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Regular cosmological bouncing solutions in low energy effective action from string theories
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The possibility of obtaining singularity free cosmological solutions in four dimensional effective actions
motivated by string theory is investigated. In these effective actions, in addition to the Einstein-Hilbert term,
the dilatonic and the axionic fields are also considered as well as terms coming from the Ramond-Ramond
sector. A radiation fluid is coupled to the field equations, which appears as a consequence of the Maxwellian
terms in the Ramond-Ramond sector. Singularity free bouncing solutions in which the dilaton is finite and
strictly positive are obtained for models with flat or negative curvature spatial sections when the dilatonic
coupling constant is such thatv,23/2, which may appear in the so calledF theory in 12 dimensions. These
bouncing phases are smoothly connected to the radiation dominated expansion phase of the standard cosmo-
logical model, and the asymptotic pasts correspond to very large flat spacetimes.
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I. INTRODUCTION

Superstring is the most promising candidate to describ
unified theory of all interactions, gravity included. There a
five consistent superstring theories in 10 dimensions, wh
are connected among themselves through duality transfo
tions. To each superstring theory, there is a correspon
supergravity theory in 10 dimensions. All of them can
obtained from the 11 dimensional supergravity theory. T
indicates that those superstring theories are different m
festations of a unique 11 dimensional framework, that
been namedM theory@1–3#. Moreover, the superstring type
IIB can be recast in a more geometrical form in a 12 dim
sional model, suggesting that perhaps a yet more fundam
tal framework may exist in 12 dimensions, which has be
calledF theory @4#.

The physical properties of superstring theories beco
relevant at energy scales comparable with the Planck sc
This renders very improbable that superstring phenome
ogy may be tested in the near future in some laboratory
periment~see, however, Ref.@5# in which the Planck mass i
lowered to TeV scale by accounting for large extra dime
sions!. According to the hot big bang scenario, however, e
ergy scales even as high as the usual Planck scaleM

Pl

;1019 GeV) may have been reached in the very early u
verse. Hence, for the moment, cosmology seems to be
most natural arena where the consequences of supers
theories may be tested. The pre-big bang paradigm@6# was
one of the first ideas to implement superstring theories in
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framework. Some relics of a cosmological string phase m
also be identified@7#, opening perhaps the possibility of tes
ing superstring models. Furthermore, superstring theo
open the possibility that some typical drawbacks of the st
dard cosmological model, such as the existence of an in
singularity, may be solved in the context of superstring c
mological models. The goal of the present paper is to sh
that, under certain conditions, it is possible to obtain co
pletely regular bouncing cosmological models in the cont
of effective actions constructed from superstring theor
~not involving, in particular, negative energies@8#!, for
which, moreover, the dilaton is strictly positive~nonvanish-
ing! at all times and never diverges.

String cosmology is based on the low energy limit
string or superstring theories. In the most general case of
supersymmetric string theory, there are two sectors, rela
with the choice of periodic or antiperiodic boundary cond
tions on the spinor fields, namely the Ramond and Nev
Schwarz~NS! sectors@1,2#. Since fermions can be either le
or right moving, this leads to four possible combinations
these sectors. The bosonic fields arise both from the NS
and Ramond-Ramond~RR! sectors. The NS-NS sector pro
vides the Einstein-Hilbert term, as well as a three-for
called the axionic field, and the dilaton. The latter is direc
related with the string perturbative expansion parameter
takes the form of a Brans-Dicke-like scalar field, nonmin
mally coupled to both the Einstein-Hilbert and the axion
fields. In the RR sector,p forms appear, which are minimally
coupled to the dilaton field. The dimensions of thep forms
depend on the specific superstring theory which is under c
sideration. In cosmological applications, we are interested
scalar fields that emerge from these differentp forms. They
differ by the way they couple with the dilatonic field an
between themselves.

Out of the many different possibilities stemming fro
©2003 The American Physical Society03-1
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string theory, one can construct in general an effective ac
suitable for cosmological applications with two main fe
tures: scalar fields coming from the NS-NS sector and n
minimally coupled to the dilaton, and scalar fields from t
RR sector which are minimally coupled to the dilaton. A
the possibilities are not exhausted by these two framewo
but they summarize the general aspects of what has b
proposed in the literature as far as effective actions com
from string theory are concerned. One can also obtain p
nomenological matter fields by averaging on some com
nents of those originalp forms.

This brief description explicits the great richness of t
string effective action procedure, which implies a large va
ety of possible cosmological models. Notice that these ef
tive actions exhibit great similarities with those that can
obtained from multidimensional and supergravity theori
To select one cosmological model that could be a candid
to describe the physical world, two possible prescriptio
are: either the cosmological model is completely regu
with no curvature or expansion parameter singularity, or i
compatible with observation; ultimately, both criteria shou
be satisfied. In the present work we will concentrate on
first. The second criterion, which presents some spec
challenges, will be treated in the future@9#.

The search for singularity free cosmology in string the
ries is not a new subject@10–14#. The string action at tree
level does not lead in general to singularity free cosmolo
cal solutions, at least when the strict string case (v521, v
being the dilatonic coupling parameter! is considered. The
pre-big bang model@6#, which is an example of a string
cosmology, requires the introduction of nonlinear curvat
terms in order to achieve a smooth transition from a cur
ture growing phase to a curvature decreasing phase. If l
negative values of the dilatonic coupling parameterv are
allowed, it is possible, in some cases, to obtain comple
regular models, including in the dilatonic sector@13#. This
may be achieved mainly in models with spatial sections w
negative curvature.

Here, it will be shown that regular cosmological mode
may also be obtained if a radiation fluid is coupled to t
string action at the tree level. Such a radiation fluid can h
a fundamental motivation, for example, in the case of
superstring type IIB theory, where a 5-form appears in
RR sector. Truncation and dimensional reduction of t
5-form lead to a Maxwell term in four dimensions with th
desired features@15#. Hence, the model to be studied here
totally based on superstring theories. The string motiva
phenomenological term included under the form of a rad
tion fluid makes it possible to connect smoothly such str
cosmological models to the radiation phase of the stand
cosmological model before nucleosynthesis.

In Ref. @12#, models motivated by string theory similarl
including a radiation fluid have been studied, restricted to
spatial sections andv.23/2. In such cases, bouncing sol
tions have been obtained only forv,24/3. Furthermore,
for these solutions, the dilaton vanishes in the infinite p
raising doubts on the validity of the tree level action in su
a region. In the present paper, the curvature of the sp
sections and the value ofv are kept arbitrary. New bouncin
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regular solutions are then obtained, for which, as mentio
above, the dilaton remains finite and nonvanishing at
times. Whenv.23/2, which includes the strict string cas
(v521), the solutions can only be bouncing provided t
spatial sections have negative curvature and if the dilato
always negative, which is not consistent with the higher
mensional framework of stringlike theories, and implies
repulsive gravity. We shall henceforth disregard such so
tions. Whenv,23/2, the bouncing solutions are obtaine
for models with flat or negative curvature, and the dilaton
strictly positive at all times.

In the following section, we derive effective string mot
vated actions in four dimensions. In particular, we show h
to obtain an effective string action in four dimensions w
v,23/2 in the context of the so-calledF theory in twelve
dimensions. In Sec. III we derive nonsingular cosmologi
solutions from these effective theories, which are thoroug
discussed in Sec. IV from the point of view of violation o
energy conditions. We end up with the conclusions in Sec

II. THE EFFECTIVE ACTION

Our analysis is based on the following effective action
tree level:

L5A2g̃e2s̃S R̃2vs̃ ;As̃ ;A2
1

12
HABCHABCD

2A2g̃S 1

2
j ;Aj ;A1

1

240
FABCDEF

ABCDED ~1!

wheres̃ is the dilatonic field,HABC is the axionic field, and
v is the dilatonic coupling constant. The two last terms co
from the RR sector of superstring type IIB. The tildes ind
cate that all quantities are considered in aD-dimensional
spacetime,D510 in the pure superstring context.

The dilatonic coupling constant isv521 for usual su-
perstring theory. However, this may not necessarily be
case for some ten dimensional theories stemming from
more fundamental one in higher dimensions. In some s
cific situations, the value ofv can be found to be even les
than 23/2. As an example, the superstring type IIB acti
may be reformulated in 12 dimensions, in the context of
so-calledF theory. A low energy limit of theF theory has
been studied by@4#, where an action in 12 dimensions ha
been established, which was shown to lead to the low ene
limit of the superstring type IIB in 10 dimensions throug
truncation and dimensional reduction. Let us consider t
twelve dimensional action, given by@4#

L125A2g̃S R̃2
1

2
C ;AC ;A2

1

48
eaCFABCDFABCD

2
1

240
ebCGABCDEG

ABCDE1lB4∧dA3∧dA3D , ~2!

with a2521/5 andb2524/5, l being a coupling paramete
for the Chern-Simons type term involving the potentials
the five and four-forms. Writing the metric as
3-2
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ds12
2 5gmndxmdxn2e2bdxidxi , ~3!

with Greek indicesm,n running from 0 to 9 and Latin indi-
ces i P@10,11#, and setting the five-form equal to zero, w
obtain the following Lagrangian:

L105A2ge2bS R12b ;rb ;r2
1

2
C ;rC ;r

2
1

12
eaC22bFmnlFmnl2

1

8
eaC24bFmnFmnD , ~4!

where we have retained just the two and three-forms com
from the four-form in the original action. The term origina
ing the three-form was made purely imaginary in 12 dime
sions. ChoosingC52b/a, and definingf5e2b, one ends
up with the following action in 10 dimensions:

L105A2gFfS R13
f ;rf ;r

f2
2

1

12
FmnlFmnlD

2
1

8
FmnFmnG . ~5!

One can see that, in this case, we obtain an action witv
523 together with a Maxwell term~which generates the
radiation fluid!. This is a remarkable example of how a
effective string action withvÞ21 ~in this case,v523,
23/2) can be realized. That is why we will maintain th
value of v in Eq. ~1! arbitrary in what follows, unless oth
erwise specified.

The D-dimensional metric is written as

ds25gmndxmdxn2e2bd i j dxidxj , ~6!

where gmn is the four dimensional metric, eb is the scale
factor of thed5D24 dimensional internal space which w
suppose to be homogeneous and flat. For now on, we
consider a static internal space. This is not obligatory
some of the cases to be analyzed latter, but such a restri
considerably simplifies the unified presentation of many d
ferent cases allowed by the action given by Eq.~1!.

Dimensional reduction and isotropization of the Maxwe
ian term @which may come from the RR sector, or as d
scribed in the passage from Eq.~2! to Eq. ~5!#, lead to the
following effective action in four dimensions:

L5A2gFfS R2v
f ;rf ;r

f2
2

C ;rC ;r

f2 D 2
1

2
j ;rj ;rG1L r ,

~7!

where from now on Greek indices run from 0 to 3. In th
action, f5e2s̃ is the dilaton, the fieldC comes from the
axionic term, and is thus called the axion, whileL r represents
an ordinary radiation fluid term, which can be obtained fro
the five-form existing in the RR sector, as was stres
above. We shall also callj the RR-scalar as it originate
from the same sector.
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The Lagrangian described by Eq.~7! may cover theories
others than pure string theory. For instance, one can cons
a more general coupling between the dilatonic and axio
fields, i.e. of the typefnC ;rC ;r, with n a new parameter
This less restrictive coupling contains the string case if o
setsn521, but general multidimensional theories and s
pergravity theories in higher dimensions are examples wh
the parametern may take different values. As was discuss
in Refs.@12,15#, the final results depend very weakly on th
parametern and one may thus expect that this generaliz
effective action will give results that are essentially similar
those obtained in the pure string case. Hence, the res
presented below are of a quite general nature, and should
be understood as statements restricted to string cosmo
only, even though they were derived in this specific fram
work.

From Eq.~7!, we obtain the field equations

Rmn2
1

2
gmnR5

8p

f
Tmn1

v

f2 S f ;mf ;n2
1

2
gmnf ;rf ;rD

1
1

f
~f ;mn2gmnhf!

1
1

f2 S C ;mC ;n2
1

2
gmnC ;rC ;rD

1
1

f S j ;mj ;n2
1

2
gmnj ;rj ;rD , ~8!

for the Einstein part,

hf1
2

312v
f21C ;rC ;r1

1

312v
j ;rj ;r5

8pT

312v
, ~9!

with T[T m
m the trace of the stress-energy tensor, for t

dilaton f, while we get

hC2C ;r

f ;r

f
50, ~10!

to describe the dynamics of the axionC, and finally

hj50, ~11!

Tmn
;m50, ~12!

for the RR-scalarj and the radiation fluid respectively. Thes
equations we now implement in a cosmological context.

III. COSMOLOGICAL SOLUTIONS

Introducing the Friedman-Robertson-Walker metric

ds25dt22a2~ t !F dr 2

12kr2
1r 2~du21sin2udf2!G , ~13!

k being the normalized curvature of the maximally symm
ric spatial sections (k50,61), and assuming the fields now
3-3



r

d

is
fo
ct

e
cia
g

to

t
.
m

his

we
ical
ed

or,
f
tely.

e
e-
al

n
ns-
ears
al

o-
tive
o-

a

se.

FABRIS et al. PHYSICAL REVIEW D 67, 124003 ~2003!
depend only on time, the field equations derived above
duce to the following equations of motion:

3S ȧ

a
D 2

13
k

a2
58p

r

f
1

v

2
S ḟ

f
D 2

23
ȧ

a

ḟ

f
1

Ċ2

2f2
1

j̇2

2f
,

~14!

which is the generalization of the Friedman equation, an

f̈13
ȧ

a
ḟ1

2

~312v!

Ċ2

f
1

j̇2

~312v!
5

8p~r23p!

~312v!
,

~15!

C̈13
ȧ

a
Ċ2Ċ

ḟ

f
50, ~16!

j̈13
ȧ

a
j̇50, ~17!

ṙ13
ȧ

a
~r1p!50. ~18!

In these expressions,r is the energy density andp is the
pressure of some perfect fluid which obeys, for the sake
generality, a barotropic equation of state,p5lr, with l an
arbitrary constant. In what follows, we will specialize th
fluid to the case we are interested in, namely, radiation,
which l5l r51/3. A dot stands for a derivative with respe
to the cosmic timet.

Equations~16!, ~17! and ~18! admit the first integrals

Ċ5
Af

a3
, j̇5

B

a3
, r5Da23(11l), ~19!

whereA, B andD are integration constants. According to th
string motivated action discussed above, let us now spe
ize the equations for the radiation fluid case and accordin
setl51/3. For this specific case, Eq.~15! simplifies to

f̈13
ȧ

a
ḟ1

2

~312v!

A2

a6
f1

B2

~312v!a6
50, ~20!

which can be solved in the following way. It is convenient
define a new timelike coordinateu given by the relation

dt5a3du. ~21!

In terms of this new coordinate, Eq.~20! reads

f91
2A2

~312v!
f1

B2

~312v!
50, ~22!

where primes denote differentiations with respect tou. Simi-
larly, Eq. ~14!, when expressed in terms ofu, reads

S a8

a3D 2

1k5
M

a2f
1

v

6

f82

a4f2
2

a8f8

a5f
1

1

6a4 S A21
B2

f D ,

~23!
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in which use has been made of Eq.~19!, and we have se
M58pD/3, which is dimensionless in the radiation case

Equation~23! may be recast in a very convenient for
through the redefinition

a5f21/2b, ~24!

which implies to change to the so-called Einstein frame. T
yields

S b8

b D 2

1~kb22M !
b2

f25
1

6 S A21
B2

f
1

312v

2

f82

f2 D ,

~25!

whose solution we next investigate. Notice, however, that
want to keep considering the Jordan frame as the phys
frame; the conformal transformation above is introduc
only for technical reasons. The solutions of Eqs.~22! and
~14!, with the redefinition made above for the scale fact
depend on the sign of the term 312v and on the presence o
the RR scalar field. We will consider each case separa
For simplicity, we will call 312v.0 (,0) the normal
~anomalous! case, andj5const (jÞconst) the axionic~RR!
case.

In the special case for whichv assumes the critical valu
v523/2, the dilatonic field is not a physical degree of fre
dom since it may be eliminated by means of a conform
transformationgmn5e2fg̃mn : it is a mere artifact of a metric
redefinition. Forv,23/2, the scalar field in the Einstei
frame, obtained from the Jordan frame by a conformal tra
formation, does not preserve energy conditions as it app
with a sign for its kinetic term which is opposite to the usu
situation, leading to a negative energy contribution@see the
last term in Eq.~25!#. Such a negative energy field can pr
vide the necessary compensation with the usually posi
energy density contributions in order to allow bouncing s
lutions in general relativity@8,16#. For v.23/2, the last
term in Eq.~25! appears with the ordinary sign, implying
positive energy contribution.

In what follows, the quantitiesf0 anda0 are constants of
integration subject to the constraints indicated in each ca

A. Normal axionic case

In this first case for whichj is constant@i.e. B50 in Eq.
~19!# andv.23/2, the solution of Eq.~22! is given by

f~u!5f0sin~au!, ~26!

where

a5A 2A2

312v
~27!

and we have chosenf(0)50.
Plugging this solution into Eq.~25! yields

f0
2sin2~au!b825~C21Mb22kb4!b2, ~28!

where
3-4
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C25
1

6
A2f0

2 . ~29!

We are seeking regular bouncing solutions for which
scale factor is bounded from below but can grow arbitra
large, whilef is nonvanishing and finite. This means that t
functionb should also grow indefinitely on both sides of th
bounce. As can be seen by inspection of Eqs.~26! and ~28!,
a necessary condition for this to happen in a finite interva
u ~to ensuref remains finite at all times! is that the curva-
ture be nonpositive. This is to be contrasted with the gen
relativistic case for which a positive curvature is a p
requisite to ensure that a bounce is possible@16#, and can be
understood by stating that, in the case at hand, a pos
curvature implies a finite scale factor at all times.

Under the assumption that both sides are positive defin
one can integrate Eq.~28!, written as

E
b0

b db̃

b̃AC21Mb̃22kb̃4
56E

u0

u dũ

f0sin~aũ !
, ~30!

to provide the solution@see, e.g., Ref.@17#, Eq. ~2.266!#

g~b!

g~b0!
5

f ~u!

f ~u0!
, ~31!

where

f ~u!5UtanS au

2 D Up

, ~32!

and

g~b!5
M

C
1

2

b2 ~C1AC21Mb22kb4!, ~33!

b0 andu0 being constants of integration that we choose s
that Cg(b0)5 f (u0) for further convenience, and

p56A11
2

3
v. ~34!

Settinga0
254C2/f0, we finally get

a~u!5
a0

Asinau
H f ~u!

@M2 f ~u!#214C2k
J 1/2

, ~35!

which is the desired result for the scale factor. Note t
because of the trigonometric identity

tanF2S au1p/2

2 D G5F tanS p/22au

2 D G21

, ~36!

the solution~35! with p→2p can be straightforwardly de
duced from the original one by a mirror symmetry with r
spect to the pointau5p/2. It is thus sufficient to conside
p.0 and we shall in what follows restrict our attention
this case.
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These solutions have some interesting features. As
have already discussed, fork51, there are no bouncing so
lutions. On the other hand, fork50 or k521, it is possible
to choose the parameters in such a way that the extreme
the range of validity of the variableu occur for t→6`,
where spacetime becomes flat.

The casek50 was presented in Ref.@12#; let us recall it
briefly for the sake of completeness. The denominator in
~35! has only two roots ifk50, and the parameteru varies
from u i50 to u f52a21arctan(M1/p). Bouncing nonsingular
solutions are possible only when23/2,v,24/3. This can
be seen by considering the limit for whichu→u i50. There,
the scale factor isa}u (p21)/2, and, from Eq. ~21!, t
}u (3p21)/3, yielding a}utu(p21)/(3p21). As a(t) is a power
law ~disregarding the exceptional casesp51⇔v50, and
p51/3⇔v524/3, also discussed in Ref.@12#!, the scalar
curvature fork50 is proportional tot22, which converges
~in fact, goes to zero! only if t→` as u→0. This happens
only for p,1/3, which yields23/2,v,24/3. Note, how-
ever, that foru50 the dilatonf vanishes, independently o
the value ofv, rendering dubious the validity of the tre
level action~1! in this region.

Whenk521, the denominator in Eq.~35! has now three
roots. One can take the parameteru varying from u i50 to
u f52a21arctan@(M22C)1/p#, supposing 2C,M . In this in-
terval, the same analysis given in the precedent paragrap
valid here: one can have bouncing solutions which presen
initial singularity in the curvature and in the string expansi
parametergs

25f21 if 24/3,v,0, and other bouncing so
lutions which do not present curvature singularities initia
but still have a singularity in the string expansion parame
if 23/2,v,24/3. One can also take the parameteru to
vary from u i52a21arctan@(M22C)1/p# to u f
52a21arctan@(M12C)1/p#. Provided 2C,M , the dilatonic
field given by Eq.~26! is finite and never vanishes, takin
constant values in the asymptotic regions.

Let us now consider the limitu→u i or u→u f . Setting
au5au i1« or au5au f2«, and expanding the denomina
tor around«50, we geta}«21/2, from Eq. ~21! utu}«21/2,
and finallya}utu, independently of the value ofp or v. As
we are consideringk521, this limit corresponds to Milne
flat spacetime. The scale factor given by Eq.~35! thus ap-
pears to represent, with this choice of range foru, a universe
contracting from a Milne spacetime to a minimum siz
bouncing to an expansion phase, and ending asymptotic
also in a Milne spacetime.

However interesting this solution might be, it is unfort
nately physically meaningless since it demands the dilato
be negative. This can be seen by looking at Eqs.~25! and
~35!. From Eq. ~35! for k521, one can obtain the scal
factor in the Einstein frameb(u)5Af(u)a(u), which is

b~u!54C2H f ~u!

@M2 f ~u!#224C2J 1/2

. ~37!

In the above range of values ofu, there must exist a point a
which b8(u)50. However, from Eq.~25! with 23/2,v,
this could only be possible ifb(u) were purely imaginary.
3-5
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Then, for the string-frame scale factora(u) to be real,
Af(u) should also be imaginary, so thatf(u) should be
negative in the corresponding range of values. Many of
characteristic features of this solution are however pres
also in the cosmologically more relevant anomalous situa
to which we now turn.

B. Anomalous axionic case

For 312v,0, the previous solution for Eq.~22! must be
replaced by

f~u!5f0sinh~au!, ~38!

where now

a5A22A2

312v
, ~39!

and, as before, we have imposedf(0)50.
Again, inserting this solution into Eq.~25! yields

f0
2sinh2~au!b825~Mb22C22kb4!b2, ~40!

whereC is as before@Eq. ~29!#. The same argument concer
ing the existence of a bouncing solution applies, namely,
such solutions cannot exist fork51. Manipulations similar
to those of the previous case then lead to

f ~u!5 lnFUtanhS au

2 D UpG , ~41!

g~b!5arcsinS Mb222C2

b2AM224kC2D ,

~42!

where we have assumedM224kC2.0 ~recall we are only
interested in the casesk50 andk521). We now choose
f (u0)5g(b0), set

p56A2S 11
2

3
v D , and a0

25
A2f0

3M
, ~43!

to obtain the scale factor as

a~u!5
a0

Asinhau
F16A124

kC2

M2
sin f ~u!G21/2

. ~44!

Regular bouncing solutions may be obtained fork50 or k
521. Differently from the previous situation, the flat ca
also does not exhibit any singularity in the string expans
parameter. Furthermore, it is possible to find ranges of va
of u for which the dilaton is strictly positive all along. This i
because Eq.~25! with v,23/2 admitsb8(u)50 in the Ein-
stein frame with a real scale factorb. Hence, it is not neces
sary to havef,0 in order to have the string frame sca
factor a real. As the dilaton is finite and strictly positive
there are also no singularities in the string expansion par
eter given bygs

25f21, and the tree level approximation ca
be trusted all along. Consequently, we have obtained a
12400
e
nt
n

at

n
es

-

r-

fectly regular bouncing solution in the string framewor
without any singularity, even in the dilatonic field, when th
curvature of the spatial section is negative or vanishing.

Investigation of the asymptotic behaviors reveals that,
k50, the universe displays a radiation dominated phase
both extremities of the range (a}1/uuu, i.e.a}utu1/2 for t→
6`), while for k521, the curvature dominates in th
asymptotic regions, leading to a Milne universe (a}uuu21/2

→utu). Hence, in thek50 case, we have a bounce betwe
two asymptotic radiation dominated standard cosmolog
models, one contracting and the other expanding, while
k521 the bounce connects two Milne asymptotic region

Recovering the units and connecting the parameters w
the real Universe in order to evaluate the value ofM, we
considerGeff5G

N
/f, whereG

N
is the value of the gravita-

tional coupling today, and make the replacementsf
→f/G

N
, C→C/G

N
, t→a0t, a0'1/H0 (H0 being the

present Hubble parameter, which we choose to be our
verse unit of time!. Assuming the present amount of radi
tion (r0r5V0rrc;1024rc'10233 g/cm3, with rc the critical
density today!, we obtain from Eq.~14!, assuming the radia
tion term to dominate at the time under consideration, t
M;8pG

N
r0rH0

22/35V0r'1024.
It is interesting to note that these models can provid

quite effective way of enhancing the gravitational couplin
To illustrate this point with a numerical example, let u
choosep51 ~i.e. the case derived in Sec. II withv523,
our prototypical example!, k50, f (u i)527p/2 and f (u f)
523p/2. One then obtainsf i'1023 andf f'1, where the
constantf0 is chosenf0'1022 in order to obtain the effec-
tive gravitational ‘‘constant’’ today equal to Newton consta
G

N
. With this choice of parameters, the enhancement of

effective gravitational ‘‘constant’’ in the past was therefore
three orders of magnitude. Note that the dilaton is stric
positive and finite in this range.

C. Normal RR case

Integrating the equations of motion~22! after inclusion of
j, i.e., with a nonvanishingB and still forv.23/2, simply
turns the solution given by Eq.~26! into

f~u!5f0~sinau2s!, ~45!

where

s5
B2

2A2f0

, ~46!

provides the particular solution of the inhomogeneous eq
tion, and we have assumed the same initial condition for
homogeneous part. The constanta is defined as in the nor
mal axionic case.

After some straightforward calculations, we get that E
~30! is modified into
3-6
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E
b0

b db̃

b̃A6C21Mb̃22kb̃4
56

1

f0
E

u0

u dũ

sin~aũ !2s
,

~47!

where now

C25
1

6
A2f0

2u12s2u ~48!

takes into account the inhomogeneous part. In Eq.~47!, the
sign in front of the factorC2 in the denominator of the right
hand side integrand is positive or negative depending
whether s2,1 or s2.1 respectively. We shall treat bot
cases separately.

1. Small RR-scalar

We assume from now on that even though we allow va
tions forj, those are limited in such a way thats2,1. Equa-
tion ~47!, being in a form similar to Eq.~30!, yields the same
result that bounces cannot be realized unlessk<0.

Integrating both sides of Eq.~47!, we obtain the function
b, thanks to which we can write the scale factor as

a~u!5
a0

Asinau2s
H f ~u!

@M2 f ~u!#214C2k
J 1/2

, ~49!

with @see again Ref.@17#, Eq. ~2.551/3!#

f ~u!5U2s Fs tan~au/2!211A12s2

11A12s22s tan~au/2!
GUp

, ~50!

where a0 , p and the choice for the relationship betwe
f (u0) andg(b0) are the same as in the normal axionic ca
except for the new definition~48! of the constantC. The
normalization in Eq.~50! has been chosen in such a way th
the limit s→0 gets indeed back to the normal axionic ca
~32!.

The properties of these solutions are qualitatively
same as in the normal axionic case.

2. Large RR-scalar

In the opposite situation for whichs2.1, one can nor-
malize the solution in such a way that@see Ref.@17#, Eq.
~2.551/3!#

f ~u!52p arctanF12s tan~au/2!

As221
G , ~51!

and, provideda0
252C/(Mf0), the solution can be written a

a~u!5
a0

As2sin~au!
F16A124

kC2

M2
sin f ~u!G21/2

.

~52!

These solutions, both in the large and small RR-sca
sectors, share with the normal axionic case the feature
12400
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requiring a meaningless negative dilaton field. They w
derived here for the sake of completeness.

D. Anomalous RR case

Finally, the last situation, for which Eq.~22! is solved by

f5f0@sinh~au!2s#, ~53!

is very similar to the anomalous axionic case except that
hyperbolic sine squared in Eq.~40! is replaced by
@sinh(au)2s#2, with the same definition for the constants
and C as in the anomalous axionic situation. This case
essentially similar to the normal RR one, except that
obtain a different function@see Ref.@17#, Eq. ~2.441/3!#

f ~u!5p lnU2s Fs tanh~au/2!112A11s2

11A11s21s tanh~au/2!
GU , ~54!

where the normalization again ensures that the limits→0 is
equivalent to the anomalous axionic case. With the new s
factor normalization

a0
25

A2f0

3M
~11s2!, ~55!

the new solution is expressed as

a~u!5
a0

Asinhau2s
F16A124

kC2

M2
sin f ~u!G21/2

.

~56!

Again, as in the anomalous axionic case, completely non
gular solutions, also with respect to the dilatonic field, whi
is strictly positive, are obtained fork50 or k521. The
properties of both anomalous~axionic and RR! cases are
very similar, even in the asymptotic regions. The significa
feature of this case is that, fork50, it is not difficult to
choose the free parameters in order to allow huge incre
of the dilaton along the evolution of such universes.

The anomalous cases are the ones that present boun
eras connecting asymptotically contracting and~standard!
expanding cosmological models which can represent the
Universe~with attractive gravitation!. The key requirement
to obtain these solutions is thatv,23/2, a property that can
be obtained fromF theory in twelve dimensions.

The presence of the axion and/or the RR scalar field is
important qualitatively. They just change the functionsf (u)
which appear in the scale factor given by Eqs.~35!, ~44!,
~49!, ~52! and~56!. In fact, one can find solutions without th
axion, or with neither the axion nor the RR scalar fie
which are also given by the very same equations but w
different ~and actually simpler! f (u). For instance, in the
case where neither the axion nor the RR scalar field
present, we have@ f (u)#1/p5uf(u)u}uuu and @ f (u)#1/p

5 ln„uf(u)u…5 ln(uuu) in Eqs. ~35! and ~44!, respectively.
Those solutions can also be obtained as limiting cases
Eqs. ~32! and ~41! as A→0. The qualitative behavior o
these solutions is the same as in the case with the a
~normal and anomalous axionic cases!.
3-7
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IV. THE NULL ENERGY CONDITION

For a nonpositive curvature universe described by gen
relativity, the null energy condition~NEC! r

T
1p

T
>0, where

the subscript ‘‘T’’ denotes the total contribution of all th
fields and type of matter, must be violated in order for
bounce to occur~see Ref.@18# and references therein for
discussion of the relevant singularity theorems in gene
relativity @19#!. In the context under consideration here, th
result cannot be straightforwardly applied since the nonm
mal coupling involved prevents an easy identification of
energy density and pressure sourcing the Einstein geom
~many results can however be applied to a theory with n
minimal coupling; this is discussed in, e.g. Ref.@19#!.

In what follows, we sketch an analysis of the problem
violation of the energy conditions, adapting the expressi
for the nonminimal coupling with the dilatonic field. Th
effective energy densityreff and pressurepeff are derived
from the field equations~8!, whose right-hand side we tak
to be the effective stress-energy tensorTeff

mn we are looking
for, assuming an Einstein-like form for Eq.~8! as

Rmn2
1

2
gmnR58pG

N
Tmn

eff . ~57!

The corresponding cosmological equations are then see
projections of Eq.~57! by means of a normalized timelik
vectorum ~with umum51): definingreff5Teff

mnumun and peff

52 1
3 Teff

mn(gmn2umun), Eqs. ~8! are then nothing but the
usual system describing a cosmological background wit
fluid.

Starting with the field equations derived above, one
tains the following expressions:

8pG
N
reff5

8p

f
r1

v

2

ḟ2

f2
1

1

2

Ċ2

f2
1

1

2

j̇2

f
23

ȧ

a

ḟ

f
,

~58!

8pG
N
peff5

8p

3f
r1

v

2

ḟ2

f2
1

1

2

Ċ2

f2
1

1

2

j̇2

f
1

f̈

f
12

ȧ

a

ḟ

f
,

~59!

which, contrary to the standard cosmological situation,
both not positive definite. The energy conditions may the
fore be violated, due to the terms arising from the nonm
mal coupling and if eitherv or f is negative.

To understand the causes for the bounces in our soluti
it is also useful to use Eq.~25!. In the normal cases~from the
purely mathematical point of view! with nonvanishing dila-
ton, we have seen that one must havef,0 ~repulsive grav-
ity! in order to have a bounce. In this case, the nega
dilaton is sufficient to make the bounce, and there is no n
to havev,0. In the normal cases with the dilaton vanishi
at some point,b does not actually bounce. Hence the dilat
f can be positive. The bounce then comes from the requ
mentv,0.

In the anomalous cases, where the dilaton is strictly p
tive and finite, it is the negative value ofv, more precisely
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the fact thatv,23/2, which causes the bounces. Figure
illustrates two cases of bounces for which the scale fac
are shown, taken in the anomalous axionic case, i.e. u
the solution~44!. In terms of the scale factor, the expressi
for the null energy condition reads

8pG
N
~reff1peff!5

2

a6 F4S a8

a D 2

2
a9

a
1ka4G , ~60!

which coincides, on shell, with what is obtained by summi
Eqs. ~58! and ~59!. Plotting the right hand side of this ex
pression as in Fig. 2 for the cases of Fig. 1, we verify that
null energy condition can be violated in large domai
around the bounce, depending on the choice of parame

FIG. 1. Scale factors as functions of the parameterau for two
cases of interest, described by Eq.~44! in the case derived in Sec
II, i.e. with v523. The flat case is shown as the full line, where
the open case is plotted as a dashed line. For these figures
parameters have been chosen to beM51.1 andC51. The straight
dotted line atau;0.142 represents the maximal permitted value
the timelike coordinateau, i.e. it corresponds to the future infinity
in the open casek521, the equivalent line for the flat casek50
being at the edge of the figure~i.e. the allowed range of variation i
in this case 0<au&0.4).

FIG. 2. The null energy condition during the evolution of th
Universe models depicted in Fig. 1, again with the full line stand
for the k50 case~rescaled by a factor of 3 to appear with comp
rable magnitude! and the dashed line fork521.
3-8
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One should notice that the timelike coordinateu has been
chosen to emphasize the bounce itself. In terms of the cos
time, the domain where the NEC is violated is in fact r
duced to just a small fraction of the whole interval, since
latter is actually infinite. Moreover, no violation is observ
in the large positive time limit, where the models tend
Milne or radiation dominated universes.

V. CONCLUSIONS

We have constructed fully regular cosmological solutio
in the framework of effective actions derived from strin
theory principles. These solutions present bouncing beh
iors for a wide range of parameters (v,23/2), and are
singularity free; furthermore, the spacetimes they lead to
geodesically complete, thereby improving the so-called h
zon problem of standard cosmology. Stemming from str
theory in the context of the so-calledF theory in twelve
dimensions, where it is possible to havev,23/2, they have
a reasonably sound basis as long as the dilaton is str
positive and finite in such a case. As a consequence, it is
necessary to go beyond the tree level approximation in
part of their histories: the analytic solutions exhibited abo
can describe the whole history of the cosmological mod
they represent. Their consequences may, in turn, be use
cosmological tests.

Remembering that the radiation fluid included here a
has a motivation in the superstring type IIB action, this tu
out to be, to our knowledge, the first case where a comp
regular bouncing cosmological solution is obtained in
string framework and related theories, which moreover
smoothly connected with the standard cosmological mo
radiation dominated phase. This solution may have flat
negative curvature spatial sections.
,
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In the axionic and RR cases withk50 or k521, there
are nonsingular bouncing solutions for23/2,v,24/3 but
with vanishing dilaton in the beginning, where the tree lev
action cannot be trusted, and bouncing solutions with an
tial curvature singularity if24/3,v,0. If k521 and
23/2,v,0 ~normal, including the pure string case!, one
can have singularity free bouncing solutions with, howeve
negative definite dilaton field.

As all the models withv,23/2 have the interesting fea
ture to approach flat spacetime in the infinite past~either in
Milne coordinates fork521, or the infinitely large radia-
tion dominated standard model withk50), there is the pos-
sibility to implement a quantum spectrum of perturbations
the initial asymptotics without any trans-Planckian proble
@20#, and, at the same time, to accomplish a smooth tra
tion to the standard cosmological model when, after
bounce, a standard radiation dominated phase is recov
~asymptotically in thek50 case!, preserving some of its
main achievements like, e.g. primordial nucleosynthe
The bouncing solutions withv.23/2 and positive dilaton
still present some sort of trans-Planckian problem as long
the string expansion parameter diverges initially and o
must go beyond the tree level action in such cases.

Notice that, in the cases where the dilaton is strictly po
tive, the initial value of the dilatonic field can be mad
smaller than its final value. Hence, the gravitational coupl
can be initially given a much greater value than it wou
have today. This opens the possibility to solve the hierarc
cal problem of the gravitational coupling, in a spirit simila
to the so-called brane cosmology@21#.
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