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Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential
in Kerr spacetime

Amos Ori
Department of Physics, Technion–Israel Institute of Technology, Haifa, 32000, Israel

~Received 12 July 2002; published 6 June 2003!

We present a procedure that allows the construction of the metric perturbations and electromagnetic four-
potential, for gravitational and electromagnetic perturbations produced by sources in Kerr spacetime. This may
include, for example, the perturbations produced by a point particle or an extended object moving in orbit
around a Kerr black hole. The construction is carried out in the frequency domain. Previously, Chrzanowski
derived the vacuum metric perturbations and electromagnetic four-potential by applying a differential operator
to a certain potentialC. Here we constructC for inhomogeneous perturbations, thereby allowing the appli-
cation of Chrzanowski’s method. We address this problem in two stages: First, for vacuum perturbations~i.e.
pure gravitational or electromagnetic waves!, we construct the potential from the modes of the Weyl scalarsc0

or w0. Second, for perturbations produced by sources, we expressC in terms of the mode functions of the
source, i.e. the energy-momentum tensorTab or the electromagnetic current vectorJa .

DOI: 10.1103/PhysRevD.67.124010 PACS number~s!: 04.25.Nx
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I. INTRODUCTION

The gravitational perturbations of Kerr black holes~BHs!
are fully described by the metric perturbation~MP! hab . The
latter satisfies the linearized Einstein equation, which is a
of coupled, linear, partial differential equations. Teukols
@1,2# showed, however, that the curvature Weyl scalarsc0

andc4 each satisfy a decoupled field equation, the ‘‘mas
equation.’’ Furthermore, this decoupled equation may
separated, leading to ordinary differential equations for
radial and angular parts. This leads to a great simplifica
of the problem of determining the gravitational perturb
tions.

The problem of electromagnetic perturbations over a K
background has a similar status. The Maxwell equati
form a set of coupled, linear, partial differential equations
the four-potentialAa ~or for the Maxwell fieldFab). In this
case, too, Teukolsky@1,2# derived separable, decouple
equations for the two Maxwell scalarsw0 andw2.

For several problems, e.g. the calculation of energy
angular-momentum outflux to infinity, knowledge of the Te
kolsky variables~e.g.c4 or w2) is sufficient. However, there
are problems for which one needs the full perturbation fi
~i.e. the MPhab in the gravitational case, andAa—or alter-
natively the full tensor fieldFab—in the electromagnetic
case!. This includes, for example, the calculation of gravit
tional or electromagnetic self-force acting on a pointlike p
ticle orbiting a spinning BH.

In principle, each of the Weyl scalarsc0 andc4 contains
the full information on the gravitational perturbation
vacuum@3# ~up to a few nonradiative degrees of freedo
e.g. infinitesimal changes in the BH’s mass and spin!. Chr-
zanowski@4# developed a procedure which allows the det
mination of the general homogeneous~i.e. vacuum! solution
for the MPhab , by applying a certain differential operator t
the homogeneous solutions forc0 or c4. It was later shown
@5#, however, that this operator, when applied to a particu
solutionc0 or c4 yields a resulthab which is a valid vacuum
0556-2821/2003/67~12!/124010~19!/$20.00 67 1240
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solution, but yet it represents aphysically differentgravita-
tional perturbation. Let us rephrase this in a more expl
manner: Consider a vacuum gravitational perturbation ch
acterized by a particular functionc4. Then, there exists a
certain functionC, from which hab can be constructed by
applying Chrzanowski’s differential operator. This functio
C satisfies the same Teukolsky equation as the func
r24c4 ~wherer is a certain quantity defined below!, but yet
C doesnot coincide with the quantityr24c4 of the gravita-
tional perturbation under consideration.

The same situation occurs in the case of electromagn
perturbations. Here, too, the full information about the~ra-
diative part of the! electromagnetic perturbation is encod
in each of the Maxwell scalarsw0 andw2 @3#. Chrzanowski’s
method@4# allows the determination of the general, homog
neous solution forAa by applying a certain differential op
erator to the homogeneous solutions forw0 or w2. However,
this procedure, when applied to a particular solutionw0 or
w2, yields a vacuum solutionAa which represents a physi
cally different electromagnetic perturbation@5#.

In view of the above, the problem of constructing the M
hab ~the four-potentialAa) from c0 or c4 (w0 or w2) in-
cludes two stages: First, construct the potentialC from c0 or
c4 (w0 or w2), and second, constructhab (Aa) from C. The
second part is well known—this is Chrzanowski’s procedu
@4#. The goal of the present paper is to address the first p
namely, the determination ofC from c0 ~or from w0 in the
electromagnetic case!.1 This problem was recently addresse
for gravitational perturbations, by Lousto and Whiting~LW!
@6# in the case of a Schwarzschild BH. Here we provide
solution to this problem in the Kerr case~in the frequency
domain!.

1We shall restrict our attention in this paper to the construction
hab or Aa in the ingoing radiation gauge fromc0 or w0, respec-
tively. The analogous problem of constructinghab or Aa in the
outgoing radiation gauge fromc4 or w2 may be treated in a simila
way.
©2003 The American Physical Society10-1
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We shall consider here two different physical situatio
~i! pure gravitational or electromagnetic waves~i.e. a
vacuum perturbation in the entire spacetime!, and~ii ! gravi-
tational ~or electromagnetic! perturbations produced by
~charged! object orbiting the BH. The first problem is fairl
simple, but the second one, that of perturbations w
sources, is a bit more involved. The explicit solution forC in
this case of inhomogeneous perturbations, which is the
mary goal of this paper, is summarized in Secs. VIII~gravi-
tational case! and IX ~electromagnetic case!.

The equations relating the potentialC to the relevant Teu-
kolsky variables were derived by Wald@5# for a general al-
gebraically special, vacuum, background spacetime. The
duction of these equations to the Kerr case is given in R
@7# for the electromagnetic case and in Ref.@6# for the gravi-
tational case. Our goal is to determineC by solving these
equations. For either the gravitational or electromagn
case, there are two such differential equations relatingC to
the Teukolsky variables: aradial equation~i.e. one including
r derivatives!, which relatesC to c0 or w0, and anangular
equation~i.e. one includingu derivatives!, relatingC to c4
or w2. In Ref. @6# LW elaborated on the angular equatio
@Eq. ~2.7! therein#, and constructed its solution in th
Schwarzschild case~for gravitational perturbations!. Here we
shall elaborate on the radial equation@Eq. ~2.6! therein, or its
electromagnetic counterpart#. This in fact turns out to be a
simple ordinary differential equation, which is not difficult t
solve even in the Kerr case.

The MPhab and four-potentialAa constructed via Chrza
nowski’s method are given in the ingoing~or outgoing! ra-
diation gauge@4#. Barack and Ori@8# recently investigated
the local asymptotic behavior of the radiation gaugehab ~ei-
ther the ingoing or outgoing one! near a point particle, by
locally integrating the equations defining this gauge. Th
found that in this gaugehab cannot be well defied all aroun
the particle. Instead, there is a line of singularity th
emerges from the particle to either the ingoing or outgo
radial direction, over whichhab diverges.~This line forms a
111 dimensional singularity set in spacetime.! One can
choose to have a regular functionhab at r .r particle , where
r is the radial coordinate, but this will inevitably lead to
line singularity atr ,r particle ; and vice versa.~Barack and
Ori demonstrated this in the simplest case, i.e. a static
ticle located atr 5r particle in flat spacetime, but the sam
situation should occur also for moving particles in Ker!
Although the analysis in Ref.@8# was restricted to the gravi
tational case, it is easily extended to the electromagnetic
as well. It shows that the radiation-gaugeAa also has a line
singularity, either atr .r particle or at r ,r particle .

The solution constructed here provides an independ
demonstration to this pathology of the radiation-gauge qu
tities hab andAa near a point source. Throughout this pap
we shall assume that the source is confined to a ranger min
<r<rmax ~consider, e.g. a point mass moving on an elliptic
or circular orbit!. In both the electromagnetic and gravit
tional cases~and for either the ingoing or outgoing radiatio
gauge!, one may choose to integrate the equations govern
C from r .r max towards smallerr values. ThenC is per-
fectly regular atr .r max; but it turns out that atr ,r max, C
12401
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is irregular on an outgoing null ray emerging form the pa
ticle inwardly ~i.e. in the past direction!. Alternatively one
may integrate these equations fromr ,r min towards largerr
values, in which caseC is perfectly regular atr ,r min but at
r .r min it develops an irregularity on an outgoing null ra
emerging form the particle. This is perfectly consistent w
the above-mentioned irregularity of the radiation-gaugehab
and Aa , found earlier~for hab) by Barack and Ori@8#.
Throughout this paper we shall mostly refer to the solut
for C which is regular atr .r max but has a line singularity a
r ,r max, which we shall denoteC1 for concreteness. The
analogous solutionC2 ~which is regular atr ,r min but has a
line singularity at r .r min) may be constructed in a fully
analogous manner, as briefly summarized at the end of S
VIII and IX. ~In Sec. X we briefly discuss the possible im
plications of this line singularity to the self-force problem!

The two solutionsC1 andC2 yield two different solu-
tions for the MPhab or the four-potentialAa , both for the
‘‘same’’ ~e.g. the ingoing! radiation-gauge condition, which
we denotehab

1 ,Aa
1 andhab

2 ,Aa
2 , correspondingly. To avoid

confusion we emphasize that these two solutions~for either
hab or Aa , and, say, in the ingoing gauge! essentially repre-
sent the same physical perturbation, and they differ by
gauge. That is, the ingoing~or outgoing! radiation-gauge
condition does not completely fix the gauge.2

Since there is full analogy between the gravitational a
electromagnetic cases, the detailed calculations presente
the next seven sections will refer to the gravitational ca
only. The electromagnetic perturbations may be treated
actly in the same manner. Only in Sec. IX we shall return
the electromagnetic case and present the final procedur
constructingC for electromagnetic perturbations.

In Sec. II we give the basic field equations and estab
some notation. Section III presents the basic calculation oC
in the case of pure gravitational waves, expressing it in te
of the modes ofc0. This result is then further simplified in
Sec. IV, by expressing bothc0 and C in terms of basis
solutions~of the relevant homogeneous Teukolsky equatio!
which admit a simple asymptotic behavior at either the lar
r limit or at the event horizon~EH!. In Sec. V we develop
the general homogeneous solution for Eq.~11!, the above-
mentioned ‘‘radial equation’’ relatingC to c0, which is a
fourth-order differential equation. This general homogene
solution is required later for the construction of the releva
inhomogeneous solution~for perturbations with sources!.

In Sec. VI we address the physical situation which p
vides the main motivation for this paper, namely, gravi
tional perturbations produced by sources~e.g. a point par-
ticle, or an extended object, in orbit around a Kerr BH!. We
construct the solution forC ~more specifically,C1) in this
case, using the general homogeneous solution constru
earlier in Sec. V. In the first stage the potentialC is ex-
pressed in terms of the inhomogeneous mode function
c0. Then we further simplify the solution, expressingC di-

2It appears, though, that the ‘‘1 ’’ and ‘‘ 2 ’’ perturbations also
differ by some~non-gauge! non-radiative component, i.e. the so
called ‘‘l 50’’ and/or ‘‘ l 51’’ modes.
0-2
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RECONSTRUCTION OF INHOMOGENEOUS METRIC . . . PHYSICAL REVIEW D 67, 124010 ~2003!
rectly in terms of the mode functions of the energ
momentum distribution in spacetime.~In both stages we also
use the homogeneous basis modes ofc4 in our expression
for C.) Whereas our detailed construction refers toC1, the
construction ofC2 proceeds in a fully analogous manne
and we provide the final result forC2 as well. Some details
of the calculations are given in Appendixes A and B.

In Sec. VII we study the domain of validity of the solutio
C1 ~and similarly ofC2). For a point particle we find tha
C1 is regular everywhere except at a (111) surface
spanned by outgoing principal null geodesics emana
from the particle’s worldline in the small-r ~i.e. past! direc-
tion. We denote this surfaceS1. For an extended object, th
solutionC1 ~which is typically regular throughout! is valid
everywhere except in a domain denoted~again! S1, which is
now a four-dimensional set~the definition of which is pro-
vided therein!. In a fully analogous manner, the other sol
tion C2 is, for an extended object, valid everywhere exc
in a four-dimensional setS2; and at the point-like limitS2

degenerates to a (111) surface spanned by outgoing princ
pal null geodesics emanating from the particle’s worldline
the large-r ~i.e. future! direction, withC2 becoming irregu-
lar on S2.

Section VIII provides a summary of the construction
C, in the gravitational case, for the benefit of the reader w
wishes to implement this method in practical calculatio
Then, in Sec. IX we return to the electromagnetic probl
and summarize the procedure of constructingC in this case,
leaving many details of the derivation to Appendix C. Fina
in Sec. X we give some concluding remarks.

II. PRELIMINARIES

Consider the spacetime of a Kerr BH with massM and
specific angular momentuma. We shall use the standar
Boyer-Lindquist coordinates (t,r ,u,w), and following Teu-
kolsky @1# we denoteD[r 222Mr 1a2, S[r 21a2cos2u,
and r[21/(r 2 ia cosu). The Newman-Penrose Weyl sc
larsc0 andc4 ~corresponding tos512 ands522, respec-
tively! satisfy two decoupled master equations. Defining

c12[c0 , c22[r24c4 ,

we may formally write the two master equations as

W62@c62#54pST62 , ~1!

whereW62 is the second-order partial differential operato

Ws[2D2s] r@Ds11] r #1@~r 21a2!2/D2a2sin2u#] tt

14aMrD21]wt1@a2/D2sin22u#]ww

2sin21u]u@sinu]u#22s@a~r 2M !/D

1 i cosu sin22u#]w22s@M ~r 22a2!/D2r

2 ia cosu#] t1~s2cot2u2s!, ~2!

andT62 is the corresponding energy-momentum source te
given explicitly in Refs.@1,2#. Teukolsky further showed tha
these two Weyl scalars may be decomposed as
12401
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R62
lmv~r !S62

lmv~u!ei (mw2vt), ~3!

whereR62
lmv andS62

lmv are, respectively, solutions of the ra
dial and angular Teukolsky equations~given below!.3 The
source terms are expanded in a similar manner:

4pST625 (
lmv

T62
lmv~r !S62

lmv~u!ei (mw2vt). ~4!

The radial and angular ordinary differential equations ta
the form

P62
lmv@R62

lmv~r !#5T62
lmv~r ! ~5!

and

Q62
lmv@S62

lmv~u!#50. ~6!

Here P62
lmv and Q62

lmv are second-order linear differentia
operators, given by

Ps
lmv[D2s] r@Ds11] r #1Vr~r ! ~7!

and

Qs
lmv[sin21u]u@sinu]u#1Vu~u!,

where the potentials are

Vr~r !5@~r 21a2!2v224aMvmr1a2m212iams~r 2M !

22iM vs~r 22a2!#D2112ivsr2a2v22Ã

and

Vu~u!5a2v2cos2u2m2/sin2u22avs cosu

22mscosu/sin2u2s2cot2u1s1Ã.

The parameterÃ is Teukolsky’s @1# separation constant
which we write as

Ã5l2s2usu,

wherel is the separation constant used by Chandrasek
@9# ~often denotedl” there!. The parameterl runs over all
eigenvalues of the angular Teukolsky equation~6!. Through-
out this paper we prefer to use the separation constanl

rather thanÃ because the angular equations fors52 ands
522 have the same set of eigenvaluesl @9# ~which is not
the case forÃ).4 Also, this will allow an easier connection
with Chandrasekhar’s formalism.

Our goal is to construct the MP. In a vacuum spaceti
~i.e. T6250), the MP in the ingoing radiation gauge can

3In case the spectrum is continuous, the sum overv should be
replaced by an integral.

4In the special caseav50, the separation constantl becomes
l ( l 11)2s21usu; hence, commonl also means commonl.
0-3
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AMOS ORI PHYSICAL REVIEW D 67, 124010 ~2003!
derived from a potentialC IRG @4#, by applying to the latter a
certain second-order differential operator@10#. We shall for-
mally denote this differential operator byP IRG , namely,

hIRG5P IRG@C IRG#, ~8!

wherehIRG denotes the MP in the ingoing radiation gau
~for brevity we shall often omit the spacetime indices of t
MP!. Similarly, the MP in the outgoing radiation gauge c
be obtained from another potentialCOUT , through another
differential operatorPOUT @10#, namely,

hORG5PORG@CORG#.

In this paper we shall only consider the case of ingoing
diation gauge, but the potentialCORG ~and hence the MP in
the outgoing radiation gauge! may be constructed in a fully
analogous manner. For brevity we shall use here the nota
C[C IRG ~this variable is denotedcG in Ref. @5#!, P
[P IRG , andhab[hIRG , hence

hab5P@C#. ~9!

The functionC has to be a solution of the vacuum Te
kolsky equation forc22 @5#, namely,

W22@C#50. ~10!

In addition, it must satisfy the following differential equatio
@5,6#:

c05D4@C̄#, ~11!

where throughout this paper an overbar denotes com
conjugation. HereD is the differential operator

D5 l m]m5
r 21a2

D
] t1] r1~a/D!]w ,

wherel m is the standard outgoing Kinnersley’s tetrad vec
~see, e.g. Ref.@1#!. We use here the abbreviated notati
D4[DDDD, and the same for other operators used belo

Our goal in this paper is to construct the functionC that
satisfies Eqs.~10! and ~11!. This will allow the construction
of hab , the MP in the ingoing radiation gauge, through E
~9!. We shall first consider the case of pure vacuum grav
tional waves in the entire spacetime. In this case we ass
that c0 is known~it encodes the information on the gravit
tional waves!. Subsequently we shall consider the case
gravitational perturbations produced by a point particle~or
any other matter source! moving in the Kerr spacetime. In
this case we shall assume thatT12, the s512 energy-
momentum source term, is known.

III. PURE GRAVITATIONAL WAVES

We now consider the case of pure vacuum gravitatio
waves, namely,T6250 in the entire spacetime. The info
mation about the gravitational waves is given by means
the Weyl scalarc0. Since we are dealing here with linea
perturbations, it will be sufficient to consider a particul
12401
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modelmv of c0; the entire perturbation is then obtained b
a superposition. Thus, we now assume thatc0 takes the de-
composed form

c05R12
lmv~r !S12

lmv~u!ei (mw2vt), ~12!

and the radial function satisfies the vacuum radial equati

P12
lmv@R12

lmv~r !#50. ~13!

We shall now use the Teukolsky-Starobinsky relations
show that the desired solution of Eqs.~10!,~11! is

C̄5p21D2~D†!4@D2c0#, ~14!

wherep is a constant to be determined later, andD† is the
differential operator

D†52
r 21a2

D
] t1] r2~a/D!]w .

For a singlelmv mode we define the ‘‘reduced’’ operator

Dmv5] r1 iK /D, Dmv
† 5] r2 iK /D,

where

K[am2~r 21a2!v,

such that for any functionsf (r ) andg(u),

D@ f ~r !g~u!ei (mw2vt)#5g~u!ei (mw2vt)Dmv@ f ~r !#,

and the same relation holds between the operatorsD†,Dmv
† .

~Note thatDmv andDmv
† are the same as the operators ‘‘D0’’

and ‘‘D 0
† ,’’ respectively, in Chandrasekhar’s notation@9#.!

Using the decomposition

C̄5R̂22
lmvS12

lmv~u!ei (mw2vt), ~15!

Eq. ~14! becomes

R̂22
lmv5p21D2~Dmv

† !4@D2R12
lmv~r !#, ~16!

and Eq.~11! now reduces to

R12
lmv~r !5~Dmv!4@R̂22

lmv#. ~17!

Let us first verify thatC @the complex conjugate of Eq
~14!# satisfies Eq.~10!. The Teukolsky-Starobinsky relation
~see, e.g.@9#! imply that the radial functionR̂22

lmv(r ) con-
structed in Eq.~16! is a solution of thes522 radial vacuum
equation, namely,

P22
lmv@R̂22

lmv~r !#50. ~18!

The complex conjugate of the radial functionR̂22
lmv is a ra-

dial vacuum solution with the samel ands522, but with
negative sign form andv, which we denoteR̂22

l,2m,2v . The
angular Teukolsky equation is real, and~holding l fixed! is
invariant under the simultaneous change of signs ofs,m,v.
0-4
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RECONSTRUCTION OF INHOMOGENEOUS METRIC . . . PHYSICAL REVIEW D 67, 124010 ~2003!
Hence,S12
lmv(u) is a real function which is also a solution t

the angular Teukolsky equation~6! with 2m,2v, ands5
22; and correspondingly we may write it ascS22

l,2m,2v ,
wherec is a constant~whose value is unimportant to us!. We
find that

C5cR̂22
l,2m,2v~r !S22

l,2m,2v~u!e2 i (mw2vt). ~19!

Thus,C is indeed a solution to thes522 vacuum Teukol-
sky equation~10!—a solution characterized by the set
indicesl,2m,2v.

We still need to check thatR̂22
lmv constructed in Eq.~16!

satisfies Eq.~17! @this would in turn imply that the expres
sion ~14! satisfies Eq.~11!#, and to determine the constantp.
In fact all we need to show is that

~Dmv!4$D2~Dmv
† !4@D2R12

lmv~r !#%

is a constant multiple ofR12
lmv . This follows immediately by

applying the two parts of Theorem 1 in Chap. 9 of Ref.@9#.
Consequently, there exists a constantp such that

R12
lmv~r !5p21~Dmv!4$D2~Dmv

† !4@D2R12
lmv~r !#%. ~20!

From the analysis therein it becomes obvious5 that p is the
real constant

p5l2~l12!228v2l@a2~5l16!212a2#1144v4a4

1144v2M2, ~21!

wherea2[a22am/v. Note that the coefficientp depends
on the mode.6

As was mentioned in Sec. I, the potentialC must also
satisfy an angular differential equation, i.e. Eq.~2.7! in Ref.
@6#. The compliance of the above-constructed vacuum s
tion with this additional equation is guaranteed by virtue
the following considerations:~i! According to the analysis in
Ref. @5#, there must exist a solution to the three simultane
equations@i.e. Eqs.~10! and~11!, and the angular equation#,
and ~ii ! the solution~15!,~16! is the uniquesolution to the
simultaneous equations~10! and~11!. For any nontrivial so-
lution to the homogeneous part of Eq.~11! will violate Eq.
~10! @one can easily verify this, based on the general hom
geneous solution to Eq.~11!, constructed in Sec. V below#.

IV. FURTHER SIMPLIFICATION OF THE VACUUM
SOLUTION

Equations~15!,~16! provide the full solution forC̄. It is
possible, however, to construct a simpler and more exp
expression for the radial functionR̂22

lmv . The latter satisfies
Eq. ~18!, which is the vacuum Teukolsky equation for thes

5This may easily be deduced by applying the opera
D2(Dmv

† )4D2 to both sides of Eq.~20!, and then using Chan
drasekhar’s Theorem 1, as well as his Eq.~43! ~both in Chap. 9 of
Ref. @9#!.

6It is assumed thatp is finite and non-vanishing for all realv.
12401
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522 radial functionR22
lmv . Since this is a second-order o

dinary differential equation, its general solution may
spanned by any pair of independent solutions. LetR62

lmv(a)

andR62
lmv(b) be two such pairs of independent solutions~one

pair for s512 and one fors522). Let H denote the op-
erator which maps a vacuums512 radial functionR12

lmv

into the corresponding functionR̂22
lmv of Eq. ~16!, namely,

H[p21D2~Dmv
† !4D2.

For each modelmv there must exist a constant 232 matrix
Ci j such that

H@R12
lmv( i )~r !#5Ci j R22

lmv( j )~r !, ~22!

wherei , j run over the two basis statesa andb. The problem
thus reduces to the determination of the four constantsCi j .

There are two preferred bases, however, for which t
matrix becomes diagonal and especially easy to calcul
One such basis is the pair of solutions characterized by p
tive and negative exponents ofr * at larger. Here r * is a
function of r, defined by

dr* /dr5~r 21a2!/D ~23!

~and given explicitly below!. Note thatr * →` asr→`. The
other basis is that of positive and negative exponents ofr * at
the EH ~wherer * →2`). These two bases are also prefe
able for the physical interpretation of the solution, and for
construction via a Green function~described in Sec. VI!. The
asymptotic behavior of the vacuum radial Teukolsky fun
tions are given in e.g., Ref.@3# for all values ofs, both at the
limit of large r and at the EH.

In what follows we shall describe the application of E
~22!, and the determination of the required coefficients,
these two special bases.

A. Large-r asymptotic behavior

Considering the large-r asymptotic behavior of the
vacuum radial functionsR12

lmv(r ) andR22
lmv(r ), we may take

the two basic solutions~for eachs) to be those of positive
and negative exponents ofr * . These two solutions take th
asymptotic form

R12
lmv( in)>e2 ivr

* /r , R12
lmv(out)>eivr

* /r 5 ~24!

and

R22
lmv( in)>e2 ivr

* /r , R22
lmv(out)>eivr

* r 3 ~25!

~see@3#, and recall the factorr24}r 4 in the above definition
of c22). To avoid confusion we emphasize that the ba
solutionsR62

lmv( in,out) are defined to be theexactsolutions of
the corresponding radial equations, which satisfy
asymptotic form~24!,~25! at the leading order in 1/r ~the
same remark applies to the event-horizon basis functions
fined below!.

r

0-5



tw
r-

ve

en

s

-

the
d

e

ors
of

two

,

rm

AMOS ORI PHYSICAL REVIEW D 67, 124010 ~2003!
One can easily verify that the operatorsDmv ,Dmv
† do not

mix positive and negative exponents orr * . Therefore,
H@R12

lmv( in)# andH@R12
lmv(out)# must take the simple forms

H@R12
lmv( in)#5C( in)R22

lmv( in) ~26!

and

H@R12
lmv(out)#5C(out)R22

lmv(out) , ~27!

and the problem reduces to the determination of the
constantsC( in) and C(out). These constants may be dete
mined from the large-r asymptotic form of Eqs.~16! or ~17!.
Ignoring terms of higher order in 1/r , we have

Dmv>] r2 iv, Dmv
† >] r1 iv,

andD>r 2.
In principle, both Eqs.~16! and ~17! may be used for the

determination of each of the coefficientsC( in),C(out). Notice,
however, that whenDmv acts onR62

lmv(out) and Dmv
† on

D2R62
lmv( in) , the leading-order term proportional tov can-

cels out. Therefore, in these cases the operator effecti
decreases the powers ofr ~by 1 at least!, as] r differentiates
this power ofr. This leads to a complication, because th
we cannot ignore the higher-order terms~in 1/r ) in the op-
eratorsDmv ,Dmv

† and inD, and also the higher-order term
in the basis solutionsR62

lmv( in,out) . On the other hand, no
such cancelation of the leading order term occurs whenDmv

acts onR62
lmv( in) andDmv

† on R62
lmv(out) . Instead, we get

Dmv@R62
lmv( in)#>22ivR62

lmv( in)

and

Dmv
† @R62

lmv(out)#>2ivR62
lmv(out) .

It will therefore be convenient to calculateC( in) from Eq.
~17! andC(out) from Eq. ~16!, by substituting in these equa
tions

R12
lmv5R12

lmv(a) , R̂22
lmv5C(a)R22

lmv(a) ~28!

~with ‘‘ a’’ standing for either ‘‘in’’ or ‘‘out,’’ as appropriate!.
Equation~17! then becomes

R12
lmv( in)>16v4C( in)R22

lmv( in) ,

and Eq.~16! reads

C(out)R22
lmv(out)>16v4p21r 8R12

lmv(out) .

Since Eqs.~24!,~25! imply

R22
lmv( in)>R12

lmv( in) , R22
lmv(out)>r 8R12

lmv(out) ,

we obtain

C( in)51/~16v4!, C(out)516v4/p. ~29!
12401
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B. Event-horizon asymptotic behavior

In a completely analogous manner, we can use for
expansion ofR12

lmv and R̂22
lmv basis solutions characterize

by either negative or positive exponents ofr * at the EH~the
latter corresponds tor * →2`). These basis solutions tak
the asymptotic form

R12
lmv(down)>D22e2 ikr

* , R12
lmv(up)>eikr

* ~30!

and

R22
lmv(down)>D2e2 ikr

* , R22
lmv(up)>eikr

* ~31!

~see@3#!. Herek[v2ma/(2Mr 1), wherer 1 is ther value
at the event horizon, given by

r 65M6~M22a2!1/2.

In this case, again, one can verify that the operat
Dmv ,Dmv

† do not mix positive and negative exponents
r * . Therefore,

H@R12
lmv(down)#5C(down)R22

lmv(down) ~32!

and

H@R12
lmv(up)#5C(up)R22

lmv(up) , ~33!

and the problem reduces to the determination of the
constantsC(down) andC(up).

The leading-order form ofD5(r 2r 1)(r 2r 2) is

D>qdr ,

wheredr[r 2r 1 and

q5r 12r 252~M22a2!1/2.

Correspondingly, the leading-order forms ofDmv and Dmv
†

near the EH are

Dmv>
2Mr 1

D
~] r

*
2 ik !, Dmv

† >
2Mr 1

D
~] r

*
1 ik !,

where we have usedr 1
2 1a252Mr 1 . However, when ap-

plying the operatorsDmv ,Dmv
† to the above basis solutions

it is most convenient to viewr and r * in Eqs. ~30!,~31! as
two independent variables. In this context we have

Dmv>] r1
2Mr 1

D
~] r

*
2 ik !,

and

Dmv
† >] r1

2Mr 1

D
~] r

*
1 ik !.

The above basis functions all take the general fo
F(r )e6 ikr

* . For such functions we have

Dmv@Feikr
* #5F8eikr

* ,
0-6
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Dmv@Fe2 ikr
* #5FF82

iw

D Ge2 ikr
* ,

Dmv
† @Feikr

* #5FF81
iw

D Geikr
* ,

Dmv
† @Fe2 ikr

* #5F8e2 ikr
* ,

where w54kMr1 and a prime denotesd/dr. Note that
whenDmv acts onR62

lmv(up) andDmv
† on D2R12

lmv(down) , the
leading-order term proportional tok cancels out, and we ar
left with higher-order terms that take the lead, which is
inconvenient situation. For this reason we shall calcul
C(down) from Eq. ~17! andC(up) from Eq. ~16!. Using again
the substitution~28! ~this time with ‘‘a’’ standing for either
‘‘down’’ or ‘‘up’’ !, Eqs.~17! and ~16! become, respectively

R12
lmv(down)5C(down)~Dmv!4@R22

lmv(down)# ~34!

and

C(up)R22
lmv(up)5p21D2~Dmv

† !4@D2R12
lmv(up)#.

For the first equation we need to calculate the quantity

~Dmv!4@D2e2 ikr
* #. ~35!

A straightforward calculation yields~at the leading order!

~Dmv!4@D2e2 ikr
* #>QD22e2 ikr

* ,

where

Q5~w12iq !~w1 iq !w~w2 iq !.

We thus find

C(down)51/Q. ~36!

For the second equation we need to calculate the quant

~Dmv
† !4@D2eikr

* #.

This is just the complex conjugate of expression~35!, and we
find

~Dmv
† !4@D2eikr

* #>Q̄D22eikr
* ,

which leads to

C(up)5Q̄/p. ~37!

V. THE GENERAL HOMOGENEOUS SOLUTION
TO THE FOURTH-ORDER EQUATION

The equation~11! that determines the potentialC̄ is an
inhomogeneous fourth-order linear differential equation.
the preceding section we constructed the relevant inhom
neous solution of this equation in the case of pure vacu
perturbations, for each mode of the source termc0 @by ‘‘rel-
evant’’ we refer here to the solution that also solves
vacuum Teukolsky equation~10!#. Later we shall also need
12401
n
e

n
e-
m

e

the general solution of this fourth-order equation in order
construct the inhomogeneous solutions relevant to n
vacuum perturbations. To this end, we shall now constr
the general homogeneous solutionto Eq. ~11!.

This equation is in fact a trivial ordinary differential equ
tion. Let us denote byj the null geodesics whose tangent
the null tetrad vectorl m ~namely,j are the members of the
outgoing principal null congruence!. Let g be an affine pa-
rameter along the geodesicsj, namely,

l m5
dxm

dg
~j!.

Then for any functionf (t,r ,u,w),

D@ f #[ l m]m f 5
d f

dg
~j!.

The differential equation~11! thus reads

d4C̄

dg4
~j!5c0 . ~38!

Its general homogeneous solution is a third-order polynom
in g, whose four coefficients may be taken to be arbitra
functions ofj:

C̄5(
i 50

3

bi~j!g i ~homogeneous!. ~39!

We wish, however, to rewrite this homogeneous solut
more explicitly as a function of the four spacetime coor
nates. To this end we need to explicitly parametrize the n
geodesicsj. From the definition ofl m, along each null geo-
desicj we have

dr

dg
51,

du

dg
50,

dt

dg
5

r 21a2

D
,

dw

dg
5a/D.

We choose the origin ofg such thatg5r along the geodesic
Then t,u,w along the geodesic are given by

u5u0 , t5t01r * ~r !, w5w01u~r !, ~40!

whereu0 ,t0 ,w0 are arbitrary constants, andr * (r ) andu(r )
are given by the two integrals

r * ~r !5E r 21a2

D
dr, u~r !5E a

D
dr.

Specifically we take

r * ~r !5r 1
r 1

2 1a2

q
ln~r 2r 1!2

r 2
2 1a2

q
ln~r 2r 2!

~41!

and

u~r !5~a/q!ln@~r 2r 1!/~r 2r 2!#. ~42!
0-7
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The null geodesicsj are thus parametrized by the three p
rametersu0[u, t0[t2r * (r ), and w0[w2u(r ), and the
above general solution takes the explicit form

C̄5(
i 50

3

bi~u0 ,t0 ,w0!r i ~homogeneous!, ~43!

wherebi are arbitrary functions of their arguments.
Later we shall also need the form of this general hom

geneous solution in the frequency domain. In order to co
ply with the decomposed form~15!, for a particular mode
lmv the arbitrary functionsbi must take the form

bi5BiS12
lmv~u!eim(w2u)e2 iv(t2r

*
),

whereBi are four arbitrary constants~for each mode!. Cor-
respondingly the~homogeneous-solution! radial function
R̂22

lmv is given by

R̂22
lmv~r !5e2 i (mu2vr

*
)(
i 50

3

Bir
i ~homogeneous!.

~44!

One can easily verify that this solution indeed satisfies
homogeneous part of Eq.~17!, namely,

~Dmv!4@R̂22
lmv#50, ~homogeneous!.

To this end, it is sufficient to note that for any functionf (r ),

Dmv@ f ~r !e2 i (mu2vr
*

)#5
d f

dr
e2 i (mu2vr

*
). ~45!

VI. GRAVITATIONAL PERTURBATIONS PRODUCED
BY SOURCES

Consider now gravitational waves produced by a po
like particle that moves freely in a Kerr spacetime. For co
creteness let us assume that the orbit is confined to the r
r min<r<rmax ~but this assumption may be relaxed, at le
partially, as we discuss in Sec. X!. The orbit needs not be
equatorial. Of special importance is the case of a circu
orbit, r min5rmax[r0. Alternatively, we may assume that th
gravitational waves are produced by a finite-size mater
tribution. In this case, too, we shall assume that the matte
confined to the ranger min<r<rmax.

In the formalism used here the single functionC is re-
quired to satisfy two differential equations—Eq.~10! and the
inhomogeneous equation~11!. These equations are mutual
consistent in the case the source term for Eq.~11! is a
vacuumgravitational fieldc0, but otherwise we should ex
pect to have an over-determination. Therefore, in a space
with a matter source~either a finite-size or a point-like
source!, we cannot expect to have a solution to both E
~10! and ~11! in the entire spacetime, or even in the ent
vacuum part of spacetime.

The nonexistence of a global solutionC can be demon-
strated from another point of view. For a point particle in
otherwise-vacuum spacetime, Barack and Ori@8# showed
there is no global radiation-gauge solutionhab around the
12401
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particle. As was discussed in Sec. I, one can construc
solutionhab

1 which is entirely regular atr .r particle , but this
solution will necessarily have a singularity in the ranger
,r particle , along a line emanating from the particle. Alte
natively one may construct a solutionhab

2 which is regular in
the entire domainr ,r particle , but this solution will have a
line singularity in the ranger .r particle .

Although it is not possible to construct a solutionC valid
in the entire vacuum region, it is possible~for a point source!
to construct a solution which is valid everywhere througho
the vacuum region, except in a set of zero measure.~In fact
there are two such solutions, those denotedC1 andC2 in
Sec. I.! We shall now proceed to construct such a solutio
Specifically we shall describe the construction of the solut
C1 ~but the other solutionC2 may be constructed in a fully
analogous manner!. This construction is applicable in bot
cases of a point source and an extended source~though in the
latter case the domain in whichC1 violates the required
equations is no longer of zero measure, as we discuss in
next section!.

As in the previous sections, we shall consider here

functionC̄1 sourced by a particular modelmv of c0. This
function takes the decomposed form~15!, and we need to
construct the radial functionR̂22

lmv . In the vacuum regionr

.r max, R̂22
lmv is just the solution described in Sec. IV. Th

was shown to be a valid solution of both Eqs.~17! and ~18!
~and this is theonly valid solution!. Note that in this externa
regionc0 is made of outgoing modes only,

R12
lmv~r !5A(out)R12

1 ~r ! ~r .r max!, ~46!

where hereafter we denote the relevant basis functions
brevity as

R62
1 [R62

lmv(out) , R62
2 [R62

lmv(down) ,

and similarly we useC1[C(out), C2[C(down). ~Only
R62

lmv(out) and R62
lmv(down) will be relevant here, becaus

these are the two homogeneous basis functions involve
the construction of the retarded Green’s functions for
Teukolsky variablesc62; see below.! Therefore, inr .r max

the radial function ofC̄1 ~for a particular modelmv) is
simply given by

R̂22
lmv~r !5C1A(out)R22

1 ~r ! ~r .r max!. ~47!

Consider next the extension of this solution into the ran
r ,r max. HereR12

lmv(r ) is not a vacuum solution~it fails to
be a vacuum solution everywhere inr min,r,rmax), and we
can no longer requireR̂22

lmv to satisfy both Eqs.~17! and

~18!.7 We therefore choose to extendR̂22
lmv into r ,r max as a

solution of Eq.~17!, and, for the time being, forget about E

7For extendingR̂22
lmv into r ,r max as a solution of Eq.~18! would

automatically yield the external solution~47! in this range too. But

then (Dmv)4@R̂22
lmv# would necessarily be the analytically-extend

vacuum functionR12
lmv , which does not conform with the actua

non-vacuum, functionR12
lmv in r min,r,rmax.
0-8
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~18!. Nevertheless, in the next section we shall show that
procedure yields a valid solutionC1, which solves both
required ~time-domain! equations~10! and ~11!, even atr
,r max—except in the domainS1 ~which is of zero measure
for a point source!.

To construct the solution of Eq.~17! we proceed as fol-
lows. The source term in this linear differential equation
R12

lmv(r ), the radial function ofc0. This function is in turn
sourced by the energy-momentum distribution in spaceti
It can thus be expressed by means of the energy-momen
source termT12

lmv(r ) via the Green’s-function method:

R12
lmv~r !5E

r min

r max
T12

lmv~r 8!G~r ,r 8!dr8. ~48!

The Green’s functionG(r ,r 8) is constructed from the two
vacuum solutions admitting the desired asymptotic behav
namely, outgoing waves at larger and down-going waves a
the EH:

G~r ,r 8!5A1~r 8!R12
1 ~r !u~r 2r 8!

1A2~r 8!R12
2 ~r !u~r 82r !, ~49!

where u denotes the standard step function, namelyu(x)
50 for x,0 andu(x)51 for x.0. The functionsA1(r 8)
andA2(r 8) are given by

A65R12
7 /~DW@R12

2 ,R12
1 # ! ~50!

~all quantities evaluated atr 8), whereW@R12
2 ,R12

1 # denotes
the Wronskian of the two homogeneous solutionsR12

6 . Note
that G, viewed as a function ofr, is continuous atr 5r 8,
namely,

A1~r 8!R12
1 ~r 8!5A2~r 8!R12

2 ~r 8!. ~51!

The coefficientA(out) in the external solution~46! is thus
given by

A(out)5E
r min

r max
T12

lmv~r 8!A1~r 8!dr8. ~52!

We now wish to construct a ‘‘Green-like function
H(r ,r 8) such that the functionR̂22

lmv will be given by

R̂22
lmv~r !5E

r min

r max
T12

lmv~r 8!H~r ,r 8!dr8, ~53!

in analogy with Eq.~48!. This will be a solution to Eq.~17!
if H(r ,r 8) satisfies the equation

~Dmv!4@H~r ,r 8!#5G~r ,r 8! ~54!

~in which the operatorDmv differentiates with respect tor,
not r 8). Motivated by the above form ofG(r ,r 8), we as-
sume a functionH(r ,r 8) of a similar form,

H~r ,r 8!5H1~r ,r 8!u~r 2r 8!1H2~r ,r 8!u~r 82r !,
~55!
12401
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whereH1(r ,r 8) andH2(r ,r 8) are smooth functions of thei
arguments. Equation~54! is then satisfied if the following
two conditions hold:~i! the two functionsH6(r ,r 8) satisfy

~Dmv!4@H6~r ,r 8!#5A6~r 8!R12
6 ~r !, ~56!

and ~ii ! H(r ,r 8) is continuous and differentiable four time
~with respect tor ) at r 5r 8; In other words, the function

y~r ,r 8![H1~r ,r 8!2H2~r ,r 8!,

and its derivatives with respect tor up to fourth order, vanish
at r 5r 8:

]ny

]r n
~r 5r 8!50, n50, . . . ,4 ~57!

~in which ]0y/]r 0[y is to be understood!. Condition ~i!
guarantees the validity of Eq.~54! at r .r 8 and r ,r 8 @the
‘‘ 1 ’’ and ‘‘ 2 ’’ cases in Eq.~56!, respectively#. Condition~ii !
is required for the validity of Eq.~54! at r 5r 8. @To see this,
rewrite Eq.~55! as

H~r ,r 8!5y~r ,r 8!u~r 2r 8!1H2~r ,r 8!,

and recall the continuity ofG at r 5r 8.#
The form of the general solutionH6(r ,r 8) to Eq. ~56! is

obvious from the analysis in Secs. IV and V. We have
specific inhomogeneous solutionC6A6(r 8)R22

6 (r ), and the
general homogeneous solution~44! ~in which the coefficients
Bi are now allowed to be arbitrary functions ofr 8); Hence
the most general solution is

H6~r ,r 8!5C6A6~r 8!R22
6 ~r !1e2 i (mu2vr

*
)(
i 50

3

Bi
6~r 8!r i .

~58!

It should be noted that since this is the most general solu
to Eq.~17!, this form must be satisfied by bothC1 andC2.
The difference between these two solutions should eme
from the choice of the free functionsBi

6 , which are to be
determined by the boundary conditions. As we are consid
ing here the solutionC1, the radial functionR̂22

lmv(r ) must
satisfy Eq. ~47! at r .r max. This is achieved by simply
choosingBi

1(r 8)[0 for all i, namely,

H1~r ,r 8!5C1A1~r 8!R22
1 ~r !. ~59!

The internal partH2(r ,r 8) has a more complicated form,

H2~r ,r 8!5C2A2~r 8!R22
2 ~r !1e2 i (mu2vr

*
)(
i 50

3

Bi
2~r 8!r i ,

~60!
0-9
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in which the four arbitrary functionsBi
2(r 8) are to be deter-

mined by condition~ii ! above, i.e. by matching toH1(r ,r 8)
at r 5r 8. The functiony(r ,r 8) is given by

y~r ,r 8!5C1A1~r 8!R22
1 ~r !2C2A2~r 8!R22

2 ~r !

2e2 i (mu2vr
*

)(
i 50

3

Bi
2~r 8!r i ,

and we must impose Eq.~57!. This might look problematic a
first glance, because apparently the latter equation imp
five requirements on the four arbitrary functionsBi

2(r 8).
However, one of these requirements is automatically sa
fied. To see this, it will be convenient to rewrite Eq.~57! as

~Dmv!n@y#50, n50, . . . ,4 ~r 5r 8!

„where (Dmv)0@y#[y is to be understood…. Considering the
casen54, the operator (Dmv)4 annihilates the last term in
the above expression fory(r ,r 8), and we have

~Dmv!4@y#5A1~r 8!R12
1 ~r !2A2~r 8!R12

2 ~r !,

which vanishes by virtue of Eq.~51!. We can therefore reex
press condition~ii ! as

~Dmv!n@y#50, n50, . . . ,3 ~r 5r 8!. ~61!

The four arbitrary functionsBi
2(r 8) should thus be deter

mined from the four conditions involved in this equation.
Appendix A we show that these four functions may be e
pressed as

Bi
2~r 8!5C1A1~r 8!F f i~r 8!R22

1 ~r 8!1gi~r 8!
d

dr8
R22

1 ~r 8!G
2C2A2~r 8!F f i~r 8!R22

2 ~r 8!

1gi~r 8!
d

dr8
R22

2 ~r 8!G
wheref i(r 8) andgi(r 8) are certain functions ofr 8 explicitly
specified therein.

Further simplification of the solution

The procedure described so far for the construction
R̂22

lmv(r ) requires the twos522 homogeneous basis func
tions R22

6 , and also the twos512 homogeneous function
R12

6 . The latter functions are required for the determinat
of A6(r 8) ~and their derivatives are involved in the Wrons
ian W@R12

2 ,R12
1 #). However, in principlec0 can be deter-

mined fromc4 ~and vice versa!, and this implies thatR12
6

may be determined fromR22
6 . In Appendix B we undertake

this goal and reexpressA6(r 8) in terms of the functionsR22
6

and their first-order derivatives. We find
12401
es
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A6~r 8!5~pC6W@R22
2 ,R22

1 # !21F Ā~r 8!
d

dr8
R22

7 ~r 8!

1B̄~r 8!R22
7 ~r 8!G , ~62!

wherep is the parameter defined in Eq.~21!, Ā and B̄ are
functions specified in Eq.~B7!, and

W@R22
2 ,R22

1 #5const3D~r 8! ~63!

is the Wronskian of the two basis solutionsR22
6 ~evaluated at

r 8).
In the above construction ofH(r ,r 8), A6 and C6 only

appear through their productsA1C1 andA2C2. We there-
fore define

a6~r 8![C6A6~r 8!,

and obtain

a6~r 8!5~pW@R22
2 ,R22

1 # !21F Ā~r 8!
d

dr8
R22

7 ~r 8!

1B̄~r 8!R22
7 ~r 8!G . ~64!

The functionsH6(r ,r 8) andBn
2(r 8) can now be reexpresse

as

H1~r ,r 8!5a1~r 8!R22
1 ~r !, ~65!

H2~r ,r 8!5a2~r 8!R22
2 ~r !1e2 i (mu2vr

*
)(
i 50

3

Bi
2~r 8!r i ,

~66!

and

Bi
2~r 8!5a1~r 8!F f i~r 8!R22

1 ~r 8!1gi~r 8!
d

dr8
R22

1 ~r 8!G
2a2~r 8!F f i~r 8!R22

2 ~r 8!1gi~r 8!
d

dr8
R22

2 ~r 8!G .

Note that when expressed in this form the functi
H(r ,r 8)—and hence alsoR̂22

lmv(r )—is invariant to a rescal-
ing of R22

1 or R22
2 by constants. Therefore there is no ne

to require here a specific normalization for these basis s
tions.

VII. DOMAIN OF VALIDITY OF THE CONSTRUCTED
SOLUTION

In the case of perturbations produced by matter sour
we must carefully examine in what parts of spacetime
construction ofC andhab is valid. First, the Chrzanowski’s
construction requires that the potentialC satisfies both equa
0-10
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tions ~10! and ~11!. These equations are mutually consiste
in vacuum, but are generally inconsistent in the presenc
matter. The matter source therefore leads to the violation
at least one of these equations. This violation occurs not o
in the region occupied by the matter, but also in cert
vacuum parts of the spacetime.8

At this stage it will be conceptually simpler to assume th
the massive object that creates the perturbation has a fi
size and a regular energy-momentum distributionTmn(xa).
~The case of a point mass will then follow in a trivial ma
ner.! Let us defineS1 to be the collection of all points P in
spacetime which have the following property: The null ge
desicj ~a member of the outgoing principal null congruenc!
passing through P intersects matter~more precisely, nonvan
ishing source termT12) on its approach from P toward
future null infinity. The collection of all other points of~the
part r .r 1 of! spacetime is denotedŜ1. In an analogous
manner, we defineS2 to be the collection of all points P fo
which j intersects matter on its approach from P towards
EH, andŜ2 is the rest of~the partr .r 1 of! spacetime. In a
more pictorial language, imagine that light rays propag
along all geodesicsj of the outgoing principal null congru
ence. ThenS2 is the portion of spacetime ‘‘shadowed’’ b
the matter-energy distributionT12(xa), andŜ2 is the non-
shadowed part. Similarly,S1 is the ‘‘past-shadowed’’ part
i.e. the part of spacetime that would be shadowed if the li
rays were propagating along the null congruence from fut
to past~and from larger towards the EH!, andŜ1 is the rest
of r .r 1 . By definition, Ŝ1 and Ŝ2 are pure vacuum do
mains. Note thatŜ1 contains the entirely-vacuum doma
r .r max, and generally it also extends throughr ,r max into
the other entirely-vacuum domainr ,r min—though the latter
domain is not entirely contained inŜ1. ~Similarly, Ŝ2 con-
tains the entire domainr ,r min , and generally extend
through r .r min into r .r max.) Also, at the point-like limit
S1 and S2 each degenerates to a (111)-dimensional sur-
face that emerges out of the particle’s worldline in either
past or future~i.e. inward or outward! direction ofj. Hence
in the point-like limit Ŝ1 or Ŝ2 cover the entire spacetim
except a set of measure zero. On the other hand, when
object is extended,S1 andS2 are four-dimensional sets.

We shall now argue that the above-constructed poten
C1—and the MPhab

1 constructed from it via Eq.~9!—are

valid in the entire domainŜ1. We shall first establish this fo
the potentialC1, namely, we shall show that Eqs.~10! and
~11! are satisfied throughoutŜ1. Then we shall show tha

8To verify this, note that in the above construction ofC1, the

individual-mode radial functionR̂22
lmv(r ) violates the radial Teukol-

sky equation in the entire domainr ,r max—which in particular in-
cludes the vacuum domainr ,r min . This violation follows from the
non-vanishing of the coefficientsBi

2 . This does not necessaril
mean that the time-domain Teukolsky equation~10! is violated ev-
erywhere inr ,r max ~in fact it does not, as we show below!; but it
does indicate the existence of a domain of violation that extend
any r value in r ,r max.
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the MP solutionhab
1 constructed fromC1 is valid through-

out Ŝ1 too. ~The same arguments apply to the validity
C2 andhab

2 throughoutŜ2.!

A. Validity of the constructed potential C¿

In the range r .r max, the above construction of th
’’Green-like function’’ H(r ,r 8) ensures that Eq.~47! is sat-
isfied byR̂22

lmv(r ), and hence also Eqs.~17! and~18!. In the
time domain this implies thatC1 satisfies Eqs.~10! and~11!
throughoutr .r max.

In the ranger ,r max we have constructedR̂22
lmv(r ) such

that it satisfies Eq.~17! for all modes, hence in the time
domain compliance with Eq.~11! is guaranteed. But Eq.~18!
is violated throughoutr ,r max @note that the homogeneou
solution ~44! violates Eq.~18!#. We shall now employ ana
lyticity considerations to demonstrate thatC1 does satisfy
the time-domainTeukolsky equation~10! throughoutŜ1.

Each modelmv of C̄1 is analytic throughoutr .r max by
construction@cf. Eq. ~47!#. Assuming convergence of th

mode sum atr .r max, we may assume thatC̄1 itself is
analytic atr .r max too.9 Now, in the above construction w

extendedC̄1 into the entire domainr ,r max as a solution of

Eq. ~11!. This implies thatC̄1 is analytic throughoutŜ1, as
we now show.

Equation ~11! is an ordinary differential equation alon
the null geodesicsj, which we may write as

d4C̄1~g;j!

dg4
5c0~g;j!. ~67!

We write its general solution explicitly~in a recursive man-

ner! asC̄1(g;j)[F1(g;j), with

Fn~g;j!5cn~j!1E
r 0

g

Fn11~g8;j!dg8, n51 . . . 4,

~68!

whereF5[c0. Here ci(j) ( i 51, . . . ,4) arefour arbitrary
functions of the three variablesu0 ,t0 ,w0. @Recall that the
geodesics j are parametrized by the three quantiti
u0 ,t0 ,w0, defined through Eq.~40!, that take constant value
along the geodesic. Also recall that we have setg5r .# We
take the lower integration limit to be, say,r 052r max. The
transformation from the coordinates (t,r ,u,w) to
(g,u0 ,t0 ,w0) can be read off Eq.~40!, and it is manifestly
analytic everywhere inr .r 1 . Therefore, the analyticity of

C̄1 in the domain r .r max implies it is analytic in
(g,u0 ,t0 ,w0) as well. This in turn implies that all four func
tions ci(j)[ci(u0 ,t0 ,w0) are analytic in (u0 ,t0 ,w0). Now,
the functionc0 is presumably analytic everywhere in th

at

9For our argument to hold it is sufficient that the mode sum c
verges throughout some ranger .r max8 >rmax, or even throughout
some open interval ofr values located somewhere atr .r max.
0-11
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AMOS ORI PHYSICAL REVIEW D 67, 124010 ~2003!
vacuum region.10 When the solution~68! is restricted to the
domainŜ1, we observe that only vacuum points (g8;j) are
encountered in the integration, hencec0(g8;j) is analytic.

This immediately implies thatC̄1 given in Eq.~68! is ana-
lytic in (g;u0 ,t0 ,w0) throughout Ŝ1, and hence also in
(t,r ,u,w).

From the analyticity ofC̄1 ~which implies the analyticity
of C1) it follows that W22@C1# is analytic too. The van-
ishing of the latter atr .r max therefore implies its vanishing
throughoutŜ1. We have thus established the compliance
C1 with Eqs.~10! and ~11! throughoutŜ1.

It is easy to see why this argument fails atS1: The func-
tion c0 fails to be analytic at the point particle, or—in th
case of an extended object—at the boundary of the ma
distribution. As a consequence, along each null geodesj

intersecting the source,C̄1 will be analytic only up to the

intersection point. ThenC̄1 will usually be non-analytic at
the boundary ofS1. Therefore we cannot expectC1 to
satisfy Eq.~10! in S1. The violation of the correspondin
frequency-domain equation~18! throughout r ,r max indi-
cates that Eq.~10! is indeed violated somewhere inS1 ~and
for any value ofr in this range!.

Finally we note that the compliance ofC1 with the ‘‘an-
gular equation’’„i.e. Eq. ~2.7! in Ref. @6#… throughoutŜ1

may be deduced by exactly the same analyticity argume

B. Validity of the constructed metric perturbation

Our goal here is to establish the validity ofhab
1 ~con-

structed fromC1 via the Chrzanowski’s method! throughout
Ŝ1, despite the presence of matter in spacetime. By ‘‘va
ity’’ we mean that ~i! hab

1 satisfies the linearized vacuum
Einstein equations, and~ii ! the s512 Weyl scalar con-
structed from it coincides with the original fieldc0. To this
end we use analyticity considerations, similar to those u
above for analyzing the validity ofC1. Here we shall briefly
sketch these considerations@11#.

Consider first the validity ofhab
1 in r .r max. To this end,

expandC1 ~and c0) into modes. For a particular mod
lmv, extend ther .r max vacuum solution analytically into
r .r max. This extended solution represents a pure vacu
perturbation. Chrzanowski’s construction may now be
plied to it, yielding the MP solutionhab

1lmv5P@C1lmv# for
the mode under consideration. Upon summation over
modes, we obtain a valid MP solutionhab

1 5P@C1# in the
ranger .r max.

Next consider the validity of the solutionhab
1 [P@C1# in

the partr ,r max of Ŝ1. From the analyticity ofC1 through-
out Ŝ1 ~established above! it follows that hab

1 is also ana-
lytic in this range. Recall also the analyticity ofc0 through-

10In the point-like casec0 is irregular at the particle’s location. In
the case of a smooth extended source,c0 will fail to be analytic at
the boundary of the region occupied by matter. But in both cases
may assume thatc0 is analytic throughout the vacuum region.
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out Ŝ1. The above criteria~i!,~ii ! for the validity of a MP
solutionhab are both formulated in terms of analytic diffe
ential operators acting onhab . From the validity of these
criteria in the ranger .r max it now follows that they must
hold throughoutŜ1.

VIII. SUMMARY OF MAIN RESULTS: GRAVITATIONAL
PERTURBATIONS

Here we briefly summarize our procedure for construct
the potentialC, for gravitational perturbations. We use th
decomposition

C̄5 (
lmv

R̂22
lmvS12

lmv~u!ei (mw2vt),

and our goal is to construct the radial functionsR̂22
lmv . We

shall now summarize this construction in the two differe
cases:~i! pure gravitational waves, and~ii ! perturbations
with sources.

A. Pure gravitational waves

In this case we assume thatc0 is given. This field is
decomposed into modes too,

c05 (
lmv

R12
lmv~r !S12

lmv~u!ei (mw2vt).

For each modelmv, R12
lmv(r ) is a solution of the vacuum

radial Teukolsky equation, and we assume this function
provided as a linear combination of two basis solutions. T
sets of convenient basis solutions are~i! the large-r set, in
which the basis solutions forR12

lmv and R22
lmv are given in

Eqs. ~24!,~25!, and ~ii ! the EH set, in which the basis solu-
tions for R62

lmv are given in Eqs.~30!,~31!.
Assume now that the information aboutc0 is given in

terms of any two of the above fours512 basis functions,
namely,

R12
lmv~r !5A(a)R12

lmv(a)~r !1A(b)R12
lmv(b)~r !,

and the coefficientsA(a) andA(b) are provided for each mod
lmv. ~Here ‘‘a’’ and ‘‘ b’’ denote either the large-r basis
solutions, or the horizon basis solutions, or any combinat
of these two sets, e.g. ‘‘a’’ 5‘‘ out’’ and ‘‘ b’’ 5‘‘ down.’’ !

Then, the corresponding radial functionsR̂22
lmv of C̄ are sim-

ply given by

R̂22
lmv~r !5C(a)A(a)R22

lmv(a)~r !1C(b)A(b)R22
lmv(b)~r !.

The four coefficientsC( in), C(out), C(down) and C(up) are
specified in Eqs.~29!,~36!,~37!.

B. Gravitational perturbations produced by sources

Here we consider the case in which the perturbation
produced by a distribution of matter-energy. This may
either a point-like particle, or an extended object. In bo
cases we assume that we are given the radial ene
e

0-12
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momentum source functionT12
lmv(r ) for each mode@this is

the source term in thes512 radial Teukolsky equation~5!#.
For simplicity we assume here that the matter source is
stricted to the ranger min<r<rmax ~but this assumption may
be relaxed—at least partially—as we discuss in Sec. X!.

Then R̂22
lmv(r ) is given by

R̂22
lmv~r !5E

r min

r max
T12

lmv~r 8!H~r ,r 8!dr8, ~69!

where

H~r ,r 8!5H1~r ,r 8!u~r 2r 8!1H2~r ,r 8!u~r 82r !,
~70!

andH6(r ,r 8) are two smooth functions. We construct the
functions from the twos522 homogeneous radial solution
R22

lmv(out)[R22
1 and R22

lmv(down)[R22
2 , defined by their

asymptotic behavior

R22
1 ~r !}r 3eivr

* ~r→`!

and

R22
2 ~r !}D2e2 ikr

* ~r * →2`!,

wherek5v2ma/(2Mr 1). ~The s512 basis solutions are
not required here. Also we do not require here a spec
normalization forR22

1 andR22
2 .) We find

H1~r ,r 8!5a1~r 8!R22
1 ~r ! ~71!

and

H2~r ,r 8!5a2~r 8!R22
2 ~r !1e2 i (mu2vr

*
)(
i 50

3

Bi
2~r 8!r i ,

~72!

whereu and r * are defined in Eqs.~42!, ~41!, respectively,
and

a6~r 8!5~pW@R22
2 ,R22

1 # !21F Ā~r 8!
d

dr8
R22

7 ~r 8!

1B̄~r 8!R22
7 ~r 8!G . ~73!

Herep is a parameter given in Eq.~21!, andW@R22
2 ,R22

1 # is
the Wronskian of the two basis functions~which is propor-
tional toD), evaluated atr 8. The functionsĀ(r 8),B̄(r 8) are
specified in Appendix B. The four functionsBi

2(r 8) are
given by

Bi
2~r 8!5a1~r 8!F f i~r 8!R22

1 ~r 8!1gi~r 8!
d

dr8
R22

1 ~r 8!G
2a2~r 8!F f i~r 8!R22

2 ~r 8!1gi~r 8!
d

dr8
R22

2 ~r 8!G ,
12401
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where f i andgi are functions ofr 8 specified in Appendix A.
The above construction yields the radial functio

R̂22
lmv(r ) for the solution C1 that is valid ~and regular!

through Ŝ1. This domain includes the entire ranger
.r max, but not all points ofr ,r max. The other solutionC2

that is valid throughŜ2 ~i.e. everywhere inr ,r min but not
at all points ofr .r min) may be constructed in a fully analo
gous manner. The only difference is in the functio
H6(r ,r 8), which now take the forms

H1~r ,r 8!5a1~r 8!R22
1 ~r !

2e2 i (mu2vr
*

)(
i 50

3

Bi
2~r 8!r i ~C2!,

H2~r ,r 8!5a2~r 8!R22
2 ~r ! ~C2!.

IX. SUMMARY OF MAIN RESULTS:
ELECTROMAGNETIC PERTURBATIONS

The electromagnetic case is treated in full analogy w
the gravitational case. Here, again, the four-potentialAa is
constructed in Chrzanowski’s method, by applying a cert
differential operatorPEM to a potentialCEM :

Aa5PEM@CEM#. ~74!

Throughout this section we shall denote the electromagn
potentialCEM asC for brevity. This potential satisfies equa
tions analogous to Eqs.~10! and ~11!:

W21@C#50 ~75!

and

w052D2@C̄#, ~76!

where w0 is the s511 Weyl scalar, andW21 is the s5
21 case of the differential operator~2!. „See, e.g.@5#, in
which C is denoted ‘‘wE . ’’ The last equation is the reduction
of Eq. ~15! therein to the Kerr case.… We use the decompo
sition

C̄5 (
lmv

R̂21
lmvS11

lmv~u!ei (mw2vt),

and our goal is to construct the radial functionsR̂21
lmv .

Again, we shall construct this function first in the case
pure electromagnetic waves, and then for perturbations w
sources. Here we shall summarize the results. The main s
in the derivations are presented in Appendix C.

A. Pure electromagnetic waves

In this case we assume thatw0 is given. This field is
decomposed into modes as

w05 (
lmv

R11
lmv~r !S11

lmv~u!ei (mw2vt).
0-13
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AMOS ORI PHYSICAL REVIEW D 67, 124010 ~2003!
For each modelmv, R11
lmv(r ) is a solution of the vacuum

radial Teukolsky equation, and we assume this function
provided as a linear combination of two basis solutions. T
two sets of convenient basis solutions are~i! the large-r set,

R11
lmv( in)>e2 ivr

* /r , R11
lmv(out)>eivr

* /r 3, ~77!

R21
lmv( in)>e2 ivr

* /r , R21
lmv(out)>reivr

* , ~78!

and ~ii ! the EH set,

R11
lmv(down)>D21e2 ikr

* , R11
lmv(up)>eikr

* , ~79!

R21
lmv(down)>De2 ikr

* , R21
lmv(up)>eikr

* , ~80!

wherek5v2ma/(2Mr 1).
Assume now thatw0 is given in terms of any two of the

above four basis functions forR11
lmv , namely,

R11
lmv~r !5A(a)R11

lmv(a)~r !1A(b)R11
lmv(b)~r !, ~81!

and the coefficientsA(a) andA(b) are provided for each mod
lmv. ~Here, again, ‘‘a’’ and ‘‘ b’’ denote two of the above
four basis functions, e.g. ‘‘a’’ 5 ‘‘ out’’ and ‘‘ b’’ 5 ‘‘ down.’’ !

Then, the corresponding radial functionsR̂21
lmv of C̄ are

given by

R̂21
lmv~r !5C(a)A(a)R21

lmv(a)~r !1C(b)A(b)R21
lmv(b)~r !.

~82!

The four coefficientsC( in), C(out), C(down), C(up) now take
the values

C( in)51/~4v2!,C(out)54v2/p ~EM!, ~83!

C(up)5Q̄/p,C(down)51/Q ~EM!, ~84!

where in the electromagnetic case we have

p5l224a2v25l214av~m2av! ~EM!

and

Q5w~w1 iq ! ~EM!, ~85!

and, recall,

w54kMr1 , q5r 12r 252~M22a2!1/2.

B. Electromagnetic perturbations produced by sources

Here we consider the case in which the perturbation
produced by charges and/or currents~e.g. a point charge o
an extended charged object orbiting the BH!. We assume tha
we are given the radial electromagnetic source funct
T11

lmv(r ) for each mode@this is the source term in thes5
11 analogue of the radial Teukolsky equation~5!#. As be-
fore we assume for simplicity that the source is restricted
the ranger min<r<rmax.

The radial functionR̂21
lmv(r ) then takes the form
12401
is
e
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n

o

R̂21
lmv~r !5E

r min

r max
T11

lmv~r 8!H~r ,r 8!dr8, ~86!

where

H~r ,r 8!5H1~r ,r 8!u~r 2r 8!1H2~r ,r 8!u~r 82r !,
~87!

andH6(r ,r 8) are two smooth functions. We construct the
functions from the twos521 homogeneous radial solution
R21

lmv(out)[R21
1 and R21

lmv(down)[R21
2 , defined by their

asymptotic behavior

R21
1 ~r !}reivr

* ~r→`!

and

R21
2 ~r !}De2 ikr

* ~r * →2`!.

~Here, again, we do not require a specific normalization
R21

6 .) We find

H1~r ,r 8!5a1~r 8!R21
1 ~r ! ~88!

and

H2~r ,r 8!5a2~r 8!R21
2 ~r !1e2 i (mu2vr

*
)(
i 50

1

Bi
2~r 8!r i ,

~89!

whereu and r * are defined in Eqs.~42!, ~41!, respectively,
and

a6~r 8!52~pW@R21
2 ,R21

1 # !21F Ā~r 8!
d

dr8
R21

7 ~r 8!

1B̄~r 8!R21
7 ~r 8!G . ~90!

HereW@R21
2 ,R21

1 #5const is the Wronskian of the two bas
functionsR21

6 , and

Ā~r 8!52iK , B̄~r 8!5l12ivr 822K2/D ~EM!

@with all quantities evaluated atr 8, e.g.K5am2(r 821a2)].
The two functionsBi

2(r 8) are given by

Bi
2~r 8!5a1~r 8!F f i~r 8!R21

1 ~r 8!1gi~r 8!
d

dr8
R21

1 ~r 8!G
2a2~r 8!F f i~r 8!R21

2 ~r 8!1gi~r 8!
d

dr8
R21

2 ~r 8!G
~for i 50,1), where the functionsf i(r 8),gi(r 8) are

f 0~r 8!5~12 iKr 8/D!ei (mu2vr
*

),

g0~r 8!52r 8ei (mu2vr
*

),
0-14
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f 1~r 8!5~ i /D!Kei (mu2vr
*

)

g1~r 8!5ei (mu2vr
*

)

~again, withu,r * ,K,D all evaluated atr 8).
The above construction yields the radial functio

R̂21
lmv(r ) for the solution C1 that is valid ~and regular!

throughoutŜ1. The other solutionC2 that is valid through-
out Ŝ2 is constructed in a fully analogous manner. The o
difference is in the functionsH6(r ,r 8), which now take the
forms

H1~r ,r 8!5a1~r 8!R21
1 ~r !

2e2 i (mu2vr
*

)(
i 50

1

Bi
2~r 8!r i ~C2!,

H2~r ,r 8!5a2~r 8!R21
2 ~r ! ~C2!.

X. DISCUSSION

Although in most of this paper we referred explicitly
gravitational perturbations, the same construction applie
the electromagnetic case as well, as outlined in Sec. IX
particular, the domains of validity are the same in both cas
Ŝ1 for C1 ~and forhab

1 or Aa
1 derived from the latter!, and

Ŝ2 for C2 ~and forhab
2 or Aa

2).
Also, although we have explicitly considered the ingoi

radiation gauge throughout this paper, an analogous c
struction may be applied to theoutgoingradiation gauge. In
this latter gauge, too, there are two solutions,CORG

1 and
CORG

2 ~and correspondinglyhORG
1 ,AORG

1 andhORG
2 ,AORG

2 ),

which are valid in the domainsŜORG
1 andŜORG

2 ~but invalid

in SORG
1 or SORG

2 ), respectively. The two domainsŜORG
6 are

completely analogous toŜ6[Ŝ IRG
6 , except that they are

defined with respect to theingoing rather than outgoing prin
cipal null congruence. In the rest of this discussion, too,
shall refer explicitly to the ingoing gauge, but the same
marks will be applicable to the outgoing gauge as well.

Consider the case of a point particle. Our analysis sho
there does not exist a single solution for the radiation-ga
hab or Aa that is regular in the entire off-worldline neigh
borhood of the particle. Instead, the solutionC1 ~and corre-
spondinglyhab

1 ,Aa
1) has a line singularity along the outgo

ing null geodesicj emanating from the particle towards th
past and smallerr. Similarly, C2 ~and correspondingly
hab

2 ,Aa
2) has a line singularity along the null geodesicj

emanating from the particle towards the future and larger.
The inevitability of such a line singularity in the radiation
gauge MP was previously demonstrated in Ref.@8# based on
independent arguments.~The existence of ingoing radiation
gauge solutions other thanhab

6 ,Aa
6 , which admit a line sin-

gularity in a different direction, not tangent toj, has not
been explored yet.!

The unavoidable occurrence of a line singularity in t
radiation-gauge fieldshab , Aa is obviously an inconvenien
property. Nevertheless, it does not pose a too serious obs
12401
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~at least in some important applications!. We must recall that
this singularity is after all a gauge artifact, which may
principle be removed by an appropriate gauge transfor
tion. Therefore, whenever the local values ofhab or Aa are
required for the calculation of any local gauge-invaria
quantity, the solutionshab

1 , Aa
1 and/orhab

2 , Aa
2 may be used

regardless of the line singularity.
An important application which requires the knowled

of hab or Aa is the radiation-reaction problem for a poin
mass or point charge. Generically the full analysis of t
phenomenon requires the calculation of the local self fo
acting on the particle. The electromagnetic self force
gauge invariant. The situation in the gravitational problem
more delicate, because the gravitational self force is a gau
dependent entity. Nevertheless, within the context of
adiabatic approximation, the orbit-integrated change~in-
duced by the self force! in any of the orbit’s constants o
motion is gauge-invariant. One thus may use any gaug
calculate the self force, and hence the rate of change of
constants of motion. Consider the calculation of the s
force according to the Mino-Sasaki-Tanaka@12# formulation.
Then the self force is the limit of the ‘‘tail-force’’ field at the
particle’s location. This limit may be taken from any desir
direction. Two especially convenient directions are the ing
ing and outgoing radial directions~so far the mode-sum
method@13# has been fully developed for these radial dire
tions only!. To this end, one may use the solutionhab

1 or Aa
1

when calculating the self-force from the radial directionr
.r particle , and the solutionhab

2 or Aa
2 for calculating the

self-force fromr ,r particle . In both cases the line singularit

is not encountered.11

In the case of a smooth extended source,S1 ~or S2)
becomes a four-dimensional set. In this caseC1 does not
develop an irregularity atS1; however, Eq.~10! is violated
there. Thissuggeststhat the quantityhab

1 ~constructed from
C1 by applying the differential operatorP) will not be valid
at S1, even in its vacuum part~namely, it will fail to satisfy
the vacuum Einstein equation, and/or to reproduce the or
nal Teukolsky fieldc0); but this still needs to be verified.

In the above construction we have assumed that the
ticle’s worldline or the extended source is restricted to
ranger min<r<rmax. This assumption was made primarily fo
conceptual clarity, as it allows us to discuss the behavior
e.g. C1, in the two vacuum regions,r .r max and r ,r min ,
but it can be relaxed at least partially, as we now discus

Consider, first, the situation in which the source is

11Recall, however, that in the gravitational case there is ano
difficulty associated with the radiation gauge: The leading-or
asymptotic behavior of the MP, on approaching the particle’s lo
tion from a generic direction, differs from that of the harmoni
gauge MP, making this an ‘‘irregular gauge’’ in the terminology
Ref. @8#. This kind of irregularity~which is unrelated to the line
singularity onS6) also occurs in e.g. the Regge-Wheeler gauge
the Schwarzschild case. This difficulty may in principle be ov
come by transforming to an ‘‘intermediate gauge,’’ as outlined
Ref. @8#.
0-15
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stricted to the ranger<r max with no minimal valuer min .12

Then the construction ofC1 follows just as prescribed
above, without any difficulties. The construction ofC2 in
this case may formally be carried out as above; However,
proof given in Sec. VII for the validity ofC2 throughoutŜ2

fails in this case: This proof~when applied toC2 rather than
C1) starts from the trivial observation that~provided that
the source is restricted tor>r min) Eq. ~10! is satisfied byC2

throughout r ,r min . Then this feature is analytically ex
tended to the entire domainŜ2. In the present case~i.e. no
r min) this proof is inapplicable even at its starting point.
therefore still needs be verified whether in this case the
constructed solutionC2 is valid in Ŝ2.

In the analogous case, in which the source extends f
infinity to some r min , the situation is basically similar
though technically it is slightly more involved. Consider f
example an unbounded orbit that arrives from infinity a
scatters off the BH back to infinity. Here, the solutionC2

can in principle be constructed as above, but the solutionC1

is not guaranteed to hold~for the reason explained jus
above!. In this case, however, due to the slow decay at la
r of the potential term in the radial Teukolsky equation, t
standard integral solution~48!, ~49! for c0 diverges. One
then has to use another Green’s function@14# for the con-
struction ofc0, and this may modify the functionH(r ,r 8).
We shall not elaborate on this case here.

Finally we note that there are a few types of spec
modes which require special treatment. First, for the stat
ary modesv50, the large-r basis solutionsR62

lmv( in,out) con-
structed in Sec. IV must be replaced by some other ones,
the same holds for the corresponding constantsC( in) and
C(out). Second, for ‘‘marginally superradiant’’ modesk50,
the EH basis solutionsR62

lmv(up,down) and the corresponding
constantsC(up,down) are to be modified. It appears likely
though, that in both cases the inhomogeneous solution
scribed in, e.g. Sec. VIII, remains valid, provided that o
substitutes the appropriate basis functionsR22

6 (r ) ~i.e. those
satisfying the correct boundary conditions at larger or at the
EH!. Other cases which require special attention are the
called ‘‘l 50,1 modes’’~the ‘‘l 50 mode’’ in the electromag-
netic case!. These are the perturbation modes for which
Teukolsky variablesc0 andc4 vanish identically, whilec2
is nonvanishing. The extension of this construction to
clude thel 50,1 modes, as well as all otherv50 modes, is
now underway.
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APPENDIX A

We rewrite Eq.~61! as

~Dmv!nFe2 i (mu2vr
*

)(
i 50

3

Bi
2~r 8!r i G

5C1A1~r 8!~Dmv!n@R22
1 ~r !#2C2A2~r 8!

3~Dmv!n@R22
2 ~r !# ~A1!

~applied atr 5r 8 and forn50, . . . ,3). Itwill be convenient
to rewrite the polynomialS iBi

2(r 8)r i as S i B̂i(r 8)(r 2r 8) i .
By virtue of Eq.~45!, the left-hand side of the last equatio
reads

e2 i (mu2vr
*

)(
i 50

3

B̂i~r 8!
dn

drn
~r 2r 8! i5e2 i (mu2vr

*
)n! B̂n~r 8!.

Evaluating Eq.~A1! at r 5r 8 then implies~for n50, . . . ,3)

e2 i (mu2vr
*

)n! B̂n~r 8!5C1A1~r 8!~Dmv!n@R22
1 #

2C2A2~r 8!~Dmv!n@R22
2 #

~A2!

~whereDmv
n @R22

6 # is to be evaluated atr 5r 8). The operator
Dmv is given by

Dmv5
d

dr
1~ i /D!K.

Using the radial Teukolsky equation~13! we can express any
derivative of ans522 vacuum radial functionR22

lmv as a
linear combination ofR22

lmv and (d/dr)R22
lmv ~and conse-

quently we can express any power ofDmv as a linear com-
bination ofR22

lmv andDmv@R22
lmv#). As a consequence, whe

applied to any homogeneous solutionsR22
lmv ~and in particu-

lar R22
6 ), we have the following operator identities@15#:

~Dmv!25~2/D!~ iK 1r 2M !Dmv1
l16ivr

D

5~2/D!~ iK 1r 2M !
d

dr
1D22@2iK ~ iK 1r 2M !

1D~l16ivr !#

and

y
r-
t
le
e
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~Dmv!35D22@4iK ~ iK 1r 2M !1~l1222ivr !D#Dmv

1D22@2iK ~l16ivr !16ivD#

5D22@4iK ~ iK 1r 2M !1~l1222ivr !D#
d

dr

1D23$ iK @4iK ~ iK 1r 2M !1~l1222ivr !D#

1D@2iK ~l16ivr !16ivD#%.

Thus, we may write Eq.~A2! as

B̂n~r 8!5C1A1~r 8!F f̂ n~r 8!R22
1 ~r 8!1ĝn~r 8!

d

dr8
R22

1 ~r 8!G
2C2A2~r 8!F f̂ n~r 8!R22

2 ~r 8!

1ĝn~r 8!
d

dr8
R22

2 ~r 8!G
~for n50, . . . ,3),where the functionsf̂ n ,ĝn are given by

f̂ 0~r !5ei (mu2vr
*

), ĝ0~r !50,

f̂ 1~r !5~ i /D!Kei (mu2vr
*

), ĝ1~r !5ei (mu2vr
*

),

f̂ 2~r !5~2D2!21@2iK ~ iK 1r 2M !

1D~l16ivr !#ei (mu2vr
*

),

ĝ2~r !5D21~ iK 1r 2M !ei (mu2vr
*

),

f̂ 3~r !5~6D3!21$ iK @4iK ~ iK 1r 2M !1~l1222ivr !D#

1D@2iK ~l16ivr !16ivD#%ei (mu2vr
*

),

ĝ3~r !5~6D2!21@4iK ~ iK 1r 2M !

1~l1222ivr !D#ei (mu2vr
*

).

Once the coefficientsB̂i(r 8) are determined, the origina
coefficientsBn

2(r 8) may be constructed through

(
i 50

3

Bi
2~r 8!r i5(

i 50

3

B̂i~r 8!~r 2r 8! i ,

which yields

B0
25B̂02B̂1r 81B̂2r 822B̂3r 83,

B1
25B̂122B̂2r 813B̂3r 82,

B2
25B̂223B̂3r 8, B3

25B̂3 .

This allows us to express the functionsBn
2(r 8) as
12401
Bn
2~r 8!5C1A1~r 8!F f n~r 8!R22

1 ~r 8!1gn~r 8!
d

dr8
R22

1 ~r 8!G
2C2A2~r 8!F f n~r 8!R22

2 ~r 8!

1gn~r 8!
d

dr8
R22

2 ~r 8!G ,

with the functionsf n(r 8),gn(r 8) given by

f 05 f̂ 02 f̂ 1r 81 f̂ 2r 822 f̂ 3r 83, f 15 f̂ 122 f̂ 2r 813 f̂ 3r 82,

f 25 f̂ 223 f̂ 3r 8, f 35 f̂ 3 ,

and similarly

g05ĝ02ĝ1r 81ĝ2r 822ĝ3r 83, g15ĝ122ĝ2r 813ĝ3r 82,

g25ĝ223ĝ3r 8, g35ĝ3

~with all functionsĝn , f̂ n evaluated atr 8 rather thanr ).

APPENDIX B

Our goal is to construct the basis functionsR12
6 from the

corresponding functionsR22
6 . To simplify the notation,

throughout this appendix we shall viewR62
6 and all other

‘‘radial’’ variables as functions orr, not r 8. When imple-
menting the result~B6! back in Sec. VI, one should simpl
substituter→r 8.

The analysis in Sec. IV, Eqs.~27!, ~32!, implies

H@R12
6 #5C6R22

6 ,

which @since H is the inverse of the operator (Dmv)4] is
equivalent to

R12
6 5C6~Dmv!4@R22

6 #.

With the aid of the radial Teukolsky equation, the opera
(Dmv)4 acting on any vacuum solutionR22

lmv may be ex-
pressed in terms ofR22

lmv and its first-order derivative. Chan
drasekhar derived the formula„see Eq. ~49CH!, where
throughout this appendix ‘‘CH’’ refers to equations in Cha
9 of Ref. @9#…

~Dmv!4@R22
lmv#5~A0 /D3!Dmv@R22

lmv#1~B0 /D3!R22
lmv ,

~B1!

where

A0528iK @K21~r 2M !2#1@4iK ~l12!28ivr ~r 2m!#D

18ivD2, ~B2!

B05@~l1222ivr !~l16ivr !112iv~ iK 2r 1M !#D

14iK ~ iK 2r 1M !~l16ivr !. ~B3!
0-17
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This yields

R12
6 5~C6/D3!~A0Dmv@R22

6 #1B0R22
6 !. ~B4!

We also need to express the determinantW@R12
2 ,R12

1 # in
terms ofR22

6 . We find it useful to express this determina
as

W@R12
2 ,R12

1 #[R12
2 R12,r

1 2R12
1 R12,r

2

5R12
2 D21

† @R12,r
1 #2R12,r

1 D21
† @R12

2 #,

whereD21
† [] r2( iK /D)22(r 2M )/D, which allows us to

make use of Eq.~50CH!. Writing

D21
† ~A0Dmv1B0!5A1Dmv1B1

@with A1 ,B1 specified in Eq.~51CH!#, we obtain

W@R12
2 ,R12

1 #5C1C2D26~B0A12A0B1!W@R22
2 ,R22

1 #.

A straightforward calculation yields

B0A12A0B15pD2,

leading to

W@R12
2 ,R12

1 #5C1C2pD24W@R22
2 ,R22

1 #. ~B5!

„Note the consistency of this result with the general expr
sion for the Wronskian of the Teukolsky equation: For anys,
and any pair of independent solutionsRs

a ,Rs
b ,

W@Rs
a ,Rs

b#5const3D2s21.

Hence W@R12
2 ,R12

1 #5const3D23 and W@R22
2 ,R22

1 #
5const3D, in agreement with Eq.~B5!.… Combining this
result with Eqs.~B4! and ~50!, we obtain

A65~C6pW@R22
2 ,R22

1 # !21~A0Dmv@R22
7 #1B0R22

7 !.

This yields

C6A65~pW@R22
2 ,R22

1 # !21F Ā
d

dr
R22

7 1B̄R22
7 G , ~B6!

with

Ā5A0 , B̄5B01~ iK /D!A0 . ~B7!

APPENDIX C

For a vacuum modelmv of electromagnetic perturba
tions, the radial functionR̂21

lmv must satisfy the two equa
tions

P21
lmv@R̂21

lmv~r !#50 ~C1!

and

R11
lmv~r !52~Dmv!2@R̂21

lmv~r !#. ~C2!
12401
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The general solution for these two equations is

R̂21
lmv[2p21D~Dmv

† !2D@R11
lmv~r !#, ~C3!

where

p5l224a2v25l214av~m2av! ~EM!.

Considering the four asymptotic basis solutio
R61

lmv( in,out,up,down) specified in Sec. IX, the correspondin
parametersC( in), C(out), C(down), C(up) are easily calculated
just as in the gravitational case. One finds

C( in)51/~4v2!, C(out)54v2/p ~EM!

C(up)5Q/p, C(down)51/Q ~EM!.

The general solution to the homogeneous part of Eq.~C2!,
namely (Dmv)2@R̂21

lmv#50, is easily constructed:

R̂21
lmv~r !5e2 i (mu2vr

*
)(
i 50

1

Bir
i . ~C4!

Consider next the case of inhomogeneous electromagn
perturbations. The general solution for the radial function
w0 may be expressed as

R11
lmv~r !5E

r min

r max
T11

lmv~r 8!G~r ,r 8!dr8. ~C5!

The Green’s function is

G~r ,r 8!5A1~r 8!R11
1 ~r !u~r 2r 8!1A2~r 8!

3R11
2 ~r !u~r 82r !,

where

A65R11
7 /~DW@R11

2 ,R11
1 # ! ~C6!

~evaluated atr 8). ThenR̂21
lmv(r ) is given by

R̂21
lmv~r !5E

r min

r max
T11

lmv~r 8!H~r ,r 8!dr8, ~C7!

whereH(r ,r 8) satisfies

~Dmv!2@H~r ,r 8!#52G~r ,r 8! ~C8!

~and the appropriate boundary conditions atr .r max). We
find H(r ,r 8) to be of the form

H~r ,r 8!5H1~r ,r 8!u~r 2r 8!1H2~r ,r 8!u~r 82r !,
~C9!

with

H1~r ,r 8!5C1A1~r 8!R21
1 ~r ! ~C10!

and
0-18



-

nd

RECONSTRUCTION OF INHOMOGENEOUS METRIC . . . PHYSICAL REVIEW D 67, 124010 ~2003!
H2~r ,r 8!5C2A2~r 8!R21
2 ~r !1e2 i (mu2vr

*
)(
i 50

1

Bi
2~r 8!r i .

~C11!

The two functionsBi
2(r 8) are determined by regularity con

ditions atr 5r 8, which yield

Bi
2~r 8!5C1A1~r 8!F f i~r 8!R21

1 ~r 8!1gi~r 8!
d

dr8
R21

1 ~r 8!G
2C2A2~r 8!F f i~r 8!R21

2 ~r 8!

1gi~r 8!
d

dr8
R21

2 ~r 8!G .

In full analogy with the gravitational case~see Appendix A!
we find

f 05 f̂ 02 f̂ 1r 8, f 15 f̂ 1 , g05ĝ02ĝ1r 8, g15ĝ1 ,

and

f̂ 0~r !5ei (mu2vr
*

), ĝ0~r !50,

f̂ 1~r !5~ i /D!Kei (mu2vr
*

), ĝ1~r !5ei (mu2vr
*

),

yielding the functionsf i ,gi specified in Sec. IX.
Next we expressR11

7 in terms ofR21
7 , using

R11
6 52C6~Dmv!2@R21

6 #. ~C12!

The vacuum radial Teukolsky equation for thes521 radial
function may be expressed as@9#

Dmv
† Dmv5~l12ivr !/D.
s

12401
Using this equation to reduce the order of differentiation, a
recallingDmv5Dmv

† 12iK /D, we obtain

~Dmv!2@R21
6 #5~A0 /D!Dmv@R21

6 #1~B0 /D!R21
6 ,

~C13!

where

A052iK , B05l12ivr .

We may rewrite Eqs.~C12!,~C13! as

R11
6 52~C6/D!S Ā

d

dr
R21

6 1B̄R21
6 D , ~C14!

where

Ā5A052iK ~C15!

and

B̄5B01~ iK /D!A05l12ivr 22K2/D.

We now calculate the determinantW@R11
2 ,R11

1 #, using

W@R11
2 ,R11

1 #5R11
2 Dmv@R11

1 #2R11
1 Dmv@R11

2 #,

along with Eqs.~C12!,~C13!. The calculation yields

W@R11
2 ,R11

1 #5C1C2pD22W@R21
2 ,R21

1 #.

Substituting this and Eq.~C14! into Eq. ~C6! we obtain

a6~r ![C6A6~r !

52~pW@R21
2 ,R21

1 # !21S Ā
d

dr
R21

7 1B̄R21
7 D .

Finally, substituting this in the above equations forBi
2(r 8)

and H6(r ,r 8) ~with the substitutionr→r 8), we obtain the
expressions for these quantities as specified in Sec. IX.
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