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Parity violating spin-two gauge theories

Stephen C. Anco*
Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1
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Nonlinear covariant parity-violating deformations of free spin-two gauge theory are studied inn>3 space-
time dimensions, using a linearized frame and spin-connection formalism, for a set of massless spin-two fields.
It is shown that the only such deformations yielding field equations with a second order quasilinear form are
the novel algebra-valued types inn53 and n55 dimensions already found in some recent related work
concentrating on lowest order deformations. The complete form of the deformation to all orders inn55
dimensions is worked out here and some features of the resulting new algebra-valued spin-two gauge theory
are discussed. In particular, the internal algebra underlying this theory on five-dimensional Minkowski space is
shown to cause the energy for the spin-two fields to be of indefinite sign. Finally, a Kaluza-Klein reduction to
n54 dimensions is derived, giving a parity-violating nonlinear gauge theory of a coupled set of spin-two,
spin-one, and spin-zero massless fields.
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I. INTRODUCTION

It is widely believed that the only allowed type of gaug
symmetry for a nonlinear massless spin-two field is a diff
morphism symmetry, corresponding to a gravitational s
interaction of the field. Recent work@1,2# has addressed thi
question more generally for a set of any number of coup
massless spin-two fields by the approach of deformation
linear Abelian spin-two gauge theory. A deformation, he
means adding linear and higher power terms to the Abe
spin-two gauge symmetry while also adding quadratic a
higher power terms to the linear spin-two field equatio
such that a gauge invariant action principle exists which
not equivalent to the undeformed linear theory by nonlin
field redefinitions. The condition of gauge invariance h
various formulations@3–5# that yield determining equation
to solve for the allowed form of the deformation term
added order by order, in powers of the fields. This approa
in contrast with earlier efforts in the literature, makes
assumptions on the possible structure for the commut
algebra of the deformed gauge symmetries and takes ad
tage of the necessary requirement that these gauge sym
tries should be realized by a nonlinear theory given by
deformation of the Lagrangian of the linear theory.

The results of the deformation analysis in Ref.@1# show
that if all deformation terms are required to involve no mo
derivatives of the spin-two field and gauge symmetry para
eter than appear in the free theory, then in four dimensi
the unique possible deformation for a set of one or m
spin-two fields is given by an algebra-valued generalizat
of the Einstein gravity theory@6,7# based on a commutative
associative, invariant-normed algebra. As such a set of fi
is mathematically equivalent to a single algebra-valued s
two field @8#, the only type of gauge symmetry indeed a
lowed is a diffeomorphism symmetry~in an algebra-valued
setting!. An extension of this result to all higher spacetim
dimensions is given in Ref.@2# by using a BRST cohomo
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logical formulation @4,5# of the deformation determining
equations.

Very interestingly, in Ref.@9# a deformation different than
the Einstein field equation and diffeomorphism gauge sy
metry for a single spin-two field in three-dimension
Minkowski space is constructed by deforming the Abeli
gauge symmetry by a linear term that contains first deri
tives of both the spin-two field and the gauge symmetry
rameter. Gauge invariance is maintained at lowest orde
also deforming the free Lagrangian by a term that is cubic
first derivatives of the spin-two field. The resulting quadra
terms in the field equation contain one more derivative th
in the free theory but are still second order in derivativ
These deformation terms, moreover, also involve
Minkowski volume tensor and hence possess the interes
feature of being parity noninvariant. Of course, in three
mensions there are no local dynamical degrees of freed
for a free spin-two field. Indeed the full deformation to a
orders is found to be related through field redefinitions
certain topological three-dimensional gravity theories@10# in
a scaling limit in which the gravitational interaction is turne
off. Intriguingly, parity noninvariant deformation terms of
similar form to the three-dimensional ones also exist at lo
est order in five dimensions for an algebra-valued spin-t
field using an anticommutative algebra; but it was left op
in Ref. @9# whether a full deformation actually exists to a
orders. The resulting nonlinear spin-two gauge theory, i
were to exist, would be of obvious potential physical a
mathematical interest to investigate. It would lead, for
stance, to an exotic four-dimensional gauge theory of a n
linearly coupled set of spin-two and spin-one fields obtain
via a Kaluza-Klein reduction of the five-dimensional theo

The main purpose of this paper is to show that, in fact,
novel first order deformation in five dimensions explored
Ref. @9# exists to all orders only if the anticommutative a
gebra is nilpotent~and invariant-normed!, due to an integra-
bility condition that arises in solving the deformation dete
mining equations at second order. It will also be shown t
there is a striking connection between this algebraic struc
and the sign of the energy at lowest order in the deformat
©2003 The American Physical Society07-1
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These results will follow from a more general classificati
theorem that will be proven here inn>3 dimensions for
nonlinear spin-two gauge theories with more derivatives t
contained in the linear theory, but which preserve the num
of local dynamical degrees of freedom. For this analysis
turns out to be most convenient to employ a linearized sp
connection/frame formalism for free spin-two fields, in term
of which the deformation obtained inn53 dimensions in
Ref. @9# takes its simplest form~indeed, no other complet
formulation for that deformation has yet been derived!.

II. DEFORMATION ANALYSIS AND MAIN RESULTS

We introduce the set ofN>1 fieldsham
A ~viewed as lin-

earized frames!, together with a set of auxiliary fields~with
the role of linearized spin-connections!

v
~1!

amn
A5]ah@bc#

Asb
msc

n22sb
@n]m]h~ab!

A, ~2.1!

in terms ofhab
A5sb

mham
A, A51,...,N, wheresb

m denotes
any fixed orthonormal frame for the Minkowski metrichab
5sa

msb
nhmn @with hmn5diag(21,11,...,11)] while sb

m
is the inverse frame@11#. The free spin-two theory for thes
fields onn-dimensional Minkowski space (Rn,hab) is given
by the linear field equations

E
~1!

am
A5 R

~1!

abmn
Asbn50, R

~1!

abmn
A5]@a v

~1!

b]mn
A, ~2.2!

and the Abelian gauge symmetries

dj

~0!

ham
A5]ajm

A, dx

~0!

ham
A5sa

nxnm
A ~2.3!

involving parametersjm
A, xnm

A5x@nm#
A which are arbitrary

functions of the spacetime coordinates. HereR
(1)

abmn
A is a

gauge invariant field strength, as is seen due to

dj

~0!

v
~1!

amn
A50, dx

~0!

v
~1!

amn
A5]axnm

A. ~2.4!

This free theory comes from the gauge-invariant Lagrang

L
~2!

52 1
2 ~3h@a

mA]b v
~1!

c#
nrBsc

r

1 v
~1!

@a
mrA v

~1!

b]r
nB)sa

msb
ndAB , ~2.5!

wheredAB is a fixed symmetric matrix. A variation ofham
A

yields the field equations~2.2! to within irrelevant trace
terms,

dABS da
bdm

n1
1

22n
sbnsamD d L

~2!

/dhbn
B5 E

~1!

am
A,

~2.6!

while an independent variation ofv
(1)

amn
A gives a total diver-

gence as a consequence of the auxiliary equations~2.1!.
Hence it is necessary only to varyham

A alone in considering
variations of the Lagrangian~2.5! ~analogous to a ‘‘1.5 for-
malism’’ @12#!. To see how the formalism here is related
12400
n
er
it
-

n

the familiar free theory of spin-two fields, observe that if t
gauge conditionh@ab#

A50 is imposed using the gauge fre
dom hab

A→hab
A1xab

A involving the skew-tensor function
xab

A5sa
nsb

rxnr
A, then the field equations~2.2! and gauge

symmetries~2.3! reduce to the ordinary Fierz-Pauli spin-tw
equations

hcd]@au]@bgcud]
A50 ~2.7!

and spin-two gauge invariance

gcd
A→gcd

A1] (cjd)
A ~2.8!

in terms of the symmetric tensor fieldsgcd
A5h(cd)

A and cov-
ector functionsjb

A5sb
mjm

A. Furthermore, note these spin
two fields will have positive energy as obtained from t
conserved stress-energy tensor of the free Lagrangian~2.5! if
~and only if! dAB5diag(11,...,11) is a positive definite ma-
trix.

We now consider deformations of the gauge symmet
and field equations

djham
A5 d

~0!

jham
A1 d

~1!

jham
A1¯ ,

dxham
A5 d

~0!

xham
A1 d

~1!

xham
A1¯ , ~2.9!

Eam
A5 E

~1!

am
A1 E

~2!

am
A1¯5Eh~L !am

A,

L5 L
~2!

1 L
~3!

1¯ , ~2.10!

satisfying gauge invariance of the LagrangianL, so thatdjL
and dxL are total divergences. This determining conditi
has the following direct formulation~see Refs.@1, 3#!:

Eh~djhbn
BEbn

B!am
A5Eh~dxhbn

BEbn
B!am

A50, ~2.11!

where Eh(•)am
A is the Euler-Lagrange operator with respe

to ham
A @modified by trace projection~2.6!#. Two deforma-

tions will be regarded as equivalent if they are related
field redefinitions

ham
A→h8am

A5ham
A1 h

~2!

8am
A1¯ ~2.12!

or by parameter redefinitions

jm
A→j8m

A5jm
A1 j

~1!

8m
A1¯ ,

xmn
A→x8mn

A5xmn
A1 x

~1!

8mn
A1¯ . ~2.13!

The deformation terms are taken to be locally construc
from the Minkowski frame, metric and volume tensors, sp
two fields, gauge symmetry parameters, and derivatives
the fields and parameters. As the main assumption, the
rivatives appearing in the deformation terms will be r
stricted so that the number of local dynamical degrees
freedom of the spin-two fields in the linear theory is pr
served order by order in a nonlinear deformation. With t
requirement the most general possible form for nonlin
7-2
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spin-two field equations is that of a quasilinear second or
system of partial differential equations~PDEs!, namely,
highest derivative terms are of second order, while the co
ficient of these terms depends on at most first order der
tives of the spin-two fields. In turn, due to a general relat
known to hold@3,13# between the form of lowest order de
formation terms in the field equations and Noether curre
of rigid symmetries associated with the lowest order def
mation terms in the gauge symmetries, the most general
sible form for spin-two gauge symmetries is required to be
most first order in derivatives. It is worth noting that strong
assumptions have been made in all systematic analyse
date and essentially lead to nonlinear spin-two field eq
tions being restricted to the form of a second order system
semilinear PDEs, where the coefficient of the second or
derivative terms involvesno derivatives of the spin-two field
but is allowed to depend on the spin-two field itself. Such
form arises directly if the deformation terms in the Lagran
ian are restricted to contain at most two derivatives, i
second order derivatives appear linearly, or more gener
first order derivatives appear quadratically. In contrast,
weaker assumptions made here allow these deforma
terms to have a general polynomial dependence on first
rivatives~with no higher order derivatives appearing!, which
is compatible with a quasilinear form for the spin-two fie
equations as occurs for the deformations investigated in
@9#.

In addition, corresponding to the role of the auxiliary fie
~2.1! in the free theory, all derivatives of the spin-two field
ham

A in a nonlinear deformation will be assumed to app

only throughv
(1)

amn
A. Consequently, it follows that at lowes

order the deformation of the gauge symmetries and fi
equations is required to take the form~indices suppressed!

dx

~1!

h5Ahx1Bwx1Ch]x, dj

~1!

h5Fhj1Gwj1Hh]j,
~2.14!

and

E
~2!

5Iw]w1Jh]w1Kww1Mhw1Nhh, ~2.15!

where the coefficients are constant tensorsA,...,N locally
constructed just fromsa

m, hab , ea1¯an
. Such deformations

will be called ‘‘quasilinear covariant.’’
A useful field-theoretic formulation of gauge invarian

~2.11! is given by the following necessary and sufficient L
derivative equations~indices suppressed!:

Ldj
E50, Ldx

E50, ~2.16!

L@dj1
,dj2

#E50, L@dx1
,dx2

#E50, L@dj1
,dx1

#E50,

~2.17!

whereLd denotes the Lie derivative operator as defined w
respect to field variationsdh regarded formally as tangen
vector fields on the space of field configurationsh ~see Ref.
@8#!. An expansion of Eqs.~2.16! and ~2.17! in powers ofh
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gives a system of determining equations for all allowed
formation terms order by order in the field equations a
gauge symmetries.

The first order deformation terms~2.14! and~2.15! can be
determined by solving the expanded determining equati
~2.17! to zeroth order and~2.16! to first order using the meth
ods of Ref. @1#. This leads to the following classificatio
result.

Theorem 1. All first order quasilinear covariant deform
tions ~2.14! and ~2.15! of the free spin-two gauge theor
~2.1!–~2.5! in n>3 dimensions are equivalent to a combin
tion of the types

dj

~1!

ham
A5aA

BCv
~1!

amn
BjnC, dx

~1!

ham
A5aA

BCha
nBxnm

C,

~2.18a!

L
~3!

52~aABC~3 R
~1!

@ab
abAhc

nBhd]
rCsd

r

1 3
2 R

~2!

@ab
abAhc]

nB!sc
n

1dAB
1
2 v

~2!

@a
arA v

~1!

b]r
bB)sa

asb
b , ~2.18b!

aABC5a~ABC! , ~2.18c!

where

R
~2!

ab
nrA5]@a v

~2!

b]
nrA1aA

BCv
~1!

@a
nmB v

~1!

b]m
rC, ~2.19!

v
~2!

a
nrA5aA

BC~~2hb@nBsr]csam

2ham
Bsbnscr!]@bhc]

mC22hb@nB]@ahb]
r]C! ~2.20!

~corresponding to an algebra-valued gravitational inter
tion!, or if n53

dj

~1!

ham
A50, dx

~1!

ham
A5bA

BCenra v
~1!

anr
Bxam

C,
~2.21a!

L
~3!

5 1
2 bABCeabcv

~1!

a
abA v

~1!

ba
nB v

~1!

cnb
C, ~2.21b!

bABC5b~ABC! ~2.21c!

~corresponding to the parity violating part of an algeb
valued topological gravity interaction!, or if n55

dj

~1!

ham
A50, dx

~1!

ham
A5cA

BCemnrab v
~1!

a
nrBxabC,

~2.22a!

L
~3!

52 1
2 cABCeabcnr v

~1!

a
abA~ v

~1!

bab
B v

~1!

cnr
C

24 v
~1!

ban
B v

~1!

cbr
C!, ~2.22b!

cABC5c@ABC# ~2.22c!

~corresponding to a parity violating exotic interaction!. The
structure on the internal vector spaceRN associated with the
7-3
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set ofN>1 spin-two fieldsham
A is a commutative, invariant

normed algebra in the first two types of deformations and
anticommutative, invariant-normed algebra in the third ty
of deformation.

These results determine the commutator structure of

deformed gauge symmetries to lowest order,@d1 ,d2#
(0)

5 d
(0)

3 .
For type~2.18!, the nonvanishing commutators are given

@dx1
,dx2

#
~0!

5 d
~0!

x3
~2.23!

with

x3mn

A52x1@m

rBx2n]r

CaA
BC , ~2.24!

and

@dx1
,dj1

#
~0!

5 d
~0!

j3
~2.25!

with

j3m

A5x1mn

Bj1
nCaA

BC . ~2.26!

In contrast, the only nonvanishing commutator for typ
~2.21! and ~2.22! is given by

@dx1
,dx2

#
~0!

5 d
~0!

j3
~2.27!

with, respectively,

j3m

A5enrax1nr

Bx2am

CbA
BC when n53 ~2.28!

and

j3m

A5emnrabx1
nrBx2

abCcA
BC when n55. ~2.29!

An analysis of the determining equation~2.17! by the meth-
ods of Ref.@1# shows that the same commutator structu
holds at next order

@d1,d2#
~1!

u E50
~1! 5 d

~1!

3u E50
~1! ~2.30!

whenham
A satisfies the linear field equation~2.2!.

Higher order deformation terms in the gauge symmet
and field equations can be derived by continuing to solve
determining equations~2.16! and ~2.17! at successively
higher orders. However, an integrability condition on the fi
order deformation terms~2.18!–~2.22! arises from the clo-
sure result for the gauge symmetry commutator structur
first order in Eq.~2.30! if we consider the terms that involv
second derivatives ofham

A. For type~2.18!, all such terms

come from the commutator@ d
(1)

j1
, d
(1)

j2
#gab

A, which yields

aA
B@CaB

D]Ej1
eDj2

dC R
~1!

a~ed!b
Eu E50

~1!
. ~2.31!
12400
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These terms must vanish to within a symmetrized deriva

by Eq. ~2.30!. Since] [gu]@ f R
(1)

a](de)ub]
EÞ0, we consequently

obtain the integrability condition

aA
B@CaB

D]E50. ~2.32!

Next, for type ~2.21! we find the terms that come from

@ d
(1)

x1
, d
(1)

x2
#gab

A with second derivatives ofham
A are given

by

bA
B@CbB

D]Ex̃1
eDx̃2

dC R
~1!

a~ed!b
Eu E50

~1!
, ~2.33!

where x̃nA5enabxab
A. But Eq. ~2.33! vanishes since, in

n53 dimensions, the linear spin-two field equation~2.2! is

well known to imply R
(1)

adeb
E50. Thus, due to the absence

local dynamical degrees of freedom, no integrability con
tion arises from Eq.~2.30! for deformation~2.21!. However,
if deformations~2.18! and ~2.21! are combined inn53 di-
mensions, then we obtain an integrability condition

aA
BCbB

DE5bA
BEaB

DC . ~2.34!

Finally, for type~2.22! the same commutator now yields

cA
BCcB

DE~x1
deCx2~a

cD2x1~a

cDx2
deC! R

~1!

b)cde
Eu E50

~1!

1hab terms, ~2.35!

which does not vanish to within a symmetrized derivativ
Hence, it follows from equation~2.30! that these terms
~2.35! must be canceled by suitable quadratic deformat
terms of the form~indices suppressed!

dx

~2!

h5bb R
~1!

hx1~ lower derivative terms!. ~2.36!

In turn, a similar analysis for the resulting commutat

@ d
(1)

j1
, d
(1)

x1
#gab

A leads to further quadratic deformation term

dj

~2!

h5bb R
~1!

h]j1~ lower derivative terms!. ~2.37!

Then we find that the commutator@ d
(1)

j1
, d
(1)

j2
#gab

A produces
second derivative terms of the same form as Eq.~2.35! where
x1de

D and x2ac

C are replaced by]dj1e

D and ]aj1c

C. Since
the resulting terms do not vanish to within a symmetriz
derivative, we thus derive an integrability condition

cA
BCcB

DE50. ~2.38!

Similar integrability conditions occur if deformations~2.22!
and ~2.18! are combined inn55 dimensions,

aA
BCcB

DE5cA
BCaB

DE50. ~2.39!

Integrability conditions~2.32! and ~2.38! assert that the
underlying internal algebras associated with the spin-t
fields in the deformations~2.18! and~2.22! are, respectively,
7-4
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associative and nilpotent of degree three. By the result
Refs. @2, 9#, there are no further integrability conditions o
the construction of deformations~2.18! and ~2.21! to all
higher orders in solving the determining equations. On
other hand, deformation~2.22! can be shown to satisfy th
determining equations to all orders itself, since any hig
order deformation terms necessarily vanish as a consequ
of nilpotency~2.38! of the algebra. Thus, this deformation

L5 L
~2!

1 L
~3!

, djham
A5dj

~0!

ham
A,

dxham
A5dx

~0!

ham
A1dx

~1!

ham
A ~2.40!

given by Eqs.~2.3!, ~2.5!, ~2.22!, and ~2.32! yields a full,
nonlinear spin-two gauge theory. Hence we arrive at the
lowing main classification result.

Theorem 2. The nonlinear spin-two gauge theories
n.2 dimensions determined by the respective first-order
formations ~2.18!, ~2.21!, ~2.22! are equivalent to an
algebra-valued Einstein gravity theory for n>3 with a com-
mutative, associative, invariant-normed algebra, or if n53,
a novel nonlinear theory related to a scaling limit o
algebra-valued topological gravity theory with a commut
tive, invariant-normed algebra, or if n55 a new algebra-
valued nonlinear theory with an anticommutative, nilpote
invariant-normed algebra. Additional nonlinear spin-tw
gauge theories arise from the gravity deformation~2.18!
combined with either of the other two deformations~2.21! or
~2.22!, describing exotic (parity violating) generalizations
algebra-valued Einstein gravity theory in n53,5 dimensions
@with the algebras restricted by conditions~2.34! and~2.39!#.
There are no other nonlinear spin-two gauge theories of q
silinear covariant type.

The five-dimensional nonlinear theory without gravit
tional interactions has the following features. Its field equ
tions ~to within trace terms!

Eam
A5Ram

A5]@avb]mn
Asbn50 ~2.41!

are given by the quadratic spin-connection

vamn
A5 v

~1!

amn
A1Vamn

A22sa
rsb

@muVbun]r
A

1 4
3 sbrsa@muVbrun]

A ~2.42!

with

VaabA5cA
BC†2eabcnr~2 v

~1!

bn
aB v

~1!

cr
bC2 v

~1!

b
abB v

~1!

cnr
C!

2eabcab v
~1!

b
nrB v

~1!

cnr
C12eabcr@a v

~1!

b
b]mB v

~1!

cmr
C
‡,

~2.43!

whereVa
abA2 2

3 Vc
r@bAsa

a]sc
r plays the role of a contor

sion tensor. Exponentiation of its gauge symmetries ge
ates a group of finite gauge transformationsham

A→h8am
A

given by
12400
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h8am
A5ham

A1]ajm
A1sa

nxnm
A1cA

BCemnrab~ v
~1!

a
nrB

1 1
2 ]axnrA!xabC. ~2.44!

Using this gauge freedom in the theory, we can make a n
linear change of field variable tog8ab

A5s (a
mh8b)m

A with
xnm

A determined in terms ofham
A by s@a

mh8b]m
A50. The

gauge symmetries then consist of~after a parameter redefi
nition!

djg8ab
A5] (ajb)

A1cA
BCe (au

cde f]cg8dub)
B]ej f

C,
~2.45!

while the field equations become

E8ab
A52hcd~2]@au]@bg8c] ud]

A1]c„V8~ab!d
A~g8!

1 1
3 V8ed

eA~g8!hab…!50, ~2.46!

which are of quasilinear second order form, where

V8amn
A~g8!54cA

BC~eabcdeGm
dbBGn

ecC2eabcmnG
bdeBGc

de
C

2eabcd@mGb
n]e

BGedcC! ~2.47!

with Gamn
A5]@mg8n]a

A.
Since the algebra (cA

BC ,RN) associated with the spin-two
fields in this theory is anticommutative and nilpotent of d
gree three, it satisfies the Jacobi identity and hence is equ
lently characterized as being a solvable Lie algebra of len
two @14#, with an invariant norm. Note that the existence
an invariant norm puts some restriction on the Lie brac
structure in the algebra. The simplest example of such
algebra (cA

BC ,RN) is given bycABC5u@AvBwC] , whereuA ,
vB , wC are mutually orthogonal null vectors in
(N56)-dimensional vector space with normdAB5diag
(11,11,11,21,21,21).

However, if we impose a physically natural requireme
that the individual spin-two fields should have positive e
ergy ~or more precisely that the weak energy condition@15#
holds!, using the conserved stress-energy tensor derived f
the Lagrangian~2.40!, this severely restricts the allowe
non-Abelian structure of the algebra. Specifically, as alre
noted for the free theory, positivity of energy forces the no
on the algebra to be positive definite. As a consequen
from nilpotency ~2.38! combined with norm-invariance
~2.22c!, we havecA

BCcADE50, which impliescA
BC50 due

to positive definiteness of the norm. Hence, in this situati
every anticommutative, nilpotent, invariant-normed alge
(cA

BC ,RN) is Abelian. In a similar manner, as shown in Re
@2#, any commutative, associative, invariant-normed alge
(aA

BC ,RN) with a positive definite norm is the direct sum o
one-dimensional unit algebrasR. Thus we obtain the follow-
ing no-go result.

Theorem 3. The only quasilinear covariant deformatio
in n>4 dimensions for spin-two gauge theories with posit
energy are semilinear, in particular, equivalent to Einste
gravity theory with no interaction between different spin-tw
fields.

This strengthens the no-go theorem in Ref.@2# to the more
general class of quasilinear covariant deformations con
7-5



-

l
ta

c

oo

n

on

th

e-
en
a

i-

re
le

t o

,

lar
lar,
ra

of

-

s
ted
-
nly
the

a-

ell-

-
in
po-

-

e

ns

STEPHEN C. ANCO PHYSICAL REVIEW D67, 124007 ~2003!
ered here. Inn53 dimensions, positivity of energy is com
patible with a nontrivial algebra structure (bA

BC ,RN), as em-
phasized in Ref. @9#. The resulting three-dimensiona
nonlinear theory, using the formalism here, without gravi
tional interactions is given by the gauge symmetries

djham
A5]ajm

A, dxham
A5eamnx̃nA1bA

BCemnrṽa
nBx̃rC

~2.48!

and the field equations

Eam
A5]@aṽb]

nAemn
b, ~2.49!

where ṽa
nA5enmrvamr

A satisfies the following quadrati
spin-connection equation:

]@ahb]m
A5emnr~s@a

nṽb]
rA1bA

BCṽ@a
nBṽb]

rC.
~2.50!

It is possible to solve Eq.~2.50! to obtain

ṽan
A5V1/2

an
A2 1

2 san1
A ~2.51!

in terms of the square root of

Van
A522ea

bc]bhcn
A1 1

2 san1
A ~2.52!

as defined by

ec
aben

mrV1/2
am

BV1/2
br

C52Vcn
A, ~2.53!

where1A is a unit element~appended if necessary! in algebra
(bA

BC ,RN). ~Note, with indices suppressed, this square r
satisfies the algebraic relationV1/23V1/252V with 3 be-
ing a symmetric product onR3

^ R3
^ RN given by the tensor

product of three-dimensional cross-productse combined
with the algebra productb.! This theory can be formulated i
terms of ordinary spin-two fieldsg8ab

A5h8(ab)
A analogously

to the five-dimensional theory by a suitable field redefiniti
using the finite gauge transformations

h8am
A5ham

A1]ajm
A1eamnx̃nA

1bA
BCemnr~ 1

2 ]ax̃nB1ṽa
nB!x̃rC ~2.54!

generated from the gauge symmetries on solutions of
field equations.

III. CONCLUDING REMARKS

It is worth investigating to what extent the complete fiv
dimensional nonlinear spin-two theory derived here is s
sible as a classical field theory in view of its unusual fe
tures.

First, the field equations~2.46! possess a well-posed in
tial value formulation. The linear part of Eq.~2.46! is given
by the free Fierz-Pauli spin-two equations~2.7!, which are a
second order hyperbolic system whose characteristic di
tions coincide with the Minkowski light cones, when suitab
gauge conditions are imposed. While the nonlinear par
Eq. ~2.46! also involves second order derivatives anda priori
might be expected to alter the characteristic directions
fact, the nilpotency of the internal algebra (cA

BC ,RN)5A
12400
-

t

e

-
-

c-

f

in

implies that the full field equations are a decoupled triangu
system of semilinear Fierz-Pauli equations. In particu
considerA(1)5@A,A# where the brackets denote the algeb
productcA

BC on the internal normed vector space (RN,dAB).
Because of the nilpotency and indefinite sign of the norm
A, A(1) is a null, Abelian subalgebra ofA, with a null
complementA(1)8 such thatA(1)% A(1)8 5A ~once we divide
any trivial Abelian factors ofA!. SinceA(1) andA(1)8 obey
@A(1)8 ,A(1)8 ##A(1) and @A(1) ,A(1)#5@A(1),A(1)8 #50, the
subset of spin-two fields associated withA(1)8 @i.e.
PA

(1)8 (ham
A) wherePA

(1)8 5PA(1)

T is the transpose of the pro

jector PA(1)
onto A(1)] satisfies free Fierz-Pauli equation

~2.7!, and the remaining subset of spin-two fields associa
with A(1) @i.e. PA(1)

(ham
A)] satisfies inhomogeneous Fierz

Pauli equations with quadratic source terms that involve o
the free spin-two fields. For example, consider the case of
algebra given bycABC5u@AvBwC] on

~R6,dAB52u~Au8B)12v ~Av8B)12w~Aw8B)!

with a null vector basisuA ,vB ,wC ,u8A ,v8B ,w8C whose
only non-zero inner products in this basis areu8AuA

5v8AvA5w8AwA51. The inhomogeneous Fierz-Pauli equ
tions hold for the fieldsPB

Aham
B given by the null projector

PB
A5uAu8B1vAv8B1wAw8B , while the free spin-two Fierz-

Pauli equations involve the fieldsPT
B
Aham

B given in terms of
the transpose null projectorPT

B
A5dBCdADPD

C5u8AuB

1v8AvB1w8AwB .
As a consequence of this decoupling feature, the w

posedness property of the field equations~2.46! is insensitive
to the lack of positivity of energy@16# arising from the con-
served stress-energy tensor of the Lagrangian~2.40! through
the indefinite sign of the norm on algebraA.

Finally, although the theory exists only in five dimen
sions, it is relevant for four dimensions if a Kaluza-Kle
reduction is considered. We begin with a product decom
sition of five-dimensional Minkowski spacetime (R5,hab)
5(R4,h̄ab)3(R,yayb) where h̄ab is the four-dimensional
Minkowski metric andya is a spacelike unit vector orthogo
nal to h̄ab . Note we have the 411 decompositions

hab5h̄ab1yayb , eabcde55ē @abcdye] , ~3.1!

whereēabcd is the four-dimensional volume form.~Through-
out, a bar will denote a tensor or field variable onR4.) Now
we decompose the spin-two field variablesg8ab

A in the field
equations~2.46! into the 411 form

g8ab
A5ḡab

A1Ā~a
Ayb)1f̄Ayayb ~3.2!

with the fieldsḡab
A, Āa

A, f̄A taken to have no dependenc
on theya coordinate:

yc]cḡab
A5yc]cĀa

A5yc]cf̄
A50. ~3.3!

The components of the five-dimensional field equatio
~2.46! under the decompositions~3.1!–~3.3! yield four-
dimensional field equations consisting of
7-6
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ĒA5E8ab
Ayayb50

for the spin-zero fieldsf̄A, and

Ēa
A5E8ab

Ayb2ĒAya50

for the spin-one fieldsĀa
A, in addition to

Ēab
A5E8ab

A22Ē~a
Ayb)2ĒAyayb50

for the spin-two fieldsḡab
A. There is a correspondin

decomposition of the five-dimensional gauge symmet
~2.45! in terms of the parametersj̄A5ja

Aya and j̄a
A

5ja
A2 j̄Aya , which also are taken to have no dependen

on theya coordinate,

yc]cj̄
A5yc]cj̄a

A50. ~3.4!

The resulting four-dimensional gauge theory is a nonlin
deformation of the combined linear theory of scalar fields

Ē
~1!

A52 1
2 h̄cd]̄c]̄df̄A, dj̄

~0!

f̄A50, ~3.5!

Maxwell gauge fields

Ē
~1!

a
A5h̄cd]̄c]̄ @dĀa]

A, dj̄

~0!

Āa
A5 ]̄aj̄A, ~3.6!

and linearized graviton fields

Ē
~1!

ab
A522h̄cd]̄ @cu]̄ @dḡb] ua]

A, dj̄

~0!

ḡab
A5 ]̄ ~aj̄b)

A.
~3.7!

A Lagrangian formulation is readily obtained by decom
posing the five-dimensional linearized frameshab

A

5sb
mham

A and linearized spin-connections v
(1)

abc
A

5sb
msc

n v
(1)

amn
A into the 411 form

hab
A5h̄ab

A1Āa
Ayb1f̄Ayayb , ~3.8!

v
~1!

abc5v̄abc
A2F̄bc

Aya12F̄a@b
Ayc]

22H̄ @b
Ayc]ya , ~3.9!

where

v̄abc
A53]̄ @ah̄bc]

A22]̄ @bh̄c]a
A ~3.10!

represents the four-dimensional linearized spin-connect
and

F̄ab
A5 ]̄ @aĀb]

A, H̄a
A5 ]̄af̄A ~3.11!
x,

12400
s

e

r

n,

represent the four-dimensional spin-one field strength
spin-zero field strength. The linearized spin-connection a
field strengths here have the role of auxiliary fields~analo-
gous to a ‘‘1.5’’ formalism in supergravity@12#!. Then,
through decompositions~3.1!, ~3.8!, and ~3.9!, the five-

dimensional Lagrangian~2.40! reduces to formL̄5 L̄
(2)

1 L̄
(3)

,
where

L̄
~2!

52 1
2 ~ h̄a

aA~ ]̄bv̄c
bcB2 ]̄bH̄bB!1h̄b

aA~2]̄ @cv̄a]
bcB

1 ]̄aH̄bB!2v̄@a
caAv̄b]c

bB2Āb
A]̄cF̄

bcB

1 1
2 F̄ab

AF̄abB!dAB , ~3.12!

and

L̄
~3!

52 1
2 ~~v̄a

pqAv̄bpq
B22F̄a

pAF̄bp
B!v̄bcd

C2~4v̄ab
pAv̄cd

qB

12v̄a
pqAv̄bcd

B!F̄pq
C24H̄pAF̄ap

Bv̄bcd
C

24H̄ ~p
AF̄a)b

Bv̄cd
pC!ēabcdcABC . ~3.13!

This four-dimensional LagrangianL̄5 L̄
(2)

1 L̄
(3)

is invariant to
within a total divergence under the gauge symmetries

dj̄h̄ab
A5 ]̄aj̄b

A, dx̄h̄ab
A5x̄ab

A14cA
BCēbcpqF̄a

cBx̄pqC,
~3.14!

dj̄Āa
A5 ]̄aj̄A,dx̄Āa

A5cA
BC~ ēbcpqv̄a

bcB12ēabpqH̄
bB!x̄pqC,

~3.15!

dj̄f̄
A50, dx̄f̄A52cA

BCēcdpqF̄
cdBx̄pqC, ~3.16!

whose parametersj̄A, j̄a
A, x̄ab

A5x̄ @ab#
A are arbitrary func-

tions of the four-dimensional spacetime coordinates, as
tained by decomposing the five-dimensional gauge sym
tries ~2.40! and simplifying various terms via the nilpotenc
~2.32! of cA

BC .
Thus we have obtained a four-dimensional pari

violating nonlinear gauge theory of a massless coupled se
spin-two fields, spin-one fields, and spin-zero fields. T
theory can be generalized to include an algebra-valued gr
tational coupling, where the internal algebras (cBC

A ,RN) and
(aBC

A ,RN) underlying the respective parity-violation cou
pling and gravity coupling in the theory satisfy the necess
conditions stated in Theorem 2. A simple example for the
algebras consists of taking the vector space (R6,dAB
5diag(11,11,11,21,21,21)) with cABC being the skew
product of three mutually orthogonal null vectorsuA , vB ,
wC , andaABC being the sum of any symmetric products
these same vectors.
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