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High velocity spikes in Gowdy spacetimes
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We study the behavior of spiky features in Gowdy spacetimes. Spikes with a velocity initially high are,
generally, driven to a low velocity. Let be any integer greater than or equal to 1. If the initial velocity of an
upward pointing spike is betweem4 3 and /—1 the spike persists with a final velocity between 1 and 2,
while if the initial velocity is between A—1 and 4+ 1, the spiky feature eventually disappears. For down-
ward pointing spikes the analogous rule is that spikes with an initial velocity betweed 4nd 4 — 2 persist
with a final velocity between 0 and 1, while spikes with an initial velocity between 2 and 4 eventually
disappear.
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[. INTRODUCTION approached, until just this narrowness causes the velocity to
decrease if it is originally high, extremely high resolution is
There have been several investigations of the approach taeeded to follow the detailed behavior of the spike. We use a
the singularity in inhomogeneous cosmologies, predominumerical method that was used[i¥] to study critical col-
nantly in the case that a two-dimensional symmetry grougapse. Here the equations are put in characteristic form and
acts spatiallyf1—-12). The most extensively studied class of the outermost grid point is chosen to be the ingoing light ray
such spacetimes is the class of Gowdy spacetifi@son  that hits the singularity at the center of the spike. In this way,
T3x R. Numerical studies of these spacetimes show that théhe grid gets smaller as the feature that it needs to resolve
approach to the singularity is asymptotically velocity termshrinks.
dominated(AVTD) except at an isolated set of points. Section Il presents the equations and the characteristic
As shown in[6] this behavior can be understood by con- numerical method. Results are given in Sec. Illl and conclu-
sidering certain terms in the equations as “potentials” thatsions in Sec. IV.
affect the dynamics at each spatial point. These potentials
drive the dynamics into the AVTD regime, except at those Il. EQUATIONS AND NUMERICAL METHODS
isolated points where one of the potentials vanishes. The
behavior at each of these isolated points differs from that of
its neighbors, leading to the cre_atlon qf fe_atures called Sp|keSd52:e)\/zt_l/g(_dt2+dxg)+t[ep(dy+de)2+e_ PdZ]
that become narrow as the singularity is approached. The )
analysis of 6] uses an explicit approximation to find a closed

form expression for the behavior of the spikes. However, thigyhere P, Q and \ are functions oft and x. The vacuum

approximation only remains valid throughout the approach tjnstein field equations split into “evolution” equations for
the singularity for a certain class of spikes: those for whichp 3nq Q;

the “velocity” v of the spike is “low” (1<v<2 for “up-

The Gowdy metric orT3X R takes the form

ward pointing spikes” and € v <1 for “downward pointing P,tt+t_1p,t_ P xxt eZP(QZX—QZt)zo 2)
spikes”). What then happens if a spike forms and it initially ' '
has a “high” velocity? Certain terms in the evolution equa- Q,tt+t71Q,t_Q,xx+ 2(PQ—P,Q,)=0 3

tions which are decaying for low velocity spikes are instead
growing in magnitude for a high velocity spike and the signand “constraint” equations fok,
of the net effect is such that the velocity should decrease

[9,16]. An explicit approximation that is valid as the velocity N =t[Pi+P3+e?(Q3+Q%)] (4)
at a high velocity spike decreases has not been found, leav-
ing open the question, “What is the long term behavior of N x=2t(P P +€°"Q,Q,) (5)

initially high velocity spikes in Gowdy spacetimes?”

To answer this question, we perform numerical simula-(here ,=d/Jda). The constraint equations determineonce
tions of Gowdy spacetimes with these high velocity spikesP andQ are known. The integrability conditions for the con-
Since the spikes become ever narrower as the singularity &raint equations are satisfied as a consequence of the evolu-

tion equations. Since the evolution equations do not depend

on\ there is essentially a complete decoupling of constraints
*Email address: garfinkl@oakland.edu from evolution equations. Therefore, for the purposes of this
TEmail address: mweaver@phys.ualberta.ca paper we will treat only Eqgs(2), (3). The only restriction
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that the constraints place on initial data for equatit®)s(3)
is the following: sinceh at x=0 is the same a3 at x
=24, it follows that the integral from 0 to 2 of the right
hand side of Eq(5) must vanish. We require that this restric-
tion is satisfied by the initial data for equatio(®, (3) and

then these equations ensure that the restriction is also satiss -

fied at subsequent times.

The singularity is at=0. It is often helpful to introduce
the coordinater=—Int. Thus the singularity is approached
as7T—o. In terms of this coordinate, the evolution equations
(2), (3) become

P,—e*Q’—e 2P ,,+e* P 7Q3%=0 (6)
Q. +2P.Q,—e ?(Qxx+2P Q) =0. 7

The velocity is defined as= /P2 +€?’Q’. In the limit of
large 7, if we neglect the terms in Eq$6), (7) proportional
to e 27 then we find thatv —v., and P—uv.,7 where ..
depends only orx. However, ifv.,>1 then neglect of the
terme?®®~ Q3 is not justified. What happens is thaff, is

PHYSICAL REVIEW D 67, 124009 (2003

19 T T T T T T T

'p.dat'

17

15 |
14 |
18 F

12+

1 1 . L 1 1 1 \ 1 .
-0.25 -0.2 -0.156 -0.1 -0.06 0 0.05 0.1 0.15 0.2 0.25

FIG. 1. Spike inP at 7=9.

The numerical method used is second order Runge-Kutta.
The initial condition for this integration is tha&=A and
D=C atu=w. This is a consequence of the fact tifadnd
Q are even functions of. Now with A,B,C andD known on

greater than 1, then this term drives it to values less than %he initial surface, Eqs(12) and (14) can be regarded as

except at the isolated points whe@e,=0. At those points
upward pointing spikes form. The previous studié®,16
suggest that if £P <2 at the spike, the spike will persist,
but that if P .>2 at the spikeP ., will become negative and
its magnitude will start growing exponentially in as the
spike narrows. But the previous studies leave open the que
tion, “What happens next?” We want to know the outcome.

ordinary differential equation€ODES for each value ofw.

At each grid point, these ODEs are integrated to yieland

C at the next value ofi. The numerical method used is a
second order predictor-corrector method. This entire process
is iterated to produce the full evolution.

S- We choose the minimum value of to be zero, corre-
sponding to the light ray that will hit the singularity=€ 0) at

For our purposes, we will need the field equations in charthe center of the spikexE0). The maximum value ofv is

acteristic form. To that end we introduce null coordinates
=t+x and w=t—x and characteristic variable&, B, C
andD given by

A=(u+w)P,, (8)
B=(u+w)P,, 9
C=(u+w)e"Q, (10)
D=(u+w)e"Q,. (1)

The evolution Eqs(2), (3) then become

A ,=(u+w) [CD+(A-B)/2] (12
B.=(u+w) Y[CD+(B—A)/2] (13
C,=(u+w) [-AD+(C—-D)/2] (14)
D w=(u+w) Y[-BC+(D-C)/2]. (15

We impose the condition th&t(t,x) andQ(t,x) are even
functions ofx. This ensures tha® ,(t,0)=0 and therefore
that the spike will be ak=0. With this condition, we only
need to evolve on the domak®0. This corresponds ta
=w. The characteristic initial value formulation for this sys-
tem is as follows: on ai=const surface we give as initial
dataA and C as functions ofwv. Equationg13) and(15) are
then integrated to yiel@® and D on the initial data surface.

the current value ofi, corresponding tx=0. Thus as the
evolution proceeds, some grid points leave the physical do-
main and are no longer part of the evolution process.
Throughout, we choosdu=dw. This means that we lose
one grid point at each time step. When half of the grid points
are lost, we put them back in between the remaining ones
and interpolateA and C to obtain their values on the new
grid points. Thus we make the grid twice as fine. In this way,
as the singularity is approached we always have enough grid
points to resolve the ever narrowing spike.

IIl. RESULTS

While our characteristic methoa{code allows arbitrary
initial data for A and C (as long as the initial data does not
determine a Cauchy surfdgeit is helpful to make compari-
sons with codes using the usual Cauchy methods. We there-
fore also use codes that evolve equati@)s(3) (t code and
Egs. (6), (7) (7 code. These codes use standard centered
differences for spatial derivatives and the iterated Crank-
Nicholson (ICN) method[15] for time evolution. We begin
with Cauchy data at=7 and evolve using thé code tot
= /2. In the course of this evolution, we obtadrandC on
the null surface given by= 7/2 and O<sw= /2, which we
use as initial data for the code.

Uf a Cauchy surface is determined, then the initial data must be
compatible with the periodicity ok.
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FIG. 2. Spike inP , at 7=9. FIG. 4. P . at the spike for different initial values d .

To obtain solutions with high velocity spikes, we note thatAt the spike the terme’®®~7Q% vanishes and the term
in the polarized case@=0) the velocity can take on any €°°Q? is positive definite. The terre 2P ,, is negative,
values. We therefore choose initial data with sm@llThe  since the spike P is upward pointing. What is happening is
form of the data isP=0, P_,=scosx, Q=qcosx and Q , that the spike is becoming so narrow and tRus; is becom-
=0 wheres andq are constants. Figures 1 and 2 show theing so large that despite the smallnesseof” the quantity
results of evolving these data. Hese —8,q=1.0x10"3 e ?"P,, is not negligible. The terne?"Q?, is also not neg-
and the result is produced by using theode and evolving Ilglble but its magnitude is less than the magnitude of
to 7=9. e 2P xx» SOP . is negative. In the explicit approximation,

Now we take the same initial data and evolve it for anPQ ande 2P xx are decaying in magnitude B ,<2,
longer time, first using thecode to generate the appropriate but if P ~>2 and ifQ ,, does not vanish at the splke they are
initial data for thec code and then using the c code to evolvegrowmg in magnitude, and the leading parte3fQ?, is half
very close to the singularity. The result fét . vs 7 at X the magnitude of the leading part ef 2P ,,, so the net
=0 is shown in Fig. 3. As the spike formB, T>2 As the effect is a decrease iR ,, [6,9,16. From Fig. 3 we see that
spike narrowsP . decreases, as predicted. Note tRatat  this decrease eventually comes to an end whilgis still
the spike starts out larger than 2, and that it is eventuallyjreater than 1. Now the conditions for the explicit approxi-
driven below 2. mation of the spike to be valid throughout the approach to

One might wonder what mechanism is responsible fothe singularity are satisfied, indicating that the spike will
driving the spike velocity below 2. The answer comes frompersist.
an examination of Eq6). Rewriting this equation with . Another family of initial data which we use to generate
on one side we have spikes is t=ty, P=p, P ,=s, Q=qcosx and Q=0
wherety, p, s andg are constants, wite>1. The constants
are chosen so that the explicit approximation to the spike is

—a 2 2P~2 _ e . . .
=€ TP uteTQ; initially valid, until the spike narrows enough that the veloc-

e*P=1Q% . (16)

ZTT
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FIG. 3. P , at the spike. FIG. 5. P . and the velocity at the spike fd? ,=13.2 initially.
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FIG. 6. Velocity at the spike for different initial valud3 ..

ity begins to slide down. To allow matching of theode to
the ¢ code, the value of; is chosen to be #n/m, with n
+1 the number of grid points for the code and them
+1st grid point identified with the first grid point in the
code(corresponding to a difference xof 27). In Figs. 4—-6
we show results from a family of initial data sets with
=160 andm= 2050 (which results int,~0.98), p=0 and
g=0.01. We varys, from 2.4 to 20.7. In Fig. 4 we again plot
P, vs 7. In Fig. 5 we plot bothP . vs r and the velocity
vs 7 for a single initial data set, wits=13.2. In Fig. 6 we
plotv vs 7. When 2<wy<4 there is just one “slide” in the
velocity, v. Its final value is about 4 minus its initial value,
and the final value oP , is about equal to 4s. When 4
<s<6, there is a slide, after whicR ,~4—s (i.e., it is
negative, andv ~|4—s|. After this slide the velocity is ap-
proximately constant, whil® . “bounces” to a value equal
in magnitude to 4-s, but now positive [4—s|). This sort of
bounce has been discussed in previous Wéfkand is driven
by the termeZPQ?T in the evolution equation foP. When
$>6, there is not just one slide iR ., but a number of
slides. Each slide approximately satisfies the rule |4
—v| andP ,—4—P .. If P, is negative after a slide, then
there is a bounce as just described above. I>2 after this
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TABLE Il. Final P, from initial P <O for integern=0 and

0<o<1.

Initial P, FinalP . if Q ,=0 FinalP . if Q ,#0
—4n—o -0 o
—4n—-1-o —1+o 1-0o
—4n—-2—-o T o
—4n—-3—-o 1-o 1-o

dat& agree with the picture we have just presented.

The rule for the final(after all the slides and bounges
value of P ., based on the initial value d? , is shown in
Table I, withn=0 an integer, and € o<1. Both initially
and finally,v~P _, but this relation does not hold during
bounces and slides. The rule for the final valuePaf based
on the initial value ofP . whenQ ,#0, obtained from the
explicit apprOX|mat|0n$6] (if P, >1,P ,—2—P _andthen
if P ,<0,P,——P  and re|terat)3 is also g|ven |n Table{.

To obtaln a plcture of what happens at downward pointing
spikes, one could use the same combinati@ode andc
code with the appropriate initial data. But this is not neces-
sary, since an upward pointing spike is mapped to a down-
ward pointing spike withP%"“"=1—P“ by the Gowdy to
Ernst transformatiof9]. Thus for downward pointing spikes
anupwardslide in P _ occurs ifP _<—1 at the spike, and
the rule for the slide i ,——P —2. If P >2 after the
slide then there is downwardbounceP —>2 P .. Reiter-
ating this until —1<P <1, we obtaln the ruIe shown in
Table II, withn=0 and O<a'<1 The Gowdy to Ernst trans-
formatlon maps the conditio® =0 for an upward pointing
spike to form to the COI’IdItIOﬂBZPQ =0 for a downward
pointing spike to form.

The c code only gives us information concerning an ex-
tremely small neighborhood of the spike. This is precisely its
advantage. But the rules just obtained raise the question,
“How does the small neighborhood of the spike match onto
the rest of space when the rule for the final valu®gfat the
spike agrees with the rule for the final valueRf elsewhere
(i.e., in half the casg8” To see how a spike sits in the rest of
the spacetime, we use Cauchy evolution using the symplectic
partial differential equatiorfPDE) solver[6] with mesh re-
finement[16]. We use a resolution of 1024¢he 1025th grid

bounce, then a slide follows, and so on. In each case, finallyoint is identified with the first grid point, corresponding to a
0<P <2, P ,~v and the conditions are satisfied such thatdifference inx of 27). Two levels of mesh refinement are

the explicit approximation of6] should be valid throughout

made at spikes, each increasing the resolution fivefold. This

the remaining approach to the singularity. These results ancdode is not as fast as the combinattarode anct code, and
all other results we obtained from various choices of initialis not as effective over as large of a range of initial data sets

TABLE I. Final P, from initial P >0 for integern=0 and 0
<o<l1.

Initial P, FinalP . if Q=0 FinalP . if Q,#0
in+o o o
in+1+o 1+o 1-o
4n+2+o 2—0 o
4n+3+o 1-o 1-o

nor as far into the asymptotic regime as the combination
code andc code. But all the results obtained suggest that
when the rule obtained for final value &f , at the spike

2This method allows the study of a large number of different
spikes with varied initial conditions into the “asymptotic regime,”
since the code runs very quickly.

3The discussion in this paper assumes “genericity conditions,” for
example, thaQ ,,# 0 at upward pointing spikes. For discussion of
persistence of high velocity spikes under special conditions,%ee
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=2048 (so t3~0.99), s=5.7,p=0,q=0.01 and nowQ

=g cosk+/5) so that no spike is at the edge of the grid, for
easier implementation of the mesh refinemdnt.~—3.7
when the downward pointing spike begins to form. The spiky
features are pronounced in the middle row of Fig. 7, but by
the time of the final row they are disappearing.

IV. CONCLUSIONS

We have seen that there is a mechanism that, in general,
eventually drives upward pointing spike velocities below 2
and downward pointing spike velocities below 1. The gen-
eral asymptotic behavior of Gowdy spacetimes is then that
given in[6]. The spacetime is everywhere AVTD. At a set of
isolated points there are spikes. The closer a point is to a
spike, the longer it takes to reach the VTD regime. Upward
pointing spikes in general have<y <2, downward point-
ing spikes in general have<Qv <1 (—1<P ,<0) and the
shape of both kinds is described by expressions]n
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