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Observational constraints on the curvaton model of inflation
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Simple curvaton models can generate a mixture of correlated primordial adiabatic and isocurvature pertur-
bations. The baryon and cold dark matter isocurvature modes differ only by an observationally null mode in
which the two perturbations almost exactly compensate, and therefore have proportional effects at linear order.
We discuss the cosmic microwave background~CMB! anisotropy in general mixed models, and give a simple
approximate analytic result for the large scale CMB anisotropy. Working numerically we use the latest Wilkin-
son Microwave Anisotropy Probe~WMAP! observations and a variety of other data to constrain the curvaton
model. We find that models with an isocurvature contribution are not favored relative to simple purely adia-
batic models. However a significant primordial totally correlated baryon isocurvature perturbation is not ruled
out. Certain classes of curvaton model are thereby ruled out; other classes predict enough non-Gaussianity to
be detectable by the Planck satellite. In the Appendixes we review the relevant equations in the covariant
formulation and give series solutions for the radiation dominated era.
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I. INTRODUCTION

Recent detailed measurements of the acoustic peaks i
cosmic microwave background~CMB! anisotropy power
spectrum by the Wilkinson Microwave Anisotropy Prob
~WMAP! satellite @1,2# are consistent with the standa
model of a predominantlyadiabatic, approximately scale in-
variant primordial power spectrum in a spatially flat un
verse. Frequently it is assumed the initial power spectrum
entirely adiabatic, though there is still no compelling justi
cation for this assumption. Although adiabatic perturbatio
are predicted from single field models of inflation@3#, if one
allows the possibility of multiple fields in the early univers
then there is also the possibility ofisocurvatureperturbations
~also known asentropyperturbations! @4–16#. In particular,
the recently proposedcurvatonmodel uses a second scal
field ~the ‘‘curvaton’’! to form the perturbations@17–22#.
The motivation for this is it makes it easier for otherwi
satisfactory particle physics models of inflation to produ
the correct primordial spectrum of perturbations@23#. Vari-
ous candidates for the curvaton have been proposed@24–28#.
A curvaton mechanism has also been considered in the
big-bang scenario@29–33# where it can be used to produc
an almost scale invariant spectrum.

The curvaton scenario also has the feature of being ab
generate isocurvature perturbations of a similar magnitud
the adiabatic perturbation without fine-tuning, and theref
is open to observational test.

Early studies of nonadiabatic perturbations, either con
ered purely isocurvature cold dark matter perturbations@34#
or mixtures of adiabatic and uncorrelated cold dark ma
isocurvature perturbations@35–38#. However, as first real-
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ized by Langlois@9#, the adiabatic and isocurvature comp
nents can be correlated and this correlation may have in
esting observational consequences@39#. In Ref. @40# they
identified four regular isocurvature modes, which in gene
can have arbitrary correlations with each other and with
adiabatic mode. Such general models have many degen
cies and are badly constrained by pre-WMAP data@41,42#.
Detailed CMB polarization data are expected to help w
this @43#. In Ref. @2# ~following Ref. @44# with pre-WMAP
data! they considered a cold dark matter~CDM! isocurvature
mode with an arbitrary correlation to an adiabatic mode a
found that though not favored by the data, a significa
isocurvature contribution was still permitted. Constraints
a specific model that does not produce isocurvature mo
were given in Ref.@45#.

Here we start in Sec. II by making some general rema
about mixed isocurvature models, and discuss the co
sponding CMB power spectra predictions. Then in Sec.
we discuss current observational constraints on totally co
lated ~or anticorrelated! adiabatic and isocurvature perturb
tions, as predicted by the curvaton model. Various scena
within the curvaton model predict specific ratios of adiaba
and isocurvature perturbations, and can be tested directl
general we find constraints on when the curvaton decaye

We use the CMB temperature and temperatu
polarization cross-correlation anisotropy power spectra fr
the WMAP1 @46,1,47# observations, as well as seven almo
independent temperature band powers from ACBAR2 @48# on
smaller scales. In addition we use data from the 2dF gal
redshift survey@49#, Hubble Space Telescope~HST! Key
Project@50#, and nucleosynthesis@51# using a slightly modi-

1http://lambda.gsfc.nasa.gov/
2http://cosmologist.info/ACBAR
©2003 The American Physical Society13-1
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fied version of the CosmoMC3 Markov-Chain Monte Carlo
program, as described in Ref.@52#.

For simplicity we assume a flat universe with a cosm
logical constant, uninteracting cold dark matter, and mass
neutrinos evolving according to general relativity.

II. PRIMORDIAL PERTURBATIONS
AND THE CMB ANISOTROPY

It is well known that the curvature perturbation, in th
constant density or comoving frame~gauge4! is conserved on
super-Hubble scales for adiabatic perturbations@53–57#.
This is not the case in the presence of isocurvature mo
since these source changes to the curvature perturba
However, as shown in Ref.@58# ~and reviewed in Appendix
A!, in the presence of isocurvature modes the large s
evolution can still be analyzed easily using the curvat
perturbation in the frame in which the density is unperturb
z. This can be expressed in terms of the curvature pertu
tions in the frames in which individual species are unp
turbedz i using

z5

(
i

r i8z i

(
i

r i8

, ~1!

where the dash denotes the derivative with respect to con
mal time. For noninteracting conserved particle species
individual z i are conserved on large scales if there is a d
nite equation of statepi5pi(r i). In this case the evolution o
z follows straightforwardly from Eq.~1! depending on the
evolution of the background energy densities. Anadiabatic
perturbation is one in whichz i5z for all i, in which casez is
constant in time on large scales. The isocurvature pertu
tions are defined as@59#

Si , j[3~z i2z j !523HS dr i

r i8
2

dr j

r j8
D ~2!

wheredr i5r iD i ~no sum! is the density perturbation in an
frame andH is the conformal Hubble rate. We consider
fluid consisting of photons (g), massless neutrinos (n), cold
baryons ~b! and cold dark matter~CDM, c), where it is
conventional to describe the perturbations withj 5g, in
which case the second index can be omitted soSb[Sb,g ,
etc. The isocurvature perturbations are conserved on l
scales where the photon-baryon coupling is unimportant.
z i are related to the fractional density perturbations in
unperturbed curvature frame byD̂ i53(11pi /r i)z i , and for
matter with constant equation of stateD̂ i are also conserved
on large scales.

3http://cosmologist.info/cosmomc
4In the context of this article the term frame and gauge are ef

tively interchangeable. See Appendix A for further discussion.
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In general isocurvature perturbations give rise to pert
bations in the density, and the universe is no longer exact
Friedmann-Robertson-Walker~FRW! universe. One excep
tion to this is when the two matter perturbations exac
compensate, sodrc52drb , in which case the total matte
density is unperturbed, and hence the universe evolve
though there were no perturbations. In such a universe
CMB anisotropy would be dominated by tiny small sca
linear effects due to nonzero pressure of the baryons or d
mater, and second order effects due to the perturbation in
electron number density associated with the baryons. At
ear orderdrc52drb , z5drg5drn50 is a time indepen-
dent solution to the pressureless perturbation equations,
adding this solution to any other solution will make no d
ference to the linear CMB anisotropy or matter power sp
trum. It follows that an initial isocurvature perturbation wit
Sb51,Sc50 is observationally essentially indistinguishab
from one withSb50,Sc5rb /rc .

We now derive an approximate analytic form for the lar
scale CMB temperature anisotropy in the presence of prim
dial isocurvature and adiabatic perturbations. Neglectin
local monopole and dipole contribution, taking recombin
tion to be instantaneous at conformal timet* , and assuming
the reionization optical depth is negligible, the monopole a
integrated Sachs-Wolfe~ISW! contributions to the tempera
ture anisotropies due to scalar perturbations are given b

dT

T
'F1

4
D̂g12fG

t
*

12E
t
*

t0
f8dl, ~3!

wheref is the Weyl potential~see Appendix A! andt0 is the
conformal time today and the integral is along the comov
photon line of site. Additional terms which arise due to t
velocities, quadrupoles and polarization at last scattering
generally subdominant on large scales. Since the press
are assumed to be zero the perturbations are purely adia
in the matter era, and hencez is constant on large scales
During matter domination the potential evolves asf5C1
1C2 /t5, and can be related toz using Eq.~A6! when the
anisotropic stress is negligible

f52
3

5
z1

C2

t5
. ~4!

Since the radiation to matter density ratio only falls off
;1/t2 when the matter dominates, when the approximat
of matter domination is accurate it should also be valid
neglect the decaying mode}1/t5 and assumef'2 3

5 z. Us-
ing D̂g54zg , and neglecting the ISW contribution Eq.~3!
then becomes

dT

T
'zg2

6

5
z ~5!

where from Eq.~1! in matter domination

z'Rbzb1Rczc . ~6!
c-
3-2



ns

o

tic
o

rv
e
h
he
-

e
th
t

or
tia
ov

a
m
bu
to
all
on

in
th
el
l t
e
at

o
ur
it
th
g
m
r
d

d

ne
th
o
od
th
s

hat
ri-
tri-
there
are

ure
r
n

m-

ale
y

e-
be-

ider.
be
are

les,

de-
-
tive

ng
r
of

ia-
f
a-
nly a
es

ale
as

ale
th,

on

he
isot-

OBSERVATIONAL CONSTRAINTS ON THE CURVATON . . . PHYSICAL REVIEW D67, 123513 ~2003!
Here we define the matter fractionsRb[rb /rm , Rc
[rc /rm , whererm5rc1rb .

During early radiation dominationz rad'Rgzg1Rnzn

from Eq.~1!, where we define the radiation density fractio
Rn[rn /(rg1rn),Rg[rg /(rg1rn). Using Eqs.~2! and~5!
and the constancy of the large scalez i we can therefore
relate the large scale temperature anisotropy to the prim
dial adiabatic and isocurvature perturbations

dT

T
'2

1

5
z rad2

2

5
~RcSc1RbSb!1

1

15
RnSn . ~7!

We can takez rad as a measure of the primordial adiaba
perturbation. So this formula shows the effect of a mixture
adiabatic and isocurvature perturbations on the obse
large scale CMB temperature anisotropy. This result agr
with that in @39#, despite errors in their derivation whic
arise from an invalid ansatz for the time evolution of t
velocities and anisotropic stress~demonstrated by counterex
ample in Appendix B!. However in matter domination th
velocities are negligible so the error is harmless, and for
adiabatic and neutrino modes the assumption is correct to
required order during radiation domination. However unf
tunately their general result for the evolution of the poten
is incorrect and cannot be used to improve on the ab
much simpler argument.

This analytic argument shows the main qualitative fe
tures, though in reality recombination is far from being co
pletely matter dominated, and the ISW and other contri
tions will not be negligible. It is however straightforward
compute the CMB and matter power spectra numeric
@60,61# starting from a series solution in the early radiati
dominated era~Appendix B!.

III. CONSTRAINING THE CURVATON MODEL

The curvaton scenario provides a mechanism for allow
the inflation potential to have more natural properties, at
expense of introducing an additional unidentified scalar fi
which generates the perturbations. In the curvaton mode
inflaton field drives the initial expansion and generates an
of radiation domination after it decays. The expansion r
then slows and the curvaton field can reach the minimum
its potential and start to oscillate. During oscillation the c
vaton field acts effectively like a matter component, and
perturbation acts like a matter isocurvature mode. As
radiation redshifts further the equation of state then chan
to matter domination as the curvaton density comes to do
nate. As the background equation of state changes, a cu
ture perturbation is generated from the isocurvature mo
The curvaton then decays into~predominantly! radiation well
before nucleosynthesis, and we enter the usual primor
radiation dominated epoch.

Primordial correlated isocurvature modes can be ge
ated if the baryons or CDM are generated by, or before,
curvaton decays, as discussed in detail below. If one or b
were created before the curvaton decays, the current m
assumes that the curvaton had a negligible density when
decayed@19#. We assume that the curvaton is the only co
12351
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mologically relevant scalar field after inflaton decay, and t
the perturbations in the inflaton field are negligible. Gene
cally such models predict a very small tensor mode con
bution, which we assume can be neglected. We assume
is no lepton number at neutrino decoupling so that there
no neutrino isocurvature modes, though see@19# for other
possibilities.

As discussed in Sec. II, the baryon and CDM isocurvat
modes predict proportional results, so we can account foSc
by using just an effective baryon isocurvature perturbatio

S b
eff5Sb1

Rc

Rb
Sc . ~8!

The baryon and CDM isocurvature perturbations are co
pletely correlated~or anti-correlated! with each other and the
adiabatic perturbation, soS b

eff5Bz rad whereB measures the
isocurvature mode contribution and is taken to be sc
independent.5 From Eq.~7!, the large scale CMB anisotrop
variance is then given approximately by

K dT2

T2 L '
1

25
~112RbB!2Pz , ~9!

wherePz5P z
rad is the initial power spectrum. We assumePz

is well parametrized byPz5As(k/k0)ns21 where As gives
the normalization,ns is the scalar spectral index andk0 is a
choice of normalization point. Note that our number of d
grees of freedom is actually less than generic inflation,
cause although we have introducedB we now no longer have
the amplitude and slope of the tensor component to cons
The slope of the isocurvature perturbation is predicted to
the same as the adiabatic perturbation and the tensors
predicted to be negligible in the curvaton scenario@19#.

The isocurvature modes have little effect on small sca
but as can be seen from Eq.~9! they can either raiseor lower
the Sachs-Wolfe plateau relative to the acoustic peaks
pending on the sign ofB. This is in contrast to tensor pertur
bations which can only raise the Sachs-Wolfe plateau rela
to the acoustic peaks.

Computing the full predictions numerically and assumi
a flat prior onB, Fig. 1 shows the posterior distribution fo
the various cosmological parameters when the possibility
a totally correlated mixture of matter isocurvature and ad
batic perturbations is allowed. The posterior distribution oB
and ns is shown in Fig. 2, marginalized over the other p
rameters. On small scales the isocurvature modes have o
small effect, so the main observational constraint com
from the relative amplitudes of the large and small sc
power. This is partially degenerate with the spectral index
clearly demonstrated in the figure. The relative large sc
amplitude is also affected by the reionization optical dep
and although this is constrained by WMAP’s polarizati

5Our sign convention forB differs from that in Ref.@44#. In our
convention B.0 corresponds to a positive correlation and t
modes contribute with the same sign to the large scale CMB an
ropy.
3-3
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measurements the experimental noise and cosmic vari
still leave a significant residual uncertainty.

We find the ratio of the mean likelihood allowing fo
isocurvature modes to that for purely adiabatic models
about 0.7~for discussion of mean likelihoods see Ref.@52#!.
Thus the isocurvature modes do not improve the alre
good fit to the data of the standard purely adiabatic case
the same token, the current data are still consistent wi
significant isocurvature contribution, with the 95% marg
alized confidence interval20.53,B,0.43. If new data fa-
vored B.0 this would be largely degenerate with a tens
contribution predicted by standard single field inflationa
scenarios, and would be hard to distinguish without go
CMB polarization data. Evidence forB,0 would be a
smoking gun for an isocurvature mode, though the la
scale polarization data have large enough cosmic varia
that to distinguish it from an adiabatic model with an une
pected initial power spectrum shape would be difficult.

The 95% confidence marginalized constraint on the sp
tral index 0.90,ns,1.02 translates into a constraint on th
potentialV during inflation~in general a function of the in
flation field c and the curvaton fields) @19#

20.1&2~hss2e!&0.02 ~10!

FIG. 1. Posterior marginalized probability distributions~solid
lines! of the cosmological parameters including correlated ma
isocurvature modes, using the data described in the text.B is the
ratio of the~effective! baryon isocurvature to adiabatic perturbati
amplitude in the primordial era,Vbh2 and Vch

2 are the physical
matter densities in baryons and CDM,H0 km s21 Mpc21 is the
Hubble parameter today,zre is the effective reionization redshift
andns is the spectral index. We assume a flat universe with cos
logical constant. Dotted lines show the mean likelihoods of
samples, and agree well with the marginalized curves, indicating
full distribution is fairly Gaussian and unskewed@62#.
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where

hss[
Mp

2

V

]2V

]s2
e[

1

2
Mp

2S 1

V

]V

]c D 2

, ~11!

Mp is the reduced Planck mass, and the quantities are ev
ated at horizon crossing during inflation. In standard infl
tionary models the potential has to satisfyV1/4;0.03e1/4Mp
to obtain the correct fluctuation amplitude, which is difficu
without using unnatural values of the model parameters@23#.
In the curvaton scenario we assume the inflaton perturbat
are negligible, and hence the potential merely has to be m
smaller than this number. These conditions are there
much easier to satisfy with natural values for the model
rameters in the curvaton case@23#. In both cases the inflaton
component of the potential also has to provide more th
about 60 e-folds of inflation.

If the CDM is created before the curvaton decays, a
while the curvaton still has negligible energy density, its de
sity is essentially unperturbed. After the curvature pertur
tion is generated there is therefore a relative isocurva
perturbation, given by@19#

Sc'23z. ~12!

If the curvaton decays before its energy density comple
dominates, a CDM isocurvature perturbation is produc
@19#

Sc'3S 12r

r D z, ~13!

r

o-
e
e

FIG. 2. Posterior distribution ofB5S b
eff/z in the primordial era,

and the spectral indexns . The plot is generated from a smoothe
number density of Monte Carlo samples generated using the
described in the text. The contours enclose 68% and 95% of
probability, and the shading is by the mean likelihood of t
samples.
3-4
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wherer measures the transfer function fromzcurvaton before
curvaton decay toz after decay,z5r zcurvaton. Reference@19#
finds the approximate resultr'rcurvaton/r total wherer is the
energy density at curvaton decay, to an accuracy of ab
10% @59#. The same formulas, Eqs.~12! and ~13!, apply for
the baryons withSc replaced bySb . If either the CDM or the
baryon number was created after the curvaton decayed
there would be no isocurvature perturbation in that quan
@19#. If both were created after the curvaton decayed th
would be no isocurvature modes.

There is no immediately compelling particle physi
model for the curvaton scenario@25#, so we consider nine
basic scenarios depending on whether the CDM and bary
are generated before, by, or after curvaton decay:

~1! If both the CDM and baryon number is created af
the curvaton decay then there is no isocurvature perturba

B50. ~14!

This scenario is consistent with the data and indistingu
able from an inflation model with negligible tensor comp
nent.

~2! If the CDM is created before the curvaton decays a
the baryon number after the curvaton decays then from E
~12! and ~8!

B523
Rc

Rb
. ~15!

This scenario is ruled out at high significance.
~3! If the baryon number is created before the curva

decays and the CDM after the curvaton decays then from
~12!

B523. ~16!

This scenario is ruled out at high significance.
~4! If the CDM is created by the curvaton decay and t

baryon number after the curvaton decays then from Eqs.~13!
and ~8!

B53
Rc

Rb
S 12r

r D . ~17!

Solving for r gives

r 5
1

11~Rb /Rc!B/3
. ~18!

~5! If the baryon number is created by the curvaton de
and the CDM after the curvaton decays then from Eq.~13!

B53S 12r

r D . ~19!

Solving for r gives

r 5
1

11B/3
. ~20!
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~6! If the CDM and baryons are both created before
curvaton decays then from Eqs.~8! and ~12!

B52
3

Rb
. ~21!

This scenario is ruled out at high significance.
~7! If CDM and baryons were both created by the curv

ton then from Eqs.~8! and ~13!

B5
3

Rb

12r

r
. ~22!

Solving for r gives

r 5
1

11RbB/3
. ~23!

~8! If the CDM is created before the curvaton decay a
the baryons are created by the curvaton decay then from
~8!, ~12! and ~13!

B5
3~Rb2r !

rRb
. ~24!

Solving for r gives

r 5
Rb

11RbB/3
. ~25!

~9! If the CDM is created by the curvaton and the baryo
are created before the curvaton decays we have from
~8!, ~12! and ~13!

B5
3~Rc2r !

rRb
. ~26!

Solving for r gives

r 5
Rc

11RbB/3
. ~27!

For the cases that are not immediately ruled out we obta
constraint onr. The posterior probability distribution for this
quantity can easily be constructed from the Monte Ca
samples, and a plot of it is shown in Fig. 3 for the vario
cases. The peaks atr 51 are when there are no isocurvatu
modes. The curves which peak atr;Rb andr;Rc are when
compensating baryon and CDM isocurvature modes are
ated before and by curvaton decay, giving a total effect
isocurvature perturbation close to zero.

The amount of non-Gaussianity in the CMB is depend
on r with the conventional governing parameter@19#

f nl'
5

4r
~28!

assumingf nl@1. Using this equation we can convert th
likelihood plots forr into those forf nl as is shown in Fig. 4.
The values nearf nl;1 should not be taken too seriously a
3-5
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there will be additional second order non-Gaussian contr
tions from fields other than the curvaton. The current o
year WMAP data havef nl,134 (95%), which is predicted
to reachf nl,80 (95%) with the four year WMAP data@63#.
So if WMAP eventually detects non-Gaussianity it will ru
out all the models considered here. The Planck satellit
predicted to ultimately be able to detectf nl*5 @64#. If this is
realized Planck will be able to distinguish between the c
where the CDM is created before curvaton decay and
baryon number by curvaton decay and the other possibilit

IV. CONCLUSIONS

The curvaton model provides a simple scenario that
give rise to correlated adiabatic and isocurvature mode
similar size. The current data do not favor a large isocur
ture contribution, but a significant amplitude is still allowe

We point out that the CDM and baryon isocurvatu
modes differ only by the addition of an observationally n
mode in which the two perturbations compensate. The C
isocurvature mode can therefore be treated as a sc
baryon isocurvature mode. A simple analytical approxim
tion for the effect of mixtures of large scale isocurvature a
adiabatic perturbations on the CMB temperature anisotr

FIG. 3. Plots of the un-normalized posterior probability dist
bution for r'rcurvaton/r total when the curvaton decays. The distr
butions are for the numbered scenarios described in the text~4!
CDM created by curvaton decay and baryon number after curv
decay~long dashes!, ~5! baryon number created by curvaton dec
and CDM after curvaton decay~dash-dot line!, ~7! both CDM and
baryon number created by curvaton decay~solid line!, ~8! CDM
created before curvaton decay and baryon number by curvaton
cay ~dotted line!, ~9! baryon number created before curvaton dec
and CDM by curvaton decay~short dashed line!.
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were given. Numerically, we found that the data was con
tent at the two sigma level with the presence of an effect
correlated baryon isocurvature perturbation of about 50%
magnitude of the adiabatic perturbation. The individu
baryon and CDM isocurvature modes can be even large
they compensate each other. Models in which either
baryon number or CDM was created before the curva
dominated the energy density are ruled out unless coun
balanced by the other species being created by the curv
decay. The levels of non-Gaussianity expected for the v
ous scenarios were evaluated, and in the case of the C
being created before the curvaton decayed and the ba
number by the curvaton decay, could be high enough to
detectable by the Planck satellite.
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APPENDIX A: COVARIANT PERTURBATION EQUATIONS

The covariant approach to cosmological perturbat
theory gives a set of gauge invariant equations in which
the terms are covariant and have a physical interpreta
@65,66#. The quantities can be calculated in any frame~la-

n

e-
y

FIG. 4. Plots of the un-normalized posterior probability dist
bution for the amount of non-Gaussianity,f nl . The line styles are
the same as in Fig. 3.
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beled by a 4-velocityua) and the equations remain the sam
Individual quantities measuring a particular perturbation
in general depend on what frameua is used to calculate
them, so when talking about~for example! a density pertur-
bation it is important to make clear what frame one is ref
ring to.

The spatial gradient of the 3-Ricci scalar(3)R vanishes in
a homogeneous universe, andha5 1

2 SDa
(3)R is a natural co-

variant measure of the scalar curvature perturbation in s
frame with 4-velocityua . HereS is the scale factor andDa
is the spatial covariant derivative orthogonal toua ~we use
the signature whereuaua51). Other covariant quantitie
useful for studying perturbations are defined in@62,66#,
along with derivations of the equations of general relativ
that relate them. Here we only consider scalar modes at
ear order in a spatially flat universe,6 and perform a harmonic
expansion as described in@66#, leaving thek dependence o
scalar quantities implicit. For example we describe the c
vature perturbation by the scalar harmonic coefficienth.

Frame invariant quantities can be constructed from co
binations of covariant quantities that depend on the choic
frameua . These often have an interpretation in terms of
value of a particular quantity in some specified frame.
particular

F[
1

2
h1

Hs

k
, ~A1!

wheres is the scalar shear andH53S¹aua is the conformal
Hubble parameter, is proportional to the curvature pertur
tion in the zero shear frame~the Newtonian gauge!. The
accelerationA in the zero shear frame

C[2A1~s81Hs!/k ~A2!

defines a second frame invariant quantity, which is relate
F by

F1C52
kS2P

k2
~A3!

whereP is the anisotropic stress. The Weyl tensor is the p
of the Riemann tensor which is not determined by the lo
stress-energy, and defines a frame independent s
potential7 f @66# which is related to the above via

f5
1

2
~C2F!. ~A4!

We define a frame invariant curvature perturbation

z[
h

2
2

Hdr

r8
, ~A5!

6The equations given here generalize trivially to a nonflat unive
by the substitutionh→h/(123K/k2).

7The F of Ref. @66# has a different sign convention whereF[
2f.
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proportional to the curvature perturbation in the unifor
density frame. Heredr5( idr i5( ir iD i is the total density
perturbation. This is related to the comoving curvature p
turbation

x[2
h

2
1

Hq

k~r1p!
52FF1

2

3

H 21F82C

11w G ~A6!

by x52z2Hdr̄/r8, wheredr̄ is the comoving density per
turbation andq5( i(r i1pi)v i is the total heat flux andv i
are the velocities. The Poisson equation relates the den
and potential viak2F5 1

2 kS2dr̄. It follows that for adiabatic
modes wherex is nonzero initiallyx'2z on large scales.

A local scale factorS can be defined~up to an initial
value! by integrating the local expansion rateH, and the
quantityha[DaS5SDaS/S ~scalar harmonic coefficienth)
provides a measure of the perturbation to local volume e
ments. The derivativeh8 with respect to conformal timet is
unambiguously defined, and describes the rate of chang
local volume element perturbations. In the frame in whichh8
is zero fractional perturbations in number densities of c
served species remain constant if there are no matter flo
The evolution of the curvature perturbation is given by

h852h82
2

3
ks ~A7!

so on large scales theh850 frame coincides with theh8
50 frame. Thush is conserved on large scales in the fram
in which number density perturbation fractions are const
@19#. This result is purely a result of linear torsionless spa
time geometry.

The time evolution of the local scale factor perturbati
sources growth of density perturbations of uninteracting c
served species via the energy conservation equation

dr i813H~dr i1dpi !1k~r i1pi !v i523h8~r i1pi !,
~A8!

where dpi is the pressure perturbation. Theh850 frame
therefore coincides with thedr i50 frame on large scales i
dpi50 in thedr i50 frame. For a particular species one c
define the curvature perturbation in the frame in which
density is unperturbed

z i[
h

2
2

Hdr i

r i8
, ~A9!

where in the absence of energy transferr i8523H(r i1pi).
The evolution equation that follows from Eqs.~A8! and~A7!
is @58#

z i852
H

r i1pi
Fdpi2

p8

r8
dr i G2

kVi

3
, ~A10!

whereVi[v i1s is the Newtonian gauge velocity. If there
an equation of statepi5pi(r i) the first term on the right
hand side is zero, and thez i are therefore constant on larg
scales wherekt!1. If the equation of state parameterwi

e
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[pi /ri is constant this implies that the fractional density p
turbations in the unperturbed curvature frame evolve as

D̂ i852k~11wi !Vi , ~A11!

and hence theD̂ i are also conserved on large scales. T
curvature perturbation in the frame in which the total ene
is unperturbed is given from thez i by Eq.~1!. In the frame in
which the accelerationA50 ~and henceua coincides with
the CDM velocity!, hs52h/2, hs856h8 wherehs and hs8
are the synchronous gauge quantities~e.g. see@67#!.

APPENDIX B: ISOCURVATURE INITIAL CONDITIONS

In the early radiation dominated era there are in gen
five regular solutions to the perturbation equations@40#, as-
suming there is only one distinct species of cold dark mat
If there are several species of dark matter the additio
modes are unobservable without measuring the distinct d
matter species directly. Performing a series expansion in c
formal timet, the Friedman equation gives

S5
VmH0

2

v2 S vt1
1

4
v2t21O~Kvt3! D ~B1!

wherev[VmH0 /AVg1Vn with H0 the Hubble paramete
today andV i the density today in units of the critical densit
At lowest order in the tight coupling expansion, assum
the baryons and dark matter have negligible pressure,
CDM isocurvature mode at early times is

D̂c512
1

72

Rc~4Rn215!vk2t3

2Rn115
~B2!
-
n-

y

ev

ys
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D̂g5D̂n5
4

3
D̂b5

5

6

Rcvk2t3

2~Rn115!
~B3!

Vc5
1

24

Rc~4Rn215!vkt2

2Rn115
~B4!

Vg5Vn5Vb52
15

8

Rcvkt2

2Rn115
~B5!

C5
1

8

Rc~4Rn215!vt

2Rn115
~B6!

F5
1

8

Rc~4Rn115!vt

2Rn115
~B7!

where equalities apply at the given order int. The baryon
isocurvature mode is given by subtracting the observati
ally null modeD̂c52RbD̂b /Rc from the above solution. Se
ries solutions for the adiabatic and isocurvature modes to
order are easily computed using computer algebra packa
for a MAPLE derivation of the solutions in the zero acceler
tion frame see http://camb.info/theory.html. The above so
tion was calculated by constructing the frame invariant qu
tities above from the quantities in the zero accelerat
frame.

The D̂ i are constant to order (kt)2. However the lowest
order terms in the velocities are of order (vt)(kt), demon-
strating explicitly that the assumption thatVi5const3kt
1O„(kt)2

… in @39# is incorrect for isocurvature modes.
av.
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