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Threshold effects and Planck scale Lorentz violation: Combined constraints
from high energy astrophysics
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Physics Department, University of Maryland, College Park, Maryland 20742-4111
~Received 27 September 2002; published 11 June 2003!

Recent work has shown that dispersion relations with Planck scale Lorentz violation can produce observable
effects at energies many orders of magnitude below the Planck energyM. This opens a window on physics that
may reveal quantum gravity phenomena. It has already constrained the possibility of Planck scale Lorentz
violation, which is suggested by some approaches to quantum gravity. In this work we carry out a systematic
analysis of reaction thresholds, allowing unequal deformation parameters for different particle dispersion
relations. The thresholds are found to have some unusual properties compared with standard ones, such as
asymmetric momenta for pair creation and upper thresholds. The results are used together with high energy
observational data to determine combined constraints. We focus on the case of photons and electrons, using
vacuum Čerenkov, photon decay, and photon annihilation processes to determine order unity constraints on the
parameters controllingO(E/M ) Lorentz violation. Interesting constraints for protons~with photons or pions!
are obtained even atO„(E/M )2

…, using the absence of vacuum Cˇ erenkov and the observed GZK cutoff for
ultrahigh energy cosmic rays. A strong Cˇ erenkov limit using atmospheric PeV neutrinos is possible for
O(E/M ) deformations provided the rate is high enough. If detected, ultrahigh energy cosmological neutrinos
might yield limits at or even beyondO„(E/M )2

….
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I. INTRODUCTION

The principle of relativity of motion goes all the way bac
to Galileo @1#, who noted that observers below decks in
large ship gliding across a calm sea have no way of de
mining whether they are in motion or at rest. Einstein’s s
cial relativity, which is founded on this principle, has be
spectacularly successful in accounting for phenomena
volving boost factors as high as 1011. Moreover, the Lorentz
group has a beautiful mathematical structure, and this s
metry powerfully constrains theories in a way that has b
very useful in discovering new laws of physics. It is natu
to assume under these circumstances that Lorentz invari
is a symmetry of nature up to arbitrary boosts. Neverthel
there are several good reasons to question exact Lor
symmetry. From a logical point of view, the most compelli
reason is that while 1011 is a large number, it is nowhere ne
infinity. There is, and will always be, an infinite volume o
the Lorentz group that is experimentally untested since,
like the rotation group, the Lorentz group is noncompa
Why should we assume thatexactLorentz invariance holds
when this hypothesis cannot even in principle be tested?

While the noncompactness reason for questioning Lore
symmetry is perhaps logically compelling, it is by itself n
very encouraging. However, there are also several reaso
suspect that there will be a failure of Lorentz symmetry
some energy or boosts. One reason is the ultraviolet di
gences of quantum field theory, which are a direct con
quence of the assumption that the spectrum of field deg
of freedom is boost invariant. Another reason comes fr
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quantum gravity. Profound difficulties associated with t
‘‘problem of time’’ in quantum gravity@2,3# have suggested
that an underlying preferred time may be necessary to m
sense of this physics. Also tentative results in string the
@4#, quantum geometry@5#, and noncommutative geometr
@6–8# approaches to quantum gravity have suggested
Lorentz symmetry may be broken in the ground state.

Finally, there have been recent hints from high ene
astroparticle physics that we may already be seeing the
fects of Lorentz violation~although as discussed below th
most recent analyses make this seem unlikely!. One comes
from the photoproduction of electron-positron pairs wh
cosmic gamma rays collide with photons of the infrar
background. Below 10 TeV the~indirectly! observed absorp
tion of such gamma rays by this process offers support
boost invariance up to the boost that relates the cosmic
frame to the center of mass frame of the colliding photo
~For a 10 TeV gamma ray colliding head on with a 25 me
infrared photon this yields a boost of 107.! However, accord-
ing to some~but not all! models of the infrared background
there appears to be less absorption than expected for ga
rays above 10 TeV coming from the blazar Mkn 501~located
at about 157 Mpc from us!. If true this could be explained by
an upward threshold shift due to a Planck scale suppre
Lorentz violating term in the dispersion relation for th
gamma rays@9#.

The other hint comes from the cosmic ray events beyo
the Greisen-Zatsepin-Kuzmin~GZK! cutoff @10,11# on high
energy protons. Ultrahigh energy~UHE! protons undergo in-
elastic collisions with cosmic microwave background rad
tion ~CMBR! photons leading to the production of pions~the
boost to the center of mass frame yields the figure of 111

mentioned above!. As a result, protons above;531019 eV
are not able to reach us from distances above a few M
@12#. In spite of this prediction, cosmic rays with energ
©2003 The American Physical Society11-1
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JACOBSON, LIBERATI, AND MATTINGLY PHYSICAL REVIEW D 67, 124011 ~2003!
beyond 1020 eV have apparently been observed by the Ake
Giant Air Shower Array~AGASA! experiment@13# ~see also
@14# for a review on this issue!. The nature and origin o
these ultrahigh energy cosmic rays is unknown and sev
explanations have been proposed~see@15,16# for an exten-
sive review!. One proposal is that Lorentz violating terms
the dispersion relation for the proton produce an upward s
of the threshold for pion production, allowing these hi
energy protons to reach us@17–20#. Interestingly it was ar-
gued that a universal Lorentz violating deformation of t
particle dispersion relations would be capable of explain
both the TeV gamma ray absorption anomaly and the tra
GZK events@20#.

The evidence for the TeV gamma ray and GZK anoma
is not convincing at this stage, however. Indeed it has b
argued in@16,21# for the former and in@22,23# for the latter
that the data are consistent with Lorentz invariance. Fo
therefore the most important point is just that it is possible
all that Planck scale violations of Lorentz symmetry could
observed or constrained by current and upcoming obse
tions. The focus of the present paper is almost entirely on
constraintsthat can be imposed. Our work extends prior
sults @17–20,24–27# in several ways:~i! combining con-
straints to limit parameter space ofa priori independent pa-
rameters, ~ii ! discovery and characterization of th
asymmetric threshold effect,~iii ! characterization of uppe
threshold effects,~iv! extending analysis for threshold effec
to higher order nonlinearities. A brief report on some of o
results has already been given in@28#. Some of these result
have been confirmed in@29#.

In the next section we discuss our theoretical framew
and list the reactions we are going to consider. In Sec. III
study the kinematics of some photon–electron processe
order to determine how Lorentz violating dispersion affe
thresholds. The details of the photon annihilation thresh
analysis are worked out in the Appendix. These results
then used to deduce observational constraints on the ele
and photon deformation parameters. Taken jointly these c
straints severely restrict the parameter plane. Section IV
devoted to the discussion of other possible interactions
cluding hadrons or neutrinos, and in Sec. V we discuss
special case of common Lorentz violating parameters for
the particles. Finally we present some conclusions and
spectives in Sec. VI.

Throughout this paper we adopt the following notation
conventions:p4 denotes a four-momentump45(v,p), andp
is the magnitude of the three-vectorp. The metric signature
is (1,2,2,2). We use the energy scaleM51019 GeV to
form dimensionless Lorentz-violating parameters, since i
close to the Planck energyMP5(\c5/G)1/2.1.2231019

which we are presuming sets the scale for violation of L
entz invariance induced by quantum gravity. We often e
ploy units in whichM51.

II. THEORETICAL FRAMEWORK AND PROCESSES
CONSIDERED

Various approaches to quantum gravity have sugge
that violations of local Poincare´ symmetry might occur, bu
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no reliable prediction is currently availble. These suggesti
range from the breaking of just the boost symmetry to bre
ing of the full local Poincare´ group. In this paper we study
the former case since it is the minimal one for which con
quences of boost symmetry violation can be explored. T
we shall assume that rotation and spacetime translation s
metries are preserved, so that in particular energy and
mentum are conserved.1

Dispersion relations determine how particles propag
and, via energy-momentum conservation, how their inter
tions are kinematically constrained. Hence Lorentz violat
dispersion relations provide a relatively theory-independ
window into the possibility of Lorentz violating physics. I
this work we explore the observational consequences of s
deformed dispersion relations in flat spacetime, i.e. negl
ing gravitational effects. The consequences of such dis
sion relations have also been extensively investigated in
context of the Hawking effect~see e.g.@33# and references
therein! and the primordial spectrum of density fluctuatio
in cosmology~see e.g.@34–36# and references therein!.

In this section we discuss our framework for parametr
ing such Lorentz violating physics, as well as the proces
through which one might hope to place constraints or
observe Lorentz violation.

A. Theoretical framework

A dispersion relation that is not boost invariant can ho
in only one frame. We assume this frame coincides with t
of the cosmic microwave background. As mentioned abo
we further assume that rotation invariance is preserved
this preferred frame. Thus the dispersion relation takes
form E5E(p), wherep is the magnitude ofp. In the Lor-
entz invariant case we haveE25m21p2. Effective field
theory suggests that it should suffice to consider genera
tions of this form involving only integer powers of momen
tum,

E25m21p21 (
n51

`

anpn. ~1!

We presume that any Lorentz violation is associated w
quantum gravity and suppressed by at least one inv
power of the Planck scaleM. For n>3 it is therefore natural
to factor out the appropriate power ofM and write an

5hn /Mn22 wherehn is a dimensionless constant that mig
be expected to be of order unity if indeed quantum grav
does violate Lorentz symmetry. Forn,3 there must in ad-
dition be another mass scale,m, which might be a particle

1For an example where both rotation and boost symmetry
broken see e.g.@30#. For an exploration of the case in which the fu
Poincare´ symmetry is violated see e.g.@31,32#.
1-2
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THRESHOLD EFFECTS AND PLANCK SCALE LORENTZ . . . PHYSICAL REVIEW D 67, 124011 ~2003!
physics mass scale, in terms of which the coefficentsa1,2 can
be written asa15a1 m2/M anda25a2 m/M , where again
a1,2 might be expected to be of order unity.2 In a situation
such as this, the important terms at low energiesp!m would
be from p1 and p2. At high energiesp@m, the p3 term if
present would dominate. If this term is absent then thep4

term would dominate whenp2@mM .
A large amount of both theoretical and experimental wo

has been done on the casen<2. The most general frame
work is the ‘‘standard model extension’’@30#, which includes
not just rotation invariant effects but all possible renorma
able Lorentz andCPT violating terms that can be added
the standard model Lagrangian preserving the field con
and gauge symmetries. Low energy observations@30,38,39#
have placed stringent limits on the magnitude of such L
entz andCPT violating terms. For example in@39# a very
strong constraint of order 10232 from spectropolarimetry is
provided for the electromagnetic birefringence of t
vacuum in the standard model extension. High energy as
particle phenomena@17,40# have also been used, however
the case of such phenomena the above discussion sug
that unless thep3 term is absent it would be expected
dominate over thep2 andp1 corrections.

In this paper we focus on the constraints that can be
tained from high energy phenomena. In the absence of p
liar tuning of the coefficients of the terms with different pow
erspn, it is natural to suppose that the lowest nonzero te
with n>3 will dominate at these energies. Hence, for si
plicity, we shall include only one Lorentz violating power o
momentum. Our study thus amounts to studying the ob
vational consequences of dispersion relations of the form

E25p21ma
21hapn/Mn22. ~2!

The subscripta denotes different particles, anda priori all
the dimensionless coefficientsha could be different.~For
notational uniformity we use hereh1,2 rather than the coef
ficients a1,2 defined above.! We assume that, in addition t
being conserved, energy and momentum add for compo
systems in the usual way.3 It might seem that the effects o
such deformations of the dispersion relation could be imp
tant only near the Planck energy. However, there are at l
two types of phenomena for which this is not the case.

First, for particles that propagate over cosmological d
tances, small differences in propagation speed can build
to detectable time-of-flight differences. Second, thresho
for particle reactions can be shifted, and thresholds can

2Renormalization group arguments might suggest that lower p
ers of momentum in Eq.~1! will be suppressed by lower powers o
M. However this need not be the case if a symmetry or ot
mechanism protects the lower dimension operators from Lore
violation. See e.g.@37# for an example of this in a brane-wor
scenario where there is Lorentz invariance on the brane but no
the brane.

3Note however that there have been recent proposals in which
composition law for energy and momentum is also modified@41–
44#.
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pear for normally forbidden processes. These threshold
fects can occur at energies many orders of magnitude be
the Planck scale. To see why, note that thresholds are d
mined by particle masses, hence if thepn term is comparable
to them2 term in Eq.~2! one can expect a significant thres
old shift. This occurs at the momentum

pdev;~m2Mn22/h!1/n, ~3!

which gives a rough idea of the energies at which we exp
to see deviations from standard physics. The typical sc
for some different particles ifh;1 are summarized in
Table I.

B. Viability of theoretical framework

Before considering the observational constraints, a f
comments are in order regarding the viability of the theor
ical framework we are adopting.

Restriction to p!M and monotonicity of E(p). We view
the dispersion relation just as the initial terms in a derivat
expansion, so we are assuming nothing about the ac
Planck scale physics. In particular, whenn.2 and h is
negative, the right hand side of the dispersion relation~2!
becomes negative for large enough mome
;uhu21/(n22)M . However, we never use the dispersion re
tion in this regime where the energy would be imagina
Moreover, it will be important for our threshold analysis th
we restrict attention even further to the regime in which t
dispersion relation is strictly monotonic. As long asuhu is not
much larger than unity this will be the case provided t
momentum is below the Planck scale. In fact, we consi
only momenta many orders of magnitude below the Pla
scale.

Causality and stability.For positiveh the propagation is
superluminal at high energies. One might worry that t
would lead to causal paradoxes, however this is not the c
since the propagation is always forward in time relative
the preferred frame in which the dispersion relation is spe
fied. For negativeh the 4-momentum is spacelike at hig
energy, hence in a boosted frame the energy can be less
zero. One might think this implies that the case withh,0 is
not energetically stable and hence unviable. This is not
however, since all energies remain positive relative to

-

r
tz

ff

he

TABLE I. Typical energies at which one can expect deviatio
from standard kinematics for different particles ifh;1 and n
53,4. The mass of the neutrino is taken to be;1 eV, this being the
current upper bound on the mass of the lightest neutrino.

n pdev for ne pdev for e2 pdev for p1

3 ;1 GeV ;10 TeV ;1 PeV
4 ;100 TeV ;100 PeV ;3 EeV
1-3
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JACOBSON, LIBERATI, AND MATTINGLY PHYSICAL REVIEW D 67, 124011 ~2003!
preferred frame, which is enough to guarantee stability.4

Dispersion relations for macroscopic systems.The de-
formed dispersion relations are introduced for element
particles only; those for macroscopic objects are then
ferred by addition. For example, ifN particles with momen-
tum p and massm are combined, the total energy, mome
tum and mass areEtot5NE(p), Ptot5Np, andM tot5Nm, so
that Etot

2 5M tot
2 1Ptot

2 1N22nhPtot
n ~in units with M51). The

ratio of the Lorentz violating term to theP2 term is the same
as it is for the individual particles,hpn22, hence there is no
observational conflict with standard dispersion relations
macroscopic objects.

Effective field theory and compatibility with general rel
tivity. There is no difficulty exporting deformed dispersio
relations to curved spacetime, provided they can be produ
by an effective Lagrangian for a field. In this case, the p
ferred frame in which the dispersion relation holds is spe
fied by a unit timelike vector field, which must be promot
to a dynamical field of the theory if general covariance is
be preserved@46–49#. In the cases thatn is even, there are
obvious Lagrangians that produce the dispersion relat
For example one can add terms involving extra powers of
spatial Laplacian, such as ((3)¹2f)2 for a scalar field. For
oddn there seems to be no local action that will work for re
scalar fields, although for a complex scalar the te
i f̄] t

(3)¹2f1H.c. induces cubic and higher order terms.
induce cubic terms for spinors one can write for exam
c̄ (3)¹2c, and for the electromagnetic field one can wr
B•“3E ~which violates parity!. This last case yields a so
of Lorentz violation that emerges from quantum geome
calculations@5#. The Lorentz violating terms in the effectiv
Lagrangians just discussed have mass dimension greater
4 so are not renormalizable. This is not a fundamental pr
lem, since we only regard the Lagrangian as an effective
below some large energy scale, however it raises the q
tion of naturalness. For now we take the point of view th
there may be an explanation for the low energy Lorentz sy
metry that is not yet understood.

C. Processes considered

In order to determine the strongest joint constraints on
a priori independent coefficientsha in Eq. ~2! one must
identify several processes involving the same types of p
ticles. We focus most of our attention on the case of phot
and electrons, since the electron mass is light and these
ticles interact readily. In this way we are able to obtain rat
strong constraints on the allowed parameter space. We
consider several other processes, some of which prese
allow or will soon allow further interesting constraints to b
placed. Here we summarize all the processes to be con
ered in the paper and a few more.

1. Photon–electron processes

~a! QED vertex interactions: The basic QED vertex in-
volves one photon and two electron lines. With all partic

4For an alternative point of view, see@45#.
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on-shell this vertex is forbidden~for any in-state! by energy
momentum conservation in the usual Lorentz invaria
theory, but it can be allowed by Lorentz violating dispersio
In particular we consider the following processes:

~i! e2→e2g: This vacuum Čerenkov effectis extremely
efficient, leading to an energy loss rate that goes likeE2 well
above threshold. Thus any electron known to propagate m
lie below the threshold. We shall also discuss the vacu
Čerenkov effect for other charged particles and even for n
tral particles.

~ii ! g→e1e2: The photon decayrate goes likeE above
threshold, so any gamma ray which propagates over ma
scopic distances must have energy below the threshold.

~iii ! e1 e2→g: Pair annihilation to a single photon can
also occur. For cosmological observations this would
hardly distinguishable from the similar two-photon pair a
nihilation and as such it is not presently helpful in providin
observational constraints.

~b! g g→e1 e2: Photon annihilationoccurs in ordinary
QED above a certain threshold, however Lorentz violat
dispersion can modify this threshold in observationally int
esting ways and can introduce an upper threshold.@The re-
lated reactions of pair annihilation~into two photons! and
Compton scattering are also modified, however these eff
offer no clear signal that can provide useful constraints.#

~c! g→Ng: Photon splittingis allowed by energy mo-
mentum conservation in Lorentz invariant QED if allN11
photons have parallel momenta, but the process does
occur both because the matrix element vanishes and
phase space volume vanishes. With modified dispersion
photon four-momenta are no longer null~and there may be
additional Lorentz violating operators that mediate the p
cess! hence this reaction can occur with a finite rate. Ho
ever, we shall see that the rate is too small to be observa

~d! Time of flight constraints: Nonlinearity in the modified
dispersion relation leads to different times of arrival for ph
tons of different wavelength emitted from the same eve
Such differences can provide an upper bound on the par
eter governing the amount of Lorentz violation for photon
independently of the parameters for other particles.

~e! Vacuum birefringence constraints: Violations of Lor-
entz invariance involving also parity violation can lead
unequal speeds of propagation for different photon polar
tions. The absence of such birefringence effects for light~IR-
UV! from cosmological sources has been used to prov
constraints of order 10232 and 1025 for the quadratic@39#
and cubic deformations@50# respectively.

2. Other processes

~a! Alternative vacuum Cˇ erenkov effects:
~i! p1→p1g or n→ng: Note that to properly analyze

this reaction the structure of the proton or neutron must
taken into account.

~ii ! n→ng: Although neutrinos are neutral, they still hav
a charge structure in the standard model so they can in p
ciple produce vacuum Cˇ erenkov radiation via the charge ra
dius coupling. Massive neutrinos could also radiate via
magnetic moment coupling@51#. The related process of pho
1-4



-

r
u

ed

io
re

m
b

sh

od
ie

u
m

le
e
ve
e
s
s

e

ex

on

m

o
th
n

e
s

ra

t

on-
ron

ven

el-
The

ow
ob-
ntz

y-
per-
sses

rela-

n-

ed

hat
se

-

is
.

of
:

THRESHOLD EFFECTS AND PLANCK SCALE LORENTZ . . . PHYSICAL REVIEW D 67, 124011 ~2003!
ton decay to neutrinos,g→ n̄n, may also provide an inter
esting constraint.

~iii ! Gravitational Čerenkov radiation will occur if matte
moves faster than the phase velocity of gravitons in vacu
@52#. This effect has been used, in the special casen52, to
place limits on the difference between the maximum spe
of propagation for gravitons and photons@53#.

~b! p1gCMB→p1p0: GZK interaction. Lorentz violations
can change the allowed range of energies for this react
The confirmation of the standard GZK cutoff can therefo
provide interesting constraints even in the casen54 due to
the tremendously high energy of the most energetic cos
rays. Moreover the highest energy events recorded
AGASA may conceivably be explained via an upper thre
old.

~c! Neutron stability–proton instability. If the dispersion
relations for the neutron and proton are independently m
fied, it is possible to make neutrons stable at high energ
The highest energy AGASA events could be understood
this manner if the trans-GZK particles were actually ne
trons, hence suppressing their interaction with the cos
background radiation.

~d! Neutrino oscillations. Nonflavor-diagonal Lorentz vio-
lations can produce neutrino oscillations, even for mass
neutrinos@54#. For quadratic deviations in the dispersion r
lation (n52) the constraints from current observation ha
been considered in@17,54,55# leading to a constraint on th
difference of speed between electron and muon neutrino
about 10222. Constraints for higher order Lorentz violation
have been discussed in@56#.

~e! Anisotropy effects. The motion of the laboratory with
respect to the preferred frame can produce anisotropic
fects. Limits for the casen52 are discussed in@38#. Such an
effect has recently been used@57# to show that the Lorentz
violation suggested by quantum geometry calculations is
conflict with current observations in Hughes-Drever type
periments.

D. Observations

To obtain constraints from these reactions we shall c
sider the following observations:

~i! Electrons of energy up to;100 TeV are inferred via
x-ray synchrotron radiation coming from supernova re
nants@58,59#.

~ii ! Gamma rays up to;50 TeV arrive on Earth from the
Crab nebula@61#.

~iii ! Cosmic gamma rays are absorbed in a manner c
sistent with photon annihilation off the IR background wi
the standard threshold@16,21#. This inference depends o
incomplete knowledge of the IR background and on assum
properties of the source spectrum however, so the con
tency provides only an imprecise constraint at present.

~iv! Different photons emitted by the same gamma
burst all arrive at Earth within a narrow time interval.

~v! The GZK cutoff on UHE cosmic ray protons at;5
31019 eV has been observed@22,23# ~although events a
higher energy may have been detected@13#!.
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Using the electron-photon processes we find strong c
straints on the allowable range for the photon and elect
parameters for cubic order (n53) Lorentz violation, while
the quartic case (n54) is only weakly constrained. Using
UHE cosmic ray protons we obtain strong constraints e
for n54.

III. PHOTON-ELECTRON PROCESSES

In this section we determine the thresholds for some
ementary processes involving just photons and electrons.
fact that these always involve the same particles will all
us to combine the constraints provided by the available
servations and to severely restrict the space of the Lore
violating parameters. From here on we adopt units withM
51, but occasionally display theM dependence explicitly.

A. Kinematics of the basic QED vertex

The processese2→e2g andg→e1e2 correspond to the
basic QED vertex, but are normally forbidden by energ
momentum conservation together with the standard dis
sion relations. When the latter are modified, these proce
can be allowed.

For photons and electrons the assumed dispersion
tions are

v2~k!5k21jkn, ~4!

E2~p!5m21p21hpn, ~5!

where we have introduced the notationj5hg and h5he .
Let us denote the photon 4-momentum byk45(vk ,k), and
the electron and positron 4-momenta byp45(Ep ,p) and
q45(Eq ,q). For the two reactions energy-momentum co
servation then impliesp45k41q4 and k45p41q4 respec-
tively. In both cases, we have

~p42k4!25q4
2 , ~6!

where the superscript ‘‘2’’ indicates the Minkowski squar
norm. Using the Lorentz dispersion relations~4! and~5! this
becomes

jkn1hpn2hqn52~Epvk2pk cosu!, ~7!

whereu is the angle betweenp andk. In the standard case
the coefficientsj andh are zero and the r.h.s. of Eq.~7! is
always positive, hence there is no solution. It is clear t
nonzeroj andh can change this conclusion and allow the
processes.

We define alower thresholdas the minimum energy re
quired for the incoming particle for the reaction to occur.~If
the initial state is a two particle state, then a threshold
defined relative to a fixed energy for the ‘‘target’’ particle!
Conversely, anupper thresholdis defined as the maximum
energy ~if any! allowed for the incoming particle for the
reaction to occur. Our analysis is based on properties
thresholds summarized in the following threshold theorem

Threshold theorem. If Ep is a strictly monotonically in-
creasing function ofp for p.0 for all particles, then all
1-5
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thresholds for processes with two-particle final states oc
when the final momenta are parallel. For processes with t
particle initial states the initial momenta at threshold are
tiparallel.

A detailed proof can be found in@62#. According to the
theorem,u50 at a threshold. This point has been assume
previous work but was not shown explicitly and in fact is n
true if Ep is not monotonic.

Fixing u to be zero, all three spatial momenta are paral
hence momentum conservation impliesq5uqu5u6(p2k)u
5up2ku. In this case the relation~7! becomes

jkn1hpn2hup2kun52pkS Ep

p

v

k
21D . ~8!

In the situations of interest to us, the momentump is relativ-
istic, and the Lorentz violating terms are small:

m/p!1 ~9!

j~k/M !n22!1 ~10!

h~p/M !n22!1. ~11!

Using these approximations and expanding the two ener
in powers of the small quantities@(m/p)21hp(n22)# and
jk(n22) we obtain

Ep

p

v

k
5F11

1

2 S m2

p2
1hp(n22)D 2

1

8 S m2

p2
1hp(n22)D 2G

3F11
1

2
jk(n22)2

1

8
~jk(n22)!2G . ~12!

There is a subtlety about the truncation of this double exp
sion. If the ratio of the two expansion parameters is v
large, it is possible that the second order term in one quan
is comparable to~or larger than! the first order term in the
other quantity. In such cases, spurious results can be obta
by truncating both expansions at the same order. We s
proceed with the first order truncation of both expansio
One can checka posterioriwhether the truncation is consis
tent. It turns out that this truncation is adequate for our pr
tical purposes. In particular, although at very high energ
our approximate threshold results will fail to be accura
those energies are sufficiently high so as to be observa
ally irrelevant.

Another important point is that Eq.~8! originated from
Eq. ~6! together with conservation of three-momentum a
hence it is equivalent to energy conservationE(p)2v(k)
56E(q). For the Čerenkov and photon decay process
e2→e2g andg→e1e2 we want only the upper and lowe
signs respectively, since the energy of all the particles sho
be positive. It will be unnecessary to impose this choice
plicitly however, since the negative energy solutions are
cluded by the approximations to be employed, as can
checked by just imposing energy conservation directly a
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using the same approximations. We indicate below how
approximations can exclude the negative energy solution

Consider for example the vacuum Cˇ erenkov process
Then energy conservation with a negative energy final e
tron readsE(p)5v(k)2E(q) with v(k), E(p) and E(q)
all positive. The smallestE(q) can be~within the monotonic
regime! is m, so we must havev(k).E(p)1m. Expanding,
this becomesk1jk(n21)/2.p1m2/2p1hp(n21)/21m. On
the other hand, momentum conservation~in the threshold
configuration! requires thatk,p. This inequality implies
that jk(n21)/2.hp(n21)/21m, which requires that eithe
jk(n22)*O(m/p), or uhp(n22)u;m/p, or both. In either
case, we see that neglected terms such as (jk(n22))2 are not
negligible compared to the term (m/p)2 that has been kept

Truncating Eq.~12! at first order, and inserting the resu
in Eq. ~8! we obtain

jkn1hpn2hup2kun

52pkS m2

2p2
1

j

2
k(n22)1

h

2
p(n22)D . ~13!

Introducing the variablex5k/p, Eq. ~13! takes the form

m2

pn
52jx(n22)~12x!1hF12x2u12xun

x G . ~14!

At threshold for either Cˇ erenkov or photon decayp and x
must satisfy this kinematic relation. Note that while we ha
assumed thatp is relativistic, no such assumption is need
for the other two momentaq andk. This is important since
we shall use Eq.~14! in cases where the momentum dist
bution is highly asymmetric.

B. Vacuum Čerenkov effect: eÀ\geÀ

The spontaneous emission of photons by a charged
ticle in vacuum is forbidden in Lorentz invariant physic
since the sum of a timelike and null 4-momentum vect
cannot lie on the same mass shell as the time
4-momentum. Modifications of the dispersion relations
the form ~4! and ~5! can allow some phase space for th
reaction to happen. If the reaction is allowed the rate
energy loss for the casen.2 well above threshold is
dE/dt;aE2, whereE is the energy of the initial charge
particle anda is the fine structure constant.5 The decay dis-
tance is thus only of order the microscopic distance 100E,
hence the lower threshold of the vacuum Cˇ erenkov effect
must be above the maximal observed energy of any cha
particle known to propagate.

5For the special casen52 the rate of energy loss is further sup
pressed by the difference in speeds,dE/dt;(ce

22cg
2)aE2, see e.g.

@17#. In this case the decay distance depends on how close the
speeds are, which must be taken into account in deducing obse
tional constraints on the parameters.
1-6
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THRESHOLD EFFECTS AND PLANCK SCALE LORENTZ . . . PHYSICAL REVIEW D 67, 124011 ~2003!
The lower threshold is the lowest value of the incomi
electron momentump for which the kinematic equation~14!
has a solution. At thresholdx5k/p must lie between 0 and 1
since if k were greater thanp the final electron momentum
would have to be antiparallel to the photon momentu
which is excluded by the threshold theorem~cf. Sec. III A!.
The threshold therefore occurs at the value ofx in this range
for which the right hand side has a maximum. We substit
this x in Eq. ~14! to obtain the lower threshold momentu
for the electron as a function ofj,h andm. That there is no
upper threshold in this case is immediately obvious since
right hand side vanishes asx approaches 1, allowing solu
tions with arbitrarily large momentum.

The analysis is somewhat simplified by rewriting Eq.~14!
in terms of the new variablew512x, in terms of which it
takes the form

m2

pn
52jw~12w!n221h~w1•••1wn21!. ~15!

The relevant range ofw is 0 to 1. In the threshold configu
ration we havep5q1k, hencew5q/p. The general analy-
sis of the threshold relations must be done on a case by
basis for different values ofn, however it is easy to derive
partial results valid for anyn.

First consider the case wherej is positive. Then the first
term in Eq.~15! is negative, so ifh is negative there is no
solution. Ifh is positive, the maximum of the right hand sid
clearly occurs atw51, where it is equal to (n21)h. Hence
the threshold for the case whenj andh are both positive and
n.2 is

pth5F m2

~n21!hG1/n

. ~16!

Sincew51, this threshold corresponds to the emission o
zero energy photon. This is why the value ofj is irrelevant,
and the Cˇ erenkov process takes place as long ash is posi-
tive. Indeed also for negative values ofj the process take
place as long ash is positive ~and even for some negativ
values—see below!, however the threshold configuratio
may occur with the emission of a hard photon.

One more general result can be established, namely
there is no threshold ifh<j<0. To see this observe that fo
w between 0 and 1 we havew1•••1wn22.w(12w)n22,
since the derivative of the lhs is greater than unity and
derivative of the rhs is less than unity. Thus ifh<j<0 the
rhs of Eq. ~15! is nowhere positive in this range ofw. In
particular, there is no threshold in the case of equal nega
parametersj5h,0.

The remaining parameter space for which we need to
termine the threshold is the regionj,0 andh.j.

1. Vacuum Čerenkov thresholds for nÄ2,3,4

In the casen52, Eq. ~15! becomes

m2

p2
5~h2j!w, ~17!
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hence the threshold occurs atw51, with the emission of a
zero energy photon, and the threshold momentum is given

pth5S m2

h2j D 1/2

. ~18!

It is clear from the above expression that no thresh
exists for the special casej5h. This can also be seen d
rectly from the fact that quadratic modifications in the d
persion relations are equivalent to constant~momentum in-
dependent! shifts in the speed of propagation. In the case
equal coefficients the electron and photon dispersion r
tions share the same Lorentz symmetry only with a modifi
speed of light, and hence the vacuum Cˇ erenkov effect~as
well as photon decay! cannot take place. Nevertheless w
shall see that in the higher order cases (n>3) these pro-
cesses are allowed for equal positive coefficients.

In the casen53, Eq. ~15! becomes

m2

p3
5~h2j!w1~h1j!w2. ~19!

The form of the threshold relation forp depends on the val
ues ofh and j. We find two different formulas, dependin
on whether the threshold occurs with emission of a low
ergy photon (w→1)—which we label as case~a! below—or
with emission of a photon with energy of orderp — which is
labeled case~b!. After a bit of calculation we find

~a! pth5S m2

2 h D 1/3

for h.0 andj>23h, ~20!

~b! pth5F2
4m2~j1h!

~j2h!2 G 1/3

for j,23h,0 or j,h<0 ~21!

~c! No threshold forh,0 andj.h. ~22!

In case~b! the value ofw5q/p at the threshold is given by
q/p52(h2j)/2(h1j). Given a maximal energy
momentumpmax for which no vacuum Cˇ erenkov effect is
observed, the constraint on the parameters can be writte

~a! h,
m2

2pmax
3

, ~23!

~b! j.h22
m2

pmax
3

22AS m2

pmax
3 D 2

22hS m2

pmax
3 D .

~24!

The case in which the correction is of quartic order
similar to the cubic one, although somewhat more com
cated. In the casen54, Eq. ~15! becomes
1-7
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JACOBSON, LIBERATI, AND MATTINGLY PHYSICAL REVIEW D 67, 124011 ~2003!
m2

p4
5~h2j!w1~h12j!w21~h2j!w3. ~25!

With the definitionsl[h2j and t[(h12j)/l, Eq. ~25!
takes the formm2/p45l(w1tw21w3), which is what we
used to carry out the threshold analysis. Again the form
the threshold relation forp depends on the values ofh andj,
and we label the cases with~a! and ~b! as for n53. After
some tiresome analysis we obtain the following expressio

~a! pth5S m2

3h D 1/4

for h.0 andj>2~816A2!h, ~26!

~b! pth5S m2

F~l,t! D
1/4

for j,2~816A2!h,0 or j,h<0,

~27!

~c! No threshold forh,0 andj.h, ~28!

where the functionF(l,t) is given by

F~l,t!5
2

27
lFt31~t223!3/22

9

2
tG . ~29!

In the case~a! we have again the emission of a low ener
photon (w→1). In case~b! the value ofw5q/p at the
threshold is given byq/p5(2t2At223)/3. So forn54
given a maximal energy/momentum~saypmax) for which no
vacuum Čerenkov effect is observed, the constraint for ca
~a! can be written as

~a! h,
m2

3pmax
4

. ~30!

The constraint for case~b! has a cumbersome form but th
corresponding line in thej –h plane can be found from Eq
~27!.

2. Observations and constraints from absence of vacuum
Čerenkov effect

We can now consider the actual constraints observat
impose onj and h. The previous analysis shows that th
smallness ofm2/pmax

n determines the strength of the co
straint provided by the vacuum Cˇ erenkov effect, hence th
strongest constraint will be obtained by considering the hi
est energy observed for a given particle.

Electrons in particle accelerators are stable against
vacuum Čerenkov effect at energies up to 500 GeV, and
cosmic rays energies of;2 TeV have been detected@26,63#.
Even higher energies, in the range 502100 TeV, are neces
sary in order to consistently explain the peaks in the x-
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and TeV regions of the photon emission from superno
remnants such as SNR 1006 or the Crab Nebula@26,58,64#.
In particular for the supernova remnant SN 1006 a cl
identification of a synchrotron emission together with t
independent estimate of the magnetic field strength allo
one to infer that the electrons should have energies of ab
100 TeV @58,59#.6 These electrons propagate over distan
far longer than that required by the vacuum Cˇ erenkov effect
to decrease the electron energy below the threshold.7

For n52 we see from Eq.~18! that (h2j)&3310217

which can be compared with the limit (h2j)&5310213

obtained by Coleman and Glashow@17# using apmax of 500
GeV. The Čerenkov emission rate~cf. footnote III B! is fast
enough for such parameters thatDE;E over a distance
scale of centimeters. Forn>3 the emission rate is 1017 times
higher. For the cases ofn53 andn54 the corresponding
value ofm2/pmax

n is ;331023 and;431011 respectively.
We therefore obtain an interesting constraint for the cu
case but not for the quartic case, assuming that the Lor
violation is at the Planck scale.~We shall see in section
IV A 1 that one could get a good constraint even for then
54 case by considering the 1020 eV cosmic ray protons,
modulo some caveats that we shall discuss.! Figure 1 shows
the excluded region for the parametersj andh in the n53
case as determined by the conditions~23! and ~24!.

C. Photon decay:g\e¿eÀ

The spontaneous decay of a photon into an electr
positron pair is another reaction usually forbidden
energy–momentum conservation. As in the case of
vacuum Čerenkov effect, modifications of the dispersion r
lation allow this reaction to occur. By the threshold theore
~cf. Sec. III A!, we know that the final particles have parall
momenta, so that both lepton momenta are less than or e
to k. Thusxªk/p>1 in Eq.~14!, so thatu12xu5x21. It is
convenient to use the variableyª1/x5p/k, whose relevant
range is zero to one. In terms ofy, Eq. ~14! takes the form

m2

kn
5jy~12y!2hy~12y!@y(n21)1~12y!(n21)#.

~31!

6After this work was completed we found@60# that the synchro-
tron emission is sensitive to Lorentz violation, and in fact one c
not be certain about the existence of these 100 TeV electrons
positive h. However one can instead use the existence of 50 T
electrons inferred from the detection of 50 TeV photons produ
by inverse Compton scattering in the Crab nebula. This wo
weaken the constraint by just a factor of 2358.

7The competing energy loss by synchrotron radiation is irrelev
for this constraint. The rate of energy loss from a particle of ene
E due to the vacuum Cˇ erenkov effect goes like2e2E2, while that
from synchrotron emission goes like2e4B2E2/m4 ~using units
wherec5\51). For a magnetic field of about one micro Gau
~such as those involved in supernova remnants! the synchrotron
emission rate is 40 orders of magnitude smaller than the vac
Čerenkov rate.
1-8
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THRESHOLD EFFECTS AND PLANCK SCALE LORENTZ . . . PHYSICAL REVIEW D 67, 124011 ~2003!
The threshold corresponds to the maximum of the right h
side of Eq.~31! with respect toy. Note that the rhs is sym
metric abouty51/2, since the two leptons are kinematica
interchangeable, hence it is always stationary aty51/2.
However, this stationary point can be a maximum or a m
mum, depending on the values ofh and j. If it is a maxi-
mum the threshold momentum is given by

kth5F 2nm2

2(n22)j2h
G 1/n

. ~32!

In the special casej5h, which has been mostly studie
in the literature, it can be shown that the only stationa
points of Eq.~31! arey50,1/2,1. Given that the right han
side of Eq.~31! is always zero aty50,1 it follows that for
equal coefficients the threshold condition is always reali
with a symmetric distribution of the final momenta.

Contrary to relativistic intuition, and to what has be
assumed in all previous calculations as far as we know,
threshold doesnot always occur with the symmetric configu
ration. The reason is that whenh,0, the lepton energy
E(p) has negative curvatureE9(p),0 for sufficiently large
momentum ifn.2, unlike the usual Lorentz invariant cas
If the threshold lies within the negative curvature region
cannot occur with the symmetric configuration since the
ergy of the final state at fixed momentum could be lowe
by making the momentum of one particle smaller and o
larger by an equal amount. Forh,j,0, the threshold does
occur in the negative curvature region, hence it is asymm
ric.

The occurrence of the asymmetric threshold might se
especially surprising if we think, with relativistic habits, th
at threshold the electron and positron should be create

FIG. 1. Constraint from the absence of vacuum Cˇ erenkov effect
for n53. The filled region in the parameter space is the one
compatible with the existence of the;100 TeV electrons indirectly
detected via synchrotron emission from supernova remnants@58#.
The point where the vertical line crosses theh axis is h
5m2/(2pmax

3 );1.531023.
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rest in the center of mass frame. The error lies in a misle
ing application of the Lorentz transformation in the ca
where a definite preferred system exists. First, the cente
mass frame may not even be accessible if the photon ene
momentum vector is spacelike~i.e. subluminal dispersion!.
Second, even if we can boost to the center of mass fram
this frame the dispersion relation of the electron/positr
may not have its minimum energy at zero momentum. The
fore it is not always true that the final particles are produc
at rest in the center of mass frame.

We now examine the casesn52,3,4 individually.

1. Photon decay thresholds for nÄ2,3,4

In the casen52, Eq. ~31! takes the form

m2

k2
5~j2h!y~12y!. ~33!

For j2h,0 there is no threshold, while forj2h.0 there
is a lower threshold aty51/2. In this case one obtains th
threshold formula

kth5
2m

Aj2h
. ~34!

In the casen53, Eq. ~31! takes the form

m2

k3
5jy~12y!2hy~12y!@y21~12y!2#. ~35!

To determine the threshold we need to find the maximal v
ues of the rhs. The task of finding the maxima is simplifi
by introducing the new variablez5(2y21)2, so that y
5(11Az)/2, (12y)5(12Az)/2, and y(12y)5(12z)/4.
The relevant range ofz is @0,1#, wherez50 corresponds to
the symmetric configurationy51/2 andz51 corresponds to
y51.

In terms ofz, Eq. ~35! becomes

m2

k3
5

j

4
~12z!2

h

8
~12z2!. ~36!

The symmetric extremum aty51/2 corresponds toz50,
and there is one other~asymmetric! extremum atza5j/h.
One of the two extrema is a maximum and the other i
minimum. Since the second derivative with respect toz is
h/4, the one atza is a maximum8 if and only if h,0, and it
lies between zero and one in this case if and only ifh,j

8This does not also show that the extremum atz50 is a maxi-
mum, since the relation betweenz andy is not smooth there. In fact
d2/dy2516zd2/dz218 d/dz, so at z50 we have d2/dy2

58 d/dz. Using this we see that the symmetric solution is a ma
mum if and only ifj.0, so the asymmetric solution is the max
mum if and only ifj,0. This is the same condition ash,0, since
if za5j/h is greater than zero,j,0 if and only if h,0.

t

1-9
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,0. Note that in the special casej5h the asymmetric
threshold solution is removed and a threshold exists just
positive values ofh.

The value of the rhs of Eq.~36! at z50 is (2j2h)/8,
while at z5za it is 2(j2h)2/8h. We thus see that photo
decay is allowed only above the broken line in theh –j plane
given byj5h/2 in the quadrantj,h.0 and byj5h in the
quadrantj,h,0. Above this line, the threshold is given b

~a! kth5S 8m2

2j2h D 1/3

for j>0, ~37!

~b! kth5F28m2h

~j2h!2G 1/3

for h,j,0. ~38!

The detection of gamma rays with momenta up to so
kmax implies that the parameters must lie in thej2h plane
below the line corresponding to a threshold atkmax. This
translates into the following constraints for the parameterj
andh:

~a! j,
h

2
1

4m2

kmax
3

, ~b! j,h1A2
8m2h

kmax
3

. ~39!

In the casen54, Eq. ~31! can again be conveniently re
written in terms of the variablez introduced after Eq.~35!
above, yielding

m2

k4
5

j

4
~12z!2

h

16
~112z23z2!. ~40!

The asymmetric extremum here occurs atza5(2j1h)/3h.
This is again a maximum if and only ifh,0, and it lies
between zero and one in this case if and only ifh,j,
2h/2. Note that again in the special casej5h the asym-
metric threshold solution is removed and a threshold ex
just for positive values ofh.

The value of the rhs of Eq.~40! at z50 is (4j2h)/16,
while at z5za it is 2(j2h)2/12h. We thus see that photo
decay is allowed only above the broken line in theh –j plane
given byj5h/4 in the quadrantj,h.0 and byj5h in the
j,h,0. Above this line, the threshold is given by

~a! kth5S 16m2

4j2h D 1/4

for j>2h/2, ~41!

~b! kth5F212m2h

~j2h!2 G 1/4

for h,j,2h/2.

~42!

Again, given a maximal observed momentum for whi
gamma decay is not observed gives constraints on the pa
etersj andh,

~a! j,
h

4
1

4m2

kmax
4

, ~b! j,h1A2
12m2h

kmax
4

. ~43!
12401
r

e

ts

m-

2. Observations and constraints from absence of photon deca

We can now consider the constraint onj andh imposed
by the absence of photon decay in current observations
before, the smallness ofm2/kmax

n determines the strength o
the constraint, hence the strongest constraint will be obtai
by considering the highest energy photons observed, wh
are the 50 TeV gamma rays arriving on Earth from the C
nebula@61#. The rapid decay rate (G;E above threshold!
implies that in order to propagate at all, let alone to reach
from the Crab nebula, these photons must have an en
below the threshold. For the 50 TeV photons we ha
m2/kmax

n ;1014n244. For n52 and n53 this yields strong
constraints onj and h, however forn>4 this number is
;1012 so the constraints are not so interesting. The casn
52 has already been studied in@17,40#. Reference@40# also
uses 50 TeV, which from Eq.~34! yields the constraint (j
2h)&10216. Here we consider the casen53.

In the casen53, we use expressions~37! and~38! for the
threshold momenta to impose the condition that photon
cay be forbidden for photons belowkmax550 TeV. This de-
fines a broken line in thej-h plane below which the coeffi-
cients must lie:

~a! j,
h

2
10.08, ~b! j,h1A20.16h. ~44!

Constraint~a! applies forj.0 while ~b! applies forj,0.
The excluded region in the parameter space is shown in
2.

The joint constraints imposed by both vacuum Cˇ erenkov
and photon decay are shown in Fig. 3. We see that these
reactions are already enough for ruling out most of the
rameter space. Next we shall see that by taking into acco
also the process of photon annihilation this constraint can
further improved.

FIG. 2. Constraint from the absence of photon decay. The fi
region in the parameter space is the one excluded by the obs
tion of gamma rays of energies up to;50 TeV.
1-10
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D. Photon annihilation: gg\e¿eÀ

In standard QED two photons can annihilate to form
electron-positron pair. If one of the photons has energyv0,
the threshold for the reaction occurs in a head-on collis
with the second photon having the momentum~equivalently
energy! kLI5m2/v0. For kLI510 TeV ~which will be rel-
evant for the observational constraints! the soft photon
thresholdv0 is approximately 25 meV, corresponding to
wavelength of 50 microns.

In the presence of Lorentz violating dispersion relatio
the threshold for this process is in general altered, and
process can even be forbidden. Moreover, as noticed
Kluźniak @25#, in some cases there is an upper thresh
beyond which the process does not occur.9 In this section we
discuss how the thresholds depend on the Lorentz viola
parameters. We then discuss the observational conseque
and constraints that can be obtained using the absorptio
TeV gamma rays of extragalactic origin by the interveni
infrared ~IR! background.

The threshold equation for photon annihilation can be
tained by modifying our previous analysis of photon dec
The difference is that the initial state includes two photo
rather than one. We are interested in the case where on
the photons has low energy~IR!, hence for that photon the
modification in the dispersion relation can be neglected. T
threshold theorem~cf. Sec. III A! tells us that the threshold
configuration is a head-on collision. Denoting the IR phot
energy byv0, the total four-momentum of the initial stat

9As discussed below in Sec. III D 3, our results agree with th
of @25# only in certain limiting cases.

FIG. 3. The graph shows the combined observational constr
derived from the absence of vacuum Cˇ erenkov effect and gamm
decay. The horizontal shading identifies the region excluded
gamma decay, the vertical one by Cˇ erenkov. Although not visible
there is a tiny region of positivej andh allowed by present obser
vations, and there is a barely visible region of positivej and nega-
tive h. Also the diagonal is in the interior of the allowed region
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thus takes the form k4, in5„v(k)1v0 ,k2v0,0,0…
5:(v8,k8,0,0).

To adapt our previous calculation, we need only replack
by k85k2v0 and v(k) by v8(k8)5v(k81v0)1v0. Ex-
panding one getsv(k81v0)5k81v01(j/2)(k81v0)n21

1•••. Since v0!k, and the last term is already Planc
suppressed~or, if n52, suppressed by the small value ofj),
we can neglectv0 in that term. This yields the approxima
tion v8(k8)5k81(j8/2)(k8)(n21), wherej8 is defined by

j85j1
4v0

~k8!(n21)
. ~45!

The kinematic equation for photon annihilation is thus o
tained from that for photon decay~31! by the replacements
k→k8 on the lhs andj→j8 on the rhs. We can further ne
glect the difference betweenk8 and k on the lhs sincev0
!k, hence to a sufficiently good approximation we can u
the kinematic equation

05F~k,y!ª2
m2

kn
1S j1

4v0

k(n21)D y~12y!

2hy~12y!@y(n21)1~12y!(n21)#. ~46!

The variabley is defined byy5p/k, wherep is one of the
lepton momenta. Our analysis of the thresholds is based
Eq. ~46!.

As in the case of photon decay, the thresholds occur at
symmetric valuey51/2 only for certain ranges of the param
etersj andh. The analysis for photon annihilation is mor
complicated however since forn>3 the dependence of Eq
~46! on k andy does not separate, unlike in Eq.~31!. Thus it
is not simply a matter of finding the value ofy between zero
and unity for whichF(k,y) is maximum. Analyzing the
threshold structure is a rather lengthy and complicated p
cess, so we have placed the details in an Appendix.
analysis reveals a number of unexpected features that thr
olds can have in the presence of Lorentz violating dispers
with intricate dependence on the Lorentz violating para
eters. Here we summarize the results in the casesn52,3, and
apply them to obtain further observational constraints.

We obtain results valid for any value of the soft phot
energyv0 and ‘‘electron’’ massm by employing appropri-
ately scaled quantities:

b5k/kLI , h̃5h~m2(n21)/v0
n!, j̃5j~m2(n21)/v0

n!
~47!

wherekLI is the standard lower thresholdm2/v0 The basic
threshold structure will be given in terms of these variabl
For the case of most interest to us,n is 3 and m is the
electron mass. Forv0525 meV we then havej

5(v0
3/m4) j̃.2.3 j̃, and similarly forh.

It is worth noting that while we have been thinking ofv0
as fixed and determining the corresponding high ene
threshold, it can be viewed the other way around. The
rameterb can also be written asv0 /(m2/k). If now k is
considered fixed thenv0 is the modified soft photon thresh
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old and m2/k5vLI is the corresponding Lorentz invarian
threshold. Thereforeb has also the interpretationv0 /vLI ,
that is the factor by which the soft photon threshold is shif
at fixed hard photon energyk. This interpretation is valid for
lower thresholds only however. There is in factnever an
upper threshold for the soft photon at fixedk ~as long as
v0!k).

1. Photon annihilation thresholds for nÄ2

For n52 the threshold configuration is always the sy
metric one. The contour of thresholdb is given by the
straight line

j̃5h̃14
12b

b2
. ~48!

The j̃-intercept decreases monotonically from̀to 21 for
b,2, and increases monotonically from21 to 0 for b

.2. Hence the process is forbidden below the linej̃5h̃
21. The parameterb gives the lower threshold forb,2
and the upper threshold forb.2. If the lower threshold is
greater than unity, then the upper threshold exists an
given by b/(b21). The maximum lower thresholdb52
corresponds tok52kLI52m2/v0.

2. Lower threshold of photon annihilation for nÄ3

For n53 the threshold configuration is not always sym
metric in the outgoing momenta. Instead of straight para
lines for the contours of thresholdb we find a more compli-
cated structure. Figure 4 shows the regions in the param
plane where the threshold configuration is symmetric

FIG. 4. Regions where the lower threshold for photon annih
tion with n53 is determined by the symmetric configuration~light
gray region!, the asymmetric one~dark gray region! or the reaction
does not occur~white region!. The dotted line is the locus of point
where the contour of constantb<1.5 switches smoothly from the
asymmetric to the symmetric solution.
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asymmetric or does not exist at all, and a contour plot of
lower threshold is shown in Fig. 5.

The threshold can be symmetric only forb<1.5. The
symmetric part of the contour is given by the straight line

j̃5
h̃

2
1

4~12b!

b3
, ~49!

restricted to the region above the linej̃524/b2. Below this
line theb-contour switches to the asymmetric threshold, a
is given by

j̃5h̃2
4

b2
1A2

8h̃

b3
. ~50!

The joining point of the symmetric and asymmetric parts
theb-contour is at (h̃ join ,j̃ join)5(28/b3,24/b2). As b var-
ies from 0 to 1.5 these joining points trace out the cur
j̃ join52(2h̃)2/3. The asymmetric threshold contours forb
.1.5 terminate at the symmetricb51.5 contour, and accu
mulate above the diagonal asb→`. The precise degree o
asymmetry at threshold, i.e. the ratio of electron moment
to incoming hard photon momentum, is given byy5(1
6Aza)/2, whereza5( j̃14/b2)/h̃.

3. Upper threshold of photon annihilation for nÄ3

Upper thresholds exist forn53 only below the diagona
and between theb51.5 andb5` ~which gives the same
line asb51) symmetric contours~49!. For a givenb the
threshold is symmetric in the region above the li

- FIG. 5. Contours of constant lower thresholdb5const. Forb
<1.5 these correspond to symmetric configurations above the
ted line and asymmetric ones below. Forb.1.5 there are only
asymmetric lower thresholds and the contours terminate at the s

metric b51.5 contour. The end of the dotted line is at (h̃,j̃)
5(264/27,248/27), and theb51.5 contour meets the diagonal a

h̃5 j̃5232/27.
1-12



en
ic
y
ine
e

-
xi
er
at

la-

ra
y
tio

r

ro
l
re
es
ge

a
th

be
con-
in.
an-
he

ra-
can

ct
ract
to

orp-
at-
ies

at-
hift

BL
ar
rum

re
ila-
ar
-

in
ed

an

ht
rgies
-
he

of
f
at
of

ut
ab-

ob-
ing
s-
will
le,

-
ntz

tz-
of

sis
int

th

d
f t

THRESHOLD EFFECTS AND PLANCK SCALE LORENTZ . . . PHYSICAL REVIEW D 67, 124011 ~2003!
j̃524/b2 and asymmetric below, where the contour is giv
by the curve~50!. The regions of symmetric and asymmetr
upper thresholds forn53 are shown in Fig. 6. The boundar
of the lens shaped region next to the diagonal is determ
by the curvej̃ join52(2h̃)2/3 consisting of the points wher
the symmetric and asymmetric segments join. The bottom
the lens meets the diagonal ath̃5 j̃521 where the symmet
ric b52 line crosses, so asymmetric upper thresholds e
only for b.2. The lower boundary of the region of upp
thresholds is theb51.5 line, which meets the diagonal
h̃5 j̃5232/27.

The possibility of upper thresholds for photon annihi
tion has been previously discussed by Kluz´niak @25#, who
gave results for the valuesh50, j521, andh5j521 in
the n53 case. It seems that only the symmetric configu
tion was examined in@25#, hence his results cannot full
agree with ours in cases where the asymmetric configura
is important. For the caseh50, and negativej, our results
show that there is a symmetric upper threshold only foj̃

values above theb51.5 line, i.e. forj̃.216/27. Our upper
threshold agrees with that of@25# in the limit u j̃/4u
5ujm4/4v0

3u!1. The left hand side is unity forj521 and
v0.20 meV, hence our results agree approximately p
vided v0 is greater than about.40 meV. In the diagona
case, while our results for the symmetric configuration ag
in the same limit, we have seen that there is no upper thr
old since asymmetric configurations exist for arbitrarily lar
b.

4. Observations and constraints from absence of deviations
from standard photon annihilation

The Čerenkov and photon decay constraints leave open
infinite wedge-shaped region including the diagonal in

FIG. 6. Regions where the upper threshold is determined by
symmetric configuration~light gray region! or the asymmetric one
~dark gray region!. In the white region below the light gray an
below the diagonal the reaction never occurs, and in the rest o
white region there is a lower threshold but no upper threshold.
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lower left quadrant for the casen53. A constraint from
agreement with standard photon annihilation would
complementary to these and hence has the potential to
fine the allowed region to a small neighborhood of the orig
Such a constraint is provided by indirect observations of
nihilation of high energy gamma rays from blazars on t
cosmic background radiation~CBR!. Since there is presently
considerable uncertainty regarding both the background
diation and the nature of the sources, the constraint that
be extracted is not yet very precise however.

Another limitation of the present work arises from the fa
that each observed gamma ray has the opportunity to inte
with soft photons at any energy above the threshold, so
compare with observation one should compute the abs
tion using the Lorentz violating dispersion relation, integr
ing over all target frequencies. Such an investigation l
outside the scope of the present paper, so we shall only
tempt to roughly characterize how large a threshold s
might be compatible with current observations.

We now summarize the observational situation. The
Lac objects Mkn 421 and Mkn 501 are a type of blaz
emitting high energy gamma rays whose observed spect
reaches 17 TeV in the case of Mkn 421@65# and 24 TeV in
the case of Mkn 501@66#. The source power spectra a
reconstructed accounting for absorption via photon annih
tion on the intervening CBR, which ranges from the ne
infrared ~NIR, ;1 mm) to the cosmic microwave back
ground ~CMBR, ;1000mm!. Currently we have a good
knowledge of the NIR and CMBR but uncertainties rema
regarding the distribution in the intermediate, midinfrar
~;10 mm! and far infrared (100mm) regions~see e.g. Fig. 1
of @67# or the discussion in@21#!. Some models of the IR
background imply a source spectrum for Mkn 501 with
unexpected amount of radiation~a ‘‘pile-up’’ ! above 10 TeV
@9,67#. If such IR backgrounds are correct, the pile-up mig
be due to a process producing enhanced emission at ene
larger than 10 TeV@67#, or it might be explained by anoma
lously low absorption caused by an upward shift of t
threshold due to Lorentz violation@9,20,25–27#. However,
recent work@21,40# based on improved reconstructions
the far infrared background~FIRB! and on a new analysis o
the gamma ray flux from Mkn 501 supports the view th
current observations are consistent with the predictions
standard Lorentz invariant theory up to 20 TeV. Even witho
resolving the question of the pile-up, it seems well est
lished that some degree of photon absorption has been
served up to 20 TeV, which already provides an interest
constraint on Lorentz violation. Moreover, it is our impre
sion that the suggestions of an anomaly above 10 TeV
likely prove illusory as new observations are made availab
confirming the results of@21,40#.10 We can thus obtain ob
servational constraints from the requirement that the Lore
violation does not modify too strongly standard Loren
invariant thresholds for photon annihilation. The strength

10After this work was completed a further observational analy
appeared@68#. This allows the observational basis for the constra
discussed in this paper to be solidified@69#.
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the constraints depends of course on the ordern of the Lor-
entz deformation. The general threshold equation~A3! shows
that an order unity constraint onb translates into an orde
unity constraint onh̃ and j̃, which corresponds to an orde
v0

n/m2(n21) constraint onh andj. Since all studies seem t
agree that more or less standard Lorentz-invariant absorp
is occurring for gamma rays up to 10 TeV, we shall use
corresponding soft photon threshold ofv0525 meV ; 50
mm as a numerical benchmark. One then hasv0

2/m2

;10215 for n52, v0
3/m4;1 for n53, andv0

4/m6;1015 for
n54. Hence only then52 andn53 cases can provide in
teresting constraints. Note that in then53 case, which is of
most interest to us, the dependence onv0 is cubic, so for
example a constraint at 2v0 is eight times weaker than
constraint atv0, while one atv0/2 is eight times stronger
This means also that there could be strong deviations in
sorption for, say, 20 TeV gamma rays, and yet little deviat
for 10 TeV gamma rays, since the standard soft target thr
old m2/E is half as large for the 20 TeV gamma rays.

To formulate the constraints we begin by identifying t
contour in thej –h plane, for which the threshold is no
shifted away from the Lorentz-invariant value. Forn52 this
no-shift contour is given by the diagonalj5h ~correspond-
ing to equal speeds of light for electrons and photons!, which
is independent of the soft photon energyv0. For n53 the
contour is given by the joined symmetric and asymme
b51 contours~49! and ~50! converted to the unscaled pa
rameters,

j5
h

2
forh.28v0

3/m4 ~51!

j5h2
4v0

3

m4
1A2

8v0
3

m4
h otherwise. ~52!

The symmetric part is independent ofv0 but the joining
point and the asymmetric part are not.

Above the no-shift contour, Lorentz violationlowers the
threshold. Since the shift would be larger for higher ene
gamma rays this might, depending on the details of the
background spectrum, enhance the ‘‘pile-up’’ in the reco
structed source spectrum if the IR backgrounds of@9# are
used, or it might produce a pile-up where one did not oth
wise exist if the IR background of@21# is used. We thus
consider it unlikely that there is much downward shift of t
threshold. In any case, nearly all of the region above
no-shift line is already excluded by the photon decay a
Čerenkov constraints.

Below the no-shift contour, Lorentz violationraises the
threshold. We now consider the constraints this can yield
the casesn52 andn53.

n52 photon annihilation constraints.Constraints in the
n52 case have been previously examined in Ref.@40#, al-
though it was not realized there that the maximum up
shift is b52, beyond which the process does not occur
all. The b52 contour ~48! is a line of unit slope and
j̃ –intercept21 in the scaled parameters, hence unit slo
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andj –intercept2v0
2/m2;210215. As long as the 25 meV

photons annihilate at least with 20 TeV photons~whose nor-
mal threshold is 12.5 meV!, the parameters must lie abov
this line.

n53 photon annihilation constraints.For n53 the con-
tours of constant threshold in the scaled parametersh̃ and j̃
are shown in Fig. 5. The process does not occur for par
eters below a broken line consisting of the diagonal up
h̃5h3m4/v0

35232/27, and the line of slope 1/2 fo

greater h̃. If absorption atv0 is occurring for any hard
gamma ray, the parameters must lie above this broken
so in particular everything on and below the diagonal is
cluded forh̃,232/27. Forv0525 meV this corresponds to
h,22.3332/27'22.7. This is important, since it is a
strong constraint excluding most of the diagonal, which h
been preferred by some researchers@20,27#. It is likely that a
much stronger constraint holds however, restricting the low
threshold at 25 meV to be not more than some numbe
order unity times its usual value. We have indicated in Fig
the form of the region below the no-shift contour and abo
the shift-less-than-b contour forb equal to 10, 5, 2 and 1.5
A stronger constraint would not exclude more of the diag
nal, but it has the potential to chop off the infinite wedge
Fig. 3 at around the same place it excludes the diagonal

E. QED processes without thresholds

We now consider two QED effects that occur in the pre
ence of Lorentz violation without any threshold, velocity di

FIG. 7. The unfilled region indicates parameters allowed if
lower threshold for a soft photon of 25 meV is~a! not shifted down
and ~b! not shifted up by more than 1.5, 2, 5, 10, and infinity. T
upper line is the no-shift contour. No curvature due to the asy
metric solution is visible for this line because the junction point
defined in Eq.~51! is at h5220. The line for the existence of a
lower threshold is the lowest line. It is coincident with the symm
ric b51.5 line below the diagonal and with the~dashed! diagonal
below the crossing point. The curves stemming from theb51.5
contour are the asymmetric contours forb510,5,2, with lower val-
ues ofb corresponding to the curves with less slope.
1-14
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THRESHOLD EFFECTS AND PLANCK SCALE LORENTZ . . . PHYSICAL REVIEW D 67, 124011 ~2003!
persion of photons in vacuo and photon splitting. The form
will eventually provide competitive constraints onh and j
respectively, but the latter has too slow a rate to be imp
tant.

1. Velocity dispersion of photons

Gamma-ray bursts~GRB’s! are explosive extragalacti
events that release a large number of high energy pho
with a flux that varies rapidly in time. It was therefore rea
ized @24,70# that they can provide interesting constraints
possible observations of Planck scale suppressed Lor
violation in the dispersion relation for photons~a possibility
noted long ago in@71#!. The reason is that while propagatin
over such a long distance even tiny differences in group
locity could produce detectable time differences between
arrival at Earth of photons of different energy.

For photons with Lorentz breaking dispersion relations
ordern, j is related to the fractional variation in group v
locity by

j5
2

n21

Mn22

k1
n222k2

n22

Dc

c
. ~53!

An upper limit on the difference in arrival times of photon
from the same event provides an upper limit on the rela
speed difference, if one assumes there is no conspirac
different emission times cancelling different propagati
times. Together with the energies of the different photo
such observations provide a constraint onuju.

The strongest constraint available today comes from G
930131,11 a gamma ray burst at a distance of 260 Mpc t
emitted gamma rays from 50 keV to 80 MeV on a time sc
of milliseconds @74#. Schaefer@75# finds the upper limit
Dc/c,9.6310219 for photons of energyk1578.6 MeV, and
k2530 keV. This yields the constraintuju,122 for n53.
This is weaker than the constraint we have from photon
nihilation, hence time of flight data do not at prese
strengthen our constraints forn53. Forn54 dispersion the
bound on uju is on the order ofuju,1018, so we get no
interesting constraint forn.3. The situation forn53 will
be significantly improved in the future thanks to GLAST, t
gamma ray large area space telescope, which should be
to set limits of order unity onj @76#.

2. Photon splitting

The photon splitting processesg→2g and g→3g, etc.
do not occur in standard QED. Although there are cor
sponding Feynman diagrams~the triangle and box dia
grams!, their amplitudes vanish. In the presence of Lore
violation these processes are generally allowed whenj.0.
However, the effectiveness of this reaction in providing co
straints depends heavily on the decay rate. We now give

11Sarkar@72# has criticized the use of this particular gamma r
burst since this object has no measured redshift, and hence a
certain distance. Other bursts@70# or blazar flares@73# give some-
what weaker constraints.
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estimate of this rate, independent of the particular form
the Lorentz violating theory, which indicates that the ra
involves at least four Lorentz violating factors, so is app
ently too small to be relevant at observed photon energie

We carry out the analysis allowing for any terms in t
amplitude consistent with gauge and translation invarian
The particular form of Lorentz violation considered in th
paper also preserves rotation invariance in a preferred fra
however the following argument will not use that conditio
Since gauge invariance is preserved, the amplitude for
processg→Ng should arise from a term that is a scal
formed fromN factors of the electromagnetic field streng
Fab corresponding to the external photon legs. For each p
ton,Fab

(s);k[aeb] , whereka is the 4-momentum andeb is the
polarization vector.

In the Lorentz invariant case the equations of motion i
ply that ka is a null vector andkaea50. Energy-momentum
conservation then implies that these 4-momenta are all
allel, so being null they are orthogonal to each other and
all the polarization vectors. The rate thus vanishes for t
different reasons. First, since the momenta are necessari
parallel, the phase space has vanishing volume. Second
rate must be a scalar formed by contracting these four fi
strengths using only the metric. Any such contraction va
ishes since it must involve contractions of the momenta w
each other or with the polarizations. Hence the amplitu
vanishes. In the case of an odd number of photons, ano
reason for vanishing of the amplitude is Furry’s theore
which states that the sum over loops with an odd numbe
electron propagators vanishes.

If there is Lorentz violation then none of the above re
sons for a vanishing rate apply. First of all theN-odd ampli-
tudes are no more guaranteed to vanish. Indeed for s
ciently general implementations of Lorentz violation th
Furry theorem can be violated~see e.g. the discussion of th
Furry theorem and its violation in the extended QED@77#!.
Secondly, the contractions of the field strengths might
volve not just the metric but also a Lorentz violating tens
~for exampleuaub in the rotation invariant case, whereua is
the unit timelike vector specifying the preferred frame!. Fi-
nally, in the presence of Lorentz violation the photon fou
momenta are in general not null vectors hence they need
be parallel and they need not vanish upon contraction.~To
satisfy energy-momentum conservationj must be positive.!

In order for the phase space to not have vanishing v
ume, at least one of the 4-momenta must involve a Loren
violating factord5j(k/M )n22. This is not enough for the
amplitude to not vanish however. Forg→Ng with N53 or
4 the contraction of the 3 or 4 field strength tensorsFab

(s)

;k[aeb] using only the metric involves at least two vanis
ing contractions, and for largerN there are more. One o
those vanishing contractions can be rendered nonzero by
single Lorentz violating factor already invoked on an ext
nal photon momentum, but the other one requires either
other such factor, or a Lorentz violating tensor in the ope
tor whose matrix element is being computed. Such a ten
comes with some coefficient with dimensions determined
the dimension of the operator. We also use the symbold to
indicate this sort of Lorentz-violating factor.

un-
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JACOBSON, LIBERATI, AND MATTINGLY PHYSICAL REVIEW D 67, 124011 ~2003!
The possible contributions to the amplitude will therefo
be suppressed by at least two factors ofd. The rate goes like
the square of the amplitude, hence we infer that at ener
well above the electron mass the decay rate must behav
Ed4 or slower, whereE is the initial photon energy.~There is
an additional factor ofaN if we consider standard QED dia
grams for which each external photon leg comes with a f
tor of the electric charge in the amplitude.!

The lifetime is therefore at least of orderd24E21, which
for a photon of energy 50 TeV is 10229d24 seconds. Such 50
TeV photons arrive from the Crab nebula, about 1013 seconds
away, so the best constraint~i.e. if there is no further smal
parameter such asaN or 1/16p2 in the decay rate! we could
possibly get ond from photon splitting isd&10210. For n
52 this is not competitive with the other constraints alrea
obtained. For highern, each contribution arising from a
operator of dimension greater than 4 will be suppressed b
least one inverse power of the scaleM. For example, the
contributions fromn53 deformations to the dispersion rel
tion will yield d;jE/M . In this case the strongest concei
able constraint onj would be of orderj&104, and even this
is not competitive with the other constraints we have fou

F. Combined constraints

Having completed our discussion of photon–electron p
cesses we now turn to the determination of the global c
straints that can be derived from the combination of all
above results. The photon splitting and the time of flig
constraints are not as strict as those determined by the o
considered interactions, at least for quadratic and cubic
formations, although in the future time of flight constrain
may become competitive.

1. nÄ2

In the case of quadratic deviations only the differencej
2h is constrained. The vacuum Cˇ erenkov effect yieldsj
2h.210217, while photon decay provides the constra
j2h,10216. Together these confinej2h to a small neigh-
borhood of zero. The photon annihilation ‘‘likelihood re
gion’’ would just imposej2h&10215, which does not fur-
ther strengthen the constraint.

2. nÄ3

Putting together the constraints from the three photo
electron interactions previously considered we obtain a
markably small allowed region in theh –j plane~see Fig. 8!.

The photon decay and Cˇ erenkov constraints exclude th
horizontally and vertically filled regions respectively. Th
allowed region lies in the lower left quadrant, except for
exceedingly small sliver near the origin with 0,h&1023

and a small triangular region (20.16&h,0, 0,j&0.08) in
the upper left quadrant. The discussion of the photon ann
lation threshold in Sec. III D 4 indicates that, although
firm constraint can be given at present, the allowed reg
cannot lie too far from the corridor between the two rough
parallel diagonal lines. These lines indicate where the thre
old for the annihilation of a gamma ray with a 25 meV ph
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ton ranges from its standard value~upper diagonal line! to
not more than twice that value.

If future observations of the blazar fluxes and the IR ba
ground yield agreement with standard Lorentz invariant
nematics, the region allowed by the photon annihilation c
straint will be squeezed toward the upper line (kth'ks).

Time of flight constraints for high energy photons cu
rently constrainj to be less than;100 at best, but future
observations should allow such constraints to further nar
the allowed region towards the origin.

3. nÄ4

The case of quartic deviations is unfortunately just mild
constrained from the available observations. The order
magnitude allowed for the parameters is as small as 111

~from Čerenkov! for the electron-photon vertex interaction

IV. INTERACTIONS WITH PROTONS, NEUTRINOS, AND
MUONS

We have focused so far on effects involving just electro
and photons, in order to determine the strongest availa
combined constraints. We now briefly discuss some ot
interactions that are realizable with a violation of Loren
invariance, and which can now or in the future provide fu
ther constraints or observations of Lorentz violation.

A. Alternative vacuum Čerenkov effects: Protons, neutrinos
and muons

The former discussion of the vacuum Cˇ erenkov effect can
be applied also for any other particle that couples to photo

FIG. 8. Combined constraints on the photon and electron par
eters, for the casen53. The regions excluded by the photon dec
and Ĉerenkov constraints are lined horizontally and vertically
spectively. The region between the two diagonal lines is where
threshold for the annihilation of a gamma ray with a 25 meV pho
ranges from its standard value~upper diagonal line! to not more
than twice that value. The shaded patch is the part of the allo
region that falls between these gamma annihilation thresholds.
dashed line isj5h.
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TABLE II. Typical values for different particles for the actual or potential constraints from absence o
vacuum Čerenkov effect.

n e2 m2 p1

m &1 eV 0.511 MeV 105 MeV 938 MeV
pmax ;1 TeV–1020 eVa ;100 TeVb ;1 PeVc ;531019 eVd

m2/pmax
n

n52
n53
n54

;10224–10240 ;3310217 ;10214 ;4310222

;1028–10232 ;331023 ;1021 ;8310214

;108– 10224 ;331011 ;1012 ;231025

aLower value is Antarctic Muon and Neutrino Detector Array~AMANDA ! data; largest value is potentiall
observable UHE neutrinos.
bEnergy expected for electrons responsible for the creation of;50 TeV gamma rays via inverse Compto
scattering@26,58#.
cExpected energies to be detected for muons produced by cosmic neutrinos.
dDetected in~UHE! cosmic rays~UHECR!.
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using the same kinematic equations. Since the strength o
observational constraint is determined by the smallnes
the ratiom2/pmax

n , smaller masses or larger energies gen
ally lead to stronger constraints. However, in the case
neutral particles that couple to photons only through hig
multipole moments therate must also be considered. W
summarize in Table II the values of the quantitym2/pmax

n .

1. Protons

Very strong constraints can be obtained using the ul
high energy protons in cosmic rays, up to the GZK cutoff
531019 eV. The identity of these particles has been cal
into question by the candidate events beyond the GZK cu
as described in Sec. IV B. However, even if the highest
ergy events do not originate with protons, there is stro
evidence that protons up to the GZK cutoff do exist in co
mic rays@22#.12

The rate of vacuum Cˇ erenkov radiation from charged pa
ticles is irrelevant for the determination of constraints sinc
is very high. ~See Sec. III B 2.! For the parameter regio
where the threshold occurs with emission of a zero ene
photon, the proton can presumably be treated as a p
charge so the threshold relations previously obtained
electrons are directly applicable using the proton mass
place of the electron mass, and the parameterhp from the
proton dispersion relation in place ofhe . This region of
parameter space is described in Sec. III B.

For parameters where a hard photon is emitted at thr
old, the role of the partonic structure of the proton needs
be examined, which we have not done. It may turn out t
the threshold can be determined by the quark dispersion
lation rather than that of the proton. If so, it would be t
quark deformation parameterhq rather thanhp that is con-
strained by observations of nondecaying high energy p
tons, and one would need to use the quark mass and en
in the threshold relations. In this case the proton may
destroyed rather than just slowed by vacuum Cˇ erenkov ra-

12Note added in proof.A recent analysis@85# argues that there ar
insufficient statistics to establish the GZK cutoff at this time, hen
the existence of these protons cannot yet be regarded as establ
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diation, however that distinction is irrelevant for the determ
nation of constraints, since either way high energy proto
would not travel long distances.

In estimating constraints we ignore here the possible r
of partonic structure, and simply use the proton mass
energy in the threshold formulas derived in Sec. III B f
point particles, with the understanding that for hard emiss
thresholds the constrained parameter may behq rather than
hp , and the numbers may be off by a few orders of mag
tude since the quark mass and energy were not used.

Using the GZK cutoff (531019 eV! for the highest energy
protons we obtain the following constraints relating the p
rameterj in the photon dispersion relation andhp in the
proton dispersion relation. For a quadratic deformation of
dispersion relation (n52) the bound ishp2j,4310222.
For cubic deformations (n53) the constraints on paramete
space have the same form as represented in Fig. 1. In
case of the proton the quantitymp

2/pmax
3 is of order 10214

compared with 1023 in the case of 100 TeV electrons, whic
means that the boundaries of the allowed region are close
the j axis in the upper half plane and to the diagonal in t
lower half plane. However, the qualitative nature of the
lowed region is identical. A good constraint is even obtain
for the case of quartic (n54) deviations. As shown in Sec
III B 1, it is the quantity mp

2/(pmax
4 ) that determines the

strength of the constraint in this case. For 531019 eV pro-
tons this is approximately 1025, still much less than unity
and a much better figure than the 1011 obtained for the 100
TeV electron. Forn55 deviations the strength of the con
straint is determined bymp

2/(pmax
5 );103, hence one does no

obtain even order unity constraints on the coefficients.

2. Neutrinos

In the standard model the vacuum Cˇ erenkov reaction with
neutrinos, n→n1g, is not allowed due to energy
momentum conservation – whether or not the neutrinos
massive. If they are massive energy-momentum conserva
cannot be satisfied at all. If they are massless it can only
satisfied if all three particles are strictly parallel, yielding n
phase space for the reaction.~Since there is good evidenc
that neutrinos have mass, we will assume this for the res

e
hed.
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the discussion.! Energy-momentum conservation is the on
obstruction for this reaction, since although the neutrino
neutral there is a nonzero matrix element for the process
particular there are two channels: the charge radius inte
tion and, if massive, a magnetic moment interaction~see e.g.
@51#!. We therefore see that, as for charged leptons, Lore
violating dispersion relations can allow the reaction to h
pen.

In order for the neutrino Cˇ erenkov reaction to give stron
constraints on Lorentz violation two conditions must be s
isfied: ~1! the energies where Lorentz violating terms a
comparable to the neutrino mass term in the dispersion r
tion must be accessible to observation, and~2! the rate of the
reaction must be high enough so that it would significan
affect the propagation of observed neutrinos. The first c
dition is already met since the relevant energy where Lore
violation becomes important is 100 MeV~see Table I!, while
Super Kamiokande has detected neutrinos over 100 G
@78# and the AMANDA detector has seen neutrinos up to
few TeV @79#. The second condition is more problema
since both the charge radius and magnetic moment chan
are very strongly suppressed.

The best case for current observations would be us
AMANDA, since the neutrinos have the highest energy a
travel the diameter of the Earth after being produced in
atmosphere above the North Pole. We have not carried o
detailed analysis, but an estimate given below suggests
the Čerenkov rate is not high enough to produce interest
constraints with these neutrinos. The energy loss rate
pends strongly on the energy however, so atmospheric
neutrinos, which are likely to be detected by AMANDA o
IceCube~see e.g.@80#!, may provide constraints.~The same
experiments should detect PeV muons as secondary prod
of the neutrinos, which would also provide an interesti
constraint as seen in Table II.! Still higher energy neutrinos
up to perhaps 1020 eV, are expected either as cosmic r
primaries or as a byproduct of cosmic rays@10,81#. Such
high energy neutrinos could be detected by AMANDA@82#,
and they could be observed via horizontal or possibly
ward air showers using existing detectors like HiRes or
ture ones such as the Telescope Array@83,84#.

In Table II we summarize the typical constraints one c
expect from neutrinos in the above mentioned range of
ergies provided the rate is high enough. Remarkably,
combination of high energies and low mass could give
cosmological neutrinos (En@1 PeV! stringent constraints
(hn!1) for deviations up ton56.

A calculation of the neutrino vacuum Cˇ erenkov rate is
beyond the scope of this article but we provide here a ro
estimate that may provide some guidance in this probl
We saw before~Sec. III B! there are two types of Cˇ erenkov
thresholds depending on the values ofj andhn : the ‘‘soft’’
one which occurs with emission of a zero energy photon,
the ‘‘hard’’ one in which a photon with energy comparable
the incoming particle is emitted. The decay rate will be mu
greater in the hard threshold case, so we consider that h
~The soft threshold case may still be relevant well abo
threshold.!
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To show that the rate might be fast enough to provid
useful constraint it suffices to examine the charge radius
teraction. This occurs via the emission of a virtual W-bos
hence the amplitude goes likekk4

2/MW
2 , wherek is a small

numerical factor (;1026) coming from coupling constant
and integration measure,k4

2 is the square of the photon four
momentum, andMW is the W-boson mass. We thus estima
the rate for Cˇ erenkov emission from a neutrino of very hig
energyE to beG;(kk4

2/MW
2 )2En . ~The factor ofEn is de-

termined by the phase space integration, which does no
volve any Lorentz violating factors well above threshold!
With Lorentz violating dispersion of ordern we havek4

2

5jkn, hence the rate goes likeG;(kjkn/MW
2 )2En .13 Tak-

ing the photon energy to be of the same order as the neu
energy k;En , this gives a lifetime for emissiont
;j22(En /PeV)2(2n11)31026n286 seconds. If correct this
would be short enough to yield interesting constraints fon
53 using atmospheric PeV neutrinos travelling through
earth, since their transit time is of order 1022 s.

As a final remark, we note that the related process
photon decay to two neutrinos could also take place in
presence of Lorentz violation. This would yield strong co
straints onj and hn provided the rate is high enough. Th
above estimate suggests that for multi-TeV photons fr
cosmological sources the rate would indeed be high eno
for n52,3.

B. The GZK cutoff

The presence of the GZK cutoff on the ultrahigh ener
~UHE! proton spectrum is due to pion photoproductio
g p→p p0, as previously discussed in the Introduction. T
observation of this cutoff also gives constraints on the L
entz violating coefficients. Current data from the HiRe
Fly’s Eye and Yakutsk experiments strongly indicate that
GZK cutoff is present at a cosmic ray energy of 531019 eV
@22#. While AGASA reports a number of extra events beyo
the expected flux of high energy cosmic rays above 1020 eV,
below 1020 eV AGASA also shows evidence for the GZ
cutoff ~see e.g. Fig. 1 of@22#!. Unfortunately, the experimen
tal data are strongly affected by the uncertain energy calib
tion of each experiment. A systematic analysis of the d
allowing for various calibrations is outside the scope of t
work, so for now we assume that the published energy c
brations are correct.

We constrainhp ,hp by determining where the induce
modification of the cutoff would disagree with the data.~The
incoming photon has low energy and so no useful constra
on j are obtained.! The hp ,hp constraints are quite stron
~on the order of 10210 for n53) due to the high energy o
the reaction.

In the standard Lorentz invariant theory the threshold
ergy for pion production isEth5mp(2 mp1mp)/4v0, so a
photon with energyv0;1.3 meV is at threshold with the

13Note that we cannot constrainj as much as the threshold woul
indicate, since for extremely smallj the decay rate eventually get
too small.
1-18
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THRESHOLD EFFECTS AND PLANCK SCALE LORENTZ . . . PHYSICAL REVIEW D 67, 124011 ~2003!
proton at the GZK energy. In order to give a constraint
Lorentz violations we consider raising or lowering the UH
proton at threshold with the samev0. This is equivalent to
changing the GZK cutoff as we are modifying the UHE pr
ton energy that interacts with the relevant CMBR photo
responsible for the Lorentz invariant GZK effect.

Examination of the data plot in Fig. 2 of Ref.@22# reveals
that if the cutoff were shifted via a Lorentz violating effe
down to 231019 eV or up to 731019 eV then the theoretica
predictions would no longer agree with the data at abov
2s confidence level. This energy range therefore provi
constraints onhp ,hp . From the threshold theorems of@62#
we again know that in the threshold configuration where
GZK reaction begins to occur the incoming proton and p
ton collide head on and the outgoing proton and p
3-momenta are parallel. Energy-momentum conservatio
this configuration and the dispersion relations give an eq
tion similar to Eq.~46! for photon annihilation,

05F~p,x!ª2
mp

2

pn
~12x!22

mp
2

pn
x

1S hp1
4v0

p(n21)D x~12x!

2hpx~12x!Fx(n21)1
hp

hp
~12x!(n21)G , ~54!

wherex5q/p, and p and q are the initial and final proton
3-momenta.

For n52 the threshold analysis has already been done
Coleman and Glashow@17# leading to a constrainthp2hp

,5310224 @v/v̄#2 for a target photonv, where v̄
5kTCMB50.235 meV.

For n53, the presence of the pion in this equation co
plicates the analysis as there is an additional mass term

FIG. 9. The range ofhp ,hp for n53 dispersion modifications
where the GZK cutoff is between 231019 eV and 731019 eV. hp

andhp are in multiples of 10210.
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the final particles are not interchangeable. The case of e
coefficients (hp5hp) has been studied analytically in@18–
20,26,27# and numerically in@29#. Here we numerically find
the thresholds for the GZK reaction allowing for unequ
coefficients in the casen53. The region in thehp ,hp plane
where the thresholds are in the allowed range discus
above is shown in Fig. 9, in which the axes are in multip
of 10210.

We turn now to the question of the extra AGASA even
above 1020 eV. The AGASA data are sparse in this ener
range, and there is not a large, precise data set from o
experiments with which AGASA disagrees. The uncertaint
in all experiments are large enough that a modified theor
cal spectrum could possibly agree with all experiments at
1s level. One cannot therefore simply disregard the pos
bility that the flux above 1020 eV is in fact higher than the
standard theoretical prediction.

Previous authors have suggested that the AGASA ev
above the GZK cutoff could be explained by an upward sh
of the GZK cutoff induced by Lorentz violation@17–
20,26,29#, however this seems incompatible with curre
data since the cutoff is seen. Another, more subtle possib
is that these events are related to the existence of anupper
threshold. We have checked numerically that no up
threshold exists below 1020 eV within the allowed region of
Fig. 9. Nevertheless, the phase space for a reaction begi
close up before the upper threshold is reached. The reduc
in phase space would in turn reduce the rate of the G
reaction leading to a higher than expected count of event
high energies. If the lower threshold were dramatically mo
fied whenever there is an upper threshold then this scen
could not explain the data. However, this is not the cas
there are choices ofhp ,hp such that an upper threshol
exists and the lower threshold is only slightly modifie
Since the lower threshold modifications can be small,

FIG. 10. The range ofhp ,hp for n53 dispersion modifications
where the GZK cutoff is between 231019 eV and 731019 eV and
the upper threshold exists below 1021 eV. hp ,hp are in multiples of
10210. Note that this region does not include the origin, as there
no upper threshold in the Lorentz invariant case.
1-19
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experimental signature of the GZK cutoff could remain u
changed near 531019 eV while the intensity of the spectrum
at high energies increased from its Lorentz invariant pred
tion. This scenario could perhaps explain the AGASA d
and be compatible with other experiments if the upp
threshold is low enough that there is a significant ph
space reduction just above 1020 eV. The range ofhp ,hp for
which this effect could occur is given in Fig. 10. There w
consider the range of parameters for which the lower thre
old still lies between 231019 eV and 731019 eV but an
upper threshold exists below 1021 eV ~so that the induced
reduction in phase space could affect the AGASA data!.

We have not considered the constraints that can be
tained from the GZK cutoff in the casen54 but it is clear
that they are interesting in this case as well, since 1/pmax
5M /pmax523108. The n53 constraints are of orde
10210, hence then54 ones are of order 1022.

C. Neutron stability –proton instability

If there are different dispersion relations for protons, ne
trons, positrons, and neutrinos then protons may be unst
and decay to neutrons at sufficiently high energies. Fon
52, Coleman and Glashow@17# have shown this explicitly.
If n.2 then the analysis becomes more complicated,
there exist parameters for which the neutron is stable and
proton decays. For example, consider a neutron w
hn521 and n53 dispersion relation, and an unmodifie
proton, electron, and neutrino. At momentapn.mn

2/3 the
neutron energy-momentum vector becomes spacelike. S
the energy momentum vectors of the other particles are
timelike it is impossible to satisfy energy momentum cons
vation hence neutron decay does not occur above this en
This opens the possibility that ultrahigh energy cosmic r
are neutrons rather than protons, in which case the G
cutoff for these cosmic rays is irrelevant since neutrons
not interact strongly with CMBR photons. The presence
the observed cutoff can thus be used to constrain the pa
eters further, and one could also contemplate the possib
that the AGASA events above the GZK cutoff are pres
because the neutron becomes stable just above the cuto

V. COMBINED CONSTRAINTS FOR A UNIVERSAL
LORENTZ BREAKING DISPERSION RELATION

Although we have considered so far the case of differ
Lorentz violating parametersha for different particles, it
may be that the underlying quantum gravity physics selec
universal deformation parameterh. This indeed was the an
satz considered in most of the previous literature. We the
fore consider now this special case withn53 deformations.

We start by considering the photon-electron interactio
From Fig. 1 and Eq.~23! we see that the Cˇ erenkov effect
limits the available values on the diagonal to a semi-infin
line with h,m2/2pmax

3 . This corresponds numerically toh
&10214 if we consider the constraint provided by the obs
vation of ultrahigh energy protons in cosmic rays. The ana
sis of photon decay shows that the permitted values on
diagonal j5h are restricted to the semi-infinite lineh
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,8m2/kmax
3 ;831022 ~using the observation of 50 TeV

gamma rays from the Crab nebula!. The observation of pho-
ton annihilation provides, as previously discussed, a m
uncertain constraint. Nevertheless for our purposes it
enough to take into account that some absorption is dete
for gamma rays at least up to 10 TeV. We can then take
definite constraint the line for the existence of a lower thre
old as shown in Fig. 5. This line meets the diagonal ath̃
5232/27. The problem is now to decide for whichv0 we
are sufficiently confident the photon annihilation still tak
place. As a reference value we take here again thev0525
meV photon previously considered. In this case the region
existence of a lower threshold for the photon annihilati
limits the value of h to the semi-infinite rangeh
.22.33~32/27!'22.7.

If the GZK cutoff is confirmed, that would establish wit
certainty that at least some of the UHE cosmic rays are
deed protons. Moreover it would also provide a correspo
ingly strong constraint on negative values onh. If the GZK
cutoff is within order unity of its Lorentz invariant value,h
is constrained to beuhu<10214. ~Note that this constraint on
h is so strong as to exclude the region of upper threshold
the GZK process shown in Figure 10.! The upper bound
might be further pushed toward zero if one takes into
count the Cˇ erenkov effect of high energy neutrinos~see
Table II!.

VI. DISCUSSION

In this paper we have performed a systematic analysi
the effects of Lorentz violating dispersion on particle rea
tions, allowing for unequal deformation parameters for d
ferent particles. We have analyzed the threshold kinema
and combined the observational constraints where poss
Even when suppressed by the inverse Planck mass, such
entz violation can lead to radically new behavior in the
nematics of particle interactions at much lower energies.
actions previously forbidden can be allowed, low
thresholds can be shifted and upper thresholds can be in
duced. The presence of upper thresholds is a feature of
entz breaking physics that is not present in Lorentz invari
physics and which can be relevant for observatio
constraints.14 Furthermore, we have found that for intera
tions with identical final particles, the final momenta can
distributed asymmetrically at threshold. While this is
straightforward consequence of the kinematics, it has b
previously overlooked in the literature, probably because
alien to Lorentz invariant physics.

Using these kinematical results, we have seen that a c
servative interpretation of observations puts strong c
straints on the coefficientsh andj of orderE/MP modifica-
tions to the electron and photon dispersion relations. T
allowed region includesj5h521, which has been a focu
of previous work@20,25,26#. The negative quadrant has mo
of the allowed parameter range. Note that in this quadran
group velocities are less than the low energy speed of lig

14More complex dispersion relations can lead to multiple thre
olds @62# which could have further observational effects.
1-20
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For modifications of order (E/MP)
2 there are no significan

constraints in the electron-photon sector derivable from c
rent observations, due to the fact that the energies of
served particles are too low. However reactions such as
ton Čerenkov~in vacuo! or pion production by cosmic rays
for which we have data at much higher energies, can prov
good constraints for (E/MP)

2 modifications ~although for
different particle deformation parameters!. Ultrahigh energy
cosmological neutrinos may also provide good Cˇ erenkov
constraints at this or even higher orders, since the neut
mass is much smaller than that of any other particle. T
interaction amplitudes are very suppressed however, so
necessary to accurately calculate the rate and compare it
the travel time of the neutrino.

There are a number of ways to improve the constraints
O(E/MP) modifications from electron-photon interaction
Higher energy electrons would not help much since the Cˇ er-
enkov constraint is already strong, while finding higher e
ergy undecayed photons would squeeze the allowed re
onto the linej5h of Fig. 8. To further shrink the allowed
segment of this line would require improved knowledge
the infrared background and a reconstruction of the sou
spectrum from the observed gamma rays in the presenc
Lorentz violation. Also, the constraint from time of fligh
measurement may become competitive using improved
tectors.

Other constraints may be provided by additional inter
tions not considered here. For example, a possible up
threshold fore1e2→2g cannot provide a competitive con
straint in astrophysical observations since there are other
cesses by which observed high energy photons can be
duced. However, if future electron accelerators can re
energies above 10 TeV then one can expect to get a g
constraint from this reaction. In addition there may be ot
reactions for which upper thresholds can produce useful c
straints at or near currently observed energies. Reaction
volving more than two types of particles, such asn
→e2W1, could also give constraints. It may be possible t
by considering a number of such reactions a multidim
sional parameter space can be usefully constrained.

The idea motivating our work is that Lorentz violatio
may be a consequence of quantum gravity, in which case
natural scale for the Lorentz violation is the Planck scale
as in braneworld scenarios, the quantum gravity scale w
to be around a TeV, then the natural scale for Lorentz vio
tion induced by quantum gravity would be the TeV sca
Clearly, the only way such Lorentz violation could be com
patible with observations is if it were extremely suppress
compared with this natural scale. This suggests that ei
TeV scale quantum gravity is wrong, or it does not viola
4D-Lorentz invariance.

In conclusion, theabsenceof anomalous observation
provides stringent constraints on the possibility of Lore
violation originating at the Planck scale. This in turn giv
important information as to the viability of quantum gravi
theories that predict 4D Lorentz violation. We can exp
that, as better data at higher energies become available,
stronger constraints will be imposed or, alternatively, po
tive signatures of Lorentz violation may be found. Eith
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way, it is clear that a useful tool for the phenomenologic
investigation of quantum gravity is now at hand.
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APPENDIX: PHOTON ANNIHILATION THRESHOLDS

In this appendix we work out the lower and upper thres
olds for the processgg→e1e2 as a function of the Lorentz
violating parametersh andj. Our starting point is the kine-
matic equation~46! derived in Sec. III D:

05F~k,y!ª2
m2

kn
1S j1

4v0

k(n21)D y~12y!

2hy~12y!@y(n21)1~12y!(n21)#. ~A1!

Here m is the electron mass,k is the magnitude of the in-
coming hard photon momentum,v0 is the soft photon en-
ergy, y5p/k, wherep is the magnitude of the electron~or
positron! momentum, and the threshold configuration of a
tiparallel incoming photons and parallel outgoing electro
positron pair has been imposed. This equation follows fr
~i! energy-momentum conservation,~ii ! the dispersion rela-
tions for the particles, and~iii ! the threshold configuration
To find the lower and upper threshold for given values ofh
and j we must determine the minimal or maximalk for
which the reaction can occur. According to the thresh
theorem~cf. Sec. III A! thesek values always occur with
what we just called the threshold configuration, hence
must determine the minimal or maximalk for which there is
a solution (k,y) to the kinematic equation~A1! with y in the
range@0,1#. In the Lorentz invariant case the threshold a
ways occurs with the symmetric configurationy51/2, how-
ever in the Lorentz-violating case this is not always true.

In order to derive results applicable to any value of t
soft photon energyv0 and ‘‘electron’’ massm, we introduce
scaled variables

b5k/kLI , h̃5h~m2(n21)/v0
n!, j̃5j~m2(n21)/v0

n!

~A2!

wherekLI is the standard lower thresholdm2/v0. In terms of
these scaled variables the equationm22knF(k,y)50 takes
the form

G~b,y!5an~y!bn1g~y!b2150, ~A3!

where

an~y!5y~12y!$j̃2h̃@yn211~12y!n21#% ~A4!

and
1-21



io

f-

,

s
rr
e
.
a
fo
3

y

cy

m
if
in

-

l

d

r

ve

for

y

-
s
ach
the

r

lso

ven
lly
per

bil-
on
gy.

JACOBSON, LIBERATI, AND MATTINGLY PHYSICAL REVIEW D 67, 124011 ~2003!
g~y!54y~12y!. ~A5!

Equation~A3! is a generalization of those derived by Alois
et al. @27# for the specific cases ofn53,4 with purely sym-
metric configurations (y51/2) and equal deformation coe
ficients (j̃5h̃).

Figure 11 shows the general behavior ofG(b,y) ~A3! for
any fixedy @and therefore fixedg(y)] and different values of
a. From the plot we see that for anyy there are either one
two, or zero solutions to the kinematic equation forb. If
there are two solutions, of course only the lower one i
candidate for the lower threshold. The upper one can co
spond to anupper threshold, that is, to the highest availabl
value of b for which the reaction is kinematically allowed
To our knowledge, the possibility of upper thresholds h
been overlooked in all of the previous literature except
Kluźniak @25# ~see the discussion at the end of Sec. III D!.

For eachy there is a maximal value of the lower rootb
which occurs whenan is such that the curve described b
Eq. ~A3! is tangent to theb axis. This occurs for

an
tang52gn

~n21!(n21)

nn
, ~A6!

and, at this tangency point,

b tang5g21
n

n21
. ~A7!

If b is to be a lower threshold it must lie below this tangen
point.

Given values forh̃ and j̃, Eq. ~A3! implicitly defines
zero, one, or two~real positive! solutions forb as a function
of y. A lower threshold corresponds to the global minimu
of b. Our strategy is to first find the local minima and,
there is more than one, determine which is the global m
mum.

FIG. 11. Behavior ofG(b,y) ~A3! for fixed y and different
values of alpha.
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A local minimum ofb(y) is characterized byby50 and
byy.0, where the subscripty denotes derivative with re
spect toy. To find the corresponding conditions onG we use
the fact thatG„b(y),y… is identically zero, hence its tota
derivative with respect toy vanishes:Gbby1Gy50, where
the subscripts onG denote partial derivatives. The secon
total derivative ofG„b(y),y… with respect toy also vanishes.
At a stationary point whereby50, this yieldsGbbyy1Gyy
50. Thus the conditions forb(y) to be local minimum are

by52Gy /Gb50 and byy52Gyy /Gb.0.
~A8!

It is clear from Fig. 11 thatGb is always positive at the lowe
root of G50, and vanishes only at the tangency value ofa.
Since only the lower root can be a lower threshold, we ha
two necessary conditions to be a lower threshold:

Gb.0 and Gyy,0. ~A9!

We now use these considerations to find the thresholds
n52,3.

1. Photon annihilation thresholds for nÄ2

For n52, Eq. ~A3! reduces to

G5y~12y!@~ j̃2h̃ !b214b#2150. ~A10!

There is only one extremum, aty51/2. Substitutingy51/2
into Eq. ~A10! yields

j̃5h̃14
12b

b2
. ~A11!

The j̃-intercept,j̃054(12b)/b2, decreases monotonicall
for b,b tang and increases monotonically forb.b tang:
dj̃0 /db5(b22)(4/b3).

The values ofb less thanb tang52 are candidates for a
lower threshold. The contours~A11! for b,2 are parallel
straight lines of unit slope, whosej̃-intercept goes monotoni
cally from ` to 21 asb goes from 0 to 2. Since these line
do not cross there is only one candidate threshold for e
pair (h̃,j̃), hence these lines indeed give the contours of
lower threshold. The reaction is forbidden below the linej̃

5h̃21. The highest lower threshold is given byk52kLI
52m2/v0.

The values ofb greater thanb tang52 are candidates fo
upper thresholds since they are local maxima ofb among the
threshold configurations. The contours for these are a
given by the straight lines~A11!, with j̃-intercept that goes
monotonically from21 to 0 asb goes from 2 to`. No
other candidate for the upper threshold exists at a gi
value of j̃,h̃, so to check whether these contours actua
represent upper thresholds we need only verify that an up
threshold exists at all. That is, we must rule out the possi
ity that there are configurations for which the annihilati
process occurs with arbitrarily large incoming photon ener
To do this we examine the limit of largek. Then the soft
1-22
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photon is irrelevant, and the question is the same as whe
an arbitrarily high energy photon can decay to an electr
positron pair. We already determined in the section on p
ton decay that it occurs only above the diagonal, i.e. foj̃

.h̃. Hence the process does not occur at arbitrarily la
energy below the diagonal, which is where all the candid
upper thresholds lie. Thus these candidates are indee
upper thresholds.

2. Photon annihilation thresholds for nÄ3

Since the two final particles are interchangeable Eq.~A3!
is symmetric abouty51/2. For highern we can reduce the
order of this equation by introducing the variablez5(2y
21)2 that also has this symmetry, as we did for the case
photon decay in Sec. III C. The physically relevant range
z is 0<z<1. With this change of variables forn53, Eq.
~A3! can be written as

G5
b3

4
@~ j̃14/b2!~12z!2~ h̃/2!~12z2!#2150.

~A12!

There are now two extrema, one atz50 which corresponds
to the usual symmetricy51/2 case, and the other whe
Gz50, i.e. at

za5
j̃14/b2

h̃
, ~A13!

which corresponds to an asymmetric configuration in wh
the outgoing particles have different momenta.

The solution of Eq.~A12! for j̃ in the symmetric case
(z50) with b5bs yields

j̃5
h̃

2
1

4~12bs!

bs
3

. ~A14!

The j̃-intercept,j̃054(12b)/b3, decreases monotonicall
for b,b tang51.5 and increases monotonically forb.b tang

dj̃0 /db5(b21.5)(8/b4). Only values ofb less than the
tangency value 1.5 are candidates for a symmetric lo
threshold, while values greater than 1.5 are candidates f
symmetric upper threshold.

The symmetric case can only be a lower or upper thre
old when the inequalityj̃.24/b2 holds. We can see this b
imposing the conditions for a local minimum or local max
mum respectively:byy.0 whenb,1.5 or byy,0 whenb
.1.5. SinceGb.0 in the first case andGb,0 in the second
case~as can be seen from Fig. 11!, Eq. ~A9! shows that both
cases requireGyy,0. To evaluateGyy we note that

d2/dy2516z~d2/dz2!18~d/dz!, ~A15!

hence Gyy
(s)58Gz

(s)528b(11 j̃b2/4), which is negative

only if j̃.24/b2.
The solution of Eq.~A12! in the asymmetric case (z

5za) with b5ba yields
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j̃5h̃2
4

ba
2

1A2
8h̃

ba
3
. ~A16!

The asymmetric case only exists whenh̃,0, and only the
positive square root is physically relevant, since Eq.~A13!

givesza512A28/h̃b3 andz must be less than unity. Also
za must be positive, so the asymmetric case is only relev
when j̃,24/b2.

The asymmetric stationary point hasGyy
(a)516zaGzz

(a)

54zah̃b3,0, hence it is a local minimum if and only i
Gb.0. This corresponds to the inequalityj̃.h̃14/3b2. It
is a local maximum when the opposite inequality holds. F
b,1.5 the asymmetric curve represents a local minim
everywhere since it is abovej̃5h̃14/3b2 everywhere in the
physical regionj̃,24/b2. Forb.1.5 the asymmetric curve
crosses belowj̃5h̃14/3b2 while still in the physical re-
gion, where it represents a local maximum.

The symmetric line~A14! and asymmetric curve~A16!

meet at (h̃,j̃)5(28/b3,24/b2) and are tangent there, a
shown in Fig. 12. Above this meeting point only the sym
metric solution is a candidate threshold, and below this po
only the asymmetric solution is. Asb varies, the curve traced
out by these meeting points is given by

j̃ join52~2h̃ !2/3. ~A17!

We shall use the name ‘‘b-curve’’ for the joined curve that is
the symmetric line above and the asymmetric curve be
j̃524/b2.

FIG. 12. The~straight! symmetric~A14! and~curved! asymmet-
ric ~A16! contours for a fixed value ofb. The unphysical part of the
asymmetric curve is dotted, and the part of the symmetric line
is not a local maximum or minimum ofb is dashed. The ‘‘b-curve’’
is the two joined solid segments of these contours, and indic
points whereb is a candidate for the lower or upper threshold. T

joining point is (h̃,j̃)5(28/b3,24/b2).
1-23
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FIG. 13. The asymmetric
curve corresponds to a local max
mum for all points on the segmen
from A ~where it crosses the line

j̃5h̃14/3b2) to B ~where it

crossesj̃524/b2 and becomes
unphysical.! It is the global maxi-
mum only in the region below the
diagonal, which it crosses atD. If
b,2, D lies above B so the
asymmetric configuration is neve
a global maximum. Ifb.2 then
the asymmetric configuration is
the global maximum for every
point on the segment betweenD
andB.
he

b

E
r

t
te

he

e
hi

e

es

n
-
a

th
th
ol

.

ur

ton
line

old.
ny-

sec-
r
im-
re-

only

ec-
of
hold

the
-
hus
ns
the
ic
eets

d in
he
e-

vant
a. Lower threshold for photon annihilation, nÄ3

To find the contours of constant lower threshold in t
h̃-j̃ plane we proceed as follows. First we choose a value
b,1.5, and consider the correspondingb-curve. The points
on this curve are the only candidates for the threshold to
b. To determine if the threshold actually isb at a given point
we must determine whether or not there is a solution to
~A12! with a smaller value b, at the same point. In othe
words, we must determine if ab,-curve could cross the
original b-curve. In fact it cannot. Theb,-curve starts out
above the b-curve at h̃50 @since (12b,)/b,

3 .(1
2b)/b3]. In the symmetric sections the slopes are bo
equal to 1/2. In the asymmetric section the slope compu
from Eq. ~A16! is dj̃/db5124(28h̃b3)21/2, which is al-
ways greater than 1/2 in the region belowj524/b2 and is
greater for largerb at fixed h̃. Hence theb,-curve is ev-
erywhere above theb-curve, so the curves never cross. T
b-curves withb,1.5 thus give the lower threshold.

Now assume thatb is greater than 1.5, so that only th
asymmetric configuration can be a lower threshold. In t
case there areb,-curves with smaller values ofb, that
cross theb-curve. In particular, the asymmetric part of th
b-curve crosses the symmetricb51.5 line from below and
then goes on to cross lines of yet smallerb above that before
leaving the local minimum region. Thusb cannot be the
global minimum above the symmetricb51.5 line, even
though b remains a local minimum up to when it cross
below the linej̃5h̃14/3b2.

The only remaining question is whether the differe
asymmetricb-curves forb.1.5 can cross below the sym
metric b51.5 line. In fact they cannot. It can be shown th
the terminus on theb51.5 line moves to larger values ofh̃
asb goes from 1.5 tò . ~See Fig. 5.! Since the slope of the
asymmetricb-curves increases withb ~as discussed two
paragraphs above! in the region below the symmetricb
51.5 line, the curves for differentb do not cross.

In summary, we have shown that the regions where
symmetric and asymmetric lower thresholds exist take
form shown in Fig. 4. The contour lines of constant thresh
are the straight lines~A16! of slope 1/2 in the symmetric
12401
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region, and are given by Eq.~A16! in the asymmetric region
These contours are shown in Fig. 5.

b. Upper threshold for photon annihilation, nÄ3

We now turn to an analysis of the upper thresholds. O

first step is to ascertain in which region of theh̃ –j̃ plane an
upper threshold exists. As discussed in then52 section, this
can be done by examining the limit of largek, in which the
annihilation process becomes indistinguishable from pho
decay. The decay process is forbidden below the broken
given byj̃5h̃/2 for 5h̃.0 andj̃5h̃ for h,0. Above this
broken line there is a lower threshold and no upper thresh
Thus an upper threshold exists below this broken line a
where a lower threshold exists.15

The candidates for upper threshold contours are the
tions of b-curves withb.1.5 that satisfy the conditions fo
being a local maximum. On the symmetric segment this
poses no restriction, but on the asymmetric segment it
quires that the curve lie below the linej̃5h̃14/3b2. On the
other hand, we just argued that an upper threshold exists
below the diagonal for negativeh, which is a more restric-
tive condition. Moreover, it can be checked that these s
tions of theb-curves do not cross anywhere in the region
upper thresholds, hence they are indeed the upper thres
contours in that region. Only forb.2 does the asymmetric
section have a segment below the diagonal before leaving
physical regionj̃,24/b2, as illustrated in Fig. 13. The re
gions of symmetric and asymmetric upper thresholds t
take the form shown in Fig. 6. The boundary of the le
shaped region next to the diagonal is determined by
curve ~A17! consisting of the points where the symmetr
and asymmetric segments join. The bottom of the lens m
the diagonal at theb52 line.

15This analysis was carried out using the truncation discusse
Sec. III A. At very high energies or at very large values of t
Lorentz violating parameters there will be deviations from this b
havior, but for practical purposes these deviations are not rele
for our constraints.
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