From the general expressiof8) we obtain the
density of heat kernel coefficients with integer indices which  Let us now proceed to the renormalization and calculation

are of the zero point energy. As noted in Sec. [$ee Eq.(12)]
we have to subtract all terms which will survive in the limit
Bo=4mr2, m—oc. According to the general asymptotic structure of the

zeta function given by Eq(26), in this limit the first five
terms survive, namely the HKC up ®,. Because the zero

o _8ma’( 1) 87 int i tional to the zeta functi
\= et Bl point energy is proportional to the zeta function we may
r? 6/ 3 speak about renormalization of the zeta function. According
to Eqg. (12) we take the asymptotic expansion for the zeta
2 function up tor 3 [in the limit m—o these terms give the
— 2 8a‘m . .
B,= ——(1103%— 796a%r2+8r*)— (17a2—12r?) asymptotic(over m) expansion(26) up to the heat kernel
315° 3ré coefficientB,] and subtract its expansion over up to B,
4 from it. After taking the limits—0 we observe that this
X+ 8ma & difference will giveE!'" (120). First of all we consider this
' part and later we will simplify the finite partL2b).
We should like to make a comment. In the problem under
5 consideration we have two different scal&and a which
By=— —W(258356]a6—315743&4r2 give us two dimensionless parameten®k and ma. To ex-
45045 tract terms for renormalization we turn mass to infinity,

which means the Compone wavelength of a scalar boson
turns to zero and becomes smaller than all scales of the
model. In other words, it means that we turn to infinity both
parametersnR andma. After renormalization we will turn
8atr 16ma’ mR to infinity separately in order to obtain the part which
+13540 %) ¢~ —(738°—62%) &+ —— & does not depend on the boundary.
3r 3r Let us consider separately two parts of the asymptotic
, . expansion of the zeta function according to the odd and even
Integrating overp from —R to +R we obtain the HKC.  ,q\yers of 1. First of all we consider the odd part which
Here we reproduce their expansions in the liRit:= Up 10 giyes the HKC with integer indices. All singularities are con-
terms 1R, tained in the first three terms in E6) with B,,B;,B,.
After subtracting these singularities;~0 and we obtain
some infinite power series over parametemp and ma.
Next, we have to integrate ovgr and mR—o. For this

4a%7
+75182@%r*—480r%) +
31510

(4726R%—57464°r2

87R®

3 +8ma’R, (369

BO=
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reason we have to obtain some expression instead of a seriggo terms withn=0,1 and at last fop=2 the only term is
to take this limit easily. It is impossible to take this limit divergent withn=0. We recall that
directly in a series. We will use the Abel-Plana formula to

extract the main contribution from a series in this limit. The (=11
rest will be a good expression for numerical calculations. I'(s=n)s-0= n! §+W(n+l) +0(s),
Moreover, from this remaining part we will extract terms
which will be divergent in the limitma—0 to analyze our 1
formulas. Ch(st1a)s0=5 ~ V(@) +O(s).
Our starting formula for the odd part of the zeta function
is Eq.(27) which, cut up top=2, is For this reason we represent the zeta funcii®® in the
following form (for s—0):
1 m25 +R o 2 2p
oddf o« 7| _
as'z(s 2) 1 ﬁR deﬁ p§=:0 k§=:0 op- 1k 704 o L om 1
r - 2 as,2 2 (477)3/2 1
I'| s— z
_ 2k+1
><r25_31“(s+p+k 1) v . , B
1 2 2.2\s+p+k—1"
I prk+z| FMTO xf dp[rZSE IFORDY fn,o<0>]
2 - n=0 n=3
(37 (409
Expanding the denominator with the help of the formula m 1
+
- 477)372 1
(=1)"I(n+s) M pls-2
2y—-s_ 2n 2
(1+x°) nZO o (s x",
+R -~
we represent Eq:37) in the following forms: XJ . dp FZSEO fna(s)+ 22 fn,1(0)  (40b)
_ i =
1 1 1
odd —
B
2
f+R ) i ﬁ ) "
X dpm*® m-"f, ,(s), (38 +R
RPN & nel(S): (39 xf dp[rzsfo'z(s)Jr > fnvz(O)] (400
- n=1
where .
and we will analyze each part separately.
(—1)" 2p To illustrate the calculations we consider in details the
f, p(s)=87-r3’2—|r2”*32 @2p-1k first part(40a. First of all it is not difficult to find the mani-
' n =0 ' fest form of a singular part in the limg—0:
I'(n+p+k+s—1) 42Dt 2 31 2
Eu 2n+2pt2s—35). S fad =4 (s-2)+ 3 F(s 1)+
I'ptk+> n=0
2
a
In order to make formulas more readable we make every- +7r’[—3+4y+8In(2)]+ §[1+2 In(2)

thing dimensionless but save the same notations. At any mo-
ment we may repair dimensional parameters by chanBing
—mRana—ma. In this case we rewrite the expression for
the zeta functior(37) in the following form:

, - 2 —168Q4(—3)].
§°“‘2‘( 1) . D ) | | o
as 2] (4m)32 1\ J-r "i0p=0 "P We observe that this term gives a contributionBg, B,
I s= 2 andB, according to the gamma functions. For renormaliza-

(39 tion we have to subtract from this expression the first three
terms according to our scheme.
From this expression we observe that for0 the first There is one important moment which is crucial for our
three terms are divergent with=0,1,2; forp=1 the first analysis. The above formula contains all terms which survive
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in the limit s—0 for an arbitrary mass of field. For renor- * r2 r2 1 4
malization we have to subtract asymptotic expansion in the 2 v In| 1+ |- >
form (26). There is a difference in factoPS. For this reason I=0 4 4 4

after the renormalization factor

1 1 1
_ 4 2y_ T 2 4 _ -
—4r In(r°) 24r +r42In(2)+y 8}
(r’s—1) 47-rr21“(s—2)+zl“(s—1)+ m I'(s) ” 3 2
3 120.2 f dvv r
s—0 - nil—-—.
0e?™+1 v?
_| 2_7T+ T Inr?
B ) 1202 nr Taking into account these formulas we have

2 )
appears. If we take into account all terms in E40) we ren
obtain the following contribution: ngo fn,o(0)+n§3 no(0)

1 J’w dv® |
. (41) =16m 0 e27'rv+1 n

Exactly the same structure was observed before in Refs. We now integrate this formula over from —R to +R
[17,8]. This term defines the behavior of energy for a smaliaccording to Eq(408 and take the limitR—. After this
wormhole because it is maximally divergent for a smallWe arrive at the expression
wormhole.

Therefore the renormalized contribution is

1— —
|n(r2)<§Bo—Bl+ B,

m .
(40a)— fa= {fa"9+ wa},

16m2 * 16772
2 T I
ren(s)=| 27r2— =+ Inr2+ 73 —3+4
nzo no(S) & 3 1202 et Y where
+81n(2)]+ =[1+2In(2)+24¢4(—1)] poing_ 1™ T T L g
3 a —gog M@+ | 557 79N(2) +140R(=3) |
au
T 5[ = 7+21n(2) - 168%R(—3)]. The manifest form of the regular contribution is written out
120r in the Appendix{see Eq(A3)]. We extracted all terms with
a logarithm and that which is singular far-0 and collected
We represent the finite part in the following form: them inf3'""9. The remaining partw,, is a regular contri-
bution.
o0 o 2 2 4 Using the same procedure for the second and third parts
8 r r 1r 4 X S
> fro0)=— > v¥In[ 1+ — |- =+ — we obtain the following expressions:
n=3 r2 <o 2] 2 24
r? r2\  r? M sin
L M (40b)= — f,=— 2194wy},
IR T i t6r2 16wz

by using a standard series representation for the Hurwitz zet\é(here
function. To find a more suitable form for these series we use
the Abel-Plana formula and obtain

1/2 1
3¢ 6

) 1
fgmg: 772{ _ 166.( E— 6 + a In(a)

§2|n1+r2 rz 1112’1 111’1
14 — | — —= —_ — — — — —
= 22 t3a 3[ + 24 R( )]§+9[ +18/r(—1)]|.
1 1
:—Erzln(rz)—rz2In(2)+y—§} m M ing
(400)=— o= = - {1 w),
© d v 2
+2f In|1——,
0 e?™+1 v where
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f a W, b
ma
0.4r
0.2r
ma
0.5 1 1.5 2
-0.2
-0.4

FIG. 2. The plot of the summary contributiont= f,+ f,+ f, and ws=w,+ w,+ o, for £é=%: (a) summary contributiorf and (b)

regular partws .

Smg_ﬂz , 8 7 m2[1 1 ms
fe9=—66— ¢+ 55/In(@)+ —|5(~7+12y gvse“(s— §)=—1 EO 20 kzo agp >3
1 F(S_ 5) p
+36In2)§2+6(15—16y—48|n2)§
1 T S+p+k— 5) V2k+1
+ 35q0 ~ 143+ 126y +378In2)|. T prk+D) EIpE T

(42

The manifest form of the regular contributiong andw, are
out in the Appendi{Eq. (A3)]. Herer is taken at the poirR. Now we pass to dimensionless

Putting together all the contributions in E40) we obtain  variables(with the same notationsand have

1 2p
1 3 1 m
ren_ 2y, 2] = 2_ - el g _ | =—
Lot~ gz | @) {a{sg 2é+ 55 2 ( 2) (477)3/2F(s— 1) pgo 2z
2
1
+8al £— 6 ‘o, . ) 1
(477)3/2 stp+ _E 43
where rf Flprk+d) Porr (43
where
w1
w=w,+op+ o+ —|=(—7+12y+36In2)&
alz2 * V2k+l
1 1 bo= 2 -
— 5 (—13+48(((—1)+16y+48In2)+ oo PES0 (v24 mPr2)steik- 112
X (—41+3600r(— 1) +252Q(—3) + 63y Analytical continuatiors— 0 in this series may be easily
done by using the Abel-Plana formula:
+207In2)|.
1 1 o
boo=— §r3+ 2—4r—2rJ dvvEX(v)
In Fig. 2 we reproduce a plot of the sum of all three contri- '
butions:f=f,+ f,+f., ws=w,+ w,+ o, for é=¢. 2 Widw
Let us now proceed to the contribution from an even part __f ————— Ex(v),
of the zeta function. We start from E(B2) and do not take rJo 2
1_ J—

the limit of great mass. Integrating ovérwe obtain the
following expression for this even part:
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2 (r
bro=—T+ FJ dvy[3EX(v)
0

2
FUEX (1)]\/ 1~ 5,
r

2 (r
¢1'1:_2r+rf dvy[6EX(v)+6vEX (v)
0

2 " _ VZ
+vEX'(v)]\/1 5
r

5 2
¢1,2=—§r+ FJ dvy| 8EX(v)+ 12vEX' (v)
0

/ V2
1 - _l
r

1
+42EX"(v)+ 3 v EX"(v)

where
1

e+ 1’

Ex(v)=

Now we substitute these formulas in E43) and take the
limit R—oo. In this limit all integrals in expressions faky,
are smaller than the i/ Taking into account thatq o~r and
011,k~r2 we obtain in this limit(we repair dimensional vari-
ables

1 m 3
gl;en S— | =—7F7—+— mSBl/zr S— =
2 1 2
(4m)°°T | s— =
2
r 1 1
+m83/2 S— E +0 RTa .

Therefore after renormalizatiofsubtracting these two
term9 we take the limitR— o and obtain zero contribution
from this even part

1
2

Thus there is the only contribution from the odd part.
Collecting all terms together we arrive at the following ex-
pression for zero point energy:

2 2

1
- (In(ma)za-rz[m—a[

1
+8ma(§— g)

Q=w+32ﬂ'z v | dy
=0 1/v

even| o_
ren (S

Eren— _

, 3
3¢ £+ o5

+Q], (44)

where

12
1177
Z——| —{S"(+mR
y V2> ay{ ( )

+S (-mR)—[S"(+mMR+S (-mR§"PIs ..,
(45

PHYSICAL REVIEW D67, 124020(2003

andk=my.

The main problem now is the calculation of the last term
in the expression fof). Let us simplify the expression and
show that in the limitR—oo the divergent parts are can-
celled. Indeed, let us consider the first five terms of uniform
expansion

[S+(R)+S—(_ R)]gni.exp

2
_ 1-2n

+kR_
S 1dx+

1
2 VﬁanZn .
—kR n=0

It is very easy to take the limit in the part with an even power
of v by using the manifest form d&,,, listed in the Appen-
dix. The only term which gives the nonzero contribution is
Eo,

Eolr_.=—2 IN(kR) +In(ka) + O(R™?),
Eslr..=0(R™?).

The part with an odd power af in the uniform expansion
brings the single linear oR divergent contribution coming

from S, :
2(kR) .

Therefore in the limilR—c0 the uniform expansion gives the
following divergent contribution:

2(kR)v—2 In(kR) +In(ka).

Because later we have to take the derivative with respdct to
we may rewrite this expression in the following way:

2(kR)v—In(ka).

To take the limit of a large box i8"(+R)+S (—R) let
us reduce the radial equation to a standard form of the scat-
tering problem by changing the form of the radial function
d— it (p). In this case the equation reads

I(1+1)
p?+a?

a*(1-2¢)
(p2+a2)2

d2
dp?

- y=N\%y. (46

This equation looks similar to the equation of a scattering
problem in one dimensiofdo not forget thatp e (—,
+090)] with a non-singular symmetric potential
a%(1-2¢)
(P2+ a2)2 :

[(1+1)

Vilp.a)= —— (47)

pta

From a standard theory of one-dimensional scattering we
know that there are two independent solutions which have
the following propertiegas opposite to traditional notations
¢(X) we use the solutiong(—x) to make coincidence with
the functions we uge

sp(N)e ™,
e rs (N )e,

p— + oo,
b1(p)

p— =,
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Sp(N)e M ee o oo, B;
~ ) ren _ S
¢2(p 322()\)8')‘”, p——o, E 32,”.2m27 a— 0,

wheres,,(\) constitute thes matrix of the scattering prob- or in manifest form

lem. Due to the symmetry of the potential the components of m In(ma)? 3

the matrix obey the relatios,,=s;;. EM"~ — % ma 3¢+ 20 a—0, (50
Now we change energy to an imaginary axss»ikv and

obtain m 1 1

G1(+R) o~ R)p .. = sTy(ikw) R,
X [5880°— 63002+ 22266 — 257, a—x.

(51)

Therefore

+ — —
[ST(+R*+S (=R)Jr-x=IN[$2(+ RS2 ~R)]rx It is easy to verify that the coefficient after the logarithm in
=In[s3,(ikv)]+2kRv, Eg. (50), which is the contribution fronB, in the limit R
—o0, is never to be zero or negative. It is always positive.
and the divergent parts in E¢45) are cancelled. Thus we For this reason the zero point energy is positive for a small
arrive at the following expression fdo: radius of the throat for an arbitrary constant of the noncon-
formal couplingé. In the domain of the large radius of the
* 1 vz J throat the expression in the square brackets in &4),
Q=w+327>, »* |, dy| y?- —2) {9—[ In[ysiy(iy»m)]  which is the contribution fronB; in the limit R—c, may
=0 v y change its sign. It is positive faf>0.266(energy negative

2 o and negativgenergy positivg in the opposite case. There-
-2 Vl*sz' [.S;nl_éon]dx]- (49  fore we conclude that there is a minimum of ground state
n=0 — ' energy if constant>0.266. The situation is opposite that

o . ~which appeared in our last pafdd&], where the energy for a
Thus we express the finite part of the zero point energy inarge value of the throatwhich was defined byBs;,) was
terms of thes matrix of the scattering problem, namely in ajways positive, but for a small radius of the throat it could
terms of the transmission coefficient of the barrier in anchange its sign.
imaginary axis. A similar relation was found by Bordag in | et us now consider the semiclassical Einstein equations:
Ref. [13]. The potentialV,(p,a) of the scattering problem 8
w

has the following properties: G,, = (T, (52)

I(1+1)+1-2¢
Vifa)=———5—— whereG,,, is the Einstein tensor, and@ ,,) is the renormal-
a ized vacuum expectation values of the stress-energy tensor of
—the height of the barrier, the scalar field. The total energy in a static space-time is
given by
+oo al2l(1+1)+1-2
| ioado- A £- | o Vgex,

—the work against the potential barrier.  wheres = —(T})"®"= — G!c*/8xG is the energy density, and
(49) the integral is calculated over the whole space. In the spheri-
cally symmetric metriq1) we obtain
Therefore the zero point energy has the fddd), where ct [ - 4
the function(Q is given by expressiort48). We note that E=-35g] G (pdp=——55. (53
according to[17,8] the factor before the logarithm term in
Eq. (44) is (B,—By)r... The origin of this structure has The zero point energy has the following form:
been already noted in E#41). -
Now we analyze qualitatively without exact numerical Ee'=— —f(maé). (54)
calculations the behavior of energy for the small and large a
radii of the throat. According to Eq$14) and (13) the zero
point energy in 3-1 dimensions has the following behavior
for small and large values of the throat:

In the self-consistent case the total energy must coincide
with the ground state energy of the scalar field. Equating
Eqgs.(54) and (53) gives

B,In(am)? c4

a0 a_hc]c
3202 ' 26 @ (Mag),

Eren~ —
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or A a
a=lpy2f(maé). 1 2 3 4

Considering this equation at the minimum of the zero point -20}
energy we obtain some value of the wormhole’s radius. The
concrete value of the radius may be found from an exact
numerical calculation of the zero point energy as a function
of ma But without this calculation we conclude that the
wormholes with the throat’s profilé2) may exist for & -60}

>0.266.

_80 L
VIl. THE MODEL OF THE THROAT:
r(p)=p coth(p/7)—7+a

-100l
We will not reproduce here the density for heat kernel o o :
coefficients in manifest form due to their complexity. They . FIG. 3. The discriminant =Dy ;—4b; b, o of the polynomial
in £ as function ofa. It is always negative for all values af. It
may be found from general formulg84). There are two . : o
. . . . means that the zero point energy is always positive for a small value
parameters in this model and a= 7/a. The dimensional of the radius of the throat
parameter characterizes this kind of wormhole as a whole. '
e st o po 8ot i Fig 3. Fromthis figure and E55) and57 we
form of wérmhole—its ratio of ?he lenath and the radius of conclude that the discriminant is always negative for arbi-
; . g . trary values ofa. It means that the zero point energy is
the throat. By changing the integration variahle-xa we

. . always positive for a small wormhole for an arbitrary con-
observe tha.‘t coefficients, _andB?,_ have the _follow_lng.struc- stant of the nonminimal coupling and an arbitrary ratio of
ture which is clear from dimensional consideration:

the length of throat and its radius.

b 1 The behavior of zero point energy for a large size of the
BfJ dPBzza[bz,zfer by 1€+ byl wormhole @— ) has the following form:
teo 1 3 5 Eren~ — Bs
Bs= J_m de3=¥[b3,3§ + b3 26"+ b3 16+ b3l 32m2m?
_ 1
where by ; depend on thex=7/a only. We note thato, , __ D 23+ Da oE24 Da £+ D
>0 as it is seen from Eq34¢). Therefore we may analyze 3272 2a3[ 3 3% 316 bsol-

the zero point energy for different values of the paramater
From the general point of view we have the following be-
havior of the zero point energy for the small size of worm-
hole that is for the small value @—0:

(58)

The zero point energy will get a minimum for some value of
a if the above expression will be negative. Let us consider
In(ma)? the polynomial

- [b28%+ by 16+ b5 o]

(55)
Using the general expression for coeffici@it it is pos-
sible to find in manifest form the polynomial éin Eq. (55)
for a great value ofv—o0 (a small radius of the wormhole
throat compared with its length

In(ma)?
32m?

Eren~

=

2
32m2a P=hs 33+ bg o2+ bg 16+ g (59)

for different values ofx starting from a small value of it. The
zero point energy will get a minimum if this polynomial is
positive. In the limita— 0 we have, approximately,

J3aln(ma)? 5127(45— 47?) 256m(21—272)
ren _ 2_ <] o P Ly tc S [
E a0 [30&—10£+1], (56) a°P 135 aé 189
and for small value ofr— 0 (a small length of the wormhole N 256m (45— 47) 2, 512m(21-27?)
throat compared with its radius 135 ¢ 945
Eren (15— 7?)In(ma)? 0405 80E 4 7 . 2247 (45— 47?) 368m(21—27?)
=TT 1350raq 240 806H7]. (57 T 65 Y5 T 665
The numerical calculations of the discriminagt="b3, 447 (45— 4m°) N
—4b, b, o of the polynomial iné as a function ofa is 2025 '

124020-17



NAIL R. KHUSNUTDINOV PHYSICAL REVIEW D 67, 124020(2003

v \4 r Pa’ I ct (=, 2¢*[ 15—
= — 2 R
E G 7thr (p)dp G 1 8 ¢ a.
61
&1/6 (61)
Equating this energy with zero point energy
-1 2 '3 hc
C——— Eren:—?f(am,a’,f),
we obtain the relation
15— 72 2_ 2
T a‘=lgf(am,a,§).
L (111
FIG. 4. The plots of the polynomida® for different values of  To find parameters of stable wormholes of this kind we have
the ratioa=7/a. to consider this equation at the minimum of the function

f(am,a,&). Because the functiofi(am,«,§) at the mini-

H H A3 i . .-
In this expression we saved terms updo®. This polyno-  mym is positive, we conclude that the stable wormhole may
mial in the limit«—0 has two complex roots and one is real, exist for @< 18/(15- 72)=3.5. Fora=3.5 the polynomial

5(21-27?) 1 is equal to zero fog=0.278. Therefore the stable worm-
~— - holes with this profile of the throat may exist only fafa
14(45—47?) @ <3.5. This upper boundary depends on the model of the
throat. For example, the wormhole with the profile of the

Because the coefficient witk® is positive the polynomials throat
will be positive for all '

p
=ptan-+
_5(1-27) 1 rlp)=ptan-+a,

14(45—47?) a

gives another boundary, namely/a<36/(7>—6)=9.3.

Therefore, for small values af= r/a we have dow bound- ~ SPecific values ofr,a and a region of may be found by
ary for paramete¢ where the wormhole may exifsee Fig. numerical calculation of the functiof(am,«,£).

4(1)]. The greatew the smaller the low boundary @& For

a>1.136 the conformal connectiof=1/6 will be greater VIII. CONCLUSION

than the low boundary. At the poirt=1.26 two domains . .
appear where the polynomial is positive. The first domain is N the paper we analyzed the possibility of the existence

; . f the semiclassical wormholes with the met(lg and the
0.188<£<0.841 and the second is>0.841[see Fig. 41) o' € o1asS .
for @>1.26]. The low boundary of the second domain will throats profile given by Eqs(2),(3). Our approach consists

increase for greatax and it disappears foit=1.65. At this gf colnsidgring twg Ze?t kehrnel cloelffi(.:ie|$} ar?d E3' Wke |
point the coefficient®; ;=0 and the polynomial turns out to eveloped a met od tor the calculation ° the heat erne
be a paraboldsee Fig. 4l1)] with a positive part in the coeff!c!ent gnd obtained a general expression for an a_lrb|trary
domain: —0.088< §<0.358. For greater we obtain the coefficient in the background). The first seven coefficients

upper boundary ofé where the polynomial is positive be- " Manifest form for an arbitrary profile of the throat are
ngse the coe)f/ficignt witl® is npeg);tive. Starti%g fromy given by Eqs(34) and(35). The sufficient condition for the

=1.65 we have two domains where the polynomial is posi_existence of a wormhole is positivity of bof, and Bs.

tive [see Fig. 4IV)]. First one closes to-0.088< &< 0.358 Some additional conditions may follow from the-t com-
and another one is smaller than some negative valug of ponent of the Einstein's equations.

For «=2.08 the high boundary of the second domain will The common property of both models_ is that the Z€ro
coincide with the low boundary of the first domain and we point energy for a small size of wormhole is always positive

. o o for arbitrary constang. This statement is opposite that ob-
get the only domain where the polynomial is positige : . i
~0.309. For a greater value f this high boundary of tained for the zero length throat model in RE3]. The be

tends to be constamsee Fig. 4V)]. Indeed, in the limite h_awor of the zero point energy for a Igrge wormhole cru-
o we have cially depends on the nonminimal coupliggand parameters

5 L L of the model. We show that the wormholes with the first
a profile of the throat may be a self-consistent solution of
P~ \[E[ —58%+ 552_ §§+ 21 60 semiclassical Einstein's equations if the constant of nonmini-
mal connectioré>0.266. This type of wormhole is charac-
and it is positive for alk<0.254. We would like to note that terized by the only parameter;, which is the radius of the
for a>1.136 the polynomial is positive faf=1/6. wormhole’s throat. The space outside of the throat polyno-
Let us consider now what condition gives the Einstein’smially tends to be Minkowkian and there is no way to define
equations. The energy corresponding for this configuration ishe length of the throat. We would like to note that the mini-
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mal connectioné{=0 and the conformal connectich=1/6  parameter, but a singular background has at the beginning
do not obey this condition. the zero value of the background’s scale. This leads to a new
The second model of the wormhole’s thrdat is charac- form of heat kernel coefficients. Furthermore, in the limit of
terized by two parametersanda. The latter is the radius of large boxR—oe in this background the coefficiels, sur-
the wormhole’s throat and the first is the length of the throatvives and it defines the behavior of energy for large worm-
It is possible to introduce the length of the throat because thbole.
space outside the throat becomes Minkowskian exponen- Another interesting achievement of the paper is develop-
tially fast. A suitable illustration for this statement is Fig. ing the zeta-function approadii3]. The radial equation in
1(1l1). The existence of this kind of wormhole crucially de- this background15) cannot be solved in close form even for
pends on the parametérand the ratio of the length and the the simple profile of the throa®2). We obtain the general
radius of the throata= 7/a. The general condition for formula for the asymptotic expansion of solutiq@d), using
follows from Einstein’s equations, namely<3.5. The which we found the heat kernel coefficieni34), (35) in
wormhole with a very small parameter may be self- general form. After renormalization the zero point energy
consistent, considered by a scalar massive field with a largeay be expressed in terms of tBematrix of the scattering
value of ¢~ 1/a. The scalar field with conformal connection problem(44), (48). More precisely, we need only the trans-
£=1/6 may self-consistently describe wormholes witta mission coefficient,, of the barrier(47), (49). The point is
€(1.136,3.5). Foré=0 we obtain another intervat/a  that the radial equation for the massive scalar field in the
e(1.473,3.5). background(1) looks like a one-dimensional Schiinger
We would like to note that in the limit of zero length of equation(46) for a particle with potentiaf47). This potential
the throata= r/a— 0 there is no connection with the results depends on both the orbital momenturaf a particle and a
of our last papef8], where we considered a wormhole with honminimal coupling constard, as well as on the radius of
zero length of throat. The point is that the model consideredhe throata of the wormhole.
in that paper was singular at the beginning. The scalar cur- In the first model the domain of for which the energy
vature was singular at the throat and there was a singulanay possess a minimum is limited from below. The reason
surface with codimension one. For this case in R&5] the  for this is connected with the fact that the effective mass
general formulas for heat kernel coefficients were obtained

2
which cannot be found to be a limited case of expression for m2=m?+ R = mz_zi
the smooth background1]. The reason for this lies in the (p%+a?)?

following. The heat kernel coefficients are defined as an ex-

pansion of the heat kernel over some dimension parametenay change its sign for somg limited from below. The
which must be smaller than the characteristic scale of theame situation occurs in the short-throat flat-space wormhole
background. For a smooth background we may make thif8] where the scalar curvature is negative, too. This is not the
ratio small by taking the appropriate value of the expansiorcase for the second model. The scalar curvature in this model

|
6y’ +4a—5a’+[4y*+ a(—4+5a)]cosi2y/a)— 2y(—2+5a)sinh 2y/ «)
72 sintf(y/a)[1— a+y cothy/a)]?

may change its sign, depending on the parameters of the APPENDIX

model. For smalk it is negative but starting frora=4/3 In this appendix we reproduce in manifest form some ex-
the domain aroung=0 appears, where the curvature be-yressions which are rather long to reproduce in the text. First
comes positive. This domain becomes larger for larger valuest || let us consider the first five terms of uniform expan-
of a and for « great enough the curvature is, in fact, posi- sjon:

tive. It is in qualitative agreement with the above consider- 1

ation. Indeed for small values af (negative scalar curva- + - &2 4
. ; ST(X)+S (—x)=In(ay) — 5 In(S=4r

ture) we obtained dow boundary foré and vice versa for (x) (=) (@) 2 (S2am)

large values ofx (positive scalar curvatuyave obtained an

* +X.,
upperboundary foré. + E V172kJ S ,dx
k=0 —X
S S
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The coefficients with odd powers of read(we give the integrands only

. 1

Ik
[V_l]_.s+:_5(—1+r{<2+2rkr{<’) . (1412 +2rrp+2r2(—1+3r 2 +6rary—ri+4rpry
o re/1+r2 8r(1+r)%? '
: E(—1+r 2+ 2r 002 ¢
-37.et _ _ _ o 12\2 12\ _ 2,4 ’2 _ "o .(3)
b 1+ 022+ 4r 1+ ri—2ri(1—-8r 2+ 7r = 2ry2—8rir )
[ IS5 2rk(l+rﬁ)3’2 8r (1+r2)7/2{ ( k K k Mk k( K Kk

+2rF[(7= 312 ri+ 2P+ ri(— 1= 10 2+ 120 = Ar2+ 12rr (V) + 2 (5 8r ) ri+ 4r ] — 4rg(2ri?

o3y +4arlrO+ {— (= 14122+ 4r (1+3rD)rp+4r2(—1+8r 2+ 9r. 4+ 3r2+8rr(¥)

128 (1+rp)t?
+HArd(7+430 2 ry+2r (V4 2rd(— 3+ 1702~ 294 |4+ 40r %+ 88 1 (V)

+ro[4(15— 136 [2)ry+40r (V] +4rS(— 1—5r 2+ 120 [+ 23r 2+ 56r r (3) + 4r [ (13— 168 2)rj + 18 (V)]
—rd+24ar2+8rp2—asrr3)+8ri2(1+2r 2 g+ 7r 1= 32r 0% r 2+ rr () + 160 (M, (Ala)

and the coefficients with even powers ofare

1.
[vo]:Eozm(ak)—Eln(s%lr‘k‘),

[V 2 Ep=— . (Alb)

The functionss, are defined by the relation

o

9 9 +kR. ~
@[s+<x>+s-<—x>]——k|2 a 2pf7kRS§pfl<x>dx+k§O v Ep

=> Vlfzpf Sop-1(kp)dp+ > v %Ps
p=0 -R p=0

Here is a list of the first four functions, with odd indicegherer=r(p) andz=1+ k?r?(p)]

s_,=rz 2

3r
+Zf5/21[_3r72+rrrr]+zf7/2

25
grr’z},

1
sl=z3’2r[§(—1+r’2+ 2rr") + g{l—4rr”}

S3= e [52( 1+r’2+2rr”)2+§ 21 (1122 = 2r (= 5+8r " —ar2(2r 241 1) + 4r3r ()

5r
7/27[5{_1q_1+r12)r/2

1

5 {1 24 =160 (1420 )+ 322 (r 2411 ) — 16 ) 42
1

—3r(1+5r"2)r"+2r2(3r"2+5r' 1)} + g{—r’2(19+ 120r'2)+r (34200 "2)r"—2r2(15r"2+ 22r 'r ®)) + 2r 3 (4
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175
+Z_9/2_8 {gr’z(—1+r’2+2rr”)+

1989r'?
+Z_11/2{—(—3r’2+rr”)

1
200

. _13/2{12155r "
Z —_—

{1014 "4+ 38r%r"2+1'2(25—832r")+56r2r 't

32 128

5r 2
s5=z7’27[53(—1+r’2+2rr”)3+ %{(—l+r’2)2(3+ 1122y +12r (= 141" ) (L+r")(4+5r'2)r"—4r?(—27"?

+48 212261 't )+ 26r '3 (3)) + 24r3(—2r"3 = 2r 'rr @) — W) 4 1 2r () 4 8r4(5r () 24 6r7r ()} 4 6—64{(—1+r’2)
X (3+224r'2+960r'4) —2r (—39—860r "2+ 1424 '*)r" +8r2(—54r"?+ 186 "%r"?— 69r 'r 3+ 80r '3r (3))

1
+8r3(12r3+ 32 'r"r O+ 1r®) — 16r4(12r ) 24+ 15" (M4 3r 1)) 4+ 16r5r (O} + it 112r'24+960r"*—4r(9

+424 "%+ 192 ") " + 16r2(21r "%+ 106 2r"?+ 28 ')+ 48 3r ) — 64r 3(7r"3 + 27 "1 Bl r (D 61 7 2r (4)

7r
+32r4(9r® 24 13" r M+ 451 (9)) —32r5r (O} +z*9’2§ 5&2(—14r"2+2rr")[— 29 "4+r'%(29— 151"

+3rr"(—1+2rr")+20r?r'r(3)] +§{—(— 1+r1'2)r'2(145+ 2628 '2) +r(— 15— 283% "2+ 2592 ' )r" + 2r?(12& "2
+6432r"2+191r '@+ 284 '3r(3)) — 2r3(150r "3+ 638 'r"r 3+ 5r M)+ 165 2r ) + 8r4(7r(3) 24+ 1207y ()
+7r'rO)}+ ;—4{—r’2(145+ 525@ '2+ 20160 '*)+3r(5+ 1776 "2+ 17952 '4)r" — 4r?(113 ">+ 8440 '*r"?

+166 '1(3)+3864 3 (%) + 4r3(676r"3+ 2816 'r"r ¥+ 5r ()4 75621 (4)) — 8r4 (583 2+ 93r"r D)+ 46r 1 %)

+8r5r(®}

or
+211’2E{175'252(— 1+r/2+2rr") %+ L—f{(— 1+r1'2)r'2(175+ 15054 '?) + 2rr '%(4413+ 1976 ')r”

1
—14r2(19"?+ 813 "2r"2+ 28 '3+ 414 3r®)) + 4r3(133 "3+ 63 'r"r O+ 221r ' 2r )1 + aalr '2(175+30108 2
+393408 %) —8rr'?(2119+ 88298 '2)r"” + 4r2(133 "%+ 65998 '2r"?+ 196 't )+ 31264 '3r (3)) — 16r3(628 "3

+2729 ' r"r @+ 791r ' 2r M)+ 8r4(69r 32+ 110 "r (M + 54 'r (®))}

11r
+z—13’2§[2215r'2{—37(—1+r'2)r'2

1
—9r(1+5r'?)r"+2r%(9r"?+5r 'r(3>)}+§{— r'4(8177+332178'2)+rr'?(1989%+ 396718 '?)r" — 4r%r'2(21015"?

12

13rr
+z e {121553 2= 1412+ 2r1")

+10168 'r®)+2r3(631r"3+ 2782 'r"r®+ 815 '2r(4))}

1 2 2 2 2 2 3 - 17/ 372712%r " 2
+ g {r' (12155 2052348 '%) — 1484372 '*r"+ 4r%(34503 "%+ 16880 'r¥)} |+ 27174 ——5—(=3r' 2+ 1r")
" 704012%r '° A2
z 1024 |’ (A23)

and here is a list of the first three functioggwith even indicegr =r(R) andz=1+k?r?(R)]

So=—r?z"1,

15,-2r 12:|

1
S,= —2‘22r2[§(1—4rr”)+g(—1+r’2+ 2rr"y | —z %[ =3r'%+rr"]—-z 4 7

124020-21



NAIL R. KHUSNUTDINOV PHYSICAL REVIEW D 67, 124020(2003

S4= —z‘3r2{4§2(—1+r’2+2rr”)2+ E(—1+1"3)(1+6r'2)—2r(—4+5r"2)r"—2r2(4r"2+r'r®) 4 2r3r (4}

1
+ 1—6{1+ 12r'2—Ar (3+4r'2)r"+8r2(3r"%+2r 'r ) —8r3r A | — 27432

1
+r2(4r"2+5r' )]+ g{—(1+4r’2)(—1+ 15r’2)+2r(1+53r’Z)r”+r2(—17r”2—22r’r(3))+r3r(4)}}

1
—z‘5r2{30§r’2(—1+r’2+ 2rr")+7{3r'2(5+ 172'%) — 4321 '*r" + Ar3(5r"2+ 7r’r(3))}}

g—-12—1+r"?)r"?2=2r(1+5r"?)r"

¢/ 56572 ar 24 10m| g? 1695 °r " A%
z T( r re’"y|—z —16 I (A2b)
Here are the functions,, w, andw. with definitions of the corresponding integrals:
2 1 dvv v
W, =12 ——a+32a3J —_ 1— 12+ 20| ———— ,
a 3 0 e27rva+1 1+ 1_1/2
S) 4
wb=—§7r4a2+a772 —16(y+21In2)é+ §(3+2y)}—8w2aIn(2a)[1—tanf(wa)](1—2§)—32772a§V1
4
+3 ma[V,+6V,—4maVs+2mraV,—5m?a’Vs],
Q)C:U1+U2+U3+U4+U5+U6. (AS)
|
Here we introduced five functions fasy, y afocf - )dv+ aflfg(av) vdv
2= 1T lav)—Tm —2,
ma (1 In(2av) ! v 0l+Vl-vw
= — Qv
Y2 Jo cosR(mrav)
U Jmf dv 1+ 1
_J‘l vdy n v . 1 | s=ma | 5(31/)7 273,72
o et 1| \ 1+ 122 14102
T (1 2
+—aj fs(av)vdy
1 pdv v 3 Jo s(av) 1+J1-1?
szf |n y
0o e 41 | 1+1-17? 1 1
+—
— 22
1 dv y 2(1++1-17)
V3:f In y
o costf(mav) \1+1—v? )
U T fl fodv | v
= — n s
jl dvy1l—1? Y 2o costf(mav) \1+1—v?
~ Jo cosR(mar)’
U w? (e fudv
1 sinh(wav)dv 5= Tf 2
V5=j L[v\/l—vz—arccow], 1 v?coslf(mav)
o cosk(mavr) 2
N T fl f dv | v
. — n
and six form, 4 Jo cosH(mav) 1+J1-1?

14
— + 1
. 2520 0 1+1- vzl
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2 o f (24 1)d 376r 59487
U ™[t Ddv. FOR Sl
8 J1 v* cost(mav)
+3W2f1 fodv |, v f(v)=32me? 54477ng 8824
v n V)= TS — — A TAA =
16 Jo cosH(mav) 1+1-2? ® 3 315
N v +1 v and
1+V1-12 3 (1+\1-1%?) )
a
where I(v)=—-Sdw),
4
f1(v) = 375145981 5(v) — 436381 5(v) +4773814(v) My(v)= 72 qu)+1V8d(V)
3 8 )
—1768015(v)],
32mé 8 I,(v) 2(350( )+17 Sc/( )+1 2sd( ))
T a vV)=mT"\| 5 14 —VOC (Vv e v)l,
fa(v) = —3—[290T5(v) — 10M5(¥) ]~ 37[ 324481 5(v) ! 2 48 48

—-641131 +556941 — 176801 , 259 29
() 4 5(v)] Hg(v)=72% 2SAdv)+ == vSC (v)+ == °S(v)
384 384
64mré 32
fs(v)=— —5 [ 16l15(v) = 5Il5(1) ]+ 575 672015(v) 1
+ @VE’SC"’(V) ,
—1077313(v)+ 7951 ,(v)—221d15(v)],
220 sinh(rav)
folv)=——=, SAv)=————.
630 cost(7av)
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