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Recent work has shown that dispersion relations with Planck scale Lorentz violation can produce observable
effects at energies many orders of magnitude below the Planck elerflyis opens a window on physics that
may reveal quantum gravity phenomena. It has already constrained the possibility of Planck scale Lorentz
violation, which is suggested by some approaches to quantum gravity. In this work we carry out a systematic
analysis of reaction thresholds, allowing unequal deformation parameters for different particle dispersion
relations. The thresholds are found to have some unusual properties compared with standard ones, such as
asymmetric momenta for pair creation and upper thresholds. The results are used together with high energy
observational data to determine combined constraints. We focus on the case of photons and electrons, using
vacuum @renkov, photon decay, and photon annihilation processes to determine order unity constraints on the
parameters controllin®(E/M) Lorentz violation. Interesting constraints for protdméth photons or pions
are obtained even @((E/M)?), using the absence of vacuunei@nkov and the observed GZK cutoff for
ultrahigh energy cosmic rays. A stronge@nkov limit using atmospheric PeV neutrinos is possible for
O(E/M) deformations provided the rate is high enough. If detected, ultrahigh energy cosmological neutrinos
might yield limits at or even beyon@®((E/M)?).
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[. INTRODUCTION guantum gravity. Profound difficulties associated with the
“problem of time” in quantum gravity{2,3] have suggested
The principle of relativity of motion goes all the way back that an underlying preferred time may be necessary to make
to Galileo[1], who noted that observers below decks in asense of this physics. Also tentative results in string theory
large ship gliding across a calm sea have no way of detef4], quantum geometry5], and noncommutative geometry
mining whether they are in motion or at rest. Einstein’s spe{6—8] approaches to quantum gravity have suggested that
cial relativity, which is founded on this principle, has beenlLorentz symmetry may be broken in the ground state.
spectacularly successful in accounting for phenomena in- Finally, there have been recent hints from high energy
volving boost factors as high asf0Moreover, the Lorentz  astroparticle physics that we may already be seeing the ef-
group has a beautiful mathematical structure, and this synfects of Lorentz violation(although as discussed below the
metry powerfully constrains theories in a way that has beemost recent analyses make this seem unlikeéDne comes
very useful in discovering new laws of physics. It is naturalfrom the photoproduction of electron-positron pairs when
to assume under these circumstances that Lorentz invariancesmic gamma rays collide with photons of the infrared
is a symmetry of nature up to arbitrary boosts. Neverthelesgjackground. Below 10 TeV th@ndirectly) observed absorp-
there are several good reasons to question exact Lorention of such gamma rays by this process offers support for
symmetry. From a logical point of view, the most compelling boost invariance up to the boost that relates the cosmic rest
reason is that while #dis a large number, it is nowhere near frame to the center of mass frame of the colliding photons.
infinity. There is, and will always be, an infinite volume of (For a 10 TeV gamma ray colliding head on with a 25 meV
the Lorentz group that is experimentally untested since, uninfrared photon this yields a boost of 1DHowever, accord-
like the rotation group, the Lorentz group is noncompacting to some(but not al) models of the infrared background,
Why should we assume thekactLorentz invariance holds there appears to be less absorption than expected for gamma
when this hypothesis cannot even in principle be tested? rays above 10 TeV coming from the blazar Mkn S@icated
While the noncompactness reason for questioning Lorentat about 157 Mpc from yslIf true this could be explained by
symmetry is perhaps logically compelling, it is by itself not an upward threshold shift due to a Planck scale suppressed
very encouraging. However, there are also several reasons torentz violating term in the dispersion relation for the
suspect that there will be a failure of Lorentz symmetry atgamma ray$9].
some energy or boosts. One reason is the ultraviolet diver- The other hint comes from the cosmic ray events beyond
gences of quantum field theory, which are a direct consethe Greisen-Zatsepin-KuzmifGZK) cutoff [10,11] on high
qguence of the assumption that the spectrum of field degreesnergy protons. Ultrahigh energyHE) protons undergo in-
of freedom is boost invariant. Another reason comes fromelastic collisions with cosmic microwave background radia-
tion (CMBR) photons leading to the production of pioftke
boost to the center of mass frame yields the figure df 10
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beyond 16° eV have apparently been observed by the Akenano reliable prediction is currently availble. These suggestions
Giant Air Shower Array(AGASA) experimen{13] (see also range from the breaking of just the boost symmetry to break-
[14] for a review on this issue The nature and origin of ing of the full local Poincareroup. In this paper we study
these ultrahigh energy cosmic rays is unknown and severaghe former case since it is the minimal one for which conse-
explanations have been proposeee[15,16 for an exten- quences of boost symmetry violation can be explored. Thus
sive review. One proposal is that Lorentz violating terms in e shall assume that rotation and spacetime translation sym-

the dispersion relation for the proton produce an upward shiffhetries are preserved, so that in particular energy and mo-
of the threshold for pion production, allowing these high yyentum are conservéd.

energy protons to reach §i&7—20. Interestingly it was ar-

) 1. X Dispersion relations determine how particles propagate
gued that a universal Lorentz violating deformation of. t_heand, via energy-momentum conservation, how their interac-

both the TeV/ b i I d the t Yions are kinematically constrained. Hence Lorentz violating
GOZK e\?entes[zg?mma ray absorption anomaly and the ransdispersion relations provide a relatively theory-independent
. : . window into the possibility of Lorentz violating physics. In
The evidence for the TeV gamma ray and GZK anomalies, . )
B—us work we explore the observational consequences of such

is not convincing at this stage, however. Indeed it has bee : . . . : .
argued in[16,21] for the former and 22,23 for the latter eformed dispersion relations in flat spacetime, i.e. neglect-

that the data are consistent with Lorentz invariance. For u1d gravitational effects. The consequences of such disper-
therefore the most important point is just that it is possible afion relations have also been extensively investigated in the
all that Planck scale violations of Lorentz symmetry could becontext of the Hawking effectsee e.g[33] and references
observed or constrained by current and upcoming Observéherelr) and the prlmordlal spectrum of denSlty fluctuations
tions. The focus of the present paper is almost entirely on th# cosmology(see e.g[34-3§ and references thergin
constraintsthat can be imposed. Our work extends prior re-  In this section we discuss our framework for parametriz-
sults [17-20,24—27 in several ways:(i) combining con- ing such Lorentz violating physics, as well as the processes
straints to limit parameter space afpriori independent pa- through which one might hope to place constraints or to
rameters, (i) discovery and characterization of the observe Lorentz violation.

asymmetric threshold effecfjii) characterization of upper

threshold effectsjiv) extending analysis for threshold effects

to higher order nonlinearities. A brief report on some of our A. Theoretical framework
results has already been given[#8]. Some of these results
have been confirmed ir29]. A dispersion relation that is not boost invariant can hold

In the next section we discuss our theoretical frameworkn only one frame. We assume this frame coincides with that
and list the reactions we are going to consider. In Sec. Ill weof the cosmic microwave background. As mentioned above,
study the kinematics of some photon—electron processes iwe further assume that rotation invariance is preserved in
order to determine how Lorentz violating dispersion affectsthis preferred frame. Thus the dispersion relation takes the
thresholds. The details of the photon annihilation thresholdorm E=E(p), wherep is the magnitude op. In the Lor-
analysis are worked out in the Appendix. These results argntz invariant case we havg?=m?+ p2. Effective field
then used to deduce observational constraints on the electrgReory suggests that it should suffice to consider generaliza-

and.photon deformatiqn parameters. Taken jointly thgse CONons of this form involving only integer powers of momen-
straints severely restrict the parameter plane. Section IV ig

devoted to the discussion of other possible interactions in-
cluding hadrons or neutrinos, and in Sec. V we discuss the
special case of common Lorentz violating parameters for all _
the particles. Finally we present some conclusions and per- E?=m’+ p2+n§=:1 ap". (1)
spectives in Sec. VI.

Throughout this paper we adopt the following notational
conventionsp, denotes a four-momentupy=(w,p), andp
is the magnitude of the three-vector The metric signature
is (+,—,—,—). We use the energy scaM =10 GeV to
form dimensionless Lorentz-violating parameters, since it i

_ 5/~\12_ 9
close to the Planck energ¥lp=(7.c"/G) 1.22x10° =7,/M"~2 wherey, is a dimensionless constant that might

which we are presuming sets the scale for violation of Lor—be expected to be of order unity if indeed quantum aravit
entz invariance induced by quantum gravity. We often em- P y q 9 y

ploy units in whichM =1 does violate Lorentz symmetry. For<3 there must in ad-
' dition be another mass scale, which might be a particle

oo

We presume that any Lorentz violation is associated with
quantum gravity and suppressed by at least one inverse
ower of the Planck scald. Forn=3 it is therefore natural
§0 factor out the appropriate power &f and write a,

Il. THEORETICAL FRAMEWORK AND PROCESSES

CONSIDERED ]
IFor an example where both rotation and boost symmetry are

Various approaches to quantum gravity have suggestestoken see e.¢30]. For an exploration of the case in which the full
that violations of local Poincareymmetry might occur, but Poincaresymmetry is violated see e.p31,32.
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physics mass scale, in terms of which the coeffica@’tiscan TABLE I. Typical energies at which one can expect deviations
be written asa;=a; u?/M anda,=a, u/M, where again from standard kinematics for different particles 4f~1 andn
a; , might be expected to be of order un?tyn a situation =3.4. The mass of the neutrino is taken to-bé eV, this being the

such as this, the important terms at low energiesu would current upper bound on the mass of the lightest neutrino.
be fromp! and p?. At high energiep> u, the p* term if

- +

present would dominate. If this term is absent then ple " Paev for ve Paev for € Peev for p
term would dominate whep?s> uM. 3 ~1 GeV ~10 TeV ~1 PeV
A large amount of both theoretical and experimental worky ~100 TeV ~100 PeV ~3 EeV

has been done on the case2. The most general frame-
work is the “standard model extensiof30], which includes

not just rotation invariant effects but all possible renormaliz-
able Lorentz andC P T violating terms that can be added to
the standard model Lagrangian preserving the field conte

rﬁear for normally forbidden processes. These threshold ef-

and gauge symmetries. Low energy observati@@s38,39 ects can occur at energies many orders of magnitude below
have placed stringent limits on the magnitude of such Lorihe Planck scale. To see why, note that thresholds are deter-

entz andCPT violating terms. For example if89] a very mined by parti_cle masses, hence if tbféterm_ is _c_omparable
strong constraint of order 162 from spectropolarimetry is to them? term in Eq.(2) one can expect a significant thresh-
provided for the electromagnetic birefringence of theold shift. This occurs at the momentum

vacuum in the standard model extension. High energy astro-

particle phenomengl7,40 have also been used, however in

the case of such phenomena the above discussion suggests Pev— (MM~ 2/ )1, 3
that unless thep® term is absent it would be expected to

dominate over thg? andp?! corrections.

In this paper we focus on the constraints that can be obwhich gives a rough idea of the energies at which we expect
tained from high energy phenomena. In the absence of pectie see deviations from standard physics. The typical scales
liar tuning of the coefficients of the terms with different pow- for some different particles ifp~1 are summarized in
ersp”, it is natural to suppose that the lowest nonzero ternTaple 1.
with n=3 will dominate at these energies. Hence, for sim-
plicity, we shall include only one Lorentz violating power of
momentum. Our study thus amounts to studying the obser- B. Viability of theoretical framework

vational consequences of dispersion relations of the form S . .
Before considering the observational constraints, a few

comments are in order regarding the viability of the theoret-
E2=p2+mi+ np"/M" 2, (2) ical framework we are adopting.
) . ) o Restriction to pgM and monotonicity of Ep). We view
The subscrip denotes different particles, aredpriori all e dispersion relation just as the initial terms in a derivative
the o!lmen5|o-nless. coefficients, could be different.(For expansion, so we are assuming nothing about the actual
notational uniformity we use herg , rather than the coef- panck scale physics. In particular, wher2 and 7 is
f|C|_ents ay , defined above.We assume that, in addition to negative, the right hand side of the dispersion relatin
being conserved, energy and momentum add for Compos”ﬁ’ecomes negative for large enough momenta
systems in the usual waylt might seem that the effects of | 7|~ Y02\ However, we never use the dispersion rela-

such deformations of the dispersion relation could be impor-i nin this regime where the enerav would be imaginar
tant only near the Planck energy. However, there are at Iea%f " 9” be | ant f g%;] hold | g th X
two types of phenomena for which this is not the case. oreover, 1t will be important for our threshold analysis tha

First, for particles that propagate over cosmological dis Ve restrict attention even further to the regime in which the
' ispersion relation is strictly monotonic. As long|ag is not

tances, small differences in propagation speed can build ug‘ h ih v this will be th ded th
to detectable time-of-flight differences. Second, threshold uch flarger than unity this will beé the case provided the
omentum is below the Planck scale. In fact, we consider

for particle reactions can be shifted, and thresholds can ap- )
P Fsc])qnly momenta many orders of magnitude below the Planck

scale.

2Renormalization group arguments might suggest that lower pow- Causa!lty and S.tab”'tyFor. positivez the propagation is .
ers of momentum in EqJ) will be suppressed by lower powers of superluminal at high energies. One mlght_w_orry that this
M. However this need not be the case if a symmetry or otherwou'd lead to causql paradoxes, however.thlsf IS not thg case,
mechanism protects the lower dimension operators from Lorent?'"¢€ the propagation is always forward in time relative to
violation. See e.g[37] for an example of this in a brane-word the preferred frz_ime in which the dlsperS|on rela'gon is speci-
scenario where there is Lorentz invariance on the brane but not offed. For negativer the 4-momentum is spacelike at high
the brane. energy, hence in a boosted frame the energy can be less than

3Note however that there have been recent proposals in which thgero. One might think this implies that the case wjt 0 is
composition law for energy and momentum is also modifiét-  not energetically stable and hence unviable. This is not so,
44]. however, since all energies remain positive relative to the
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preferred frame, which is enough to guarantee staljility. ~ on-shell this vertex is forbiddetfor any in-stat¢ by energy
Dispersion relations for macroscopic systenThie de- momentum conservation in the usual Lorentz invariant

formed dispersion relations are introduced for elementaryheory, but it can be allowed by Lorentz violating dispersion.

particles only_;_those for macroscopic_object_s are then inyp, particular we consider the following processes:

ferred by addition. For example, N particles with momen- (i) e —e~ y: This vacuum @renkov effects extremely

tum p ":‘jnd massn are combined,_the totaldenergy, MOMEN- officient, leading to an energy loss rate that goes fikavell
tum and mass ary,=NE(p), Po=Np, andM=Nm, S0 4p4ye threshold. Thus any electron known to propagate must
that Eig=Migr+ Piort N™ 7 Pig; (in units withM =1). The i pejowy the threshold. We shall also discuss the vacuum

. . . 2 .
ratio of the Lorentz violating term to the” term is the same  cqyenyoy effect for other charged particles and even for neu-
as it is for the individual particlesyp”, hence there isno ., particles.

observational conflict with standard dispersion relations for (i) y—e*e: The photon decayate goes likeE above

macroscppic_objects. i . threshold, so any gamma ray which propagates over macro-
Effective field theory and compatibility with general rela- scopic distances must have energy below the threshold.

tivity. There is no difficulty exporting deformed dispersion (i) e* e — y: Pair annihilationto a single photon can

relations to curved spacetime, provided they can be producegq, oeeyr, For cosmological observations this would be

by an effective Lagrangian for a field. In this case, the pre.hardly distinguishable from the similar two-photon pair an-

;grcrjeg framg in Wr;.if(:h the dis]EJeIrdsionhrerI]ation hglds is Spe%"nihilation and as such it is not presently helpful in providing
ied by a unit timelike vector field, which must be promoted ,,carvational constraints.

to a dynamical field of the theory if general covariance is to (b) y y—e* e~: Photon annihilationoccurs in ordinary

be preservecﬂ46—_49]. In the cases that is even, 'Fhere ar'® QED above a certain threshold, however Lorentz violating
obvious Lagrangians that prodgce the dispersion reIat'Ondispers;ion can modify this threshold in observationally inter-
For t_—zxample one can add tgrmzs |n2volvmg extra powers of th%sting ways and can introduce an upper thresHdlte re-
spatial Laplacian, such as¥{V®¢)? for a scalar field. FOr | 04" reactions of pair annihilatiofinto two photons and
oddn thgre seems to be no local action that will work for real Compton scattering are also modified, however these effects
scalar fields, although for a complex scalar the terMygo g clear signal that can provide useful constrajnts.

i $3,(PV?¢+H.c. induces cubic and higher order terms. To  (c) y—N+y: Photon splittingis allowed by energy mo-
induce cubic terms for spinors one can write for examplementum conservation in Lorentz invariant QED if &Il 1
y®V2y, and for the electromagnetic field one can write photons have parallel momenta, but the process does not
B-V X E (which violates parity. This last case yields a sort occur both because the matrix element vanishes and the
of Lorentz violation that emerges from quantum geometryphase space volume vanishes. With modified dispersion the
calculationg5]. The Lorentz violating terms in the effective photon four-momenta are no longer n(dind there may be
Lagrangians just discussed have mass dimension greater thadditional Lorentz violating operators that mediate the pro-
4 so are not renormalizable. This is not a fundamental probeess hence this reaction can occur with a finite rate. How-
lem, since we only regard the Lagrangian as an effective onever, we shall see that the rate is too small to be observable.
below some large energy scale, however it raises the ques- (d) Time of flight constraintdNonlinearity in the modified

tion of naturalness. For now we take the point of view thatdispersion relation leads to different times of arrival for pho-
there may be an explanation for the low energy Lorentz symtons of different wavelength emitted from the same event.

metry that is not yet understood. Such differences can provide an upper bound on the param-
eter governing the amount of Lorentz violation for photons,
C. Processes considered independently of the parameters for other particles.

| der to determine the st tioint traint th (e) Vacuum birefringence constraint¥iolations of Lor-
n order to determineé the strongest joint constraints on e, iy ariance involving also parity violation can lead to

a priori independent coefficientsy, in Eg. (2) one must unequal speeds of propagation for different photon polariza-

identify several processes involving the same types of PaGons. The absence of such birefringence effects for ligkt

ticles. We focus most of our attention on the case of photon@v) from cosmological sources has been used to provide

and electrons, since the electron mass is light and these pal\aints of order 162 and 10°° for the quadratid39]
ticles interact readily. In this way we are able to obtain rather,

) and cubic deformationb0] respectively.
strong constraints on the allowed parameter space. We also K50] resp y

consider several other processes, some of which presently

allow or will soon allow further interesting constraints to be 2. Other processes
placed. Here we summarize all the processes to be consid- (5 Alternative vacuum &enkov effects:
ered in the paper and a few more. (i) p*—pTy or n—ny: Note that to properly analyze

this reaction the structure of the proton or neutron must be
taken into account.
(@) QED vertex interactionsThe basic QED vertex in- (i) v—vy: Although neutrinos are neutral, they still have
volves one photon and two electron lines. With all particlesa charge structure in the standard model so they can in prin-
ciple produce vacuum &enkov radiation via the charge ra-
dius coupling. Massive neutrinos could also radiate via the
“4For an alternative point of view, s¢é5]. magnetic moment coupling1]. The related process of pho-

1. Photon-electron processes
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ton decay to neutrinosy— vv, may also provide an inter-  Using the electron-photon processes we find strong con-
esting constraint. straints on the allowable range for the photon and electron
(iii) Gravitational @renkov radiation will occur if matter Parameters for cubic orden{=3) Lorentz violation, while

moves faster than the phase velocity of gravitons in vacuunif’® quartic casen=4) is only weakly constrained. Using
[52]. This effect has been used, in the special case, to  UHE cosmic ray protons we obtain strong constraints even

place limits on the difference between the maximum speedgOr n=4.
of propagation for gravitons and photol&3].

() p* yemg— P mo: GZK interaction Lorentz violations
can change the allowed range of energies for this reaction.

The confirmation of the standard GZK cutoff can therefore i o
provide interesting constraints even in the case4 due to ementary processes involving just photons and electrons. The

the tremendously high energy of the most energetic cosmi@m that th‘?se always inV(_)Ive the same particles V.Vi” allow
rays. Moreover the highest energy events recorded b s to combine the constraints provided by the available ob-

AGASA may conceivably be explained via an upper thresh- ervations and to severely restrict the space of t.he Lorentz
old. violating parameters. From here on we adopt units With

(c) Neutron stability-proton instability If the dispersion =1, but occasionally display thil dependence explicitly.

relations for the neutron and proton are independently modi-
fied, it is possible to make neutrons stable at high energies.
The highest energy AGASA events could be understood in The processes” —e~ y andy—e*e™ correspond to the
this manner if the trans-GZK particles were actually neu-basic QED vertex, but are normally forbidden by energy-
trons, hence suppressing their interaction with the cosmicnomentum conservation together with the standard disper-
background radiation. sion relations. When the latter are modified, these processes

(d) Neutrino oscillationsNonflavor-diagonal Lorentz vio- can be allowed.
lations can produce neutrino oscillations, even for massless For photons and electrons the assumed dispersion rela-
neutrinos[54]. For quadratic deviations in the dispersion re-tions are
lation (n=2) the constraints from current observation have

. . . . 2 — 1.2 n

been considered ifl7,54,59 leading to a constraint on the w*(k)=k"+ &k, 4
difference of speed between electron and muon neutrinos of
about 10?2 Constraints for higher order Lorentz violations
have been discussed [iB6].

(e) Anisotropy effectsThe motion of the laboratory with
respect to the preferred frame can produce anisotropic e

fects. Limits for the casa=2 are discussed if88]. Such an da=(Eq.0). For the two reactions energy-momentum con-

effect has recently been usgd7] to show that the Lorentz o\ 240N then impliew, =k, + q, and ky=p,+ g, respec-
violation suggested by quantum geometry calculations is 'rfively In both cases. we have

conflict with current observations in Hughes-Drever type ex-
periments. (psa—ks)?=03, (6)

IIl. PHOTON-ELECTRON PROCESSES

In this section we determine the thresholds for some el-

A. Kinematics of the basic QED vertex

E2(p)=m*+p?+ np", (5

where we have introduced the notatige 7, and 7= 7.
et us denote the photon 4-momentum ky= (w, ,k), and
he electron and positron 4-momenta py=(E,,p) and

where the superscript “2” indicates the Minkowski squared
D. Observations norm. Using the Lorentz dispersion relatiods and(5) this

To obtain constraints from these reactions we shall Conpecomes

sider the following observations: K'+ 70"— 1ng"= 2(E. w.— DK COSO 7
(i) Electrons of energy up te-100 TeV are inferred via ¢ 7P (Eper=p ) @
x-ray synchrotron radiation coming from supernova rem-where @ is the angle betweep andk. In the standard case

nants[58,59. the coefficientst and 5 are zero and the r.h.s. of E(f) is
(i) Gamma rays up te-50 TeV arrive on Earth from the always positive, hence there is no solution. It is clear that
Crab nebuld 61]. nonzeroé and » can change this conclusion and allow these

(i) Cosmic gamma rays are absorbed in a manner corprocesses.
sistent with photon annihilation off the IR background with  We define aower thresholdas the minimum energy re-
the standard thresholdl6,21]. This inference depends on quired for the incoming particle for the reaction to ocdii.
incomplete knowledge of the IR background and on assumethe initial state is a two particle state, then a threshold is
properties of the source spectrum however, so the consiglefined relative to a fixed energy for the “target” partigle.
tency provides only an imprecise constraint at present. Conversely, arupper thresholds defined as the maximum

(iv) Different photons emitted by the same gamma rayenergy (if any) allowed for the incoming particle for the
burst all arrive at Earth within a narrow time interval. reaction to occur. Our analysis is based on properties of

(v) The GZK cutoff on UHE cosmic ray protons at5 thresholds summarized in the following threshold theorem:
X 10'° eV has been observe®2,23 (although events at Threshold theoremif E, is a strictly monotonically in-
higher energy may have been detedt&d]). creasing function ofp for p>0 for all particles, then all
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thresholds for processes with two-particle final states occuusing the same approximations. We indicate below how the
when the final momenta are parallel. For processes with twoapproximations can exclude the negative energy solutions.
particle initial states the initial momenta at threshold are an- Consider for example the vacuumer@énkov process.
tiparallel. Then energy conservation with a negative energy final elec-
A detailed proof can be found if62]. According to the tron readsE(p)=w(k)—E(q) with w(k), E(p) and E(q)
theorem,#=0 at a threshold. This point has been assumed irall positive. The smalle€E(q) can be(within the monotonic
previous work but was not shown explicitly and in fact is not regime is m, so we must have (k) >E(p) + m. Expanding,
true if E, is not monotonic. this becomek+ £ék("~1/2>p+m?/2p+ »p"~1/2+m. On
Fixing 6 to be zero, all three spatial momenta are parallelthe other hand, momentum conservatigm the threshold
hence momentum conservation impligs-|g|=|+(p—k)|  configuration requires thatk<p. This inequality implies

=|p—k|. In this case the relatio¥) becomes that ¢k("" /2> »p("~Y/2+m, which requires that either
&k("=2=0(m/p), or |pp"~2|~m/p, or both. In either

case, we see that neglected terms such¢kS (?))? are not

E"+ npp"— 7|p—k|"=2pk F ?_ 1) (8)  negligible compared to the terrm{p)? that has been kept.

Truncating Eq.(12) at first order, and inserting the result

In the situations of interest to us, the momentpiis relativ- N Ed. (8) we obtain
istic, and the Lorentz violating terms are small:

Ek"+ pp"— 7| p—k|"

m/p<1 9 )
m
=2pk| —+ gk("*2)+ zp(“z)) . (13
E(KIM)"—2<1 (10) 2p® 2 2
2(pIM) 21, (11) Introducing the variablex=k/p, Eq. (13) takes the form
Using these approximations and expanding the two energies m2 1-x—[1-X|"
in powers of the small quantitiefg(m/p)?+ »p"~?)] and — =1 )+ g (14)
£k("=2) we obtain p" X
E 1{m2 1/ m? 2 At threshold for either €renkov or photon decay and x
bl 1+ _(_ + 77p(n—Z)) =4 77p(n—2)) 1 must satisfy this kinematic relation. Note that while we have
p Kk 2\ p? 8\ p2 assumed thap is relativistic, no such assumption is needed

1 1 for the other two momentg andk. This is important since
X| 1+ = gk(=2— _(gk(n—z))z}_ (12  Wwe shall use Eq(14) in cases where the momentum distri-
2 8 bution is highly asymmetric.

There is a subtlety about the truncation of this double expan- g _ B

sion. If the ratio of the two expansion parameters is very B. Vacuum Cerenkov effect:e™—ye

large, it is possible that the second order term in one quantity The spontaneous emission of photons by a charged par-

is comparable tdor larger thai the first order term in the ticle in vacuum is forbidden in Lorentz invariant physics

other quantity. In such cases, spurious results can be obtaingthce the sum of a timelike and null 4-momentum vectors

by truncating both expansions at the same order. We shadannot lie on the same mass shell as the timelike

proceed with the first order truncation of both expansions4-momentum. Modifications of the dispersion relations of

One can checl posterioriwhether the truncation is consis- the form (4) and (5) can allow some phase space for this

tent. It turns out that this truncation is adequate for our pracreaction to happen. If the reaction is allowed the rate of

tical purposes. In particular, although at very high energiegnergy loss for the case>2 well above threshold is

our approximate threshold results will fail to be accurate dE/dt~aE?, whereE is the energy of the initial charged

those energies are sufficiently high so as to be observatiorparticle ande is the fine structure constahThe decay dis-

ally irrelevant. tance is thus only of order the microscopic distance EQO/
Another important point is that Ed8) originated from  hence the lower threshold of the vacuunerénkov effect

Eqg. (6) together with conservation of three-momentum andmust be above the maximal observed energy of any charged

hence it is equivalent to energy conservatiep) — w(k) particle known to propagate.

==*E(q). For the @renkov and photon decay processes

e —e yandy—e’e” we want only the upper and lower

signs respectively, since the energy of all the particles shouldsgor the special case=2 the rate of energy loss is further sup-

be positive. It will be unnecessary to impose this choice expressed by the difference in speed&/dt~ (c2 _CZ)aE2 see e.g.

plicitly however, since the negative energy solutions are exf17]. In this case the decay distance depends on how close the two

cluded by the approximations to be employed, as can bepeeds are, which must be taken into account in deducing observa-

checked by just imposing energy conservation directly andional constraints on the parameters.
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The lower threshold is the lowest value of the incominghence the threshold occurswat=1, with the emission of a
electron momenturp for which the kinematic equatiofi4) zero energy photon, and the threshold momentum is given by
has a solution. At threshobd=k/p must lie between 0 and 1,
since if k were greater thap the final electron momentum
would have to be antiparallel to the photon momentum, pth:(_
which is excluded by the threshold theoréaf. Sec. Il A). n—§
The threshold therefore occurs at the value @f this range . .
for which the right hand side has a maximum. We substitute .It is clear from Fhe above expression that no threshpld
this x in Eq. (14) to obtain the lower threshold momentum exists for the special casg= 7. Th's Ca’la's_o be_seen d'.'
for the electron as a function @t 7 andm. That there is no rectly from the fact that quadratic modifications in the dis-

upper threshold in this case is immediately obvious since th ersion relat|pns_ are equivalent to const@rnbmentum In-
right hand side vanishes asapproaches 1, allowing solu- epender)ts:h!fts in the speed of propagation. I.n the case of
tions with arbitrarily large momentum. gqual coefficients the electron and photon d|§per5|on rela—

The analysis is somewhat simplified by rewriting Etg) tions share_ the same Lorentz symmetry only with a modified
in terms of the new variablee=1-x, in terms of which it speed of light, and hence the vacuurerénkov effect(as
takes the form well as photon decaycannot take place. Nevertheless we
shall see that in the higher order cases=@) these pro-
cesses are allowed for equal positive coefficients.

In the casen=3, Eq.(15) becomes

m2 | V2
) (18)

m2
—= —Ew(1-w)" 2+ p(w+---+wW" Y (15
p

) i m?2
The relevant range ofv is 0 to 1. In the threshold configu- o (— 2
9 9 S =(n— W+ (n+EHwW (19)

ration we havgp=q+Kk, hencew=q/p. The general analy-

sis of the threshold relations must be done on a case by case

basis for different values af, however it is easy to derive The form of the threshold relation frdepends on the val-
partial results valid for any. ues of» and ¢. We find two different formulas, depending

First consider the case wheteis positive. Then the first 0n whether the threshold occurs with emission of a low en-
term in Eq.(15) is negative, so ify is negative there is no €rgy photon {v— 1)—which we label as cag@) below—or
solution. If % is positive, the maximum of the right hand side With emission of a photon with energy of order— which is
clearly occurs aw= 1, where it is equal tor{(—1) 7. Hence labeled caséb). After a bit of calculation we find
the threshold for the case whérand » are both positive and

n>2 is 2\ 13
(& pn= (2— for >0 andé=—-37, (20
m>2 1in Y
=l 16
Pth (n _ 1) 7 ( ) , s

. : o Am“(&+ )
Sincew=1, this threshold corresponds to the emission of a (b)) pn=|——F——
zero energy photon. This is why the valueis irrelevant, (=)
and the @renkov process takes place as longrais posi- for éE<—37x<0oré<n<0 (21)

tive. Indeed also for negative values éfthe process takes
place as long ag; is positive (and even for some negative
values—see beloy however the threshold configuration (c) Nothreshold forp<0 andé> 7. (22)
may occur with the emission of a hard photon. L
One more general result can be established, namely thdt case(b) the value ofw=q/p at the threshold is given by

there is no threshold i< ¢<0. To see this observe that for 9/P=—(7—&)/2(n+¢). Given a maximal energy/
w between 0 and 1 we hawe+ - - - +w"~2>w(1—w)" 2 momentump,,,x for which no vacuum €renkov effect is

since the derivative of the Ihs is greater than unity and th@PServed, the constraint on the parameters can be written as
derivative of the rhs is less than unity. Thuszi& ¢<0 the

rhs of Eq.(15) is nowhere positive in this range @f. In m2
particular, there is no threshold in the case of equal negative (@ <73, (23
parameterg = 7<<0. 2Pmax
The remaining parameter space for which we need to de-
termine the threshold is the regi@s<0 and > ¢. m2 m2 | 2 m2
1. Vacuum Qrenkov thresholds for r2,3,4 () &>7= 23— —2 (pB_) B 277( p3_> ’
max ma max
In the casen=2, Eq.(15) becomes (24
2 The case in which the correction is of quartic order is
m—2=(77—§)W, (17) similar to the cubic one, although somewhat more compli-

cated. In the case=4, Eq.(15) becomes
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m2 and TeV regions of the photon emission from supernova
— = (n=§Hw+(n+ 26)W2+ (n— &)W, (250  remnants such as SNR 1006 or the Crab Nep258,64.

p In particular for the supernova remnant SN 1006 a clear
. — identification of a synchrotron emission together with the
With the deﬂmtu;ns}xz n—¢ ang TE§’7+2_§)/)‘_’ Eq. (25 independent estimate of the magnetic field strength allows
takes the formm®/p"=A(w+ 7w”+w"), which is what we e 4 infer that the electrons should have energies of about
used to carry out the threshold analysis. Again the form of; 5 TeV[58,59.% These electrons propagate over distances
the threshold relation fqp depends on the values gfand¢,  5r |onger than that required by the vacuurarénkov effect

and we label the cases witl) and (b) as forn=3. After {5 gecrease the electron energy below the threshold.
some tiresome analysis we obtain the following expressions: gqr n=2 we see from Eq(18) that (— &) =3x 107

which can be compared with the limityf &)<5x10 13
m?\ V4 obtained by Coleman and Glash¢®7] using ap,, of 500
(& pn= (5) GeV. The @renkov emission rat&f. footnote Il B) is fast
enough for such parameters thAE~E over a distance
for >0 andé=—(8+ 6\/5)77, (26) scale of centimeters. For=3 the emission rate is 10times
higher. For the cases of=3 andn=4 the corresponding
m2 |\ V4 value ofm?/pp .. is ~3x 1073 and ~4x 10" respectively.
(b) pth:<—> We therefore obtain an interesting constraint for the cubic
F(A,7) case but not for the quartic case, assuming that the Lorentz
_ - violation is at the Planck scaléWe shall see in section
for &< (8+6\/§)77<0 oré=n=0, IV A1 that one could get a good constraint even for the
(27 =4 case by considering the #0eV cosmic ray protons,
modulo some caveats that we shall discusgyure 1 shows
(c) Nothreshold forp<0 andé> 7, (2g)  the excluded region for the parametérand » in then=3
case as determined by the conditid@8) and(24).
where the functior(\,7) is given by

C. Photon decay:y—e*e~

2 9
FO\7)= 5=\ T3+(7'2—3)3/2—§T . (29 The spontaneous decay of a photon into an electron-
positron pair is another reaction usually forbidden by
In the case@ we have again the emission of a low energy €N€rgy—momentum conservation. As in the case of the
photon (w—1). In case(b) the value ofw=g/p at the Vacuum @renkov effect, modifications of the dispersion re-
threshold is gi\./en byy/p=(—7— \Fz—_3)/3 So forn=4 lation allow this reaction to occur. By the threshold theorem

given a maximal energy/momentuiay p,..,) for which no (cf. Sec. lll A), we know that the final particles have parallel
v m

vacuum @renkov effect is observed, the constraint for Casénomenta, so that bof[h lepton momenta are less than or equal
(@ can be written as to k. Thusx:=k/p=1 in Eq.(14), so thaj1—x|=x—1. Itis

convenient to use the variabje=1/x=p/k, whose relevant

, range is zero to one. In terms g¢f Eq. (14) takes the form

m
(a) 77<3 s (30 m? -1 -1
Pmax P A U ny(L=y)[y" P+ (1-y) Y],
The constraint for casé) has a cumbersome form but the (3D
corresponding line in thé—» plane can be found from Eq.

(27).
_ _ SAfter this work was completed we fouri60] that the synchro-
2. Observations and constraints from absence of vacuum  tron emission is sensitive to Lorentz violation, and in fact one can-
Cerenkov effect not be certain about the existence of these 100 TeV electrons for

We can now consider the actual constraints observationEOSitive 7. However one can instead use the existence of 50 TeV
impose on¢ and 7. The previous analysis shows that the elegtrons inferred from the dgtec_tlon of 50 TeV photons produced
2/n . by inverse Compton scattering in the Crab nebula. This would

smallness ofm</p,,, determines the strength of the con-

. ided bv th a@enk ff h h weaken the constraint by just a factor of=28.
straint provided by the vacuumetenxov efiect, hence the The competing energy loss by synchrotron radiation is irrelevant

strongest constraint will be obtained by considering the hight,, 1his constraint. The rate of energy loss from a particle of energy

est energy observed for a given particle. _ E due to the vacuum &enkov effect goes like-€?E?, while that

vacuum @renkov effect at energies up to 500 GeV, and inwherec=#%=1). For a magnetic field of about one micro Gauss
cosmic rays energies of 2 TeV have been detect¢@6,63.  (such as those involved in supernova remnatite synchrotron
Even higher energies, in the range-5000 TeV, are neces- emission rate is 40 orders of magnitude smaller than the vacuum
sary in order to consistently explain the peaks in the x-rayCerenkov rate.
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: Ny rest in the center of mass frame. The error lies in a mislead-
\ ing application of the Lorentz transformation in the case
where a definite preferred system exists. First, the center of
mass frame may not even be accessible if the photon energy-
5r momentum vector is spacelikge. subluminal dispersign
I \ Second, even if we can boost to the center of mass frame, in
this frame the dispersion relation of the electron/positron
may not have its minimum energy at zero momentum. There-

1 0 T T T

E0r fore it is not always true that the final particles are produced
at rest in the center of mass frame.
We now examine the cases=2,3,4 individually.
-5-— 3 1. Photon decay thresholds for+2,3,4
I In the casen=2, Eq.(31) takes the form
e M (6= my(-y) 33
-10 -5 0 5 10 K2 K ‘

n

FIG. 1. Constraint from the absence of vacuuerahkov effect ~For é— <0 there is no threshold, while fagr— >0 there
for n=3. The filled region in the parameter space is the one nois a lower threshold ag=1/2. In this case one obtains the
compatible with the existence of the100 TeV electrons indirectly threshold formula
detected via synchrotron emission from supernova remri&gis

The2 poir13t where the 3vertical line crosses the axis is 7 . 2m 34
=m“/(2ppa) ~1.5<10°. th=—.
¢ VE-—7
The threshold corresponds to the maximum of the right hand .
side of Eq.(31) with respect toy. Note that the rhs is sym- In the casen=3, Eq.(31) takes the form
metric abouty=1/2, since the two leptons are kinematically )
interchangeable, hence it is always stationaryyatl/2. m_: 1—v)— 1— 24 (1—v)2 35
However, this stationary point can be a maximum or a mini- k3 &A=y = py(L=yly +(1=y)7). 39
mum, depending on the values gfand &. If it is a maxi-
mum the threshold momentum is given by To determine the threshold we need to find the maximal val-
un ues of the rhs. The task of finding the maxima is simplified
|2 by introducing the new variableg=(2y—1)?, so thaty
k| S0, B2 =(1+y2)/2, (1-y)=(1-y2)/2, andy(1-y)=(1-2)/4.

The relevant range df is [0,1], wherez=0 corresponds to
In the special casé= 7, which has been mostly studied the symmetric configuratiop=1/2 andz=1 corresponds to
in the literature, it can be shown that the only stationaryy:l-
points of Eq.(31) arey=0,1/2,1. Given that the right hand N terms ofz Eq. (35 becomes
side of Eq.(31) is always zero ay=0,1 it follows that for 5
equal coefficients the threshold condition is always realized m_ é(l—z)— 2(1_22) (36)
with a symmetric distribution of the final momenta. K3 4 8 '
Contrary to relativistic intuition, and to what has been
assumed in all previous calculations as far as we know, thghe symmetric extremum at=1/2 corresponds t@=0,

threshold doesot always occur with the symmetric configu- and there is one othéasymmetrig extremum atz,= &/ 7.
ration. The reason is that when<O, the lepton energy One of the two extrema is a maximum and the other is a

E(p) has negative curvatutg”(p) <0 for sufficiently large  minimum. Since the second derivative with respect tis
momentum ifn>2, unlike the usual Lorentz invariant case. 5/4, the one at, is a maximurfi if and only if <0, and it

If the threshold lies within the negative curvature region, itjies between zero and one in this case if and only4f ¢

cannot occur with the symmetric configuration since the en-

ergy of the final state at fixed momentum could be lowered———

by making the momentum of one particle smaller and one erpjs does not also show that the extremunzato is a maxi-

larger by an equal amount. Fgr<£<0, the threshold does mym, since the relation betweemndy is not smooth there. In fact,

occur in the negative curvature region, hence it is asymmeig2/qy2=16z%/d2+8 d/dz, so at z=0 we have d%dy?

ric. =8 d/dz Using this we see that the symmetric solution is a maxi-
The occurrence of the asymmetric threshold might seemum if and only if£>0, so the asymmetric solution is the maxi-

especially surprising if we think, with relativistic habits, that mum if and only if¢<0. This is the same condition ag<0, since

at threshold the electron and positron should be created #tz,= ¢/ 5 is greater than zer@g<O0 if and only if 7<0.
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<0. Note that in the special case=#n the asymmetric 1) )
threshold solution is removed and a threshold exists just for I
positive values ofy.

The value of the rhs of Eq36) at z=0 is (26— 7)/8,

while atz=z, it is —(&— 7)%/8%. We thus see that photon 5¢ =
decay is allowed only above the broken line in the¢ plane i —~ ]
given by é= /2 in the quadrang, »>0 and byé= 7 in the ~
quadranté, <0. Above this line, the threshold is given by
8m2 1/3 |
a kyp= ) for £=0, 3
@ ki ( i 7 ¢ (37
_8m2y 1/3 i
(b) kp= for p<£<0. (39
(£—n)?

The detection of gamma rays with momenta up to some
Kmax Implies that the parameters must lie in the » plane
below the line corresponding to a thresholdkaf,,. This
translates into the following constraints for the paramegers
and #:

5 10

FIG. 2. Constraint from the absence of photon decay. The filled
region in the parameter space is the one excluded by the observa-
tion of gamma rays of energies up t050 TeV.

@ §<g + 43_mz (b) E<n+A [ _ 8r2277. (39) 2. Observations and constraints from absence of photon decay
Kinax Kinax We can now consider the constraint érand » imposed

by the absence of photon decay in current observations. As

before, the smallness of?/k), ., determines the strength of

the constraint, hence the strongest constraint will be obtained

by considering the highest energy photons observed, which

In the casen=4, Eq.(31) can again be conveniently re-
written in terms of the variable introduced after Eq(35)
above, yielding

m? ¢ 7 are the 50 TeV gamma rays arriving on Earth from the Crab
= Z(l_ z)— 1—6(1+ 2z—-327%). (40)  nebula[61]. The rapid decay ratel(~E above threshold
k implies that in order to propagate at all, let alone to reach us

, from the Crab nebula, these photons must have an energy
The asymmetric extremum here occurszgt (26+ 7)/37. pejow the threshold. For the 50 TeV photons we have

This is again a maximum if and only <0, and it lies m2/k"_ ~104"~4 Forn=2 andn=3 this yields strong

; ; ; ; max
between zero and one n this case if and onlypik £< constraints on¢ and », however forn=4 this number is
— y/2. Note that again in the special caée » the asym-

; . . _~10 so the constraints are not so interesting. The case
metric threshold solution is removed and a threshold exists_, | o already been studied[it7,40. Referencd40] also
just for positive values of. uses 50 TeV, which from Eq34) , ieids the constraint

The value of the rhs of 2Ec[.40) atz=0is (4—»)/16, — _ 7)<10"16, 'Here we consiger )th); case=3. .
while atz=2z, itis — (£~ »)"/127. We thus see that photon 1 ype a5 =3, we use expressioli87) and(38) for the
dgcaygs a!OV\ﬁq O?:]y abovde the brgkoen Ilgebm bi‘eg.pl?ﬁe threshold momenta to impose the condition that photon de-
given byé= #/4 in the quadran, »>0 and bye=#ninthe ... 1o torhidden for photons beloy,,=50 TeV. This de-

¢,7<0. Above this line, the threshold is given by fines a broken line in thé&-» plane below which the coeffi-

2\ 1/4 cients must lie:
(a) kth: (E) for g? — 7]/2, (41)
» (@ £<2+008, (b) £<n+—016; (44
[_12“277 for p< £<— nl2 ’
b)) kp=|——= or n< &< —nl2.
th (6— 77)2 n 7

Constraint(a) applies foré>0 while (b) applies foré<O0.
The excluded region in the parameter space is shown in Fig.

Again, given a maximal observed momentum for which2- . o .
gamma decay is not observed gives constraints on the param- 1he joint constraints imposed by both vacuurarénhkov

(42

eters¢ and 7, and photon decay are shown in Fig. 3. We see that these two
reactions are already enough for ruling out most of the pa-
7 4m? 12m?y rameter space. Next we shall see that by taking into account
(@ §<Z +——, (b é&<p+/——5— (43  alsothe process of photon annihilation this constraint can be
max max further improved.
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L L, L, A L A A thus takes the form k4 i,=(w(K)+ wo,k—wg,0,0)
=:(w',k’,0,0).

To adapt our previous calculation, we need only replace
by k' =k—wg and w(k) by o’ (k")=w(k'+ wg) + wg. Ex-
® panding one getso(k’ + wo) =k’ + wg+ (&/2) (k" + wo)" "t
+.--. Since wg<<k, and the last term is already Planck-
< suppresse(br, if n=2, suppressed by the small value&)f
- we can neglectyg in that term. This yields the approxima-
1 tion o' (k")=k’+(&'/2)(k")("" 1), where¢' is defined by

4(00

&=+ —(k’)(”_l).

(45

The kinematic equation for photon annihilation is thus ob-
tained from that for photon decd®1) by the replacements
k—k’ on the Ihs anct— &' on the rhs. We can further ne-
5 10 glect the difference betweeki andk on the |hs sincaw,
<k, hence to a sufficiently good approximation we can use

FIG. 3. The graph shows the combined observational constraintthe kinematic equation

derived from the absence of vacuunerénkov effect and gamma m2 Ao

decay. The horizontal shading identifies the region excluded by 0=F(K,y)i=— —+| &+ 0 y(1-vy)

gamma decay, the vertical one byei@nkov. Although not visible k" k(n—1)

there is a tiny region of positivé and » allowed by present obser- (n-1) (n-1)

vations, and there is a barely visible region of positivand nega- —ny(1=-y)ly +(1-y) 1. (46)

tive 7. Also the diagonal is in the interior of the allowed region. . . . .
7 g g The variabley is defined byy=p/k, wherep is one of the

lepton momenta. Our analysis of the thresholds is based on
Eq. (46).

In standard QED two photons can annihilate to form an As in the case of photon decay, the thresholds occur at the
electron-positron pair. If one of the photons has enesgy  symmetric valuey= 1/2 only for certain ranges of the param-
the threshold for the reaction occurs in a head-on collisioreters¢ and ». The analysis for photon annihilation is more
with the second photon having the moment(equivalently — complicated however since for=3 the dependence of Eq.
energy k., =m? wy. For k., =10 TeV (which will be rel-  (46) onk andy does not separate, unlike in E1). Thus it
evant for the observational constraintthe soft photon is not simply a matter of finding the value phbetween zero
thresholdw, is approximately 25 meV, corresponding to a and unity for whichF(k,y) is maximum. Analyzing the
wavelength of 50 microns. threshold structure is a rather lengthy and complicated pro-

In the presence of Lorentz violating dispersion relationscess, so we have placed the details in an Appendix. The
the threshold for this process is in general altered, and thanalysis reveals a number of unexpected features that thresh-
process can even be forbidden. Moreover, as noticed bglds can have in the presence of Lorentz violating dispersion,
Kluzniak [25], in some cases there is an upper thresholdwith intricate dependence on the Lorentz violating param-
beyond which the process does not octh.this section we  eters. Here we summarize the results in the case,3, and
discuss how the thresholds depend on the Lorentz violatingpply them to obtain further observational constraints.
parameters. We then discuss the observational consequenceswe obtain results valid for any value of the soft photon
and constraints that can be obtained using the absorption ehergyw, and “electron” massm by employing appropri-
TeV gamma rays of extragalactic origin by the interveningately scaled quantities:
infrared (IR) background.

The threshold equation for photon annihilation can be ob- B=ki/k,, 7=7n(m?" Y/wl), &=m?Y/w))
tained by modifying our previous analysis of photon decay. (47)

The difference is that the initial state includes two photons ) ) _
rather than one. We are interested in the case where one Wherek, is the standard lower threshofd®/w, The basic
the photons has low energyR), hence for that photon the threshold structure will be given in terms of these variables.
modification in the dispersion relation can be neglected. Th&Or the case of most interest to us,is 3 andm is the
threshold theorentcf. Sec. Il A tells us that the threshold €lectron mass. Forw,=25 meV we then have¢
configuration is a head-on collision. Denoting the IR photon=(w3/m*) €=2.3¢, and similarly fors.
energy bywg, the total four-momentum of the initial state It is worth noting that while we have been thinking ©f
as fixed and determining the corresponding high energy
threshold, it can be viewed the other way around. The pa-
9As discussed below in Sec. IIl D 3, our results agree with thosgameter 8 can also be written ago/(m?/k). If now k is
of [25] only in certain limiting cases. considered fixed them, is the modified soft photon thresh-

D. Photon annihilation: yy—ete~
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FIG. 4. Regions where the lower threshold for photon annihila- FIG. 5. Contours of constant lower threshgd-= const. Forg
tion with n=3 is determined by the symmetric configuratigight =<1.5 these correspond to symmetric configurations above the dot-
gray region, the asymmetric onédark gray regiohor the reaction ted line and asymmetric ones below. F8r-1.5 there are only
does not occu(white region. The dotted line is the locus of points asymmetric lower thresholds and the contours terminate at the sym-
where the contour of constagt<1.5 switches smoothly from the metric 8=1.5 contour. The end of the dotted line is a};?)

asymmetric to the symmetric solution. =(—64/27,-48/27), and thg8=1.5 contour meets the diagonal at
7=&=-32/27.

old and m?/k=wy, is the corresponding Lorentz invariant

threshold. Thereforgs has also the interpretation,/w,,,  asymmetric or does not exist at all, and a contour plot of the

that is the factor by which the soft photon threshold is shiftedower threshold is shown in Fig. 5.
at fixed hard photon enerdy This interpretation is valid for The threshold can be symmetric only f@#=<1.5. The
lower thresholds only however. There is in fastveran  symmetric part of the contour is given by the straight line
upper threshold for the soft photon at fixé&d(as long as 5
wo<<k). 77+4(1—,8)

3
1. Photon annihilation thresholds for r2 2 B

Forn=2 the threshold configuration is always the sym-restricted to the region above the lifie- — 4/5%. Below this
metric one. The contour of threshold is given by the |ine the 8-contour switches to the asymmetric threshold, and
straight line is given by

-~ ~ 1-B8 -~ 4 87
E=nt4 2 (48 &= _E+\/_E' (50)

The Z-intercept decreases monotonically fremto —1 for The joining point oj the~symmetric and asymmetric parts of
B<2, and increases monotonically from1 to 0 for 8 theB-contour is at Gjoin , &join) = (— 8/8%,— 4/8%). As B var-
>2. Hence the process is forbidden below the fie% les from 0~to 1.5 these joining points trace out the curve
—1. The parameteg gives the lower threshold foB<2  &jin= — (— 7)¥® The asymmetric threshold contours f6r
and the upper threshold fg8>2. If the lower threshold is >1.5 terminate at the symmetrg=1.5 contour, and accu-
greater than unity, then the upper threshold exists and igwlate above the diagonal #— . The precise degree of
given by B/(B—1). The maximum lower thresholg=2  asymmetry at threshold, i.e. the ratio of electron momentum
corresponds té&= 2k, ;= 2m? wy,. to incoming hard photon momentum, is given Py (1
+./z,)/2, wherez,= (£+418%)/7.

&= (49

2. Lower threshold of photon annihilation for =3

For n=23 the threshold configuration is not always sym- 3. Upper threshold of photon annihilation for r=3

metric in the outgoing momenta. Instead of straight parallel Upper thresholds exist far=3 only below the diagonal
lines for the contours of threshol@l we find a more compli- and between thgg=1.5 andB= (which gives the same
cated structure. Figure 4 shows the regions in the parameténe as 8=1) symmetric contour$49). For a giveng the
plane where the threshold configuration is symmetric otthreshold is symmetric in the region above the line
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2frrrrrTTT AR R R 7 lower left quadrant for the case=3. A constraint from

' ] agreement with standard photon annihilation would be
complementary to these and hence has the potential to con-
fine the allowed region to a small neighborhood of the origin.
Such a constraint is provided by indirect observations of an-
nihilation of high energy gamma rays from blazars on the

_ : cosmic background radiatiqi€BR). Since there is presently

s [ 1 considerable uncertainty regarding both the background ra-
¢ 0:" B diation and the nature of the sources, the constraint that can

' ] be extracted is not yet very precise however.

Another limitation of the present work arises from the fact
i ] that each observed gamma ray has the opportunity to interact
-1f ] with soft photons at any energy above the threshold, so to
' compare with observation one should compute the absorp-
tion using the Lorentz violating dispersion relation, integrat-
ing over all target frequencies. Such an investigation lies
outside the scope of the present paper, so we shall only at-
tempt to roughly characterize how large a threshold shift
might be compatible with current observations.

FIG. 6. Regions where the upper threshold is determined by the We now summarize the observational situation. The BL
symmetric configuratiorlight gray region or the asymmetric one Lac objects Mkn 421 and Mkn 501 are a type of blazar
(dark gray region In the white region below the light gray and emitting high energy gamma rays whose observed spectrum
below the diagonal the reaction never occurs, and in the rest of theeaches 17 TeV in the case of Mkn 4p85] and 24 TeV in
white region there is a lower threshold but no upper threshold.  the case of Mkn 50166]. The source power spectra are
reconstructed accounting for absorption via photon annihila-
tion on the intervening CBR, which ranges from the near
infrared (NIR, ~1 um) to the cosmic microwave back-

—2: ......... leeswpians

310

‘€= — 4/B? and asymmetric below, where the contour is given
by the curve(50). The regions of symmetric and asymmetric

upper thresholds fan=3 are shown in Fig. 6. The boundary round (CMBR, ~ 1000 xm). Currently we have a good

of the lens s~hapfd regpnﬂgext t(? the diagonal '_S determ"f]egnowledge of the NIR and CMBR but uncertainties remain
by the curvegj,,= —(— )" consisting of the points where yeqarding the distribution in the intermediate, midinfrared
the symmetric and asymmetric segments join. The bottom of _1( ,;m) and far infrared (10Qum) regions(see e.g. Fig. 1
the lens meets the diagonalgt = —1 where the symmet- of [67] or the discussion if21]). Some models of the IR
ric B=2 line crosses, so asymmetric upper thresholds exisbackground imply a source spectrum for Mkn 501 with an
only for B>2. The lower boundary of the region of upper unexpected amount of radiatiga “pile-up”) above 10 TeV
thresholds is thgg=1.5 line, which meets the diagonal at [9,67]. If such IR backgrounds are correct, the pile-up might
7=£&=-32/27. be due to a process producing enhanced emission at energies
The possibility of upper thresholds for photon annihila- larger than 10 Te\67], or it might be explained by anoma-
tion has been previously discussed by Kliak [25], who lously low absorption caused by an upward shift of the
gave results for the valueg=0, é&=—1, andp=¢=—1in  threshold due to Lorentz violatiof,20,25-27. However,
the n=23 case. It seems that only the symmetric configurafecent work[21,40 based on improved reconstructions of
tion was examined if25], hence his results cannot fully the far infrared backgroun@IRB) and on a new analysis of
agree with ours in cases where the asymmetric configuratiofe gamma ray flux from Mkn 501 supports the view that
is important. For the casg=0, and negative, our results ~current observations are consistent with the predictions of
show that there is a symmetric upper threshold onlyZor standard Lorentz invariant theory up to 20 TeV. Even without

B L ~ resolving the question of the pile-up, it seems well estab-
values above thg=1.5 line, i.e. forg> —16/27. Our upper lished that some degree of photon absorption has been ob-

thresrllold agrees with that of25] in the limit |£/4]  served up to 20 TeV, which already provides an interesting
=[¢ém*/4wp| <1. The left hand side is unity fof=—1 and  constraint on Lorentz violation. Moreover, it is our impres-
@o=20 meV, hence our results agree approxm.ately prosion that the suggestions of an anomaly above 10 TeV will
vided wq is greater than about:40 meV. In the diagonal likely prove illusory as new observations are made available,
case, while our results for the symmetric configuration agre@onfirming the results of21,40.1° We can thus obtain ob-

in the same limit, we have seen that there is no upper threslervational constraints from the requirement that the Lorentz
old since asymmetric configurations exist for arbitrarily largeviolation does not modify too strongly standard Lorentz-
B invariant thresholds for photon annihilation. The strength of

4. Observations and constraints from absence of deviations

from standard photon annihilation . . .
om standard photon a atio 10after this work was completed a further observational analysis

The Gerenkov and photon decay constraints leave open aappeared68]. This allows the observational basis for the constraint
infinite wedge-shaped region including the diagonal in thediscussed in this paper to be solidifiggD].
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the constraints depends of course on the ordef the Lor-
entz deformation. The general threshold equati&®) shows
that an order unity constraint of translates into an order

unity constraint ony and &, which corresponds to an order
wp/m?"~1) constraint ony and¢. Since all studies seem to
agree that more or less standard Lorentz-invariant absorption
is occurring for gamma rays up to 10 TeV, we shall use the
corresponding soft photon threshold ©f=25 meV ~ 50

um as a numerical benchmark. One then ha§/m?
~10 *%for n=2, w3/m*~1 for n=3, andwg/m®~10'° for
n=4. Hence only then=2 andn=3 cases can provide in-
teresting constraints. Note that in the=3 case, which is of
most interest to us, the dependencewnis cubic, so for
example a constraint at @, is eight times weaker than a
constraint atwg, while one atwy/2 is eight times stronger.
This means also that there could be strong deviations in ab-
sorption for, say, 20 TeV gamma rays, and yet little deviation n
for 10 TeV gamma rays, since the standard soft target thresh-

old m?/E is half as large for the 20 TeV gamma rays.

To formulate the constraints we begin by identifying the
contour in theé—» plane, for which the threshold is not
shifted away from the Lorentz-invariant value. Fox 2 this
no-shift contour is given by the diagoné » (correspond-

10

FIG. 7. The unfilled region indicates parameters allowed if the
lower threshold for a soft photon of 25 meV(& not shifted down
and (b) not shifted up by more than 1.5, 2, 5, 10, and infinity. The
upper line is the no-shift contour. No curvature due to the asym-
metric solution is visible for this line because the junction point as

. . . defined in Eq.(51) is at = —20. The line for the existence of a
ing to equal speeds of light for electrons and photowsich lower threshold is the lowest line. It is coincident with the symmet-

is independent of the soft photon energy. Forn=3 the yic g=15 line below the diagonal and with tiidashedl diagonal
contour is given by the joined symmetric and asymmetricygiow the crossing point. The curves stemming from ghel.5
B=1 contours(49) and (50) converted to the unscaled pa- contour are the asymmetric contours f10,5,2, with lower val-
rameters, ues of B corresponding to the curves with less slope.

and ¢é—intercept— w3/m?~ — 10~ %5, As long as the 25 meV
photons annihilate at least with 20 TeV photgnéose nor-
mal threshold is 12.5 meythe parameters must lie above
this line.

(52) n=3 photon annihilation constraintdzor n=3 the con-

tours of constant threshold in the scaled paramefeasd &
are shown in Fig. 5. The process does not occur for param-
The symmetric part is independent af, but the joining eters below a broken line consisting of the diagonal up to

point and the asymmetric part are not. 7=nXm*wi=—32/27, and the line of slope 1/2 for
Above the no-shift contour, Lorentz violatidnwersthe reater?;. If absorption atwq is occurring forany hard

threshold. Since the shift would be larger for higher energygamma ray, the parameters must lie above this broken line,

gamma rays this might, depending on .the d’(,at_ails of the ngo in particular everything on and below the diagonal is ex-
background spectrum, enhance the “pile-up” in the recon-

structed source spectrum if the IR backgroundg@ifare cluded fory<—32/27. Forw,=25 meV this corresponds to
used, or it might produce a pile-up where one did not other7< —2.3x32/27~—2.7. This is important, since it is a
wise exist if the IR background dR1] is used. We thus Strong constraint excluding most of the diagonal, which has
consider it unlikely that there is much downward shift of the P&en preferred by some researchi@,27. Itis likely that a
threshold. In any case, nearly all of the region above th uch stronger constraint holds however, restricting the lower
no-shift line is already excluded by the photon decay andhréshold at 25 meV to be not more than some number of
Cerenkov constraints. order unity times its usual value. We have indicated in Fig. 7

Below the no-shift contour. Lorentz violatiomisesthe  the form of the region below the no-shift contour and above

threshold. We now consider the constraints this can yield ifhe shift-less-thag contour forg equal to 10, 5, 2 and 1.5.
the casesi=2 andn=3. A stronger constraint would not exclude more of the diago-

n=2 photon annihilation constraintsConstraints in the nal, but it has the potential to chop off the infinite wedge of
n=2 case have been previously examined in R4@], al- Fig. 3 at around the same place it excludes the diagonal.

though it was not realized there that the maximum upper _
shift is 8=2, beyond which the process does not occur at E. QED processes without thresholds

all. The g=2 contour (48) is a line of unit slope and  we now consider two QED effects that occur in the pres-
é—intercept—1 in the scaled parameters, hence unit slopeence of Lorentz violation without any threshold, velocity dis-

forp>—8wy/m* (52)

T
NI

4w8 SwS _
E=n— —t\ ~ =27 otherwise.
m m
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persion of photons in vacuo and photon splitting. The formerestimate of this rate, independent of the particular form of
will eventually provide competitive constraints opand ¢ the Lorentz violating theory, which indicates that the rate
respectively, but the latter has too slow a rate to be imporinvolves at least four Lorentz violating factors, so is appar-
tant. ently too small to be relevant at observed photon energies.
We carry out the analysis allowing for any terms in the

1. Velocity dispersion of photons amplitude consistent with gauge and translation invariance.

Gamma-ray burstéGRB's) are explosive extragalactic The particular form of Lor.ent; viol_ation _considered in this
events that release a large number of high energy photorR@pPer also preserves rotation invariance in a preferred.f.rame,
with a flux that varies rapidly in time. It was therefore real- however the following argument will not use that condition.
ized [24,70 that they can provide interesting constraints orSiNce gauge invariance is preserved, the amplitude for the
possible observations of Planck scale suppressed LorenBf0cessy—Ny should arise from a term that is a scalar
violation in the dispersion relation for phototes possibility formed fromN f_actors of the electromagnetic field strength
noted long ago ifi71]). The reason is that while propagating F a5 corresponding to the external photon legs. For each pho-
over such a long distance even tiny differences in group veton, F$)~kaey) , wherek, is the 4-momentum ane, is the
locity could produce detectable time differences between thgolarization vector.
arrival at Earth of photons of different energy. In the Lorentz invariant case the equations of motion im-

For photons with Lorentz breaking dispersion relations ofply thatk, is a null vector ank,e®=0. Energy-momentum
ordern, ¢ is related to the fractional variation in group ve- conservation then implies that these 4-momenta are all par-
locity by allel, so being null they are orthogonal to each other and to

all the polarization vectors. The rate thus vanishes for two

2 M2 Ac different reasons. First, since the momenta are necessarily all

(53 parallel, the phase space has vanishing volume. Second, the
rate must be a scalar formed by contracting these four field
o ] ] ] ] strengths using only the metric. Any such contraction van-
An upper limit on the difference in arrival times of photons jshes since it must involve contractions of the momenta with
from the same event provides an upper limit on the relativesach other or with the polarizations. Hence the amplitude

speed difference, if one assumes there is no conspiracy Qhnishes. In the case of an odd number of photons, another
different emission times cancelling different propagationiegson for vanishing of the amplitude is Furry’s theorem,
times. Together with the energies of the different photonsynich states that the sum over loops with an odd number of

such observations provide a constraint|éh electron propagators vanishes.

The strongest constraint available today comes from GRB | there is Lorentz violation then none of the above rea-
930131, a gamma ray burst at a distance of 260 Mpc thalsons for a vanishing rate apply. First of all tNeodd ampli-
emitted gamma rays from 50 keV to 80 MeV on a time scalydes are no more guaranteed to vanish. Indeed for suffi-
of milliseconds[74]. Schaefer[75] finds the upper limit ciently general implementations of Lorentz violation the
Ac/c<9.6x 10" **for photons of energi, =78.6 MeV, and  Fyrry theorem can be violatdgee e.g. the discussion of the
ko=30 keV. This yields the constraifg|<122 forn=3.  Fyrry theorem and its violation in the extended QED]).

This is weaker than the constraint we have from photon ansecondly, the contractions of the field strengths might in-
nihilation, hence time of flight data do not at presentyglve not just the metric but also a Lorentz violating tensor
strengthen our constraints for=3. Forn=4 dispersion the (for exampleu®u® in the rotation invariant case, wheué is
bound on|¢| is on the order of¢|<10' so we get N0  the unit timelike vector specifying the preferred framei-
interesting constraint fon>3. The situation fom=3 will na”y, in the presence of Lorentz violation the photon four-
be significantly improved in the future thanks to GLAST, the momenta are in general not null vectors hence they need not
gamma ray large area space telescope, which should be alje parallel and they need not vanish upon contractida.

¢= n—1KN-2_kH=2 c

to set limits of order unity org [76]. satisfy energy-momentum conservati®must be positive.
- In order for the phase space to not have vanishing vol-
2. Photon splitting ume, at least one of the 4-momenta must involve a Lorentz-

The photon splitting processes—2y and y—3y, etc.  Violating factor 6= &(k/M)""2. This is not enough for the
do not occur in standard QED. Although there are corre@mplitude to not vanish however. For—~Ny with N=3 or
sponding Feynman diagramihe triangle and box dia- 4 the contraction of the 3 or 4 field strength tensbts)
gramg, their amplitudes vanish. In the presence of Lorentz~K;a€, using only the metric involves at least two vanish-
violation these processes are generally allowed wieg. ing contractions, and for larged there are more. One of
However, the effectiveness of this reaction in providing con-those vanishing contractions can be rendered nonzero by the
straints depends heavily on the decay rate. We now give asingle Lorentz violating factor already invoked on an exter-
nal photon momentum, but the other one requires either an-
other such factor, or a Lorentz violating tensor in the opera-
Usarkar[72] has criticized the use of this particular gamma ray tor whose matrix element is being computed. Such a tensor
burst since this object has no measured redshift, and hence an ugomes with some coefficient with dimensions determined by
certain distance. Other burdtg0] or blazar flare§73] give some-  the dimension of the operator. We also use the synébia
what weaker constraints. indicate this sort of Lorentz-violating factor.
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The possible contributions to the amplitude will therefore 0T
be suppressed by at least two factorssofThe rate goes like I
the square of the amplitude, hence we infer that at energies
well above the electron mass the decay rate must behave as
E &% or slower, wheréE is the initial photon energyThere is 5F
an additional factor ofN if we consider standard QED dia- i
grams for which each external photon leg comes with a fac- L1
tor of the electric charge in the amplitugle. d

The lifetime is therefore at least of ordér *E~*, which §0F 7 | L] i
for a photon of energy 50 TeV is 18°%5~* seconds. Such 50 i L
TeV photons arrive from the Crab nebula, about®E&conds
away, so the best constraifite. if there is no further small - y
parameter such as" or 1/1672 in the decay ratewe could -5 7 1
possibly get ons from photon splitting is6<10"1°. Forn F 7
=2 this is not competitive with the other constraints already " A
obtained. For highen, each contribution arising from an »
operator of dimension greater than 4 will be suppressed by at SO L :
least one inverse power of the scdle For example, the =1 = ﬂ 2 19
contributions fromn=3 deformations to the dispersion rela-
tion will yield 8~ £E/M. In this case the strongest conceiv- FIG. 8. Combined constraints on the photon and electron param-
able constraint o would be of ordeg=< 10%, and even this eters, for the case=3. The regions excluded by the photon decay

is not competitive with the other constraints we have found and Gerenkov constraints are lined horizontally and vertically re-
spectively. The region between the two diagonal lines is where the

threshold for the annihilation of a gamma ray with a 25 meV photon
F. Combined constraints ranges from its standard valdapper diagonal lineto not more
. . . than twice that value. The shaded patch is the part of the allowed
Having completed our dISCUSSIOI’:I of .photon—electron pro'region that falls between these gamma annihilation thresholds. The
cesses we now turn to the determination of the global congashed line = 7.
straints that can be derived from the combination of all the
above results. The photon splitting and the time of flightton ranges from its standard valGepper diagonal lineto
constraints are not as strict as those determined by the othapt more than twice that value.
considered interactions, at least for quadratic and cubic de- If future observations of the blazar fluxes and the IR back-

formations, although in the future time of flight constraints ground yield agreement with standard Lorentz invariant ki-

may become competitive. nematics, the region allowed by the photon annihilation con-
straint will be squeezed toward the upper lifkg,€ky).
1. n=2 Time of flight constraints for high energy photons cur-

In the case of quadratic deviations only the differegice rently co_nstraing to be less than-100 a_lt best, but future
— 5 is constrained. The vacuurﬁeﬁenkov effect yieldst observations should allow such constraints to further narrow

— 7>—10", while photon decay provides the constraint he allowed region towards the origin.
é— <10 16 Together these confire- 7 to a small neigh-

borhood of zero. The photon annihilation “likelihood re- 3. n=4
gion” would just imposeé— <101 which does not fur- The case of quartic deviations is unfortunately just mildly
ther strengthen the constraint. constrained from the available observations. The order of
magnitude allowed for the parameters is as small & 10
2 n=3 (from Cerenkoy for the electron-photon vertex interactions.

Putting together the constraints from the three photon—|y, INTERACTIONS WITH PROTONS, NEUTRINOS, AND
electron interactions previously considered we obtain a re- MUONS

markably small allowed region in the—¢ plane(see Fig. 8. . o

The photon decay ande@enkov constraints exclude the We have foqused so far on effe_cts involving just elect_rons
horizontally and vertically filled regions respectively. The @1d photons, in order to determine the strongest available
allowed region lies in the lower left quadrant, except for ancombined constraints. We now briefly discuss some other
exceedingly small sliver near the origin with<Gy=<10"3 !ntergctlons that are realizable Wlt_h a violation of ITorentz
and a small triangular region<0.16< <0, 0<£=<0.08) in  Invariance, z_;md which can now or in the futu_re p_rowde fur-
the upper left quadrant. The discussion of the photon annihither constraints or observations of Lorentz violation.
lation threshold in Sec. Il D 4 indicates that, although no
firm constraint can be given at present, the allowed region
cannot lie too far from the corridor between the two roughly .
parallel diagonal lines. These lines indicate where the thresh- The former discussion of the vacuunei@nkov effect can
old for the annihilation of a gamma ray with a 25 meV pho- be applied also for any other particle that couples to photons,

A. Alternative vacuum Cerenkov effects: Protons, neutrinos
and muons
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TABLE II. Typical values for different particles for the actual or potential constraints from absence of the
vacuum @renkov effect.

- - +

v e M p
m <1leV 0.511 MeV 105 MeV 938 MeV
Prmax ~1 TeV-16° e\ ~100 TeV ~1 PeVf ~5x10Y eVd
n=2 ~10 %-10 40 ~3x10° Y7 ~10 ¥ ~4x1022
m?/ph., N=3 ~1078-10%2 ~3%x10°8 ~1071 ~8x10" 1
n=4 ~10°-10 2 ~3x10% ~10% ~2x10°°

3 ower value is Antarctic Muon and Neutrino Detector ArigddMANDA ) data; largest value is potentially
observable UHE neutrinos.

bEnergy expected for electrons responsible for the creatior 50 TeV gamma rays via inverse Compton
scattering 26,58

‘Expected energies to be detected for muons produced by cosmic neutrinos.

dDetected in(UHE) cosmic raySUHECR).

using the same kinematic equations. Since the strength of thdiation, however that distinction is irrelevant for the determi-
observational constraint is determined by the smallness afation of constraints, since either way high energy protons
the ratiom?/p;.,, smaller masses or larger energies generwould not travel long distances.

ally lead to stronger constraints. However, in the case of In estimating constraints we ignore here the possible role
neutral particles that couple to photons only through higheof partonic structure, and simply use the proton mass and
multipole moments theate must also be considered. We energy in the threshold formulas derived in Sec. Il B for

summarize in Table Il the values of the quantity/py, ... point particles, with the understanding that for hard emission
thresholds the constrained parameter mayppeather than
1. Protons 7, and the numbers may be off by a few orders of magni-

Very strong constraints can be obtained using the ultrafude since the quark mass an% energy were not used.
high energy protons in cosmic rays, up to the GZK cutoff of Using the GZK cutoff (5 1_01 eV) for the highest energy
5% 10'° eV. The identity of these particles has been calledProtons we obtain the following constraints relating the pa-
into question by the candidate events beyond the GZK cutoff@meter¢ in the photon dispersion relation ang}, in the
as described in Sec. IV B. However, even if the highest enProton dispersion relation. For a quadratic deformation of the
ergy events do not originate with protons, there is stronglispersion relationr{=2) the bound is7,—£<4X 10 %
evidence that protons up to the GZK cutoff do exist in cos-FOr cubic deformationsn(=3) the constraints on parameter
mic rays[22].1? 5 space have the same form as represented in Fig. 1. In the
The rate of vacuum &enkov radiation from charged par- case of the proton the quantity}/p3,., is of order 10
ticles is irrelevant for the determination of constraints since itompared with 10% in the case of 100 TeV electrons, which
is very high. (See Sec. Ill B 2. For the parameter region means that the boundaries of the allowed region are closer to
where the threshold occurs with emission of a zero energyhe & axis in the upper half plane and to the diagonal in the
photon, the proton can presumably be treated as a poin@wer half plane. However, the qualitative nature of the al-
charge so the threshold relations previously obtained folowed region is identical. A good constraint is even obtained
electrons are directly applicable using the proton mass iifior the case of quarticn=4) deviations. As shown in Sec.

place of the electron mass, and the parametefrom the  [lIB 1, it is the quantity M5/ (Pmay) that determines the
proton dispersion relation in place of,. This region of strength of the constraint in this case. Fox 50'° eV pro-
parameter space is described in Sec. Il B. tons this is approximately IG, still much less than unity

For parameters where a hard photon is emitted at threstand a much better figure than the'i@btained for the 100
old, the role of the partonic structure of the proton needs tdeV electron. Fom=5 deviations the strength of the con-
be examined, which we have not done. It may turn out thastraint is determined byn/(p,,) ~10°, hence one does not
the threshold can be determined by the quark dispersion rexbtain even order unity constraints on the coefficients.
lation rather than that of the proton. If so, it would be the
quark deformation parametey, rather thanz, that is con-
strained by observations of nondecaying high energy pro- .
tons, and one would need to use the quark mass and energy In the standard model the vacuuner@nkov reaction with
in the threshold relations. In this case the proton may beeutrinos, v—v+vy, is not allowed due to energy-
destroyed rather than just slowed by vacuuerédkov ra- momentum conservation — whether or not the neutrinos are

massive. If they are massive energy-momentum conservation
cannot be satisfied at all. If they are massless it can only be
2Note added in proofA recent analysi§85] argues that there are satisfied if all three particles are strictly parallel, yielding no
insufficient statistics to establish the GZK cutoff at this time, hencephase space for the reactidisince there is good evidence
the existence of these protons cannot yet be regarded as establishtat neutrinos have mass, we will assume this for the rest of

2. Neutrinos
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the discussion.Energy-momentum conservation is the only  To show that the rate might be fast enough to provide a
obstruction for this reaction, since although the neutrino isuseful constraint it suffices to examine the charge radius in-
neutral there is a nonzero matrix element for the process. Iteraction. This occurs via the emission of a virtual W-boson,
particular there are two channels: the charge radius interakence the amplitude goes lik&ki/M§,, wherex is a small
tion and, if massive, a magnetic moment interactie®e e.g. numerical factor €10 %) coming from coupling constants
[51]). We therefore see that, as for charged leptons, Lorentand integration measurk,'?4 is the square of the photon four-
violating dispersion relations can allow the reaction to hap+momentum, andMy is the W-boson mass. We thus estimate
pen. . the rate for @renkov emission from a neutrino of very high
In order for the neutrino Erenkov reaction to give strong energyE to be "~ (xkj/M§)%E, . (The factor ofE, is de-
constraints on Lorentz violation two conditions must be sattermined by the phase space integration, which does not in-
isfied: (1) the energies where Lorentz violating terms arevolve any Lorentz violating factors well above threshpld.
comparable to the neutrino mass term in the dispersion relad/ith Lorentz violating dispersion of ordem we havek}
tion must be accessible to observation, é2)the rate of the =¢k", hence the rate goes liké~ («x£k"/M3)%E, .* Tak-
reaction must be high enough so that it would significantlying the photon energy to be of the same order as the neutrino
affect the propagation of observed neutrinos. The first conenergy k~E,, this gives a lifetime for emissionr
dition is already met since the relevant energy where Lorentz- ¢ *(E, /PeV) " 1x 1078 seconds. If correct this
violation becomes important is 100 Md¥ee Table), while would be short enough to yield interesting constraintsrfor
Super Kamiokande has detected neutrinos over 100 Ge¥ 3 using atmospheric PeV neutrinos travelling through the
[78] and the AMANDA detector has seen neutrinos up to a€arth, since their transit time is of order F0s.
few TeV [79]. The second condition is more problematic AS @ final remark, we note that the related process of

since both the charge radius and magnetic moment channgi§'0ton dec?yL to two r_1e|ut.r|nosTcr:]c_)uId alﬁjo t.al|<de place in the
are very strongly suppressed. presence of Lorentz violation. This would yield strong con-

The best case for current observations would be usin traints on_g and », provided the rate |s_h|gh enough. The
bove estimate suggests that for multi-TeV photons from

AMANDA, since the neutrinos have the highest energy an ; . .
i . d cosmological sources the rate would indeed be high enough
travel the diameter of the Earth after being produced in th or n=2 3

atmosphere above the North Pole. We have not carried out a
detailed analysis, but an estimate given below suggests that
the Gerenkov rate is not high enough to produce interesting B. The GZK cutoff
constraints with these neutrinos. The energy loss rate de- The presence of the GZK cutoff on the ultrahigh energy
pends strongly on the energy however, so atmospheric PelUHE) proton spectrum is due to pion photoproduction:
neutrinos, which are likely to be detected by AMANDA or y p—p #°, as previously discussed in the Introduction. The
IceCube(see e.g[80]), may provide constraint§The same observation of this cutoff also gives constraints on the Lor-
experiments should detect PeV muons as secondary producastz violating coefficients. Current data from the HiRes,
of the neutrinos, which would also provide an interestingFly’s Eye and Yakutsk experiments strongly indicate that the
constraint as seen in Table)IStill higher energy neutrinos, GZK cutoff is present at a cosmic ray energy of 50*° eV
up to perhaps 18 eV, are expected either as cosmic ray[22]. While AGASA reports a number of extra events beyond
primaries or as a byproduct of cosmic raj0,81. Such the expected flux of high energy cosmic rays abov& &,
high energy neutrinos could be detected by AMANEB®],  below 1G° eV AGASA also shows evidence for the GZK
and they could be observed via horizontal or possibly up-cutoff (see e.g. Fig. 1 di22]). Unfortunately, the experimen-
ward air showers using existing detectors like HiRes or futal data are strongly affected by the uncertain energy calibra-
ture ones such as the Telescope Arfa$,84]. tion of each experiment. A systematic analysis of the data
In Table Il we summarize the typical constraints one carallowing for various calibrations is outside the scope of this
expect from neutrinos in the above mentioned range of enwork, so for now we assume that the published energy cali-
ergies provided the rate is high enough. Remarkably, thérations are correct.
combination of high energies and low mass could give for We constrainz,, 7, by determining where the induced
cosmological neutrinosH,>1 Pe\) stringent constraints modification of the cutoff would disagree with the daféhe
(n,<1) for deviations up ta=6. . incoming photon has low energy and so no useful constraints
A calculation of the neutrino vacuume@nkov rate is on ¢ are obtained.The 7,7, constraints are quite strong
beyond the scope of this article but we provide here a rouglfon the order of 10%° for n=3) due to the high energy of
estimate that may provide some guidance in this problemthe reaction.
We saw befordSec. Il B) there are two types of é&enkov In the standard Lorentz invariant theory the threshold en-
thresholds depending on the valueséodnd 7, : the “soft” ergy for pion production i€y,=m_(2 my+m,)/4wy, SO a
one which occurs with emission of a zero energy photon, anghoton with energyw,~1.3 meV is at threshold with the
the “hard” one in which a photon with energy comparable to
the incoming particle is emitted. The decay rate will be much———
greater in the hard threshold case, so we consider that here®Note that we cannot constrainas much as the threshold would
(The soft threshold case may still be relevant well abovendicate, since for extremely smailthe decay rate eventually gets
threshold). too small.
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FIG. 9. The range ofp,, », for n=3 dispersion modifications FIG. 10. The range of,, 5, for n=3 dispersion modifications

where the GZK cutoff is betweenx210" eV and 710" eV. 5,  where the GZK cutoff is betweenx210" eV and 7x 10" eV and
and #,, are in multiples of 10%°, the upper threshold exists below?@V. 7, N are in multiples of

1071° Note that this region does not include the origin, as there is
proton at the GZK energy. In order to give a constraint onno upper threshold in the Lorentz invariant case.
Lorentz violations we consider raising or lowering the UHE
proton at threshold with the same,. This is equivalent to the final particles are not interchangeable. The case of equal
changing the GZK cutoff as we are modifying the UHE pro- coefficients ¢7,= 7,) has been studied analytically ja8—
ton energy that interacts with the relevant CMBR photons?0,26,27 and numerically if29]. Here we numerically find
responsib|e for the Lorentz invariant GZK effect. the thresholds for the GZK reaction aIIOWing for unequal

Examination of the data plot in Fig. 2 of R¢R2] reveals coefficients in the case=3. The region in they,, 7, plane

that if the cutoff were shifted via a Lorentz violating effect where the thresholds are in the allowed range discussed
down to 2x 10" eV or up to 7 10*° eV then the theoretical above is shown in Fig. 9, in which the axes are in multiples
predictions would no longer agree with the data at above &f 10710
20 confidence level. This energy range therefore provides We turn now to the question of the extra AGASA events
constraints ony,,, 7, From the threshold theorems (2] ~ above 16° eV. The AGASA data are sparse in this energy
we again know that in the threshold configuration where thgange, and there is not a large, precise data set from other
GZK reaction begins to occur the incoming proton and pho_experiments with which AGASA disagrees. The uncertainties
ton collide head on and the outgoing proton and pionin all experiments are large enough that a modified theoreti-
3-momenta are parallel. Energy-momentum conservation ial spectrum could possibly agree with all experiments at the
this configuration and the dispersion relations give an equalo level. One cannot therefore simply disregard the possi-

tion similar to Eq.(46) for photon annihilation, bility that the flux above 1% eV is in fact higher than the
standard theoretical prediction.
m,23 me Previous authors have suggested that the AGASA events
0=F(p,x):=— —(1-x)*~ —x above the GZK cutoff could be explained by an upward shift
P P of the GZK cutoff induced by Lorentz violatiol7—

Ao 20,26,29, however t_his seems incompatible with current
Np+ (n_°1)> X(1—Xx) data since the cutoff is seen. Another, more subtle possibility
is that these events are related to the existence afpper
threshold. We have checked numerically that no upper
x-0 4 7 y-1| 54y  threshold exists below #0eV within the allowed region of
Mp Fig. 9. Nevertheless, the phase space for a reaction begins to
L ] close up before the upper threshold is reached. The reduction
wherex=q/p, andp andq are the initial and final proton i, phase space would in turn reduce the rate of the GZK
3-momenta. _ reaction leading to a higher than expected count of events at
Forn=2 the threshold analysis has already been done bjigh energies. If the lower threshold were dramatically modi-
Coleman and Glashopi7] leading to a constraing,— 7,  fied whenever there is an upper threshold then this scenario
<5x10 **[w/w]? for a target photonw, where »  could not explain the data. However, this is not the case—
=KTcmp=0.235 meV. there are choices of,, 7, such that an upper threshold
Forn=3, the presence of the pion in this equation com-exists and the lower threshold is only slightly modified.
plicates the analysis as there is an additional mass term argince the lower threshold modifications can be small, the

- an(l—X)
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experimental signature of the GZK cutoff could remain un-<8nm?/k3_~8x1072 (using the observation of 50 TeV
changed near 8 10'° eV while the intensity of the spectrum gamma rays from the Crab nebul@he observation of pho-
at high energies increased from its Lorentz invariant predicton annihilation provides, as previously discussed, a more
tion. This scenario could perhaps explain the AGASA datauncertain constraint. Nevertheless for our purposes it is
and be compatible with other experiments if the upperenough to take into account that some absorption is detected
threshold is low enough that there is a significant phaséor gamma rays at least up to 10 TeV. We can then take as a
space reduction just above2@V. The range ofy, , 7, for definite constraint the line for the existence of a lower thresh-
which this effect could occur is given in Fig. 10. There weold as shown in Fig. 5. This line meets the diagonakyat
consider the range of parameters for which the lower thresh=—32/27. The problem is now to decide for whiak, we
old still lies between X 10 eV and 7x10*° eV but an  are sufficiently confident the photon annihilation still takes
upper threshold exists below #0eV (so that the induced Place. As a reference value we take here againathe 25
reduction in phase space could affect the AGASA Hata meV photon previously considered. In this case the region of
We have not considered the constraints that can be oleXistence of a lower threshold for the photon annihilation
tained from the GZK cutoff in the case=4 but it is clear limits the value of » to the semi-infinite rangex

that they are interesting in this case as well, singe,d/ > —2-3X(32/2)~-2.7. o

= M/pmaX: 2% 108 The n=3 constraints are of order If the GZK cutoff is Conflrmed, that would establish with

10"1° hence then=4 ones are of order 1G. certainty that at least some of the UHE cosmic rays are in-
deed protons. Moreover it would also provide a correspond-
ingly strong constraint on negative values gnlf the GZK

C. Neutron stability —proton instability cutoff is within order unity of its Lorentz invariant value;,

If there are different dispersion relations for protons, neuS .constramed to by| <10 ", (Note' that this constraint on

trons, positrons, and neutrinos then protons may be unstabl’ﬁ'S SO strong as to exclud(_e the_ region of upper threshold for
the GZK process shown in Figure 10rhe upper bound

and decay to neutrons at sufficiently high energies. fror ™ . .
—2, Coleman and Glashofil7] have shown this explicitly. might be further pushed toward zero if one takes into ac-
’ ount the @renkov effect of high energy neutrindsee

If n>2 then the analysis becomes more complicated, b
there exist parameters for which the neutron is stable and th able 10).
proton decays. For example, consider a neutron with
7,=—1 andn=3 dispersion relation, and an unmodified
proton, electron, and neutrino. At momenpa> mﬁ’3 the In this paper we have performed a systematic analysis of
neutron energy-momentum vector becomes spacelike. Sindbe effects of Lorentz violating dispersion on particle reac-
the energy momentum vectors of the other particles are stifions, allowing for unequal deformation parameters for dif-
timelike it is impossible to satisfy energy momentum conserferent particles. We have analyzed the threshold kinematics
vation hence neutron decay does not occur above this energgnd combined the observational constraints where possible.
This opens the possibility that ultrahigh energy cosmic raysven when suppressed by the inverse Planck mass, such Lor-
are neutrons rather than protons, in which case the Gzentz violation can lead to radically new behavior in the ki-
cutoff for these cosmic rays is irrelevant since neutrons daéematics of particle interactions at much lower energies. Re-
not interact strongly with CMBR photons. The presence ofactions previously forbidden can be allowed, lower
the observed cutoff can thus be used to constrain the parartresholds can be shifted and upper thresholds can be intro-
eters further, and one could also contemplate the possibilitguced. The presence of upper thresholds is a feature of Lor-
that the AGASA events above the GZK cutoff are presengntz breaking physics that is not present in Lorentz invariant
because the neutron becomes stable just above the cutoff.physics and which can be relevant for observational
constraints®* Furthermore, we have found that for interac-
V. COMBINED CONSTRAINTS FOR A UNIVERSAL tions with identical final particles, the final momenta can be
LORENTZ BREAKING DISPERSION RELATION distributed asymmetrically at threshold. While this is a
straightforward consequence of the kinematics, it has been
Although we have considered so far the case of differenpreviously overlooked in the literature, probably because it is
Lorentz violating parametersy, for different particles, it alien to Lorentz invariant physics.
may be that the underlying quantum gravity physics selects a Using these kinematical results, we have seen that a con-
universal deformation parameter This indeed was the an- servative interpretation of observations puts strong con-
satz considered in most of the previous literature. We therestraints on the coefficients and ¢ of order E/Mp modifica-
fore consider now this special case with-3 deformations. tions to the electron and photon dispersion relations. The
We start by considering the photon-electron interactionsallowed region include§= = —1, which has been a focus
From Fig. 1 and Eq(23) we see that the &enkov effect of previous work20,25,26. The negative quadrant has most
limits the available values on the diagonal to a semi-infiniteof the allowed parameter range. Note that in this quadrant all
line with n<m?2p;,.. This corresponds numerically tp  group velocities are less than the low energy speed of light.
=10 #if we consider the constraint provided by the obser-
vation of ultrahigh energy protons in cosmic rays. The analy-
sis of photon decay shows that the permitted values on thel*More complex dispersion relations can lead to multiple thresh-
diagonal é&= 7 are restricted to the semi-infinite ling olds[62] which could have further observational effects.

VI. DISCUSSION
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For modifications of orderH/Mp)? there are no significant Wway, it is clear that a useful tool for the phenomenological
constraints in the electron-photon sector derivable from curinvestigation of quantum gravity is now at hand.

rent observations, due to the fact that the energies of ob-

served particles are too low. However reactions such as pro- ACKNOWLEDGMENTS

ton Cerenkov(in vacug or pion production by cosmic rays,

for which we have data at much higher energies, can provid We are grateful to G. Amelino-Camelia, A. Celotti, R.

foha [ i -
. 2 A patra, |.Z. Rothstein, and F. Stecker for useful discus
good constraints for &/Mp)” modifications (although for sions. This research was supported in part by the National

different particle deformation parametgrslitrahigh energy Science Foundation under Grant No. 9800967 at the Univer-

cosmological neutrinos may also provide gooéréhkov .
constraints at this or even higher orders, since the neutrin ity of l\/.larylar‘l.d,. Grant Nq. PHY99-07949 at the KITP, and
e Erwin Schrdinger Institute.

mass is much smaller than that of any other particle. Th
interaction amplitudes are very suppressed however, so it is
necessary to accurately calculate the rate and compare it with APPENDIX: PHOTON ANNIHILATION THRESHOLDS

the travel time of the neutrino. _ In this appendix we work out the lower and upper thresh-
There are a number of ways to improve the constraints oR,4s for the processy—e’ e~ as a function of the Lorentz-

O(E/Mp) modifications from electron-photon interactions. violating parameters; and ¢. Our starting point is the kine-
Higher energy electrons would not help much since tee C 1 4+ic equation46) derived in Sec. Ill D:

enkov constraint is already strong, while finding higher en-

ergy undecayed photons would squeeze the allowed region m2 4o

onto the lineé=» of Fig. 8. To further shrink the allowed 0=F(k,y):=— —n+(§+ (nfi) y(1—-y)
segment of this line would require improved knowledge of k k

the infrared background and a reconstruction of the source (1= y) [y D4 (1—y)- D), (A1)

spectrum from the observed gamma rays in the presence of

Lorentz violation. Also, the constraint from time of flight Here m is the electron mas is the magnitude of the in-
measurement may become competitive using improved d%oming hard photon momentumy, is the soft photon en-

tectors. a - -

, i . ) ergy, y=p/k, wherep is the magnitude of the electrdior
_ Other constraints may be provided by additional interacy,,gjtrory momentum, and the threshold configuration of an-
tions not considered here. For example, a possible uIOIO%)fparallel incoming photons and parallel outgoing electron-

3 ; "
threshold fore” e~ — 2y cannot provide a competitive con- ,qgiiron pair has been imposed. This equation follows from
straint in astrophysical observations since there are other pr ) energy-momentum conservatiofii) the dispersion rela-

cesses by which observed high energy photons can be prjgns for the particles, andii) the threshold configuration.
duced. However, if future electron accelerators can reack, find the lower and upper threshold for given valuesof
energies above 10 TeV then one can expect to get a goaghy + we must determine the minimal or maximilfor
constraint from this reaction. In addition there may be othet, hich the reaction can occur. According to the threshold
reaqtlons for which upper thresholds can pro_duce usef_ul Coﬂheorem(cf. Sec. Il A) thesek values always occur with
strallnts at or near currently observed energies. Reactions ifzhat we just called the threshold configuration, hence we
volving more than two types of particles, such as st determine the minimal or maximiafor which there is
—e W E cquld also give constraints. It may be possu_Jlg thata solution k,y) to the kinematic equatiofAl) with y in the
by coInS|der|ng a number of such frel?cuons a multidimeny,nqero,1]. in the Lorentz invariant case the threshold al-
S'Onﬁ p'zrameter. space can be Es_e uhy constrameq.l . ways occurs with the symmetric configuratigs 1/2, how-
The idea motivating our work is that Lorentz violation gq( i the Lorentz-violating case this is not always true.

may be a consequence of quantum gravity, in which case the |, oqer to derive results applicable to any value of the
natural scale for the Lorentz violation is the Planck scale. If’soft photon energys, and “electron” masam, we introduce

as in braneworld scenarios, the quantum gravity scale Werg.aled variables

to be around a TeV, then the natural scale for Lorentz viola-

tion induced by quantum gravity would be the TeV scale. —K/Kk ~_ 2(n—1)/, N 2 2(n—-1);.n
o = , =n(m [wy), =&(m /

Clearly, the only way such Lorentz violation could be com- B H 7= o) &= ©o)

patible with observations is if it were extremely suppressed (A2)

compared with this natural scale. This suggests that eithggherek,, is the standard lower threshatf/ w. In terms of
TeV scale quantum gravity is wrong, or it does not violatethese scaled variables the equatimn?k"F(k,y)=0 takes

4D-Lorentz invariance. the form
In conclusion, theabsenceof anomalous observations
provides stringent constraints on the possibility of Lorentz G(B.y)=an(y)B"+y(y)—1=0, (A3)

violation originating at the Planck scale. This in turn gives

important information as to the viability of quantum gravity where

theories that predict 4D Lorentz violation. We can expect

that, as better data at higher energies become available, even an(Y)=y(1—Y{E=7[y" *+(1-y)" ]} (A4)
stronger constraints will be imposed or, alternatively, posi-

tive signatures of Lorentz violation may be found. Eitherand
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1.07 A local minimum of B(y) is characterized by, =0 and
Byy>0, where the subscript denotes derivative with re-
spect toy. To find the corresponding conditions @we use
the fact thatG(B(y),y) is identically zero, hence its total
derivative with respect ty vanishesGzB8,+G,=0, where
the subscripts orc denote partial derivatives. The second
total derivative ofG(B(y),y) with respect toy also vanishes.
At a stationary point wher@, =0, this yieldsGzg8,,+ G,
=0. Thus the conditions foB(y) to be local minimum are

0.5

0.0

By=—Gy/Gz=0 and Byy=—Gyy/Gz>0.
(A8)

Itis clear from Fig. 11 thaG 4 is always positive at the lower
root of G=0, and vanishes only at the tangency valuerof
Since only the lower root can be a lower threshold, we have
two necessary conditions to be a lower threshold:

Gg>0 and G,,<0. (A9)

FIG. 11. Behavior ofG(B,y) (A3) for fixed y and different We now use these considerations to find the thresholds for
values of alpha. n=2,3.

y(y)=4y(1-y). (A5) 1. Photon annihilation thresholds forn=2

Equation(A3) is a generalization of those derived by Aloisio ~ Forn=2, Eq.(A3) reduces to
et al. [27] for the specific cases of= 3,4 with purely sym- o o~ o
metric configurationsy(=1/2) and equal deformation coef- G=y(1-y)[({-n)B°+4B]-1=0.  (AlQ)

ficiepts E=n). ) There is only one extremum, st=1/2. Substitutingy=1/2
Figure 11 shows the general behavioiGff3,y) (A3) for  into Eq. (A10) yields

any fixedy [and therefore fixed/(y)] and different values of
«. From the plot we see that for arythere are either one,
two, or zero solutions to the kinematic equation ®r If E=nptd—7-. (A11)
there are two solutions, of course only the lower one is a B
candidate for the lower threshold. The upper one can corre-, ~ . ~ 5 .
spond to arupper thresholdthat is, to the highest available |N€ é-intercept,§,=4(1—p)/p*, decreases monotonically
value of 8 for which the reaction is kinematically allowed. or B<Prang and increases monotonically 08> Biang:
To our knowledge, the possibility of upper thresholds hagiéo/dB=(8—2)(4/8%).
been overlooked in all of the previous literature except for The values ofg less thanB,,;—=2 are candidates for a
Kluzniak [25] (see the discussion at the end of Sec. II1)D 3 lower threshold. The contourgA11) for <2 are parallel

For eachy there is a maximal value of the lower roft  straight lines of unit slope, whoseintercept goes monotoni-
which occurs wheny, is such that the curve described by cally frome to —1 as;3 goes from 0 to 2. Since these lines
Eq. (A3) is tangent to the3 axis. This occurs for do not cross there is only one candidate threshold for each

pair (77,€), hence these lines indeed give the contours of the

—1)(n=1)
altn= — y”%, (A6)  lower threshold. The reaction is forbidden below the ifhe
n =7—1. The highest lower threshold is given By= 2k
and, at this tangency point, =2m* wo. ,
The values ofg greater thanB,,q=2 are candidates for
n upper thresholds since they are local maxim@ among the
Brang™ flm- (A7) threshold configurations. The contours for these are also

given by the straight lineéA11), with Z-intercept that goes
If Bisto be a lower threshold it must lie below this tangencymonotonically from—1 to 0 aspB goes from 2 tox. No
point. other candidate for the upper threshold exists at a given

Given values fory and, Eq. (A3) implicitly defines  value of £,7, so to check whether these contours actually
zero, one, or twdreal positive solutions for3 as a function  represent upper thresholds we need only verify that an upper
of y. A lower threshold corresponds to the global minimumthreshold exists at all. That is, we must rule out the possibil-
of B. Our strategy is to first find the local minima and, if ity that there are configurations for which the annihilation
there is more than one, determine which is the global miniprocess occurs with arbitrarily large incoming photon energy.
mum. To do this we examine the limit of largke Then the soft
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photon is irrelevant, and the question is the same as whether
an arbitrarily high energy photon can decay to an electron-
positron pair. We already determined in the section on pho-

ton decay that it occurs only above the diagonal, i.e.&or

>. Hence the process does not occur at arbitrarily large
energy below the diagonal, which is where all the candidate
upper thresholds lie. Thus these candidates are indeed all

upper thresholds.

2. Photon annihilation thresholds forn=3

Since the two final particles are interchangeable (B3)
is symmetric abouy=1/2. For highem we can reduce the
order of this equation by introducing the varialde (2y

—1)? that also has this symmetry, as we did for the case of
photon decay in Sec. lll C. The physically relevant range of

z is 0=z=<1. With this change of variables far=3, Eq.
(A3) can be written as

3
7 L(E+4ig8 (12— (nl2) (1= 2] -1=0.
(A12)

G

There are now two extrema, onezt 0 which corresponds
to the usual symmetrigy=1/2 case, and the other where
G,=0, i.e. at

E+41B2

n

2,= (A13)

~

n

FIG. 12. The(straigh} symmetric(A14) and(curved asymmet-
ric (A16) contours for a fixed value g8. The unphysical part of the
asymmetric curve is dotted, and the part of the symmetric line that
is not a local maximum or minimum ¢ is dashed. The B-curve”
is the two joined solid segments of these contours, and indicates
points wheres is a candidate for the lower or upper threshold. The

joining point is (7, €)= (—8/83%,—4/8?).

4+
B2

87

B

i=n— (A16)

which corresponds to an asymmetric configuration in which

the outgoing particles have different momenta.

The solution of Eq.(A12) for € in the symmetric case
(z=0) with B= B, yields

4(1-Bs)

. (A14)

~ 7
=5+

The &-intercept,£,=4(1— B)/8°, decreases monotonically
for B<pBiang=1.5 and increases monotonically f8r> Biang

dé,/dB=(B—1.5)(8/3%). Only values of3 less than the

The asymmetric case only exists wher0, and only the
positive square root is physically relevant, since El3)
givesz,=1—/—8/7B° andz must be less than unity. Also,

z, must be positive, so the asymmetric case is only relevant
whené< —4/82.

The asymmetric stationary point haB(3)=162,G%3
=4z,78°<0, hence it is a local minimum if and only if
G4>0. This corresponds to the inequaligy>7+4/38%. It
is a local maximum when the opposite inequality holds. For
B<1.5 the asymmetric curve represents a local minimum

tangency value 1.5 are candidates for a symmetric Ioweéverywhere since it is abode=7+ 4/382 everywhere in the

threshold, while values greater than 1.5 are candidates for

symmetric upper threshold.

&ysical regioré< — 4/B3%. For B> 1.5 the asymmetric curve

The symmetric case can only be a lower or upper threshcrosses belowé="7+4/33> while still in the physical re-

old when the inequality> — 4/82 holds. We can see this by
imposing the conditions for a local minimum or local maxi-
mum respectivelys,,>0 wheng<1.5 or 8,,<0 whenp
>1.5. SinceGg>0 in the first case an@ ;<0 in the second
case(as can be seen from Fig.)1Eq. (A9) shows that both
cases requir&,,<0. To evaluates,, we note that

d?/dy?=16z(d*/dz?) + 8(d/dz), (A15)

hence G{)=8G{¥=—88(1+¢B%/4), which is negative
only if &> —4/p2.

The solution of Eq.(A12) in the asymmetric casez(
=127,) With 8= B, yields

gion, where it represents a local maximum.
The symmetric lineg(A1l4) and asymmetric curvéA16)

meet at §,&)=(—8/B% —4/B?) and are tangent there, as
shown in Fig. 12. Above this meeting point only the sym-
metric solution is a candidate threshold, and below this point
only the asymmetric solution is. A8 varies, the curve traced
out by these meeting points is given by

Eon=— (-7 (A17)

We shall use the namegB-curve” for the joined curve that is

the symmetric line above and the asymmetric curve below

E=—4/p2
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FIG. 13. The asymmetric
curve corresponds to a local maxi-
mum for all points on the segment
from A (where it crosses the line
E=7+4/38%) to B (where it
crossesé=—4/8? and becomes
unphysical It is the global maxi-
mum only in the region below the
diagonal, which it crosses &t. If
B<2,D lies above B so the
asymmetric configuration is never
a global maximum. If3>2 then
the asymmetric configuration is
the global maximum for every
point on the segment betwedh
andB.

a. Lower threshold for photon annihilation, =3 region, and are given by EA16) in the asymmetric region.

To find the contours of constant lower threshold in the These contours are shown in Fig. 5.

7;2 plane we proceed as follows. First we choose a value of
B<1.5, and consider the correspondi@ecurve. The points b. Upper threshold for photon annihilation, &3

on this curve are the only candidates for the threshold to be We now turn to an analysis of the upper thresholds. Our

B. To determine if the threshold actuallyfsat a given point f ) in in which . f thaZ pl
we must determine whether or not there is a solution to EqfI'St St€P is to ascertain in which region of the-£ plane an
(A12) with a smallervalue B at the same point. In other UPPer threshold exists. As discussed inive2 section, this

words, we must determine if #_-curve could cross the €an be done by examining the limit of larggein which the

original B-curve. In fact it cannot. Theg_-curve starts out annihilation process becomes indistinguishable from photon
above the g-curve at 7=0 [since (1-B.)/B%>(1 decay. The decay process is forbidden below the broken line

—B)/B%. In the symmetric sections the slopes are bothd!VEN by&=7/2 for =>0 andé=" for <0. Above this

equal to 1/2. In the asymmetric section the slope computeroken line there is a lower threshold and no upper threshold.
from Eq. (A16) is d"é/d,(i’=1—4(—87;/33)‘1’2 which is al- Thus an upper threshold exists below this broken line any-

. . e . where a lower threshold exist3.
ways greater than 1/2 in the region belgw —4/5% and is The candidates for upper threshold contours are the sec-

greater for large3 at fixed 5. Hence theB_-curve is ev-  iong of g-curves with3> 1.5 that satisfy the conditions for
erywhere apove th;@—curve,'so the curves never cross. Thebeing a local maximum. On the symmetric segment this im-
B-curves withB<<1.5 thus give the lower threshold. poses no restriction, but on the asymmetric segment it re-

asymmeni configuration can be & lower thresnold. n iJUres thatthe curve lie below the lgs-7+ 4347, On the
case there arg_-curves with smaller values of ihat other hand, we just argued thgt an upper_threshold exists only

=< . AN below the diagonal for negative, which is a more restric-
cross thef-curve. In particular, the asymmetric part of the tive condition. Moreover, it can be checked that these sec-
B-curve crosses the symmetrg=1.5 line from below and

th A i fvet b that bef tions of theB-curves do not cross anywhere in the region of
€n goes on 1o cross ines ot ye smalieabove that before upper thresholds, hence they are indeed the upper threshold
leaving the local minimum region. Thu8 cannot be the

lobal mini b th HiB=15 I contours in that region. Only fg8>2 does the asymmetric
global minimum above the symme rg=1. INE, €VeN  section have a segment below the diagonal before leaving the
though B remains a local minimum up to when it crosses hysical regioré< — 4/82, as illustrated in Fig. 13. The re
below the lineg= 7+ 4/382. Phy 9 ! g =

- S . ions of symmetric and asymmetric upper thresholds thus
The only remaining question is whether the dn"ferentg y y bp

. ¢ 15 bel h take the form shown in Fig. 6. The boundary of the lens
asymmetricj-curves for>1.5 can cross below the sym- gp,004 region next to the diagonal is determined by the
metric 3=1.5 line. In fact they cannot. It can be shown that

] _ _““curve (Al7) consisting of the points where the symmetric
the terminus on th@=1.5 line moves to larger values af  and asymmetric segments join. The bottom of the lens meets
as g goes from 1.5 toe. (See Fig. 9. Since the slope of the the diagonal at thg=2 line.

asymmetric B-curves increases witl8 (as discussed two

paragraphs aboyein the region below the symmetri@

=1.5 line, the curves for differer do not cross. 5This analysis was carried out using the truncation discussed in
In summary, we have shown that the regions where th&ec. 11l A. At very high energies or at very large values of the

symmetric and asymmetric lower thresholds exist take theorentz violating parameters there will be deviations from this be-

form shown in Fig. 4. The contour lines of constant thresholchavior, but for practical purposes these deviations are not relevant

are the straight line$A16) of slope 1/2 in the symmetric for our constraints.
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