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Complex angular momentum in black hole physics and quasinormal modes
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By using the complex angular momentum approach, we prove that the quasinormal-mode complex frequen-
cies of the Schwarzschild black hole are Breit-Wigner type resonances generated by a family of surface waves
propagating close to the unstable circular phagmaviton orbit atr =3M. Furthermore, because each surface
wave is associated with a given Regge pole of $hmatrix, we can construct semiclassically the spectrum of
the quasinormal-mode complex frequencies from Regge trajectories. The notion of a surface wave orbiting
around black holes thus appears as a fundamental concept which could be profitably introduced in various
areas of black hole physics in connection with the complex angular momentum approach.
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I. INTRODUCTION Refs.[7] and[8] as well as chapter 4 of Ref9]. An intro-
duction to black hole scattering can be found 16].
Since the pioneering work of Wats¢h| dealing with the In this paper we will establish the connection between

propagation and diffraction of radio waves around the EarthAndersson’s surface waves and the QNMs. More precisely,

the Comp|ex angu]ar momentufg®AM) method has been W€ shall prove here that the QNM Complex frequencies of

extensively used in several domains of scattering thézeg  the Schwarzschild black hole are Breit-Wigner-type reso-

the monographs of Newtdf2] and of Nussenzveif3] and nances generated by the surface waves. Moreover, because

references therein for various applications in quantum meeach surface wave is associated with a given Regge pole of

chanics, nuclear physics, electromagnetism, optics, acoustiée Smatrix, we can construct the spectrum of the QNM

and seismology The success of the CAM method is due to complex frequencies from the Regge trajectories, i.e., from

its ability to provide a clear description of a given scatteringthe curves traced out in the CAM plane by the Regge poles

problem by extracting the physical informatidinked to the ~ as a function of the frequency.

geometrical and diffractive aspects of the scattering process As early as 1972, it was suggested by Go¢bg] that the

which is hidden in partial-wave representations. black hole normal modes could be interpreted in terms of

The CAM method was first used in gravitational physicsgravitational waves in spiral orbits close to the unstable pho-

by Chandrasekar and Ferrg4] in their study of nonradial ton orbit atr =3M, which decay by radiating away energy.

oscillations of relativistic stars. They used the theory ofln the present paper, using the CAM approach, we establish

Regge pole§2] to determine the flow of gravitational energy this appealing and physically intuitive picture on a rigorous

through the star. The general framework for the CAM de-basis. To conclude, we also provide a framework for future

scription of Schwarzschild black hole scattering was develdevelopments.

oped by Andersson and Thylwé&], which Anderssor{6]

then used tq int.erpret the black holg glory. An imp.ortant Il. FROM CAM TO QNM

concept, which is naturally present in the CAM point of

view, is that of a surface wave, which allows a description of ~We first consider the scattering of a monochromatic scalar

the diffractive effects of scattering. Andersson establisheavave, with time dependence expiwt), by the Schwarzs-

that the surface waves orbiting around the Schwarzschilghild black hole of mass. The corresponding scattering

black hole of mas$/ propagate close to the unstable photonamplitude can be writtefsee, e.g[9])

orbit atr=3M. Yet except for these articles, the CAM or

surface-wave approach to resonant scattering in black hole 1 =

physics has been neglected in favor of the quasi- flw,0)= — 2 (2€+1)[S(w)—1]P,(cosh) (1)

normal modegQNMSs), in which the dynamical response to 2w =0

an external perturbation is explained in terms of resonant

frequencies. For recent reviews of the QNM approach seaheref is the ordinary angular momentum indé¥; are the
usual Legendre polynomials arfs, are the diagonal ele-
ments of theS-matrix. For a given angular momentuim the

*Electronic address: decanini@univ-corse.fr coefficientS, is obtained from the partial wave solutidn,
"Electronic address: folacci@univ-corse. fr of the following problem:
*Electronic address: Bruce.Jensen@marconi.com (i) @, satisfies the Schdinger-type equation
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> +[w—V(r)]®,=0. (2

M A

Equation(2) is obtained from the scalar wave equation after
separating variables and is called the Regge-Wheeler equa-
tion. Herer is the standard radial Schwarzschild coordinate -
and r, =r+2M In(1—2M/r)+const is the Regge-Wheeler /4 N
tortoise coordinate while the potenti(r) is given by 2 32 52 772

lar in the vicinity of the positive reah axis. Moreover,

r—2Mm
V(r)=< )
;
P,_12(z) is the hypergeometric functio-(—\+1/2)\
(i) @, as any physical wave, must have a purely ingoing. 1/2:1:(1-2)/2).

\

FIG. 1. The Watson integration contour.

Ce+1) 2M
5 +—3.

3

r r

behavior at the event horizon &t 2M, We can then deform the path of integration in E@),
it taking into account the possible singularities. The only sin-
Qy(r) ~ e 4 gularities that are encountered are the poles of the S-matrix

S lying in the first quadrant of the CAM plané&]. They are
e . known as Regge pold®,3] and we shall denote them by
] r(]”').At spatial infinity r —+, ®, has the asymptotic ) ) the indexn=1,2, .. permitting us to distinguish be-
ehavior tween the different poles. By Cauchy’s Theorem we can then
extract from Eq(7) the contribution of a residue series over

1 i i Se(w) eHior, —ital2 Regge poles given by

NS 7 A on}

My —+o

. + o0
(5) i & M@)o
fp(w,0)= 21 oS A (@) - M) 1/2( — €0S6)

For certain complex values @, bothS, and T, have a (8)
simple pole butS, /T, is regular. These values are the fre-
quencies of the QNMs, which we can defifeee Eqs(4)  Where ry(w)=residue, _ A ®)) - (s It should be
and (5)] as the solutions of the wave equation which reprenoted thatf differs from fp by a background integrdl5]
sent a purely outgoing wave at infinity and a purely ingoingwhich does not play any role in the resonance phenomenon.

wave at the horizon. We now denote by,=!%—il',,/2 By using the asymptotic expansion

with »{®>0 andI';,>0 the QNM frequenciesy®) repre- N7 0)—imlA | i\ ) +imla
senting the frequency of the oscillation corresponding to the P, _ 15— COSH)~
QNM and T, representing its damping. In the immediate (27\ sin9)?

neighborhood otv,,,, S;(w) has the Breit-Wigner form, i.e., i _
as|\|—o, valid for |\| sin6>1, as well as

F€p/2 1 + o0
Sp(w)ox Tw (6) R Y 20 el T2m+1)(\ - 112)
m=

Using the CAM method, we can provide a physical pic-which is true if Im\>0, we can write
ture of the scattering process in terms of diffraction by sur-

face waves and a physical explanation of the mechanism of 27 An(o)ry(w)
QNM excitation valid for high frequencies. By means of a fp(w,0)= i nz L [27\ (w)sin 6]42
Watson transformatiofil] applied to the scattering ampli- n
tude (1), we can write]5] +oo
X 2 (ei}\n(w)(0+2m7r)fim7r+iﬂ'/4
; _ AS —1(w)—1] m=0
(@,0)==5—~ o cosmhn + eiM(@) (27— 0+ 2ma) —ima—i mld) )
X Py _1o(—cos@)dA. (7) In Eq. (9), terms like expir,(w)(6)] and expi\,(w)2m

—0)] correspond to surface wave contributions. Because a
Here(C is the integration contour in the complaxplane[1]  given Regge pole\,(w) lies in the first quadrant of the
illustrated in Fig. 1. The Watson transformation permits us tocCAM plane, expiN(w)(6)] (resp. expir(w)(27—6)])
replace the ordinary angular momentuimby the complex corresponds to a surface wave propagating counterclockwise
angular momentunn. Here S, _;0(w) is now an analytic (resp. clockwisgaround the black hole and Rg(w) repre-
extension ofS,(w) into the complexx-plane which is regu- sents its azimuthal propagation constant whilealtw) is
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its damping constant. The exponential decay exp
[—Im\,(w)0] (resp. exp—Im\,(w)(27— 0)]) is due to 35t 0= n=4
continual reradiation of energy. Moreover, in E®), the

sum overm takes into account the multiple circumnaviga-

tions of the surface waves around the black hole as well as 25 n=3
the associated radiation damping. Finally, the presence of the B /-
v

factor exp—imar] in Eq. (9) should be also noted: it accounts

for the phase advance due to the two caustics on the scatter- 7 n=2
ing axis. 1

The resonant behavior of the black hole can now be un- 4 -
derstood in terms of surface waves. &svaries, each Regge Rel
pole \,(w) describes a Regge trajectofg] in the CAM 0 3 y 5 3 70 7 7

plane. When the quantity Rg(w) coincides with a half-

integer(a half-integer but not an integer because of the caus- FIG. 2. The Regge polea(w) followed for w=0-5, n
tics), a resonance occurs. Indeed, it is produced by a con= 12,34 for a scalar perturbation f=1).

structive interference between the different components of

the n-th surface wave, each component corresponding to a ) 2p — l(r— 2M)/2M] - r—2m\k
different number of circumnavigations. Resonance wave freP«(N)=(r=2M)"| ——| e kgo |
quencies w{? are therefore obtained from the Bohr- (13)

Sommerfeld type quantization condition
wherep=—i2Mw. The recurrence relations between #e
1 are given by Leaver:
Rehy(o{@)=€+ 5 €=012.... (10)
@+ 1t Brakt ykak-1=0, (14)

By assuming thai is in the neighborhood ab{® and using  where
ReN,(w)>ImA,(w) (which can be numerically verified, 5
except for very low frequencigswe can expand () in a a=k+2k(p+1)+2p+1, (19

Taylor series aboub!?), and obtain ,
Bu=—[2K2+ 2k(4p+1)

1 dReh(w 2
An(w)%€+§+d—w”() (0—wl®) +8p2+4p+€(€+1)+1], (16)
0=
' Yi=K?+4kp+4p>. (17)
Filmap(0f?). (11)

Leaver noted that the coefficientTi{w) has a zero when-
ever the sun®a, converges. He translates this requirement
into an infinite-fraction equation involving the coefficients
a, B andy. Majumdar and Panchapakesan gave an alterna-
tive condition using the Hill determinant methp#4]: a set

of parametergl,w} that give a convergent sum solve

Then, by replacing Eq11) in the term cosf\(w)) of Eq.
(8), we show thatfp(w,0) presents a resonant behavior
given by the Breit-Wigner formul&6) with

Ten M\ (w)
2 dRe\y(w)/dw w:wgof (12 Bo ap
n yi B1 « .
p=| " "t ! ~0. (18)

Equations(10) and (12) are kind of semiclassical formulas Y2 B2 @
which permit us to determine the location of the resonances s
from Regge trajectories.

We now discuss the numerical aspects of our work. InThis technique has the advantage of being more numerically
order to determine the location of the QNM frequencies fromtractable than Leaver’s, but it might be only valid for the
Egs. (10) and (12), we need the Regge trajectories. For aRegge poles that lie close to the real axis of the CAM plane.
given w real and positive, we search for a complex value ofBoth Leaver’s original method and the Hill determinant
¢ such that the coefficient T/(w) is zero butS,(w)/T,(w) method have been applied to the search for Regge poles in
is not. Such a value is then a pole §f(w) and provides our study. We found excellent agreement between Leaver's
immediately the value of the associated pole $Qr 1/5( ). method and the Hill-determinant method for small values of
Leaver [12] presents a method for finding the zeros of Regge mode inder. We also agreed with Andersson’s val-
1/T,(w). Though he uses his method to find the QNM fre-ues given in Refl6]. Figure 2 exhibits the Regge trajectories
guencies, his method is also valid, all things being equal, fonumerically calculated while Table | presents a sample of
finding the Regge pole$\,=¢€,+1/2} of S;(w). Leaver QNM frequencies calculated from the semiclassical formulas
writes the solution to Eq2) as an infinite sum (10) and (12). A comparison between the “exact” and the
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TABLE I. A sample of QNM frequencies for scalar perturba- 4
tions (2V =1). ssp ™ . s 4 54
0=y
Exact® Exact® Semiclassical ~ Semiclassical 3
¢ n o) Tenl2 o) Tenl2 25 n=3
0 1 0.22091 -0.20979 0.19009 —0.23120 2
2 0.17223 —-0.69610 0.09743 —0.33189 s neo
3 0.15148 —1.20216 0.09695 —0.31452
1 1 0.58587 -—0.19532 0.58336 —0.19653 1
2 052890 -0.61252 0.51960 —0.59418 0.5 n=1
3 0.45908 —1.08027 0.44000 —0.93961 f Red
2 1 096729 -0.19352 0.96669 -0.19371 0 2 4 0 & 10 214
2 092716 -0.59121 0.92504 —0.58871 FIG. 3. The Regge poles,(w) followed for «=0—5, n
3 0.86109 -1.01712 0.85890 —0.97714 =1,2,3,4, for gravitational perturbationsN2=1).

From Ref.[13]. to physically interpret the spectrum of the QNM frequencies

lying in the region M Rew>0.2 of the complexw-plane. It
fould be noted that the highly damped QNfdr gravita-
onal perturbationsas well as their associated frequencies
which are connected with the area spectrum of the black hole
?éee [15] for the first paper on this subject ajd6] and
references therein for recent works in this domaian nei-
ther be understood in the framework of our approach nor
interpreted in terms of surface waves orbiting around the
black hole near the unstable circular orbirat3M: Indeed,
when the indexn is very large, the frequencies for these

very low frequencies. Furthermore, the semiclassical the0r¥i
permits us to classify the resonances in distinct families
each family being associated with one Regge pole and ther
fore to understand the meaning of the indicesnd ¢ intro-
duced to denote the QNM frequencies, .

At large w, the position of the Regge poles very closely
adheres to the asymptotic form:

An(@)~3V3Mw+i(n=1/2) n=123.... (19 highly damped QNM are asymptotically given by2,17—
Equation(19) leads us to conclude that timéh surface wave 19]
is localized near the unstable circular photon orbitRat In3 Ty N+1/2
=3M by the following consistency argument: by reinstating w%)% BM and 7“% M (22

dependence on Schwarzschild titnieto Eqg.(9), we can see
that the surface waves circle the black hole in tife
=27 Re\,(w)/o~2733M for large w. Furthermore, a
photon on the circular orbit with constant radidgakes the
time T'=27R/(1—2M/R)*? to circle the black holdthis
result can be found by integrating the Schwarzschild metric Ill. CONCLUSION

ds’=0). By equatingT andT’, we obtainR=3M. More- To conclude, we would like first to comment on some
over, by using Eqs(10), (12) and(19), we recover the well- - agpects of our work and then to consider some possible ex-
known high-frequency behaviofsee Refs[7] and[9] and  tensjons of the CAM approach in gravitational physics.

and they therefore lie in the regionM?PRew<0.2 and
2M|Im w|>1 of the complexw-plane.

references therejn We have established the connection between Andersson’s
w%??% €+1/2 an M~ n-— 1/2. (20 : t;I'At!EELE II:.MA_slampIe of QNM frequencies for gravitational per-
_3\/§M 2 3.3M urbations (M=1).
2 a . . . .
These asymptotic behaviors have been obtained under th N Ex?oc)t Eang Semlc(lgssml Sermljl,j ssical
hypothesis R&,(w)>Im\,(w) and are therefore valid for @en fn @tn fn
£>n. 2 1 0.74734 -0.17793 0.75812 —0.17644
Our approach also applies to electromagnetic and gravita- 2 0.69342 —0.54783 0.78134 —0.49976
tional scattering. In Fig. 3 and Table Il we present some 3 060211 -0.95655 0.77683 —0.83126
results for the latter case. A comparison between the exac 1 1.19889 —0.18541 1.20332 —0.18455
and the semiclassical spectra shows a rather good agreement. > 116529 —0.56260 1.20089 —0.54409
Finally, it seems to us necessary to emphasize that the 3 1109337 —0.95819 1.18284 —0.89846
CAM method we have developed here is based on two as; | 161836 —0.18832 1.62052 —0.18792
sumptions about the Regge poleg(w): They must for- 2 159326 — 056866 1.61119 —0.56020
mally - satisfy [\(w)| >+ as well as Ray(w) 3 154542 -0.95982 158849  —0.92907

>Im\,(w) as w—>. As a consequence, our method is a
“high-frequency” approach which permits us to recover and3rom Chapter 4 of Ref9] or Refs.[7] and[8].
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surface waves and the QNM complex frequencies of theéhe Kerr black hole in terms of surface waves. For the Kerr
Schwarzschild black hole in the particular context of waveblack hole, such an approach could easily explain the split-
scattering. This connection is more general and could be alsting of the quasinormal frequencies due to rotation.
obtained directly from the Regge-Wheeler equation, by ex- (ii) The analysis of Hawking radiation as well as of Kerr
tending the CAM method developed by Sommerfgd@] as  black hole superradiance.
an alternative to the Watson approddh. (iii) The study of black holes immersed in asymptotically
Because the gravitational radiation created in many blackanti—de Sitter space-times. The CAM approach could pro-
hole processes is dominated at intermediate time scales byde new tests of the anti—de Sitter/conformal field theory
QNMs, it can be always interpreted in terms of surface(AdS/CFT) correspondence recently proposed in the context
waves. Whatever the perturbation which modifies the geomef superstring theorj21]. With this aim in view, the2+1)-
etry of a Schwarzschild black hole, it leads to the excitationdimensional Baados-Teitelboim-Zanell(BTZ) black hole
of surface waves localized close to the unstable photon orbif22] seems to us very interesting because, in that particular
During its repeated circumnavigations, a given surface wavepace-time, the wave equation can be solved exdstg,
decays by radiating away its energy, leading to the damped.g.,[23]) and therefore Regge poles can be analytically ob-
ringing of the geometry. This mechanism is analogous to théained.
damped ringing of the Earth which occurs during several (iv) The study of artificial black hold4]. Here, it would
days after a large earthquake and which can be explained ime possible to benefit from the formidable CAM machinery
term of the Rayleigh surface wave. developed in electromagnetism, optics and acoustics.
The CAM method could be naturally introduced in many
other areas of the physics of relativistic stars and black holes.
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