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We present results from nonrotating axisymmetric stellar core collapse simulations in general relativity. Our
hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global
dynamics of the collapse. Contrary to traditional approaches based or-théoBnulation of the gravitational
field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a
regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of
interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star
formation. Perhaps most importantly this procedure allows for the extraction of gravitational waves at future
null infinity, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our
results concerning the gravitational wave signals show noticeable disagreement when those are extracted by
computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the
other hand. We have a strong indication that for our setup the quadrupole formula on the null cone does not
lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show
typical oscillation frequencies of about 0.5 kHz.
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I. INTRODUCTION in which spacetime is foliated with a family of outgoing light
cones emanating from a regular center. Because of a suitable
Supernova core collapse marks the final stage of the stecompactification of the global spacetime future null infinity
lar evolution of massive stars. If the core collapse and/or thés part of our finite numerical grid where we can unambigu-
supernova explosion are nonspherical, part of the liberatedusly extract gravitational waves. This remarkable feature is
gravitational binding energy will be emitted in the form of the main motivation behind our particular choice of slicing
gravitational waves. According to estimates from numericaland coordinates, which clearly departs from earlier investi-
simulations, the total energy emitted in gravitational wavesyations. We note, however, that we have not modeled the
in such events can be as high as 01 ,c? [1-4]. Nonsphe-  detailed microphysics of core collapse supernovae, which is
ricity can be caused by the effects of rotation, convection antbeyond the scope of the present investigation. Instead, we
anisotropic neutrino emission leading either to a large-scalenly take into account the most important features for both,
deviation from spherical symmetry or to small-scale statistithe gravitational field and the hydrodynamics, and those will
cal mass-energy fluctuatiotifr a review, see e.g[5]). Su-  be introduced in the upcoming section.
pernovae have always been considered among the most im- Characteristic numerical relativity has traditionally fo-
portant sources of gravitational waves to be eventuallcused on vacuum spacetimes. In recent years the field has
detected by the current or next generations of gravitationalvitnessed steady improvement, and robust and accurate
wave laser interferometers. If detected, the gravitationathree-dimensional codes are nowadays available, as that de-
wave signal could be used to probe the models of core colscribed in[10], which has been applied to diverse studies of
lapse supernovae and to study the formation of neutron starblack hole physicge.g.[11]). In black hole spacetimes, only
Earlier studies of axisymmetric supernova core collapseéhe geometry outside a horizon is covered by the foliation of
were performed using Newton’s law of grav(t®,3,6]. More  light cones. This is not the case for neutron stars or gravita-
recently, effects of general relativity have been included untional collapse spacetimes which must include a regular ori-
der the simplifying assumption of a conformally flat spatial gin. Up to now, characteristic vacuum codes with a regular
metric [4,7,8]. In all existing works gravitational waves are center have only been studied in spherical symmetry and in
not calculated instantly within the numerical simulation, butaxisymmetry[12].
they are extracted posterioriusing the approximation of the The inclusion of relativistic hydrodynamics into the char-
quadrupole formalism which links gravitational waves to theacteristic approach along with the implementation of high-
change of the quadrupole moment of the simulated mattaresolution shock-capturinHRSCO schemes in the solution
distribution. procedure was first considered by Papadopoulos and Font
In this paper we present the first results of a project aime@13—-15. First applications in spherical symmetry were pre-
at studying the dynamics of stellar core collapse by means aented, dealing with black hole accretidt6] and the inter-
numerical simulations in full general relativity. The trade- action of relativistic stars with scalar field47] as simple
mark of our approach is the use of the so-caltédracter- models of gravitational waves. Axisymmetric studies of the
istic formulationof general relativity(see[9] for a review, Einstein-perfect fluid system were first discussed1ig]. In
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this reference we presented a nonrotating axisymmetric, fullputgoing light cones; is a radial coordinate, anfland ¢ are
relativistic code which could maintain long-term stability of standard spherical coordinates. Assuming axisymmeiig,
relativistic stars and which allowed us to perform mode-a Killing coordinate. In order to resolve the entire radial
frequency computations and the gravitational wave extracrange from the origin of the coordinate system up to future
tion of perturbed stellar configurations. The core collapsenull infinity, we define a new radial coordinate=[0,1]. The
simulations presented in the current paper are based on thigdial coordinate is a function of the coordinate, which
code, which is described in detail in R¢L8]. can be adapted to the particular simulation. In this work,
Whereas we found good agreement in the pulsation stucexcept where otherwise stated, we use a grid funatio)
ies presented in Refl18] between the gravitational wave _1qq tan€ x), for which the limitx—1 corresponds ta
signal extracted at null infinity and the corresponding quad-_, Moreover, in order to eliminate singular terms at the
rupole gravitational wave signal, this is not the case in th ’

; . oles (¢=0,7) we introduce the new coordinate
present studies of core collapse. The numerical results pre-

. . L o . = —Co0sé.
sented in this paper indicate that the gravitational wave sig-
nal we calculate with our setup of the quadrupole formula on o _
the light cone does not correspond to the true physical signal A. The characteristic Einstein equations
from axisymmetric core collapse. The geometric framework relies on the Borftidiative

The paper is organized as follows: In Sec. Il we describemetric[19]
the mathematical and numerical framework we use in the
simulations. Section Ill deals with presenting the initial data 2
of the unstable equilibrium stellar configurations we evolve.
Section IV is devoted to discuss the numerical simulations,
with emphasis on the collapse dynamics. In Sec. V we ana-  +r%(€?7d6*+e”?sin*6d¢?). ()
lyze the corresponding gravitational wave signals. A sum-
mary and a discussion of our results are given in Sec. VIWe substitute the metric variableg,(/,U, y) by the new set
Finally, tests to calibrate the code in simulations of core col-of metric variables 8,5,U, %),
lapse are collected in the Appendix.

V
=— (Tezﬁ— U2r2e27)du2—2e2Bdudr—2Ur2e27dud0

V—r
o ()

Il. FRAMEWORK AND IMPLEMENTATION S=
r

We only briefly repeat the basic properties of our ap-
proach here. The interested reader is referred to our previous U
work [18] for more details concerning the mathematical U=—, (7)
setup and the numerical implementation. As described in sing
Ref.[18], we work with the coupled system of Einstein and

relativistic perfect fluid equations - v ®
YT T o
Gas=Tas. & si’e
V,T3P=0, (2)  inorder to obtain a regular expression in the Einstein equa-
tions in particular at the polar axis. The origin of the coordi-
V,J2=0, (3) nate systenn=0 is chosen to lie on the axis of our axisym-

metric stellar configurations, where we describe boundaries
where V,, as usual, denotes the covariant derivative. Theand falloff conditions for the metric fields. The complete set
energy-momentum tensor for a perfect fluig, takes the of Einstein equations reduces to a wave equation for the

form quantityy [see Eq(8)] and a hierarchical set of hypersurface

4) equations for the quantitiesB(U,S) to be solved along the
light raysu=const. The particular form of these equations is
explicitly given in Ref.[18].

Tap=phUaUp+ PYap-

Here p denotes the rest mass densitys1+¢e+ 5 is the
specific enthalpye is the specific internal energy, amdis
the pressure of the fluid. The four-vecta?, the 4-velocity B. The relativistic perfect fluid equations

of the fluid, fulfills the normalization condition,u®u® The axisymmetric general relativistic fluid equations on
= —1. The four-currend® is defined asgl®=pu®. Using ge-  the light cone, Eqgs(2) and (3), are written as a first-order
ometrized units ¢=G=1) the coupling constant in the field flyx-conservative, hyperbolic system for the state-vetior

equations isk=8m. We further use units in whiciMg =(UY,UX,U,,U% = (T4, T, T4 ,34). Following our previ-
=1. Moreover, an equation of statEOS needs to be pre- oys work[17] we have not included the metric determinant
scribed,p=p(p,¢), as we discuss in Sec. Il C below. in the definition of the state vector. Explicitly, in the coordi-

Our numerical implementation of the field equations ofyates £ x* x2,x3) = (u,x,y, ¢), we obtain
general relativity is based on a spherical null coordinate sys- _
tem (u,r,6,¢). Here,u denotes a null coordinate labeling doU"+g;F!"=8", (9)
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doU*+ (9j[:ix: s, (10 In our EOS the total pressure consists of a polytropic part,
which takes into account the contribution from the degener-

doUy+ ajFiyzsy, (11)  ate electron gas, as well as the nuclear foeésigh densi-
ties), and a thermal part due to the heating of the material by

U+ Jj Fid=gA (12) a shockp=p,+ pw. More precisely, the polytropic part fol-

lows the relation

The flux vectors are defined as r
kyp' 1 forp<py,

. . = 21
Fla=T", (13 Pp kop'2 for p>p,, (2Y)
Fix=Tx, (14 where we assume a nuclear density=2x 10" gcm 3.
) ) For a degenerate relativistic electron dasI';,;=4/3 and
Fl,=T,, (15  k=4.8974894 10" [cgs]. To model the physical processes
_ _ which lead to the onset of the collapse, we reduce the effec-
Fl4=J), (16)  tive adiabatic index front" to I'; settingx,= « at the initial
. slice. Moreover, to model the stiffening of the EOS at
and the corresponding source terms read nuclear densities, we assurfig=2.5. The value of the poly-
ab . —ab ¢ ab tropic constantx, follows from the requirement that the
§*=—[InN(N=0)] s T**+9*°S, + T°,(g*") ¢, (17 pressure is continuous at nuclear density. The thermodynami-
cally consistent internal energy distribution reads
1
Sa= — 5PhUUg(0*) a+ p-[IN(V=0)1T%, (19 o
P for p<pn,
-
S'=~[In(V=9)] 3", (19 “©=) . (22
Z_pl2" 14 g forp>p,.
wherein a comma is used to denote a partial derivative. I',—1
The fluid update from time&" to u"** at a given celi, _ _ _ .
is given by The requirement that, is continuous at nuclear density
leads to
Au . .
Uin,;dZUin,j—E(Fiﬂ/z,j_':i—l/z,j) e (T,-T)ky 1, 23
N (T~ DT, -1
——(G; 11— G i)+ i I
Ay(G"'“’2 Gij-+AUS RO o thermal contribution to the total pressure, we assume

an ideal fluid EOS
where the numerical fluxes; and G, are evaluated at the
cell interfaces according to a flux-formula, the one due to pin=Tn—1)pen, (29
Harten, Lax and van LedHLL) in our cas€20]. The char-
acteristic information of the Jacobian matrices associatedith an adiabatic indeX'y,=3 describing a mixture of rela-
with the hydrodynamical fluxes, which is used in this flux tivistic and nonrelativistic gases. The internal thermal energy
formula, was presented elsewhgi€]. We use the monoton- ¢, is simply obtained from
ized central difference slope limiter by van Lded] for the
reconstruction of the hydrodynamical quantities at the cell €ih= €~ €p. (25
interfaces needed in the solution of the Riemann problems.
This scheme is second order accurate in smooth monotono¥¥e can summarize the EOS in a single equation:
parts of the flow and gives improved results compared to the
monotone upwind scheme for scalar conservation laws Fyp—1) &
(MUSCL) scheme applied ifil8] (for an independent com- p=K< I=g5—7)p +(Tn—1)pe
parison, se¢22)).

Iy—-1)(I'-r
. _ ( th_ )( — 1) Kp,I.;ilp, (26)
C. Equation of state (T'2=1)(I'1—1)

We use a hybrid EOS which includes the effect of stiff- _ ) )
ening at nuclear densities and the effect of thermal heatin%/herer and« change discontinuously at nuclear densify
due to the appearance of shocks. Such EOS was first consiiom I's 0 I'; and «; to «,. For the sound speed,, we
ered by Janka et g23], and has been used for core collapse®Ptain
simulations both using Newtonian gravit$,24] and in gen- .
eral relativity under the assumption of conformal flatness hc§=;(l“pp+ TPu)- 27)

[4,7,8.
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corresponds tep.=1.62<10" 8 in code units ¢=G=M,,

After the time update of the state-vector of hydrodynami-— 1).

cal quantities, the@rimitive variables p,u*,u, ,€) have to be

To initiate the gravitational collapse we set the adiabatic

recomputed. The relation between the two sets of variables {§dex T’y in the hybrid EOS(26) to a value of 1.30, which
not in closed algebraic form. Using the hybrid EOS, suchMimics the softening of the EOS due to capture of electrons

recovery is performed as follows: With the definiti®i®
=g°iTaT?, we obtain[14]

S““=(%—1—e

g+ 1+ e) (IN2+p%g™, (29

where in our null coordinate systegt''=0. Let F(p,€)

= B. From Eqs.(26), (28) and the definition of the specific

enthalpyh we obtain the 3 equations for the 3 unknowns
p ande

F(p,e)=\L+(1+¢)?, (29
F(p,e)=(T'ih—1)e+G(p), (30
p=H[1l+e+F(p,e)]. (3D

In these equations we made use of the abbreviations

SUU
L= o (32)

_ Fpn=1) (., Tp=1T =Ty [,
G(’”"‘<1_ F—l) DI <
(33
_(JU)Z
I= Tuu ' (34

From Egs.(29)—(31) we deduce a single implicit equation

for the rest mass densigy

p

2
fimp(p)==(|—) —2’:3(1+e)—L=o, (35)

where we consider the internal energy as a functiop of

(36)

€= —

Fin

P
T G(p)])-
We solve Eq.(35) for p with a Newton-Raphson method.

IIl. INITIAL DATA

and due to the endothermic photodisintegration of heavy nu-
clei. The chosen value is within the interval range analyzed
in previous studies of rotational core collapse based on New-
tonian physicg3] and on the conformal flat metric approxi-
mation of general relativity4,7,8.

Since rotation is not included in our current implementa-
tion, the equilibrium initial models of the iron core are
spherically symmetric. Furthermore, in the evolution of these
data during the phases of collapse, bounce, and beyond,
spherical symmetry is conserved. Therefore, since we are
mainly interested in simulating core collapse as a source of
gravitational waves, we add nonradial perturbations on top of
the spherical data. Our analysis is thus restricted to collapse
scenarios where the effects of rotation are unimportant and in
which stellar evolution has led to asymmetries in the iron
core, e.g. due to convectid@5]. The strongest gravitational
wave signals are expected for perturbations of quadrupolar
form. Hence, we further restrict our analysis to this case,
varying the form and amplitude of the perturbation in the
initial data. We note that the evolution of such data, however,
can produce an arbitrary type of perturbation within the class
of the imposed symmetry.

We have classified the different models as follows: In case
2l the spherical model is unperturbed; in c&eve prescribe
a perturbation of the rest mass density

e
r2)7

where pg denotes the spherical density distribution. Finally,
in case we prescribe a perturbation of the meridional ve-

locity component
r?
r/)

In the above two equations is a free parameter describing
the amplitude of the perturbation, aRdlenotes the radius of
the iron core R=1.4x 10° km). We note in passing that in
[18] we already used a perturbation of the foghto study
quadrupolar oscillations of relativistic stars. We have further
classified model$8 and ¢ according to the amplitudé of

Sp=Apssin (37)

u,=Asin (38

In the final stage of the evolution of massive stars, thethe perturbatiorie.g. case?01 would correspond to an am-
iron core in the stellar center has a central density of abouglitude A=0.1).

pe=10"Ygcm 2 when it becomes dynamically unstable to
collapse. As the pressure of the degenerate relativistic elec-
trons is by far the most important contribution to the total

IV. CORE COLLAPSE DYNAMICS

pressure, the pressure in the iron core can be approximated This section deals with the description of the global dy-
by a I'=% polytropic EOS. In order to obtain an initial namics of our core collapse simulations. Relevant tests of the
model for the iron core, we solve the Tolman-Oppenheimercode which assess its suitability for such simulations are col-
Volkoff equation[18] with the above central density, which lected in the Appendix.

124018-4



AXISYMMETRIC CORE COLLAPSE SIMULATIONS . .. PHYSICAL REVIEW D 67, 124018 (2003

10° 60
_______ nucleardensity __________________| _________________|
1014 L
@
T { 6.0e+14 £ a0
O 13 )]
2107 ¢ £
_é‘ ] -
g 4.00+14 5
g g
— t .
%‘012 3 { 3.0e+14 s
] S 20
40 41 L2
1011
[ ) L ‘ . |
o . . . . . 0 R DR R BN Sy
0 10 20 30 40 50 60 0 200 400 600 800

Bondi time [ms] radius r [km]

FIG. 1. Evolution of the central density for the collapse model FIG. 2. Spacetime diagram for the collapse madePlotted is
2801 using a semilogarithmic scaling. During the collapse the centhe lapse of proper time as a function of the radial coordinaféie
tral density increases by 4.5 orders of magnitude. When reachinglack solid lines correspond to a subset of the light curves by which
supra-nuclear densities, the collapse is stopped as a consequencenef foliate the spacetiméhere is one light cone after every 5 ms,
the stiffening in the hybrid EOS at about 40 ms after the collapsevhere time is measured by an observer at the origihe dashed
was initiated. The central density finally approaches a new equilibcurves correspond to different mass shelldd=0.2M,
rium supra-nuclear value. Shortly after bounce, oscillations appea®.4M ,0.6M,0.8M ,1.0M »,1.2M, . After about 40 ms, a shock

in the central densitysee inset (thick solid ling forms in the interior region close to the origin. The
diagram was obtained from a global simulation with 800 radial
A. Collapse and bounce zones, extending the grid to future null infinity.

When evolving the initial models described in the previ- ) ) )
ous section, the core starts to collapse. Figure 1 shows tHdMP Eg be a?ixpte(ﬂtyppe}l values for our simulations are
evolution of the central density for mod#01 as a function S=10 °---107%). In addition, to compute the mass inside a
of the Bondi timeug . The lapse of Bondi time as seen by an fixed radius, we make use of the relation
observer at infinity is defined by .
— 2,0—2
dug= we"du, (39 M—4wfo r?e 2AT,dr, (42)

whereH =lim,_,..8. The conformal factow relates the two-

geometry of the Bondi metric valid for the spherical collapse mod#l Figure 2 shows that

at the beginning of the collapse phase, the spacetime metric
is close to the Minkowski metric, which is reflected in the
diagram by the light cones being almost parallel straight
lines. The effects of curvature can be most strongly seen
close to the origini(=0) after about 40 ms, when the proto-
neutron star has formed. We observe a redshift faetor
relating the lapse of local proper time at the origin to the
. . lapse of proper time at infinity of~1.12.
as ds;=w?ds’. When the central density reaches nuclear Correspondingly, Fig. 3 shows different snapshots of the
density at a Bondi time of about 40 ms, the pressure inradial velocityu" at evolution times close to bounce. In the
creases strongly according to E@1). The central density inner region(the so-callechomologousnner corg, the infall
grows further, but its increase is soon stopped. Afterwards, W¥elocity measured as a function of radius is proportional to
drops below its maximum value, finally approaching a quasithe radius. The homologous inner core shrinks with time.
equilibrium supranuclear value when a “proto-neutron star"The outer limit of the homologous region, i.e. the sonic
has formed in the central regi¢@6]. point, where the local sound speed has the same magnitude
Figure 2 shows a spacetime diagram for the core collapsgs the infall velocity, finally reaches a radius of less than 10
simulation of modek( (the main aspects are similar for all km after about 40 ms. At that time, the shock front forms,
our models. The diagram shows different mass shells andyhich moves outwards with a speed-eD.1c initially. Dur-
the location of the shock frorithick solid ling). In order to  ing its propagation it is gradually slowed down by the inter-
localize the shock front, we search for coordinate locationgction with the infalling material in the outer region. It is
where the x-component of the 4-velocityw* fulfills uf  worth stressing the ability of the code to resolve the steep
—u’,,;=s, with s being a threshold value for a velocity shock front within only a few grid zone@ypically three.

ds?=e?7d 6+ sir e~ 27d 2 (40)
to the two-geometry of a unit sphere

ds3=d63+sint0gdd3 (41)
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FIG. 3. Snapshots of radial velocity profile$, plotted as func- FIG. 5. Radial distribution of the internal energy(solid line)

tion of radiusr for the collapse mod@l. The snapshots are taken shortly after bounce s =41 ms) for the collapse model. The
betweerwi; =30 ms ant.z 45 ms, with a delay of 1 ms between different contributions from the polytropic pae} (dashed lingand
subsequent outputtne TQ'O"d lines correspond tgy= 30, 35, 40, 45 the thermal partky, (long-dashed lineto the total internal energy
ms). The shock formatl_on takes_place at at_Jout 40 ms. Ir_1 the OUL e also shown. In front of the shock which is located at a radius of
part of the plott_ed region, the infall velocity of matter increases __ km, the thermal energy vanishes.

monotonically with time.

. N tion shown in Fig. 5. We have verified that the global energy
This can bg further seen in Fig. 4, wherg we P'Ot the resbalance(see Ref[18] for more details is well preserved in
mass density at the shock front for a simulation of the o, simylations(maximum errors are of the order of 0.5—
collapse modet01. 1%).

Matter falling .through. the outward prqpagatlng shock is Figure 6 shows two-dimensional contour plots illustrating
heated substantially. This can be seen in Fig. 5, where WE e dynamics during collapse and bounce for moBelL.
plot the internal energy distributioe in the central region .. ihis particular simulation we used a resolutioh, (N )
s_hortly aftgr bounce. The figure further shqws the Contribu'=(600,12). The figure displays isocontours of the res){ mass
tion to the internal energy from the polytropic part, 'E'L’IZ), density covering only the inner part of the iron core up to a
and the thermal part, E§25). In the very central region, the radius of 30 km at 40 mé.e. at bounce; top panekt 45 ms
polytropic contribution constitutes the dominant part. In con-(When the shock has reached a radiL;s~df4O km: middle
trast, the thermal energy dominates the total internal energ ane) and at 50 mgwhen the shock wave is Io’cated at
in the post-shock region for radii larger than a certain valu 250 km: bottom panel The velocity vectors overlayed
(the shock forms off center~13 km in the specific situa- onto the contour plots are normalized to the maximum ve-
locity in the displayed region. During the collapse phase un-
til bounce at nuclear densitigsipper panel the initial as-
pherical contributions do not play a major role—the radial
infall velocities dominate the dynamics. After bounce
(middle and lower panglthe newly formed neutron star in
the central region shows nonspherical oscillations, with fluid
velocities up to about 2 10™ 3c. Qualitatively, the dynamics
for the collapse modef01 is very similar to what is shown
in Fig. 6 for modeB01. However, the particular form of the
nonspherical pulsations created after bounce differs.

B. Fluid oscillations in the outer core

When analyzing the dynamical behavior of the fluid after
FIG. 4. Surface plot of the rest mass density distributipn bounce, we find that the meridional velocity oscillates
around the shock front for the collapse modéil. 50 ms after the strongly in the entire pre-shock region. This can be seen
collapse was initiated, the shock has reached a radius of about 236om the solid curve of Fig. 7, where we plot the meridional
km. We plot every radial zone using a radial gri¢ 100tan@x)  Vvelocity component ,=ru* for modelB01 as a function of
with 450 radial zones. The shock front is resolved with only threethe Bondi time, and at coordinate locatior 833 km and

radial zones. The aspherical nature of the data is most prominent §t=0.5. These oscillations are created directly after the for-
the shock front. mation of the proto-neutron star in the central region of the
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FIG. 7. Meridional velocity component as a function of Bondi
il time at the fixed locatiom=833 km andy=0.5 for model801.

The radial location was chosen well ahead of the shock. The solid
line corresponds to the meridional velocity as extracted in our co-
ordinate systemyp,=ru?, in units of the speed of light. The
dashed line corresponds to the meridional velocity evaluated in in-
ertial Bondi coordinates defined at future null infinity. See text for
more details.

-1.90

-2.70

0.50
30

-0.30
2 25

-1.10

oscillation is of the order of,=2x10 “c. Note thatv,
vanishes at the polar axis and at the equator, so that the
average velocity is substantially smaller than that shown in
, . : o : Fig. 7. Taking into account that the total mass in the pre-
2 S . 8 g " shock region is of the order d¥,.~ 1M, the kinetic en-
ergy of the oscillations is roughly

FIG. 6. Contour plot of the rest mass density distribution for
modelB01 at a Bondi timeug=40 ms(upper pane| ug=45 ms
(middle panel andug=50 ms(lower panel, obtained from a glo-
bal evolution extending the grid to future null infinity. We only
show a fraction of the core up to a radius of 30 km. Overlayed areThis energy is comparable to the total energy radiated in
velocity vectors. At bouncéupper panel the matter distribution is, ~gravitational waves in a typical core collapse evEBy].
to a great extent, spherically symmetric. In the later phasedgdle  Transferring such an amount of energy to the pre-shock re-
and lower panels the fluid dynamics are characterized by aspheri-gion seems unphysical, as gravitational waves interact with
cal flows related to the oscillations of the newborn neutron star. Thenatter only very weakly. Instead, as we describe next, we
matter flow shows reflection symmetry with respect to the equatorgonclude that the oscillations are mainly introduced by our
which is inherent to the initial data and well preserved during thechpice of coordinates.
evolution. Following the work of Bishop et al.10] inertial coordi-
nates can be established at future null infinify. The an-
gular inertial coordinatedg can be constructed solving the
partial differential equation

uy = 50.00 ms

N SR R A
10 15
7 [km]

-1.90

-2.70

1 .
Ekm~EMpg(uz)%leo*SM@c% (43

numerical domain. The only possibility to propagate infor-
mation instantaneously.e. on a slice with constant retarded
time u) from the central region to the outer layers of the iron
core is through the metric, since sound waves would need (d,+Udy) 65=0, (44)
several 10 ms to cover the distance. There are two possible

explanations for these oscillations. Either they are createdith initial data g(u=0)= 6(u=0). Instead of solving Eq.
when gravitational wave energy is absorbed well ahead of44) directly, we determine its characteristic curves,

the shock, or they are created by our choice of coordinates,

i.e., they are gauge effects. In the latter case, the oscillations de

would not be caused by a real flow, but as a consequence of du u(e,u), (45)
the underlying coordinate system in which we describe the

flow. 6(u=0)=0g, (46)

To clarify the origin of the oscillations we estimate in the
following the kinetic energy of the oscillations, assumingalong whichég is constant. With suitable interpolationg;
that they are a physical effect. The average amplitude of thean then be determined for arbitrary angtes
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Making use of Eq(44), it is possible to define an “iner- With our null foliation it is natural to evaluate the quadrupole

tial” meridional 4-velocity component moment (51) as a function of retarded time, i.e., for the
evaluation of the integral we completely relax the assump-
. d6g T’ N tion of slow motion.
ut=—o (u —Ul7uY). (47 It is well known[33] that the third numerical time deriva-
u

tive appearing in Eq52) can lead to severe numerical prob-
lems resulting in numerical noise which dominates the quad-

The_ d_ashed Iine_ in Faig. 7 shows the correc(éid(_ertial“ ) rupole signal. Therefore, we make use of the fluid equations
meridional velocityru®. Remarkably, the oscillations have i, e Newtonian limit to eliminate one time derivative. De-
almost disappeared, which clearly shows that gauge effeciﬁhing the “Newtonian velocities”

can play a major role for the collapse dynamics in the pre-
shock region.

dr
v1=u’=d—xux, (53
V. GRAVITATIONAL WAVES
A. Quadrupole gravitational waves uY
.. L. UZZI’UGZF.—, (54)
The common approach to the description of gravitational siné

waves for a fluid system relies on the quadrupole formula

[27]. The standard quadrupole formula is valid for weakthe quadrupole radiation formul&2) can be rewritten with
sources of gravitational waves under the assumptions of slothe use of the continuity equation as the so-cafiest mo-
motion and wavelengths of the emitted gravitational wavesnent of momentum formula

smaller than the typical extension of the source. The require-

ment that the sources of gravitational waves are weak in- d2 R .

cludes the requirement that the gravitational forces inside the Noz—z( wsin20J dr,J sing’'de’r’3

source can be neglected. This first approximation can be ex- dug 0 0

tended based on post-Newtonian expansi@os a detailed

description see the recent reviey28] and references X p[v4(3 co§0’—1)—3vzsin0’cose’]). (55)
therein.

In a series of paper29-32, Winicour established that
the quadrupole radiation formula can be derived in the NewWe henceforth work with Eqg52) and (55) for estimating
tonian limit of the characteristic field equations. gbe the  the quadrupole radiation. In addition, following earlier work

quadrupole moment transverse to thed) direction [2,3], we define the quantitA5s, which enters the total
N o power radiated in gravitational waves in the quadrupole ap-
— oAnB roximation as
Q=q"q (T) 7) Qi 48 P
A B
dE 1 [dA53)\?

where d_uB_E dug (56)

Qjj :f p(XiXj— 5i,-r2/3)d3x (49) A5Z also arises as a coefficient for the quadrupolar term in

the expansion of the quadrupole stréie., the gravitational

. . ignalh, i herical h icE34
is the quadrupole tensor arg),, A=2,3, is the complex wave signal h. in spherical harmonic34]

dyad for the unit sphere metric . 1 \/E') -n20A53<“B) o
Ug)=z\/—Si ,
d 62+ sir? 0d 2 = 2q oGy X dXE. (50) R N R
As usual we use parentheses to denote the symmetric pawhereR denotes the distance between the observer and the
For our axisymmetric setup, E¢48) reduces to source A5S can be deduced from the quadrupole moment as
R T 3 1 2
_ : ' : ' rerd [ r_ = 16 d R T
Q 775|n26f0 dr fo sing’de’r p(zcos°-0 2). A§§=\/—_w3’2—2 f dr’f sing’'de’r’4
(51) 15  dugl/o 0
. 3 1
On the level of the quadrupole approximati@®] the quad- Xp §C0§ 0'— 5| (58
rupole news Iy reads
d3 or alternatively using the first moment of momentum for-
No=——75Q. (520 mula in order to eliminate one time derivate, in analogy to
dug the transition from Eq(52) to Eq. (55), i.e.,

124018-8



AXISYMMETRIC CORE COLLAPSE SIMULATIONS . .. PHYSICAL REVIEW D 67, 124018 (2003

20000 800 e
,“1
|
10000 | 600 -
T
= E
5 2
5 2
@
8 2 400 |
& g
g g
% 10000 | ] —— A=0.01, times 10
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FIG. 8. Gravitational wave straiA52 for the simulation of the
collapse modefB01. The solid curve shows the result using the first 15 o Quadrupole moment Qn units c=G=M,=1) as a
moment of momentum approach E&9), the dashed line is based fnction of time for three models of typ® with perturbation am-
on Eq.(58). The good agreement found between both approachegjiyyde A=0.01, A=0.05 andA=0.1. The first two results are
shows that our general relativistic fluid evolution is internally con- .oscaled with respect t4=0.1 assuming a linear dependence. All
sistent. three curves overlap in the diagram. The quadrupole moftasrt

hence the quadrupole sighalcales linearly with the amplitude of
R T
ASi=—n j dr’f sing’'dg’r’3
V15 0 0
X p[v1(3 cogd’ —1)—3v,sinb’ cosh’]

16 the perturbation in the chosen parameter region.

3/2i
dug

evaluated at future null infinitjwhich is defined in Eq(68)
below], we find important discrepancies. This can be seen in
Fig. 10, where we plot both the Bondi news and the quadru-
pole news for modefB301. We note that the differences
As shown in Fig. 8 we find good agreement when Com_r'.nanifest themselves not onIy'in the amplitude of the oscillg—
puting the wave straiAE& using Eqs(58) and(59). In order f[lons, but a]so in the frequencies of the S|gna[s. This behawor
not to have the time derivatives dominated by numerical® clearly different fr_om the onewe qbserved in the studies of
noise, we have averaged the matter contribution in the int neutron star pulsation carried out in R¢18], where both

e-
grands of Eqs(58) and (59) over a few neighboring grid

signals showed very good agreement.
points before calculating the time derivatives. As mentioned above, the quadrupole formula is only the
This result checks the implementation of the continuity

(59

equation and, as this equation is not calculated separately bt 1x10°

as a part of a system of balance laws, it also checks the

overall implementation of the fluid equations in the code. We ---- Bondinews

note that the equivalence between E8g) and Eq.(59) is 5x10°° | —— rescaled quadrupole news

only strictly valid in the Minkowskian limit and for small
velocities, which is the origin for the observed small differ-
ences between the curves in Fig. 8. Substitutinyy pu‘e?”

in Eq. (58) and bype?? in Eq. (59), by which we restore the
equivalence in a general relativistic spacetime, we find ex-
cellent agreement between the two approaches for calculal
ing A5Z.

Since we are imposing only small perturbations from
spherical symmetry, we expect a linear dependence of the
nonspherical dynamics and the gravitational wave signal as
function of the perturbation amplitude. We have verified in a
series of runs that the amplitude of the quadrupole moment

ews funtion

c

-5x107¢ |

-1x1078 .
35 45
Bondi time [ms]

40 50

(and thus the quadrupole radiation signadeed scales lin-
early with the amplitude of the initial perturbatiofsee Fig.

FIG. 10. Bondi and quadrupole news as a function of time for
model B01. The solid curve corresponds to the quadrupole news

9). This observation marks another important test for thesccording to Eq(55), the dashed curve to the Bondi news signal.

correctness of the global dynamics of our code.

For visualization reasons, we have divided the quadrupole news

On the other hand, when comparing the quadrupole newsult by 50. Remarkable disagreement is found between both sig-

defined in Eq(52) or Eq. (55) with the Bondi news signall

nals.
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first term in a post-Newtonian expansion for the gravitational 800
radiation. The next, nonvanishing contribution to the gravi-
tational strain for our axisymmetric configuration is the
hexadecapole contribution, which red@3 600 r
9 AE2
h'iD=8\[sm26 1-— —5|n20) —. (60) 400 |
5
The quantityA5? is defined as 200 |
E2 d4 E2
As="72Mu, (61) 0
dug
-200 : :
\/— 0 500 1000 1500
E2 3/2 116
f dr’ f sing’de’r radius [km]

FIG. 11. Radial contribution to the quadrupole moment. We
(62 plot the value of the integral  Q(r) = sir?é

X Jidr’ [Zsin@'de'r'*p(3 cod’ —3) as a function of the radial coor-

. dinater for different values of time. The data is plotted after a fixed
or alternatively number of time steps, starting with initial datawat=0 ms (upper
solid curve. The data was taken from a simulation of moeid1.

3
Xp 7co§9’—6co§0’+§ ,

E2 dd E2 Large amplitude oscillations of the quadrupole moment, as they can
A= 3 N4 (63 be seen in Fig. 9, can only be created—at least shortly after
du g y y

B bounce—in the outer region of the infalling matter well in front of

the shock.

NEZ \/— 3’2f dr’ f sing’de’'r’®

news signal is wrong, it is extremely unlikely that possible
errors in the contribution to the Bondi news add up to a very
small signal.
Second, we have performed comparisons between our nu-
merical code and the code of Reff8,8], finding much larger
+u,(3—7 co§6’)sin0’cosa’). (64) amplitudes for the quadrupole gravitationa}l wave signal in
our case. However, we note that comparing the results of
both codes in axisymmetry is ambiguous, as possible differ-
By extracting the hexadecapole moment for the above reences might have different explanations. For example, the
sult, we found, however, that the associated amplitude is toase of the conformally flat metric approach[# 8] is clearly
small in order to explain the observed differences in Fig. 10an approximation to general relativity, which should create
In addition, one would expect in general that the contributionsome differences. Furthermore, the coordinate systems used
of the hexadecapole moment increases the amplitude of tha both codes for the computation of the quadrupole moment
approximate signal. However, the amplitude of the quadruare different. Only in our code, the quadrupole moment is
pole news in Fig. 10 is already muddrger than that of the evaluated on a light cone, i.e. as a function of retarded time.
Bondi news evaluated af*. A third and physically motivated argument stems from the
As we discussed in the preceding section, the global dyspatial distribution of matter in our simulation. As it can be
namics of the core collapse and bounce is correctly reproseen from Fig. 11, the main contribution to the radial integral
duced with our numerical codsee also the validation tests of the quadrupole moment comes from the outer, infalling
in the Appendix. We have strong evidence that the quadru-layers of matter. These outer layers are responsible for the
pole signals extracted from our collapse simulations do nooscillations in the quadrupole moment, which can be seen in
correspond to physical gravitational wave signals. In the fol+ig. 9. Following the same reasoning as in the previous sec-
lowing, we describe the different arguments which supportion it is obvious to conclude that the calculation of the quad-
this claim. rupole moment is also affected by our choice of coordinates,
First, if the quadrupole radiation signal corresponded td.e., by gauge effects.
the true physical signal, it would be very difficult to under-  For all these reasons we extract the quadrupole moment in
stand why the Bondi signal has a significantly smaller amthe angular coordinate system defined by @¢). However,
plitude. In the calculation of the Bondi news, E&8), the introducing the inertial angular coordinate does not help to
contribution of the different terms are relatively large andobtain a better agreement between quadrupole and Bondi
add up to a small signdkee below. Under the assumption signals, the extracted quadrupole moment almost agrees with
that the quadrupole news signal is correct and the Bondihe results shown in Fig. 9. Since the difference of Bondi

Xp

3
vl( 7 codd’ —6 cog’ + 5
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time between the different angular directions on our B. The Bondi news signal
Tamburino-Winicour foliation is in general of the same order
as the lapse of time for one time step, we expect a simila

result when evaluating the quadrupole moment at a fixedy shiems are diverse: First, its extraction involves calculat-
inertial time. However, by prescribing the necessary coordij,g nonleadingterms from the metric expansion at future
nate transformations to define Bondi coordinates only'at infinity. All the metric quantities are global quantities,

we do not take into account an inertial radial coordinategnq are thus sensitive to any numerical problem in the entire
which should be used for the evaluation of the quadrupoléompytational domain. Second, when calculating the gravi-
moment. tational signal in the Tamburino-Winicour approach, one has

As already mentioned before, in RgL8] we found good 5 take into account gauge effects. For the present calcula-
agreement between the Bondi signal and the quadrupole Sigyns of the gravitational wave signal from core collapse, the

nal when calculating gravitational waves from pulsating rela-y5,ge contributions are indeed tdeminant contribution,
tivistic stars. Hence, the obvious question arises of why th nich can easily influence the physical signal.

quadrupole formula could be applied in those scenarios. The \yg have described in detail the formalism and numerical
answer lies in the small velocities encountered in the prob,aihods to deal with gravitational waves without approxima-

lem of neutron star pulsations. Whereas the typical maxition in our axisymmetric characteristic code in Rii8]. In

mum fluid velocities in the oscillation problem are of the the following, we will only repeat the most important as-

5 4 i it
order of 10°°c-10""c, fluid velocities of up to 0.2 aré  pects. The total energy emitted by gravitational waves to
reached for the core coI.Iapse scenario. Furthermore, due ﬁzlfinity during the time intervalu,u+du] in the angular
the nonspherical dynamics of the proto-neutron star forme@irection[y y+dy] is given by the expression

in the interior of the collapsed region, the metric can pick up

gauge contributions which are created as a consequence of 1

our requirement to prescribe a local Minkowski frame at the dE= §N2w392ded u (67)
vertex of the light cones. Gauge contributions may also play

a more important role in the collapse scenario due to thgyhere the Bondi news functioN reads

enlarged radial extension of the collapsing iron c@bout

The numerical extraction of the Bondi news is a very
omplicated undertaking. Reasons for possible numerical

1500 km), which is much larger than the corresponding one 1 e 2H (sin6c2L),,
for neutron star pulsation@bout 15 k. N= 532 { e
We note that since the collapse involves fluid velocities of w
up to 0.2, it is not obvious whether the functional form for o
the quadrupole moment established in the slow motion limit te 2Ky sing (e7w) 4 } 68)
on the light cone will still be valid. In fact, the situation w?sing P '

could be similar to the case of the total mass of spacetime,

metric quantities at7* as follows:

R
Mn=4wJ r'2p(1+e)dr’, (65) c
° y=K+-+0(r"2), (69)
would only be a valid approximation for small fluid veloci-

ties. This can be understood from the comparison with the B=H+0(r2), (70)
expression of the Bondi mass in the form
o U=L+0(r 1. (72
— 12 u u ’
MB_MTL rLp(1He)(—ufuy) —p(1+utuy) Jdr We plot in Fig. 12 the different contributions to the Bondi
(66) news for the collapse mod&301. It becomes clear from this
plot that a very accurate determination of the metric fields is
(no summation is involved in this expressjo@nly vanish-  essential. As it can be further seen in this figure, the metric
ing fluid velocities, i.e.,uu,=—1, ensure that the two quantities show high frequency numerical noise, as soon as
masses are equad¥j,=Mg. the shock formgat a Bondi time of about 40 msin order to
We experimented with possible alternative functionaldemonstrate that the noise is actually created at the shock,
forms for the quadrupole moment which result in significantwe plot in Fig. 13 the location of the shock together with the
differences. An unambiguous clarification of which func- gravitational wave signal. Clearly, the noise is created by the
tional form has to be used for the quadrupole moment in thenotion of the shock across the grid, its temporal behavior
extended regime of validity of large fluid velocities could following the discontinuous jumps of the shock between ad-
only be obtained by a derivation of the quadrupole formulgacent grid cells. We note that due to the coarser radial reso-
in the Tamburino gauge. However, technical complicationdution used in the outer layers of the core, the frequency of
for such a derivation are so severe that it has only beethe noise slowly decreases with time.
accomplished for a simplified radiating dust mof&5] (see As we have pointed out in the previous section, the shock
the related discussion in RdB2]). front is well captured in only a few radial zones with our

124018-11



SIEBEL et al. PHYSICAL REVIEW D 67, 124018 (2003
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FIG. 12. Different contributions to the Bondi news. The solid  FIG. 14. Bondi news as a function of Bondi time for the col-
curve corresponds to the term involvirg (first addendl in Eq. lapse modebB01. The displayed time interval covers the late col-
(68), the dashed curve to the contribution from the second and thirdapse stage until several ms after bounce at abed0 ms. During
addend. By summing up both contributions we obtain the Bondithe collapse stage, the gravitational wave signal is negligible. After
news, which is close to zero. In addition, we note that when sepabounce a complicated series of oscillations sets in.
rating the third addend into angular derivativestbfand w, each
single contribution has an amplitude 23 times larger than what iglynamics of the collapse and bounce is entirely negligible.
shown in the figure. However, the extraction of the Bondi news signal is ex-

tremely sensitive to it.
high-resolution shock-capturing scheme. It might seem sur- We have verified that the frequency of the noise increases,
prising that a small localized error created in a few radialas expected, with radial resolution. Unfortunately, its ampli-
zones can have such a large effect on the gravitational waugide does not decrease substantially with radial resolution, at
signal. However, one has to keep in mind that the radialeast not in the resolution regime accessible to[8§].
integration of the metric variables picks up this error andTherefore, we tried to eliminate the noise by different meth-
propagates it to future null infinity instantaneously. It is im- ods. In a first attempt, we smoothed out the shock front,
portant to stress that the effect of the numerical noise on theither in the hydrodynamical evolution itself or before using

the fluid variables in the source terms of the metric equa-

2x10°§ ‘ , ‘ tions. In both cases, it was impossible to obtain a smooth

signal without changing the dynamics. In a second attempt,
following the work of[37], we rearranged the metric equa-
tions eliminating second derivatives which might be ill-
behaved at the shock. Defining a metric quantity

1x10°6-

o H

Bondi news

~1x10°8}

X=r2f220-A0 —2[B,~(1-y*)y,], (72

—2x10°6

and solving the hypersurface equations successively3for

X, U and§ it is possible to eliminate all second derivatives
from the hypersurface equations. Unfortunately, the noise is
not significantly reduced by this rearrangement of the metric
equations. Finally, going to larger time steps for the fluid
evolution only—solving the metric equations several times
prs 85 29 295 50°%° between one fluid time step—was not effective either.

Bond ime [ms] After these attempts we decided to eliminate the noise

FIG. 13. Upper panel: Bondi news as a function of time. Highfrom the gravitational wave signals only after the numerical

frequency noise is overlayed on top of a small frequency modu|agavolution. We ex_perimented with two different smpothing
tion. Lower panel: Time evolution of the radial location of the cross Methods. In the first method, we calculate the Fourier trans-

section of the shock front with the equator. Due to the finite resoform of the data, and eliminate all frequencies beyond a cer-
lution, the location of the shock wave moves discontinuously. The@in threshold frequencgof about 5-10 kHx Then, when
frequency of these jumps coincides with that of the noise in theransforming back from Fourier space all the high-frequency
Bondi news. Once created at the shock, the noise is propagatdtfrt of the data is removed. In a second method we simply
instantaneously to infinity through the numerical solution of theaverage the signal over a few neighboring points. We have
metric equations. applied this second method in what is described below.
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1x10-6 . ; ; . . . TABLE |. Total energy radiated in gravitational waves during
the first 50 ms for the collapse simulations of tyfe The initial
gravitational wave content is the dominant contribution to the total
energy. This energy scales quadratically with the amplitude of the

5x107 initial perturbation, as can be inferred from the last column, where

the corresponding energies have been rescaled with respect to that

¢ of collapse modefB01.

@

[ =

= 0

’g’ Model Total energy radiateldM o | Rescaled resuftM ¢ |

o
25001 4.3x10°° 4.31x10°7

—5x107 | 2005 1.08<10°7 4.32<10°7

B01 4.32¢10°7 4.32x1077

40 42 a4 46 48 50 52 tional approaches, our framework uses a foliation based on a
Bondi time [ms] family of light cones, emanating from a regular center, and
terminating at future null infinity. To the best of our know-

FIG. 15. Bondi news as a function of time for the collapse ledge, the characteristic formulation of general relativity has
model¢01. The bounce at about 41 ms is characterized by a Iarg(ﬁever been used before in simulations of supernova core col-
spike in the gravitational wave signal. After bounce, the signalI din th tracti f th ) tpd ¢ it
shows oscillations, with a principal frequency of about 0.35 kHz. apse and in the extraction ot the associated exact gravita-

tional waves. Our axisymmetric hydrodynamics code is ac-

curate enough to allow for a detailed analysis of the global

Figure 14 shows the Bondi news signal for the COIIapsedynamics of core collapse in general. But we have not found

modeIdEBbOL Thzfﬂgurﬁ qugsles on the plart of the 5'9”"?"a robust method for théBondi news gravitational wave
around bounce. After the initial gravitational wave content iSg, - tion in the presence of strong shock waves.

radiated awayin the first 5 ms, not depicted in the figre 5 naring our results to other recent work on relativistic

the signal in the collapse stage is very weak. This is ex'supernova core collapg@,7], it is not surprising that nu-

peﬁted’ as tgel gy”_amiff is well re%roduced hby a S(Fj)_heric?'herical noise in the gravitational waveforms is more notice-
collapse model during this stage. At bounce, the Bondi newgy, e i, oy approach. Whereas in the conformal flat metric

shows a spike. Afterwards, a complicated series of OSCi”aépproach employed i4,7] the metric equations of general

tions is created due to the puI_sations of the forming neu"c.)rf'elativity reduce to elliptic equations, which naturally
star and the outward propagation of the shock. Typical 0sCilg, 51h'out high-frequency numerical noise, we solve for the

lation frequencies are of the order of 0.5-1 kHz, at which the, .o itational wave degrees of freedom directly using the full
current gravitational wave laser interferometers have maXigeat of field equations of general relativity, and hence we have

mum sensitivity. to solve a hyperbolic equation. It remains to be seen whether
Correspondingly, Fig. 15 shows the Bondi news signal for, yp d .

h I i af diati h a similar numerical noise to the one we find when extracting
the collapse modet01. Here again, after radiating away the y,qo gravitational wave signal will be encountered in core

initial gravitational wave content, the collapse phase is chargg|anse simulations solving the full set of Einstein equations
acterized by very small radiation of gravitational waves. At

in the Cauchy approach. In this respect we mention recent

bounce, we again observe a strong spike in the signal. Afteré\xisymmetric simulations by Shibata using a conformal-

wards, the oscillations in the signal are rather rapidlytraceless reformulation of the Arnowitt-Deser-Misner

damped. &ADM) system[38] where, despite of the fact that long-term
We stress that as a consequence of the necessary Smoofeasional collapse simulations could be accurately per-

-Tormed, gravitational waves could not be extracted from the

-1x10-6
38

ing techniques applied, only the main features of the gravi

tational wave signals in Figs. 14 and 15 are reliably reprosa,, nymerical data since their amplitude is much smaller

duced. This also gpplie; to possible pffsets of the Bond’than that of other components contained in the metric and/or
news, which affect in particular the gravitational wave strain., , warical noise.

Comparing the Bondi news function for the different col- it the current analysis we have presented in this paper,
lapse models of typ®, we observe to good approximation a it js ot ohvious how the numerical noise of the Bondi news

linear dependence of the Bondi news with the perturbation., pe effectively eliminated. Including rotation in the simu-
amplitude. This is reflected in the total energy radiated awayations which would be the natural next step for a more
in gravitational waves, which scales quadratically with the,qgjistic description of the scenario, could help in this re-
amplitude of the initial perturbation. A summary of the re- gt Because of the global asphericities introduced by ro-
sults on the gravitational wave energy is listed in Table I. tation, one would expect, in general, gravitational wave sig-
nals of larger amplitude, which could make the numerical

VI. DISCUSSION noise less important, if not completely |rr_elevant. In addl'gon

to this possibility we propose the following methods to im-

We have presented first results from axisymmetric corgprove the extraction of the gravitational wave signals: In a
collapse simulations in general relativity. Contrary to tradi-first approach one should try to rearrange the metric equa-
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tions by introducing auxiliary fields which could effectively 00
help to diminish the importance of high-order derivatives, .,
especially of the fluid variables, which can be discontinuous.$ o4
Unfortunately, to the best of our knowledge, there is no clear” -08
guideline to what is really needed to eliminate the numerical _,
noise completely, apart from the hints given [87]. Our 60"
attempts in this direction have not yet been successful, bu
we believe there is still room for improvement. Alternatively,
one should try to implement pseudospectral methods for theg
metric update. Pseudospectral methods would allow for a
more efficient and accurate numerical solution of the metric 2%, 02 Y 06 08 1
equations. In a third promising line of research we propose tc 2% ' ' ‘ ‘
consider the inclusion of adaptive grids and methods of _ 150 e
shock fitting into the current code. With the help of an adap- ¢ 100 |
tive grid, one could try to arrange the entire core collapse® s |
simulation in such a way that the shock front always stays at . . ‘ ‘
a fixed location of the numerical grid. By avoiding the mo- 0 02 O ol coomginate s 08 !

tion of the shock front across the grid, one would expect the

noise in the gravitational wave signals to disappear. But al- FIG. 16. Shock reflection test for an ultrarelativistic flow with
ready increasing the radial resolution substantially in thel’=—0.9999¢c andp,=8 and EOSp=5x10"*p*", which is re-
neighborhood of the shock front could help to obtain an im-flected at the origin of the coordinate system. We have plotted dif-

proved representation of the shock. All these issues are rip@rent fluid quantities at an evolution tinue=2.029 as a function of
for upcoming investigations. the radial coordinate. Top panel: fluid velocity'. Middle panel:

pressurep. Bottom panel: rest mass densjy The solid line cor-

responds to the exact solution, the crosses are taken from our nu-

merical simulation. For the above result, we made use of a nonequi-
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APPENDIX ug—1-Te
In this appendix we present tests specifically aimed to €L =ultu—1, (A3)

calibrate our code in core collapse simulations. The reader is

addressed to Refl8] for information on further tests the
(18] I (U2~ (T~ 1)

code has successfully passed concerning, among others, PL=Ps , (A4)
long-term evolutions of relativistic stars and mode-frequency (I'=De
calculations of pulsating relativistic stars.

p.=(I'=1)pLeL. (A5)

1. Shock reflection test Here, s denotes the shock speed apg= pr(u,r =su) the

In order to assess the shock-capturing properties of theest mass density in front of the shock.

code, we have performed a shock reflection test in We performed this test with different values of the fluid
Minkowski spacetime. This is a standard problem to cali-velocity, and different schemes for the fluid evolution. Figure
brate hydrodynamical cod¢89]. A cold, relativistically in- 16 shows the results for an ultrarelativistic flowu" (
flowing ideal gas is reflected at the origin of the coordinate=—0.9992). For this particular test we used the HLL solver
system, which causes the formation of a strong shock. Wand increased the numerical viscosity by a factor of 2 in
start the simulation with a constant density region, where order to damp small post-shock oscillations. The agreement
=po, U'=uk ande=eg=0 (we sete~10" ! for numerical  with the analytic solution is satisfactory, and the shock front
reasons From the continuity equation it follows that the rest is very steep, being resolved with only one or two radial
mass density in the unshocked region obeys zones. The deviation close to the origin is a well-known
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FIG. 17. Thermal energy as a function of the radial coordinate

at 30 ms for a compactified grid= 200x/(1—x?) for different FIG. 18. Evolution of the central density for a core collapse
resolutions. Due to numerical errors, the thermal energy is differeninduced by resetting the adiabatic exponent'te=1.30. The cen-
from zero. Deviations converge to zero, the convergence rate is 2ral density increases by almost 5 orders of magnitude, before the

core bounces. Afterwards the central density stays almost constant.
failure of finite-difference schemes for this problésee, e.g.  The different lines correspond to different grid functions and reso-
[40]), which is not important for our purposes. lutions, see run 4, 1 and 5 in Table II.

tion of Dimmelmeier’s code to obtain the initial data on our
null cone. There is no principal advantage in starting with
We describe now some tests which check various propeiinitial data on a null cone or on a Cauchy slice. Ideally,
ties of spherically symmetric core collapse. We choose a paresults from stellar evolution would give exact initial condi-
ticular collapse model, for which the initial central density is tions for the core collapse, thus eliminating the artificial pro-
pc=1.62<10"8 (in units G=c=My=1), the polytropic cedure of resettin§ to initiate the collapse. Figure 18 shows
constant is«=0.46, and the collapse is induced by resettingthe evolution of the central density for the relativistic code of
the adiabatic exponent 16, = 1.3 (for the equilibrium model [8] and the results of our null code for two different grid
with T'=3). We use the hybrid EOS discussed in Sec. Il C.functions. Table I summarizes our results for the time of
bounce.

2. Convergence tests

a. Thermal energy during the infall phase

Before the central density of the collapsing core reaches TABLE Il. Times of bounce for different grid functions and
nuclear densities, the collapse is exactly adiabatic. Hencéesolutions.
the thermal energy, which vanishes initially, should vanish

throughout this phase. This can be easily checked and used Grid Radial Time of
for convergence tests. Figure 17 shows the result after an Code function resolution  boungens|
integration time of 30 mgwhen the central density has in- 1 cFc codds] see[8] 802 38.32
creased by roughly a factor of LOWNe find that the errors
from the exact resule;,=0 converge to zero, the conver- 150k
gence rate is 2. Note that althougl=0 from the physical 2 null code e~ 600 40.86
point of view, the numerical errors can result in negative
values forey,.
3 null code r= 150(4 800 39.90
b. Time of bounce 1-x
Using the axisymmetric code developed by Dimmelmeier 150k
et al.[4,7,8 based on the conformally flat metric approach,* null code A 1000 39.45

we can perform comparisons between the evolutions of the
same initial models. As the conformally flat metric approxi- -
mation is exact for spherical models, comparisons in spheri? ~ null code  r=100 targgx) 1200 38.92
cal symmetry are unambiguous.

We define the time of bounce as the time when the centraiThis number for the radial resolution cannot be directly compared
density reaches its maximum. In order to start with the sameo the values of our code, as we resolve the exterior vacuum region
initial data we initiate the collapse by ray-tracing the evolu-up to future null infinity with our code as well.
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Assuming our code is exactly second order convergenins. The observed difference of less than 1% is either due to

and extrapolating our results to a hypothetical infinite resothe fact that the result d8] is not converged, or due to the
lution, we obtain from runs 3 and 4 that the infinite resolu-different radial coordinates used in both codes, and thus

tion run bounces after 38.65 ms. This is internally consistenSMall differences in the initial data.

a comparison of runs 2 and 4 results in a value of 38.66 m As it can be seen in Fig. 18, the comparison not only
P : ives very good agreement for the time of bounce, but also

Using an even higher resolution for a different grid functionq, the dynamics of the central density in general. This is
in run 5, we observe a time of bounce close to the convergegery important, since it shows that the global dynamics of
result. Our results on the time of bounce are in very goodhe core collapse is correctly described in our numerical
agreement with the result ¢8], who find a value of 38.32 implementation.

[1] E. Mller, Astron. Astrophys114, 53 (1982. Seidel, N. Stergioulas, W. Suen, and M. Tobias, Phys. Rev. D
[2] R. Monchmeyer, G. Scliar, E. Mller, and R.E. Kates, As- 65, 084024(2002.
tron. Astrophys246, 417 (1991). [23] H.-T. Janka, T. Zwerger, and R. Mohmeyer, Astron. Astro-
[3] T. Zwerger and E. Miler, Astron. Astrophys320, 209(1997). phys.268 360(1993.
[4] H. Dimmelmeier, J.A. Font, and E. Mar, Astron. Astrophys.  [24] M. Rampp, E. Miler, and M. Ruffert, Astron. Astrophy$32,
393 523(2002. 969 (1998.
[5] E. Mlller, in “Saas-Fee Advanced Course 27: Computational[25] G. Bazan and D. Arnett, Astrophys. J. Let83 L41 (1994).
Methods for Astrophysical Fluid Flow,” 1998. [26] We use this term loosely, without claiming that we model the
[6] S. Yamada and K. Sato, Astrophys.4B4, 268 (1994). microphysics realistically.
[7] H. Dimmelmeier, J.A. Font, and E. Mar, Astrophys. J. Lett. [27] L. Landau and E. Lifshitz,The Classical Theory of Fields
560, L163 (2001). (Addison-Wesley, New York, 1961
[8] H. Dimmelmeier, J.A. Font, and E. Mar, Astron. Astrophys.  [28] L. Blanchet, Living Rev. Relatiys, 3 (2002.
388 917 (2002. [29] J. Winicour, J. Math. Phy4, 1193(1983.
[9] J. Winicour, Living Rev. Relativ4, 3 (200J). [30] J. Winicour, J. Math. Phy5, 2506 (1984).
[10] N.T. Bishop, R. Gmez, L. Lehner, M. Maharaj, and J. Wini- [31] R.A. Isaacson, J.S. Welling, and J. Winicour, Phys. Rev. Lett.
cour, Phys. Rev. 36, 6298(1997). 53, 1870(1984%.
[11] R. Gamezet al, Phys. Rev. Lett80, 3915(1998. [32] J. Winicour, Gen. Relativ. Gravifl9, 281 (1987.
[12] R. Gamez, P. Papadopoulos, and J. Winicour, J. Math. Phys[33] L.S. Finn, in Frontiers in Numerical RelativitCambridge
35, 4184(1994). University Press, Cambridge, England, 198%. 126—145.
[13] P. Papadopoulos and J.A. Font, Phys. Rev6D 024015 [34] Our notation follows the work2]. E2 denotes the electric part,
(2000. 20 denotes the=2, m=0 quadrupolar part in an expansion of
[14] P. Papadopoulos and J.A. Font, gr-qc/9912094. the gravitational wave strain in tensor harmonics.
[15] J.A. Font, Living Rev. Relativ3, 2 (2000. [35] R.A. Isaacson, J.S. Welling, and J. Winicour, J. Math. Phys.
[16] P. Papadopoulos and J.A. Font, Phys. Rev5® 044014 24, 1824(1983.
(1999. [36] For a resolution K, ,N,)=(600,12), one time step is accom-
[17] F. Siebel, J.A. Font, and P. Papadopoulos, Phys. Re§5D plished in aboti2 s of CPU time on the BC-Alpha worksta-
024021(2002. tions where we run the simulations achieving a performance of
[18] F. Siebel, J.A. Font, E. Mler, and P. Papadopoulos, Phys. several hundred MFlops. Taking into account that about 7
Rev. D65, 064038(2002. X 10° time steps are needed to cover the evolution upigo
[19] H. Bondi, M.G.J. van der Burg, and A.W.K. Metzner, Proc. R. =50 ms for this given resolution, one single simulation takes
Soc. LondonA269, 21 (1962. about 16 days.
[20] A. Harten, P.D. Lax, and B. van Leer, SIAM Re25, 35 [37] R. Gamez, Phys. Rev. B4, 024007(2007).
(1983. [38] M. Shibata, Phys. Rev. B7, 024033(2003.
[21] B.J. van Leer, J. Comput. Phy23, 276 (1977. [39] J.M. Marti and E. Mller, Living Rev. Relativ.2, 3 (1999.

[22] J.A. Font, T. Goodale, S. lyer, M. Miller, L. Rezzolla, E. [40] W.F. Noh, J. Comput. Phyg§2, 78 (1987.

124018-16



