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High velocity spikes in Gowdy spacetimes
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We study the behavior of spiky features in Gowdy spacetimes. Spikes with a velocity initially high are,
generally, driven to a low velocity. Letn be any integer greater than or equal to 1. If the initial velocity of an
upward pointing spike is between 4n23 and 4n21 the spike persists with a final velocity between 1 and 2,
while if the initial velocity is between 4n21 and 4n11, the spiky feature eventually disappears. For down-
ward pointing spikes the analogous rule is that spikes with an initial velocity between 4n24 and 4n22 persist
with a final velocity between 0 and 1, while spikes with an initial velocity between 4n22 and 4n eventually
disappear.
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I. INTRODUCTION

There have been several investigations of the approac
the singularity in inhomogeneous cosmologies, predo
nantly in the case that a two-dimensional symmetry gro
acts spatially@1–12#. The most extensively studied class
such spacetimes is the class of Gowdy spacetimes@13# on
T33R. Numerical studies of these spacetimes show that
approach to the singularity is asymptotically velocity te
dominated~AVTD ! except at an isolated set of points.

As shown in@6# this behavior can be understood by co
sidering certain terms in the equations as ‘‘potentials’’ th
affect the dynamics at each spatial point. These poten
drive the dynamics into the AVTD regime, except at tho
isolated points where one of the potentials vanishes.
behavior at each of these isolated points differs from tha
its neighbors, leading to the creation of features called sp
that become narrow as the singularity is approached.
analysis of@6# uses an explicit approximation to find a clos
form expression for the behavior of the spikes. However,
approximation only remains valid throughout the approach
the singularity for a certain class of spikes: those for wh
the ‘‘velocity’’ v of the spike is ‘‘low’’ (1,v,2 for ‘‘up-
ward pointing spikes’’ and 0,v,1 for ‘‘downward pointing
spikes’’!. What then happens if a spike forms and it initial
has a ‘‘high’’ velocity? Certain terms in the evolution equ
tions which are decaying for low velocity spikes are inste
growing in magnitude for a high velocity spike and the si
of the net effect is such that the velocity should decre
@9,16#. An explicit approximation that is valid as the veloci
at a high velocity spike decreases has not been found, l
ing open the question, ‘‘What is the long term behavior
initially high velocity spikes in Gowdy spacetimes?’’

To answer this question, we perform numerical simu
tions of Gowdy spacetimes with these high velocity spik
Since the spikes become ever narrower as the singulari
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approached, until just this narrowness causes the velocit
decrease if it is originally high, extremely high resolution
needed to follow the detailed behavior of the spike. We us
numerical method that was used in@14# to study critical col-
lapse. Here the equations are put in characteristic form
the outermost grid point is chosen to be the ingoing light
that hits the singularity at the center of the spike. In this w
the grid gets smaller as the feature that it needs to res
shrinks.

Section II presents the equations and the character
numerical method. Results are given in Sec. III and conc
sions in Sec. IV.

II. EQUATIONS AND NUMERICAL METHODS

The Gowdy metric onT33R takes the form

ds25el/2t21/2~2dt21dx2!1t@eP~dy1Qdz!21e2Pdz2#
~1!

where P, Q and l are functions oft and x. The vacuum
Einstein field equations split into ‘‘evolution’’ equations fo
P andQ;

P,tt1t21P,t2P,xx1e2P~Q,x
2 2Q,t

2 !50 ~2!

Q,tt1t21Q,t2Q,xx12~P,tQ,t2P,xQ,x!50 ~3!

and ‘‘constraint’’ equations forl,

l ,t5t@P,t
21P,x

2 1e2P~Q,t
21Q,x

2 !# ~4!

l ,x52t~P,xP,t1e2PQ,xQ,t! ~5!

~here ,a5]/]a). The constraint equations determinel once
P andQ are known. The integrability conditions for the con
straint equations are satisfied as a consequence of the e
tion equations. Since the evolution equations do not dep
on l there is essentially a complete decoupling of constra
from evolution equations. Therefore, for the purposes of t
paper we will treat only Eqs.~2!, ~3!. The only restriction
©2003 The American Physical Society09-1



c-

a

d
ns

n

t,

ue
e
a

s-
l

.

tta.

s

a
ess

do-
ss.

nts
nes

ay,
grid

ot

ere-

red
nk-

be

D. GARFINKLE AND M. WEAVER PHYSICAL REVIEW D 67, 124009 ~2003!
that the constraints place on initial data for equations~2!, ~3!
is the following: sincel at x50 is the same asl at x
52p, it follows that the integral from 0 to 2p of the right
hand side of Eq.~5! must vanish. We require that this restri
tion is satisfied by the initial data for equations~2!, ~3! and
then these equations ensure that the restriction is also s
fied at subsequent times.

The singularity is att50. It is often helpful to introduce
the coordinatet[2 ln t. Thus the singularity is approache
ast→`. In terms of this coordinate, the evolution equatio
~2!, ~3! become

P,tt2e2PQ,t
2 2e22tP,xx1e2(P2t)Q,x

2 50 ~6!

Q,tt12P,tQ,t2e22t~Q,xx12P,xQ,x!50. ~7!

The velocity is defined asv5AP,t
2 1e2PQ,t

2 . In the limit of
larget, if we neglect the terms in Eqs.~6!, ~7! proportional
to e22t then we find thatv→v` and P→v`t where v`

depends only onx. However, if v`.1 then neglect of the
terme2(P2t)Q,x

2 is not justified. What happens is that ifP,t is
greater than 1, then this term drives it to values less tha
except at the isolated points whereQ,x50. At those points
upward pointing spikes form. The previous studies@6,9,16#
suggest that if 1,P,t,2 at the spike, the spike will persis
but that ifP,t.2 at the spike,P,tt will become negative and
its magnitude will start growing exponentially int as the
spike narrows. But the previous studies leave open the q
tion, ‘‘What happens next?’’ We want to know the outcom

For our purposes, we will need the field equations in ch
acteristic form. To that end we introduce null coordinatesu
[t1x and w[t2x and characteristic variablesA, B, C
andD given by

A5~u1w!P,w , ~8!

B5~u1w!P,u , ~9!

C5~u1w!ePQ,w , ~10!

D5~u1w!ePQ,u . ~11!

The evolution Eqs.~2!, ~3! then become

A,u5~u1w!21@CD1~A2B!/2# ~12!

B,w5~u1w!21@CD1~B2A!/2# ~13!

C,u5~u1w!21@2AD1~C2D !/2# ~14!

D ,w5~u1w!21@2BC1~D2C!/2#. ~15!

We impose the condition thatP(t,x) andQ(t,x) are even
functions ofx. This ensures thatQ,x(t,0)50 and therefore
that the spike will be atx50. With this condition, we only
need to evolve on the domainx>0. This corresponds tou
>w. The characteristic initial value formulation for this sy
tem is as follows: on au5const surface we give as initia
dataA andC as functions ofw. Equations~13! and ~15! are
then integrated to yieldB andD on the initial data surface
12400
tis-

1,

s-
.
r-

The numerical method used is second order Runge-Ku
The initial condition for this integration is thatB5A and
D5C at u5w. This is a consequence of the fact thatP and
Q are even functions ofx. Now with A,B,C andD known on
the initial surface, Eqs.~12! and ~14! can be regarded a
ordinary differential equations~ODEs! for each value ofw.
At each grid point, these ODEs are integrated to yieldA and
C at the next value ofu. The numerical method used is
second order predictor-corrector method. This entire proc
is iterated to produce the full evolution.

We choose the minimum value ofw to be zero, corre-
sponding to the light ray that will hit the singularity (t50) at
the center of the spike (x50). The maximum value ofw is
the current value ofu, corresponding tox50. Thus as the
evolution proceeds, some grid points leave the physical
main and are no longer part of the evolution proce
Throughout, we choosedu5dw. This means that we lose
one grid point at each time step. When half of the grid poi
are lost, we put them back in between the remaining o
and interpolateA and C to obtain their values on the new
grid points. Thus we make the grid twice as fine. In this w
as the singularity is approached we always have enough
points to resolve the ever narrowing spike.

III. RESULTS

While our characteristic method (c-code! allows arbitrary
initial data forA andC ~as long as the initial data does n
determine a Cauchy surface1!, it is helpful to make compari-
sons with codes using the usual Cauchy methods. We th
fore also use codes that evolve equations~2!, ~3! (t code! and
Eqs. ~6!, ~7! (t code!. These codes use standard cente
differences for spatial derivatives and the iterated Cra
Nicholson~ICN! method@15# for time evolution. We begin
with Cauchy data att5p and evolve using thet code tot
5p/2. In the course of this evolution, we obtainA andC on
the null surface given byu5p/2 and 0<w<p/2, which we
use as initial data for thec code.

1If a Cauchy surface is determined, then the initial data must
compatible with the periodicity ofl.

FIG. 1. Spike inP at t59.
9-2
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To obtain solutions with high velocity spikes, we note th
in the polarized case (Q50) the velocity can take on an
values. We therefore choose initial data with smallQ. The
form of the data isP50, P,t5s cosx, Q5qcosx and Q,t
50 wheres and q are constants. Figures 1 and 2 show t
results of evolving these data. Heres528, q51.031023

and the result is produced by using thet code and evolving
to t59.

Now we take the same initial data and evolve it for
longer time, first using thet code to generate the appropria
initial data for thec code and then using the c code to evol
very close to the singularity. The result forP,t vs t at x
50 is shown in Fig. 3. As the spike forms,P,t.2. As the
spike narrows,P,t decreases, as predicted. Note thatP,t at
the spike starts out larger than 2, and that it is eventu
driven below 2.

One might wonder what mechanism is responsible
driving the spike velocity below 2. The answer comes fro
an examination of Eq.~6!. Rewriting this equation withP,tt
on one side we have

P,tt5e22tP,xx1e2PQ,t
2 2e2(P2t)Q,x

2 . ~16!

FIG. 3. P,t at the spike.

FIG. 2. Spike inP,t at t59.
12400
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At the spike the terme2(P2t)Q,x
2 vanishes and the term

e2PQ,t
2 is positive definite. The terme22tP,xx is negative,

since the spike inP is upward pointing. What is happening
that the spike is becoming so narrow and thusP,xx is becom-
ing so large that despite the smallness ofe22t the quantity
e22tP,xx is not negligible. The terme2PQ,t

2 is also not neg-
ligible, but its magnitude is less than the magnitude
e22tP,xx , so P,tt is negative. In the explicit approximation
e2PQ,t

2 and e22tP,xx are decaying in magnitude ifP,t,2,
but if P,t.2 and ifQ,xx does not vanish at the spike they a
growing in magnitude, and the leading part ofe2PQ,t

2 is half
the magnitude of the leading part ofe22tP,xx , so the net
effect is a decrease inP,tt @6,9,16#. From Fig. 3 we see tha
this decrease eventually comes to an end whileP,t is still
greater than 1. Now the conditions for the explicit appro
mation of the spike to be valid throughout the approach
the singularity are satisfied, indicating that the spike w
persist.

Another family of initial data which we use to genera
spikes is t5t0 , P5p, P,t5s, Q5q cosx and Q,t50
wheret0 , p, s andq are constants, withs.1. The constants
are chosen so that the explicit approximation to the spik
initially valid, until the spike narrows enough that the velo

FIG. 4. P,t at the spike for different initial values ofP,t .

FIG. 5. P,t and the velocity at the spike forP,t513.2 initially.
9-3
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ity begins to slide down. To allow matching of thet code to
the c code, the value oft0 is chosen to be 4pn/m, with n
11 the number of grid points for thec code and them
11st grid point identified with the first grid point in thet
code~corresponding to a difference inx of 2p). In Figs. 4–6
we show results from a family of initial data sets withn
5160 andm52050 ~which results int0'0.98), p50 and
q50.01. We varys, from 2.4 to 20.7. In Fig. 4 we again plo
P,t vs t. In Fig. 5 we plot bothP,t vs t and the velocityv
vs t for a single initial data set, withs513.2. In Fig. 6 we
plot v vs t. When 2,w0,4 there is just one ‘‘slide’’ in the
velocity, v. Its final value is about 4 minus its initial value
and the final value ofP,t is about equal to 42s. When 4
,s,6, there is a slide, after whichP,t'42s ~i.e., it is
negative!, andv'u42su. After this slide the velocity is ap-
proximately constant, whileP,t ‘‘bounces’’ to a value equa
in magnitude to 42s, but now positive (u42su). This sort of
bounce has been discussed in previous work@6# and is driven
by the terme2PQ,t

2 in the evolution equation forP. When
s.6, there is not just one slide inP,t , but a number of
slides. Each slide approximately satisfies the rulev→u4
2vu and P,t→42P,t . If P,t is negative after a slide, the
there is a bounce as just described above. IfP,t.2 after this
bounce, then a slide follows, and so on. In each case, fin
0,P,t,2, P,t'v and the conditions are satisfied such th
the explicit approximation of@6# should be valid throughou
the remaining approach to the singularity. These results
all other results we obtained from various choices of init

TABLE I. Final P,t from initial P,t.0 for integern>0 and 0
,s,1.

Initial P,t Final P,t if Q,x50 Final P,t if Q,xÞ0

4n1s s s
4n111s 11s 12s
4n121s 22s s
4n131s 12s 12s

FIG. 6. Velocity at the spike for different initial valuesP,t .
12400
ly,
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data2 agree with the picture we have just presented.
The rule for the final~after all the slides and bounces!

value of P,t , based on the initial value ofP,t is shown in
Table I, with n>0 an integer, and 0,s,1. Both initially
and finally, v'P,t , but this relation does not hold durin
bounces and slides. The rule for the final value ofP,t based
on the initial value ofP,t when Q,xÞ0, obtained from the
explicit approximations@6# ~if P,t.1, P,t→22P,t and then
if P,t,0, P,t→2P,t and reiterate!, is also given in Table I.3

To obtain a picture of what happens at downward point
spikes, one could use the same combinationt code andc
code with the appropriate initial data. But this is not nec
sary, since an upward pointing spike is mapped to a do
ward pointing spike withP,t

down512P,t
up by the Gowdy to

Ernst transformation@9#. Thus for downward pointing spike
an upwardslide in P,t occurs if P,t,21 at the spike, and
the rule for the slide isP,t→2P,t22. If P,t.2 after the
slide then there is adownwardbounceP,t→22P,t . Reiter-
ating this until 21,P,t,1, we obtain the rule shown in
Table II, withn>0 and 0,s,1. The Gowdy to Ernst trans
formation maps the conditionQ,x50 for an upward pointing
spike to form to the conditione2PQ,t50 for a downward
pointing spike to form.

The c code only gives us information concerning an e
tremely small neighborhood of the spike. This is precisely
advantage. But the rules just obtained raise the ques
‘‘How does the small neighborhood of the spike match on
the rest of space when the rule for the final value ofP,t at the
spike agrees with the rule for the final value ofP,t elsewhere
~i.e., in half the cases!?’’ To see how a spike sits in the rest o
the spacetime, we use Cauchy evolution using the symple
partial differential equation~PDE! solver @6# with mesh re-
finement@16#. We use a resolution of 1024~the 1025th grid
point is identified with the first grid point, corresponding to
difference inx of 2p). Two levels of mesh refinement ar
made at spikes, each increasing the resolution fivefold. T
code is not as fast as the combinationt code andc code, and
is not as effective over as large of a range of initial data s
nor as far into the asymptotic regime as the combinatiot
code andc code. But all the results obtained suggest th
when the rule obtained for final value ofP,t at the spike

2This method allows the study of a large number of differe
spikes with varied initial conditions into the ‘‘asymptotic regime
since the code runs very quickly.

3The discussion in this paper assumes ‘‘genericity conditions,’’
example, thatQ,xxÞ0 at upward pointing spikes. For discussion
persistence of high velocity spikes under special conditions, see@9#.

TABLE II. Final P,t from initial P,t,0 for integern>0 and
0,s,1.

Initial P,t Final P,t if Q,t50 Final P,t if Q,tÞ0

24n2s 2s s
24n212s 211s 12s
24n222s s s
24n232s 12s 12s
9-4
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matches the rule obtained elsewhere, the signatures o
spike are effectively washed out, for both upward and dow
ward pointing spikes. We show an example, for a downw
pointing spike, in Fig. 7. The initial data aren5162 andm

FIG. 7. P vs x ~left column!, Q vs x ~middle column! andP,t vs
x ~right column! at t'3.1 ~top row!, t'4.0 ~middle row! and t
'6.4 ~bottom row!.
m

nd

12400
he
-
d

52048 ~so t0'0.99), s55.7, p50, q50.01 and nowQ
5q cos(x1p/5) so that no spike is at the edge of the grid, f
easier implementation of the mesh refinement.P,t'23.7
when the downward pointing spike begins to form. The sp
features are pronounced in the middle row of Fig. 7, but
the time of the final row they are disappearing.

IV. CONCLUSIONS

We have seen that there is a mechanism that, in gen
eventually drives upward pointing spike velocities below
and downward pointing spike velocities below 1. The ge
eral asymptotic behavior of Gowdy spacetimes is then t
given in @6#. The spacetime is everywhere AVTD. At a set
isolated points there are spikes. The closer a point is t
spike, the longer it takes to reach the VTD regime. Upwa
pointing spikes in general have 1,v,2, downward point-
ing spikes in general have 0,v,1 (21,P,t,0) and the
shape of both kinds is described by expressions in@6#.
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