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Parity violating spin-two gauge theories
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Nonlinear covariant parity-violating deformations of free spin-two gauge theory are studieg3dnspace-
time dimensions, using a linearized frame and spin-connection formalism, for a set of massless spin-two fields.
It is shown that the only such deformations yielding field equations with a second order quasilinear form are
the novel algebra-valued types m=3 andn=5 dimensions already found in some recent related work
concentrating on lowest order deformations. The complete form of the deformation to all orders5in
dimensions is worked out here and some features of the resulting new algebra-valued spin-two gauge theory
are discussed. In particular, the internal algebra underlying this theory on five-dimensional Minkowski space is
shown to cause the energy for the spin-two fields to be of indefinite sign. Finally, a Kaluza-Klein reduction to
n=4 dimensions is derived, giving a parity-violating nonlinear gauge theory of a coupled set of spin-two,
spin-one, and spin-zero massless fields.
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I. INTRODUCTION logical formulation [4,5] of the deformation determining
equations.

It is widely believed that the only allowed type of gauge Very interestingly, in Ref[9] a deformation different than
symmetry for a nonlinear massless spin-two field is a diffeothe Einstein field equation and diffeomorphism gauge sym-
morphism symmetry, corresponding to a gravitational selfmetry for a single spin-two field in three-dimensional
interaction of the field. Recent wofi,2] has addressed this Minkowski space is constructed by deforming the Abelian
question more generally for a set of any number of coupledjauge symmetry by a linear term that contains first deriva-
massless spin-two fields by the approach of deformations dfves of both the spin-two field and the gauge symmetry pa-
linear Abelian spin-two gauge theory. A deformation, hererameter. Gauge invariance is maintained at lowest order by
means adding linear and higher power terms to the Abeliaalso deforming the free Lagrangian by a term that is cubic in
spin-two gauge symmetry while also adding quadratic andirst derivatives of the spin-two field. The resulting quadratic
higher power terms to the linear spin-two field equation,terms in the field equation contain one more derivative than
such that a gauge invariant action principle exists which idn the free theory but are still second order in derivatives.
not equivalent to the undeformed linear theory by nonlineaThese deformation terms, moreover, also involve the
field redefinitions. The condition of gauge invariance hasMinkowski volume tensor and hence possess the interesting
various formulationg3—5] that yield determining equations feature of being parity noninvariant. Of course, in three di-
to solve for the allowed form of the deformation terms, mensions there are no local dynamical degrees of freedom
added order by order, in powers of the fields. This approachfor a free spin-two field. Indeed the full deformation to all
in contrast with earlier efforts in the literature, makes noorders is found to be related through field redefinitions to
assumptions on the possible structure for the commutatagertain topological three-dimensional gravity theofi€g] in
algebra of the deformed gauge symmetries and takes advaa-scaling limit in which the gravitational interaction is turned
tage of the necessary requirement that these gauge symnwff. Intriguingly, parity noninvariant deformation terms of a
tries should be realized by a nonlinear theory given by aimilar form to the three-dimensional ones also exist at low-
deformation of the Lagrangian of the linear theory. est order in five dimensions for an algebra-valued spin-two

The results of the deformation analysis in Ref] show field using an anticommutative algebra; but it was left open
that if all deformation terms are required to involve no morein Ref. [9] whether a full deformation actually exists to all
derivatives of the spin-two field and gauge symmetry paramerders. The resulting nonlinear spin-two gauge theory, if it
eter than appear in the free theory, then in four dimensionsvere to exist, would be of obvious potential physical and
the unique possible deformation for a set of one or moremathematical interest to investigate. It would lead, for in-
spin-two fields is given by an algebra-valued generalizatiorstance, to an exotic four-dimensional gauge theory of a non-
of the Einstein gravity theor6,7] based on a commutative, linearly coupled set of spin-two and spin-one fields obtained
associative, invariant-normed algebra. As such a set of fieldgia a Kaluza-Klein reduction of the five-dimensional theory.
is mathematically equivalent to a single algebra-valued spin- The main purpose of this paper is to show that, in fact, the
two field [8], the only type of gauge symmetry indeed al- novel first order deformation in five dimensions explored in
lowed is a diffeomorphism symmetiyn an algebra-valued Ref.[9] exists to all orders only if the anticommutative al-
setting. An extension of this result to all higher spacetime gebra is nilpotentand invariant-normeg due to an integra-
dimensions is given in Ref2] by using a BRST cohomo- bility condition that arises in solving the deformation deter-

mining equations at second order. It will also be shown that
there is a striking connection between this algebraic structure
*Electronic address: sanco@brocku.ca and the sign of the energy at lowest order in the deformation.
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These results will follow from a more general classificationthe familiar free theory of spin-two fields, observe that if the

theorem that will be proven here in=3 dimensions for

gauge conditiorh[ab]Azo is imposed using the gauge free-

nonlinear spin-two gauge theories with more derivatives thamlom h,,*—h, A+ x4 involving the skew-tensor functions
contained in the linear theory, but which preserve the numbef(abAzoa”abPXVpA, then the field equation®.2) and gauge
of local dynamical degrees of freedom. For this analysis, isymmetrieq2.3) reduce to the ordinary Fierz-Pauli spin-two
turns out to be most convenient to employ a linearized spinequations

connection/frame formalism for free spin-two fields, in terms

of which the deformation obtained in=3 dimensions in
Ref. [9] takes its simplest fornfindeed, no other complete
formulation for that deformation has yet been derived

Il. DEFORMATION ANALYSIS AND MAIN RESULTS

We introduce the set dfi=1 fields ha#A (viewed as lin-
earized frames together with a set of auxiliary fieldsvith
the role of linearized spin-connections

(1)
(Ual“/A:(9ah[bC]AO'bMO'CV_ZUb[V(?M]h(ab)A, (21)

in terms ofh,y*=op*h,, A, A=1,...N, wheregy* denotes
any fixed orthonormal frame for the Minkowski metrig,;,

= 04”0y 7, [With p**=diag(~1,+1,...+1)] while ¢°,

is the inverse framgl1]. The free spin-two theory for these
fields onn-dimensional Minkowski spaceR(, 7,p) is given
by the linear field equations

(1)
E

(1) A b
= Rapur 0"=0,

(1) A (1) A
au RabMV :a[awb],uv ’ (22)
and the Abelian gauge symmetries

o A A
5§ha,u. =da,

© A A
5Xha,u = O-aVXv,u.

(2.3

involving parameter@fMA, XV,LA= XW]A which are arbitrary
(1)

functions of the spacetime coordinates. HeRngA is a
gauge invariant field strength, as is seen due to

(0) (1) (0) (1)

8¢ 04,,=0, &, wa,,*=dax,," (2.9

7°%9}2 910 Vela) =0 2.7
and spin-two gauge invariance
Yed — Yed T I (e (2.9

in terms of the symmetric tensor fielgs,"= h 4" and cov-
ector functionsgbAzob*‘gMA. Furthermore, note these spin-
two fields will have positive energy as obtained from the
conserved stress-energy tensor of the free Lagrar(gi&nif
(and only iff Spg=diag(+1,...,+ 1) is a positive definite ma-
trix.

We now consider deformations of the gauge symmetries
and field equations

(0) (1)

A_ A A
5§ha,u, - 5§ha,u, + 5§ha,u +"',
A (0) A (1) A
Ona, = 0,hg,+ 8,hg, 4, (2.9
A = A 2 A A
EBay = Eay + B+ =En(L)a,
2 3
L=L+L+, (2.10

satisfying gauge invariance of the Lagranglarso thats,L
and 6,L are total divergences. This determining condition
has the following direct formulatiofsee Refs[1, 3)):

En(8¢hp,PE"8) 2, = En( 8,0y, BEP") 5, =0, (2.1D)

where Ii(-)awA is the Euler-Lagrange operator with respect
to haﬂA [modified by trace projectiof2.6)]. Two deforma-
tions will be regarded as equivalent if they are related by

This free theory comes from the gauge-invariant Lagrangiafie|q redefinitions

(2) ) (1)
L=— 5(3h[a"Ar?b ] ""Ba'cﬁJ
(1) (1)

+ w[a’“’Awb]p”B)Uaﬂab,ﬁAB, (2.5
where d,p is a fixed symmetric matrix. A variation (h‘aMA
yields the field equation$2.2) to within irrelevant trace
terms,

(2)

1 (N
—— 00, |5L16hy,B=E, A

AB beo v
5% 8,28, + 57— 2

(2.6

(1)
while an independent variation mfaWA gives a total diver-
gence as a consequence of the auxiliary equati@ib.
Hence it is necessary only to vah;gﬂA alone in considering
variations of the Lagrangia(2.5 (analogous to a “1.5 for-

(2)

haMA—>h’aMA= haMA+ h ’aMA+--- (2.12
or by parameter redefinitions
A r A A (l)/ A
£, =& =8 80
(1
X" =X =X X (2.13

The deformation terms are taken to be locally constructed
from the Minkowski frame, metric and volume tensors, spin-
two fields, gauge symmetry parameters, and derivatives of
the fields and parameters. As the main assumption, the de-
rivatives appearing in the deformation terms will be re-
stricted so that the number of local dynamical degrees of
freedom of the spin-two fields in the linear theory is pre-
served order by order in a nonlinear deformation. With this

malism” [12]). To see how the formalism here is related torequirement the most general possible form for nonlinear
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spin-two field equations is that of a quasilinear second ordegives a system of determining equations for all allowed de-
system of partial differential equation®DE9, namely, formation terms order by order in the field equations and
highest derivative terms are of second order, while the coefgauge symmetries.

ficient of these terms depends on at most first order deriva- The first order deformation terni2.14) and(2.15 can be
tives of the spin-two fields. In turn, due to a general relationdetermined by solving the expanded determining equations
known to hold[3,13] between the form of lowest order de- (2.17) to zeroth order an¢2.16) to first order using the meth-
formation terms in the field equations and Noether current®ds of Ref.[1]. This leads to the following classification
of rigid symmetries associated with the lowest order defor+esult.

mation terms in the gauge symmetries, the most general pos- Theorem 1. All first order quasilinear covariant deforma-
sible form for spin-two gauge symmetries is required to be ations (2.14 and (2.15 of the free spin-two gauge theory
most first order in derivatives. It is worth noting that stronger(2.1)—(2.5) in n=3 dimensions are equivalent to a combina-
assumptions have been made in all systematic analyses tion of the types

date and essentially lead to nonlinear spin-two field equa-
tions being restricted to the form of a second order system of
semilinear PDEs, where the coefficient of the second order

= A A W B ¢1vC o A A B C
6§ha,u. =a BCwa,uV éy ’ 5Xha,u, =a BChaV va, ’

derivative terms involveno derivatives of the spin-two field (2.18a
but is allowed to depend on the spin-two field itself. Such a (3) (1)
form arises directly if the deformation terms in the Lagrang- L = —(aapc(3Rap™*hc"Phg " o,
ian are restricted to contain at most two derivatives, i.e., 2
second order derivatives appear linearly, or more generally, +3 R[abaﬁAhC]vB)ch
first order derivatives appear quadratically. In contrast, the
weaker assumptions made here allow these deformation vs l(z) ap,fl) BBy .a b (2.18b
terms to have a general polynomial dependence on first de- B2 @[a"" @b),") 0700, :
rivatives (with no higher order derivatives appearing’hich e —a (2.180
is compatible with a quasilinear form for the spin-two field ABC™ (ABO) » '
[egq]uations as occurs for the deformations investigated in Refynere

In addition, corresponding to the role of the auxiliary field (2 VoA @ oD WBW c
(2.1) in the free theory, all derivatives of the spin-two fields Rab™” = djawp "+ @ gcw """ wp),,"", (2.19
haﬂA in a nonlinear deformation will be assumed to appear .,

(1) A_ LA b[vB _p]c

only throughw ,,,,*. Consequently, it follows that at lowest o, =a"gc((2h o oy,
order the deformation of the gauge symmetries and field _haﬂBo_bVa_Cp)&[th],uC_2hb[VBo7[ahb]p]C) (2.20

equations is required to take the fofmdices suppressed

(corresponding to an algebra-valued gravitational interac-

S (4 tion), or if n=3

8,h=Ahy+Bwy+Chay, 8h=Fhé+Gwé+Hhag,

(2.14 w o o
5§haM :0, 5)(ha,u :b BCEVpaanp Xuz,u. ,
and (2.213
(2) 3 (1) (EORN
E =Iwow+Jhow+Kww+Mhw+Nhh, (2.15 L =3bapce® 0, PP oy, Poc,S  (2.21D
where the coefficients are constant tensars..,N locally basc=b(aBc) (2.210

constructed just frono*, 7,p, €a,-a- Such deformations

will be called “quasilinear covariant.”
A useful field-theoretic formulation of gauge invariance

(corresponding to the parity violating part of an algebra-
valued topological gravity interactipnor if n=5

(2.11) is given by the following necessary and sufficient Lie (1) (1) (1)
derivative equationéindices suppressgd 8:no,A=0, 8,0y, = aceLpapwa P PxPC,
(2.22a
ngE:O, £5XE:0, (216) 3) . i (1) X 1) B(l) .
c E=0. £ E=0Q [ E=0 I-:_icABCEa Cvaaaﬁ (wbaﬁ Weyp
[Og 06,10 H8 0,1 Hog o 1m0 ®
(2.17) ~4wpe, wep, ), (2.22h
whereL ; denotes the Lie derivative operator as defined with Casc=ClaB(] (2.229

respect to field variationsgh regarded formally as tangent
vector fields on the space of field configuratidnésee Ref.  (corresponding to a parity violating exotic interactiofmhe
[8]). An expansion of Eq92.16) and(2.17) in powers ofh structure on the internal vector spai® associated with the
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set ofN=1 spin-two fieldshaﬂA is a commutative, invariant- These terms must vanish to within a symmetrized derivative
normed algebra in the first two types of deformations and an ) ) £

anticommutative, invariant-normed algebra in the third type?Y Ed-(2.30. Sinced;qdj¢Rqj(ae)n 70, we consequently
of deformation. obtain the integrability condition

These results determine the commutator structure of the A B _
(0) (0) a’'gca D]E_O' (232)

deformed gauge symmetries to lowest ordié¥,,5,]= 3. '
For type(2.18), the nonvanishing commutators are given by'\gle)Xt’ (I?r type (2.21) we find the terms that come from

[ 8y, 8 x,]van” With second derivatives dfi,,* are given

(0) (0) b
[8,,:8,,]1= 8, 223 by
(1)
with b”5cb®o1eX1°%X 2" Raedn | E-o- (2.33
Ys A=2x, "By, Calge, (2.24  where}"*=¢e"*fy 5" But Eqg.(2.33 vanishes since, in
m L e n=3 dimensions, the linear spin-two field equati@?) is
(1)
and well known to imply R ,4e£=0. Thus, due to the absence of
©) ) local dynamical degrees of freedom, no integrability condi-
[5,,6.]=6 (2.25 tion arises from Eq(2.30 for deformation(2.21). However,
TalT T if deformations(2.18 and (2.21) are combined im=3 di-
with mensions, then we obtain an integrability condition
A BB _phA B
a"gch"pe=b"gea"pc - (2.39
A_ Bs vCoA
€3, =x1,, €1 @sc- (2.26

Finally, for type(2.22 the same commutator now yields

In contrast, the only nonvanishing commutator for types 1
(2.21) and(2.22 is given by CPacC®oe(12% Kz, P X1, X% Ruyeet] oo
(0) (0)
+ .
[5)(1'5X2]: 5, 2.2 Nap terms, (2.395
which does not vanish to within a symmetrized derivative.
with, respectively, Hence, it follows from equation2.30 that these terms
(2.35 must be canceled by suitable quadratic deformation

€3 *=€""x1, Px2, “b%c whenn=3 (228  terms of the form(indices suppressgd
) L
and 8,h=bbRhy+ (lower derivative terms (2.3

§3ILA= €upapX1PX2"PCChgc  when n=5. (229  In turn, a similar analysis for the resulting commutator
(1) (@

An analysis of the determining equati¢2.17) by the meth- [ o 5)(1] Yan" leads to further quadratic deformation terms

ods of Ref.[1] shows that the same commutator structure 2 1

holds at next order 6:h=Dbb Rho¢+ (lower derivative terms  (2.37)
(1) (1) 1 @
[61,05]|B=0= 83l'E=0 (230 Then we find that the commutatp® , , 5 ]va," produces
A ) ] ] second derivative terms of the same form as(@®5 where
whenh, " satisfies the linear field equatid@.2). v.. P and XZacC are replaced bﬁdfleD and f7a§1CC- Since

i i i i de
ngher Ordef deformation terms in the gauge symmetr|e§he resulting terms do not vanish to within a symmetrized
and field equations can be derived by continuing to solve the,

determining equation€2.1§ and (2.17) at successively derivative, we thus derive an integrability condition
higher orders. However, an integrability condition on the first PaecBpe=0. (2.38
order deformation term§2.18—(2.22 arises from the clo-
sure result for the gauge symmetry commutator structure aimilar integrability conditions occur if deformatiori.22
first order in Eq(2.30 if we consider the terms that involve and(2.18 are combined im=5 dimensions,
second derivatives dﬁaMA. For type(2.18), all such terms
@ @ L a"gcc®pe=c"gca’pe=0. (2.39
come from the commutatcﬁrégl, 552] vap™, Which yields
Integrability conditions(2.32 and (2.38 assert that the

A 5 oD dC(l Elo underlying internal algebras associated with the spin-two

a"g1c@°p1eé1°PE "  Raeap | B—o- (2.3)  fields in the deformationé2.18 and(2.22) are, respectively,

124007-4



PARITY VIOLATING SPIN-TWO GAUGE THEORIES PHYSICAL REVIEW D67, 124007 (2003

associative and nilpotent of degree three. By the results in (1)
Refs.[2, 9], there are no further integrability conditions on 0 &, =ha,*+ 026, + 02" ., + CPaceumpap( @ 2P
the construction of deformation.18 and (2.21) to all 114, 5"PR) *AC (2.44)
higher orders in solving the determining equations. On the 20X X '
other hand, dEformatiO(Q.Zz can be shown to SatiSfy the Using this gauge freedom in the theory, we can make a non-
determining equations to all orders itself, since any highefinear change of field variable 19 ap'= (s’ py,~ with
order deformation terms necessarily vanish as a consequenggMA determined in terms OhaMA by U[a”h’b]MAZO- The

of nilpotency(2.38 of the algebra. Thus, this deformation gauge symmetries then consist (after a parameter redefi-

2 @3 R 0) X nition)
= =+ = ’ !
L=L+L, 6&hy,=05:h,," Sy abA:O—,(agb)A+CABC€(a‘cdefﬁcy d\b)BﬁeffC,
(2.45
A (0) A (1) A
Oyha, =6y, + 8y, (240 while the field equations become
given by Egs.(2.3), (2.5, (2.22, and (2.32 yields a full, E'an =~ 7°U20129107 10"+ 9c(Q (apya™ (V')
nonlinear spin-two gauge theory. Hence we arrive at the fol- Loy eA B
lowing main classification result. 30 ed™(¥") 7ap) =0, (2.49

Theprem .2' The nonllnear spin-two gauge theories Nwhich are of quasilinear second order form, where
n>2 dimensions determined by the respective first-order de-

formations (2.18),. (2.2]), (2'.22) are equivalgnt to an QoY) = 4cP5c( €apead md BT 18 C— €apemd PIeE ¢, C
algebra-valued Einstein gravity theory foer3 with a com- b Bred
mutative, associative, invariant-normed algebra, or i 8, — €apcqml "nje 49 (2.47)
a novel nonlinear theory related to a scaling limit of A LA
algebra-valued topological gravity theory with a commuta- W'th_ramn =ImY nla - N } ) )
tive, invariant-normed algebra, or if A5 a new algebra- _ Since the algebrac(sc, ") associated with the spin-two
valued nonlinear theory with an anticommutative, nilpotent,fields in this theory is anticommutative and nilpotent of de-
invariant-normed algebra. Additional nonlinear spin-two 9€€ three, it sa_tlsfles the :]acobl identity gnd hence is equiva-
gauge theories arise from the gravity deformatich19 lently characterized as being a solvable Lie algebra of length
combined with either of the other two deformatig@21) or two_[14],_ with an invariant norm. Nc_>t§ that the exi_stence of
(2.22), describing exotic (parity violating) generalizations of @0 invariant norm puts some restriction on the Lie bracket
algebra-valued Einstein gravity theory in-r8,5 dimensions ~ Structure in the algebra. The simplest example of such an
[with the algebras restricted by conditiof®34) and(2.39].  algebra €"sc, ") is given bycagc=UavgWcy, whereu,,
There are no other nonlinear spin-two gauge theories of quaVs: Wc aré mutually orthogonal null vectors in a
silinear covariant type (N=6)-dimensional vector space with normi,g=diag

The five-dimensional nonlinear theory without gravita- (+1,+1,+1,—1,-1,—1). _ .
tional interactions has the following features. Its field equa- However, if we impose a physically natural requirement

tions (to within trace termg that the individual spin-two fields should have positive en-
ergy (or more precisely that the weak energy conditidf]
Ea,”=Ra, = 19[awb],wAUbV= 0 (2.41  holds, using the conserved stress-energy tensor derived from
the Lagrangian(2.40), this severely restricts the allowed
are given by the quadratic spin-connection non-Abelian structure of the gllg.ebra. Specifically, as already
noted for the free theory, positivity of energy forces the norm
(1) on the algebra to be positive definite. As a consequence,
©a,= 02, Qo= 2050, Uy, from nilpotency (2.389 combined with norm-invariance
L4 bp O A (2.42 (2.229, we havec”zccape=0, which impliescgc=0 due
30" Talul* bp|v] ' to positive definiteness of the norm. Hence, in this situation,
ith every anticommutative, nilpotent, invariant-normed algebra
wi (c”gc,RN) is Abelian. In a similar manner, as shown in Ref.
RIRNES 1 [2], any commutative, associative, invariant-normed algebra
QaePA=cAL [2622P(2 wp, "B w . ,P°— 0, P w,,,°) (a%gc,RY) with a positive definite norm is the direct sum of
P ? 0 (1)’3 one-dimensional unit algebras Thus we obtain the follow-

" w ing no-go result.

— e 0y B0, S+ 2609 0 1B 0, Theorem 3. The only quasilinear covariant deformations
(2.43  in n=4 dimensions for spin-two gauge theories with positive

energy are semilinear, in particular, equivalent to Einstein

where Q,*PA— 20 P1PAg,“15°, plays the role of a contor- gravity theory with no interaction between different spin-two

sion tensor. Exponentiation of its gauge symmetries geneffields

ates a group of finite gauge transformatidwg;ﬁeh’aﬂ’* This strengthens the no-go theorem in R&f.to the more

given by general class of quasilinear covariant deformations consid-
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ered here. Im=3 dimensions, positivity of energy is com- implies that the full field equations are a decoupled triangular
patible with a nontrivial algebra structurb/(z¢,RV), as em-  system of semilinear Fierz-Pauli equations. In particular,
phasized in Ref.[9]. The resulting three-dimensional considerA,=[.A, A] where the brackets denote the algebra
nonlinear theory, using the formalism here, without gravita-productc”g on the internal normed vector spad@™(S,g).

tional interactions is given by the gauge symmetries Because of the nilpotency and indefinite sign of the norm of
A A A AL A e BenC A, Ay is a null, Abelian subalgebra of, with a null
Oehay"=da€,",  O3hay"= €auX ™+ b BcE 00" X" complementA;, such that4,,® A=A (once we divide
(248 any trivial Abelian factors of4). Since.A(;) and A, obey
and the field equations [A(1) An]CAw and [Aqgy, Agl=[Aq)A,]=0, the

subset of spin-two fields associated withl{l) [i.e.
PA(rl)(haﬂA) WherePAél)=PT4(l) is the transpose of the pro-
where @,"A= GV“PwaMpA satisfies the following quadratic jector PA(l) onto A(;)] satisfies free Fierz-Pauli equations
spin-connection equation: (2.7), and the remaining subset of spin-two fields associated
with Ay [i.e. PA(l)(haMA)] satisfies inhomogeneous Fierz-
' Pauli equations with quadratic source terms that involve only
(2.50 ) ) .
the free spin-two fields. For example, consider the case of the

EaMA=&[aZ)b] VAGIU,b, (249)

IaNb) = €001 DRy "+ DR i Py C

It is possible to solve Eq2.50 to obtain algebra given byagc=U;avgWcy ON
Z)avA:QUzaVA_%(TaVlA (25]) (ReﬁAB:ZU(AU,B)""ZU(AU/B)+2W(AW,B))
in terms of the square root of with a null vector basisu,vg,Wc,U's,v'g,W' ¢ Whose

only non-zero inner products in this basis auéu®

A_ _o_bc ALl A X 3 A
Q)= =26 dphe, "+ 705, 1 (2.52 =v' ,v*=w',w"=1. The inhomogeneous Fierz-Pauli equa-
as defined by tions hAoId forAt\he fieldin\ha#B given by the n_uII proje_ctor
Pp=u”u'g+v v’ g+ WAw'g, while the free spin-two Fierz-
€Pe P02 BOYER C= -0 (253 Pauli equations involve the field8'gh,,® given in terms of
. . _ _ the transpose null projectorP’4= 8gc8"PPS=u’*u
wherel” is a unit elementappended if necessarin algebra /A p/A proj B~ UBC b B

e . +v Tvgtw Twg.
(b%sc RY). (Note, with indices suppressed, this square root As aB conse(;'uence of this decoupling feature, the well-

iofi ; i ml/2 12 _ ; _
;ausﬁes the a!gebragc re""l‘;'Sngx %N N wa't:: X be posedness property of the field equati¢2<l is insensitive
Ing a symmetric product oR"® R°® K™ given by the 1ensor i, e jack of positivity of energy16] arising from the con-

product of three-dimensional cross-produetscombined d st . t fthe L @a0) th h
with the algebra produdi.) This theory can be formulated in tshegviﬁd;irn?tses S?Slf rgfy theeni%rrn(z onealggtrl?g roug

H H : 1 A_ Rt A
terr:]ws ?f org!nary s_pln—ltwho fleldg ap =N (glb) f.a?éalo%om;_sly. Finally, although the theory exists only in five dimen-
to the five-dimensional theory by a suitable field redefinitiong;, g "it"is relevant for four dimensions if a Kaluza-Klein

using the finite gauge transformations reduction is considered. We begin with a product decompo-
', A=h, A 0.6, e, 7 sition gf five-dimensional Miﬂkowski spacetimekY, 7.p)
an oA Task o many =(R*77ap) X (R,YaYp) Where 7, is the four-dimensional
+bPgce, (300" B+ ,"B)X*C (2,54 Minkowski metric andy, is a spacelike unit vector orthogo-
nal to 7,,. Note we have the 4 1 decompositions
generated from the gauge symmetries on solutions of the _ o
field equations. Nab= MabT YaYbs €abcde™ D€labcde] » 3.1

wheree,pqqis the four-dimensional volume forniThrough-
out, a bar will denote a tensor or field variable bh) Now
It is worth investigating to what extent the complete five-we decompose the spin-two field variablgs,,* in the field
dimensional nonlinear spin-two theory derived here is senequations2.46 into the 4+1 form
sible as a classical field theory in view of its unusual fea- _ _
tures. ¥ ab"=Yat" +A@ Vo) + ¢YaYb (3.2
First, the field equation§2.46) possess a well-posed ini- L
tial value formulation. The linear part of E€R.46) is given  with the fieldsy,,”, A,”, ¢” taken to have no dependence
by the free Fierz-Pauli spin-two equatiof’s7), which are a on they, coordinate:
second order hyperbolic system whose characteristic direc- o o
tions coincide with the Minkowski light cones, when suitable Yo Vap =Y I AL =y " =0. (3.3
gauge conditions are imposed. While the nonlinear part of
Eq.(2.46 also involves second order derivatives angriori ~ The components of the five-dimensional field equations
might be expected to alter the characteristic directions, if2.46 under the decomposition$3.1)—(3.3) yield four-
fact, the nilpotency of the internal algebra’gc,RN)=.4  dimensional field equations consisting of

IIl. CONCLUDING REMARKS
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EA= LAyayb=0 represent the four-dimensional spin-one field strength and
spin-zero field strength. The linearized spin-connection and
for the spin-zero ﬁeldgA, and field strengths here have the role of auxiliary fieldsalo-
gous to a “1.5” formalism in supergravity12]). Then,
EA=E' Y —Efy,=0 through decomposition$3.1), (3.8), and (3.9), tr(1ze§ f|(\é)e-
for the spin-one field&\,”, in addition to dimensional Lagrangiaf?.40 reduces to formL=L + L,

where

Ean =E'ap’ — ZE(aAyb) —EMyLyp=0

for the spin-two fieldsy,,". There is a corresponding

2)
L = — 3(h2A(9pw°°B— dpH B)+hbaA(2f9[cwa]

decomposition of the five- dlmenS|orlaI gauge symmetrles +gaﬁbs)_a[acaAab]ch_AbAachcs
(2.45 in terms of the parameterg”=¢,Ay? and &° S —
1
=& A~ &My, which also are taken to have no dependence +3Fap F*%) das, (3.12
on they, coordinate, and
ye3.Er=y%a.E=0. (3.4 ©®
‘ ot L = = 3 (0" M 0pp— 2F PAF %) 0pod” — (4wap™ g™
The resulting four-dimensional gauge theory is a nonlinear o o
deformation of the combined linear theory of scalar fields +20,P Wy ) F o — 4HPAF 5 Bwped”
@ 0) —4H ,*F o), B PO % (3.13
— —_— — (p Ma)b @ed ABC- :
EA=—37"%0c0u¢",  0¢¢"=0, (3.9 o
Maxwell gauge fields This four-dimensional Lagrangian= L + L is invariant to
@ ) within a total divergence under the gauge symmetries
EaA = ?dgcg[dga] A! 6EK3A :3.3?: (3 . 6) — — R J— e
) ] ] ] 5—hab _aagb ) é\;habA:)(abA"'4'(:ABCfbcquaCBqucv
and linearized graviton fields (3.19
@ (0) A= 0.88, S AL=CPa (€ en@a B+ Zeny o HPB) XPIC
= i - — — - & - ’ - BC(Eb +26b H )X ’
Eay"= =270 qd1a Vo)™ O¢¥an" = diadny” ceom e coitta o e
(3.7) B B :
A Lagrangian formulation is readily obtained by decom-  §;¢"=0, &,¢"=—c"gcecapd " 5xP9C, (3.1
posing the five-dimensional linearized frameb,,* _ . .

A o _ M whose parameter&”, &1 Xan =X(an)" are arbitrary func-
=0b“hau(l) and linearized  spin-connectionswaps  tions of the four-dimensional spacetime coordinates, as ob-
— oyt o wg,,” into the 4+1 form tglned by decompos]ng the flye—dlmensmnal gauge symme-

m tries (2.40 and simplifying various terms via the nilpotency
_ _ — A
h A:h A+AA + A , 3.8 (ZSZOfC BC-
2~ Nan” T AaYot ¢VaV 38 Thus we have obtained a four-dimensional parity-
(1) violating nonlinear gauge theory of a massless coupled set of
O abc= Wape — FbC Vat 2Fa[b Yq spin-two fields, spin-one fields, and spin-zero fields. This
A theory can be generalized to include an algebra-valued gravi-
—2Hp, YeYa: (39  tational coupling, where the internal algebrag, kM) and

(a@c,RN) underlying the respective parity-violation cou-

pling and gravity coupling in the theory satisfy the necessary
aabcA=3(9[ahbc]A_Za[bhc]aA (3.10 conditions statgd in Theore_m 2. A simple exampleﬁfor these

algebras consists of taking the vector spade®, g
represents the four-dimensional linearized spin-connectior=diag(+1,+1,+1,—1,—1,—1)) with cagc being the skew

where

and product of three mutually orthogonal null vectarg, vg,
- o L Wc, andaagc being the sum of any symmetric products of
Fab'=daAn",  Ha =0d,0" (3.1)  these same vectors.
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