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We study both global as well as locéMielsen-Olesenstrings in de Sitter space. While these types of
topological defects have been studied in the background of a de Sitter metric previously, we study here the full
set of coupled equations. We find only “closed” solutions. The behavior of the metric tensor of these solutions
resembles that of “supermassive” strings with a curvature singularity at the cosmological horizon. For global
strings(and the composite defeate are able to construct solutions which are regular on the interval from the
origin to the cosmological horizon if the global string core lies completely inside the horizon.
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[. INTRODUCTION angular deficit 2r. If the deficit is smaller than 2, so-
called “open,” i.e. infinitely extended solutions were found.
A number of different topological defecf4] are thought One is the above mentioned cosmic string solufnwhich
to have been formed during the phase transitions in the earlyowever has a “shadow” solution of Melvin-type for all val-
universe. Depending on the topology of the vacuum maniues of the coupling constants. For deficit larger than, 2
fold M these are domain walls, strings, monopoles and texenly the “supermassive,” “closed” solutions exib].
tures corresponding to the homotopy groupsg (M), The static solutions of the model without gauge field, so-
m (M), mo(M) and m3(M), respectively. Cosmic strings called global strings, have also been studigd11]. Like all
[1,2] have always gained a lot of interest since they areglobal defects, the global string has a long-range Goldstone
thought to be important for the structure formation in thefield which leads to a divergent energy. Moreover, the global
universe due to their huge energy per unit lenfgtbughly  string is characterized by a logarithmically divergent deficit
10%! kg/m for a string formed at grand unified theq®UT)  angle in contrast to the local string which has a constant
scale~10'® GeV]. deficit angle. The coupling to gravity in the case of the static
A classical field theory model which has stringlike solu- global monopole leads to a singularity-free monopole solu-
tions is the Abelian Higgs modéB]. These solutions, also tion [12] in the sense that while the energy is still linearly
sometimes called “vortices,” correspond to infinitely long divergent, the solid deficit angle is now finite. For the static
objects. They have a core radius inverse proportional to thglobal string the corresponding singularity can not be re-
Higgs boson mass and magnetic flux tubes with radius promoved by coupling the system to gravity and only the as-
portional to the inverse of the gauge boson mass. Couplingumption that the metric be time-dependent removes the sin-
the Abelian Higgs model minimally to gravity, the influence gularity [13].
of the vortex on the geometry of space-time was investigated Since a number of astrophysical observations such as e.g.
analytically[4]. It was shown that far away from the core of the measurement of redshifts of type la superndu4g has
the string the space-time is Minkowski minus a wedge. Itled scientists to believe that we live in a universe with posi-
was also realizefb] that if the vacuum expectation value of tive cosmological constant, the study of topological defects
the Higgs field is sufficiently largécorresponding to strings in de Sitter(dS) space seems interesting. But it also is of
having formed at a phase transition with energy scale mucknterest from another point of view, namely the dS-CFT cor-
higher than the GUT scalethen a different type of solution respondencd15]. This correspondence suggests a holo-
is possible. These so-called “supermassive strings” exisgraphic duality between gravity in&dimensional dS space
only on a finite interval of the radial coordinate and have aand a conformal field theofCFT) “living” on the boundary
curvature singularity at the maximal value of the radial co-of the dS spacetime and thus beithg 1 dimensional.
ordinate. The existence of further solutions was investigated Recently, Nielsen-Olesen strings in the background of a
in a detailed numerical analysi§,7]. It was found that the 4-dimensional de Sitter spacetime (J$ave been studied
parameter space is indeed divided by the curve of maximgll6]. However, to our knowledge, tHall system of coupled
matter and metric field equations has not been studied yet.
One of the aims of this paper is the investigation of exactly
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we investigate the composite system of a global and NielseriFhe nonvanishing components of the Einstein terSqr,
Olesen string in a curved space-time with cosmological conthen read

stant as well.
Our paper is organized as follows: we give the model and N
static, cylindrically symmetric ansatz in Sec. Il. We give the Gu=—Gzz= (LI,,N+ NI L+NJy L),

equations of motion in Sec. lll. We discuss the pure Nielsen-
Olesen solutions in Sec. IV, the global string solutions in
Sec. V and the composite system of a global and Nielsen- G :ﬂ(za LN+ NL)
Olesen string in Sec. VI. We give our summary in Sec. VII. 2 P '

Il. THE MODEL L2

—- 2
The model which describes a gravitating Nielsen-Olesen Coe NZ(ZN’?PPNH&PN) ), C)

string interacting with a global one in the presence of a non-
vanishing cosmological constant is given by the foIIowmgWherea denotes the derivative with respectgdo

action: For the matter and gauge fields, we have
f d*x— (16 G (R=2A)+ Lo+ Lgiobart c,mer) #(p,@)=n:h(p)e"?, (7)
1 .
W X(p.0)= mif(p)e™, ®)

whereR is the Ricci scalarc denotes Newton'’s constant and

A is the cosmological constant. The Lagrangian of the Abe- 1
lian Higgs model is given by3] Audxﬂ:g(”_ P(p))de. ©)
ENOZED H(DHp)* — EFMVF.U«V ! (¢¢* — ,ﬁ)Z n andm are integers indexing the vorticity of the Higgs and
2+ 4 Goldstone fields, respectively, around thexis.
2 Substituting the above configurations into the matter La-

with the covariant derivativ®d ,=V,—ieA, and the field grangian densityCy = Lo+ Lgiopalt Linter, We oObtain

strengthF ,,=d,A,—d,A, of the U1) gauge potentiah, ) 5 5

with coupling constane. ¢ is a complex scalar fieldthe _.Mn 2. 2 2
Higgs field with vacuum expectation valug, and self- Lu 2 (@5h(p)) 2 (@,(p)) 262L2(p) (@,P(p))
coupling constand ;. The Lagrangian of the global string
reads[1] 75n? ’m?
— ——h%(p)P?(p) - f2(p)
R SUUREE ORI 2L%(p) 2L°(p)
lobal= 5 duXI"X™ = 1 (XX™ — 12
gene 2 4 )\1771

(h2(p)~ 1%~ ”’1 ~2 (12(p) - )
wherey is a complex scalar fiel¢the Goldstone fieldwith
vacuum expectation valug, and self-coupling\,. Finally,

)\
following [17] we introduce an extra potential which couples 3771 (h%(p)—1)(f2(p)—q?). (10)
(with coupling constantg) the two sectors of the model
directly to each other:
N Ill. EQUATIONS OF MOTION
3
Linter=— 4 (¢¢" = 7)) (xXx* = 75). 4) We define the following dimensionless variable and func-
tion:

Without this term, the global and local string would be
coupled only indirectly over gravity. In this paper we will x=\N1m1p, L(X)=L(p) 71Ny (1)

use units whiclh=c=1.
Then, the total Lagrangian only depends on the following
A. The ansatz dimensionless coupling constants

In the following we shall analyze the classical equations
of motion associated with the above system. In orderto do  y—g7G»?2, a=e%\,, q=—, A=
that, let us write down the matter and gravitational fields as 7 N17]
shown below. The most general, cylindrically symmetric line
element invariant under boosts along thédirection is

2— 1 j=1,2,3. 12
ds*=N?(p)dt*—dp®—L?(p)de’—~N*(p)dZ.  (5) g | 2
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Varying Eq.(1) with respect to the matter fields and met-
ric functions, we obtain a system of five non-linear differen-

PHYSICAL REVIEW b7, 124008 (2003

A. Boundary conditions

The requirement of regularity at the origin leads to the

tial equations. The Euler-Lagrange equations for the mattelrollowing boundary conditions:

field functions read

(N2Lh’")" n? 5
TZEhpz‘f'h(hz—l)'f'ﬂsh(fz_qz), (13)
(N2Lf")"  mPf
-z PR A1), (4
L h?p 15
m L =« 3 ( )
while the Einstein equations
Gt AGL=7T,u, HV=1X0,2Z (16)
read
(LNN")’ T n2(P’(x))? 1(h2( 1y
—_—— —_— = X —
N2L al? 4
B, .y B3,
—z(f (X)—g) —7(h (x)—1)
X(fz(X)—qz)l 17
and
(N°L")" n?h?(x)P?(x) m2f?(x)
N T L L2(x)
n?(P’(x))*> 1 B3
—————+ = (h3(x)—1)*+ -

2
X (f3(x) —?)?+ %(hz(x) —D(f2(x)—-a?)|.
(18

Moreover, definingu=+\—g=N?L we get the following
equation:

u'(x) [ n?hP(P*x)  m*fA(x)  n*(P'(x))?
ux) L2(x) L2(x)  2al2(x)
2 2
+ z(hz(x) —1)*+ #(fz(x) —g?)*+ %
X(hZ(X)—l)(fZ(X)—qz)l- (19

The prime now denotes the derivatives with respect. to

h(0)=0, f(0)=0, P(0)=n (20
for the matter fields and
N(0)=1, N'(0)=0, L(0)=0, L'(0)=1 (21

for the metric fields. Since a cosmological horizon appears
naturally in de Sitter space, we integrate the equations only
up to this value of the coordinate x=Xq. In order for the
core of the local string to lie completely within the horizon
we require

h(x=xp)=1, f(x=x9)=0q, P(x=xg)=0. (22

Note that due to the fact that tixénterval is finite, this is not
(like in asymptotically flat spagea necessary condition for
finite energy solutions. However, we have chosen these
boundary conditions such that the energy-momentum tensor
vanishes ax=X,. In addition, the limitA — 0 which leads to
Xg— can be taken with these boundary conditions.

IV. NIELSEN-OLESEN STRINGS IN DE SITTER SPACE

First, we are interested in the case of the pure Nielsen-
Olesen string. This corresponds to settifigc)=0 and g
=0 in the previous equations.

A. Vacuum solution

For the case of the pure gauge string, there is a vacuum
solution of the equations. Settii(x) =0 andh(x)=1, we
find from Eq.(19), that

N?(x)L(x)=A sin( \/S_Xx) + B cog \/S_KX), A,B const.
(23

Using the boundary condition®1), we find the following
solution:

1 —
N2(x)L(x)= —=sin( V3AX). (24)

3A

This then can be put into Eg€l7) and(18) and we find the
solutions

N(x)=cos’-’3( \/ﬁg)

(25

and

22/3 _ %\ 123
L(x)= [ sin( \/3Ax)]1’3[tar< V3A —” (26)
2x 2

3A

where the coefficients again result from the boundary condi-
tions (21). The first zero oN(x) lies atxg=m/\3A. At the
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same timeL (x—xg)—«. This is the cosmological horizon %
of the vacuum solution. If we expand the metric functions  af - .
around this horizon, we obtain SO net
2| . n= |
,_3K 2i3 » wl \\ i
N(X—xg)~ - (X—Xg) >+ - - (27 ol \\ |
\
and o \\ 1
\
=\ —4/3 “r |
\
L(xﬂxgw(T) (x=x§) " ¥+.... (29 2r .
10F VA
This has the behavior of a so-called Kasner soluf@ei: sl ‘\\ i
A
ds?=(kp)?2dt?— dp?— C?(kp)2® Yp2d?— (kp)*dZ? f 0=10,A<0005 ~ \ ]
(29 0 02 0.4 06 0.8 1 12 14 16 18

v

with a=c=2/3,b=—1/3, k= V3Al2, c= 1. These type of FIG. 1. The value of the dimensionless coordinat which a
“closed” solutions have been found previoudlg] for the  cosmological horizon appears=x,, is given for the Nielsen-
caseA=0 and were called “supermassive” strings. When Olesen string as a function gffor n=1 (dasheglandn=2 (solid)
calculating the Kretschmann scalae=R*"*“R,,, ., one ob-  with «=1.0 andA =0.005.

tains[5] thatK = (x—xg) ~* and thus the solution has indeed

a curvature singularity at=xg. Remarkable is that in the less, the plot indicates that, like(x), P(x) just reaches its
case ofA =0, these type of solutions only appear for suffi- 8ymptotic value 0 at=Xx,. Thus the horizon lies very close
ciently high vacuum expectation value¢EV) of the Higgs 0 the core of the string. _ _

field corresponding to strings having formed at energy scales Then, we fixedr andy and determined, in dependence
much higher than the GUT scal8]. For smaller values of on A. Our results fore=y=0.5 andn=1, 2 together with
the VEV no singularity appears and the solutions exist on th¢he location of the cosmological horizon of the vacuum so-
full interval [0:oo[. Accordingly, the numerical study lution, xg, are given in Fig. 3.

showed[7] that these solutions exist forg> vy, . We clearly observe that the value of the cosmological
horizon decreases with the increase of the cosmological con-
B. Numerical results stant, as expected. Moreover, an increase in the vorticity

leads to a decrease gf for the same\. For smallA, xq of
both then=1 and then=2 solution is very close to the
correspondingg . This can again be explained by studying

Subject to the boundary conditiol), we have studied
the coupled system of equations numerically.

First, we fixeda and A to study the influence of the
gravitational couplingy on the solutions. We determined the . . . . . . .
value ofx at which the metric functiomN(x) vanishes, i.e. it ---y=15
N(x=X,)=0. Our results forr=1.0, A=0.005 anch=1, 2 " L(x) — =17
are shown in Fig. 1. As expected the valuexgfdecreases 4
with increasing gravitational coupling. Moreover, we ob- i
serve a steep decreasexinfor a relatively small range of. ey he) .. _
We have only plotted results foy’s corresponding tax, S~ 54
=5 since for largey’s the numerics becomes increasingly N S~.
difficult. The reason for this is indicated in Fig. 2, where we \ ~. o=1.0, A=0.005,
show the profiles of the metric functiodyx), L(x) as well ) NN n=1
as those of the matter field functio®{x) andh(x) for « sk |1 / .

=1.0, A=0.005,n=1 and two different choices of. For \
y=1.5, the value ofx at which the matter field functions W\ P() —— N N
reach their asymptotic values 0 and 1, respectively, is muct \ N
smaller than the value ofy. This means that the horizon . N
clearly lies outside the core of the string. Fpr 1.7, how- . I . \
ever, the situation is different. The valueft whichh(x) ° 2 4 6 8 1 12 14 16 18
reaches 1 is roughly equal xg, while P(x) seems to be still
greater than 0 on the plot we present. This is due to the fact FIG. 2. The profiles of the metric functiomé(x), L(x) and the
that the “real” solution would have a slightly highey at  profiles of the matter field functionB(x) andh(x) are shown for
which P(x=Xg) =0. However, sincé& (x—Xg) —, itisnu-  «=1.0, A=0.005,n=1 and y=1.5 (dashedl and y=1.7 (solid),

merically impossible to reach the final solution. Neverthe-respectively.
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! n
---n=1 / — Nielsen-Olesen
wo n=2 451 J - - - vacuum 1
— vacuum

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
A

16 18 20

FlGI' 3. TTehva_Iue of the dimensionless coofrdinx:]m Wlf‘i?h a FIG. 4. The profiles of the metric functiomé(x) andL(x) are
cosmological horizon appearsi=xo, Is given for the Nielsen- shown fora=vy=0.5, A=0.01 and vorticityn=2. We compare

Olesen string as function oA for n=1 andn=2 with a=vy 1 Nielsen-Olesen solutiaisolid) with the corresponding vacuum
=0.5. For comparison, also the valug=m/V3A for the vacuum  solution (dashedl
solution is given.

cover the behavior of the Goldstone field functifbfx— )
— _ -2
the behavior of the matter field functions for varying As =q-0(x").

observed previouslj16], we find that for fixedx andy and

increasingA, the value of the coordinate at which the A. Numerical results

matter field functions reach their asymptotic values also in-  For non-vanishing cosmological constant we find that the
creases, e.g. fom=7y=0.5, n=2 we find that for A behavior ofN(x) andL(x) resembles that of the metric func-
=0.001 the value ofx, where the gauge field function tions in the case of the Nielsen-Olesen string in de Sitter
reachesP(x*)=0.1 is XO.l(K: 0.001)~6.2, while for A space(see previous sectignAgain, for all constants fixed

—0.005, we findx®}(A —0.005)=6.45. This can be inter- 2N/ varied, we find that the value at whiéti(x=xo) =0

preted as representing a thicker string core due to an irdécreases wi.th increasing, e.g. for B,=1, ql=0.1, nd
creased cosmological expansion. Thus the cosmological ho=0.1, we find that xo(A=10"%)~180, while xo(A
rizon lies closer and closer to the core of the string for=10"°)~57. At the same time, the value ®fat which the

increasingA and so only for smallA the solution close to function f(x) reaches its VEV increases with increasifg

the cosmological horizon can be described by the vacuu#hich is due to the increased cosmological expansion thus
solution. In Fig. 4, we show the profiles &f(x) and L(x) leading to an extended string core. The behavior of the func-

- o _ . tion f(x) depends crucially on the cosmological constant
for A=0.01, a=y=0.5 andn=2 both for the Nielsen- ;o jetermines the cosmological horizon and the param-
Qlesen string and the vacuum solution. Clearly, the S50|u“0n%ters,82 andg, which determine the radius of the string core.
differ quite strongly. We will discuss these features in more detail in the context of

composite topological defects in the next section.
V. GLOBAL STRINGS IN DE SITTER SPACE

This is the case of setting(x)=n andh(x)=0 (which VI. COMPOSITE SYSTEM OF GLOBAL
implies ;=0). The global string without a cosmological AND NIELSEN-OLESEN STRING

constant, i.eA =0 has been studied extensivgéB~11]. To Unlike in the case of the “pure” Nielsen-Olesen string, a
have a good starting solution for the construction of dS glocomplete analytical analysis of the composite system seems
bal strings, we have reconstructed the global string withouto be impossible. However, some additional information can
cosmological constant. We find that the metric functi¢(x)  be gained by analyzing the energy density per unit length.
deviates very little from one, but that the quantity(x  Before discussing our numerical results, we make some re-
=0)—N(x*)| is increasing withx* —c. Moreover, L(x) marks on this pomt.ln the foI]owmg section. .

grows approximately linearly wittx. This is the behavior '€ energy density per unit length of the composite defect
found in[9], namely that outside the core of the global stringS 9iven by[6,7]

thezmetric functions behave IikN2=11—(y/2)In(x/xg(), L?

=X(1— yIn(X/X,0) with X4 ~~ being the core of the — =0

global stZing( iri(g (C))ur rescglced(%[;(z))rdinatesg Moreover, we re- €= f ~9sTodxudX, (30

124008-5
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wheregs is the determinant of the (21)-dimensional met- o1 ' S e

ric ds?=N2?(p)dt?*—dp?—L%(p)de? and T9=—L,, is the 0ol
00-component of the energy-momentum tensor. In the cylin-

drical coordinates, we get o8t

2

X
5=7T7l§f "dxN(X)L(x) (P’ (x))*+ (' (x))? 006
0 al?(x) R
é0.05
nh?(x)P2(x) m2f3(x) 1 pi
() (X)P=(x) ( )+—(h2(x)—1)2 ooaf ] —
LZ(X) LZ(X) 2 0.03 g =
- =10
2 , vy , , , ooald ! : A=0.001 o =20 |
+ = (fe(x)— + B3(h(x)°—1)(f<(x) — . 31 —— =50
5 (FF00 =097+ B3(h() 7= D(F*(x) %) (32) o amref1, 1220, 0.1 .
. 2
From this, we can observe that the composite defect ha: % m 20 % m 5 )

a finite energy density. There are two different scenarios X

now. If the productfB,q is large enough the core of  FiG. 5. The profile of the Goldstone field functioi(x) is
the global string is small and the cores of both strings lieshown for the composite defect with=y=p2=1, =0, A
within the cosmological horizorx,. We can then assume —0.001,q=0.1, vorticityn=1 and different values of2.

that f(xg)=q, f'(Xg)=0, P(Xe)=0, h(xg)=1. From
before, we know that (x) goes to infinity close to the
horizon, whileN(x)L(x) remains finite. Thus the integrand
of Eq. (31) tends to zero likem?q?[N(x)/L(x)]. If the
product B8,q is small, the core of the global string extends
to outside the horizonx,. Then the integrand of
Eq. (31) becomes N(X)L(X)[(f'(x))?+m?f2(x)/L?(x)
+(B5/2)(f2(x) — g?)?]. Since close to the horizon, the prod-
uct N(x)L(x) tends to zero, this is finite. We have indeed
confirmed numerically that this is the case.

for a=y=p%2=1,q=0.1, 85=0, A=0.001 and85=5, 10,
20, 50, respectively. Of course, the occurrence of the singu-
larity at x=xq renders the interpretation of the numerical
results not hundred percent certain but we are rather confi-
dent that composite string defects which are regular inside
the horizon exist for large enougby,.
All these results are obtained for the caseBgf=0, i.e.
the two defects interact with each other only indirectly over
gravity. We have also attempted to construct solutions with
B3#0. We find that only for large enough values of the
A. Numerical results quotientB2/ B2, the solutions seem well behaved s/ 32 is
Assuming that the behavior of the metric functidiéx)  roughly of the order of 19 (for a=y=85=1, q=0.1 and
andL(x) persists in the presence of @tlon-trivial) matter A =0.001), the behavior of the functions is very similar to
fieldg (which indeed our ngmerical analysis con_fibr,nwe that in the case oB;=0. For 85/ 83 smaller than that, how-
can insert Eqs(25) and(26) into Eq. (14). We obtain that  eyer, the function§(x) andh(x) start to develop oscillations
83 close to the cosmological horizon. The number of oscilla-
fOx=x0)~q+Cx=x0)™, € const. (32 ;1< increases with the decrease of the quotightss.
Thus, we conclude that directly interacting composite defects
ing from the Nielsen-OlesefNO) string and increasing the yvithout.the global string s?ngqlarity only exist if the s_elf-
parameterq gradually from zero. Our numerical analysis |nteract|0n of the global string is much larger than the inter-
confirms the assumption that the radius of the NO string cor@Ction between the two defects.
is smaller than that of the global string. Moreover, we find
that the NO string always resides inside the horizon. As for VII. CONCLUSION
the global string, we find that when the coupling consant
is small the functionf(x) reaches the imposed expectation
value f(xg) =q with a positive concavity, in particular the

derivative f'|,_, is nonzero and our numerical solution : X ;
learly su estos that the behavidi{x— xo)~q-+ C(x to their vacuum expectatl_on valuég¢EV) in the case of the
clea 353_ ggests | . 0)~4 “pure” Nielsen-Olesen string, we were able to construct ana-
—Xo)™Is not satisfied. This is demonstrated InFig. 5, Wher&iic solutions of the Einstein equations in terms of trigono-
we show f(x) of the composite defect fof3=1, =%  qetric functions. The metric tensor resembles that of so-
=pi=1, q=0.1, B5=0 and A=0.001. This suggests that called “supermassive” strings which exist in asymptotically
for small values of the produgB,q, the argument demon- flat space only for sufficiently high enough values of the
strated above does not hold. VEV of the Higgs field[5]. These were considered as being
Increasing the value g8, we were able to produce solu- “unphysical” since they should have formed at energy scales
tions which seem to have the expected behavior,fi8) high above the GUT scale. Since recent observations indicate
=0, f(x=xg)=¢q andf’|X:xO=0. This is shown in Fig. 5 that we live in a universe with positive cosmological con-

We have construct the composite model solution by start

In this paper we have analyzed both Nielsen-Olesen and
global strings as well as the composite system of both de-
fects in de Sitter space. When the matter fields are set equal
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stant, and since we find that the existence of our solutions isur rescaled coordinatess inverse proportional to the radius
not restricted to values of the Higgs field’s VEV being large of the global string’s core. Iffor fixedq) B, is too small, the
enough, these solutions might well be of relevance. core of the global string extends to outside the cosmological
Our numerical analysis suggests that the general behavidrorizon and the functiorf reaches its VEV with positive
of the vacuum metric persists in the presence of the mattezoncavity. For large enough values g%, the core of the
fields. E.g. comparing the location of the cosmological hori-global string lies inside the horizon and our numerical results
zon Xq in dependence on the coupling constants for theseem to indicate that a global string or composite defect
“pure” Nielsen-Olesen string and that of the vacuum solu-without the normal singularity of the global string exists.
tion, x4, we find that for smallA and/ory, xo andx} are However, note that the removal of the global string singular-
ity which exists in asymptotically flat space can be achieved
L%nly by introducing a “new” singularity, the curvature sin-
gularity at the horizon.
Note addedAfter finishing the manuscript, Linet brought
our attention his papdr21], in which he discusses the
vacuum solutiong25) and(26) “re-found” by us.

nearly equal. For increasiny and/ory, the difference be-
tween the two increases. The reason for this is that the radi
of the string core becomes comparable to the radius of th
cosmological horizon and thus the assumption of at
“vacuum” at the cosmological horizon is not valid any 0
longer.

Constructing the global string and the composite defect of
Nielsen-Olesen and global string, we find that the existence
of solutions without a singularity resulting from the global  Y.B. acknowledges the Belgian FNRS for financial sup-
string itself depends crucially on the prodygtq which (in  port. B.H. was supported by an EPSRC grant.
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