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Regular cosmological bouncing solutions in low energy effective action from string theories
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The possibility of obtaining singularity free cosmological solutions in four dimensional effective actions
motivated by string theory is investigated. In these effective actions, in addition to the Einstein-Hilbert term,
the dilatonic and the axionic fields are also considered as well as terms coming from the Ramond-Ramond
sector. A radiation fluid is coupled to the field equations, which appears as a consequence of the Maxwellian
terms in the Ramond-Ramond sector. Singularity free bouncing solutions in which the dilaton is finite and
strictly positive are obtained for models with flat or negative curvature spatial sections when the dilatonic
coupling constant is such that< —3/2, which may appear in the so callEdheory in 12 dimensions. These
bouncing phases are smoothly connected to the radiation dominated expansion phase of the standard cosmo-
logical model, and the asymptotic pasts correspond to very large flat spacetimes.
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I. INTRODUCTION framework. Some relics of a cosmological string phase may
also be identified7], opening perhaps the possibility of test-
Superstring is the most promising candidate to describe ing superstring models. Furthermore, superstring theories
unified theory of all interactions, gravity included. There aregpen the possibility that some typical drawbacks of the stan-
five consistent superstring theories in 10 dimensions, whicljard cosmological model, such as the existence of an initial
are connected among themselves through duality transformaingularity, may be solved in the context of superstring cos-
tions. To each superstring theory, there is a correspondingological models. The goal of the present paper is to show
supergravity theory in 10 dimensions. All of them can bethat under certain conditions, it is possible to obtain com-
obtained from the 11 dimensional supergravity theory. Thigyjetely regular bouncing cosmological models in the context
indicates that those superstring theories are different mangs effective actions constructed from superstring theories
festations of a unique 11 dimensional framework, that hagnet involving, in particular, negative energidg]), for
been named! theory[1-3]. Moreover, the superstring type- \yhich, moreover, the dilaton is strictly positiveonvanish-
[IB can be recast in a more geometrical form in a 12 dimen-ing) at all times and never diverges.
sional model, suggesti_ng_that pe_rhaps_a yet more fundamen- String cosmology is based on the low energy limit of
tal framework may exist in 12 dimensions, which has beersting or superstring theories. In the most general case of the
calledF theory[4]. _ _ _ supersymmetric string theory, there are two sectors, related
The physical properties of superstring theories becomgith the choice of periodic or antiperiodic boundary condi-
relevant at energy scales comparable with the Planck scal§ons on the spinor fields, namely the Ramond and Neveu-
This renders very improbable that superstring phenomenolschwarz(NS) sectord1,2]. Since fermions can be either left
ogy may be tested in the near future in some laboratory exr right moving, this leads to four possible combinations of
periment(see, however, Ref5] in which the Planck mass is  these sectors. The bosonic fields arise both from the NS-NS
lowered to TeV scale by accounting for large extra dimen-zng Ramond-Ramon(RR) sectors. The NS-NS sector pro-
sions. According to the hot big bang scenario, however, envjides the Einstein-Hilbert term, as well as a three-form,
ergy scales even as high as the usual Planck sddle ( called the axionic field, and the dilaton. The latter is directly
~10* GeV) may have been reached in the very early unitelated with the string perturbative expansion parameter and
verse. Hence, for the moment, cosmology seems to be thakes the form of a Brans-Dicke-like scalar field, nonmini-
most natural arena where the consequences of superstringally coupled to both the Einstein-Hilbert and the axionic
theories may be tested. The pre-big bang paradighwas fields. In the RR sectop forms appear, which are minimally
one of the first ideas to implement superstring theories in thisoupled to the dilaton field. The dimensions of fhéorms
depend on the specific superstring theory which is under con-
sideration. In cosmological applications, we are interested in

*Electronic address: fabris@cce.ufes.br scalar fields that emerge from these differpriorms. They
"Electronic address: furtado@cce.ufes.br differ by the way they couple with the dilatonic field and
*Electronic address: peter@iap.fr between themselves.

$Electronic address: nelsonpn@cbpf.br Out of the many different possibilities stemming from

0556-2821/2003/61.2)/12400310)/$20.00 67 124003-1 ©2003 The American Physical Society



FABRIS et al. PHYSICAL REVIEW D 67, 124003 (2003

string theory, one can construct in general an effective actionegular solutions are then obtained, for which, as mentioned
suitable for cosmological applications with two main fea-above, the dilaton remains finite and nonvanishing at all
tures: scalar fields coming from the NS-NS sector and nontimes. Whenw> —3/2, which includes the strict string case
minimally coupled to the dilaton, and scalar fields from the(w=—1), the solutions can only be bouncing provided the
RR sector which are minimally coupled to the dilaton. All spatial sections have negative curvature and if the dilaton is
the possibilities are not exhausted by these two frameworkg&lways negative, which is not consistent with the higher di-
but they summarize the general aspects of what has bedRensional framework of stringlike theories, and implies a
proposed in the literature as far as effective actions comin§ePulsive gravity. We shall henceforth disregard such solu-
from string theory are concerned. One can also obtain phdlons. Wheno<—3/2, the bouncing solutions are obtained
nomenological matter fields by averaging on some compofor models with flat or negative curvature, and the dilaton is
nents of those Originat forms. Strictly pOSitive at all times.

This brief description explicits the great richness of the In the following section, we derive effective string moti-
string effective action procedure, which implies a large vari-vated actions in four dimensions. In particular, we show how
ety of possible cosmological models. Notice that these effecto obtain an effective string action in four dimensions with
tive actions exhibit great similarities with those that can bew<—3/2 in the context of the so-calleé theory in twelve
obtained from multidimensional and supergravity theoriesdimensions. In Sec. lll we derive nonsingular cosmological
To select one cosmological model that could be a candidatgolutions from these effective theories, which are thoroughly
to describe the physica| W0r|d’ two possib|e prescription@iscussed in Sec. IV from the pOint of view of violation of
are: either the cosmological model is completely regulare€nergy conditions. We end up with the conclusions in Sec. V.
with no curvature or expansion parameter singularity, or it is
compatible with observation; ultimately, both criteria should Il. THE EFFECTIVE ACTION
be satisfied. In the present work we will concentrate on the o i . )
first. The second criterion, which presents some specific ©Our analysis is based on the following effective action at
challenges, will be treated in the futui@]. tree level:

The search for singularity free cosmology in string theo- 1
ries is not a new subje¢0-14. The string action at tree L= \/—_ﬁe”<ﬁ—w3-A77;A— _HABCHABC>
level does not lead in general to singularity free cosmologi- ’ 12
cal solutions, at least when the strict string case=(—1, o
being the dilatonic coupling parametas considered. The — \/__5
pre-big bang model6], which is an example of a string
cosmology, requires the introduction of nonlinear curvature -
terms in order to achieve a smooth transition from a curvawhereo is the dilatonic fieldH Ag¢ is the axionic field, and
ture growing phase to a curvature decreasing phase. If large is the dilatonic coupling constant. The two last terms come
negative values of the dilatonic coupling parameterare  from the RR sector of superstring type IIB. The tildes indi-
allowed, it is possible, in some cases, to obtain completelgate that all quantities are considered irDadimensional
regular models, including in the dilatonic secfdd]. This  spacetimeD =10 in the pure superstring context.
may be achieved mainly in models with spatial sections with  The dilatonic coupling constant ie=—1 for usual su-
negative curvature. perstring theory. However, this may not necessarily be the

Here, it will be shown that regular cosmological modelscase for some ten dimensional theories stemming from a
may also be obtained if a radiation fluid is coupled to themore fundamental one in higher dimensions. In some spe-
string action at the tree level. Such a radiation fluid can haveific situations, the value ab can be found to be even less
a fundamental motivation, for example, in the case of thehan —3/2. As an example, the superstring type IIB action
superstring type 1IB theory, where a 5-form appears in thenay be reformulated in 12 dimensions, in the context of the
RR sector. Truncation and dimensional reduction of thisso-calledF theory. A low energy limit of theF theory has
5-form lead to a Maxwell term in four dimensions with the been studied by4], where an action in 12 dimensions has
desired featurefl5]. Hence, the model to be studied here isbeen established, which was shown to lead to the low energy
totally based on superstring theories. The string motivatedimit of the superstring type IIB in 10 dimensions through
phenomenological term included under the form of a radiatruncation and dimensional reduction. Let us consider this
tion fluid makes it possible to connect smoothly such stringwelve dimensional action, given Hy]
cosmological models to the radiation phase of the standard
cosmological model before nucleosynthesis. =[~ 1 . 1

In Ref.[12], models motivated by string theory similarly L= \/—_g R_E\P?A\P'A_ deaWFABCDFABCD
including a radiation fluid have been studied, restricted to flat
spatial sections an@> —3/2. In such cases, bouncing solu-
tions have been obtained only fer<—4/3. Furthermore,
for these solutions, the dilaton vanishes in the infinite past,
raising doubts on the validity of the tree level action in suchwith a?= — 1/5 andb?= — 4/5, \ being a coupling parameter
a region. In the present paper, the curvature of the spatidbr the Chern-Simons type term involving the potentials of
sections and the value af are kept arbitrary. New bouncing the five and four-forms. Writing the metric as

1 ] 1
Ef;Af‘A+ %FABCDEFABCDE> (@]

1 Iy
—m)eb‘I GapcpeGABCPE+AB,OdA;dA; |, (2)
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ds?,= gﬂ,,dx“dx”—ezﬁdxi dx’, (3 The Lagrangian described by E{) may cover theories
others than pure string theory. For instance, one can consider
with Greek indicesu, » running from 0 to 9 and Latin indi- & more general coupling between the dilatonic and axionic

cesi e[10,11], and setting the five-form equal to zero, we fields, i.e. of the typep"V. W, with n a new parameter.
obtain the following Lagrangian: This less restrictive coupling contains the string case if one

setsn=—1, but general multidimensional theories and su-
1 ergravity theories in higher dimensions are examples where
Lio= \/__gez,g R+2B,,8"— E‘P;p‘l"p 'I[Dhegparari/weten may takeg different values. As was (?iscussed
in Refs.[12,15, the final results depend very weakly on the
parametem and one may thus expect that this generalized
effective action will give results that are essentially similar to
those obtained in the pure string case. Hence, the results
where we have retained just the two and three-forms comingresented below are of a quite general nature, and should not
from the four-form in the original action. The term originat- be understood as statements restricted to string cosmology
ing the three-form was made purely imaginary in 12 dimen-only, even though they were derived in this specific frame-
sions. ChoosingV =2p/a, and defining¢=¢€?#, one ends Work.

1 1
- 1—2ea“’—2ﬁFMFW— gea“"AﬂFWF”“” . (@

up with the following action in 10 dimensions: From Eq.(7), we obtain the field equations
Lio=v—g ¢;P¢;p_i JTI2N R —Eg R=8—7TT +2(¢. . —Eg &. ¢?P)
=v—9 ¢( R 3=~ 3P unF ) w2 9R= Tt | Bt 39,9,
i e Ew 5) (=G0 B)
g wv . b in 3
1

One can see that, in this case, we obtain an action with +—
= —3 together with a Maxwell ternfwhich generates the ¢
radiation fluig. This is a remarkable example of how an

2

1 :
L ng\[f;p‘l"")

effective string action withw# —1 (in this casew=—3< + | ELE,— ngg;pgip>, )
—3/2) can be realized. That is why we will maintain the ¢ 2
value of w in Eq. (1) arbitrary in what follows, unless oth- for the Einstein part
erwise specified. '
The D-dimensional metric is written as . . ,_ 8m
Dt 3020?30, 5t =302, ©

ds?=g,,,dx*dx”— 25 dx'dx], (6)

with T=T#  the trace of the stress-energy tensor, for the

. . . . IB .
whereg,, is the four dimensional metric,”eis the scale dilaton ¢, while we get

factor of thed=D —4 dimensional internal space which we

suppose to be homogeneous and flat. For now on, we will Pl
consider a static internal space. This is not obligatory in ov—-wv.,—=0, (10
some of the cases to be analyzed latter, but such a restriction ¢

considerably simplifies the unified presentation of many dif-,

o describe the dynamics of the axidn, and finall
ferent cases allowed by the action given by Eq. ! y I xidh N3y

Dimensional reduction and isotropization of the Maxwell- 0¢&=0, (11
ian term[which may come from the RR sector, or as de-
scribed in the passage from E@) to Eq. (5)], lead to the T ,=0, (12)

following effective action in four dimensions:
for the RR-scalag and the radiation fluid respectively. These
b.,p" W, WP equations we now implement in a cosmological context.

L= \/__g ¢2 ¢2

R—w

¢

+L,,
) Ill. COSMOLOGICAL SOLUTIONS

1 .
- Eg;pfyp

where from now on Greek indices run from 0 to 3. In this  Introducing the Friedman-Robertson-Walker metric

action, ¢=¢e" 7 is the dilaton, the field’ comes from the

axionic term, and is thus called the axion, wHilerepresents 2_ 2 52 dr
; . ! . . ds“=dt“—a“(t)

an ordinary radiation fluid term, which can be obtained from 1—kr?

the five-form existing in the RR sector, as was stressed

above. We shall also calf the RR-scalar as it originates k being the normalized curvature of the maximally symmet-

from the same sector. ric spatial sectionsk=0,=1), and assuming the fields now

2

+r2(de?+sirfodep?) |, (13
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depend only on time, the field equations derived above rein which use has been made of E49), and we have set

duce to the following equations of motion: M=8=D/3, which is dimensionless in the radiation case.
5 . . . Equation(23) may be recast in a very convenient form
a k P w ¢) ap w2 g through the redefinition
3| =| 43—==8r—+—=|—| 3=+ —+—,
a a2 d) 2 ¢ a ¢ 2¢)2 2¢ a= ¢_1/2b (24)
(14 ’
which is the generalization of the Friedman equation, and ;’/‘:2:32 implies to change to the so-called Einstein frame. This
. .a. 2 & 8m(p—3p) s ) 5 -
P30 G5 20) ¢ T 3r20) (3+2w) (b_ sk Dt ey B 3 T2 67
(15) b ¢° 6 ¢ 2 42
(25)
\1}+3E\'Ir—\'pf:0, (16) whose solution we next investigate. Notice, however, that we
a want to keep considering the Jordan frame as the physical
. frame; the conformal transformation above is introduced
E+3E'§=O 17) only for technical reasons. The solutions of E¢&2) and
a ' (14), with the redefinition made above for the scale factor,

depend on the sign of the termt2w and on the presence of
. a the RR scalar field. We will consider each case separately.
p+3(p+p)=0. (18 For simplicity, we will call 3+2w>0 (<0) the normal
(anomalouscase, and = const ¢+ const) the axioni¢RR)
In these expressiong, is the energy density angd is the  Case.
pressure of some perfect fluid which obeys, for the sake of In the special case for whicia assumes the critical value
generality, a barotropic equation of stages \p, with A an ~ ©=—3/2, the dilatonic field is not a physical degree of free-
arbitrary constant. In what follows, we will specialize this dom since it may be eliminated by means of a conformal
fluid to the case we are interested in, namely, radiation, fotransformatiorg W=e“f’§ wv' itis amere artifact of a metric
which A =\,=1/3. A dot stands for a derivative with respect redefinition. Foro<—3/2, the scalar field in the Einstein

to the cosmic timd. frame, obtained from the Jordan frame by a conformal trans-
Equations(16), (17) and (18) admit the first integrals formation, does not preserve energy conditions as it appears
with a sign for its kinetic term which is opposite to the usual
Ve Ag . B Da- 31+ g Situation, leading to a negative energy contributisee the
- ?’ £= g’ p=ba ' (19) last term in Eq(25)]. Such a negative energy field can pro-

vide the necessary compensation with the usually positive
whereA, B andD are integration constants. According to the energy density contributions in order to allow bouncing so-
string motivated action discussed above, let us now specialutions in general relativity8,16]. For w>—3/2, the last
ize the equations for the radiation fluid case and accordinglyerm in Eq.(25) appears with the ordinary sign, implying a
setA =1/3. For this specific case, E(L5) simplifies to positive energy contribution.
. In what follows, the quantitieg, anda, are constants of
. a. 2 A B2 integration subject to the constraints indicated in each case.
$+3 b+ =5 — b
a (3+ 2(1)) a6

+ W =0, (20
+2w)a
@ A. Normal axionic case
which can be solved in the following way. It is convenientto |, s first case for whicl is constanfi.e. B=0 in Eq.
define a new timelike coordinat given by the relation (19)] and 0> —3/2, the solution of Eq(22) is given by
— a3
dt=a3de. (21) d(0)= pgsin(ab), (26)
In terms of this new coordinate, ERO) reads where
2A2 B?
" — 2A
P G720 P B2 22 a=\35- (27)

where primes denote differentiations with respecf t&imi-
larly, Eq. (14), when expressed in terms 6f reads

(a/)z k M w ¢/2 a/¢/ 1

—| +k=—+—= -t —
ad a’ep 6 a%¢p? a’s 6a4

and we have chose#(0)=0.
Plugging this solution into Eq25) yields

A2+? dasirt(af)b’?=(C?+Mb?—kb*)b?, (28)

(23 where
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These solutions have some interesting features. As we
have already discussed, fke=1, there are no bouncing so-
lutions. On the other hand, fée=0 ork=—1, it is possible

We are seeking regular bouncing solutions for which thel0 choose the parameters in such a way that the extremes of
scale factor is bounded from below but can grow arbitrarilythe range of validity of the variablé occur fort— * o,
large, whileg is nonvanishing and finite. This means that thewhere spacetime becomes flat.

function b should also grow indefinitely on both sides of the

bounce. As can be seen by inspection of E@§) and (28),

The case&k=0 was presented in Ref12]; let us recall it
briefly for the sake of completeness. The denominator in Eq.

a necessary condition for this to happen in a finite interval in(35 has only two roots ik=0, and the parametet varies

0 (to ensure¢ remains finite at all timesis that the curva-

from 6,=0 to 6;=2a‘arctan(*?). Bouncing nonsingular

ture be nonpositive. This is to be contrasted with the generagolutions are pos_siblle only V\(h¢ﬂ3/2<cg< —4/3. This can
relativistic case for which a positive curvature is a pre-be seen by considering the limit for whigh- 6;=0. There,

requisite to ensure that a bounce is posdit&, and can be

the scale factor isax¢(P~Y2 and, from Egq.(21), t

understood by stating that, in the case at hand, a positive 03P~ yielding ac|t|(P~1/GP~1) As a(t) is a power

curvature implies a finite scale factor at all times.

law (disregarding the exceptional casps 1< w=0, and

Under the assumption that both sides are positive definitqg=1/3=w=—4/3, also discussed in Refl12]), the scalar

one can integrate E@28), written as

+

fb db fa
bo H\/C2+ MB2—KB* 7 % dhsin(a®)’

(30

to provide the solutiofisee, e.g., Ref17], Eq. (2.266]

g(b) _ (o)
g(bg) f(6p)’

¢ al
an 3
M

g(b):E+§(C+\/C7+Mb7—kb“), (33

(31

where

p

f(6)= , (32

and

curvature fork=0 is proportional tot~2, which converges
(in fact, goes to zenoonly if t— as #—0. This happens
only for p<1/3, which yields— 3/2<w< —4/3. Note, how-
ever, that forf=0 the dilaton¢ vanishes, independently of
the value ofw, rendering dubious the validity of the tree
level action(1) in this region.

Whenk= —1, the denominator in E435) has now three
roots. One can take the parametewarying from 6,=0 to
6;=2a tarctaf(M—2C)*?], supposing £<M. In this in-
terval, the same analysis given in the precedent paragraph is
valid here: one can have bouncing solutions which present an
initial singularity in the curvature and in the string expansion
parameteg§= ¢~ 1if —4/3<w<0, and other bouncing so-
lutions which do not present curvature singularities initially
but still have a singularity in the string expansion parameter
if —3/2<w<—4/3. One can also take the parameteto
vary from  ¢=2a larctafi(M—2C)*?] to 6
=2a larctafi(M+2C)P]. Provided Z<M, the dilatonic
field given by Eq.(26) is finite and never vanishes, taking
constant values in the asymptotic regions.

b and 6, being constants of integration that we choose such L€t s now consider the limig— 6; or 6— 6;. Setting

that Cg(bg)=1(#6,) for further convenience, and

2

p== 1+ §w. (39

Settinga2=4C?/ ¢,, we finally get

1/2
a(9)= —2 1) (35)
Jsina6 | [M—f(6)]?+4C%k]|

af=ab,+e or af=ab;—e, and expanding the denomina-
tor arounde =0, we getaxe 2, from Eq.(21) [t|ce 12,
and finallyax|t|, independently of the value @f or w. As
we are consideringg=—1, this limit corresponds to Milne
flat spacetime. The scale factor given by E85) thus ap-
pears to represent, with this choice of rangeépa universe
contracting from a Milne spacetime to a minimum size,
bouncing to an expansion phase, and ending asymptotically
also in a Milne spacetime.

However interesting this solution might be, it is unfortu-
nately physically meaningless since it demands the dilaton to

which is the desired result for the scale factor. Note thabe negative. This can be seen by looking at EgS) and

because of the trigonometric identity
m2—af\ ]t
tan — tan ———|| . (36)

2

al+ 77/2)

the solution(35) with p— —p can be straightforwardly de-
duced from the original one by a mirror symmetry with re-

(35. From Eq.(35) for k=—1, one can obtain the scale
factor in the Einstein framé(0) = ¢(6)a(6), which is

£(0) ]1/2

=4C?
b(6)=4C [M—f(6)]>—4C?

(37

spect to the poind=7/2. It is thus sufficient to consider In the above range of values 6f there must exist a point at
p>0 and we shall in what follows restrict our attention to which b’(8)=0. However, from Eq(25) with —3/2<w,

this case.

this could only be possible i(6) were purely imaginary.
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Then, for the string-frame scale facta(6) to be real, fectly regular bouncing solution in the string framework,
V¢ (6) should also be imaginary, so thai(6) should be without any singularity, even in the dilatonic field, when the
negative in the corresponding range of values. Many of th€urvature of the spatial section is negative or vanishing.
characteristic features of this solution are however present Investigation of the asymptotic behaviors reveals that, for
also in the cosmologically more relevant anomalous situatiok=0, the universe displays a radiation dominated phase in

to which we now turn. both extremities of the rangea¢ 1/ 6|, i.e.ax|t|? for t—
+o), while for k=—1, the curvature dominates in the
B. Anomalous axionic case asymptotic regions, leading to a Milne universe<( 4|~/

—|t]). Hence, in thek=0 case, we have a bounce between
two asymptotic radiation dominated standard cosmological
models, one contracting and the other expanding, while for
B(8) = dosini ab), (39) k=—1 the _bounce connects two M|Ir_1e asymptotic regions.
Recovering the units and connecting the parameters with
where now the real Universe in order to evaluate the valueMyfwe
considerGer=G /¢, whereG  is the value of the gravita-
= / —2A (39) tional coupling today, and make the replacemengs
3+2w’ —¢lG, Y-V/G , t—agt, ag~1MH, (Ho being the
present Hubble parameter, which we choose to be our in-
verse unit of tim¢ Assuming the present amount of radia-
tion (por=Qopc~ 10 *p.~10" 23 g/cn?, with p, the critical

For 3+2w<0, the previous solution for E¢22) must be
replaced by

and, as before, we have imposé¢0)=0.
Again, inserting this solution into Eq25) yields

p
f(6)=In

¢(2)sinhz(a0)b’2= (Mb2—C2—kb*)b?, (40) dgnsity today, we.obtain from Eq(14), assuming the radia—
tion term to dominate at the time under consideration, that
whereC is as befor¢ Eg. (29)]. The same argument concern- M ~87TGNp0rH52/3= Qo~10"%,
ing the existence of a bouncing solution applies, namely, that |t is interesting to note that these models can provide a
such solutions cannot exist fér=1. Manipulations similar  quite effective way of enhancing the gravitational coupling.
to those of the previous case then lead to To illustrate this point with a numerical example, let us
choosep=1 (i.e. the case derived in Sec. Il with=—3,
tanl‘(a—a) ' (41) our prototypical examp)e_ k=0, fgei)=—7w/2 and f(6;)
2 = —3/2. One then obtaing;~10 2 and ¢~ 1, where the
constantg, is chosenp,~ 102 in order to obtain the effec-
) Mb?—2C? tive gravitational “constant” today equal to Newton constant
g(b)=arcsi b2 M2 4kC2)’ G, With this choice of parameters, the enhancement of the
(42) effective gravitational “constant” in the past was therefore of
three orders of magnitude. Note that the dilaton is strictly
where we have assuméd®—4kC*>0 (recall we are only positive and finite in this range.
interested in the casds=0 andk=—1). We now choose
f(60)=9(bo), set

C. Normal RR case

2
p=+ 1 [_ 1+ g"’ . and ag:A3|\(jO’ (43) Integrating the equations of motid@2) after inclusion of

¢, i.e., with a nonvanishin® and still for o> —3/2, simply
turns the solution given by E@26) into

—1p d(0)= po(sinabd—s), (45)
. (44

to obtain the scale factor as
Qp

1+/1 4kC2 inf(6)
—_—| 1 —4——sin
Jsinha M?2

Regular bouncing solutions may be obtained KerO or k

= —1. Differently from the previous situation, the flat case 5
also does not exhibit any singularity in the string expansion o B
parameter. Furthermore, it is possible to find ranges of values 2A2¢0'
of 6 for which the dilaton is strictly positive all along. This is

because Eq25) with w<<—3/2 admitsb’(6) =0 in the Ein-

stein frame with a real scale factbr Hence, it is not neces- provides the particular solution of the inhomogeneous equa-
sary to have$<O0 in order to have the string frame scale tion, and we have assumed the same initial condition for the
factor a real. As the dilaton is finite and strictly positive, homogeneous part. The constanis defined as in the nor-
there are also no singularities in the string expansion paranmal axionic case.

eter given byggzdfl, and the tree level approximation can  After some straightforward calculations, we get that Eq.
be trusted all along. Consequently, we have obtained a pe(30) is modified into

a(o)=

where

(46)
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b db 1 (o do requiring a meaningless negative dilaton field. They were
f = — — = i—f _, derived here for the sake of completeness.
bo B+ C2+MB2—Kb*  %0J 4 sin(af)—s
(47) D. Anomalous RR case
where now Finally, the last situation, for which Eq22) is solved by
N ST ¢=do[sinh( @) —s], (53
C :EA dgl1—s? (48

is very similar to the anomalous axionic case except that the
hyperbolic sine squared in EQq40) is replaced by
[sinh(@#)—s]?, with the same definition for the constasit
and C as in the anomalous axionic situation. This case is
Iéssentially similar to the normal RR one, except that we
obtain a different functiofisee Ref[17], Eq. (2.441/3]

stani a/2)+1—\1+¢°

. +1+5%+
We assume from now on that even though we allow varia- L+ yl+sstan(a/2)

tions for¢, those are limited in such a way theft<1. Equa-  where the normalization again ensures that the [0 is
tion (47), being in a form similar to Eq:30), yields the same  gquivalent to the anomalous axionic case. With the new scale

takes into account the inhomogeneous part. In B@d), the
sign in front of the factoC? in the denominator of the right-
hand side integrand is positive or negative depending o
whethers?<1 or s>>1 respectively. We shall treat both
cases separately.

2

S

1. Small RR-scalar f()=plin , (59

result that bounces cannot be realized unles$). factor normalization
Integrating both sides of E¢47), we obtain the function
b, thanks to which we can write the scale factor as ) A, 5
ap= (1+s9), (55
12 3M
()= —— 1o (49)
a(0)= ' _
Jsinad—s|[M—f(8)]2+4C% the new solution is expressed as
1/2
: . kC?
with [see again Refl17], Eq. (2.551/3] a(h)= _ & 1+ 1—4——ginf(o _
( Vsinhaf—s M?2 (#)
H8)= 2| stan(a/2)—1+1—<2||? 50 (56)
S|1+\1-s?—stan(ab/2) || ' Again, as in the anomalous axionic case, completely nonsin-

] ] ) gular solutions, also with respect to the dilatonic field, which
where ag, p and the choice for the relationship betweenis strictly positive, are obtained fk=0 or k=—1. The

f(6o) andg(bo) are the same as in the normal axionic caseproperties of both anomalousxionic and RR cases are
except for the new definitiori48) of the constanC. The  yery similar, even in the asymptotic regions. The significant
normalization in Eq(50) has been chosen in such a way thatfeatyre of this case is that, fae=0, it is not difficult to

the limit s—0 gets indeed back to the normal axionic casechpose the free parameters in order to allow huge increases

(32). _ _ o of the dilaton along the evolution of such universes.
The properties of these solutions are qualitatively the The anomalous cases are the ones that present bouncing
same as in the normal axionic case. eras connecting asymptotically contracting astiandargl

expanding cosmological models which can represent the real
Universe(with attractive gravitation The key requirement
In the opposite situation for whick?>>1, one can nor- to obtain these solutions is that< —3/2, a property that can

malize the solution in such a way thitee Ref[17], Eq.  be obtained fronf theory in twelve dimensions.

(2.551/3] The presence of the axion and/or the RR scalar field is not
important qualitatively. They just change the functidi{®)
which appear in the scale factor given by E35), (44),

, (51  (49), (52) and(56). In fact, one can find solutions without the

axion, or with neither the axion nor the RR scalar field,

which are also given by the very same equations but with

different (and actually simplerf(6). For instance, in the

2. Large RR-scalar

1-stana6/2)

Js?—1

and, providedag= 2C/(M ¢y), the solution can be written as

f(0)=2p arcta{

5 —12 case where neither the axion nor the RR scalar field are
B o kC® resent, we have[f(6)]YP=|4(6)|=|6] and [f(6)]P
a()= ——| 1+ \/ 1—4——sinf(0) P
Js—sin(a) M2 =In(|4(6)|)=In(|6)) in Egs. (35 and (44), respectively.

(520 Those solutions can also be obtained as limiting cases of
Egs. (32 and (41 as A—0. The qualitative behavior of
These solutions, both in the large and small RR-scalathese solutions is the same as in the case with the axion
sectors, share with the normal axionic case the feature dhormal and anomalous axionic cases
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IV. THE NULL ENERGY CONDITION 100

For a nonpositive curvature universe described by general ;
relativity, the null energy conditiofNEC) p_+p_=0, where B E
the subscript “T” denotes the total contribution of all the :
fields and type of matter, must be violated in order for a
bounce to occufsee Ref[18] and references therein for a
discussion of the relevant singularity theorems in general
relativity [19]). In the context under consideration here, this ;
result cannot be straightforwardly applied since the nonmini- 4
mal coupling involved prevents an easy identification of the : :
energy density and pressure sourcing the Einstein geometry i . : '
(many results can however be applied to a theory with non- 0.00 0.10 0.20 0.30 0.40
minimal coupling; this is discussed in, e.g. REf9]). o0

In what follows, we sketch an analysis of the problem of  F|G. 1. Scale factors as functions of the parametérfor two
violation of the energy conditions, adapting the expressiongases of interest, described by Edd) in the case derived in Sec.
for the nonminimal coupling with the dilatonic field. The |, j.e. with w=—3. The flat case is shown as the full line, whereas
effective energy densitp.¢ and pressurg.; are derived the open case is plotted as a dashed line. For these figures, the
from the field equation$8), whose right-hand side we take parameters have been chosen tdwe 1.1 andC=1. The straight
to be the effective stress-energy ten3dy we are looking  dotted line atv6~0.142 represents the maximal permitted value for

for, assuming an Einstein-like form for E¢B) as the timelike coordinatex 6, i.e. it corresponds to the future infinity,
in the open cask= —1, the equivalent line for the flat cake=0

being at the edge of the figufee. the allowed range of variation is

o ngR SWGNTfLﬁV (57) in this case 6= a6=<0.4).

d@

S b
s 60
S 8r
<}

R

%%e fact thatw<—3/2, which causes the bounces. Figure 1

The corresponding cosmological equations are then seen i
illustrates two cases of bounces for which the scale factors

projections of Eq.(57) by means of a normalized timelike ; - ; .
are shown, taken in the anomalous axionic case, i.e. using

i “=1)- ini = THY
vectoru,, (with uMu 1): definingpes= Teft U, U, And Pey the solution(44). In terms of the scale factor, the expression

— l y75% .
= —3Te(9u,—U,U,), EGsS.(8) are then nothing but the for the null energy condition reads
usual system descrlblng a cosmological background with a

fluid. 2w
Starting with the field equations derived above, one ob- 87G (pert Per) = — | 4| —| — a—+ka4 (60)
tains the following expressions: e e 6/ '\ a a
wd? 1V2 1 a¢ which coincides, on shell, with what is obtained by summing
871G, pet= t5 St 5t 35 Egs. (58) and (59). Plotting the right hand side of this ex-

pression as in Fig. 2 for the cases of Fig. 1, we verify that the
null energy condition can be violated in large domains
around the bounce, depending on the choice of parameters.

8w w¢2 192 182 & a¢
8WGNpeﬁ=%p+§E+§?+2 ¢+$+2a¢
(59

0.0 H
which, contrary to the standard cosmological situation, are :
both not positive definite. The energy conditions may there-
fore be violated, due to the terms arising from the nonmini-
mal coupling and if eithew or ¢ is negative.

To understand the causes for the bounces in our solutions
it is also useful to use E@25). In the normal caserom the
purely mathematical point of viemwith nonvanishing dila-

|
o
3]

81Ca, G o(Pet+Perc)/M
|
e

ton, we have seen that one must hav€0 (repulsive grav- -1.50 : 7
ity) in order to have a bounce. In this case, the negative , \ 1

dilaton is sufficient to make the bounce, and there is no neec 0.00 0.10 0.20 0.30 0.40
to havew< 0. In the normal cases with the dilaton vanishing ab

at some pointb does not actually bounce. Hence the dilaton

¢ can be positive. The bounce then comes from the require- FiG. 2. The null energy condition during the evolution of the

mentw<0. Universe models depicted in Fig. 1, again with the full line standing
In the anomalous cases, where the dilaton is strictly posifor the k=0 case(rescaled by a factor of 3 to appear with compa-

tive and finite, it is the negative value af, more precisely rable magnitudeand the dashed line fde=—1.
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One should notice that the timelike coordingtehas been In the axionic and RR cases with=0 or k=—1, there
chosen to emphasize the bounce itself. In terms of the cosmiare nonsingular bouncing solutions fer3/2<w< —4/3 but
time, the domain where the NEC is violated is in fact re-with vanishing dilaton in the beginning, where the tree level
duced to just a small fraction of the whole interval, since theaction cannot be trusted, and bouncing solutions with an ini-
latter is actually infinite. Moreover, no violation is observedtial curvature singularity if—4/3<w<0. If k=—1 and

in the large positive time limit, where the models tend to —3/2<w<0 (normal, including the pure string casene

Milne or radiation dominated universes. can have singularity free bouncing solutions with, however, a
negative definite dilaton field.
V. CONCLUSIONS As all the models withw<<—3/2 have the interesting fea-

, . ture to approach flat spacetime in the infinite p@sther in

- We have constructed fuII_y regul_ar cosmploglcal solutl_onsM"ne coordinates folk=—1, or the infinitely large radia-
in the framework of effective actions derived from string ion dominated standard model wiki=0), there is the pos-
theory principles. These solutions present bouncing behaipjity to implement a quantum spectrum of perturbations in
iors for a wide range of parameter& ¢ —3/2), and are he injtial asymptotics without any trans-Planckian problem
smgular_lty free; furthermore, the_ space_tlmes they lead to 0], and, at the same time, to accomplish a smooth transi-
geodesically complete, thereby improving the so-called horigio 1o the standard cosmological model when, after the
zon problem of standard cosmology. Stemming from string,once, a standard radiation dominated phase is recovered
theory in the context of the so-calleidl theory in twelve  ;qymptotically in thek=0 casg, preserving some of its
dimensions, where itis possible to have: —3/2, they have  main achievements like, e.g. primordial nucleosynthesis.
a reasonably sound basis as long as the dilaton is strictype pouncing solutions witw> —3/2 and positive dilaton
positive and finite in such a case. As a consequence, it is Nl present some sort of trans-Planckian problem as long as
necessary to go beyond the tree level approximation in anye string expansion parameter diverges initially and one
part of their histories: the analytic solutions exhibited above, st go beyond the tree level action in such cases.
can describe the whole history of the cosmological models ice that, in the cases where the dilaton is strictly posi-
they represent. Their consequences may, in turn, be used §5e  the initial value of the dilatonic field can be made
cosmological tests. L . smaller than its final value. Hence, the gravitational coupling

Remembering that the radiation fluid included here alsq.5 pe initially given a much greater value than it would
has a motivation in the superstring type I1B action, this tumns, e today. This opens the possibility to solve the hierarchi-

out to be, to our knowledge, the first case where a completgy,| rohlem of the gravitational coupling, in a spirit similar
regular bouncing cosmological solution is obtained in the, ihe so-called brane cosmolofga].

string framework and related theories, which moreover is

smgot.hly connected with the s.tandard_ cosmological model ACKNOWLEDGMENT
radiation dominated phase. This solution may have flat or
negative curvature spatial sections. We thank CNPdBrazil) for financial support.
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