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Observational constraints on the curvaton model of inflation
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Simple curvaton models can generate a mixture of correlated primordial adiabatic and isocurvature pertur-
bations. The baryon and cold dark matter isocurvature modes differ only by an observationally null mode in
which the two perturbations almost exactly compensate, and therefore have proportional effects at linear order.
We discuss the cosmic microwave backgrog@iB) anisotropy in general mixed models, and give a simple
approximate analytic result for the large scale CMB anisotropy. Working numerically we use the latest Wilkin-
son Microwave Anisotropy Prob@MAP) observations and a variety of other data to constrain the curvaton
model. We find that models with an isocurvature contribution are not favored relative to simple purely adia-
batic models. However a significant primordial totally correlated baryon isocurvature perturbation is not ruled
out. Certain classes of curvaton model are thereby ruled out; other classes predict enough non-Gaussianity to
be detectable by the Planck satellite. In the Appendixes we review the relevant equations in the covariant
formulation and give series solutions for the radiation dominated era.
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I. INTRODUCTION ized by Langloig 9], the adiabatic and isocurvature compo-
nents can be correlated and this correlation may have inter-

Recent detailed measurements of the acoustic peaks in tlesting observational consequend@9]. In Ref. [40] they
cosmic microwave backgroundCMB) anisotropy power identified four regular isocurvature modes, which in general
spectrum by the Wilkinson Microwave Anisotropy Probe can have arbitrary correlations with each other and with the
(WMAP) satellite [1,2] are consistent with the standard adiabatic mode. Such general models have many degenera-
model of a predominantlgdiabatic approximately scale in- cies and are badly constrained by pre-WMAP dath,42,.
variant primordial power spectrum in a spatially flat uni- Detailed CMB polarization data are expected to help with
verse. Frequently it is assumed the initial power spectrum ishis [43]. In Ref.[2] (following Ref.[44] with pre-WMAP
entirely adiabatic, though there is still no compelling justifi- datg they considered a cold dark matt€DM) isocurvature
cation for this assumption. Although adiabatic perturbationsnode with an arbitrary correlation to an adiabatic mode and
are predicted from single field models of inflatif8], if one  found that though not favored by the data, a significant

allows the possibility of multiple fields in the early universe jsocyrvature contribution was still permitted. Constraints on
th(lan tEere is also the p035|b|::|)ty_rsfocurvatureperturb_au?ns a specific model that does not produce isocurvature modes
(also known asntropyperturbations[4—16]. In particular, were given in Ref[45].

;h?dr?&entll‘y proE{)os“e)d;Jrv?ton rr:r?del Ufesb at_se%i;d ngalar Here we start in Sec. Il by making some general remarks
1€ € “curvaton ) 1o Torm the perturbation s about mixed isocurvature models, and discuss the corre-

The motivation for this is it makes it easier for otherwiseS ondina CMB power spectra oredictions. Then in Sec. Il
satisfactory particle physics models of inflation to produce P 9 P P P ' )

the correct primordial spectrum of perturbatidia8]. Vari- we discuss current obseryatio_nal con_straints on totally corre-
ous candidates for the curvaton have been proped2g. Iated (or ant|cc_)rrelate):iad|abat|c and |socurvatu_re perturba_—
A curvaton mechanism has also been considered in the prdonS. as predicted by the curvaton model. Various scenarios
big-bang scenarig29—33 where it can be used to produce Within the curvaton model predict specific ratios of adiabatic
an almost scale invariant spectrum. and isocurvature perturbations, and can be tested directly. In
The curvaton scenario also has the feature of being able @eneral we find constraints on when the curvaton decayed.
generate isocurvature perturbations of a similar magnitude to We use the CMB temperature and temperature-
the adiabatic perturbation without fine-tuning, and thereforgdolarization cross-correlation anisotropy power spectra from
is open to observational test. the WMAP! [46,1,47 observations, as well as seven almost
Early studies of nonadiabatic perturbations, either considindependent temperature band powers from ACBAR] on
ered purely isocurvature cold dark matter perturbati@  smaller scales. In addition we use data from the 2dF galaxy
or mixtures of adiabatic and uncorrelated cold dark matteredshift survey[49], Hubble Space Telescop@&lST) Key
isocurvature perturbation85—-38. However, as first real- Project[50], and nucleosynthesj§1] using a slightly modi-
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fied version of the CosmoMMarkov-Chain Monte Carlo In general isocurvature perturbations give rise to pertur-

program, as described in R¢62]. bations in the density, and the universe is no longer exactly a
For simplicity we assume a flat universe with a cosmo-Friedmann-Robertson-WalkéFRW) universe. One excep-

logical constant, uninteracting cold dark matter, and masslegfon to this is when the two matter perturbations exactly

neutrinos evolving according to general relativity. compensate, sép.= — dpy, in which case the total matter
density is unperturbed, and hence the universe evolves as
Il PRIMORDIAL PERTURBATIONS though t_here were noldpebrtucrjbatlpns. cIjnbsuc_h a unl\lllerse Ithe
AND THE CMB ANISOTROPY CMB anisotropy would be dominated by tiny small scale

linear effects due to nonzero pressure of the baryons or dark
It is well known that the curvature perturbation, in the mater, and second order effects due to the perturbation in the

constant density or comoving frantgaugé) is conserved on electron number density associated with the baryons. At lin-
super-Hubble scales for adiabatic perturbatigp8—57.  ear orderdp.=— dpy,, {=p,=p,=0 is a time indepen-
This is not the case in the presence of isocurvature modedent solution to the pressureless perturbation equations, and
since these source changes to the curvature perturbatioadding this solution to any other solution will make no dif-
However, as shown in Ref58] (and reviewed in Appendix ference to the linear CMB anisotropy or matter power spec-
A), in the presence of isocurvature modes the large scaleum. It follows that an initial isocurvature perturbation with
evolution can still be analyzed easily using the curvatureS,=1,5.=0 is observationally essentially indistinguishable
perturbation in the frame in which the density is unperturbedfrom one withS,=0,S.=py/pc.
. This can be expressed in terms of the curvature perturba- We now derive an approximate analytic form for the large
tions in the frames in which individual species are unper-scale CMB temperature anisotropy in the presence of primor-
turbed(; using dial isocurvature and adiabatic perturbations. Neglecting a

local monopole and dipole contribution, taking recombina-

tion to be instantaneous at conformal timge, and assuming

Ei pi & the reionization optical depth is negligible, the monopole and
(=—, (1) integrated Sachs-WolfdSW) contributions to the tempera-
2 0! ture anisotropies due to scalar perturbations are given by
= |
I
6T | 1. o
where the dash denotes the derivative with respect to confor- T~ ZA7+ 29| +2 . ¢'dh, C)

mal time. For noninteracting conserved particle species the
individual ¢; are conserved on large scales if there is a defi- . . . .
nite equation of statp; = p;(p;). In this case the evolution of where¢ is the weyl potentla(sge Appe?‘d'x Aandr is the .

¢ follows straightforwardly from Eq(1) depending on the conformal time today and the integral is along the comoving

evolution of the background energy densities. ddiabatic photon line of site. Additional terms which arise due to the
perturbation is one in whicki = ¢ for all i, in whic.h case is velocities, quadrupoles and polarization at .Iast scattering are
' A (,g_enerally subdominant on large scales. Since the pressures

tions are defined 859 ' are assumed to be zero the perturbations are purely adiabatic
in the matter era, and hendgeis constant on large scales.
So S During matter domination the potential evolves éas-C;
S =3(Li—¢)= —3H<#— ﬁ) 2 +C,/7°, and can be related b using Eq.(A6) when the
' Pi Pj anisotropic stress is negligible
where 8p; = p;A; (no sun) is the density perturbation in any 3 G,
frame andH is the conformal Hubble rate. We consider a ¢p=—-(+—. (4)

fluid consisting of photonsy), massless neutrinos’), cold
baryons(b) and cold dark matte(CDM, c), where it is ) o . .
conventional to describe the perturbations wjtk y, in  Since the radiation to matter density ratio only falls off as

which case the second index can be omittedSse: S, ~1/72 when the matter dominates, when the approximation
Y . . . . .

etc. The isocurvature perturbations are conserved on largdd matter domination is accurate it should also be valid to

scales where the photon-baryon coupling is unimportant. ThBeglect the decaying model/r> and assume~ —5{. Us-

¢ are related to the fractional density perturbations in théng A,=4¢,, and neglecting the ISW contribution E()

unperturbed curvature frame y=3(1+p;/p;)¢;, and for ~ then becomes

matter with constant equation of steﬁe are also conserved

on large scales. ﬂ~§ — Eg (5)
T Y 5
%http://cosmologist.info/cosmomc where from Eq(1) in matter domination
“4In the context of this article the term frame and gauge are effec-
tively interchangeable. See Appendix A for further discussion. {~Rylpt R, (6)
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Here we define the matter fractionR,=p,/p,, R.  mologically relevant scalar field after inflaton decay, and that
=p./pm, Wherep,=pc+pp. the perturbations in the inflaton field are negligible. Generi-
During early radiation domination/"@%~ R,(,+R,,  cally such models predict a very small tensor mode contri-
from Eq. (1), where we define the radiation density fractionsbution, which we assume can be neglected. We assume there
R,=p,/(p,*+p,),R,=p,/(p,+p,). Using Egs(2) and(5) is no lepton number at neutrino decoupling so that there are
and the constancy of the large scalewe can therefore no neutrino isocurvature modes, though $&8] for other
relate the large scale temperature anisotropy to the primopossibilities.
dial adiabatic and isocurvature perturbations As discussed in Sec. I, the baryon and CDM isocurvature
modes predict proportional results, so we can accounsfor
ST 1 .4 2 1 by using just an effective baryon isocurvature perturbation
T~ g M C (RS RSy T gRSy (D) -
Sif=8,+ =S ®)
We can take/@ as a measure of the primordial adiabatic Ry,
perturbation. So this formula shows the effect of a mixture of
adiabatic and isocurvature perturbations on the observed
large scale CMB temperature anisotropy. This result agre
with that in [39], despite errors in their derivation which
arise from an invalid ansatz for the time evolution of the
velocities and anisotropic stre&@emonstrated by counterex-
ample in Appendix B. However in matter domination the

The baryon and CDM isocurvature perturbations are com-
letely correlatedor anti-correlateglwith each other and the
adiabatic perturbation, s6:"=B¢™4 whereB measures the
isocurvature mode contribution and is taken to be scale

independent.From Eq.(7), the large scale CMB anisotropy
variance is then given approximately by

velocities are negligible so the error is harmless, and for the >

; ; : P, 6T 1
adiabatic and neutrino modes the assumption is correct to the ~—(1+2R,B)?P (9)
required order during radiation domination. However unfor- T2 25 ¢

tunately their general result for the evolution of the potential
is incorrect and cannot be used to improve on the abova,'\/herePg:Pgad is the initial power spectrum. We assurRg
much simpler argument. is well parametrized beAS(k/ko)”S‘l where Ag gives
This analytic argument shows the main qualitative feathe normalizationng is the scalar spectral index akg is a
tures, though in reality recombination is far from being com-choice of normalization point. Note that our number of de-
pletely matter dominated, and the ISW and other contribugrees of freedom is actually less than generic inflation, be-
tions will not be negligible. It is however straightforward to cause although we have introdud@eve now no longer have
compute the CMB and matter power spectra numericalljthe amplitude and slope of the tensor component to consider.
[60,6] starting from a series solution in the early radiation The slope of the isocurvature perturbation is predicted to be

dominated ergAppendix B. the same as the adiabatic perturbation and the tensors are
predicted to be negligible in the curvaton scendtig].
IIl. CONSTRAINING THE CURVATON MODEL The isocurvature modes have little effect on small scales,

but as can be seen from E@®) they can either raiser lower

The curvaton scenario provides a mechanism for allowinghe Sachs-Wolfe plateau relative to the acoustic peaks de-
the inflation potential to have more natural properties, at thgending on the sign d8. This is in contrast to tensor pertur-
expense of introducing an additional unidentified scalar fieldhations which can only raise the Sachs-Wolfe plateau relative
which generates the perturbations. In the curvaton model thg the acoustic peaks.
inflaton field drives the initial expansion and generates an era Computing the full predictions numerically and assuming
of radiation domination after it decays. The expansion rate flat prior onB, Fig. 1 shows the posterior distribution for
then slows and the curvaton field can reach the minimum ofhe various cosmological parameters when the possibility of
its potential and start to oscillate. During oscillation the cur-a totally correlated mixture of matter isocurvature and adia-
vaton field acts effectively like a matter component, and itshatic perturbations is allowed. The posterior distributiomBof
perturbation acts like a matter isocurvature mode. As theindng is shown in Fig. 2, marginalized over the other pa-
radiation redshifts further the equation of state then changesimeters. On small scales the isocurvature modes have only a
to matter domination as the curvaton density comes to domismall effect, so the main observational constraint comes
nate. As the background equation of state changes, a curvfrom the relative amplitudes of the large and small scale
ture perturbation is generated from the isocurvature modezower. This is partially degenerate with the spectral index as
The curvaton then decays inforedominantly radiation well  clearly demonstrated in the figure. The relative large scale
before nucleosynthesis, and we enter the usual primordigdmplitude is also affected by the reionization optical depth,
radiation dominated epoch. and although this is constrained by WMAP’s polarization

Primordial correlated isocurvature modes can be gener-
ated if the baryons or CDM are generated by, or before, the—
curvaton decays, as discussed in detail below. If one or both5our sign convention foB differs from that in Ref[44]. In our
were created before the curvaton decays, the current modebnventionB>0 corresponds to a positive correlation and the
assumes that the curvaton had a negligible density when thewodes contribute with the same sign to the large scale CMB anisot-
decayed 19]. We assume that the curvaton is the only cos-ropy.
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FIG. 1. Posterior marginalized probability distributioteolid ~ number density of Monte Carlo samples generated using the data
lines of the cosmological parameters including correlated mattefdescribed in the text. The contours enclose 68% and 95% of the

isocurvature modes, using the data described in the Beig.the ~ Probability, and the shading is by the mean likelihood of the

ratio of the(effective baryon isocurvature to adiabatic perturbation S2mples.
amplitude in the primordial era),h? and Qh? are the physical

matter densities in baryons and CDM, kms™* Mpc™! is the =~ Where
Hubble parameter today,. is the effective reionization redshift,

2
andny is the spectral index. We assume a flat universe with cosmo- _M; Y _1 M2 1oV 2 (11
logical constant. Dotted lines show the mean likelihoods of the Noo= V' go2 €= 2 P\V oy’
samples, and agree well with the marginalized curves, indicating the
full distribution is fairly Gaussian and unskewggP]. M, is the reduced Planck mass, and the quantities are evalu-

) ) ) ~ated at horizon crossing during inflation. In standard infla-
measurements the experimental noise and cosmic variang@nary models the potential has to satiafy/*~0.03M
still leave a significant residual uncertainty. _ to obtain the correct fluctuation amplitude, which is difficult
~ We find the ratio of the mean likelihood allowing for \yithout using unnatural values of the model paramefte8%
isocurvature modes to that for purely adiabatic models i§y the curvaton scenario we assume the inflaton perturbations
about 0.7(for discussion of mean likelihoods see R&2)).  are negligible, and hence the potential merely has to be much
Thus the isocurvature modes do not improve the alréadymalier than this number. These conditions are therefore
good fit to the data of the standard purely adiabatic case. By,ch easier to satisfy with natural values for the model pa-
the same token, the current data are still consistent with gymeters in the curvaton cag2s]. In both cases the inflaton
significant isocurvature contribution, with the 95% margin-component of the potential also has to provide more than
alized Conﬁdence intel’val- 0.53<B<0.43. If new data. fa' about 60 e-folds of inflation.
vored B>0 this would be largely degenerate with a tensor |f the CDM is created before the curvaton decays, and
contribution predicted by standard single field inflationaryynhile the curvaton still has negligible energy density, its den-
scenarios, and would be hard to distinguish without goodsity is essentially unperturbed. After the curvature perturba-
CMB polarization data. Evidence foB<O would be a tjon is generated there is therefore a relative isocurvature
smoking gun for an isocurvature mode, though the larggerturbation, given by19]
scale polarization data have large enough cosmic variance
that to distinguish it from an adiabatic model with an unex- S.~—3¢. (12
pected initial power spectrum shape would be difficult.

The 95% confidence marginalized constraint on the spedf the curvaton decays before its energy density completely
tral index 0.98<n.<1.02 translates into a constraint on the dominates, a CDM isocurvature perturbation is produced
potential V during inflation(in general a function of the in- [19]
flation field ¢+ and the curvaton field-) [19] (

~0.1=2(7,,—€)=<0.02 (10) 3 —) Z, (13)
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wherer measures the transfer function frafg,.awn before (6) If the CDM and baryons are both created before the
curvaton decay t@ after decay{=r . vaonr REfErenc¢19]  curvaton decays then from Eq8) and(12)

finds the approximate results p.yvator Protal Wherep is the

energy density at curvaton decay, to an accuracy of about B 3 21)

10%[59]. The same formulas, Eq6l2) and(13), apply for Ry’

the baryons witlS; replaced bys, . If either the CDM or the

baryon number was created after the curvaton decayed theris scenario is ruled out at high significance.

there would be no isocurvature perturbation in that quantity (7) If CDM and baryons were both created by the curva-
[19]. If both were created after the curvaton decayed theréon then from Eqgs(8) and (13)

would be no isocurvature modes.

There is no immediately compelling particle physics B= i E (22)
model for the curvaton scenar[@5], so we consider nine Rp r
basic scenarios depending on whether the CDM and baryons . )
are generated before, by, or after curvaton decay: Solving forr gives
(2) If both the CDM and baryon number is created after 1
the curvaton decay then there is no isocurvature perturbation: f=— (23
1+R,B/3

B=0. (14 .
(8) If the CDM is created before the curvaton decay and

This scenario is consistent with the data and indistinguishthe baryons are created by the curvaton decay then from Egs.
able from an inflation model with negligible tensor compo- (8), (12) and(13)

nent.
(2) If the CDM is created before the curvaton decays and B= M_ (24)
the baryon number after the curvaton decays then from Eqgs. 'Rp
(12) and(8) . .
Solving forr gives
Re
B=—3—. (15) Ry
Ry "= 1FRBA @9

This scenario is ruled out at high significance. .
(3) If the baryon number isgcrea?ed before the curvaton (9) If the CDM is created by the curvaton and the baryons

decays and the CDM after the curvaton decays then from E(?Br)e (clr%a;en% (blesf)ore the curvaton decays we have from Egs.

(12)
3(R.—r)
B=-3. 16 € 7
(16) B R (26)
This scenario is ruled out at high significance. ) .
(4) If the CDM is created by the curvaton decay and theSClVing forr gives
baryon number after the curvaton decays then from Ed. R
and(8 = ¢
© "= 17R,B3 @7
Re(1-r . . .
B=3R— - (17) For the cases that are not immediately ruled out we obtain a
b

constraint orr. The posterior probability distribution for this
quantity can easily be constructed from the Monte Carlo

Solving forr gives samples, and a plot of it is shown in Fig. 3 for the various

1 cases. The peaks et 1 are when there are no isocurvature
(=—— (18 modes. The curves which peakrat R, andr ~ R, are when
1+(Ry/R.)B/3 compensating baryon and CDM isocurvature modes are cre-

. ated before and by curvaton decay, giving a total effective
(5) If the baryon number is created by the curvaton decayqq . rvature pertur{)ation close to zyerg. g

and the CDM after the curvaton decays then from &) The amount of non-Gaussianity in the CMB is dependent

onr with the conventional governing paramefég]

5
C4r

1-r
B= 3( T) . (19)
nt (28)
Solving forr gives

assumingf,>1. Using this equation we can convert the
= 1 (20) likelihood plots forr into those forf,,, as is shown in Fig. 4.
1+B/3° The values neaf, ~1 should not be taken too seriously as
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FIG. 3. Plots of the un-normalized posterior probability distri-
bution for r = p¢yator Protal When the curvaton decays. The distri- : _ - :
butions are for the numbered scenarios described in the (@xt: ?hu;zgr:]c! ;I;eina?iglljgt_ of non-Gaussianify, . The line styles are
CDM created by curvaton decay and baryon number after curvaton
decay(long dashes (5) baryon number created by curvaton decay were given. Numerically, we found that the data was consis-
and CDM after curvaton decaglash-dot ling, (7) both CDM and  tent at the two sigma level with the presence of an effective
baryon number created by curvaton dedaylid lin), (8) CDM  ¢qprelated baryon isocurvature perturbation of about 50% the
created before curvaton decay and baryon number by curvaton d?ﬁagnitude of the adiabatic perturbation. The individual
cay (dotted ling, (9) baryon number createq before curvaton decaybaryon and CDM isocurvature modes can be even larger if
and CDM by curvaton decagshort dashed line they compensate each other. Models in which either the

. . . . baryon number or CDM was created before the curvaton

there will be additional second order non-Gaussian contribugominated the energy density are ruled out unless counter-
tions from fields other than the curvaton._ Th_e currgnt ON&)alanced by the other species being created by the curvaton
year WMAP data havé, <134 (95%), which is predicted yecay The'levels of non-Gaussianity expected for the vari-
to reachf,, <80 (95%) with the four year WMAP da{#3]. 5 scenarios were evaluated, and in the case of the CDM
So if WMAP eventually detects non-Gaussianity it will rule being created before the curvaton decayed and the baryon
out all the models considered here. The Planck satellite i§,mper by the curvaton decay, could be high enough to be
predicted to ultimately be able to detdgt=5 [64]. If thisis  yetectable by the Planck satellite.
realized Planck will be able to distinguish between the case
where the CDM is created before curvaton decay and the ACKNOWLEDGMENTS
baryon number by curvaton decay and the other possibilities.

FIG. 4. Plots of the un-normalized posterior probability distri-
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We point out that the CDM and baryon isocurvature
modes differ only by the addition of an observationally null ,5-nDix A COVARIANT PERTURBATION EQUATIONS
mode in which the two perturbations compensate. The CDI\/1A '
isocurvature mode can therefore be treated as a scaled The covariant approach to cosmological perturbation
baryon isocurvature mode. A simple analytical approximatheory gives a set of gauge invariant equations in which all
tion for the effect of mixtures of large scale isocurvature andhe terms are covariant and have a physical interpretation
adiabatic perturbations on the CMB temperature anisotropj65,66. The quantities can be calculated in any fratte

IV. CONCLUSIONS
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beled by a 4-velocityl,) and the equations remain the same.proportional to the curvature perturbation in the uniform
Individual quantities measuring a particular perturbation dodensity frame. Her&p=13,6p;=Z;p;A; is the total density

in general depend on what framg, is used to calculate perturbation. This is related to the comoving curvature per-
them, so when talking aboufor example a density pertur- turbation

bation it is important to make clear what frame one is refer-

ring to. 7 Hq 2H O -
The spatial gradient of the 3-Ricci scal@R vanishes in = ke Pt irw

a homogeneous universe, ang=:SDP)R is a natural co- L L

variant measure of the scalar curvature perturbation in somiey y=—{—"Hdp/p', whereép is the comoving density per-

frame with 4-velocityu,. HereSis the scale factor anB,  turbation andg=ZX;(p;+ p;)v; is the total heat flux and;

is the spatial covariant derivative orthogonalug (we use are the velocities. The Poisson equation relates the density

the signature wherei,u®=1). Other covariant quantities and potential vi&?® = 3 kS?5p. It follows that for adiabatic

useful for studying perturbations are defined [B2,66,  modes wherey is nonzero initiallyy~ — ¢ on large scales.

along with derivations of the equations of general relativity A |ocal scale factorS can be definedup to an initial

that relate them. Here we only consider scalar modes at lingalue by integrating the local expansion rat¢, and the

ear order in a spatially flat univerSand perform a harmonic quantityh,=D,S=SD,S/S (scalar harmonic coefficierit)

expansion as described [ii6], leaving thek dependence of provides a measure of the perturbation to local volume ele-

scalar quantities implicit. For example we describe the curments. The derivativl’ with respect to conformal time is

vature perturbation by the scalar harmonic coefficignt unambiguously defined, and describes the rate of change of
Frame invariant quantities can be constructed from comtocal volume element perturbations. In the frame in wHi¢h

binations of covariant quantities that depend on the choice of zero fractional perturbations in number densities of con-

frameu, . These often have an interpretation in terms of theseryed species remain constant if there are no matter flows.

value of a particular quantity in some specified frame. InThe evolution of the curvature perturbation is given by
particular

(AB)

2
Ho 7]'=2h’—§k0' (A7)

1
b 5774‘ T, (Al)

. o so on large scales thie’ =0 frame coincides with the;’
whereg is the scalar shear artd=3SV°u, is the conformal = frame. Thusy is conserved on large scales in the frame
Hubble parameter, is proportional to the curvature perturbam which number density perturbation fractions are constant
tion in the zero shear fram&he Newtonian gauge The  [19]. This result is purely a result of linear torsionless space-
accelerationA in the zero shear frame time geometry.

_ , The time evolution of the local scale factor perturbation
=—A+(o’'+Ho)lk (A2) " sources growth of density perturbations of uninteracting con-
defines a second frame invariant quantity, which is related t(§erved species via the energy conservation equation
o b / /
Y 3p{ +3H(Spi+3p) +k(pi+P)vi= 30" (pi+py),
«SI1 (A8)

k2

O+V=— (A3)

where 8p; is the pressure perturbation. Tie =0 frame
therefore coincides with thép;=0 frame on large scales if
wherell is the anisotropic stress. The Weyl tensor is the parp; =0 in the 5p;=0 frame. For a particular species one can
of the Riemann tensor which is not determined by the locadefine the curvature perturbation in the frame in which its
stress-energy, and defines a frame independent scaldensity is unperturbed

potential ¢ [66] which is related to the above via

7 Hop;
1 G=5—— (A9)
¢=5(V-). (A4) 4
where in the absence of energy trangier —3H(p; +p;).
We define a frame invariant curvature perturbation The evolution equation that follows from Eq#8) and(A7)
is [58]
_n Hép
S - g — | o =P s [ Y (AL0)
i pi+p; Pi , OPi 3
®The equations given here generalize trivially to a nonflat universévhereV;=uv;+ o is the Newtonian gauge velocity. If there is
by the substitutiony— 7/(1— 3K/k?). an equation of stat®;=p;(p;) the first term on the right
The @ of Ref.[66] has a different sign convention whede= hand side is zero, and thg are therefore constant on large
—¢. scales wherk7<<1. If the equation of state parametey
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=p;/p; is constant this implies that the fractional density per-

PHYSICAL REVIEW D67, 123513 (2003

4 5 R.wk?7

turbations in the unperturbed curvature frame evolve as Ay:AVZEAb: 6 2(R,+15) (B3)
Al=—k(1+w)V;, (A11)
1 R(4R,— 15)wk7?
and hence thé\; are also conserved on large scales. The < 24 2R,+15 (B4)
curvature perturbation in the frame in which the total energy
is unperturbed is given from th# by Eq.(1). In the frame in 15 R.wk 72
which the acceleratio=0 (and henceu, coincides with V=V, =Vy=— — e (B5)
the CDM velocity, 7s=— 7/2, h,=6h’ where 75 andh/ 7 8 2R, +15
are the synchronous gauge quantifiesy. sed67]).
_1R(4R,~ 15wt RE
APPENDIX B: ISOCURVATURE INITIAL CONDITIONS ~8 2R, +15 (B6)
In the early radiation dominated era there are in general
five regular solutions to the perturbation equatipf8], as- 1 R.(4R,+15 w7
suming there is only one distinct species of cold dark matter. =sc——=5 77— (B7)

If there are several species of dark matter the additional

8 2R, +15

modes are unobservable without measuring the distinct dark

matter species directly. Performing a series expansion in convhere equalities apply at the given ordersn The baryon
formal time , the Friedman equation gives isocurvature mode is given by subtracting the observation-
ally null modeA .= — R,A,, /R, from the above solution. Se-
ries solutions for the adiabatic and isocurvature modes to any
order are easily computed using computer algebra packages;
for a MAPLE derivation of the solutions in the zero accelera-

wherew=0Q,H,/ /Q—y_;_QV with H, the Hubble parameter t@on frame see http://camb.info/t.heory.html. The ab_ove solu-
today andQ); the density today in units of the critical density. tion was calculated by constructing the frame invariant quan-
At lowest order in the tight coupling expansion, assumingfities above from the quantities in the zero acceleration
the baryons and dark matter have negligible pressure, th§ame. A

CDM isocurvature mode at early times is The A, are constant to ordek{)?. However the lowest
order terms in the velocities are of ordes{)(kr), demon-
strating explicitly that the assumption th&t=constxkr
+O((k7)?) in [39] is incorrect for isocurvature modes.

QnH3

w2

1
w7'+Zw27'2+(9(Kw7'3) (B1)

R 1 R(4R,— 15 wk?7®

(B2)

=17 2R,+15
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