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Strings in de Sitter space
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We study both global as well as local~Nielsen-Olesen! strings in de Sitter space. While these types of
topological defects have been studied in the background of a de Sitter metric previously, we study here the full
set of coupled equations. We find only ‘‘closed’’ solutions. The behavior of the metric tensor of these solutions
resembles that of ‘‘supermassive’’ strings with a curvature singularity at the cosmological horizon. For global
strings~and the composite defect! we are able to construct solutions which are regular on the interval from the
origin to the cosmological horizon if the global string core lies completely inside the horizon.
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I. INTRODUCTION

A number of different topological defects@1# are thought
to have been formed during the phase transitions in the e
universe. Depending on the topology of the vacuum ma
fold M these are domain walls, strings, monopoles and
tures corresponding to the homotopy groupsp0(M),
p1(M), p2(M) and p3(M), respectively. Cosmic string
@1,2# have always gained a lot of interest since they
thought to be important for the structure formation in t
universe due to their huge energy per unit length@roughly
1021 kg/m for a string formed at grand unified theory~GUT!
scale'1016 GeV].

A classical field theory model which has stringlike sol
tions is the Abelian Higgs model@3#. These solutions, also
sometimes called ‘‘vortices,’’ correspond to infinitely lon
objects. They have a core radius inverse proportional to
Higgs boson mass and magnetic flux tubes with radius p
portional to the inverse of the gauge boson mass. Coup
the Abelian Higgs model minimally to gravity, the influenc
of the vortex on the geometry of space-time was investiga
analytically@4#. It was shown that far away from the core
the string the space-time is Minkowski minus a wedge
was also realized@5# that if the vacuum expectation value o
the Higgs field is sufficiently large~corresponding to strings
having formed at a phase transition with energy scale m
higher than the GUT scale!, then a different type of solution
is possible. These so-called ‘‘supermassive strings’’ e
only on a finite interval of the radial coordinate and have
curvature singularity at the maximal value of the radial c
ordinate. The existence of further solutions was investiga
in a detailed numerical analysis@6,7#. It was found that the
parameter space is indeed divided by the curve of maxi
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angular deficit 2p. If the deficit is smaller than 2p, so-
called ‘‘open,’’ i.e. infinitely extended solutions were foun
One is the above mentioned cosmic string solution@4# which
however has a ‘‘shadow’’ solution of Melvin-type for all va
ues of the coupling constants. For deficit larger than 2p,
only the ‘‘supermassive,’’ ‘‘closed’’ solutions exist@5#.

The static solutions of the model without gauge field, s
called global strings, have also been studied@8–11#. Like all
global defects, the global string has a long-range Goldst
field which leads to a divergent energy. Moreover, the glo
string is characterized by a logarithmically divergent defi
angle in contrast to the local string which has a const
deficit angle. The coupling to gravity in the case of the sta
global monopole leads to a singularity-free monopole so
tion @12# in the sense that while the energy is still linear
divergent, the solid deficit angle is now finite. For the sta
global string the corresponding singularity can not be
moved by coupling the system to gravity and only the
sumption that the metric be time-dependent removes the
gularity @13#.

Since a number of astrophysical observations such as
the measurement of redshifts of type Ia supernovae@14# has
led scientists to believe that we live in a universe with po
tive cosmological constant, the study of topological defe
in de Sitter~dS! space seems interesting. But it also is
interest from another point of view, namely the dS-CFT c
respondence@15#. This correspondence suggests a ho
graphic duality between gravity in ad-dimensional dS space
and a conformal field theory~CFT! ‘‘living’’ on the boundary
of the dS spacetime and thus beingd21 dimensional.

Recently, Nielsen-Olesen strings in the background o
4-dimensional de Sitter spacetime (dS4) have been studied
@16#. However, to our knowledge, thefull system of coupled
matter and metric field equations has not been studied
One of the aims of this paper is the investigation of exac
this point.

Motivated by some recent work on a composite system
a global and local monopole in curved space-time@17–19#,
©2003 The American Physical Society08-1
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we investigate the composite system of a global and Niels
Olesen string in a curved space-time with cosmological c
stant as well.

Our paper is organized as follows: we give the model a
static, cylindrically symmetric ansatz in Sec. II. We give t
equations of motion in Sec. III. We discuss the pure Niels
Olesen solutions in Sec. IV, the global string solutions
Sec. V and the composite system of a global and Niels
Olesen string in Sec. VI. We give our summary in Sec. V

II. THE MODEL

The model which describes a gravitating Nielsen-Ole
string interacting with a global one in the presence of a n
vanishing cosmological constant is given by the followi
action:

S5E d4xA2gS 1

16pG
~R22L!1LNO1Lglobal1LinterD

~1!

whereR is the Ricci scalar,G denotes Newton’s constant an
L is the cosmological constant. The Lagrangian of the A
lian Higgs model is given by@3#

LNO5
1

2
Dmf~Dmf!* 2

1

4
FmnFmn2

l1

4
~ff* 2h1

2!2

~2!

with the covariant derivativeDm5¹m2 ieAm and the field
strengthFmn5]mAn2]nAm of the U~1! gauge potentialAm
with coupling constante. f is a complex scalar field~the
Higgs field! with vacuum expectation valueh1 and self-
coupling constantl1. The Lagrangian of the global strin
reads@1#

Lglobal5
1

2
]mx]mx* 2

l2

4
~xx* 2h2

2!2 ~3!

wherex is a complex scalar field~the Goldstone field! with
vacuum expectation valueh2 and self-couplingl2. Finally,
following @17# we introduce an extra potential which coupl
~with coupling constantl3) the two sectors of the mode
directly to each other:

Linter52
l3

4
~ff* 2h1

2!~xx* 2h2
2!. ~4!

Without this term, the global and local string would b
coupled only indirectly over gravity. In this paper we w
use units which\5c51.

A. The ansatz

In the following we shall analyze the classical equatio
of motion associated with the above system. In order to
that, let us write down the matter and gravitational fields
shown below. The most general, cylindrically symmetric li
element invariant under boosts along thez direction is

ds25N2~r!dt22dr22L2~r!dw22N2~r!dz2. ~5!
12400
n-
-

d

-

n-
.

n
-

-

s
o
s

The nonvanishing components of the Einstein tensorGmn

then read

Gtt52Gzz5
N

L
~L]rrN1]rN]rL1N]rrL !,

Grr 5
]rN

N2L
~2]rLN1]rNL!,

Gww5
L2

N2
~2N]rrN1~]rN!2!, ~6!

where]r denotes the derivative with respect tor.
For the matter and gauge fields, we have

f~r,w!5h1h~r!einw, ~7!

x~r,w!5h1f ~r!eimw, ~8!

Amdxm5
1

e
„n2P~r!…dw. ~9!

n andm are integers indexing the vorticity of the Higgs an
Goldstone fields, respectively, around thez axis.

Substituting the above configurations into the matter L
grangian densityLM5LNO1Lglobal1Linter , we obtain

LM52
h1

2

2
„]rh~r!…22

h1
2

2
„]r f ~r!…22

n2

2e2L2~r!
„]rP~r!…2

2
h1

2n2

2L2~r!
h2~r!P2~r!2

h1
2m2

2L2~r!
f 2~r!

2
l1h1

4

4
„h2~r!21…22

l2h1
4

4
„f 2~r!2q2

…

2

2
l3h1

4

2
„h2~r!21…„f 2~r!2q2

…. ~10!

III. EQUATIONS OF MOTION

We define the following dimensionless variable and fun
tion:

x5Al1h1r, L~x!5L~r!h1Al1. ~11!

Then, the total Lagrangian only depends on the followi
dimensionless coupling constants

g58pGh1
2 , a5e2/l1 , q5

h2

h1
, L̄5

L

l1h1
2

,

b i
25

l i

l1
, i 51,2,3. ~12!
8-2
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Varying Eq.~1! with respect to the matter fields and me
ric functions, we obtain a system of five non-linear differe
tial equations. The Euler-Lagrange equations for the ma
field functions read

~N2Lh8!8

N2L
5

n2

L2
hP21h~h221!1b3

2h~ f 22q2!, ~13!

~N2L f 8!8

N2L
5

m2f

L2
1b2

2f ~ f 22q2!1b3
2f ~h221!, ~14!

L

N2 S N2P8

L D 8
5ah2P, ~15!

while the Einstein equations

Gmn1L̄gmn5gTmn , m,n5t,x,w,z ~16!

read

~LNN8!8

N2L
52L̄1gFn2

„P8~x!…2

2aL2
2

1

4
„h2~x!21…2

2
b2

2

4
„f 2~x!2q2

…

22
b3

2

2
„h2~x!21…

3„f 2~x!2q2
…G ~17!

and

~N2L8!8

N2L
52L̄2gFn2h2~x!P2~x!

L2~x!
1

m2f 2~x!

L2~x!

1
n2
„P8~x!…2

2aL2~x!
1

1

4
„h2~x!21…21

b2
2

4

3„f 2~x!2q2
…

21
b3

2

2
„h2~x!21…„f 2~x!2q2

…G .

~18!

Moreover, definingu5A2g5N2L we get the following
equation:

u9~x!

u~x!
523L̄2gFn2h2~x!P2~x!

L2~x!
1

m2f 2~x!

L2~x!
2

n2
„P8~x!…2

2aL2~x!

1
3

4
„h2~x!21…21

3b2
2

4
„f 2~x!2q2

…

21
3b3

2

2

3„h2~x!21…„f 2~x!2q2
…G . ~19!

The prime now denotes the derivatives with respect tox.
12400
-
er

A. Boundary conditions

The requirement of regularity at the origin leads to t
following boundary conditions:

h~0!50, f ~0!50, P~0!5n ~20!

for the matter fields and

N~0!51, N8~0!50, L~0!50, L8~0!51 ~21!

for the metric fields. Since a cosmological horizon appe
naturally in de Sitter space, we integrate the equations o
up to this value of the coordinatex, x5x0. In order for the
core of the local string to lie completely within the horizo
we require

h~x5x0!51, f ~x5x0!5q, P~x5x0!50. ~22!

Note that due to the fact that thex interval is finite, this is not
~like in asymptotically flat space! a necessary condition fo
finite energy solutions. However, we have chosen th
boundary conditions such that the energy-momentum ten
vanishes atx5x0. In addition, the limitL̄→0 which leads to
x0→` can be taken with these boundary conditions.

IV. NIELSEN-OLESEN STRINGS IN DE SITTER SPACE

First, we are interested in the case of the pure Niels
Olesen string. This corresponds to settingf (x)[0 and q
[0 in the previous equations.

A. Vacuum solution

For the case of the pure gauge string, there is a vacu
solution of the equations. SettingP(x)50 andh(x)51, we
find from Eq.~19!, that

N2~x!L~x!5A sin~A3L̄x!1B cos~A3L̄x!, A,B const.
~23!

Using the boundary conditions~21!, we find the following
solution:

N2~x!L~x!5
1

A3L̄
sin~A3L̄x!. ~24!

This then can be put into Eqs.~17! and~18! and we find the
solutions

N~x!5cos2/3SA3L̄
x

2D ~25!

and

L~x!5
22/3

A3L̄
@sin~A3L̄x!#1/3F tanSA3L̄

x

2D G2/3

~26!

where the coefficients again result from the boundary con

tions ~21!. The first zero ofN(x) lies atx0
v5p/A3L̄. At the
8-3
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same time,L(x→x0
v)→`. This is the cosmological horizon

of the vacuum solution. If we expand the metric functio
around this horizon, we obtain

N~x→x0
v!'S 2

A3L̄

2
D 2/3

~x2x0
v!2/31••• ~27!

and

L~x→x0
v!'SA3L̄

2
D 24/3

~x2x0
v!21/31•••. ~28!

This has the behavior of a so-called Kasner solution@20#:

ds25~kr!2adt22dr22C2~kr!2(b21)r2dw22~kr!2cdz2

~29!

with a5c52/3, b521/3, k5A3L̄/2, C51. These type of
‘‘closed’’ solutions have been found previously@5# for the
caseL̄50 and were called ‘‘supermassive’’ strings. Whe
calculating the Kretschmann scalarK5RmnrsRmnrs one ob-
tains@5# thatK}(x2x0

v)24 and thus the solution has indee
a curvature singularity atx5x0

v . Remarkable is that in the

case ofL̄50, these type of solutions only appear for suf
ciently high vacuum expectation values~VEV! of the Higgs
field corresponding to strings having formed at energy sc
much higher than the GUT scale@5#. For smaller values of
the VEV no singularity appears and the solutions exist on
full interval @0:`@ . Accordingly, the numerical study
showed@7# that these solutions exist for ag.gcr .

B. Numerical results

Subject to the boundary conditions~21!, we have studied
the coupled system of equations numerically.

First, we fixeda and L̄ to study the influence of the
gravitational couplingg on the solutions. We determined th
value of x at which the metric functionN(x) vanishes, i.e.
N(x5x0)50. Our results fora51.0, L̄50.005 andn51, 2
are shown in Fig. 1. As expected the value ofx0 decreases
with increasing gravitational couplingg. Moreover, we ob-
serve a steep decrease inx0 for a relatively small range ofg.
We have only plotted results forg ’s corresponding tox0
>5 since for largeg ’s the numerics becomes increasing
difficult. The reason for this is indicated in Fig. 2, where w
show the profiles of the metric functionsN(x), L(x) as well
as those of the matter field functionsP(x) and h(x) for a

51.0, L̄50.005, n51 and two different choices ofg. For
g51.5, the value ofx at which the matter field function
reach their asymptotic values 0 and 1, respectively, is m
smaller than the value ofx0. This means that the horizo
clearly lies outside the core of the string. Forg51.7, how-
ever, the situation is different. The value ofx at whichh(x)
reaches 1 is roughly equal tox0, while P(x) seems to be still
greater than 0 on the plot we present. This is due to the
that the ‘‘real’’ solution would have a slightly higherx0 at
which P(x5x0)50. However, sinceL(x→x0)→`, it is nu-
merically impossible to reach the final solution. Neverth
12400
s

e

h

ct

-

less, the plot indicates that, likeh(x), P(x) just reaches its
asymptotic value 0 atx5x0. Thus the horizon lies very clos
to the core of the string.

Then, we fixeda andg and determinedx0 in dependence
on L̄. Our results fora5g50.5 andn51, 2 together with
the location of the cosmological horizon of the vacuum s
lution, x0

v , are given in Fig. 3.
We clearly observe that the value of the cosmologi

horizon decreases with the increase of the cosmological c
stant, as expected. Moreover, an increase in the vorticitn

leads to a decrease ofx0 for the sameL̄. For smallL̄, x0 of
both then51 and then52 solution is very close to the
correspondingx0

v . This can again be explained by studyin

FIG. 1. The value of the dimensionless coordinatex at which a
cosmological horizon appears,x5x0, is given for the Nielsen-
Olesen string as a function ofg for n51 ~dashed! andn52 ~solid!

with a51.0 andL̄50.005.

FIG. 2. The profiles of the metric functionsN(x), L(x) and the
profiles of the matter field functionsP(x) andh(x) are shown for

a51.0, L̄50.005, n51 andg51.5 ~dashed! and g51.7 ~solid!,
respectively.
8-4
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the behavior of the matter field functions for varyingL̄. As
observed previously@16#, we find that for fixeda andg and

increasingL̄, the value of the coordinatex at which the
matter field functions reach their asymptotic values also

creases, e.g. fora5g50.5, n52 we find that for L̄
50.001 the value ofx, where the gauge field functio

reachesP(x0.1)50.1 is x0.1(L̄50.001)'6.2, while for L̄

50.005, we findx0.1(L̄50.005)'6.45. This can be inter
preted as representing a thicker string core due to an
creased cosmological expansion. Thus the cosmological
rizon lies closer and closer to the core of the string

increasingL̄ and so only for smallL̄ the solution close to
the cosmological horizon can be described by the vacu
solution. In Fig. 4, we show the profiles ofN(x) and L(x)

for L̄50.01, a5g50.5 and n52 both for the Nielsen-
Olesen string and the vacuum solution. Clearly, the soluti
differ quite strongly.

V. GLOBAL STRINGS IN DE SITTER SPACE

This is the case of settingP(x)[n and h(x)[0 ~which
implies h1[0). The global string without a cosmologica

constant, i.e.L̄50 has been studied extensively@8–11#. To
have a good starting solution for the construction of dS g
bal strings, we have reconstructed the global string with
cosmological constant. We find that the metric functionN(x)
deviates very little from one, but that the quantityuN(x
50)2N(x* )u is increasing withx* →`. Moreover,L(x)
grows approximately linearly withx. This is the behavior
found in@9#, namely that outside the core of the global stri
the metric functions behave likeN2512(g/2)ln(x/xgc), L2

5x2
„12g ln(x/xgc)… with xgc}(qb2)21 being the core of the

global string in our rescaled coordinates. Moreover, we

FIG. 3. The value of the dimensionless coordinatex at which a
cosmological horizon appears,x5x0, is given for the Nielsen-

Olesen string as function ofL̄ for n51 and n52 with a5g

50.5. For comparison, also the valuex0
v5p/A3L̄ for the vacuum

solution is given.
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cover the behavior of the Goldstone field functionf (x→`)
5q2O(x22).

A. Numerical results

For non-vanishing cosmological constant we find that
behavior ofN(x) andL(x) resembles that of the metric func
tions in the case of the Nielsen-Olesen string in de Si
space~see previous section!. Again, for all constants fixed
and L̄ varied, we find that the value at whichN(x5x0)50
decreases with increasingL̄, e.g. for b251, q50.1, g

50.1, we find that x0(L̄51024)'180, while x0(L̄
51023)'57. At the same time, the value ofx at which the
function f (x) reaches its VEV increases with increasingL̄
which is due to the increased cosmological expansion t
leading to an extended string core. The behavior of the fu
tion f (x) depends crucially on the cosmological consta
which determines the cosmological horizon and the para
etersb2 andq, which determine the radius of the string cor
We will discuss these features in more detail in the contex
composite topological defects in the next section.

VI. COMPOSITE SYSTEM OF GLOBAL
AND NIELSEN-OLESEN STRING

Unlike in the case of the ‘‘pure’’ Nielsen-Olesen string,
complete analytical analysis of the composite system se
to be impossible. However, some additional information c
be gained by analyzing the energy density per unit leng
Before discussing our numerical results, we make some
marks on this point in the following section.

The energy density per unit length of the composite def
is given by@6,7#

E5E A2g3T0
0dx1dx2 ~30!

FIG. 4. The profiles of the metric functionsN(x) andL(x) are

shown for a5g50.5, L̄50.01 and vorticityn52. We compare
the Nielsen-Olesen solution~solid! with the corresponding vacuum
solution ~dashed!.
8-5
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whereg3 is the determinant of the (211)-dimensional met-
ric ds25N2(r)dt22dr22L2(r)dw2 and T0

052LM is the
00-component of the energy-momentum tensor. In the cy
drical coordinates, we get

E5ph1
2E

0

x0
dxN~x!L~x!F n2

aL2~x!
„P8~x!…21„h8~x!…2

1„f 8~x!…21
n2h2~x!P2~x!

L2~x!
1

m2f 2~x!

L2~x!
1

1

2
„h2~x!21…2

1
b2

2

2
„f 2~x!2q2

…

21b3
2
„h~x!221…„f 2~x!2q2

…G . ~31!

From this, we can observe that the composite defect
a finite energy density. There are two different scenar
now. If the product b2q is large enough the core o
the global string is small and the cores of both strings
within the cosmological horizonx0. We can then assum
that f (x0)5q, f 8(x0)50, P(x0)50, h(x0)51. From
before, we know thatL(x) goes to infinity close to the
horizon, whileN(x)L(x) remains finite. Thus the integran
of Eq. ~31! tends to zero likem2q2@N(x)/L(x)#. If the
productb2q is small, the core of the global string exten
to outside the horizon x0. Then the integrand o
Eq. ~31! becomes N(x)L(x)@„f 8(x)…21m2f 2(x)/L2(x)
1(b2

2/2)„f 2(x)2q2
…

2#. Since close to the horizon, the pro
uct N(x)L(x) tends to zero, this is finite. We have inde
confirmed numerically that this is the case.

A. Numerical results

Assuming that the behavior of the metric functionsN(x)
and L(x) persists in the presence of all~non-trivial! matter
fields ~which indeed our numerical analysis confirms!, we
can insert Eqs.~25! and ~26! into Eq. ~14!. We obtain that

f ~x→x0!;q1C~x2x0!8/3, C const. ~32!

We have construct the composite model solution by st
ing from the Nielsen-Olesen~NO! string and increasing the
parameterq gradually from zero. Our numerical analys
confirms the assumption that the radius of the NO string c
is smaller than that of the global string. Moreover, we fi
that the NO string always resides inside the horizon. As
the global string, we find that when the coupling constantb2
is small the functionf (x) reaches the imposed expectati
value f (x0)5q with a positive concavity, in particular th
derivative f 8ux5x0

is nonzero and our numerical solutio

clearly suggests that the behaviorf (x→x0);q1C(x
2x0)8/3 is not satisfied. This is demonstrated in Fig. 5, whe
we show f (x) of the composite defect forb2

251, a5g

5b1
251, q50.1, b3

250 andL̄50.001. This suggests tha
for small values of the productb2q, the argument demon
strated above does not hold.

Increasing the value ofb2 we were able to produce solu
tions which seem to have the expected behavior, i.e.f (0)
50, f (x5x0)5q and f 8ux5x0

50. This is shown in Fig. 5
12400
-
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for a5g5b1
251, q50.1, b3

250, L̄50.001 andb2
255, 10,

20, 50, respectively. Of course, the occurrence of the sin
larity at x5x0 renders the interpretation of the numeric
results not hundred percent certain but we are rather co
dent that composite string defects which are regular ins
the horizon exist for large enoughb2.

All these results are obtained for the case ofb350, i.e.
the two defects interact with each other only indirectly ov
gravity. We have also attempted to construct solutions w
b3Þ0. We find that only for large enough values of th
quotientb2

2/b3
2, the solutions seem well behaved. Ifb2

2/b3
2 is

roughly of the order of 102 ~for a5g5b1
251, q50.1 and

L̄50.001), the behavior of the functions is very similar
that in the case ofb350. Forb2

2/b3
2 smaller than that, how-

ever, the functionsf (x) andh(x) start to develop oscillations
close to the cosmological horizon. The number of oscil
tions increases with the decrease of the quotientb2

2/b3
2.

Thus, we conclude that directly interacting composite defe
without the global string singularity only exist if the sel
interaction of the global string is much larger than the int
action between the two defects.

VII. CONCLUSION

In this paper we have analyzed both Nielsen-Olesen
global strings as well as the composite system of both
fects in de Sitter space. When the matter fields are set e
to their vacuum expectation values~VEV! in the case of the
‘‘pure’’ Nielsen-Olesen string, we were able to construct an
lytic solutions of the Einstein equations in terms of trigon
metric functions. The metric tensor resembles that of
called ‘‘supermassive’’ strings which exist in asymptotica
flat space only for sufficiently high enough values of t
VEV of the Higgs field@5#. These were considered as bein
‘‘unphysical’’ since they should have formed at energy sca
high above the GUT scale. Since recent observations indi
that we live in a universe with positive cosmological co

FIG. 5. The profile of the Goldstone field functionf (x) is

shown for the composite defect witha5g5b1
251, b3

250, L̄
50.001,q50.1, vorticity n51 and different values ofb2

2.
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stant, and since we find that the existence of our solution
not restricted to values of the Higgs field’s VEV being lar
enough, these solutions might well be of relevance.

Our numerical analysis suggests that the general beha
of the vacuum metric persists in the presence of the ma
fields. E.g. comparing the location of the cosmological ho
zon x0 in dependence on the coupling constants for
‘‘pure’’ Nielsen-Olesen string and that of the vacuum so
tion, x0

v , we find that for smallL̄ and/org, x0 and x0
v are

nearly equal. For increasingL̄ and/org, the difference be-
tween the two increases. The reason for this is that the ra
of the string core becomes comparable to the radius of
cosmological horizon and thus the assumption of
‘‘vacuum’’ at the cosmological horizon is not valid an
longer.

Constructing the global string and the composite defec
Nielsen-Olesen and global string, we find that the existe
of solutions without a singularity resulting from the glob
string itself depends crucially on the productb2q which ~in
r
e,

12400
is

ior
er
-
e
-

us
e

a

f
e

our rescaled coordinates! is inverse proportional to the radiu
of the global string’s core. If~for fixed q) b2 is too small, the
core of the global string extends to outside the cosmolog
horizon and the functionf reaches its VEV with positive
concavity. For large enough values ofb2, the core of the
global string lies inside the horizon and our numerical resu
seem to indicate that a global string or composite def
without the normal singularity of the global string exist
However, note that the removal of the global string singul
ity which exists in asymptotically flat space can be achiev
only by introducing a ‘‘new’’ singularity, the curvature sin
gularity at the horizon.

Note added. After finishing the manuscript, Linet brough
to our attention his paper@21#, in which he discusses th
vacuum solutions~25! and ~26! ‘‘re-found’’ by us.
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