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Dilatonic current-carrying cosmic strings
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We investigate the nature of ordinary cosmic vortices in some scalar-tensor extensions of gravity. We find
solutions for which the dilaton field condenses inside the vortex core. These solutions can be interpreted as
raising the degeneracy between the eigenvalues of the effective stress-energy tensor, namely, the energy per
unit lengthU and the tensionT, by picking a privileged spacelike or timelike coordinate direction; in the latter
case, aphase frequency thresholdoccurs that is similar to what is found in ordinary neutral current-carrying
cosmic strings. We find that the dilaton contribution for the equation of state, once averaged along the string
worldsheet, vanishes, leading to an effective Nambu-Goto behavior of such a string network in cosmology, i.e.
on very large scales. It is found also that on small scales, the energy per unit length and tension depend on the
string internal coordinates in such a way as to permit the existence of centrifugally supported equilibrium
configuration, also known asvortons, whose stability, depending on the very short distance~unknown! physics,
can lead to catastrophic consequences on the evolution of the Universe.
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I. INTRODUCTION

Most extensions of the standard model of particle phys
predict that extra scalar fields, in addition to the ordina
Higgs field, whose experimental detection is still to be do
should exist in nature. At low energies~compared to the
Planck scale!, they appear to be classifiable into essentia
two main categories; namely those which couple in
straightforward way to the other particle fields~as, e.g. grand
unification breaking Higgs fields, supersymmetric partners
ordinary fermions or extra bosonic degrees of freedom co
ing from the Neveu-Schwarz sector of superstring the
@1#!, and those whose most important coupling is to grav
such as the dilaton, whose origin can be traced to the
mond sector in the superstring context. Both kinds, coup
or decoupled, have been studied from different~and often
disjoint! perspectives, and both have various cosmolog
and astrophysically observable consequences; these t
permit us, for instance, to obtain fully nonsingular cosmo
gies @2#. In particular, scalar-tensor theories of gravity@3#
may provide a natural solution to the problem of terminat
inflation @4#, whilst grand unified theory~GUT! scalars, be-
ing symmetry breakers, may lead to the formation of top
logical defects@5#, of which only cosmic strings are viabl
candidates from the point of view of cosmology.

Among these theories, some predict both kinds of fie
As a result, one expects that cosmic strings could e
whose coupling to gravity would be altered by inclusion
dilaton effects. In Ref.@6#, a local cosmic string solution wa
considered in the framework of low energy string theo
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which is reminiscent of the scalar-tensor theories of grav
@3#. Indeed, a massless dilaton is shown to obey a least
pling principle @7#, e.g. to decouple from matter by cosm
logical attraction in much the same way as the generic att
tor mechanism of the scalar-tensor theories of gravity@8#. It
was found@6# then that the metric around a cosmic string
the framework of scalar-tensor gravity is of the Taub-Kas
type @9# so that the particle and light propagation resemb
that around a wiggly cosmic string in ordinary general re
tivity @10#, although the effect was expected to be one or
of magnitude stronger.

Here, we want to point out another effect, namely that
dilaton field may behave as a winding phase along the str
thereby generating a neutral current kind of effect by rais
the degeneracy between the eigenvalues of the stress-en
tensor. From the point of view of purely gravitational phy
ics, this seems utterly negligible as the metric would har
be affected@11,12# by such a current~it gives again a
Kasner-like metric, up to second order corrections!.

The most noticeable consequence of a current-like ef
is @13–15# to modify the internal dynamics of cosmic string
in such a way that new states are reachable. Indeed,
breaking of the Lorentz boost invariance along the wor
sheet allows rotating equilibrium configurations, called v
tons, which, if they are stable, can overclose the unive
thereby leading to a catastrophe for the theory that pred
them @16#. Finally, inclusion of such an internal structur
could drastically change the predictions of a cosmic str
model @17# in the microwave background anisotropies@18#.
Here we show that the long-range effect on a cosmologic
relevant network of strings is vanishing on average, but t
vorton-like states can be reached by microscopically sm
loops.

In what follows, after having set the relevant gravitation
theory and notations, we derive the corresponding field eq
tions in Sec. II. We then set the vortex~Abelian Higgs!
©2003 The American Physical Society09-1
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model which we develop in flat space in Sec. III with the a
of using it as a source for the gravitational effects. We th
move on to obtain, in this framework, the general solut
for the dilaton field in the Einstein frame~Sec. IV!. We apply
this solution to derive the effective stress-energy tensor~Sec.
V! of the string, as seen from a Jordan-Fierz frame obser
We show that this stress-energy tensor has very partic
features that can be interpreted by saying that a networ
such string will evolve on cosmologically relevant scales a
usual network@19# of Nambu-Goto strings@20#, but might
lead to the formation of equilibriumvortonstates@16# whose
density, scaling as matter, could overclose the Universe
the case in which they are stable, an issue which is yet
resolved, depending on the small distance physics. Sec
VI summarizes our findings and discusses the relevant
mological conclusions.

II. GRAVITATIONAL FRAMEWORK

We start with the gravitation action in the Jordan-Fie
frame~also known as the ‘‘string’’ frame, a nomenclature w
shall not use in order to avoid the possible risk of confus
with the strings of the cosmic kind we consider below!,
namely

S
JF

5
1

16pE d4xA2g̃F R̃F̃2
v~F̃!

F̃
]mF̃]mF̃G

1Sm@Cm~x!,g̃mn~x!#, ~1!

whereg̃mn is the physical metric which contains both sca
and tensor degrees of freedom,R̃ is the curvature scalar as
sociated with it, andSm is the action for general matter field
Cm which, at this point, is left arbitrary. The metric signatu
is assumed to be (1,2,2,2).

By varying the action~1! with respect to the metricg̃mn

and to the scalar fieldF̃ we obtain the ‘‘modified’’ Einstein
equations, and a wave equation forF̃, namely

G̃mn5
8p

F̃
T̃mn1

1

F̃
~¹̃nF̃ ,m2g̃mnh

;

F̃!1
v~F̃!

F̃2

3S ]mF̃]nF̃2
1

2
g̃mn]aF̃]aF̃ D , ~2!

h
;

F̃5
1

2v~F̃!13
S 8pT̃2

dv

dF̃
]mF̃]mF̃ D , ~3!

¹̃mT̃ n
m 50, ~4!

where a tilde over a differential operator means it is built o
of the Jordan-Fierz metricg̃mn ,

G̃mn5R̃mn2
1

2
g̃mnR̃ ~5!
12350
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is accordingly the Einstein tensor in the Jordan-Fierz fram
and

T̃mn[
2

A2g̃

dSm

dg̃mn
~6!

is the energy-momentum tensor of the matter content anT̃

[T̃ m
m is its trace. Clearly, ifT̃ vanishes andF̃ is a constant,

Eq. ~2! reduces to the usual set of Einstein field equation
we identify the inverse of the scalar field with the Newto
constant, i.e.GN51/F̃. Hence, any exact solution of Ein
stein equations with a trace-free matter source will also b
particular exact solution of the scalar-field withF̃ constant.
Of course, this particular solution will not be, except in ve
special situations, the general solution for the matter con
@21#.

Let us rewrite the action given by Eq.~1! in terms of the
Einstein~conformal! frame in which the kinetic terms of ten
sor and scalar degrees of freedom do not mix, i.e.

S
E
5

1

16pG*
E d4xA2g~R22gmn]mf]nf!

1Sm@Cm,A2~f!gmn#, ~7!

wheregmn is a pure rank-2 metric tensor,R is the curvature
scalar associated to it, andG* the bare gravitational con
stant.

As is well known, the action given by Eq.~7! is obtained
from that of Eq.~1! by means of a conformal transformatio

g̃mn5A2~f!gmn , ~8!

provided the scalar field functionsf and F̃ are related
through

G* A2~f!5
1

F̃
, ~9!

and

d lnA~f!

df
5

1

A2v~F̃!13
[a~f!, ~10!

~thus defining the functiona) which can be interpreted as th
~field-dependent! coupling strength between matter and sc
lar field.

In the conformal frame, Eqs.~2! and ~3! are written in a
more convenient form

Gmn52]mf]nf2gmngab]af]bf18pG* Tmn , ~11!

for the gravitational part, and

hf524pG* a~f!T, ~12!

for the dilatonic part, where now the matter stress-ene
tensorTmn is obtained from
9-2
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DILATONIC CURRENT-CARRYING COSMIC STRINGS PHYSICAL REVIEW D67, 123509 ~2003!
Tmn[
2

A2g

dSm

dgmn
, ~13!

which in this new frame is no longer conserved unless
dilaton is constant, i.e.¹mT n

m 5a(f)T¹nf. The Einstein
frame Einstein tensorGmn appearing in Eq.~11! is defined in
the same was as Eq.~5! without the tildes. From Eq.~8!, we
can easily relate quantities from both frames in the follow
way:

T̃mn5A22~f!Tmn , ~14!

which also impliesT̃ n
m 5A24T n

m andT̃mn5A26Tmn. For the
sake of generality, we choose to leaveA(f) as an arbitrary
function of the scalar field.

Let us now turn to the cosmic string source terms a
consider the microscopic field theory out of which vortic
stem.

III. VORTEX FIELD MODEL

We shall now consider the underlying field model th
gives birth to cosmic strings. It consists in a complex sca
Higgs fieldw, coupled to a gauge vectorBm . Both fields are,
as discussed above, minimally coupled to gravity so that
matter action we shall deal with is expressible as

Sm5E d4xA2g̃S 1

2
uDwu22

1

4
HmnHmn2VD , ~15!

where the U~1! covariant derivative isDm[]m1 iqBm , the
‘‘Faraday’’-like tensor Hmn[]mBn2]nBm , and the Higgs
potential readsV(w)5l(w!w2h2)2; all indices are raised
and lowered by means of the metricg̃.

We shall from now on consider the zeroth order appro
mation for the background fields. This means we are in
ested in the string as a source for the gravitational and d
ton fields. As a result, in order to derive the relevant stre
energy tensor, we demand that the Einstein-frame metric
that of Minkowski, while the dilaton assumes a consta
value, i.e.

F̃ (0)5F̃0⇒f (0)5f0 , ~16!

so that, at this order, gravity is described by general relati
in both frames and the Jordan-Fierz metric can be taken,
cylindrical coordinate system (t,z,r ,u), as

g̃(0)
mn5A0

22hmn5A0
22DiagS 1,21,21,2

1

r 2D , ~17!

i.e. again the Minkowski metric@up to a constant scaling
factor A0[A(f0)]. The usual Newton constant is thenGN

5F̃0
215G* A0

2. Note that in Eq.~17! we have inserted the
~constant! conformal factor in the Jordan-Fierz metric: this
just for further convenience since we will be mostly workin
in the Einstein frame in which this extra factor will then b
absent.
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There exist static vortex configurations that are solutio
of the Euler-Lagrange equations derivable from the act
given by Eq.~15!. Such a configuration, for a string alon
the z axis, has the form@22#

w5h~r ! einu, andBm5
1

q
@Q~r !2n#dm

u , ~18!

where the functionsh andQ depend on the radial distance
the string corer only. In what follows, for the sake of defi
niteness, we shall also assume that the underlying param
in the matter action are such that only the vortices with win
ing numbern51 are stable and we shall therefore conce
trate our attention on these configurations. Note however
this requirement will not modify our conclusions, since wh
is presented here is merely an existence proof that only re
on the presence of the defect itself.

Using a prime to denote differentiation with respect to t
radial distancer, the field equations derivable from the a
tion ~15! are

h91
h8

r
5hFQ2

r 2
14lA0

2~h22h2!G ~19!

and

Q92
Q8

r
5q2QA0

2h2, ~20!

and the boundary conditions for these fields to describ
vortex line read

h~0!50, Q~0!51,

lim
r→`

h~r !5h, lim
r→`

Q~r !50. ~21!

The field equations~19! and ~20!, together with the condi-
tions ~21! are usually solved numerically; an example
such a solution is shown on Fig. 1, adapted from Ref.@15#.
On the figure are shown the dimensionless quantities

FIG. 1. Numerical solutions for the rescaled Higgs~full line!
and gauge~dashed line! fields around a vortex in a Minkowsk
background withA051. Adapted from Ref.@15#.
9-3
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X[
h

h
~22!

and Q(r) as functions of the rescaled~dimensionless! dis-
tance to the string core

r[
r

r h
, where r h[l21/2h21 ~23!

is the Compton wavelength of the Higgs field. Such a gen
configuration acts as a source for the dilaton field.

In order to derive the internal string solution for the dil
ton field in which we are interested, we need to first obt
the stress-energy tensor~13!, namely

T̃mn5
1

2
@~Dmw!†Dnw1~Dnw!†Dmw#2

1

2
g̃mnuDwu2

1g̃mnV~w!1
1

4
g̃mnH22g̃abHmaHnb , ~24!

and, settingV[V(h)5l(h22h2)2, this yields the follow-
ing components:

T̃z
z5V1

A0
22

2 Fh821
1

r 2 S h2Q21
Q82

q2A0
2D G , ~25!

T̃r
r5V2

A0
22

2 Fh822
1

r 2 S h2Q22
Q82

q2A0
2D G , ~26!

T̃u
u5V1

A0
22

2 Fh822
1

r 2 S h2Q21
Q82

q2A0
2D G , ~27!

andT̃ t
t 5T̃ z

z . This zeroth order stress-energy tensor should
principle be used as a source for the modified Einstein eq
tions.

It can be noted that, as is clear from Eqs.~19! and~20! as
well as Eqs.~25!–~27!, the normalizationA0 of the dilaton
function A(f) can be modified at will provided one pe
forms simultaneously a redefinition of the coupling consta
l andq throughl̄5A0

2l and q̄5A0q. In fact, this normal-
ization turns out to be completely irrelevant for the vort
configurations since all the properties of such vortices o
depend on the ratio@15# l/q25l̄/q̄2. This stems from the
fact thatA0

2T̃ n
m can be expressed in terms ofl̄ andq̄ only, so

the only effect is a normalization one. It is therefore possi
in principle to setA051, a convention within which the
metrics in either the Jordan-Fierz or the Einstein frame
exactly equal. In order to distinguish between these fra
we shall however not adopt this convention, unless sta
otherwise.

IV. FIRST ORDER DILATON SOLUTION

We now switch to the Einstein frame. The stress-ene
tensor just derived then provides the new frame one thro
the relation~14!, so that the trace needed in Eq.~12! thus
12350
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n

n
a-

s

y

e

e
e,
d

y
h

takes the formT5A4T̃. Inserting Eqs.~25!–~27! into Eq.
~12!, we obtain the dynamical equation, up to first order
the gravitational constant, for the dilaton as

hf524pG* a~f0!A0
2Fh821

h2Q2

r 2
14lA0

2~h22h2!2G ,

~28!

which may be expressed as

hf5eF~r !, ~29!

where we have seta0[a(f0). The functionF on the right
hand side of Eq.~29! is given, in terms of the dimensionles
quantities, by@see Eq.~22! and below#

F52
a0A0

2

r h
2 F S dX

dr D 2

1
X2Q2

r2
14A0

2~X221!2G , ~30!

and is exhibited in Fig. 2.
In Eq. ~29!, we have emphasized the constant combi

tion

e[4pG* h2;4pS h

MP
D 2

, ~31!

which will be used in what follows as a small expansi
parameter. Indeed, even for the highest possible energy p
transition leading to cosmic strings compatible with cosm
logical data@23#, i.e. the GUT scale, the quantityh is of
order 101521016 GeV, which is at most three orders of ma
nitude smaller than the Planck scaleMP[GN

21/2 so that one
hase&1025.

Let us now expand all the fields involved in terms of t
small parametere. In what follows, we shall concentrate o
the dilaton field, because the solution of the Einstein eq
tions ~11! for the metric has already been obtained in t
cosmic string case@6#. In this reference, it had been foun
that the external metric, far from the string core, was of
Kasner-like form

FIG. 2. Source function for the dilaton in Eq.~29! with the
vortex solution of Fig. 1.
9-4
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ds25S r

r 0
D k

~dt22dz2!2dr 22Gr 2S r

r 0
D 22k

du2, ~32!

with G and k two arbitrary constants, and that it could b
matched with the interior solution providedk54/3 or k50
in the presence of the string.

From Fig. 2, it is clear that there exists a distancer 0 such
that for r>r 0, the source function is approximately vanis
ing, so that the exterior solution for the dilaton should sati

hfext50. ~33!

Therefore, the dilaton field, in vacuum (Tmn50), assumes
the general form@6#

fext5f01k lnS r

r 0
D , ~34!

wheref0 andk are constant, the latter being determined
a matching with the internal solution, while the former giv
the strength of gravitational coupling.

In the absence of a string, one would havek50, as de-
manded also by the requirement that the Ricci tensor
regular@6#. This solution, as it turns out@6#, is valid, to first
order in the weak field approximation, both inside and o
side the string. We will thus use this solution to derive t
string structure itself, and show, for self-consistency, tha
modification of the dilaton solution with respect to Ref.@6#
does not modify this metric~again, at least to first order in
e). The mild ~logarithmic! divergence observed in Eq.~34!
for the dilaton far from the string stems from the infini
string approximation we are making use of, and can easily
accounted for by introducing a long range cutoff such as,
the curvature radius of the string, or the interstring dista
in a cosmological network. We shall see later that it can a
be altogether cancelled once the source term is taken
account@see the discussion below Eq.~43!#.

It is interesting to note here that the solution~34! for the
dilaton actually also diverges asr→0, implying a break-
down of the underlying four-dimensional effective fie
theory. This is similar to the situation encountered when
axion field is taken in consideration in cosmic strings form
at the symmetry breaking of the pseudo-anomalous U~1! that
characterizes@24# most cases of superstring compactificati
@25#, indicating that topological defect cores might be obje
of comparable theoretical interest as black hole or cos
logical singularities in that they probably require a fu
knowledge of the nonlinear theory to be properly understo
In what follows, we shall assume a short-range cutoff for
dilaton, expected to be of orderMP

21 , and subsequently ne
glect distances shorter than the Planck length; inclusion
this cutoff scale merely renormalizes the string energy
unit length and tension by factors of order unity@24# that are
irrelevant to the following discussion. Another implication
this divergence is that some cosmologically interesting
fects, such as formation of wakes by dilatonic strings, m
break down due to the logarithmic divergence of this so
tion @26#.

Assuming the dilaton to behave as
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f5f01ef1 , ~35!

where, as before,f0 is the constant dilaton value in th
absence of string, andf1 depends on the radial coordinater
as well as the string coordinatesz and t ~we assume rota-
tional symmetry so that]uf150), Eq.~29! inside the string,
up to first order ine, becomes

~f̈12 f̄̄1!2
1

r

]

]r S r
]f1

]r D5F~r !, ~36!

where a dot and a bar respectively stand for derivations w
respect to the coordinatest andz.

As we want to match the solution of Eqs.~35! and ~36!
with the already derived solution~34!, we seek the following
form:

f1~ t,r ,z!5x~r !1 f ~r !c~z,t !, ~37!

where the functionf (r ) is required to vanish asymptoticall
far from the defect, i.e. in practice forr>r 0, in order to
ensure that the corresponding effect is localized into
worldsheet only. Note that thez and t dependence of the
dilaton in Eq.~37! is not incompatible with the assumptio
of time-independence and cylindrical symmetry for the m
ric at the first order ine. Indeed, as can readily be seen
Eqs.~11! and ~35!, the leading contribution in the metric o
the correctionf1 is second order ine. With such a tentative
solution, Eq.~36! reduces to

~ c̈2 c̄̄ ! f 2
1

r

d

dr S r
dx

dr D2
1

r

d

dr S r
df

dr Dc5F~r !. ~38!

In order for our solution to be valid regardless of the beh
ior of c(z,t), i.e. including the casec50, we demand that
the functionF sources only the pure radial component of t
dilaton, i.e. we impose

x91
1

r
x85F~r !, ~39!

which implies

x5A1B lnS r

r 0
D1x

S
, ~40!

whereA and B are two arbitrary constants and the spec
solution

x
S
5E

r 1

r dr̃

r̃
E

r 2

r̃ F~ r̄ ! r̄dr̄ , ~41!

dependsa priori on the two constantsr 1 andr 2. Note how-
ever thatr 1 and r 2 have no physical influence and can b
chosen at will. In particular, it is convenient to setr 15r 2
50, so that, withF;F01F 2r 2, which is the short distance
behavior ofF ~see Fig. 2!, one gets
9-5
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x;A1B lnS r

r 0
D1

F 0

4
r 21

F 2

9
r 31•••, ~42!

close to the string core, i.e. in the limitr→0. The special
solution x

S
cannot alleviate the divergence of the dilat

near the string core.
On the other hand, Eq.~41! can also be used to match th

exterior solution~34! to the interior solution. In particular, i
is interesting to note that for large distances, and because
function F vanishes exponentially fast,1 one has, for large
values ofr, e.g.r .r ` with r ` far away from the string core

x
S
5E

0

r ` dr̃

r̃
E

0

r̃F~ r̄ ! r̄dr̄ 1E
r `

r dr̃

r̃
E

0

r̃F~ r̄ ! r̄dr̄

.f.p.1F E
0

`

F~ r̃ ! r̃dr̃ G lnS r

r `
D , ~43!

where ‘‘f.p.’’ stands for the finite part of the above relatio
Because the constantB in Eq. ~40! is, at this stage, arbitrary
it can be chosen to exactly compensate for the asymp
logarithmic divergence inx

S
, in such a way that the exterio

solution for the dilaton can be consistently imposed to b
constant, i.e.k50 in Eq. ~34!. As opposed to any othe
choice, this one leads to a finite amount of energy. This
reminiscent of what happens around the vortices studie
Ref. @24#, whose coupling with the axion made them loc
even though they were initially global.

Now, returning to Eq.~38! in which we insert the solution
for x and separating, we obtain

1

c
~c̈2 c̄̄ !5

1

f S f 91
1

r
f 8D5w, ~44!

with w a constant. Therefore, we have the following set
equations:

c̈2 c̄̄5wc, ~45!

and

f 91
1

r
f 85w f , ~46!

for f satisfying the boundary condition limr→` f (r )50. The
arbitrary constantw can assumea priori both positive and
negative values, so we will inspect both cases in turn la
but from now on let us consider Eq.~45! for the phase modu
lation c depending on the variables (t,z), and seek a solu
tion of the form

c~ t,z!5c~kz2vt ![c~u!, ~47!

which gives

1This can be seen through a careful examination of the asymp
behaviors of the various fields involved, as derived, e.g. in R
@15#.
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~v22k2!
d2c

du2
5wc. ~48!

An overall rescaling of the coordinates being always p
sible, we can without lack of generality assume thatw5
6(v22k2). The positive sign choice however leads to e
ponentially growing or decaying solutions in the variableu
which are either unbounded or vanishing, hence physic
irrelevant. We are thus led to impose the negative si
namely

w5k22v2, ~49!

and the solution for the dilaton

c5cssin~kz2vt !1cccos~kz2vt !. ~50!

It is worth noting that ifw>0 ~respectivelyw<0), the vari-
ableu defines a new spacelike~resp. timelike! coordinate. In
order to simplify the following calculations, we shall pe
form a Lorentz boost along the string such that ifw>0 ~re-
spectivelyw<0), the new time and space coordinatest8 and
z8 and the corresponding new constantsv8 andk8 are such
that u5k8z8 ~resp. u52v8t8) and w5k82 ~resp. w5
2v82). Assuming this new frame from now on, we will the
drop the primes as there is no risk of confusion.

Consider first the case for whichw52v2, i.e. a negative
constant. It can be seen that Eq.~46! then becomes the
Bessel equation of order zero, with general solution@27#

f ~r !5 f
J
J0~vr !1 f

Y
Y0~vr !, ~51!

with a priori arbitrary numerical coefficientsf
J

and f
Y
, J0

and Y0 being respectively Bessel functions of the first a
second kind. The boundary condition thatf should vanish
asymptotically is not enough to impose any condition on
choice of the constants; even the fact thatY0 diverges near
the axis does not lead to any new constraint sinceY0(vr )
} ln(vr), i.e. a divergence similar to that already observed
the radial partx(r ), for which a cutoff needs to be impose
at the Planck scale. However, as we shall show later, th
are other constraints stemming from the requirement that
eigenvalues of the energy-momentum tensor, once integr
in the directions transverse to the string, be finite.

Let now w be a positive constant, i.e.w5k2. Equation
~46! is in this case the modified Bessel function of ord
zero, with solution

f ~r !5 f
I
I 0~kr !1 f

K
K0~kr !. ~52!

Here again, the constantsf
I
and f

K
area priori arbitrary and

must be designed in such a way as to match the exte
solution. It is clear however that since we demand the dila
first order correction to vanish asymptotically, we must im
posef

I
50 sinceI 0 is exponentially divergent for large argu

ments. Note that here as well as in the previous case~51!, the
solution involves a logarithmic divergence reminiscent of t
behavior given by Eq.~34!, whose significance is discusse
underneath that equation.

tic
f.
9-6
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Equations~51! and~52!, together with Eq.~50!, appear to
completely determine the space-time behavior of the dila
field in all possible situations. We now turn to the cons
quences that this solution produces in the effective str
energy tensor.

V. EFFECTIVE STRESS-ENERGY TENSOR

We now consider the effective stress-energy tensorT̃(eff)
mn

that is seen by an observer wishing to describe the st
behavior in the framework of Einstein general relativity. Th
meansT̃(eff)

mn is given by assuming Eq.~2! takes the form

R̃mn2
1

2
g̃mnR̃58pGNT̃mn

(eff) , ~53!

a relation that we will use later to identify the effective e
ergy per unit length and tension of the string to first order
e. In order to achieve this goal, let us remark that Eq.~9!
implies that

1

F̃
;G* A0

2~112ea0f1!, ~54!

i.e. F̃}(122ea0f1), which depends on space and/or tim
coordinates only through the first order dilaton fieldf1.
Plugging this form back into Eq.~53!, keeping in mind that
GNT̃(eff)

mn is already a first order quantity and that]mF̃5
22a0e]mf1 /GN , we find that, to first order, the effectiv
stress-energy tensor we are seeking reads

8pT̃mn
(eff)58pT̃mn

(0)1~]m]n2G mn
a ]a2hmnh !F̃1O mn

(2) ,
~55!

whereT̃mn
(0) is the zeroth order stress-energy tensor given

Eqs.~25!–~27! andO mn
(2) contains only terms proportional t

e2.
In order to determine the influence of the dilaton field

the string dynamics, let us first recall the relevant pieces
formalism needed to describe it from the macroscopic po
of view @14#. We shall consider our string to be describab
by means of a surface action and accordingly integrate
effective stress-energy tensor over the transverse degre
freedom, i.e.

T̃uu
mn[E T̃(eff)

mn d2x', ~56!

where d2x' accounts for the transverse measure around
string. To the required zeroth order~since the integrandT̃mn

(eff)

is of first order! and given the symmetry in the solution, th
is d2x'52pr dr . The macroscopic stress-energy tensorT̃

M
,

depending only on the internal string coordinatesja , is de-
rivable from the relation

T̃uu
mn~xa!5E T̃

M

mnd@xa2Xa~ja!#d2j, ~57!
12350
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with a50,1 andXa(ja) defining the two-parameter locus o
the string. In the case at hand for which the string is align
along thez axis, the coordinatesja can be identified witht
andz; we shall make this choice in what follows.

Since one expectsT̃(eff)
mn to be conserved2 by virtue of Eq.

~2!, reproducing the steps of Ref.@11# leads to the fact tha
T̃

M
can only depend on two integrated quantities. It turns

that it can in fact be given the form

T̃
M

5Uumun2Tvmvn, ~58!

with u andv respectively a unit timelike and spacelike vect
parallel to the string worldsheet; again, in our case, these
u5(1,0,0,0) andv5(0,1,0,0) @recall Eq.~17!#.

The eigenvalues ofT̃
M

are the energy per unit lengthU
and the tensionT, which we are now in a position to expres
directly from the effective stress-energy tensor as

U52pE T̃(eff)
tt rdr , ~59!

and

T522pE T̃(eff)
zz rdr . ~60!

Turning back to Eq.~55!, it is straightforward to convince
oneself that these quantities take the form

U5m0
212pE ] t

2F̃rdr ,

T5m0
222pE ]z

2F̃rdr , ~61!

wherem0
2 is an integral over the transverse direction of t

part of the microscopic fields that depends only on the ra
distancer, i.e. a constant with the dimension of a ma
square~hence the notation!.

Using the solutions~37! and~50! together with the expan
sion ~54!, we get

U5m0
214pa0v2ec~kz2vt !E f ~r !rdr , ~62!

and

T5m0
224pa0k2ec~kz2vt !E f ~r !rdr , ~63!

relations that imply that not only is the stress-energy ten
no longer degenerate when inclusion of the dilatonic field
taken into account, but also that the resulting string is no

2Note in that respect that Eq.~3! can be seen as a simple cons
quence of Eqs.~2! and ~4!, i.e. of the conservation of the matte
stress-energy tensor and that of Einstein tensor.
9-7
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the Witten superconducting kind@13,15# since the energy pe
unit length and tension explicitly depend on the internal
ordinates.

From Eqs.~62! and ~63! and the solution~51!, one sees
immediately that because of the asymptotic behavior of
Bessel functionsJ0 and Y0, the timelike casew,0 is ex-
cluded for the case at hand since it leads to divergent i
grals in U and T. Indeed, the integrals„see Eq.~5.52/1! in
Ref. @27#… are3 proportional to *rZ0(vr )dr 5(r /
v)Z1(vr ), which asymptotically behaves asAr `, with r `

an appropriate cutoff, for the timelike case~51!, and expo-
nentially converges for the spacelike case~52!.

The timelike case can however be accounted for by a
ing a potential term for the dilaton, i.e. by substituting t
Einstein frame action~7! with

S
E

(pot)5
1

16pG*
E d4xA2g@R22gmn]mf]nf1V~f!#

1Sm@Cm,A2~f!gmn#, ~64!

which turns Eq.~12! into

hf52
1

4

dV

df
24pG* a~f!T. ~65!

Defining the dilaton massMd through

Md
2[

1

4

d2V

df2U
f5f0

, ~66!

and following the same steps as in Sec. IV, we find that
first order dilatonf1 satisfies

~f̈12 f̄̄1!2
1

r

]

]r S r
]f1

]r D1Md
2f15F~r !, ~67!

instead of Eq.~36!. To obtain Eq.~67!, we have made use o
the fact that in this context,f0 is the vacuum expectatio
value of f and the dilaton is stabilized in the sense th
dV/df50 for f5f0 and thatMd

2.0. Making use again of
the expansion~37! and choosing the purely radial part
satisfy

x91
1

r
x82Md

2x5F~r !, ~68!

instead of Eq.~39!, one sees that Eq.~45! is left unchanged,
implying the same solution~50!, while Eq.~46! is turned into

f 91
1

r
f 85~Md

21w! f , ~69!

whose solution is an exponentially convergent modifi
Bessel function@cf. Eq. ~50!# provided the phase frequenc
in the frame in whichk→0, is below the threshold@15# v

3We call Zp any Bessel function, modified or not, of orderp.
12350
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,vth5Md . It is remarkable that this threshold is, just like
the Witten superconducting string model@13#, also set by the
mass of what one could thus, by analogy, call thecurrent
carrier.

From the point of view of cosmology, the stress-ener
tensor eigenvalues given by Eqs.~62! and~63! depend on the
internal worldsheet coordinates, but in a very special way
fact, defining the average of the quantityX over the spacelike
or timelike variableu5kz2vt by means of

^X&[
1

2pE2p

p

X~u!du, ~70!

we obtain the very simple Nambu-Goto@20# relation

^U&5^T&5m0
2 , ~71!

showing that on distances much larger than the character
dilaton length scale, for instance over distances of cosm
logical relevance, a network of such cosmic strings w
evolve in a way that is similar to ordinary~non-current-
carrying! strings. In particular, one therefore expects t
overall network to rapidly reach a scaling solution and
produce a large number of small loops@19#. At this level, all
the cosmological predictions of the ordinary string mod
are unchanged.

Once we consider the smaller loops, however, the sit
tion can be drastically modified, in a fashion comparable
the vorton case@16#: since the degeneracy betweenU andT
is raised microscopically, one might also expect centrifuga
supported equilibrium configurations to exist, leading to t
usual vorton excess problem. Indeed, the presence of an
plicit phase factorc in their definition implies that the quan
tization condition in the spacelike case

kL52pN, ~72!

with NPN andL the loop circumference, must hold. It is no
clear however if the dilaton can leave the string, and
mechanism by which it could be possible presumably
pends on what happens below the cutoff at short distanc

Finally, one can note that the difference between the
genvaluesU andT is U2T}c, which, given Eq.~50!, is not
positive definite. This can be traced back to the well-kno
expected violation of the null energy condition~NEC! in
such scalar-tensor theories. A similar violation allows cosm
logical solutions to have bouncing scale factors with or
nary matter components~fluids and/or scalar fields! @2,28#.
In the string case under consideration here, this seemin
acausal violation of the NEC stems from the coupling of t
dilaton field to the matter fields. The causality issue h
stems from the fact that in the usual treatment of string p
turbations@14#, the velocity of transverse perturbations alo
the string is found to bec

T

2[T/U, which clearly exceeds
unity if the NEC is violated. However bizarre it may soun
this need not worry us unduly. Indeed, since the theory gi
by Eq.~1! satisfies the requirement of causality however, i
clear thatc

T

2 cannot, in this framework, represent the prop
gation velocity of transverse perturbations along the strin
9-8
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VI. CONCLUSIONS

We have reexamined the field equations of a cosmic st
coupled to a tensor-scalar theory of gravity. This coupling
shown to induce effects along the string comparable t
current flow in the sense that the resulting effective stre
energy tensor eigenvalues, the energy per unit lengthU and
tensionT, are no longer degenerate, due to the presenc
the dilaton. However, we have found that there are m
differences with the ordinary mechanism of current form
tion in cosmic strings as was first proposed by Witten@13#. In
the latter case, it was shown@15# that the generated curren
can be either of the spacelike kind or of the timelike kind.
the dilatonic situation under scrutiny here, the timelike ca
is found to be pathological and can be accounted for only
addition of a potential term for the dilaton. Once this is do
however, one finds that the phase frequency threshold
rived in the Witten case@15# has an exact counterpart sinc
the timelike kind of ‘‘current’’ can only be reached provide
the equivalent of the state parameter is larger than the dil
mass.

Another difference concerns the fact that the current is
formed after the string forming phase transition but sho
instead appear exactly at the same time. This is due to
fact that the dilaton is not an ordinary scalar field but acts
a component of the gravitational interaction. From this pe
liarity also stems the possibility for the surface stress-ene
tensor to be NEC-violating, in the sense that its timel
eigenvalue is not necessarily larger than its spacelike eig
value, as should be the case in the more restrictive fi
theory based situation. As a result, we have found that
average values of the macroscopically relevant quantities
unaltered by inclusion of dilatonic effects: the strings, fro
the point of view of cosmology, are expected to form
Nambu-Goto-like network.

However, the network of strings here produced would s
fer from the vorton excess problem@16# because of the short
-

th

-

-
.
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range effects of the dilaton. As the stress-energy tensor
genvalues depend explicitly on the string worldshe
coordinates in a periodic way, it is necessary, in order
form a string loop, that the wave number of the dilaton
perturbation along the string be quantized.

We also found that even though a short-distance cu
must be imposed, just like in the axionic situation@24#, the
long-distance behavior of the dilaton can be adjusted so a
suppress the logarithmic divergence. This means that a d
tonic network of strings, apart from having an energy p
unit length that should be renormalized by inclusion
Planck scale effects, behaves exactly as a usual netw
Accordingly, all the results derived for the latter@19# may be
applied straightforwardly to the former, in particular in r
gards of the predictions relative to the loop production a
the would-be ‘‘vorton’’ production.

More work needs to be done on such strings, as it is
clear in particular whether there is any way to get rid of t
‘‘current.’’ If no possibility can be found, that would mea
that the vortons-like configurations produced after the r
evant phase transition would be absolutely stable. As a re
one would have to conclude that cosmic strings cannot
formed in the early universe if the underlying theory of gra
ity is of the scalar-tensor type. Such models, stemming fr
string theory, would therefore be incompatible with cosm
strings; in view of the recently released CMB data@18#, this
might be presented as a useful constraint for the underly
microscopic field theory.
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