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We present a procedure that allows the construction of the metric perturbations and electromagnetic four-
potential, for gravitational and electromagnetic perturbations produced by sources in Kerr spacetime. This may
include, for example, the perturbations produced by a point particle or an extended object moving in orbit
around a Kerr black hole. The construction is carried out in the frequency domain. Previously, Chrzanowski
derived the vacuum metric perturbations and electromagnetic four-potential by applying a differential operator
to a certain potentia’. Here we construc# for inhomogeneous perturbations, thereby allowing the appli-
cation of Chrzanowski’s method. We address this problem in two stages: First, for vacuum perturb&tions
pure gravitational or electromagnetic wayese construct the potential from the modes of the Weyl scajgrs
or ¢g. Second, for perturbations produced by sources, we exfiressterms of the mode functions of the
source, i.e. the energy-momentum ten$gy, or the electromagnetic current vectdy.
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I. INTRODUCTION solution, but yet it represents @hysically differentgravita-
tional perturbation. Let us rephrase this in a more explicit
The gravitational perturbations of Kerr black hol@&Hs) ~ manner: Consider a vacuum gravitational perturbation char-
are fully described by the metric perturbatioiP) h, ;. The ~ acterized by a particular functios,. Then, there exists a
latter satisfies the linearized Einstein equation, which is a setertain function, from whichh,s can be constructed by
of coupled, linear, partial differential equations. Teukolsky@PPlying Chrzanowski's differential operator. This function
[1,2] showed, however, that the curvature Weyl scalggs ¥ satisfies the same Teukolsky equation as the function
7 L 1 _4 . . . .
and ¢, each satisfy a decoupled field equation, the “master’ Va (Where_p IS a certain quantity dﬂmed belgvbut yet
equation.” Furthermore, this decoupled equation may bet doesnotcoincide with the quantity "y, of the gravita-
separated, leading to ordinary differential equations for thé'or_:_ar:l perturba’gl[on tgnder cons!detrhatlon. f elect fi
radial and angular parts. This leads to a great simplification € same siiuation occurs In the case of electromagnetic

of the problem of determining the gravitational perturba-p?rt.urbat'ons' Here, too, the fuII_|nformat|on_ abQUt (ne-
tions diative part of the¢ electromagnetic perturbation is encoded

Th bl f elect i turbati K in each of the Maxwell scalaks, and ¢, [3]. Chrzanowski's
€ problem of electromagnetic perturbations over a Berly, o, 54147 allows the determination of the general, homoge-
background has a similar status. The Maxwell equation

¢ ¢ led. i ol diff o X ‘ Hieous solution foA, by applying a certain differential op-
orm a set of coupled, linear, partial differential equations 1org 416y to the homogeneous solutions dgror ¢,. However,

the four-potentialA,, (or for the _Maxwell fieldF,p). Inthis  ihis procedure, when applied to a particular solutigyor
case, too, Teukolsky1,2] derived separable, decoupled, ., yields a vacuum solutioA,, which represents a physi-
equations for the two Maxwell scalagg, and ¢,. cally different electromagnetic perturbatifl.

For several problems, e.g. the calculation of energy and |n view of the above, the problem of constructing the MP
angular-momentum outflux to infinity, knowledge of the Teu-haﬁ (the four-potentialA,) from g or ¢4 (oo OF @) in-
kolsky variablege.g. 4, or ¢,) is sufficient. However, there cjydes two stages: First, construct the potentidrom i, or
are problems for which one needs the full perturbation field¢4 (@0 OF ¢,), and second, construbt, s (A,) from ¥. The
(i.e. the MPh, in the gravitational case, andl,—or alter-  second part is well known—this is Chrzanowski's procedure
natively the full tensor fieldF,,—in the electromagnetic [4]. The goal of the present paper is to address the first part,
casg. This includes, for example, the calculation of gravita- namely, the determination oF from i, (or from ¢, in the
tional or electromagnetic self-force acting on a pointlike par-glectromagnetic cagé This problem was recently addressed,
ticle Ort_)lt”?g a spinning BH. . for gravitational perturbations, by Lousto and WhitiilyV)

In principle, each of the Weyl scalatg and, contains  [6] in the case of a Schwarzschild BH. Here we provide the

the full information on the gravitational perturbation in solution to this prob|em in the Kerr Ca$m the frequency
vacuum[3] (up to a few nonradiative degrees of freedom,domain.

e.g. infinitesimal changes in the BH’s mass and sp&hr-

zanowski[4] developed a procedure which allows the deter

mination of the general homogenedii. vacuum solution We shall restrict our attention in this paper to the construction of
for the MPh 5, by applymg a certain differential operator to has OF A, in the ingoing radiation gauge fromy, or ¢,, respec-
the homogeneous solutions f@p or ¢,. It was later shown tively. The analogous problem of constructig or A, in the
[5], however, that this operator, when applied to a particulabutgoing radiation gauge from, or ¢, may be treated in a similar
solutiony, or i, yields a resulh,,z which is a valid vacuum  way.
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We shall consider here two different physical situations:is irregular on an outgoing null ray emerging form the par-
(i) pure gravitational or electromagnetic wavése. a ticle inwardly (i.e. in the past direction Alternatively one
vacuum perturbation in the entire spacetimand(ii) gravi-  may integrate these equations frorar ,;, towards larger
tational (or electromagnetjc perturbations produced by a values, in which cas@ is perfectly regular at<r ., but at
(chargedl object orbiting the BH. The first problem is fairly r>r,, it develops an irregularity on an outgoing null ray
simple, but the second one, that of perturbations withemerging form the particle. This is perfectly consistent with
sources, is a bit more involved. The explicit solutionorin  the above-mentioned irregularity of the radiation-gabgg
this case of inhomogeneous perturbations, which is the priand A,, found earlier(for h,z) by Barack and Ori[8].
mary goal of this paper, is summarized in Secs. Vilavi-  Throughout this paper we shall mostly refer to the solution
tational casgand IX (electromagnetic case for ¥ which is regular at >r ,,, but has a line singularity at

The equations relating the potentifiito the relevant Teu- r<r ., which we shall denote&V ™ for concreteness. The
kolsky variables were derived by Wal8] for a general al- analogous solutio® ~ (which is regular at <r ,, but has a
gebraically special, vacuum, background spacetime. The reine singularity atr>r,;,) may be constructed in a fully
duction of these equations to the Kerr case is given in Refanalogous manner, as briefly summarized at the end of Secs.
[7] for the electromagnetic case and in Réf for the gravi- VIl and IX. (In Sec. X we briefly discuss the possible im-
tational case. Our goal is to determité by solving these plications of this line singularity to the self-force problgém.
equations. For either the gravitational or electromagnetic The two solutionsV* and ¥~ yield two different solu-
case, there are two such differential equations relafing tions for the MPh,,; or the four-potentialA,, both for the
the Teukolsky variables: mdial equation(i.e. one including  “same” (e.g. the ingoing radiation -gauge condition, which
r derivatives, which relatesV to ¢, or ¢g, and anangular e denotdq+ AL andh,, , correspondingly. To avoid
equation(i.e. one includingd derivatives, relating¥ to #,  confusion we emphaS|ze that these two solutitfos either
or ¢,. In Ref. [6] LW elaborated on the angular equation h ; or A,, and, say, in the ingoing gaugessentially repre-
[Eq. (2.7) therein, and constructed its solution in the sent the same physical perturbatiprand they differ by
Schwarzschild casgor gravitational perturbationsHere we  gauge. That is, the ingoingor outgoing radiation-gauge
shall elaborate on the radial equatidy. (2.6) therein, orits  condition does not completely fix the gau@e.
electromagnetic counterparfThis in fact turns out to be a  Since there is full analogy between the gravitational and
simple ordinary differential equation, which is not difficult to electromagnetic cases, the detailed calculations presented in
solve even in the Kerr case. the next seven sections will refer to the gravitational case

The MPh,; and four-potentiah,, constructed via Chrza- only. The electromagnetic perturbations may be treated ex-
nowski's method are given in the ingoirigr outgoing ra-  actly in the same manner. Only in Sec. IX we shall return to
diation gaugeg4]. Barack and Or{8] recently investigated the electromagnetic case and present the final procedure of
the local asymptotic behavior of the radiation gatigg (ei-  constructing® for electromagnetic perturbations.
ther the ingoing or outgoing oneear a point particle, by |n Sec. Il we give the basic field equations and establish
locally integrating the equations defining this gauge. Theysome notation. Section Il presents the basic calculatioh of
found that in this gaugk,,; cannot be well defied all around in the case of pure gravitational waves, expressing it in terms
the particle. Instead, there is a line of singularity thatof the modes of,. This result is then further simplified in
emerges from the particle to either the ingoing or outgoingSec. IV, by expressing botky, and ¥ in terms of basis
radial direction, over whiclh,; diverges(This line forms a  solutions(of the relevant homogeneous Teukolsky equation
1+1 dimensional singularity set in spacetiméne can which admit a simple asymptotic behavior at either the large-
choose to have a regular functibn g atr>r,icie, Where  r limit or at the event horizodEH). In Sec. V we develop
r is the radial coordinate, but this will inevitably lead to a the general homogeneous solution for Etfl), the above-
line singularity atr <rpacie; and vice versa(Barack and  mentioned “radial equation” relatingl’ to 4, which is a
Ori demonstrated this in the simplest case, i.e. a static pafourth-order differential equation. This general homogeneous
ticle located atr =rapicie in flat spacetime, but the same solution is required later for the construction of the relevant
situation should occur also for moving particles in Kerr. inhomogeneous solutioffor perturbations with sources
Although the analysis in Ref8] was restricted to the gravi-  In Sec. VI we address the physical situation which pro-
tational case, it is easily extended to the electromagnetic casgdes the main motivation for this paper, namely, gravita-
as well. It shows that the radiation-gaudg also has a line tional perturbations produced by sourdesg. a point par-
singularity, either at>r,icje OF atr <rparticle - ticle, or an extended object, in orbit around a Kerr)Bi/e

The solution constructed here provides an independergonstruct the solution fo# (more specifically¥ *) in this
demonstration to this pathology of the radiation-gauge quanease, using the general homogeneous solution constructed
tities h, s andA,, near a point source. Throughout this paperearlier in Sec. V. In the first stage the potentil is ex-
we shall assume that the source is confined to a rapge pressed in terms of the inhomogeneous mode functions of
<I<rp(Consider, e.g. a point mass moving on an ellipticaly,. Then we further simplify the solution, expressiigdi-
or circular orbij. In both the electromagnetic and gravita-
tional casegand for either the ingoing or outgoing radiation
gauge, one may choose to integrate the equations governing2jt appears, though, that the+” and “ —” perturbations also
W from r>r ., towards smaller values. TherV is per-  differ by some(non-gaugg non-radiative component, i.e. the so-
fectly regular atr >r,,; but it turns out that at <r ., ¥ called “I=0" and/or “I=1" modes.
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rectly in terms of the mode functions of the energy- \ N ,
momentum distribution in spacetimgn both stages we also Y= > RUD(r)SY(g)elmemen, 3)
use the homogeneous basis modes/pfin our expression Ame
for ¥.) Whereas our detailed construction refersito, the whereR:® and S\ are, respectively, solutions of the ra-
construction of¥ ~ proceeds in a fully analogous manner, gia| and angular Teukolsky equationgiven below.® The
and we provide the final result foF ~ as well. Some details  goyrce terms are expanded in a similar manner:
of the calculations are given in Appendixes A and B.

In Sec. VIl we study the domain of validity of the solution N Mo (Mo ot)
¥+ (and similarly of¥ 7). For a point particle we find that 4W2Tt2:}§n}w T22"(r)Siz"(0)e - (4)
¥* is regular everywhere except at a 1) surface
spanned by outgoing principal null geodesics emanatinghe radial and angular ordinary differential equations take
from the particle’s worldline in the smaitl-(i.e. past direc-  the form
tion. We denote this surfacé*. For an extended object, the
solution ' * (which is typically regular throughoyts valid PADIRAD (1) ]=TA% (1) (5
everywhere except in a domain denotaedain = *, which is
now a four-dimensional sdthe definition of which is pro-
vided therein. In a fully analogous manner, the other solu-
tion ¥~ is, for an extended object, valid everywhere except
in a four-dimensional st ~; and at the point-like limit, ~
degenerates to a (1) surface spanned by outgoing princi-
pal null geodesics emanating from the particle’s worldline in
the IargelC (i.e. future direction, withW ~ becoming irregu- PAMO=A=S9 [AS*19,]+V,(r) (7)
lar onX,~.

Section VIII provides a summary of the construction of and
V¥, in the gravitational case, for the benefit of the reader who
wishes to implement this method in practical calculations. O M =sin"100,[sin 09,1+ V(6),
Then, in Sec. IX we return to the electromagnetic problem )
and summarize the procedure of constructingn this case, Where the potentials are

leaving many details of the derivation to Appendix C. Finally Cr2, 22 2 2 2 a B
in Sec. X we give some concluding remarks. Vi) =L(r*+a’) 4aMomr+am”+ 2iams(r —M)

and
013°[Si%°(6)]=0. ©)

Here P\ and ©®%%“ are second-order linear differential

operators, given by

—2iMws(r?—a?)]A "1+ 2i wsr—a?w?—A
Il. PRELIMINARIES

Consider the spacetime of a Kerr BH with maddsand and
specific angular momentura. We shall use the standard V,(0) = a2w?coL0— m?/sirt — 2aws cosd
Boyer-Lindquist coordinatestr,#,¢), and following Teu-
kolsky [1] we denoteA=r?—2Mr+a?, S=r?+a’cos¥, —2mscosd/sint6—s?cof §+s+A.

and p=—1/(r —ia cosé). The Newman-Penrose Weyl sca- B
lars o and i, (corresponding te= +2 ands=—2, respec- The parameterA is Teukolsky's[1] separation constant,
tively) satisfy two decoupled master equations. Defining  which we write as

Yio=vo, ¥ 2=p “Yu, A=N—s—|s,
we may formally write the two master equations as where \ is the separation constant used by Chandrasekhar
Wl theo]=47ST o0, 1 [9] (often denotedX therg. The parametek runs over all
sol Yol =4m2 T @ eigenvalues of the angular Teukolsky equatién Through-
whereW.., is the second-order partial differential operator out this paper we prefer to use the separation constant
rather thanA because the angular equations $st2 ands

— - 1 2 2\2 2ai
=~ AT [AT G, )+ [(rP+a%)?/ A - a’sirPg]ay = —2 have the same set of eigenvalue§9] (which is not
+4aMrA*1a¢t+[a2/A—sin*20]aW the case ford).* Also, this will allow an easier connection
i ) with Chandrasekhar’s formalism.
—sin""0d,[sin#,]—2s[a(r —M)/A Our goal is to construct the MP. In a vacuum spacetime

+icosh sin‘za]aq,—25[M(r2—a2)/A—r (i.e. T-»,=0), the MP in the ingoing radiation gauge can be
—ia cosf]d,+ (s’cofh—s), 2)
3In case the spectrum is continuous, the sum aveshould be
andT ., is the corresponding energy-momentum source termeplaced by an integral.
given explicitly in Refs[1,2]. Teukolsky further showed that  “In the special casaw=0, the separation constant becomes
these two Weyl scalars may be decomposed as I(I+1)—s?+]s|; hence, commoi also means commoln
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derived from a potential |z [4], by applying to the latter a modeNmw of i; the entire perturbation is then obtained by
certain second-order differential operaf@f]. We shall for-  a superposition. Thus, we now assume thgtakes the de-
mally denote this differential operator B¥,grg, namely, composed form

hire=Ire[ Virc] (8) Po=RY(r)SYBe(g)€!(Mme—en), (12

whereh g denotes the MP in the ingoing radiation gaugeand the radial function satisfies the vacuum radial equation:
(for brevity we shall often omit the spacetime indices of the Mo Ao

MP). Similarly, the MP in the outgoing radiation gauge can PL2°[RYZ°(r)]=0. (13

be obtained from another potenti#lo 1, through another
differential operatollyyt [10], namely,

hore=Hord Yorael-

In this paper we shall only consider the case of ingoing ra- ] ] ]
diation gauge, but the potentidor (and hence the MP in  Wherep is a constant to be determined later, anllis the
the outgoing radiation gaugenay be constructed in a fully differential operator
analogous manner. For brevity we shall use here the notation

We shall now use the Teukolsky-Starobinsky relations to
show that the desired solution of Eq40),(11) is

W=p~tA2(D1) [ A%y], (14)

2 2

V=V Rre (this variable is denoted)s in Ref. [5]), 11 D‘r:_r ra g+ d,—(alA)a, .
EHlRG! andhaBEh|RG, hence A

hap=TI[V]. (99  For asinglexmw mode we define the “reduced” operators

The function® has to be a solution of the vacuum Teu- Dmo=0;+iK/A, Df,=d—iK/A,
kolsky equation fory_, [5], namely,
y eq Y5 [5] y where
W_,[V¥]=0. 10
2L V] (10 K=am—(r’+a) o,

In addition, it must satisfy the following differential equation )
[5,6]: such that for any functiong(r) andg(#),

_ i(me—wt)]— i(me— wt)
Yo=DY[ V], (11) D[f(r)g(8)e 1=9(0)e Dol f(1)],

eand the same relation holds between the oper&@dr®|, .
(f\lote thatD ., andD/, are the same as the operatof,”
and “Dg," respectively, in Chandrasekhar’s notati$8].)

r2+a? Using the decomposition
At (@lA)d,,

where throughout this paper an overbar denotes compl
conjugation. Here is the differential operator

D=1#g,=

V= ﬁ)\_mzwsﬁ_rgw( 0)ei(m<p—wt), (15)
wherel# is the standard outgoing Kinnersley's tetrad vector
(see, e.g. Ref[1]). We use here the abbreviated notation
D*=DDDD, and the same for other operators used below.
Our goal in this paper is to construct the functiénthat

satisfies Eqs(10) and(11). This will allow the construction

of h,z, the MP in the ingoing radiation gauge, through Eqg.
(9). We shall first consider the case of pure vacuum gravita- R\ (1) =(D )4[|§xmw] 17)
tional waves in the entire spacetime. In this case we assume +2 me “2

that o is known (it encodes the information on the gravita- | et ys first verify that® [the complex conjugate of Eq.
tional waves. Subsequently we shall consider the case 0f(14)] satisfies Eq(10). The Teukolsky-Starobinsky relations
gravitational perturbations produced by a point partide (see, e.g[9)) imply that the radial functiorﬁ”_”z“"(r) con-

any other matter sourgenoving in the Kerr_spacetlme. In structed in Eq(16) is a solution of thes= — 2 radial vacuum
this case we shall assume that,, the s=+2 energy- .
equation, namely,

momentum source term, is known.

Eq. (14) becomes
RM3*=p~'A%(D],) TARYZ ()], (16)

and Eq.(11) now reduces to

PMe[RM(r)]=0. (18
Il. PURE GRAVITATIONAL WAVES

We now consider the case of pure vacuum gravitational "€ complex conjugate of the radial functiet” is a ra-
waves, namelyT.,=0 in the entire spacetime. The infor- dial vacuum solution with the sameands= -2, but with

mation about the gravitational waves is given by means ofegative sign fom andw, which we denotef?*_’z_m'_“. The
the Weyl scalarg,. Since we are dealing here with linear angular Teukolsky equation is real, atftblding \ fixed) is
perturbations, it will be sufficient to consider a particular invariant under the simultaneous change of signs,of, .
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Hence,S}%°(6) is a real function which is also a solution to =—2 radial functionR'*. Since this is a second-order or-

the angular Teukolsky equatid) with —m,—w, ands= dinary differential equation, its general solution may be
—2; and correspondingly we may write it @S, ™ “,  spanned by any pair of independent solutions. REg“(®)
wherec is a constantwhose value is unimportant tousVe  and R;gw<b> be two such pairs of independent solutidnee
find that pair for s=+2 and one fors=—2). LetH denote the op-
AMw

erator which maps a vacuusy¥ +2 radial functionR?

— AN M- A, —M,—w —i(me— wt) i . . A
v=cRY, (r)st, (0)e”"™ 70 (19 jnto the corresponding functioR%” of Eq. (16), namely,

Thus, ¥ is indeed a solution to the= —2 vacuum Teukol-
sky equation(10)—a solution characterized by the set of
indices\,—m,— w.

We still need to check thafﬁ”_“;‘” constructed in Eq(16)

H=p A%(D] )*AZ2

For each moda mw there must exist a constank2 matrix

satisfies Eq(17) [this would in turn imply that the expres- Cij such that

sion (14) satisfies Eq(11)], and to determine the constgmt AM6(I) 1~ pAMo()

In fact all we need to show is that HERZ™(N)]1=CijR="H(r), (22)
(Do) {AZ(D],) A [AZRYS ()]} wherei,j run over the two basis statesandb. The problem

thus reduces to the determination of the four constants

is a constant multiple dR%3 . This follows immediately by There are two preferred bases, however, for which this

applying the two parts of Theorem 1 in Chap. 9 of H8].  matrix becomes diagonal and especially easy to calculate.

Consequently, there exists a constarguch that One such basis is the pair of solutions characterized by posi-

tive and negative exponents of at larger. Herer, is a
RY5°(r)=p~ {(D o) {A%(D])AZRYS(r)]}. (200 function ofr, defined by

From the analysis therein it becomes obvibtisat p is the dr, /dr=(r2+a?/A (23
real constant

(and given explicitly below Note thatr, — o asr—c. The
other basis is that of positive and negative exponents @it
+ 1440°M?2, (21)  the EH(wherer,— —«). These two bases are also prefer-
able for the physical interpretation of the solution, and for its
where a’=a’—am/w. Note that the coefficienp depends construction via a Green functigdescribed in Sec. VI The

P=A2(A+2)?>—8w?\[ a®(5\ + 6) — 12a%]+ 144w a*

on the modé. asymptotic behavior of the vacuum radial Teukolsky func-
As was mentioned in Sec. |, the potentill must also tions are given in e.g., Reff3] for all values ofs, both at the
satisfy an angular differential equation, i.e. E8.7) in Ref.  limit of large r and at the EH.

[6]. The compliance of the above-constructed vacuum solu- In what follows we shall describe the application of Eq.
tion with this additional equation is guaranteed by virtue of(22), and the determination of the required coefficients, for
the following considerationgi) According to the analysis in these two special bases.
Ref.[5], there must exist a solution to the three simultaneous
equationdi.e. Eqs.(10) and(11), and the angular equatign
and (i) the solution(15),(16) is the unique solution to the o ) )
simultaneous equatior{40) and(11). For any nontrivial so- Considering the large- asymptotic behavior of the
lution to the homogeneous part of Ed.1) will violate Eq.  vacuum radial function®}3°(r) andR3°(r), we may take
(10) [one can easily verify this, based on the general homothe two basic solutiongfor eachs) to be those of positive
geneous solution to Eql1), constructed in Sec. V beldw  and negative exponents of . These two solutions take the
asymptotic form

A. Large-r asymptotic behavior

IV. FURTHER SIMPLISF(I)CLG'I_;_II(())II\I\I OF THE VACUUM R)irgw(in)gefiwr*/r, R}:rrgw(out)zeiwr*/rS (24)
Equations(15),(16) provide the full solution for¥. Itis  and
possible, however, to construct a simpler and more explicit
expression for the radial functioR*%*. The latter satisfies
Eq. (18), which is the vacuum Teukolsky equation for the

R):rgw(in)ze—iwr*/r’ R):rgw(out)geiwr*rli (25)

(see[3], and recall the factop~*er* in the above definition

of _,). To avoid confusion we emphasize that the basis
SThis may easily be deduced by applying the OperatorsolutionsR);mz“’('“'0‘“) are defined to be thexactsolutions of

A%(D! )*A? to both sides of Eq(20), and then using Chan- the corresponding radial equations, which satisfy the

drasekhar’s Theorem 1, as well as his Ep) (both in Chap. 9 of ~asymptotic form(24),(25) at the leading order in i/(the
Ref.[9]). same remark applies to the event-horizon basis functions de-

81t is assumed thap is finite and non-vanishing for all real. fined below.
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One can easily verify that the operat@s,,, ,D,, do not B. Event-horizon asymptotic behavior

mix A%O%IrEI)Ve and nsrg]la(tcl)\ég exponents of . Therefore In a completely analogous manner, we can use for the
[0} [0} 1 A
HIR:2"7] andH[R:;™T] must take the simple forms o5 h6i0n ofRAM® and R basis solutions characterized

by either negative or positive exponentsrgfat the EH(the

AMo(in)7_ ~(in)pAma(in)
IR ]=CTR= (26) latter corresponds to, — —). These basis solutions take

and the asymptotic form

H[R)\rgw(out)] _ C(OUL)RMgw(OUt) 27 R)J\rngw(down)EA—Ze—ikr*' R)J\rn;w(up)geikr* (30)

+ —_ 1
L and

and the problem reduces to the determination of the two
constantsC(™ and C(°“9. These constants may be deter- RAe(down = A 2g-ikry - RAM(UP) = gikr (31)
mined from the large-asymptotic form of Eqs(16) or (17).
Ignoring terms of higher order in i/ we have (se€[3]). Herek=w—mal(2Mr ), wherer . is ther value

) at the event horizon, given by
Dne=d,—iw, Dy,=d t+iw, =M= (M2—a?) 2

andA=r2, n thi _ v that th

In principle, both Eqs(16) and (17) may be used for the M thiS _case, again, one can verify that the operators
determination of each of the coefficier@&™, C©U9. Notice, Pmw:Dm, do not mix positive and negative exponents of
however, that wherD,,, acts on R“m“’(o‘”) and D! on T« Therefore,
A2RATeN " the leading-order term proportional to can- H[R\M@(down ] _ (down) ghma(down) (32)
cels out. Therefore, in these cases the operator effectively 2 2
decreases the powersofby 1 at least asd, differentiates  gn(d
this power ofr. This leads to a complication, because then
we cannot ignore the higher-order teriiis 1/r) in the op- H[RAD“(UP = cUuPRAD(uP) (33
eratorsD,,,,,D/., and inA, and also the higher-order terms
in the basis solutloan“’('“ °u)  On the other hand, no and the problem reduces to the determination of the two

d
such cancelation of the Ieading order term occurs whgy constantsCo") and ClP), _
acts OnR)\mw(m) and DT on R)\mw(out) Instead, we get The leading-order form oA=(r—r_ )(r—r_) is

mw[R)\mw(ln)]~_Zin);rgw(in) Azqér,

whereésr=r—r, and
and
=r,—r_=2(M?-a??¥",
[R)\mw(out)] 2in)lr2w(out)_ q + ( )
- _ Correspondingly, the leading-order forms @f,, and D
It will therefore be convenient to calcula@(™ from Eq.  near the EH are
(17) andC(°"Y from Eq.(16), by substituting in these equa-

tions 2Mr . . 2Mr
meET(ar*_lk)i D;m)E A

R)\mw R)\mw(a), Rxmw C(a)R)\mw(a) (28)

where we have userf +a?=2Mr, . However, when ap-
(with “a” standing for either “in” or “out,” as appropriat¢.  plying the operator® ,,, ,D,“:m to the above basis solutions,
Equation(17) then becomes it is most convenient to view andr, in Egs.(30),(31) as

ol o two independent variables. In this context we have
Mo(in) — 4 i mo(In
R+2“’( )=16w C('n)R,zw( ),

_ 2Mr )

and Eq.(16) reads Dime=0dr+ —x— (9, —ik),

C(out) R):rgw(out),zv 16w4p71r8R>:rr2w(out) ) and

Since Eqgs(24),(25) impl 2Mr ]

0s(24).(25) imply DI =g+ A+((9,*+|k).

R):n;w(in)E R)_;_n;w(in) , R>\_r121a)(out)E I’BRYS“(OUO ’
The above basis functions all take the general form

we obtain F(r)e*'*"«. For such functions we have

CiM=1/(160w*), Cl"=16w"/p. (29 Dpo[Fe*=]=F'e*",
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the general solution of this fourth-order equation in order to

—ikrL_ —ik . -
DmolFe "*]—[F'—— e "Ix, construct the inhomogeneous solutions relevant to non-

A . )
vacuum perturbations. To this end, we shall now construct
_ iwl the general homogeneous solutitm Eq. (11).
D;‘nw[Fe'kr*]z F'+ T ek, This equation is in fact a trivial ordinary differential equa-

tion. Let us denote by the null geodesics whose tangent is
the null tetrad vectot* (namely, ¢ are the members of the
outgoing principal null congruengelLet y be an affine pa-

where w=4kMr, and a prime denoted/dr. Note that rameter along the geodesiés namely,
whenD,,, acts onRA5°(“P) andD [~ on A2R\D“(@OWY | the dx
leading-order term proportional tocancels out, and we are [“=——(&).

left with higher-order terms that take the lead, which is an dy
inconvenient situation. For this reason we shall calculatel_h ¢ functiorf (t.r.

c@own from Eq.(17) andC“P from Eq.(16). Using again en for any functiorf (t.r, 6, ¢),

the substitution28) (this time with “a” standing for either df
“down” or “up” ), Eqgs.(17) and(16) become, respectively, D[f]=I*d,f= a/(g),

D;ﬁ'w[Fe*ikr*]:F/e*ikr*,

R)\mw(down):C(down) D " 4 R):mw(down) 34
2 (Do) TR ! 34 The differential equatiorill) thus reads

and
CUPRMI(UP = n=2IA2(DT )4 A2R\ TP, —— (O =1o. (38)

For the first equation we need to calculate the quantity o ) )
Its general homogeneous solution is a third-order polynomial

(Do) [A2e K141, (350  in vy, whose four coefficients may be taken to be arbitrary

. , , ] functions ofé¢:
A straightforward calculation yield&t the leading order

3
(D) [A%e K ]=QA " 2e '+, v=> b(&y (homogeneous (39)
=0
where
_ _ . We wish, however, to rewrite this homogeneous solution
Q=(w+2ig)(w+ig)w(w—iq). more explicitly as a function of the four spacetime coordi-
hus find nates. To this end we need to explicitly parametrize the null
We thus fin geodesics. From the definition of#, along each null geo-
cldown — 1/q. (36) desicé we have
For the second equation we need to calculate the quantity dr ~ d¢ dt r’+a® d¢

(Dme)4[AZelkr*]_
o ] We choose the origin of such thaty=r along the geodesic.
This is just the complex conjugate of expressi88), and we  Thent, 9, along the geodesic are given by
find
(DL, A%6H =00 ek, U700 T, e o, 50
where 6,1, ¢ are arbitrary constants, amg (r) andu(r)

which leads to are given by the two integrals
clur=Q/p. 37 r2+a? a
r*(r)—der, u(r)—fzdr.
V. THE GENERAL HOMOGENEOUS SOLUTION
TO THE FOURTH-ORDER EQUATION Specifically we take
The equation(11) that determines the potenti&_lr is an r’+a? r? +a?
inhomogeneous fourth-order linear differential equation. In T« (r)=r+ In(r—r.)— In(r—r_)
the preceding section we constructed the relevant inhomoge- (42)
neous solution of this equation in the case of pure vacuum
perturbations, for each mode of the source terpiby “rel- and
evant” we refer here to the solution that also solves the
vacuum Teukolsky equatiofl0)]. Later we shall also need u(r)y=/g)In[(r—r_ )/(r—r_)]. (42
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The null geodesicg are thus parametrized by the three pa-particle. As was discussed in Sec. |, one can construct a
rametersfy= 40, to=t—r,(r), and go=¢—u(r), and the solutionhzﬁ which is entirely regular at>r ;4 cje, but this
above general solution takes the explicit form solution will necessarily have a singularity in the range
3 <TIparticle, @long a line emanating from the particle. Alter-
=3 bi(6o,to,@0)r! (homogeneous (43) nativel){ one may construct a solutiggﬁ whic?h is rggular in
i=0 the entire domaim <r,,icie, but this solution will have a
] . ) line singularity in the range>r e -
whereb; are arbitrary functions of their arguments. Although it is not possible to construct a soluti¥hvalid
Later we shall also need the form of this general homosn, the entire vacuum region, it is possilsfer a point source
geneous solution in the frequency domain. In order to comtg construct a solution which is valid everywhere throughout
ply with the decomposed forr(ll5), for a particular mode  the vacuum region, except in a set of zero measimefact
Ame the arbitrary function®; must take the form there are two such solutions, those denofet and¥ ~ in
b= Bis)-lngw( g)eme—Wegio(t=ry) Sec. _I)_ We shall now proc_eed to construct_ such a soluti(_)n.
Specifically we shall describe the construction of the solution

whereB; are four arbitrary constan($or each modg Cor- ¥ (but the other solutioW = may be constructed in a fully

respondingly the (homogeneous-solutionradial function ~analogous manngrThis construction is applicable in both
R\MO g given by cases of a point source and an extended satinoeigh in the
-2

latter case the domain in whiclr* violates the required
3 equations is no longer of zero measure, as we discuss in the
RM(r)=e (M=er) > Bir' (homogeneoys next section
1=0 (44) As in the previous sections, we shall consider here the
function ¥ * sourced by a particular modemw of . This
One can easily verify that this solution indeed satisfies thdunction takes the decomposed for(i5), and we need to

homogeneous part of E¢L7), namely, construct the radial functioR*%“ . In the vacuum regiom
OAMo o ; ; ; ;
D. )R\“1=0. (homogeneous >Tmaxs RESY IS just thg soluthn described in Sec. IV. This
(Dmo) TRZ2"] ( g Y was shown to be a valid solution of both E¢$7) and (18)
To this end, it is sufficient to note that for any functier), ~ (@nd this is theonly valid solution. Note that in this external
region iy is made of outgoing modes only,
_ daf
Dol f(r)e™ (M= er)]= Ee"(m“"”’*)- (45) RYZ/(N)=ACYRI,(r)  (r>rma, (46)
where hereafter we denote the relevant basis functions for
VI. GRAVITATIONAL PERTURBATIONS PRODUCED brevity as
BY SOURCES R*.=R\mo(ou R_.=R\Mo(down)
*+2 +2 ’ +2 *2 ’

Consider now gravitational waves produced by a point- o +_ ~(out) — _ ~(down)
like particle that moves freely in a Kerr spacetime. For con-and similarly we useC™=C*™™, C7=C - (Only

Ama(out) Ame(down) :
creteness let us assume that the orbit is confined to the ran%*t2 aﬂd R:2 o will be E)eleya:t here, Pecjuss ,
I min=I'<r'max (Ut this assumption may be relaxed, at Ieastthese aret t ?. two f ?rrpogetnegug GaS|s 'unfctlor;_s |nv<f) Veth n
partially, as we discuss in Sec.)XThe orbit needs not be M€ construction of the retarded reen's functions for the

equatorial. Of special importance is the case of a circular €UKOISky variablesj. ,; see below. Therefore, inr=>ryay

orbit, I min=Tma=ro- Alternatively, we may assume that the the radial function of¥# * (for a particular mode\mo) is

gravitational waves are produced by a finite-size mater dissimply given by

tribution. In this case, too, we shall assume that the matter is EAMO,  _ (~+ p(OU) o+

confined to the rangein=r<rmax- RZZ'(N=C APTR,(1) (r>Tmad. (47
In the formalism used here the single functignis re-

quired to satisfy two differential equations—EG0) and the

inhor_nogengous equatiqfil). These equations are m_utually be a vacuum solution everywhere fip <r<f...), and we
consistent in the case the source term for Et) is a n max

vacuumgravitational fieldy, but otherwise we should ex- €an no longer requirk’3” to satisfy both Eqs(17) and

pect to have an over-determination. Therefore, in a spacetimd®).” We therefore choose to exteRI'” into r <r,,as a

with a matter sourceeither a finite-size or a point-like solution of Eq.(17), and, for the time being, forget about Eq.

source, we cannot expect to have a solution to both Egs.

(10) and (11) in the entire spacetime, or even in the entire

vacuum part of spacetime. "For extendingR™3” into r <r ., as a solution of Eq(18) would
The nonexistence of a global solutith can be demon- automatically yield the external solutigd?) in this range too. But

strated from another point of view. For a point particle in anthen ()4 R*%°] would necessarily be the analytically-extended

otherwise-vacuum spacetime, Barack and [& showed vacuum functionR}}®, which does not conform with the actual,
there is no global radiation-gauge solutibp, around the  non-vacuum, functiom}3* in 1 <r<rpay.

Consider next the extension of this solution into the range

r<rmax- HereRY2“(r) is not a vacuum solutiofit fails to
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(18). Nevertheless, in the next section we shall show that thisvhereH* (r,r’) andH ~(r,r’) are smooth functions of their
procedure yields a valid solutioW*, which solves both arguments. Equatio54) is then satisfied if the following
required (time-domain equations(10) and (11), even atr two conditions hold{i) the two functionsH*(r,r') satisfy
<I mar—except in the domail * (which is of zero measure
for a point sourcg

To construct the solution of Eq17) we proceed as fol-
lows. The source term in this linear differential equation is

(Do) THE(r,r")]=A=(r" )R 5(r), (56)

Rﬁ’g“’(r), the radial function ofjq. This function is in turn

sourced by the energy-momentum distribution in spacetim

!

and (ii) H(r,r’) is continuous and differentiable four times
with respect ta) atr=r’; In other words, the function

It can thus be expressed by means of the energy-momentum

source termry3“(r) via the Green’s-function method:

I max
T (r)G(r,r")dr’.

Mmin

RY%(r) = (49

The Green’s functiorG(r,r’) is constructed from the two
vacuum solutions admitting the desired asymptotic behavior,
namely, outgoing waves at largeand down-going waves at

the EH:
G(r,r")=A"(r")RI(r)6(r—r")

+AT(r")R,(r)o(r' —r), (49

where 6 denotes the standard step function, namé{y)
=0 for x<0 andf(x)=1 for x>0. The functionsA*(r")
andA™(r') are given by

AT =RI,/(AWR},,R},]) (50)
(all quantities evaluated at), whereW[R? ,,R},] denotes
the Wronskian of the two homogeneous soluti&Ts, . Note
that G, viewed as a function of, is continuous at=r’,
namely,

AT(r)RI(r)=A~(r" )R ,(r"). (51)
The coefficientA°'Y in the external solutior(46) is thus
given by

rm
A<°U0=f TTATe(r AT (r)dr
r

min

(52

We now wish to construct a
H(r,r") such that the functioﬁ%”_”;“’ will be given by

~ r
RMIO(ry= | T Y H(rr ) dr

Mmin

(53

in analogy with Eq.(48). This will be a solution to Eq(17)
if H(r,r') satisfies the equation

(Do) TH(r,r")]=G(r,r") (54)
(in which the operatob,,, differentiates with respect to

notr’). Motivated by the above form o&(r,r’), we as-
sume a functioH(r,r") of a similar form,

H(r,r)y=H*(r,r")é8(r—r")+H (r,r")o(r' —r),
(59

“Green-like function”

y(r,r)=H"(r,r")=H"(r,r"),

and its derivatives with respect taip to fourth order, vanish
atr=r':

n

ﬁT)r:(r=r’)=O, n=0,...,4 (57)

(in which é%/ar°=y is to be understogd Condition (i)

guarantees the validity of E¢54) atr>r’' andr<r’ [the
“+"and “ —" cases in Eq(56), respectively. Condition(ii)

is required for the validity of Eq(54) atr=r’. [To see this,
rewrite Eq.(55) as

H(r,r)=y(r,r")o(r—r’)+H (r,r"),

and recall the continuity o6 atr=r"'.]

The form of the general solutiod =(r,r’) to Eq.(56) is
obvious from the analysis in Secs. IV and V. We have a
specific inhomogeneous soluti@rA* (r')R=,(r), and the
general homogeneous solutigh) (in which the coefficients
B; are now allowed to be arbitrary functions of); Hence
the most general solution is

3
H*(r,r')=C*A*(r")R,(r)+e (M=er) > BX(r)r,
<0

(58)

It should be noted that since this is the most general solution
to Eq.(17), this form must be satisfied by both* andW¥ .

The difference between these two solutions should emerge
from the choice of the free functior;", which are to be
determined by the boundary conditions. As we are consider-

ing here the solution? *, the radial functiorR")(r) must
satisfy Eq. (47) at r>r 5 This is achieved by simply
choosingB;" (r’)=0 for all i, namely,

H*(r,r")=CTA"(r" )R ,(r). (59

The internal partH ~(r,r’) has a more complicated form,

3
HT(rr)=C A (1" )RZy(r) + e (M er) 3 B (r)r,
(60)
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in which the four arbitrary functionB; (r") are to be deter-
mined by condition(ii) above, i.e. by matching t&l " (r,r’) A= (r')=(pC*W[RZ,,R,]) !
atr=r’. The functiony(r,r’) is given by

_ d _
A(r’)—,Riz(r’)
dr

y(r,r')=C AT (r")RI,(r)—C A" (r")R7,(r) +B(rR7,(r") |, (62

3
_a-i(mu—wry) TIAYL . . . — —
€ i:ZO By (r')r, wherep is the parameter defined in ER1), A andB are
functions specified in EqB7), and
and we must impose E¢7). This might look problematic at
first glance, because apparently the latter equation imposes

five requirements on the four arbitrary functioBs (r’).

W[RZ,,R",]=constx A(r") (63

is the Wronskian of the two basis solutioRs , (evaluated at

However, one of these requirements is automatically satisr—,)
fied. To see this, it will be convenient to rewrite E§7) as In the above construction ¢(r.r'), A* and C* only
A _ _ appear through their products'C* andA~C~. We there-
(me) [y] 01 n 01 e :4 (r r ) f0re deﬁne
(where D,,,)°[Y]=Y is to be understogd Considering the a*(r')=C*A*(r")
casen=4, the operator@,,,)* annihilates the last term in '
the above expression fgi(r,r’), and we have and obtain

(Do) TYI=AT(r R =A™ (r")R (1),

— d _
a*(r')=(pWR_,,R*,]) ! A(r')§Rt2<r’>

which vanishes by virtue of E¢51). We can therefore reex-
press conditior{ii) as -
+B(r’)Rf2(r’)1. (64)
(Dme)"lY]=0, n=0,...,3 (r=r"). (61

The four arbitrary functiond. (r’) should thus be deter- The functionsH=(r,r") andB, (r’) can now be reexpressed
mined from the four conditions involved in this equation. In &s

Appendix A we show that these four functions may be ex- o ot
pressed as H*(r,r’')=a"(r")RI,(r), (65

3
Bi(r'>=c+A+<r'){fi<r'>R+2<r'>+gi<r'>iR+2<r'> Ho(rr)=a (1R +e Mo 3 Br(r)r,
dr/ I

(66)
—CA<r'>{fi<r'>R2<r'> and

d
Bi(r’):a+(r’){fi(r’)R+2(f’)+gi(r’)WRS(W)}

d
+0i(r') —R,(r")
dr

d
wheref;(r’) andg;(r’) are certain functions af’ explicitly —a(r’)[fi(r’)R2(r’)+gi(r’)FR2(r’)1.
specified therein. '
Note that when expressed in this form the function
Further simplification of the solution H(r,r’)—and hence als&")*(r)—is invariant to a rescal-
The procedure described so far for the construction ofng of R™, or R”, by constants. Therefore there is no need
ﬁ&";w(r) requires the twes= —2 homogeneous basis func- tp require here a specific normalization for these basis solu-
tionsR™,, and also the tws= +2 homogeneous functions 1ONS:
R} ,. The latter functions are required for the determination
of A*(r') (and their derivatives are involved in the Wronsk- VIl DOMAIN OF VALIDITY OF THE CONSTRUCTED
ian W[RZ,,R1,]). However, in principley, can be deter- SOLUTION
mined from ¢, (and vice versp and this implies thaR>, In the case of perturbations produced by matter sources,
may be determined frorR”,. In Appendix B we undertake we must carefully examine in what parts of spacetime the
this goal and reexpregs™(r’) in terms of the function®=,  construction of¥ and h,p is valid. First, the Chrzanowski’s
and their first-order derivatives. We find construction requires that the potentialsatisfies both equa-
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tions (10) and (11). These equations are mutually consistentthe MP squtionh;8 constructed from¥P'* is valid through-
in vacuum, but are generally inconsistent in the presence Qfyt 3+ too. (The same arguments apply to the validity of

matter. The matter source therefore leads to the violation

. = 1Bars O~ andh, throughouts,~.
at least one of these equations. This violation occurs not only ap ghouts. )

in the region occupied by the matter, but also in certain

vacuum parts of the spacetirfie.

At this stage it will be conceptually simpler to assume that

A. Validity of the constructed potential ¥+
In the ranger>r..,, the above construction of the

the massive object that creates the perturbation has a finitgsreen-like function” H(r,r’) ensures that Eq47) is sat-

size and a regular energy-momentum distribufigy),(x“).

(The case of a point mass will then follow in a trivial man-

ner) Let us define2 ™ to be the collection of all points P in

spacetime which have the following property: The null geo-
desic¢ (a member of the outgoing principal null congruence

passing through P intersects matterore precisely, nonvan-

ishing source ternil,,) on its approach from P towards

future null infinity. The collection of all other points d¢the

part r>r, of) spacetime is denoteB ™. In an analogous
manner, we defin& ~ to be the collection of all points P for

which £ intersects matter on its approach from P towards th

EH, and3 ~ is the rest ofthe partr>r , of) spacetime. In a

isfied by R*%“(r), and hence also Eq§L7) and(18). In the
time domain this implies tha¥ * satisfies Eqs(10) and(11)
throughoutr >r ..

In the ranger <r o« We have constructeéﬁmz“’(r) such
that it satisfies Eq(17) for all modes, hence in the time
domain compliance with Eq11) is guaranteed. But E418)
is violated throughout <r ,,, [note that the homogeneous
solution (44) violates Eq.(18)]. We shall now employ ana-
lyticity considerations to demonstrate th#it™ does satisfy

éhetime-domainTeukoIsky equatior{10) throughouts. *.

Each mode\mw of ¥ * is analytic throughout>r ;, by

more pictorial language, imagine that light rays propagatéonstruction[cf. Eq. (47)]. Assuming convergence of the

along all geodesicg of the outgoing principal null congru- mode sum afr >rn,,, We may assume thap ™ itself is
ence. Ther® ~ is the portion of spacetime “shadowed” by analytic atr >r too? Now, in the above construction we

the matter-energy distributiofi, ,(x%), and3 ™ is the non-

extended? " into the entire domain<r ., as a solution of

shadowed part. Similarlys. * is the “past-shadowed” part, Eq.(11). This implies thatl * is analytic throughout *, as
i.e. the part of spacetime that would be shadowed if the lightye now show.

rays were propagating along the null congruence from future Equation(11) is an ordinary differential equation along

to past(and from large towards the EB and3, " is the rest
of r>r, . By definition, 3+ and3~ are pure vacuum do-

mains. Note thaf. * contains the entirely-vacuum domain

r>rmax and generally it also extends throughkir . into
the other entirely-vacuum domair<r ,,;—though the latter
domain is not entirely contained B . (Similarly, 3~ con-
tains the entire domairr <r,;,, and generally extends
throughr>r i, into r>r.,.) Also, at the point-like limit
3" and¥~ each degenerates to a+1)-dimensional sur-

face that emerges out of the particle’s worldline in either the

the null geodesicg, which we may write as
A"V ()

o 67)

=to(y;€).

We write its general solution explicitl{in a recursive man-
nen asWV ' (y;£)=dy(y:¢), with

Y
Do (y6dy, n=1...4,

0

‘IDn(V:f):Cn(é)JrJr

past or future(i.e. inward or outwaridirection of§. Hence (68)
in the point-like limitS* or 3~ cover the entire spacetime
except a set of measure zero. On the other hand, when thehere ®s=¢,. Herec;(¢) (i=1,...,4) arefour arbitrary

object is extended. * andX ~ are four-dimensional sets.

functions of the three variablegy,tq, . [Recall that the

We shall now argue that the above-constructed potentiajeodesics ¢ are parametrized by the three quantities

W *—and the MPh;B constructed from it via Eq(9)—are

valid in the entire domail *. We shall first establish this for
the potential’ *, namely, we shall show that Eg4.0) and

(11) are satisfied throughonﬁ*. Then we shall show that

%To verify this, note that in the above constructionBf", the
individual-mode radial functionﬁ&@‘“(r) violates the radial Teukol-
sky equation in the entire domair<r ,,,—which in particular in-
cludes the vacuum domair<r ,,;,. This violation follows from the
non-vanishing of the coefficient8; . This does not necessarily
mean that the time-domain Teukolsky equati@f) is violated ev-
erywhere inr <r ., (in fact it does not, as we show belgvbut it

09,10, g, defined through Eq40), that take constant values
along the geodesic. Also recall that we have getr.] We
take the lower integration limit to be, sayy=2r ax. The
transformation from the coordinates t,i,6,¢) to
(7,00,t0,90) can be read off Eq40), and it is manifestly
analytic everywhere im>r .. Therefore, the analyticity of
¥* in the domain r>r,, implies it is analytic in
(7,09,t0,90) as well. This in turn implies that all four func-
tions ¢;(€)=c;(6y,ty,¢g) are analytic in @g,tq,¢g). Now,
the function ¢, is presumably analytic everywhere in the

SFor our argument to hold it is sufficient that the mode sum con-

does indicate the existence of a domain of violation that extends aterges throughout some range r ., =rmax OF even throughout

anyr value inr<r .

some open interval of values located somewhereratr 4.
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vacuumAregior’r.O When the solutior(68) is restricted to the out 3+, The above criteridi),(ii) for the validity of a MP
domainX *, we observe that only vacuum pointg’¢£) are  solution h,s are both formulated in terms of analytic differ-
encountered in the integration, hengg(y’;¢) is analytic.  ential operators acting oh,z. From the validity of these

This immediately implies tha¥ * given in Eq.(68) is ana- ~ Cfiteria in the range >rm,, it now follows that they must
lytic in (y;60,t0,90) throughout3 ™, and hence also in hold throughout "

(t,r,0,0).
From the analyticity of * (which implies the analyticity VIl SUMMARY OF MAIN RESULTS: GRAVITATIONAL
of W) it follows that W_,[¥ *] is analytic too. The van- PERTURBATIONS

ishing of the latter at>r 5 therefore implies its vanishing  Here we briefly summarize our procedure for constructing
throughout, *. We have thus established the compliance ofthe potential¥, for gravitational perturbations. We use the

¥+ with Egs.(10) and(11) throughoutS, *. decomposition

It is easy to see why this argument failsXat: The func-
tion ¢, fails to be analytic at the point particle, or—in the v=> RA\Meg\ Mo ) gl (Mme—ot)
case of an extended object—at the boundary of the matter Mo

distribution. As a consequence, along each null geodgsic
intersecting the sourceV * will be analytic only up to the

intersection point. The ™ will usually be non-analytic at
the boundary ofs ™. Therefore we cannot exped ™ to
satisfy Eq.(10) in 2. The violation of the corresponding
frequency-domain equatiofil8) throughoutr <r ., indi-
cates that Eq(10) is indeed violated somewhere ¥i" (and
for any value ofr in this range. In this case we assume thgg is given. This field is

Finally we note that the compliance # " with the “an- ~ decomposed into modes too,
gular equation”(i.e. Eq.(2.7) in Ref. [6]) throughout3 *
may be deduced by exactly the same analyticity argument. o= 2, RAIC(r)S\Te(h)el(Me—en),

A

Mo

and our goal is to construct the radial functidR¥5”. We
shall now summarize this construction in the two different
cases:(i) pure gravitational waves, an@i) perturbations
with sources.

A. Pure gravitational waves

B. Validity of the constructed metric perturbation For each modé me, R}%°(r) is a solution of the vacuum
Our goal here is to establish the validity bﬁﬁ (con- radial Teukolsky equation, and we assume this function is

structed from¥ * via the Chrzanowski's methodhroughout provided as a linear combination of two basis solutions. Two
. . . . « ., Sets of convenient basis solutions @rethe large-r set in
2. ", despite the presence of matter in spacetime. By “valid- M

o S L X . which the basis solutions fdR’,5“ and Rﬁrgw are given in
ity” we mean that(i) h,, satisfies the linearized vacuum Egs. (24),(25), and (i) the EH set in which the basis solu-
Einstein equations, andi) the s=+2 Weyl scalar con- tioné fori?““‘; are ai N E
. I ) . . . el given in Eqs(30),(31).

structed from it coincides with the original fiel@,. To this Assume now that the information abou is given in
end we use analyticity considerations, similar to those use?erms of anv two of the above fow= + 2 basis functions
above for analyzing the validity oF *. Here we shall briefly namel y '
sketch these consideratiofikl]. Y

Consider first the validity ohzﬂ iN r>rpa. To this end, RAT(r) = A@RYT@) (1) + ACIRAT®) (1)
expand ¥ " (and ;) into modes. For a particular mode
Ame, extend ther >r ., vacuum solution analytically into and the coefficientd® andA® are provided for each mode
r>rmax- This extended solution represents a pure vacuumme. (Here “a” and “b” denote either the large-basis
perturbation. Chrzanowski’'s construction may now be ap-solutions, or the horizon basis solutions, or any combination
plied to it, yielding the MP solutiom_ ;™ =TI[¥ “*™] for ~ of these two sets, e.g.a” =*out” and “b”=“down”)
the mode under consideration. Upon summation over thq’hen, the Corresponding radial functid,\ﬁ n21“) of \F are sim-
modes, we obtain a valid MP solutimﬁﬁzﬂ[\lﬁ] inthe  ply given by
ranger >r max- A

Next consider the validity of the solutidiy,,=TI[¥ *] in RMe(r)=C@A@RN@) (1) 4 COIACIRM®) ()

S+ i +
the E«’iftf<rmax_0f2 : From the analyt|C|ty+ofLI{ through- The four coefficientsCi™. COW. ClWN and CUP) are
out > (established abovst follows thath', is also ana- e
ST . aB specified in Eqs(29),(36),(37).
lytic in this range. Recall also the analyticity ¢f, through-

B. Gravitational perturbations produced by sources

19n the point-like casey, is irregular at the particle’s location. In Here we consider the case in which the perturbation is
the case of a smooth extended sourggwill fail to be analytic at ~ produced by a distribution of matter-energy. This may be
the boundary of the region occupied by matter. But in both cases weither a point-like particle, or an extended object. In both
may assume thap, is analytic throughout the vacuum region. cases we assume that we are given the radial energy-
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momentum source functiol;5(r) for each moddthis is  wheref; andg; are functions of ' specified in Appendix A.
the source term in the= + 2 radial Teukolsky equatio(®)]. The above construction yields the radial functions
For simplicity we assume here that the matter source is reR\2“(r) for the solution¥ ™" that is valid (and regular
stricted to the range,,<r<rma (but this assumption may hrough $+. This domain includes the entire range
be relaxed—at least partially—as we discuss in Sec. X >T s DU NOL &ll points of <r .. The other solutiont -

BHAMo H : A
ThenR3"(r) is given by that is valid througts ~ (i.e. everywhere i <r ;, but not
at all points ofr>r ;) may be constructed in a fully analo-

A~ rmax . . . .
R (r)= TADe(r"YH(r,r")dr’, (69  gous manner. The only difference is in the functions
Fmin H=(r,r"), which now take the forms
where H*(r,r)=a*(r")R*,(r)
H(r,r")y=H*(r,r")o(r—r")+H (r,r")é(r'—r), ‘ 3 ‘
(70) _e—l(mu—wr*)z Bi—(r/)rl (\I’_),
=)

andH™*(r,r’) are two smooth functions. We construct these
functions from the twe= —2 homogeneous radial solutions H™(r,r")=a (r")R_,(r) (7).
RM@CUW=R*  and RM}*(©"I=R",  defined by their
asymptotic behavior IX. SUMMARY OF MAIN RESULTS:

; ELECTROMAGNETIC PERTURBATIONS
RE,(r)xr3e e  (r—x)

The electromagnetic case is treated in full analogy with

and the gravitational case. Here, again, the four-poteriglis
B 5 ikr constructed in Chrzanowski’'s method, by applying a certain
Rop(r)cAe ™ (r,——), differential operatodlg,, to a potential¥' gy :
wherek=w—ma/(2Mr). (Thes= +2 basis solutions are A,=Heu[Vew]. (74)
not required here. Also we do not require here a specific
normalization forR*, andRZ,.) We find Throughout this section we shall denote the electromagnetic
. potentialW g\, asW¥ for brevity. This potential satisfies equa-
HT(r,r")=a"(r")RI,(r) (71)  tions analogous to Eq$10) and (11):
and W_4[¥]=0 (75
3
: ) and
Ho(r,r')=a (r")RI,(r)+e (Mi=erd> B (r/)rf,
=) —
(72 @o=—DV¥], (76)
whereu andr, are defined in Eqs(42), (41), respectively, ~Where ¢ is the s=+1 Weyl scalar, andV_, is the s=
and —1 case of the differential operat¢®). (See, e.g{5], in

which ¥ is denoted ‘@ .” The last equation is the reduction

o d _ of Eqg. (15) therein to the Kerr caseWe use the decompo-
a*(r')=(pWRZ,,R5,]))7! A(r’)FRiz(r’) sition
o 7 \?: l':\z)lmws)\mw 0 ei(mcp—wt)'
+B(r')R+2(r')]. (73) A% S(0)

H . iven in E@D). andWIR-. R*.1i and our goal is to construct the radial functioR8"”.
erep is a parameter given in EQ1), andW[R_,,R",] is Again, we shall construct this function first in the case of

the Wronskian of the two basis func'tiom_/hich IS propor- 1 re electromagnetic waves, and then for perturbations with
tional toA), evaluated at’. The functionsA(r’),B(r’) are  sources. Here we shall summarize the results. The main steps
specified in Appendix B. The four functionB; (r’') are in the derivations are presented in Appendix C.
given by
q A. Pure electromagnetic waves
Bi(r’)=a+(r’){fi(r’)R*z(r’)+gi(r’)—/R*z(r’)l In this case we assume that is given. This field is
dr decomposed into modes as

d .
—a(r'){fi(r')R_z(r')+gi(r')FR_Z(r')], ¢0=; RYT“(r)S)e(g)e!(Mem e,
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For each modé mw, RY7“(r) is a solution of the vacuum

radial Teukolsky equation, and we assume this function is
provided as a linear combination of two basis solutions. The

two sets of convenient basis solutions @jethe large-r set,

RyTe(M=g-iors/r, RyIOUW=glor/r3, (77

RMe(M=giorsyp RGO =pglor, (78)
and(ii) the EH set

Rin;w(down)EA—le—ikr*’ Rﬁ”{“’(“p)éeikr*, (79

R)ggw(down)EAe—ikr*’ R):mlw(up)geikr*, (80

wherek=w—ma/(2Mr ).
Assume now thatpy is given in terms of any two of the

above four basis functions f&}"], namely,

RY(r) = AQRM@(r) + AORYO)(r), (8D
and the coefficientd® andA® are provided for each mode
AMmw. (Here, again, &” and “b” denote two of the above
four basis functions, e.g.d” = “out’and “b” = “down”)
Then, the corresponding radial functiof®")” of ¥ are
given by

RAMC(r)=CAA@RYI®(r) + COIAPIRANO)(r),
(82)

The four coefficientC(M, cloud  cldown cup) now take
the values

CiM=1/(40?),C=40%p (EM), (83
ClP=Q/p,Cll"I=1/Q  (EM), (84)
where in the electromagnetic case we have
p=A2—4a’w’=\>+4av(m—aw) (EM)
and
Q=w(w+iq) (EM), (85
and, recall,
w=4kMr,, q=r,—-r_=2(M?-a??¥"

B. Electromagnetic perturbations produced by sources

PHYSICAL REVIEW D 67, 124010(2003

A rmaX
R’L“I‘“(r)zJ TATC(rYH(r,r")dr’,

I'min

(86)

where

H(r,r")=H"(r,r")o(r—r"Y+H (r,r')é(r'—r),
87

andH*(r,r’) are two smooth functions. We construct these
functions from the twe= —1 homogeneous radial solutions
RM@OW=R" and RM“(@°"I=R~  defined by their
asymptotic behavior

RY (r)xre'®’s  (r—o)

and

R, (r)xAe K«

(ry——).

(Here, again, we do not require a specific normalization for
R*,.) We find

H*(r,r)=a*(r")RIy(r) (89)
and
1
H(rr)=a”(r)RZy(n)+e (M er 3 B (r)r!,
(89)

whereu andr, are defined in Eqs42), (41), respectively,
and

— d _
A(r')—RZI(r")

a*(r')=—(pWR;,R*])* ,
dr

+§(r’)R*1(r’)]. (90)

HereW[R_,,R’,]=const is the Wronskian of the two basis
functionsR*;, and
A(r')=2iK, B(r')=A+2iwr’' —2K%A  (EM)

[with all quantities evaluated at , e.g.K=am—(r'2+ a?)].
The two functionsB; (r') are given by

d
Bi_(f’)=a+(r’){fi(r’)RH(r'Hgi(r’)WRH(W)l

Here we consider the case in which the perturbation is

produced by charges and/or currefgsy. a point charge or
an extended charged object orbiting the)B¥We assume that

we are given the radial electromagnetic source function

Tﬂ“’(r) for each moddthis is the source term in the=
+1 analogue of the radial Teukolsky equati@)]. As be-

fore we assume for simplicity that the source is restricted to

the ranger min=<r<rmax-
The radial functionR*"“(r) then takes the form

d
—a(r’){fi(r’)R1(r’)+gi(r’)WR1(r’)}
(for i=0,1), where the function(r’),g;(r’) are
fo(r')=(1—iKr'/A)e (M= ers),

go(rr): _rrei(mufwr*),
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f1(r")=(i/A)Ke'(Mmu=ers) (at least in some important applicationg/e must recall that
this singularity is after all a gauge artifact, which may in
gy(r’)=eg'(mu=er) principle be removed by an appropriate gauge transforma-
] . ) tion. Therefore, whenever the local valueshgf; or A, are
(again, withu,r, ,K,A all evaluated at’). required for the calculation of any local gauge-invariant

AM'YI]'De above constr.uctiorl yield§ thg radial funCtionSquantity, the squtionhzﬁ, A and/orh ,, A, may be used
RM1°(r) foAr the solution'?™ that is valid (and regular  regardless of the line singularity.
throughout®, ™. The other solution? ~ that is valid through- An important application which requires the knowledge
out 3.~ is constructed in a fully analogous manner. The onlyof h,z or A, is the radiation-reaction problem for a point
difference is in the functionsl = (r,r’), which now take the mass or point charge. Generically the full analysis of this
forms phenomenon requires the calculation of the local self force
N ) R acting on the particle. The electromagnetic self force is
HY(rir)=a"(r")RIy(r) gauge invariant. The situation in the gravitational problem is
1 more delicate, because the gravitational self force is a gauge-
—e iMumor) > Bo(r/)rf (W), dependent entity. Nevertheless, within the context of the
i=0 adiabatic approximation, the orbit-integrated char@e
duced by the self forgein any of the orbit's constants of

Ho(rr)=a (r')Roy(r)  (¥7). motion is gauge-invariant. One thus may use any gauge to
calculate the self force, and hence the rate of change of the
X. DISCUSSION constants of motion. Consider the calculation of the self

i ) . force according to the Mino-Sasaki-Tandk&] formulation.

Although in most of this paper we referred explicitly 10 Then the self force is the limit of the “tail-force” field at the
gravitational perturbations, the same construction applies tg,icie’s location. This limit may be taken from any desired
the electromagnetic case as well, as outlined in Sec. IX. Iijirection. Two especially convenient directions are the ingo-
eartlcular, the domains of validity are the same in both Case§ng and outgoing radial directionéso far the mode-sum
3 for ¥ (and forh; or A derived from the latterand ~ method[13] has been fully developed for these radial direc-
3~ for ¥~ (and forh,z orA,). tions only. To this end, one may use the solutibjjﬁ orA’

Also, although we have explicitly considered the ingoingwhen calculating the self-force from the radial direction
radiation gauge throughout this paper, an analogous COr™rauicie, and the solutiorh,; or A, for calculating the
struction may be applied to theutgoingradiation gauge. In  self-force fromr <r p,yicie - In both cases the line singularity

this latter gauge, too, there are two solutioNsgg and is not encounterett

V¥ore (and COWGSPOHdinQW'SBG'ASRG aAnd NoreAord): In the case of a smooth extended sourE€, (or X 7)
which are valid in the domairs jrg and ggg (but invalid  becomes a four-dimensional set. In this casé does not

in 3 drc0r S ora), respectively. The two domaisggare  develop an irregularity at *; howe.zvei, Eq(10) is violated
completely analogous t&iziﬁm, except that they are there. Thissuggestghat the quantityh,,; (constructed from

defined with respect to thiagoing rather than outgoing prin- ¥ . bY applying the differential operatéf) will not be valid

v = ) ;
cipal null congruence. In the rest of this discussion, too, wet >, €ven in its vacuum pathamely, it will fail to satisfy

shall refer explicitly to the ingoing gauge, but the same rethe vacuum Einstein equation, and/or to reproduce the origi-

marks will be applicable to the outgoing gauge as well. nal Teukolsky fieldi); bu_t this still needs to be verified.
Consider the case of a point particle. Our analysis shows " the above construction we have assumed that the par-

there does not exist a single solution for the radiation-gaug8Cl€'s worldline or the extended source is restricted to a

h,s or A, that is regular in the entire off-worldline neigh- "@NJEr min=<"'<F'max. This assumption was made primarily for

borhood of the particle. Instead, the solut¥ri (and corre- conceptual clarity, as it allows us to discuss the behavior of,

. L + . -

spondinglyh;ﬁ,A;) has a line singularity along the outgo- E'g'.‘l’ ' '?) theltwodvaClIJum reglqnlslr,>rmax and r<dr.mi”’

ing null geodesicc emanating from the particle towards the ut it can be relaxed at least partially, as we now diSCuss.

past and smaller. Similarly, ¥~ (and correspondingly Consider, first, the situation in which the source is re-

h.z,A,) has a line singularity along the null geodegic

emanating from the particle towards the future and larger

11 ; itati i
The inevitability of such a line singularity in the radiation- Recall, however, that in the gravitational case there is another

. . difficulty associated with the radiation gauge: The leading-order
gauge MP was previously demonstrated in iRéf.based on asymptotic behavior of the MP, on approaching the particle’s loca-

|ndependen_t argumenté[he+ eXIS;[ence_ of ingoing r?d'at',on' tion from a generic direction, differs from that of the harmonic-
gauge solutions other thdm, A, , which admit a line sin- 45,96 MP, making this an “irregular gauge” in the terminology of
gularity in a different direction, not tangent # has not  Ref. [8]. This kind of irregularity(which is unrelated to the line
been explored yet. singularity onX ) also occurs in e.g. the Regge-Wheeler gauge in

The unavoidable occurrence of a line singularity in thethe Schwarzschild case. This difficulty may in principle be over-
radiation-gauge fields,z, A, is obviously an inconvenient come by transforming to an “intermediate gauge,” as outlined in
property. Nevertheless, it does not pose a too serious obstadkef. [8].
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stricted to the range=<r 5 with no minimal valuer ,;,,.}>  delicate aspects of the problem. This research was supported

Then the construction of? * follows just as prescribed by The Israel Science Foundatiégrant no. 74/02-11)1 the
above, without any difficulties. The construction ¥~ in Fund for the Promotion of Research at the Technion, and the

this case may formally be carried out as above; However, théechnion V.P.R. Fund.
proof given in Sec. VII for the validity o ~ throughouts. =

fails in this case: This prodfvhen applied toV ~ rather than APPENDIX A
¥ *) starts from the trivial observation thgprovided that )
the source is restricted te=r ) Eq. (10) is satisfied by¥ ~ We rewrite Eq.(61) as

throughoutr <r.,,. Then this feature is analytically ex-

tended to the entire domal ™. In the present casg.e. no S

I min) this proof is inapplicable even at its starting point. It (Dp,,)"| € 1(m wr*)zo By (r')r'
therefore still needs be verified whether in this case the so
constructed solutio’? ~ is valid in 3 ~. =C A" (r')(Dm,)"[RE(r)]—C AT (r")
In the analogous case, in which the source extends from -
infinity to some r,,, the situation is basically similar, X (Do) TR=5(r)] (AL)
though technically it is slightly more involved. Consider for
example an unbounded orbit that arrives from infinity and(@pplied atr=r" and forn=0, ... ,3). Itwill be convenient

scatters off the BH back to infinity. Here, the soluti#f™  to rewrite the polynomiak;B; (r')r' as=;B;(r’)(r—r’)'".
can in principle be constructed as above, but the solulion By virtue of Eq.(45), the left-hand side of the last equation
is not guaranteed to holdfor the reason explained just reads
above. In this case, however, due to the slow decay at large
r of the potential term in the radial Teukolsky equation, the 3 qn
standard integral solutiof48), (49) for i, diverges. One e—i(mu—wr*)E B‘(r/)_(r_r/)i:e—i(mu—mr*)n!é (r".
then has to use another Green’s functfdd] for the con- = dr” A
struction of ¢, and this may modify the functioRl(r,r").
We shall not elaborate on this case here.

Finally we note that there are a few types of special
modes which require special treatment. First, for the station- , ~
ary modeso=0, the larger basis solution&}5*("°4Y con- e ! (M=ernIB,(r')=CT A" (r')(Dpm,)"[R,]
structed in Sec. IV must be replaced by some other ones, and o, . —
the same holds for the corresponding constad{§) and —C AT (r')(Dm,)"[R-5]
cu9. Second, for “marginally superradiant” modés=0, (A2)
the EH basis soluuon@”m“’(“pd"‘”") and the corresponding
constantsC(“*“°*) are to be modified. It appears likely, (whereD" [R*,] is to be evaluated at=r'). The operator
though, that in both cases the inhomogeneous solution dq] . is given 6;
scribed in, e.g. Sec. VIII, remains valid, provided that one
substitutes the appropriate basis functi®is,(r) (i.e. those q
satisfying the correct boundary conditions at large at the Dy =——+(i/A)K.
EH). Other cases which require special attention are the so- dr
called “I=0,1 modes”(the “ =0 mode” in the electromag-
netic casg These are the perturbation modes for which theleing the radial Teukolsky equatig¢h3) we can express any
Teukolsky variablesj, and ¢, vanish identically, while,  derivative of ans=—2 vacuum radial functioR'3* as a
is nonvanishing. The extension of this construction to in-jinear combination ofR*}” and @/dr)R*}® (and conse-
clude thel =0,1 modes, as well as all other=0 modes, is quently we can express any powerdf,, as a linear com-
now underway. bination of R andD ,,,[ R*5“]). As a consequence, when

applied to any homogeneous solutid?(}é‘z“” (and in particu-

Evaluating Eq(A1) atr=r’ then implies(for n=0, . ..,3)

ACKNOWLEDGMENTS lar R*,), we have the following operator identitig$5]:
| would like to thank B. Whiting and R. Wald for inter- N+ 6ior
: : . o X ®
esting discussions and for bringing to my attention several (D) 2= (2/A)(iK 4T —M)D , + 3
2 the case of a point particle, this situation may be realized by =(2/IA)(iIK+r—M) i +A 2K (iIK+r—M)

a “fine-tuned” geodesic that asymptotes to an unstable circular or- d
bit in the far past, but falls into the BH in the future. We prefer not A+ 6Bior)]

to consider here bound geodesics emerging out of the white-hole
horizon, to avoid the conceptual complications associated with the
latter’'s causal properties. and
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(Dme)®=A"2[4iK(iIK+r—M)+(A+2-2iwr)A]D
+A [ 2iK(N+6iwr)+6iwA]
d
=AY 4iK(iK+r— M)+ (A +2-2iwr) AT

+AT3IK[4IK(IK+r—M)+(A+2—2iwr)A]
+A[2iK (N +6iwr)+6i wA]}.

Thus, we may write EQ(A2) as

N X - d
Bo(r')=C"A™(r") fn(r’)sz(f’)+gn(f’)Wsz(f’)

—CA(r’){fn(r’)Rz(r’)

+@n(r')%R2(r’)
(for n=0, ...,3),where the function$,,g,, are given by
fo(r) =12, ()=
fL(r)=(i/A)KeMu=or) g (r)=gl(Mu—ory),

fo(r)=(2A%) " 2iK(iK+r—M)

+AN+6iwr)]e(Mimers),
9a(r)=A LK +r—M)eMmor),

f3(r)=(6A%) " HiK[4iK(iIK+r—M)+(A+2—2iwr)A]
+A[2iK(A+6iwr) +6i wA]le! (MU= ore)

Ja(r)=(6A%) 4K (iK+r—M)
+(N+2-2iwr)A]el(Mu=ery),

Once the coefficientéi(r’) are determined, the original
coefficientsB,, (r') may be constructed through

3 3
> B ()= Bi(r)(r—r"),
i=0 i=0
which yields
By =Bo—Byr/ +B,r = Byr'3
By =B;—2B,r'+3B,r'2
B, =Bs.

This allows us to express the functioB§ (r') as

PHYSICAL REVIEW D 67, 124010(2003
_ d
B, (r’)=C*A+(r’)[fn(r’)R+z(r’)+gn(r’)FR+z(r’)
—CA(r’)[fn(r’)Rz(r’)

d __
TOn(r') —R,(r")
dr
with the functionsf, (r’),g,(r’) given by

f0=f0—f1r'+f2r'2—f3r,? f1=f1—2f2r'+3f3r,?

and similarly
9o=00—01F ' +0of ' 0ar ¥ 91=0;— 20,1’ +30ar 2
92=02— 303", 93=03

(with all functionsg,,, f, evaluated at' rather tharr).

APPENDIX B

Our goal is to construct the basis functidRs, from the
corresponding function®R*,. To simplify the notation,
throughout this appendix we shall vieR:;, and all other
“radial” variables as functions or, notr’. When imple-
menting the resul{B6) back in Sec. VI, one should simply
Substituter —r .

The analysis in Sec. IV, Eq$27), (32), implies

H[R;,]=C*RZ,,

which [since H is the inverse of the operatoDg,,)?] is
equivalent to

Rizzci(me)A'[sz]-

With the aid of the radial Teukolsky equation, the operator
(Dm)?* acting on any vacuum solutioR’L";“’ may be ex-
pressed in terms &% and its first-order derivative. Chan-
drasekhar derived the formulésee Eq.(49CH), where
throughout this appendix “CH” refers to equations in Chap.
9 of Ref.[9])

(Dimo) [RY371=(Ag/A%)D , [RY3“]+ (B /ADRMY”,
(B1)

where

Ap=—8iK[K?+(r—M)2]+[4iK(N+2)—8iwr(r—m)]A

+8iwA?, (B2
Bo=[(A+2—2iwr)(\+6iwr)+ 12 w(iK—r+M)]A
+4iK (iK =1 +M)(A\+6iwr). (B3)
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This yields
=(C*/A3)(AgDmo[RZ,]1+BoRE,). (B4)

We also need to express the determinafiR’ ,,R7,] in
terms ofR~,
as

W[R+21R12] R+2R+2r RiZRlzr
D[R],

whereDtlzar—(iK/A)—Z(r—M)/A, which allows us to
make use of Eq(50CH). Writing

=R D[R} 2, 1- R, D

D' 1(AD e+ Bo)=A1D o+ By
[with A;,B; specified in Eq(51CH)], we obtain
W[R,,,R1,]=C"C A %ByA;—AB)W[R™,,R",].
A straightforward calculation yields
BoA1—AgB1=pA?,
leading to

W[R?,,RI,]=C*C pA~*W[R_,,R",]. (B5)

(Note the consistency of this result with the general expres-

sion for the Wronskian of the Teukolsky equation: For any
and any pair of independent solutioRg,R?,

W[R?,R2]=constx A 571,
Hence W[R:,,RI,]=consxA™3 and W[RZ,,R%,]

=constX A, in agreement with Eq(B5).) Combining this
result with Eqs(B4) and (50), we obtain

=(C*pPWR™5,R ;1) " H(ADm,[RT,]+BoR™,).

This yields

—d
CiAi=(p\N[R_2,R+2])_1{AaR+2+BR*Z}, (B6)

with

A=Ay, B=By+(iK/A)A,. (B7)

APPENDIX C

For a vacuum modemw of electromagnetic perturba-

tions, the radial functiorﬁﬁ?‘” must satisfy the two equa-
tions

PMIRMI“(r)]=0 (oh0)
and
RYT“(r) = — (Do) L RYY

“(r)]. (C2

. We find it useful to express this determinant
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The general solution for these two equations is

RM7=—p~*A(Dy,,) A[RYT ()], (C3
where
p=AN’—4a’w’=\>+4anv(m—aw) (EM).
Considering the four asymptotic basis solutions

RLe(inoutupdown gpecified in Sec. IX, the corresponding
parameter€(™ cud cldown cup) gre easily calculated
just as in the gravitational case. One finds

CiM=1/(4w?), Cl"=4w’/p (EM)

CclP=Q/p, ClWI=1/Q (EM).

The general solution to the homogeneous part of(Eg),
namely @mw)z[R” “]1=0, is easily constructed:

1

ﬁz*_”;w(r):e—i<m“—wf*>20 Bir'. (C4)
“

Consider next the case of inhomogeneous electromagnetic
perturbations. The general solution for the radial function of
¢ Mmay be expressed as

RATO(r) = f " (c5)

I'min

T"m“’(r YG(r,r')dr’.

The Green'’s function is
G(r,r")=A"(r")RL(NO(r—r")+A(r")
XRL(r)0(r"—r),
where

A* =R, /(AW[R; ;,RE,]) (%)

(evaluated at’). ThenR1“(r) is given by

ﬁi“;‘"(r):Jrr TAO(r O H(rr)dr, (C7)

whereH(r,r’) satisfies
(Do) [H(r,r")]==G(r,r')

(and the appropriate boundary conditionsratr,,,). We
find H(r,r") to be of the form

(C8)

H(r,r ) =H"(r,r")e(r—r"Y+H (r,r')é(r'—r),

(C9
with
H*(r,r")=C*A™(r" )R (r) (C10

and
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_ 1 _ Using this equation to reduce the order of differentiation, and
H™(r,r")=C~A™(r")RZ,(r)+e (Mu=er)> B (r')r'. recallingD,,,=D/+2iK/A, we obtain
1=0
(C1Y (Dmo)’[RZ11=(Ao/A)D o [RZ1]+(Bo/A)RZ
The two functionsB; (r') are determined by regularity con- (€13
ditions atr=r’, which yield where
B (r')=C*A™(r")| fi(r")RL (r’)+g-(r’)iR+ (r')
' ' - R T We may rewrite Eqs(C12),(C13) as
+ + _d + Tt
—C A ()| fi(rHRZ,(r") 1=~ (CH/A) | A RZ +BRE, |, (C14
q where
o) R A=Ag=2iK (C15
In full analogy with the gravitational cagsee Appendix A and
we find B=By+ (IK/A)Ag=\+ 2i wr — 2KZ/A.
fo=fo—far’, fi=f1, Go=Go—01r’, 01=01, We now calculate the determinaw{R7,,R",], using
and WIR? 1, RE11= R 1Dy [RE 11— RY ;Do [R3 4],

fo(r)=gemu=erd — gi(r)=0, along with Eqs(C12),(C13. The calculation yields
W[R;;,RT,]=C*C pA—2W[RZ,,R",].
Substituting this and EqC14) into Eq.(C6) we obtain

?1(r)=(i/A)Kei(mU*‘”r*), é]l(l’)zei(m“""r*),

yielding the functiond; ,g; specified in Sec. IX.
Next we expres®, in terms ofR”,, using a*(r)=C*A*(r)

R¥1=—C*(Dmy)[R%4]. (C12

Y e
=—(PWRZ;,R5,]) AaR,lJr BRZ,|.
The vacuum radial Teukolsky equation for tbe — 1 radial

function may be expressed g3 Finally, substituting this in the above equations Byr(r')
N ) andH=*(r,r') (with the substitutior —r’), we obtain the
DmuDmo=(A+2iwr)/A. expressions for these quantities as specified in Sec. IX.
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