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Complex angular momentum in black hole physics and quasinormal modes
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By using the complex angular momentum approach, we prove that the quasinormal-mode complex frequen-
cies of the Schwarzschild black hole are Breit-Wigner type resonances generated by a family of surface waves
propagating close to the unstable circular photon~graviton! orbit atr 53M . Furthermore, because each surface
wave is associated with a given Regge pole of theS-matrix, we can construct semiclassically the spectrum of
the quasinormal-mode complex frequencies from Regge trajectories. The notion of a surface wave orbiting
around black holes thus appears as a fundamental concept which could be profitably introduced in various
areas of black hole physics in connection with the complex angular momentum approach.
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I. INTRODUCTION

Since the pioneering work of Watson@1# dealing with the
propagation and diffraction of radio waves around the Ea
the complex angular momentum~CAM! method has been
extensively used in several domains of scattering theory~see
the monographs of Newton@2# and of Nussenzveig@3# and
references therein for various applications in quantum m
chanics, nuclear physics, electromagnetism, optics, acou
and seismology!. The success of the CAM method is due
its ability to provide a clear description of a given scatteri
problem by extracting the physical information~linked to the
geometrical and diffractive aspects of the scattering proc!
which is hidden in partial-wave representations.

The CAM method was first used in gravitational phys
by Chandrasekar and Ferrari@4# in their study of nonradial
oscillations of relativistic stars. They used the theory
Regge poles@2# to determine the flow of gravitational energ
through the star. The general framework for the CAM d
scription of Schwarzschild black hole scattering was dev
oped by Andersson and Thylwe@5#, which Andersson@6#
then used to interpret the black hole glory. An importa
concept, which is naturally present in the CAM point
view, is that of a surface wave, which allows a description
the diffractive effects of scattering. Andersson establish
that the surface waves orbiting around the Schwarzsc
black hole of massM propagate close to the unstable phot
orbit at r 53M . Yet except for these articles, the CAM o
surface-wave approach to resonant scattering in black
physics has been neglected in favor of the qua
normal modes~QNMs!, in which the dynamical response t
an external perturbation is explained in terms of reson
frequencies. For recent reviews of the QNM approach
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Refs. @7# and @8# as well as chapter 4 of Ref.@9#. An intro-
duction to black hole scattering can be found in@10#.

In this paper we will establish the connection betwe
Andersson’s surface waves and the QNMs. More precis
we shall prove here that the QNM complex frequencies
the Schwarzschild black hole are Breit-Wigner-type re
nances generated by the surface waves. Moreover, bec
each surface wave is associated with a given Regge po
the S-matrix, we can construct the spectrum of the QN
complex frequencies from the Regge trajectories, i.e., fr
the curves traced out in the CAM plane by the Regge po
as a function of the frequency.

As early as 1972, it was suggested by Goebel@11# that the
black hole normal modes could be interpreted in terms
gravitational waves in spiral orbits close to the unstable p
ton orbit atr 53M , which decay by radiating away energ
In the present paper, using the CAM approach, we estab
this appealing and physically intuitive picture on a rigoro
basis. To conclude, we also provide a framework for futu
developments.

II. FROM CAM TO QNM

We first consider the scattering of a monochromatic sca
wave, with time dependence exp(2ivt), by the Schwarzs-
child black hole of massM. The corresponding scatterin
amplitude can be written~see, e.g.@9#!

f ~v,u!5
1

2iv (
,50

1`

~2,11!@S,~v!21#P,~cosu! ~1!

where, is the ordinary angular momentum index,P, are the
usual Legendre polynomials andS, are the diagonal ele
ments of theS-matrix. For a given angular momentum,, the
coefficientS, is obtained from the partial wave solutionF,

of the following problem:
~i! F, satisfies the Schro¨dinger-type equation
©2003 The American Physical Society17-1
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d2F,

dr
*
2

1@v22V~r !#F,50. ~2!

Equation~2! is obtained from the scalar wave equation af
separating variables and is called the Regge-Wheeler e
tion. Herer is the standard radial Schwarzschild coordin
and r * 5r 12M ln(122M/r)1const is the Regge-Wheele
tortoise coordinate while the potentialV(r ) is given by

V~r !5S r 22M

r D F,~,11!

r 2
1

2M

r 3 G . ~3!

~ii ! F, , as any physical wave, must have a purely ingo
behavior at the event horizon atr 52M , i.e.

F,~r ! ;
r
*

→2`

e2 ivr
* . ~4!

~iii ! At spatial infinity r→1`, F, has the asymptotic
behavior

F,~r ! ;
r
*

→1`

1

T,~v!
e2 ivr

*
1 i ,p/22

S,~v!

T,~v!
e1 ivr

*
2 i ,p/2.

~5!

For certain complex values ofv, both S, andT, have a
simple pole butS, /T, is regular. These values are the fr
quencies of the QNMs, which we can define@see Eqs.~4!
and ~5!# as the solutions of the wave equation which rep
sent a purely outgoing wave at infinity and a purely ingoi

wave at the horizon. We now denote byv,n5v,n
(o)2 iG,n/2

with v,n
(o).0 andG,n.0 the QNM frequencies,v,n

(o) repre-
senting the frequency of the oscillation corresponding to
QNM and G,n representing its damping. In the immedia
neighborhood ofv,n , S,(v) has the Breit-Wigner form, i.e.

S,~v!}
G,p/2

v2v,p
(o)1 iG,p/2

. ~6!

Using the CAM method, we can provide a physical p
ture of the scattering process in terms of diffraction by s
face waves and a physical explanation of the mechanism
QNM excitation valid for high frequencies. By means of
Watson transformation@1# applied to the scattering ampl
tude ~1!, we can write@5#

f ~v,u!52
1

2vEC

l@Sl21/2~v!21#

cospl

3Pl21/2~2cosu!dl. ~7!

HereC is the integration contour in the complexl-plane@1#
illustrated in Fig. 1. The Watson transformation permits us
replace the ordinary angular momentum, by the complex
angular momentuml. Here Sl21/2(v) is now an analytic
extension ofS,(v) into the complexl-plane which is regu-
12401
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lar in the vicinity of the positive reall axis. Moreover,
Pl21/2(z) is the hypergeometric functionF„2l11/2,l
11/2;1;(12z)/2….

We can then deform the path of integration in Eq.~7!,
taking into account the possible singularities. The only s
gularities that are encountered are the poles of the S-ma
lying in the first quadrant of the CAM plane@5#. They are
known as Regge poles@2,3# and we shall denote them b
ln(v), the indexn51,2, . . . permitting us to distinguish be
tween the different poles. By Cauchy’s Theorem we can th
extract from Eq.~7! the contribution of a residue series ov
Regge poles given by

f P~v,u!5
2 ip

v (
n51

1`
ln~v!r n~v!

cos~pln~v!!
Pln(v)21/2~2cosu!

~8!

where r n(v)5residue(Sl21/2(v))l5ln(v) . It should be

noted thatf differs from f P by a background integral@5#
which does not play any role in the resonance phenomen
By using the asymptotic expansion

Pl21/2~2cosu!;
eil(p2u)2 ip/41e2 il(p2u)1 ip/4

~2pl sinu!1/2

as ulu→`, valid for ulu sinu.1, as well as

1

cospl
52i (

m50

1`

eip(2m11)(l21/2)

which is true if Iml.0, we can write

f P~v,u!5
2p

iv (
n51

1`
ln~v!r n~v!

@2pln~v!sinu#1/2

3 (
m50

1`

~eiln(v)(u12mp)2 imp1 ip/4

1eiln(v)(2p2u12mp)2 imp2 ip/4!. ~9!

In Eq. ~9!, terms like exp@iln(v)(u)# and exp@iln(v)(2p
2u)# correspond to surface wave contributions. Becaus
given Regge poleln(v) lies in the first quadrant of the
CAM plane, exp@iln(v)(u)# „resp. exp@iln(v)(2p2u)#…
corresponds to a surface wave propagating counterclock
~resp. clockwise! around the black hole and Reln(v) repre-
sents its azimuthal propagation constant while Imln(v) is

FIG. 1. The Watson integration contour.
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its damping constant. The exponential decay e
@2Im ln(v)u# „resp. exp@2Im ln(v)(2p2u)#… is due to
continual reradiation of energy. Moreover, in Eq.~9!, the
sum overm takes into account the multiple circumnavig
tions of the surface waves around the black hole as wel
the associated radiation damping. Finally, the presence o
factor exp@2imp# in Eq. ~9! should be also noted: it accoun
for the phase advance due to the two caustics on the sca
ing axis.

The resonant behavior of the black hole can now be
derstood in terms of surface waves. Asv varies, each Regge
pole ln(v) describes a Regge trajectory@2# in the CAM
plane. When the quantity Reln(v) coincides with a half-
integer~a half-integer but not an integer because of the ca
tics!, a resonance occurs. Indeed, it is produced by a c
structive interference between the different components
the n-th surface wave, each component corresponding
different number of circumnavigations. Resonance wave
quencies v,n

(o) are therefore obtained from the Boh
Sommerfeld type quantization condition

Reln~v,n
(o)!5,1

1

2
,50,1,2, . . . . ~10!

By assuming thatv is in the neighborhood ofv,n
(o) and using

Reln(v)@Im ln(v) ~which can be numerically verified
except for very low frequencies!, we can expandln(v) in a
Taylor series aboutv,n

(o), and obtain

ln~v!',1
1

2
1

d Reln~v!

dv U
v5v

,n
(o),

~v2v,n
(o)!

1 i Im ln~v,n
(o)!. ~11!

Then, by replacing Eq.~11! in the term cos(pln(v)) of Eq.
~8!, we show thatf P(v,u) presents a resonant behavi
given by the Breit-Wigner formula~6! with

G,n

2
5

Im ln~v!

d Reln~v!/dv U
v5v

,n
(o)

. ~12!

Equations~10! and ~12! are kind of semiclassical formula
which permit us to determine the location of the resonan
from Regge trajectories.

We now discuss the numerical aspects of our work.
order to determine the location of the QNM frequencies fr
Eqs. ~10! and ~12!, we need the Regge trajectories. For
given v real and positive, we search for a complex value
, such that the coefficient 1/T,(v) is zero butS,(v)/T,(v)
is not. Such a value is then a pole ofS,(v) and provides
immediately the value of the associated pole forSl21/2(v).
Leaver @12# presents a method for finding the zeros
1/T,(v). Though he uses his method to find the QNM fr
quencies, his method is also valid, all things being equal,
finding the Regge poles$ln5,n11/2% of S,(v). Leaver
writes the solution to Eq.~2! as an infinite sum
12401
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F,~r !5~r 22M !rS 2M

r D 2r

e2r[( r 22M )/2M ] (
k50

`

akS r 22M

r D k

~13!

wherer52 i2Mv. The recurrence relations between theak
are given by Leaver:

akak111bkak1gkak2150, ~14!

where

ak5k212k~r11!12r11, ~15!

bk52@2k212k~4r11!

18r214r1,~,11!11#, ~16!

gk5k214kr14r2. ~17!

Leaver noted that the coefficient 1/T,(v) has a zero when-
ever the sum(ak converges. He translates this requireme
into an infinite-fraction equation involving the coefficien
a, b andg. Majumdar and Panchapakesan gave an alte
tive condition using the Hill determinant method@14#: a set
of parameters$ l ,v% that give a convergent sum solve

D5Ub0 a0 • • •••

g1 b1 a1 • •••

• g2 b2 a2 •••

A A � � �

U50. ~18!

This technique has the advantage of being more numeric
tractable than Leaver’s, but it might be only valid for th
Regge poles that lie close to the real axis of the CAM pla
Both Leaver’s original method and the Hill determina
method have been applied to the search for Regge pole
our study. We found excellent agreement between Leav
method and the Hill-determinant method for small values
Regge mode indexn. We also agreed with Andersson’s va
ues given in Ref.@6#. Figure 2 exhibits the Regge trajectorie
numerically calculated while Table I presents a sample
QNM frequencies calculated from the semiclassical formu
~10! and ~12!. A comparison between the ‘‘exact’’ and th

FIG. 2. The Regge polesln(v) followed for v50→5, n
51,2,3,4 for a scalar perturbation (2M51).
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semiclassical spectra shows a good agreement, excep
very low frequencies. Furthermore, the semiclassical the
permits us to classify the resonances in distinct famili
each family being associated with one Regge pole and th
fore to understand the meaning of the indicesn and, intro-
duced to denote the QNM frequenciesv,n .

At large v, the position of the Regge poles very close
adheres to the asymptotic form:

ln~v!'3A3Mv1 i ~n21/2! n51,2,3, . . . . ~19!

Equation~19! leads us to conclude that thenth surface wave
is localized near the unstable circular photon orbit atR
53M by the following consistency argument: by reinstati
dependence on Schwarzschild timet into Eq.~9!, we can see
that the surface waves circle the black hole in timeT
52p Reln(v)/v'2p3A3M for large v. Furthermore, a
photon on the circular orbit with constant radiusR takes the
time T852pR/(122M /R)1/2 to circle the black hole~this
result can be found by integrating the Schwarzschild me
ds250). By equatingT and T8, we obtainR53M . More-
over, by using Eqs.~10!, ~12! and~19!, we recover the well-
known high-frequency behaviors~see Refs.@7# and @9# and
references therein!

v,n
(o)'

,11/2

3A3M
and

G,n

2
'

n21/2

3A3M
. ~20!

These asymptotic behaviors have been obtained unde
hypothesis Reln(v)@Im ln(v) and are therefore valid fo
,@n.

Our approach also applies to electromagnetic and grav
tional scattering. In Fig. 3 and Table II we present so
results for the latter case. A comparison between the e
and the semiclassical spectra shows a rather good agree

Finally, it seems to us necessary to emphasize that
CAM method we have developed here is based on two
sumptions about the Regge polesln(v): They must for-
mally satisfy uln(v)u→1` as well as Reln(v)
@Im ln(v) as v→`. As a consequence, our method is
‘‘high-frequency’’ approach which permits us to recover a

TABLE I. A sample of QNM frequencies for scalar perturb
tions (2M51).

Exacta Exacta Semiclassical Semiclassica
, n v,n

(o) G,n/2 v,n
(o) G,n/2

0 1 0.22091 20.20979 0.19009 20.23120
2 0.17223 20.69610 0.09743 20.33189
3 0.15148 21.20216 0.09695 20.31452

1 1 0.58587 20.19532 0.58336 20.19653
2 0.52890 20.61252 0.51960 20.59418
3 0.45908 21.08027 0.44000 20.93961

2 1 0.96729 20.19352 0.96669 20.19371
2 0.92716 20.59121 0.92504 20.58871
3 0.86109 21.01712 0.85890 20.97714

aFrom Ref.@13#.
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to physically interpret the spectrum of the QNM frequenc
lying in the region 2M Rev.0.2 of the complexv-plane. It
should be noted that the highly damped QNM~for gravita-
tional perturbations! as well as their associated frequenci
which are connected with the area spectrum of the black h
~see @15# for the first paper on this subject and@16# and
references therein for recent works in this domain! can nei-
ther be understood in the framework of our approach
interpreted in terms of surface waves orbiting around
black hole near the unstable circular orbit atr 53M : Indeed,
when the indexn is very large, the frequencies for thes
highly damped QNM are asymptotically given by@12,17–
19#

v,n
(o)'

ln 3

8pM
and

G,n

2
'

n11/2

4M
~21!

and they therefore lie in the region 2M Rev!0.2 and
2M uIm vu@1 of the complexv-plane.

III. CONCLUSION

To conclude, we would like first to comment on som
aspects of our work and then to consider some possible
tensions of the CAM approach in gravitational physics.

We have established the connection between Anderss

FIG. 3. The Regge polesln(v) followed for v50→5, n
51,2,3,4, for gravitational perturbations (2M51).

TABLE II. A sample of QNM frequencies for gravitational pe
turbations (2M51).

Exacta Exacta Semiclassical Semiclassica
, n v,n

(o) G,n/2 v,n
(o) G,n/2

2 1 0.74734 20.17793 0.75812 20.17644
2 0.69342 20.54783 0.78134 20.49976
3 0.60211 20.95655 0.77683 20.83126

3 1 1.19889 20.18541 1.20332 20.18455
2 1.16529 20.56260 1.20089 20.54409
3 1.10337 20.95819 1.18284 20.89846

4 1 1.61836 20.18832 1.62052 20.18792
2 1.59326 20.56866 1.61119 20.56020
3 1.54542 20.95982 1.58849 20.92907

aFrom Chapter 4 of Ref.@9# or Refs.@7# and @8#.
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COMPLEX ANGULAR MOMENTUM IN BLACK HOL E . . . PHYSICAL REVIEW D 67, 124017 ~2003!
surface waves and the QNM complex frequencies of
Schwarzschild black hole in the particular context of wa
scattering. This connection is more general and could be
obtained directly from the Regge-Wheeler equation, by
tending the CAM method developed by Sommerfeld@20# as
an alternative to the Watson approach@1#.

Because the gravitational radiation created in many bl
hole processes is dominated at intermediate time scale
QNMs, it can be always interpreted in terms of surfa
waves. Whatever the perturbation which modifies the geo
etry of a Schwarzschild black hole, it leads to the excitat
of surface waves localized close to the unstable photon o
During its repeated circumnavigations, a given surface w
decays by radiating away its energy, leading to the dam
ringing of the geometry. This mechanism is analogous to
damped ringing of the Earth which occurs during seve
days after a large earthquake and which can be explaine
term of the Rayleigh surface wave.

The CAM method could be naturally introduced in ma
other areas of the physics of relativistic stars and black ho
Such a program could include in particular the followin
topics:

~i! The interpretation of the QNM of neutron stars and
t-
d
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the Kerr black hole in terms of surface waves. For the K
black hole, such an approach could easily explain the sp
ting of the quasinormal frequencies due to rotation.

~ii ! The analysis of Hawking radiation as well as of Ke
black hole superradiance.

~iii ! The study of black holes immersed in asymptotica
anti–de Sitter space-times. The CAM approach could p
vide new tests of the anti–de Sitter/conformal field theo
~AdS/CFT! correspondence recently proposed in the cont
of superstring theory@21#. With this aim in view, the~211!-
dimensional Ban˜ados-Teitelboim-Zanelli~BTZ! black hole
@22# seems to us very interesting because, in that partic
space-time, the wave equation can be solved exactly~see,
e.g.,@23#! and therefore Regge poles can be analytically
tained.

~iv! The study of artificial black holes@24#. Here, it would
be possible to benefit from the formidable CAM machine
developed in electromagnetism, optics and acoustics.
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