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Axisymmetric core collapse simulations using characteristic numerical relativity
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We present results from nonrotating axisymmetric stellar core collapse simulations in general relativity. Our
hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global
dynamics of the collapse. Contrary to traditional approaches based on the 311 formulation of the gravitational
field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a
regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of
interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star
formation. Perhaps most importantly this procedure allows for the extraction of gravitational waves at future
null infinity, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our
results concerning the gravitational wave signals show noticeable disagreement when those are extracted by
computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the
other hand. We have a strong indication that for our setup the quadrupole formula on the null cone does not
lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show
typical oscillation frequencies of about 0.5 kHz.

DOI: 10.1103/PhysRevD.67.124018 PACS number~s!: 04.25.Dm, 04.40.Dg, 95.30.Lz, 97.60.Lf
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I. INTRODUCTION

Supernova core collapse marks the final stage of the
lar evolution of massive stars. If the core collapse and/or
supernova explosion are nonspherical, part of the libera
gravitational binding energy will be emitted in the form
gravitational waves. According to estimates from numeri
simulations, the total energy emitted in gravitational wav
in such events can be as high as 1026M (c2 @1–4#. Nonsphe-
ricity can be caused by the effects of rotation, convection
anisotropic neutrino emission leading either to a large-sc
deviation from spherical symmetry or to small-scale stati
cal mass-energy fluctuations~for a review, see e.g.,@5#!. Su-
pernovae have always been considered among the mos
portant sources of gravitational waves to be eventu
detected by the current or next generations of gravitatio
wave laser interferometers. If detected, the gravitatio
wave signal could be used to probe the models of core
lapse supernovae and to study the formation of neutron s

Earlier studies of axisymmetric supernova core colla
were performed using Newton’s law of gravity@2,3,6#. More
recently, effects of general relativity have been included
der the simplifying assumption of a conformally flat spat
metric @4,7,8#. In all existing works gravitational waves ar
not calculated instantly within the numerical simulation, b
they are extracteda posterioriusing the approximation of the
quadrupole formalism which links gravitational waves to t
change of the quadrupole moment of the simulated ma
distribution.

In this paper we present the first results of a project aim
at studying the dynamics of stellar core collapse by mean
numerical simulations in full general relativity. The trad
mark of our approach is the use of the so-calledcharacter-
istic formulationof general relativity~see@9# for a review!,
0556-2821/2003/67~12!/124018~16!/$20.00 67 1240
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in which spacetime is foliated with a family of outgoing ligh
cones emanating from a regular center. Because of a suit
compactification of the global spacetime future null infini
is part of our finite numerical grid where we can unambig
ously extract gravitational waves. This remarkable featur
the main motivation behind our particular choice of slicin
and coordinates, which clearly departs from earlier inve
gations. We note, however, that we have not modeled
detailed microphysics of core collapse supernovae, whic
beyond the scope of the present investigation. Instead,
only take into account the most important features for bo
the gravitational field and the hydrodynamics, and those w
be introduced in the upcoming section.

Characteristic numerical relativity has traditionally fo
cused on vacuum spacetimes. In recent years the field
witnessed steady improvement, and robust and accu
three-dimensional codes are nowadays available, as tha
scribed in@10#, which has been applied to diverse studies
black hole physics~e.g.@11#!. In black hole spacetimes, onl
the geometry outside a horizon is covered by the foliation
light cones. This is not the case for neutron stars or grav
tional collapse spacetimes which must include a regular
gin. Up to now, characteristic vacuum codes with a regu
center have only been studied in spherical symmetry an
axisymmetry@12#.

The inclusion of relativistic hydrodynamics into the cha
acteristic approach along with the implementation of hig
resolution shock-capturing~HRSC! schemes in the solution
procedure was first considered by Papadopoulos and
@13–15#. First applications in spherical symmetry were pr
sented, dealing with black hole accretion@16# and the inter-
action of relativistic stars with scalar fields@17# as simple
models of gravitational waves. Axisymmetric studies of t
Einstein-perfect fluid system were first discussed in@18#. In
©2003 The American Physical Society18-1
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this reference we presented a nonrotating axisymmetric, f
relativistic code which could maintain long-term stability
relativistic stars and which allowed us to perform mod
frequency computations and the gravitational wave extr
tion of perturbed stellar configurations. The core collap
simulations presented in the current paper are based on
code, which is described in detail in Ref.@18#.

Whereas we found good agreement in the pulsation s
ies presented in Ref.@18# between the gravitational wav
signal extracted at null infinity and the corresponding qu
rupole gravitational wave signal, this is not the case in
present studies of core collapse. The numerical results
sented in this paper indicate that the gravitational wave
nal we calculate with our setup of the quadrupole formula
the light cone does not correspond to the true physical sig
from axisymmetric core collapse.

The paper is organized as follows: In Sec. II we descr
the mathematical and numerical framework we use in
simulations. Section III deals with presenting the initial da
of the unstable equilibrium stellar configurations we evol
Section IV is devoted to discuss the numerical simulatio
with emphasis on the collapse dynamics. In Sec. V we a
lyze the corresponding gravitational wave signals. A su
mary and a discussion of our results are given in Sec.
Finally, tests to calibrate the code in simulations of core c
lapse are collected in the Appendix.

II. FRAMEWORK AND IMPLEMENTATION

We only briefly repeat the basic properties of our a
proach here. The interested reader is referred to our prev
work @18# for more details concerning the mathematic
setup and the numerical implementation. As described
Ref. @18#, we work with the coupled system of Einstein an
relativistic perfect fluid equations

Gab5kTab , ~1!

¹aTab50, ~2!

¹aJa50, ~3!

where ¹a , as usual, denotes the covariant derivative. T
energy-momentum tensor for a perfect fluidTab takes the
form

Tab5rhuaub1pgab . ~4!

Here r denotes the rest mass density,h511e1 p
r is the

specific enthalpy,e is the specific internal energy, andp is
the pressure of the fluid. The four-vectorua, the 4-velocity
of the fluid, fulfills the normalization conditiongabu

aub

521. The four-currentJa is defined asJa5rua. Using ge-
ometrized units (c5G51) the coupling constant in the fiel
equations isk58p. We further use units in whichM (

51. Moreover, an equation of state~EOS! needs to be pre
scribed,p5p(r,e), as we discuss in Sec. II C below.

Our numerical implementation of the field equations
general relativity is based on a spherical null coordinate s
tem (u,r ,u,f). Here, u denotes a null coordinate labelin
12401
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outgoing light cones,r is a radial coordinate, andu andf are
standard spherical coordinates. Assuming axisymmetry,f is
a Killing coordinate. In order to resolve the entire rad
range from the origin of the coordinate system up to futu
null infinity, we define a new radial coordinatexP@0,1#. The
radial coordinater is a function of the coordinatex, which
can be adapted to the particular simulation. In this wo
except where otherwise stated, we use a grid functionr (x)

5100 tan(p2 x), for which the limit x→1 corresponds tor
→`. Moreover, in order to eliminate singular terms at t
poles (u50,p) we introduce the new coordinatey
52cosu.

A. The characteristic Einstein equations

The geometric framework relies on the Bondi~radiative!
metric @19#

ds252S V

r
e2b2U2r 2e2gDdu222e2bdudr22Ur 2e2gdudu

1r 2~e2gdu21e22gsin2udf2!. ~5!

We substitute the metric variables (b,V,U,g) by the new set
of metric variables (b,S,Û,ĝ),

S5
V2r

r 2
, ~6!

Û5
U

sinu
, ~7!

ĝ5
g

sin2u
, ~8!

in order to obtain a regular expression in the Einstein eq
tions in particular at the polar axis. The origin of the coord
nate systemr 50 is chosen to lie on the axis of our axisym
metric stellar configurations, where we describe bounda
and falloff conditions for the metric fields. The complete s
of Einstein equations reduces to a wave equation for
quantityĝ @see Eq.~8!# and a hierarchical set of hypersurfac
equations for the quantities (b,Û,S) to be solved along the
light raysu5const. The particular form of these equations
explicitly given in Ref.@18#.

B. The relativistic perfect fluid equations

The axisymmetric general relativistic fluid equations
the light cone, Eqs.~2! and ~3!, are written as a first-orde
flux-conservative, hyperbolic system for the state-vectorU
5(Uu,Ux,Uy ,U4)5(Tuu,Tux,T y

u ,Ju). Following our previ-
ous work@17# we have not included the metric determina
in the definition of the state vector. Explicitly, in the coord
nates (x0,x1,x2,x3)5(u,x,y,f), we obtain

]0Uu1] jF
ju5Su, ~9!
8-2
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]0Ux1] jF
jx5Sx, ~10!

]0Uy1] jF y
j 5Sy , ~11!

]0U41] jF
j 45S4. ~12!

The flux vectors are defined as

F ju5Tju, ~13!

F jx5Tjx, ~14!

F y
j 5T y

j , ~15!

F j 45Jj , ~16!

and the corresponding source terms read

Sa52@ ln~A2g!# ,bTab1gabSb1T b
c ~gab! ,c , ~17!

Sa52
1

2
rhucud~gcd! ,a1p2@ ln~A2g!# ,bT a

b , ~18!

S452@ ln~A2g!# ,bJb, ~19!

wherein a comma is used to denote a partial derivative.
The fluid update from timeun to un11 at a given celli , j

is given by

Ui , j
n115Ui , j

n 2
Du

Dx
~ F̂i 11/2,j2F̂i 21/2,j !

2
Du

Dy
~Ĝi , j 11/22Ĝi , j 21/2!1DuSi , j , ~20!

where the numerical fluxes,F̂ and Ĝ, are evaluated at the
cell interfaces according to a flux-formula, the one due
Harten, Lax and van Leer~HLL ! in our case@20#. The char-
acteristic information of the Jacobian matrices associa
with the hydrodynamical fluxes, which is used in this flu
formula, was presented elsewhere@16#. We use the monoton
ized central difference slope limiter by van Leer@21# for the
reconstruction of the hydrodynamical quantities at the c
interfaces needed in the solution of the Riemann proble
This scheme is second order accurate in smooth monoto
parts of the flow and gives improved results compared to
monotone upwind scheme for scalar conservation la
~MUSCL! scheme applied in@18# ~for an independent com
parison, see@22#!.

C. Equation of state

We use a hybrid EOS which includes the effect of sti
ening at nuclear densities and the effect of thermal hea
due to the appearance of shocks. Such EOS was first co
ered by Janka et al.@23#, and has been used for core collap
simulations both using Newtonian gravity@3,24# and in gen-
eral relativity under the assumption of conformal flatne
@4,7,8#.
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In our EOS the total pressure consists of a polytropic p
which takes into account the contribution from the degen
ate electron gas, as well as the nuclear forces~at high densi-
ties!, and a thermal part due to the heating of the material
a shock,p5pp1pth . More precisely, the polytropic part fol
lows the relation

pp5H k1rG1 for r<rn ,

k2rG2 for r.rn ,
~21!

where we assume a nuclear densityrn5231014 g cm23.
For a degenerate relativistic electron gasG5G ini54/3 and
k54.897489431014 @cgs#. To model the physical processe
which lead to the onset of the collapse, we reduce the ef
tive adiabatic index fromG to G1 settingk15k at the initial
slice. Moreover, to model the stiffening of the EOS
nuclear densities, we assumeG252.5. The value of the poly-
tropic constantk2 follows from the requirement that th
pressure is continuous at nuclear density. The thermodyna
cally consistent internal energy distribution reads

ep5H k1

G121
rG121 for r<rn ,

k2

G221
rG2211E for r.rn .

~22!

The requirement thatep is continuous at nuclear densit
leads to

E5
~G22G1!k1

~G221!~G121!
rn

G121. ~23!

For the thermal contribution to the total pressure, we assu
an ideal fluid EOS

pth5~G th21!re th , ~24!

with an adiabatic indexG th5
3
2 describing a mixture of rela-

tivistic and nonrelativistic gases. The internal thermal ene
e th is simply obtained from

e th5e2ep . ~25!

We can summarize the EOS in a single equation:

p5kS 12
G th21

G21 D rG1~G th21!re

2
~G th21!~G2G1!

~G221!~G121!
krn

G21r, ~26!

whereG andk change discontinuously at nuclear densityrn
from G1 to G2 and k1 to k2. For the sound speedcs , we
obtain

hcs
25

1

r
~Gpp1G thpth!. ~27!
8-3
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D. Recovery of the primitive variables

After the time update of the state-vector of hydrodynam
cal quantities, theprimitive variables (r,ux,uy ,e) have to be
recomputed. The relation between the two sets of variable
not in closed algebraic form. Using the hybrid EOS, su
recovery is performed as follows: With the definitionSab

5gcdT c
a T d

b , we obtain@14#

Suu5S p

r
212e D S p

r
111e D ~Ju!21p2guu, ~28!

where in our null coordinate systemguu50. Let F(r,e)

5 p
r . From Eqs.~26!, ~28! and the definition of the specifi

enthalpyh we obtain the 3 equations for the 3 unknownsF,
r ande

F~r,e!5AL1~11e!2, ~29!

F~r,e!5~G th21!e1G~r!, ~30!

r5H@11e1F~r,e!#. ~31!

In these equations we made use of the abbreviations

L5
Suu

~Ju!2
, ~32!

G~r!5kS 12
G th21

G21 D rG212
~G th21!~G2G1!

~G221!~G121!
krn

G21 ,

~33!

I 5
~Ju!2

Tuu
. ~34!

From Eqs.~29!–~31! we deduce a single implicit equatio
for the rest mass densityr

f imp~r!ªS r

I D
2

22
r

I
~11e!2L50, ~35!

where we consider the internal energy as a function ofr

e5
1

G th
S r

I
2@11G~r!# D . ~36!

We solve Eq.~35! for r with a Newton-Raphson method.

III. INITIAL DATA

In the final stage of the evolution of massive stars,
iron core in the stellar center has a central density of ab
rc51010 g cm23 when it becomes dynamically unstable
collapse. As the pressure of the degenerate relativistic e
trons is by far the most important contribution to the to
pressure, the pressure in the iron core can be approxim
by a G5 4

3 polytropic EOS. In order to obtain an initia
model for the iron core, we solve the Tolman-Oppenheim
Volkoff equation@18# with the above central density, whic
12401
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corresponds torc51.6231028 in code units (c5G5M (

51).
To initiate the gravitational collapse we set the adiaba

index G1 in the hybrid EOS~26! to a value of 1.30, which
mimics the softening of the EOS due to capture of electr
and due to the endothermic photodisintegration of heavy
clei. The chosen value is within the interval range analyz
in previous studies of rotational core collapse based on N
tonian physics@3# and on the conformal flat metric approx
mation of general relativity@4,7,8#.

Since rotation is not included in our current implemen
tion, the equilibrium initial models of the iron core ar
spherically symmetric. Furthermore, in the evolution of the
data during the phases of collapse, bounce, and bey
spherical symmetry is conserved. Therefore, since we
mainly interested in simulating core collapse as a source
gravitational waves, we add nonradial perturbations on top
the spherical data. Our analysis is thus restricted to colla
scenarios where the effects of rotation are unimportant an
which stellar evolution has led to asymmetries in the ir
core, e.g. due to convection@25#. The strongest gravitationa
wave signals are expected for perturbations of quadrup
form. Hence, we further restrict our analysis to this ca
varying the form and amplitude of the perturbation in t
initial data. We note that the evolution of such data, howev
can produce an arbitrary type of perturbation within the cl
of the imposed symmetry.

We have classified the different models as follows: In ca
A the spherical model is unperturbed; in caseB we prescribe
a perturbation of the rest mass density

dr5ArssinS pr 2

R2 D y2, ~37!

wherers denotes the spherical density distribution. Final
in caseC we prescribe a perturbation of the meridional v
locity component

uy5A sinS pr 2

R2 D y. ~38!

In the above two equationsA is a free parameter describin
the amplitude of the perturbation, andR denotes the radius o
the iron core (R51.43103 km). We note in passing that in
@18# we already used a perturbation of the formC to study
quadrupolar oscillations of relativistic stars. We have furth
classified modelsB andC according to the amplitudeA of
the perturbation~e.g. caseC01 would correspond to an am
plitude A50.1).

IV. CORE COLLAPSE DYNAMICS

This section deals with the description of the global d
namics of our core collapse simulations. Relevant tests of
code which assess its suitability for such simulations are
lected in the Appendix.
8-4
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A. Collapse and bounce

When evolving the initial models described in the pre
ous section, the core starts to collapse. Figure 1 shows
evolution of the central density for modelB01 as a function
of the Bondi timeuB . The lapse of Bondi time as seen by a
observer at infinity is defined by

duB5ve2Hdu, ~39!

whereH5 limr→`b. The conformal factorv relates the two-
geometry of the Bondi metric

dŝ25e2gdu21sin2ue22gdf2 ~40!

to the two-geometry of a unit sphere

dŝB
25duB

21sin2uBdfB
2 ~41!

as dŝB
25v2dŝ2. When the central density reaches nucle

density at a Bondi time of about 40 ms, the pressure
creases strongly according to Eq.~21!. The central density
grows further, but its increase is soon stopped. Afterward
drops below its maximum value, finally approaching a qua
equilibrium supranuclear value when a ‘‘proto-neutron sta
has formed in the central region@26#.

Figure 2 shows a spacetime diagram for the core colla
simulation of modelA ~the main aspects are similar for a
our models!. The diagram shows different mass shells a
the location of the shock front~thick solid line!. In order to
localize the shock front, we search for coordinate locatio
where the x-component of the 4-velocityux fulfills ui

x

2ui 11
x >s, with s being a threshold value for a velocit

FIG. 1. Evolution of the central density for the collapse mod
B01 using a semilogarithmic scaling. During the collapse the c
tral density increases by 4.5 orders of magnitude. When reac
supra-nuclear densities, the collapse is stopped as a conseque
the stiffening in the hybrid EOS at about 40 ms after the colla
was initiated. The central density finally approaches a new equ
rium supra-nuclear value. Shortly after bounce, oscillations app
in the central density~see inset!.
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jump to be adapted~typical values for our simulations ar
s51025

•••1024). In addition, to compute the mass inside
fixed radius, we make use of the relation

M54pE
0

`

r 2e22bTrudr, ~42!

valid for the spherical collapse modelA. Figure 2 shows that
at the beginning of the collapse phase, the spacetime m
is close to the Minkowski metric, which is reflected in th
diagram by the light cones being almost parallel strai
lines. The effects of curvature can be most strongly s
close to the origin (r 50) after about 40 ms, when the proto
neutron star has formed. We observe a redshift factore2H

relating the lapse of local proper time at the origin to t
lapse of proper time at infinity of;1.12.

Correspondingly, Fig. 3 shows different snapshots of
radial velocityur at evolution times close to bounce. In th
inner region~the so-calledhomologousinner core!, the infall
velocity measured as a function of radius is proportional
the radius. The homologous inner core shrinks with tim
The outer limit of the homologous region, i.e. the son
point, where the local sound speed has the same magn
as the infall velocity, finally reaches a radius of less than
km after about 40 ms. At that time, the shock front form
which moves outwards with a speed of;0.1c initially. Dur-
ing its propagation it is gradually slowed down by the inte
action with the infalling material in the outer region. It
worth stressing the ability of the code to resolve the ste
shock front within only a few grid zones~typically three!.

l
-

ng
e of
e
-

ar

FIG. 2. Spacetime diagram for the collapse modelA. Plotted is
the lapse of proper time as a function of the radial coordinater. The
black solid lines correspond to a subset of the light curves by wh
we foliate the spacetime~there is one light cone after every 5 m
where time is measured by an observer at the origin!. The dashed
curves correspond to different mass shells:M50.2M (,
0.4M (,0.6M (,0.8M (,1.0M (,1.2M ( . After about 40 ms, a shock
~thick solid line! forms in the interior region close to the origin. Th
diagram was obtained from a global simulation with 800 rad
zones, extending the grid to future null infinity.
8-5
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This can be further seen in Fig. 4, where we plot the r
mass densityr at the shock front for a simulation of th
collapse modelC01.

Matter falling through the outward propagating shock
heated substantially. This can be seen in Fig. 5, where
plot the internal energy distributione in the central region
shortly after bounce. The figure further shows the contri
tion to the internal energy from the polytropic part, Eq.~22!,
and the thermal part, Eq.~25!. In the very central region, the
polytropic contribution constitutes the dominant part. In co
trast, the thermal energy dominates the total internal ene
in the post-shock region for radii larger than a certain va
~the shock forms off center!, ;13 km in the specific situa

FIG. 3. Snapshots of radial velocity profilesur , plotted as func-
tion of radiusr for the collapse modelA. The snapshots are take
betweenuB530 ms anduB545 ms, with a delay of 1 ms betwee
subsequent outputs~the solid lines correspond touB530, 35, 40, 45
ms!. The shock formation takes place at about 40 ms. In the o
part of the plotted region, the infall velocity of matter increas
monotonically with time.

FIG. 4. Surface plot of the rest mass density distributionr
around the shock front for the collapse modelC01. 50 ms after the
collapse was initiated, the shock has reached a radius of abou

km. We plot every radial zone using a radial gridr 5100 tan(p2 x)
with 450 radial zones. The shock front is resolved with only th
radial zones. The aspherical nature of the data is most promine
the shock front.
12401
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tion shown in Fig. 5. We have verified that the global ener
balance~see Ref.@18# for more details! is well preserved in
our simulations~maximum errors are of the order of 0.5
1%!.

Figure 6 shows two-dimensional contour plots illustrati
the dynamics during collapse and bounce for modelB01.
For this particular simulation we used a resolution (Nx ,Ny)
5(600,12). The figure displays isocontours of the rest m
density covering only the inner part of the iron core up to
radius of 30 km at 40 ms~i.e. at bounce; top panel!, at 45 ms
~when the shock has reached a radius of;140 km; middle
panel! and at 50 ms~when the shock wave is located atr
;250 km; bottom panel!. The velocity vectors overlayed
onto the contour plots are normalized to the maximum
locity in the displayed region. During the collapse phase
til bounce at nuclear densities~upper panel!, the initial as-
pherical contributions do not play a major role—the rad
infall velocities dominate the dynamics. After bounc
~middle and lower panel! the newly formed neutron star in
the central region shows nonspherical oscillations, with fl
velocities up to about 231023c. Qualitatively, the dynamics
for the collapse modelC01 is very similar to what is shown
in Fig. 6 for modelB01. However, the particular form of th
nonspherical pulsations created after bounce differs.

B. Fluid oscillations in the outer core

When analyzing the dynamical behavior of the fluid af
bounce, we find that the meridional velocity oscillat
strongly in the entire pre-shock region. This can be se
from the solid curve of Fig. 7, where we plot the meridion
velocity componentv25ruu for modelB01 as a function of
the Bondi time, and at coordinate locationr 5833 km and
y50.5. These oscillations are created directly after the f
mation of the proto-neutron star in the central region of

er

50

e
at

FIG. 5. Radial distribution of the internal energye ~solid line!
shortly after bounce (uB541 ms) for the collapse modelA. The
different contributions from the polytropic partep ~dashed line! and
the thermal parte th ~long-dashed line! to the total internal energy
are also shown. In front of the shock which is located at a radiu
;45 km, the thermal energy vanishes.
8-6
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AXISYMMETRIC CORE COLLAPSE SIMULATIONS . . . PHYSICAL REVIEW D 67, 124018 ~2003!
numerical domain. The only possibility to propagate info
mation instantaneously~i.e. on a slice with constant retarde
time u) from the central region to the outer layers of the ir
core is through the metric, since sound waves would n
several 10 ms to cover the distance. There are two poss
explanations for these oscillations. Either they are crea
when gravitational wave energy is absorbed well ahead
the shock, or they are created by our choice of coordina
i.e., they are gauge effects. In the latter case, the oscillat
would not be caused by a real flow, but as a consequenc
the underlying coordinate system in which we describe
flow.

To clarify the origin of the oscillations we estimate in th
following the kinetic energy of the oscillations, assumi
that they are a physical effect. The average amplitude of

FIG. 6. Contour plot of the rest mass density distribution
modelB01 at a Bondi timeuB540 ms~upper panel!, uB545 ms
~middle panel! anduB550 ms~lower panel!, obtained from a glo-
bal evolution extending the grid to future null infinity. We on
show a fraction of the core up to a radius of 30 km. Overlayed
velocity vectors. At bounce~upper panel!, the matter distribution is,
to a great extent, spherically symmetric. In the later phases~middle
and lower panels!, the fluid dynamics are characterized by asphe
cal flows related to the oscillations of the newborn neutron star.
matter flow shows reflection symmetry with respect to the equa
which is inherent to the initial data and well preserved during
evolution.
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oscillation is of the order ofv̂25231024c. Note thatv2
vanishes at the polar axis and at the equator, so that
average velocity is substantially smaller than that shown
Fig. 7. Taking into account that the total mass in the p
shock region is of the order ofMps;1M ( , the kinetic en-
ergy of the oscillations is roughly

Ekin'
1

2
Mps~ v̂2!2'231028M (c2. ~43!

This energy is comparable to the total energy radiated
gravitational waves in a typical core collapse event@3,4#.
Transferring such an amount of energy to the pre-shock
gion seems unphysical, as gravitational waves interact w
matter only very weakly. Instead, as we describe next,
conclude that the oscillations are mainly introduced by o
choice of coordinates.

Following the work of Bishop et al.@10# inertial coordi-
nates can be established at future null infinityJ1. The an-
gular inertial coordinateuB can be constructed solving th
partial differential equation

~]u1U]u!uB50, ~44!

with initial datauB(u50)5u(u50). Instead of solving Eq.
~44! directly, we determine its characteristic curves,

du

du
5U~u,u!, ~45!

u~u50!5uB , ~46!

along whichuB is constant. With suitable interpolations,uB
can then be determined for arbitrary anglesu.

r

e

-
e
r,
e

FIG. 7. Meridional velocity component as a function of Bon
time at the fixed locationr 5833 km andy50.5 for modelB01.
The radial location was chosen well ahead of the shock. The s
line corresponds to the meridional velocity as extracted in our
ordinate system,v25ruu, in units of the speed of lightc. The
dashed line corresponds to the meridional velocity evaluated in
ertial Bondi coordinates defined at future null infinity. See text
more details.
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Making use of Eq.~44!, it is possible to define an ‘‘iner-
tial’’ meridional 4-velocity component

uuB5
]uB

]u U
u

J1

~uu2UuJ
1
uu!. ~47!

The dashed line in Fig. 7 shows the corrected~‘‘inertial’’ !
meridional velocityruuB. Remarkably, the oscillations hav
almost disappeared, which clearly shows that gauge eff
can play a major role for the collapse dynamics in the p
shock region.

V. GRAVITATIONAL WAVES

A. Quadrupole gravitational waves

The common approach to the description of gravitatio
waves for a fluid system relies on the quadrupole form
@27#. The standard quadrupole formula is valid for we
sources of gravitational waves under the assumptions of s
motion and wavelengths of the emitted gravitational wa
smaller than the typical extension of the source. The requ
ment that the sources of gravitational waves are weak
cludes the requirement that the gravitational forces inside
source can be neglected. This first approximation can be
tended based on post-Newtonian expansions~for a detailed
description see the recent review@28# and references
therein!.

In a series of papers@29–32#, Winicour established tha
the quadrupole radiation formula can be derived in the Ne
tonian limit of the characteristic field equations. LetQ be the
quadrupole moment transverse to the (u,f) direction

Q5qAqBS xi

r D
,A
S xj

r D
,B

Qi j , ~48!

where

Qi j 5E r~xixj2d i j r
2/3!d3x ~49!

is the quadrupole tensor andqA , A52,3, is the complex
dyad for the unit sphere metric

du21sin2udf252q(AqB)dxAdxB. ~50!

As usual we use parentheses to denote the symmetric
For our axisymmetric setup, Eq.~48! reduces to

Q5p sin2uE
0

R

dr8E
0

p

sinu8du8r 84rS 3

2
cos2u82

1

2D .

~51!

On the level of the quadrupole approximation@32# thequad-
rupole news N0 reads

N05
d3

duB
3

Q. ~52!
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With our null foliation it is natural to evaluate the quadrupo
moment ~51! as a function of retarded time, i.e., for th
evaluation of the integral we completely relax the assum
tion of slow motion.

It is well known @33# that the third numerical time deriva
tive appearing in Eq.~52! can lead to severe numerical pro
lems resulting in numerical noise which dominates the qu
rupole signal. Therefore, we make use of the fluid equati
in the Newtonian limit to eliminate one time derivative. D
fining the ‘‘Newtonian velocities’’

v15ur5
dr

dx
ux, ~53!

v25ruu5r
uy

sinu
, ~54!

the quadrupole radiation formula~52! can be rewritten with
the use of the continuity equation as the so-calledfirst mo-
ment of momentum formula

N05
d2

duB
2 S p sin2uE

0

R

dr8E
0

p

sinu8du8r 83

3r@v1~3 cos2u821!23v2sinu8cosu8# D . ~55!

We henceforth work with Eqs.~52! and ~55! for estimating
the quadrupole radiation. In addition, following earlier wo
@2,3#, we define the quantityA20

E2 , which enters the tota
power radiated in gravitational waves in the quadrupole
proximation as

dE

duB
5

1

32p S dA20
E2

duB
D 2

. ~56!

A20
E2 also arises as a coefficient for the quadrupolar term

the expansion of the quadrupole strain~i.e., the gravitational
wave signal! h1 in spherical harmonics@34#

h1~uB!5
1

8
A15

p
sin2u

A20
E2~uB!

R
, ~57!

whereR denotes the distance between the observer and
source.A20

E2 can be deduced from the quadrupole moment

A20
E25

16

A15
p3/2

d2

duB
2 F E

0

R

dr8E
0

p

sinu8du8r 84

3rS 3

2
cos2u82

1

2D G , ~58!

or alternatively using the first moment of momentum fo
mula in order to eliminate one time derivate, in analogy
the transition from Eq.~52! to Eq. ~55!, i.e.,
8-8
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A20
E25

16

A15
p3/2

d

duB
F E

0

R

dr8E
0

p

sinu8du8r 83

3r@v1~3 cos2u821!23v2sinu8cosu8#G . ~59!

As shown in Fig. 8 we find good agreement when co
puting the wave strainA20

E2 using Eqs.~58! and~59!. In order
not to have the time derivatives dominated by numeri
noise, we have averaged the matter contribution in the i
grands of Eqs.~58! and ~59! over a few neighboring grid
points before calculating the time derivatives.

This result checks the implementation of the continu
equation and, as this equation is not calculated separatel
as a part of a system of balance laws, it also checks
overall implementation of the fluid equations in the code.
note that the equivalence between Eq.~58! and Eq.~59! is
only strictly valid in the Minkowskian limit and for smal
velocities, which is the origin for the observed small diffe
ences between the curves in Fig. 8. Substitutingr by ruue2b

in Eq. ~58! and byre2b in Eq. ~59!, by which we restore the
equivalence in a general relativistic spacetime, we find
cellent agreement between the two approaches for calc
ing A20

E2 .
Since we are imposing only small perturbations fro

spherical symmetry, we expect a linear dependence of
nonspherical dynamics and the gravitational wave signal
function of the perturbation amplitude. We have verified in
series of runs that the amplitude of the quadrupole mom
~and thus the quadrupole radiation signal! indeed scales lin-
early with the amplitude of the initial perturbations~see Fig.
9!. This observation marks another important test for
correctness of the global dynamics of our code.

On the other hand, when comparing the quadrupole n
defined in Eq.~52! or Eq.~55! with the Bondi news signalN

FIG. 8. Gravitational wave strainA20
E2 for the simulation of the

collapse modelB01. The solid curve shows the result using the fi
moment of momentum approach Eq.~59!, the dashed line is base
on Eq. ~58!. The good agreement found between both approac
shows that our general relativistic fluid evolution is internally co
sistent.
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evaluated at future null infinity@which is defined in Eq.~68!
below#, we find important discrepancies. This can be seen
Fig. 10, where we plot both the Bondi news and the quad
pole news for modelB01. We note that the difference
manifest themselves not only in the amplitude of the osci
tions, but also in the frequencies of the signals. This beha
is clearly different from the one we observed in the studies
neutron star pulsation carried out in Ref.@18#, where both
signals showed very good agreement.

As mentioned above, the quadrupole formula is only

t

es
-

FIG. 9. Quadrupole moment Q~in units c5G5M (51) as a
function of time for three models of typeB with perturbation am-
plitude A50.01, A50.05 andA50.1. The first two results are
rescaled with respect toA50.1 assuming a linear dependence. A
three curves overlap in the diagram. The quadrupole moment~and
hence the quadrupole signal! scales linearly with the amplitude o
the perturbation in the chosen parameter region.

FIG. 10. Bondi and quadrupole news as a function of time
model B01. The solid curve corresponds to the quadrupole ne
according to Eq.~55!, the dashed curve to the Bondi news sign
For visualization reasons, we have divided the quadrupole n
result by 50. Remarkable disagreement is found between both
nals.
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SIEBEL et al. PHYSICAL REVIEW D 67, 124018 ~2003!
first term in a post-Newtonian expansion for the gravitatio
radiation. The next, nonvanishing contribution to the gra
tational strain for our axisymmetric configuration is th
hexadecapole contribution, which reads@2#

h1
HD5

9

8
A5

p
sin2uS 12

7

6
sin2u D A40

E2

R
. ~60!

The quantityA40
E2 is defined as

A40
E25

d4

duB
4

M40
E2 , ~61!

M40
E25

A5

63
p3/2E

0

R

dr8E
0

p

sinu8du8r 86

3rS 7 cos4u826 cos2u81
3

5D , ~62!

or alternatively

A40
E25

d3

duB
3

N40
E2 , ~63!

N40
E25

4A5

63
p3/2E

0

R

dr8E
0

p

sinu8du8r 85

3rS v1S 7 cos4u826 cos2u81
3

5D
1v2~327 cos2u8!sinu8cosu8D . ~64!

By extracting the hexadecapole moment for the above
sult, we found, however, that the associated amplitude is
small in order to explain the observed differences in Fig.
In addition, one would expect in general that the contribut
of the hexadecapole moment increases the amplitude o
approximate signal. However, the amplitude of the quad
pole news in Fig. 10 is already muchlarger than that of the
Bondi news evaluated atJ1.

As we discussed in the preceding section, the global
namics of the core collapse and bounce is correctly rep
duced with our numerical code~see also the validation tes
in the Appendix!. We have strong evidence that the quad
pole signals extracted from our collapse simulations do
correspond to physical gravitational wave signals. In the
lowing, we describe the different arguments which supp
this claim.

First, if the quadrupole radiation signal corresponded
the true physical signal, it would be very difficult to unde
stand why the Bondi signal has a significantly smaller a
plitude. In the calculation of the Bondi news, Eq.~68!, the
contribution of the different terms are relatively large a
add up to a small signal~see below!. Under the assumption
that the quadrupole news signal is correct and the Bo
12401
l
-

e-
o
.

n
he
-

y-
o-

-
t

l-
rt

o

-

di

news signal is wrong, it is extremely unlikely that possib
errors in the contribution to the Bondi news add up to a v
small signal.

Second, we have performed comparisons between our
merical code and the code of Refs.@4,8#, finding much larger
amplitudes for the quadrupole gravitational wave signal
our case. However, we note that comparing the results
both codes in axisymmetry is ambiguous, as possible dif
ences might have different explanations. For example,
use of the conformally flat metric approach in@4,8# is clearly
an approximation to general relativity, which should crea
some differences. Furthermore, the coordinate systems
in both codes for the computation of the quadrupole mom
are different. Only in our code, the quadrupole moment
evaluated on a light cone, i.e. as a function of retarded ti

A third and physically motivated argument stems from t
spatial distribution of matter in our simulation. As it can b
seen from Fig. 11, the main contribution to the radial integ
of the quadrupole moment comes from the outer, infalli
layers of matter. These outer layers are responsible for
oscillations in the quadrupole moment, which can be see
Fig. 9. Following the same reasoning as in the previous s
tion it is obvious to conclude that the calculation of the qua
rupole moment is also affected by our choice of coordina
i.e., by gauge effects.

For all these reasons we extract the quadrupole mome
the angular coordinate system defined by Eq.~44!. However,
introducing the inertial angular coordinate does not help
obtain a better agreement between quadrupole and B
signals, the extracted quadrupole moment almost agrees
the results shown in Fig. 9. Since the difference of Bon

FIG. 11. Radial contribution to the quadrupole moment. W
plot the value of the integral Q(r )5p sin2u

3*0
rdr8*0

psinu8du8r84r( 3
2 cos2u82 1

2) as a function of the radial coor
dinater for different values of time. The data is plotted after a fix
number of time steps, starting with initial data atuB50 ms ~upper
solid curve!. The data was taken from a simulation of modelB01.
Large amplitude oscillations of the quadrupole moment, as they
be seen in Fig. 9, can only be created—at least shortly a
bounce—in the outer region of the infalling matter well in front
the shock.
8-10
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AXISYMMETRIC CORE COLLAPSE SIMULATIONS . . . PHYSICAL REVIEW D 67, 124018 ~2003!
time between the different angular directions on o
Tamburino-Winicour foliation is in general of the same ord
as the lapse of time for one time step, we expect a sim
result when evaluating the quadrupole moment at a fi
inertial time. However, by prescribing the necessary coo
nate transformations to define Bondi coordinates only atJ1,
we do not take into account an inertial radial coordina
which should be used for the evaluation of the quadrup
moment.

As already mentioned before, in Ref.@18# we found good
agreement between the Bondi signal and the quadrupole
nal when calculating gravitational waves from pulsating re
tivistic stars. Hence, the obvious question arises of why
quadrupole formula could be applied in those scenarios.
answer lies in the small velocities encountered in the pr
lem of neutron star pulsations. Whereas the typical ma
mum fluid velocities in the oscillation problem are of th
order of 1025c–1024c, fluid velocities of up to 0.2c are
reached for the core collapse scenario. Furthermore, du
the nonspherical dynamics of the proto-neutron star form
in the interior of the collapsed region, the metric can pick
gauge contributions which are created as a consequenc
our requirement to prescribe a local Minkowski frame at
vertex of the light cones. Gauge contributions may also p
a more important role in the collapse scenario due to
enlarged radial extension of the collapsing iron core~about
1500 km!, which is much larger than the corresponding o
for neutron star pulsations~about 15 km!.

We note that since the collapse involves fluid velocities
up to 0.2c, it is not obvious whether the functional form fo
the quadrupole moment established in the slow motion li
on the light cone will still be valid. In fact, the situatio
could be similar to the case of the total mass of spaceti
where a naive definition, even in spherical symmetry, as

Mn54pE
0

R

r 82r~11e!dr8, ~65!

would only be a valid approximation for small fluid veloc
ties. This can be understood from the comparison with
expression of the Bondi mass in the form

MB54pE
0

R

r 82@r~11e!~2uuuu!2p~11uuuu!#dr8

~66!

~no summation is involved in this expression!. Only vanish-
ing fluid velocities, i.e.,uuuu521, ensure that the two
masses are equal,Mn5MB .

We experimented with possible alternative function
forms for the quadrupole moment which result in significa
differences. An unambiguous clarification of which fun
tional form has to be used for the quadrupole moment in
extended regime of validity of large fluid velocities cou
only be obtained by a derivation of the quadrupole form
in the Tamburino gauge. However, technical complicatio
for such a derivation are so severe that it has only b
accomplished for a simplified radiating dust model@35# ~see
the related discussion in Ref.@32#!.
12401
r
r
r
d
i-

,
le

ig-
-
e
e
-

i-

to
d

p
of

e
y
e

e

f

it

e,

e

l
t

e

a
s
n

B. The Bondi news signal

The numerical extraction of the Bondi news is a ve
complicated undertaking. Reasons for possible numer
problems are diverse: First, its extraction involves calcu
ing nonleadingterms from the metric expansion at futu
null infinity. All the metric quantities are global quantitie
and are thus sensitive to any numerical problem in the en
computational domain. Second, when calculating the gra
tational signal in the Tamburino-Winicour approach, one h
to take into account gauge effects. For the present calc
tions of the gravitational wave signal from core collapse,
gauge contributions are indeed thedominant contribution,
which can easily influence the physical signal.

We have described in detail the formalism and numeri
methods to deal with gravitational waves without approxim
tion in our axisymmetric characteristic code in Ref.@18#. In
the following, we will only repeat the most important a
pects. The total energy emitted by gravitational waves
infinity during the time interval@u,u1du# in the angular
direction @y,y1dy# is given by the expression

dE5
1

2
N2v3e2Hdydu, ~67!

where the Bondi news functionN reads

N5
1

2

e22H

v2 H 2c,u1
~sinuc2L !,u

sinuc

1e22Kv sinuF ~e2Hv! ,u

v2sinu
G

,u
J . ~68!

K,c,H andL are defined by a power series expansion of
metric quantities atJ1 as follows:

g5K1
c

r
1O~r 22!, ~69!

b5H1O~r 22!, ~70!

U5L1O~r 21!. ~71!

We plot in Fig. 12 the different contributions to the Bon
news for the collapse modelB01. It becomes clear from this
plot that a very accurate determination of the metric fields
essential. As it can be further seen in this figure, the me
quantities show high frequency numerical noise, as soon
the shock forms~at a Bondi time of about 40 ms!. In order to
demonstrate that the noise is actually created at the sh
we plot in Fig. 13 the location of the shock together with t
gravitational wave signal. Clearly, the noise is created by
motion of the shock across the grid, its temporal behav
following the discontinuous jumps of the shock between
jacent grid cells. We note that due to the coarser radial re
lution used in the outer layers of the core, the frequency
the noise slowly decreases with time.

As we have pointed out in the previous section, the sh
front is well captured in only a few radial zones with o
8-11
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SIEBEL et al. PHYSICAL REVIEW D 67, 124018 ~2003!
high-resolution shock-capturing scheme. It might seem
prising that a small localized error created in a few rad
zones can have such a large effect on the gravitational w
signal. However, one has to keep in mind that the rad
integration of the metric variables picks up this error a
propagates it to future null infinity instantaneously. It is im
portant to stress that the effect of the numerical noise on

FIG. 12. Different contributions to the Bondi news. The so
curve corresponds to the term involvingcu ~first addend! in Eq.
~68!, the dashed curve to the contribution from the second and t
addend. By summing up both contributions we obtain the Bo
news, which is close to zero. In addition, we note that when se
rating the third addend into angular derivatives ofH and v, each
single contribution has an amplitude 23 times larger than wha
shown in the figure.

FIG. 13. Upper panel: Bondi news as a function of time. Hi
frequency noise is overlayed on top of a small frequency mod
tion. Lower panel: Time evolution of the radial location of the cro
section of the shock front with the equator. Due to the finite re
lution, the location of the shock wave moves discontinuously. T
frequency of these jumps coincides with that of the noise in
Bondi news. Once created at the shock, the noise is propag
instantaneously to infinity through the numerical solution of t
metric equations.
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dynamics of the collapse and bounce is entirely negligib
However, the extraction of the Bondi news signal is e
tremely sensitive to it.

We have verified that the frequency of the noise increas
as expected, with radial resolution. Unfortunately, its amp
tude does not decrease substantially with radial resolution
least not in the resolution regime accessible to us@36#.
Therefore, we tried to eliminate the noise by different me
ods. In a first attempt, we smoothed out the shock fro
either in the hydrodynamical evolution itself or before usi
the fluid variables in the source terms of the metric eq
tions. In both cases, it was impossible to obtain a smo
signal without changing the dynamics. In a second attem
following the work of @37#, we rearranged the metric equa
tions eliminating second derivatives which might be i
behaved at the shock. Defining a metric quantity

X5r 2f 2e2(g2b)Û ,x22@b ,y2~12y2!ĝ ,y#, ~72!

and solving the hypersurface equations successively forb,
X, Û andS, it is possible to eliminate all second derivative
from the hypersurface equations. Unfortunately, the nois
not significantly reduced by this rearrangement of the me
equations. Finally, going to larger time steps for the flu
evolution only—solving the metric equations several tim
between one fluid time step—was not effective either.

After these attempts we decided to eliminate the no
from the gravitational wave signals only after the numeri
evolution. We experimented with two different smoothin
methods. In the first method, we calculate the Fourier tra
form of the data, and eliminate all frequencies beyond a c
tain threshold frequency~of about 5–10 kHz!. Then, when
transforming back from Fourier space all the high-frequen
part of the data is removed. In a second method we sim
average the signal over a few neighboring points. We h
applied this second method in what is described below.
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FIG. 14. Bondi news as a function of Bondi time for the co
lapse modelB01. The displayed time interval covers the late co
lapse stage until several ms after bounce at aboutt540 ms. During
the collapse stage, the gravitational wave signal is negligible. A
bounce a complicated series of oscillations sets in.
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Figure 14 shows the Bondi news signal for the collap
model B01. The figure focuses on the part of the sign
around bounce. After the initial gravitational wave conten
radiated away~in the first 5 ms, not depicted in the figure!,
the signal in the collapse stage is very weak. This is
pected, as the dynamics is well reproduced by a sphe
collapse model during this stage. At bounce, the Bondi ne
shows a spike. Afterwards, a complicated series of osc
tions is created due to the pulsations of the forming neut
star and the outward propagation of the shock. Typical os
lation frequencies are of the order of 0.5–1 kHz, at which
current gravitational wave laser interferometers have m
mum sensitivity.

Correspondingly, Fig. 15 shows the Bondi news signal
the collapse modelC01. Here again, after radiating away th
initial gravitational wave content, the collapse phase is ch
acterized by very small radiation of gravitational waves.
bounce, we again observe a strong spike in the signal. A
wards, the oscillations in the signal are rather rapi
damped.

We stress that as a consequence of the necessary sm
ing techniques applied, only the main features of the gra
tational wave signals in Figs. 14 and 15 are reliably rep
duced. This also applies to possible offsets of the Bo
news, which affect in particular the gravitational wave stra
Comparing the Bondi news function for the different co
lapse models of typeB, we observe to good approximation
linear dependence of the Bondi news with the perturba
amplitude. This is reflected in the total energy radiated aw
in gravitational waves, which scales quadratically with t
amplitude of the initial perturbation. A summary of the r
sults on the gravitational wave energy is listed in Table I

VI. DISCUSSION

We have presented first results from axisymmetric c
collapse simulations in general relativity. Contrary to tra

FIG. 15. Bondi news as a function of time for the collap
modelC01. The bounce at about 41 ms is characterized by a la
spike in the gravitational wave signal. After bounce, the sig
shows oscillations, with a principal frequency of about 0.35 kH
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tional approaches, our framework uses a foliation based o
family of light cones, emanating from a regular center, a
terminating at future null infinity. To the best of our know
ledge, the characteristic formulation of general relativity h
never been used before in simulations of supernova core
lapse and in the extraction of the associated exact grav
tional waves. Our axisymmetric hydrodynamics code is
curate enough to allow for a detailed analysis of the glo
dynamics of core collapse in general. But we have not fou
a robust method for the~Bondi news! gravitational wave
extraction in the presence of strong shock waves.

Comparing our results to other recent work on relativis
supernova core collapse@4,7#, it is not surprising that nu-
merical noise in the gravitational waveforms is more notic
able in our approach. Whereas in the conformal flat me
approach employed in@4,7# the metric equations of genera
relativity reduce to elliptic equations, which natural
smooth out high-frequency numerical noise, we solve for
gravitational wave degrees of freedom directly using the
set of field equations of general relativity, and hence we h
to solve a hyperbolic equation. It remains to be seen whe
a similar numerical noise to the one we find when extract
the gravitational wave signal will be encountered in co
collapse simulations solving the full set of Einstein equatio
in the Cauchy approach. In this respect we mention rec
axisymmetric simulations by Shibata using a conform
traceless reformulation of the Arnowitt-Deser-Misn
~ADM ! system@38# where, despite of the fact that long-ter
rotational collapse simulations could be accurately p
formed, gravitational waves could not be extracted from
raw numerical data since their amplitude is much sma
than that of other components contained in the metric an
numerical noise.

With the current analysis we have presented in this pa
it is not obvious how the numerical noise of the Bondi ne
can be effectively eliminated. Including rotation in the sim
lations, which would be the natural next step for a mo
realistic description of the scenario, could help in this
spect. Because of the global asphericities introduced by
tation, one would expect, in general, gravitational wave s
nals of larger amplitude, which could make the numeri
noise less important, if not completely irrelevant. In additi
to this possibility we propose the following methods to im
prove the extraction of the gravitational wave signals: In
first approach one should try to rearrange the metric eq

e
l

TABLE I. Total energy radiated in gravitational waves durin
the first 50 ms for the collapse simulations of typeB. The initial
gravitational wave content is the dominant contribution to the to
energy. This energy scales quadratically with the amplitude of
initial perturbation, as can be inferred from the last column, wh
the corresponding energies have been rescaled with respect to
of collapse modelB01.

Model Total energy radiated@M (# Rescaled result@M (#

B001 4.3131029 4.3131027

B005 1.0831027 4.3231027

B01 4.3231027 4.3231027
8-13
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SIEBEL et al. PHYSICAL REVIEW D 67, 124018 ~2003!
tions by introducing auxiliary fields which could effective
help to diminish the importance of high-order derivative
especially of the fluid variables, which can be discontinuo
Unfortunately, to the best of our knowledge, there is no cl
guideline to what is really needed to eliminate the numer
noise completely, apart from the hints given by@37#. Our
attempts in this direction have not yet been successful,
we believe there is still room for improvement. Alternative
one should try to implement pseudospectral methods for
metric update. Pseudospectral methods would allow fo
more efficient and accurate numerical solution of the me
equations. In a third promising line of research we propos
consider the inclusion of adaptive grids and methods
shock fitting into the current code. With the help of an ada
tive grid, one could try to arrange the entire core collap
simulation in such a way that the shock front always stay
a fixed location of the numerical grid. By avoiding the m
tion of the shock front across the grid, one would expect
noise in the gravitational wave signals to disappear. But
ready increasing the radial resolution substantially in
neighborhood of the shock front could help to obtain an i
proved representation of the shock. All these issues are
for upcoming investigations.
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APPENDIX

In this appendix we present tests specifically aimed
calibrate our code in core collapse simulations. The reade
addressed to Ref.@18# for information on further tests the
code has successfully passed concerning, among ot
long-term evolutions of relativistic stars and mode-frequen
calculations of pulsating relativistic stars.

1. Shock reflection test

In order to assess the shock-capturing properties of
code, we have performed a shock reflection test
Minkowski spacetime. This is a standard problem to ca
brate hydrodynamical codes@39#. A cold, relativistically in-
flowing ideal gas is reflected at the origin of the coordin
system, which causes the formation of a strong shock.
start the simulation with a constant density region, wherr
5r0 , ur5uR

r ande5eR50 ~we sete'10211 for numerical
reasons!. From the continuity equation it follows that the re
mass density in the unshocked region obeys
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rR~u,r !5r0S 12
uR

r

uR
ur

uD 2

. ~A1!

From momentum conservation arguments, it is clear that
velocity in the shocked region vanishes,uL

r 50. Evaluating
the Rankine-Hugoniot jump conditions for the fluid equ
tions, we obtain:

s5
~G21!eL

uR
u212GeL

, ~A2!

eL5uR
u1uR

r 21, ~A3!

rL5rs

G~uR
r !22~G21!eL

~G21!eL
, ~A4!

pL5~G21!rLeL . ~A5!

Here, s denotes the shock speed andrs5rR(u,r 5su) the
rest mass density in front of the shock.

We performed this test with different values of the flu
velocity, and different schemes for the fluid evolution. Figu
16 shows the results for an ultrarelativistic flow (ur

520.9999c). For this particular test we used the HLL solv
and increased the numerical viscosity by a factor of 2
order to damp small post-shock oscillations. The agreem
with the analytic solution is satisfactory, and the shock fro
is very steep, being resolved with only one or two rad
zones. The deviation close to the origin is a well-know

FIG. 16. Shock reflection test for an ultrarelativistic flow wi
ur520.9999c andr058 and EOSp5531024r5/3, which is re-
flected at the origin of the coordinate system. We have plotted
ferent fluid quantities at an evolution timeu52.029 as a function of
the radial coordinater. Top panel: fluid velocityur . Middle panel:
pressurep. Bottom panel: rest mass densityr. The solid line cor-
responds to the exact solution, the crosses are taken from ou
merical simulation. For the above result, we made use of a none
distant radial gridr 5x/(12x5/2) with 800 radial zones, the MC
slope limiter and the HLL approximate Riemann solver.
8-14
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failure of finite-difference schemes for this problem~see, e.g.
@40#!, which is not important for our purposes.

2. Convergence tests

We describe now some tests which check various pro
ties of spherically symmetric core collapse. We choose a
ticular collapse model, for which the initial central density
rc51.6231028 ~in units G5c5M (51), the polytropic
constant isk50.46, and the collapse is induced by resett
the adiabatic exponent toG151.3 ~for the equilibrium model
with G5 4

3 ). We use the hybrid EOS discussed in Sec. II

a. Thermal energy during the infall phase

Before the central density of the collapsing core reac
nuclear densities, the collapse is exactly adiabatic. He
the thermal energy, which vanishes initially, should van
throughout this phase. This can be easily checked and
for convergence tests. Figure 17 shows the result afte
integration time of 30 ms~when the central density has in
creased by roughly a factor of 10!. We find that the errors
from the exact resulte th50 converge to zero, the conve
gence rate is 2. Note that althoughe th>0 from the physical
point of view, the numerical errors can result in negat
values fore th .

b. Time of bounce

Using the axisymmetric code developed by Dimmelme
et al. @4,7,8# based on the conformally flat metric approac
we can perform comparisons between the evolutions of
same initial models. As the conformally flat metric appro
mation is exact for spherical models, comparisons in sph
cal symmetry are unambiguous.

We define the time of bounce as the time when the cen
density reaches its maximum. In order to start with the sa
initial data we initiate the collapse by ray-tracing the evo

FIG. 17. Thermal energy as a function of the radial coordinax
at 30 ms for a compactified gridr 5 200x/(12x2) for different
resolutions. Due to numerical errors, the thermal energy is diffe
from zero. Deviations converge to zero, the convergence rate i
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tion of Dimmelmeier’s code to obtain the initial data on o
null cone. There is no principal advantage in starting w
initial data on a null cone or on a Cauchy slice. Ideal
results from stellar evolution would give exact initial cond
tions for the core collapse, thus eliminating the artificial pr
cedure of resettingG to initiate the collapse. Figure 18 show
the evolution of the central density for the relativistic code
@8# and the results of our null code for two different gr
functions. Table II summarizes our results for the time
bounce.

nt
2.

FIG. 18. Evolution of the central density for a core collap
induced by resetting the adiabatic exponent toG151.30. The cen-
tral density increases by almost 5 orders of magnitude, before
core bounces. Afterwards the central density stays almost cons
The different lines correspond to different grid functions and re
lutions, see run 4, 1 and 5 in Table II.

TABLE II. Times of bounce for different grid functions an
resolutions.

Grid Radial Time of
Code function resolution bounce@ms#

1 CFC code@8# see@8# 80 a 38.32

2 null code r5
150x

12x4
600 40.86

3 null code r 5
150x

12x4
800 39.90

4 null code r 5
150x

12x4
1000 39.45

5 null code r 5100 tanS p

2
xD 1200 38.92

aThis number for the radial resolution cannot be directly compa
to the values of our code, as we resolve the exterior vacuum re
up to future null infinity with our code as well.
8-15
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Assuming our code is exactly second order converg
and extrapolating our results to a hypothetical infinite re
lution, we obtain from runs 3 and 4 that the infinite reso
tion run bounces after 38.65 ms. This is internally consiste
a comparison of runs 2 and 4 results in a value of 38.66
Using an even higher resolution for a different grid functi
in run 5, we observe a time of bounce close to the conver
result. Our results on the time of bounce are in very go
agreement with the result of@8#, who find a value of 38.32
na

i-

y

s.

R.

.

12401
nt
-

-
t,
s.

d
d

ms. The observed difference of less than 1% is either du
the fact that the result of@8# is not converged, or due to th
different radial coordinates used in both codes, and t
small differences in the initial data.

As it can be seen in Fig. 18, the comparison not o
gives very good agreement for the time of bounce, but a
for the dynamics of the central density in general. This
very important, since it shows that the global dynamics
the core collapse is correctly described in our numeri
implementation.
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@12# R. Gómez, P. Papadopoulos, and J. Winicour, J. Math. Ph

35, 4184~1994!.
@13# P. Papadopoulos and J.A. Font, Phys. Rev. D61, 024015

~2000!.
@14# P. Papadopoulos and J.A. Font, gr-qc/9912094.
@15# J.A. Font, Living Rev. Relativ.3, 2 ~2000!.
@16# P. Papadopoulos and J.A. Font, Phys. Rev. D59, 044014

~1999!.
@17# F. Siebel, J.A. Font, and P. Papadopoulos, Phys. Rev. D65,

024021~2002!.
@18# F. Siebel, J.A. Font, E. Mu¨ller, and P. Papadopoulos, Phy

Rev. D65, 064038~2002!.
@19# H. Bondi, M.G.J. van der Burg, and A.W.K. Metzner, Proc.

Soc. LondonA269, 21 ~1962!.
@20# A. Harten, P.D. Lax, and B. van Leer, SIAM Rev.25, 35

~1983!.
@21# B.J. van Leer, J. Comput. Phys.23, 276 ~1977!.
@22# J.A. Font, T. Goodale, S. Iyer, M. Miller, L. Rezzolla, E
l

s.

Seidel, N. Stergioulas, W. Suen, and M. Tobias, Phys. Rev
65, 084024~2002!.

@23# H.-T. Janka, T. Zwerger, and R. Mo¨nchmeyer, Astron. Astro-
phys.268, 360 ~1993!.

@24# M. Rampp, E. Mu¨ller, and M. Ruffert, Astron. Astrophys.332,
969 ~1998!.

@25# G. Bazan and D. Arnett, Astrophys. J. Lett.433, L41 ~1994!.
@26# We use this term loosely, without claiming that we model t

microphysics realistically.
@27# L. Landau and E. Lifshitz,The Classical Theory of Fields

~Addison-Wesley, New York, 1961!.
@28# L. Blanchet, Living Rev. Relativ.5, 3 ~2002!.
@29# J. Winicour, J. Math. Phys.24, 1193~1983!.
@30# J. Winicour, J. Math. Phys.25, 2506~1984!.
@31# R.A. Isaacson, J.S. Welling, and J. Winicour, Phys. Rev. L

53, 1870~1984!.
@32# J. Winicour, Gen. Relativ. Gravit.19, 281 ~1987!.
@33# L.S. Finn, in Frontiers in Numerical Relativity~Cambridge

University Press, Cambridge, England, 1989!, pp. 126–145.
@34# Our notation follows the work@2#. E2 denotes the electric part

20 denotes thel 52, m50 quadrupolar part in an expansion o
the gravitational wave strain in tensor harmonics.

@35# R.A. Isaacson, J.S. Welling, and J. Winicour, J. Math. Ph
24, 1824~1983!.

@36# For a resolution (Nx ,Ny)5(600,12), one time step is accom
plished in about 2 s of CPU time on the DEC-Alpha worksta-
tions where we run the simulations achieving a performance
several hundred MFlops. Taking into account that abou
3105 time steps are needed to cover the evolution up touB

550 ms for this given resolution, one single simulation tak
about 16 days.
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