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Dilatonic current-carrying cosmic strings

Patrick Petef
Institut d’Astrophysique de Paris, GReCO, FRE 2435-CNRS, 98bis boulevard Arago, 75014 Paris, France

M. E. X. Guimaras and V. C. de Andrade
Instituto de Fsica Teaica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-8@0P3alo SP, Brazil
(Received 3 April 2003; published 17 June 2p03

We investigate the nature of ordinary cosmic vortices in some scalar-tensor extensions of gravity. We find
solutions for which the dilaton field condenses inside the vortex core. These solutions can be interpreted as
raising the degeneracy between the eigenvalues of the effective stress-energy tensor, namely, the energy per
unit lengthU and the tensiof, by picking a privileged spacelike or timelike coordinate direction; in the latter
case, gohase frequency threshottcurs that is similar to what is found in ordinary neutral current-carrying
cosmic strings. We find that the dilaton contribution for the equation of state, once averaged along the string
worldsheet, vanishes, leading to an effective Nambu-Goto behavior of such a string network in cosmology, i.e.
on very large scales. It is found also that on small scales, the energy per unit length and tension depend on the
string internal coordinates in such a way as to permit the existence of centrifugally supported equilibrium
configuration, also known asrtons whose stability, depending on the very short distajucdénown) physics,
can lead to catastrophic consequences on the evolution of the Universe.
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[. INTRODUCTION which is reminiscent of the scalar-tensor theories of gravity
[3]. Indeed, a massless dilaton is shown to obey a least cou-
Most extensions of the standard model of particle physicgling principle[7], e.g. to decouple from matter by cosmo-
predict that extra scalar fields, in addition to the ordinarylogical attraction in much the same way as the generic attrac-
Higgs field, whose experimental detection is still to be donetor mechanism of the scalar-tensor theories of gra\dly It
should exist in nature. At low energigsompared to the was found 6] then that the metric around a cosmic string in
Planck scalg they appear to be classifiable into essentiallythe framework of scalar-tensor gravity is of the Taub-Kasner
two main categories; namely those which couple in atype[9] so that the particle and light propagation resembles
straightforward way to the other particle fiel@ss, e.g. grand that around a wiggly cosmic string in ordinary general rela-
unification breaking Higgs fields, supersymmetric partners ofivity [10], although the effect was expected to be one order
ordinary fermions or extra bosonic degrees of freedom comef magnitude stronger.
ing from the Neveu-Schwarz sector of superstring theory Here, we want to point out another effect, namely that the
[1]), and those whose most important coupling is to gravitydilaton field may behave as a winding phase along the string,
such as the dilaton, whose origin can be traced to the Rahereby generating a neutral current kind of effect by raising
mond sector in the superstring context. Both kinds, coupledhe degeneracy between the eigenvalues of the stress-energy
or decoupled, have been studied from differéatd often tensor. From the point of view of purely gravitational phys-
disjoint) perspectives, and both have various cosmologicaics, this seems utterly negligible as the metric would hardly
and astrophysically observable consequences; these terme affected[11,12 by such a current(it gives again a
permit us, for instance, to obtain fully nonsingular cosmolo-Kasner-like metric, up to second order correctjons
gies[2]. In particular, scalar-tensor theories of gravigj The most noticeable consequence of a current-like effect
may provide a natural solution to the problem of terminatingis [13—15 to modify the internal dynamics of cosmic strings
inflation [4], whilst grand unified theoryGUT) scalars, be- in such a way that new states are reachable. Indeed, the
ing symmetry breakers, may lead to the formation of topo-breaking of the Lorentz boost invariance along the world-
logical defectq5], of which only cosmic strings are viable sheet allows rotating equilibrium configurations, called vor-
candidates from the point of view of cosmology. tons, which, if they are stable, can overclose the universe,
Among these theories, some predict both kinds of fieldsthereby leading to a catastrophe for the theory that predicts
As a result, one expects that cosmic strings could existhem [16]. Finally, inclusion of such an internal structure
whose coupling to gravity would be altered by inclusion of could drastically change the predictions of a cosmic string
dilaton effects. In Ref.6], a local cosmic string solution was model[17] in the microwave background anisotropids].
considered in the framework of low energy string theoryHere we show that the long-range effect on a cosmologically
relevant network of strings is vanishing on average, but that
vorton-like states can be reached by microscopically small
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model which we develop in flat space in Sec. lll with the aimis accordingly the Einstein tensor in the Jordan-Fierz frame,
of using it as a source for the gravitational effects. We therand

move on to obtain, in this framework, the general solution

for the dilaton field in the Einstein fram&ec. IV). We apply _ 2
this solution to derive the effective stress-energy tefiSec. Tw=——
V) of the string, as seen from a Jordan-Fierz frame observer. \/—_g
We show that this stress-energy tensor has very particular _
features that can be interpreted by saying that a network df the energy-momentum tensor of the matter contentland
such string will evolve on cosmologically relevant scales as a=T# , is its trace. Clearly, ifl vanishes and is a constant,
usual network 19] of Nambu-Goto string$20], but might  Eq. (2) reduces to the usual set of Einstein field equations if
lead to the formation of equilibriunmortonstated 16] whose  we identify the inverse of the scalar field with the Newton
density, scaling as matter, could overclose the Universe iRonstant, i.e.GNzllﬁ). Hence, any exact solution of Ein-

the case in which they are stable, an issue which is yet Unsiein equations with a trace-free matter source will also be a

resolved, depending on the small distance physics. SeCtlonarticular exact solution of the scalar-field wiih constant.

VI summarizes our findings and discusses the relevant co% : : . ) )
. . f course, this particular solution will not be, except in very
mological conclusions. SRR .
special situations, the general solution for the matter content
[21].
Il. GRAVITATIONAL FRAMEWORK Let us rewrite the action given by El) in terms of the
Einstein(conforma) frame in which the kinetic terms of ten-
sor and scalar degrees of freedom do not mix, i.e.

8Sm

= (6)
859

We start with the gravitation action in the Jordan-Fierz
frame(also known as the “string” frame, a nomenclature we
shall not use in order to avoid the possible risk of confusion

with the strings of the cosmic kind we consider belpw S.= *f d4X\/—_g(R—Zg“V(7M¢,9V¢)
namely 167G
& + SV, A2 , 7
I N P COPW ol Vi AN(4)9,,] (7)
S Ef A P 7P, P whereg,,, is a pure rank-2 metric tensdR is the curvature

scalar associated to it, ar@* the bare gravitational con-
S W m(X),9,,(X)], (1) ~ stant. o : ,
As is well known, the action given by E7) is obtained

where'é,w is the physical metric which contains both scalarfrom that of Eq.(1) by means of a conformal transformation

and tensor degrees of freedoRujs the curvature scalar as- T =A2 ®)
. . . . . . g/.z,v (d))gp,v ’
sociated with it, and,, is the action for general matter fields

¥, which, at this point, is left arbitrary. The metric signature provided the scalar field functiong and ® are related
is assumed to be{,—,—,—). through

By varying the action(1) with respect to the metrig,,,

and to the scalar fiel® we obtain the “modified” Einstein G* A2( )= 1 9)
equations, and a wave equation fbr namely o'
&= 2T 158 5,00+ 2 "
=g g e G 2 dInA(¢) 1
= =a(9), (10
O de V20(d
x §M®&¢b—-§gwﬂa®&“®), @) 20(P)+3
(thus defining the functior) which can be interpreted as the
q (field-dependentcoupling strength between matter and sca-
-  deo - . :
0&=————|8aT- —03,35%|, (3 larfield. .
20(P)+3 do In the conformal frame, Eq4$2) and(3) are written in a
more convenient form
v, ,=0, (4) Gy =20,0,— 0,90, bdshp+87G*T,,, (11)

where a tilde over a differential operator means it is built outfor the gravitational part, and
of the Jordan-Fierz metrig,, , ,

O¢=—47G*a(P)T, (12
- E~ B 5) for the dilatonic part, where now the matter stress-energy
pyv. Ry Zg’“’ tensorT,, is obtained from
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T,m e (13 S Lo
=g 60" |
S o8t .
which in this new frame is no longer conserved unless the o
dilaton is constant, i.eV,T*,=a(¢)TV,¢. The Einstein X 06 .
frame Einstein tensdg ,, appearing in Eq(11) is defined in 3 i K
the same was as E(p) without the tildes. From Eq38), we & 04r ° ]
can easily relate quantities from both frames in the following g I
way: 5 0.2 S b
[}
T _aA-2 & 0.0 \ \ e ]
T =A" (D) T, (14 0 5 10 15 20

_ _ Dimensionless distance p to the string core

which also impliesT#,=A™*T# andT#"=A"°T*". For the

sake of generality, we choose to lea&é¢) as an arbitrary FIG. 1. Numerical solutions for the rescaled Higdsll line)

function of the scalar field. and gauge(dashed ling fields around a vortex in a Minkowski
Let us now turn to the cosmic string source terms andbackground withA,=1. Adapted from Ref[15].

consider the microscopic field theory out of which vortices

stem. There exist static vortex configurations that are solutions

of the Euler-Lagrange equations derivable from the action
given by Eq.(15). Such a configuration, for a string along
the z axis, has the fornj22]

We shall now consider the underlying field model that
gives birth to cosmic strings. It consists in a complex scalar
Higgs field¢, coupled to a gauge vectBr, . Both fields are,
as discussed above, minimally coupled to gravity so that the
matter action we shall deal with is expressible as where the functions andQ depend on the radial distance to
the string core only. In what follows, for the sake of defi-
niteness, we shall also assume that the underlying parameters
in the matter action are such that only the vortices with wind-
ing numbern=1 are stable and we shall therefore concen-
trate our attention on these configurations. Note however that
this requirement will not modify our conclusions, since what
is presented here is merely an existence proof that only relies

Ill. VORTEX FIELD MODEL

_ 1
e=h(r) ", andsﬂza[Q(r)—n]ts", (18

=1 1
5o= [ 05 3Ioel- sH. -], as

where the W1) covariant derivative i ,=4d,+iqB,,, the
“Faraday”-like tensorH,,=4,B,—d,B,, and the Higgs
potential reads/(¢)=\(¢*¢— 7%)?; all indices are raised
and lowered by means of the mettc on the presence of the defect itself.

We shall from now on consider the zeroth order approxi- Using a prime to denote differentiation with respect to the
mation for the background fields. This means we are interradial distance, the field equations derivable from the ac-
ested in the string as a source for the gravitational and dilation (15) are
ton fields. As a result, in order to derive the relevant stress-

energy tensor, we demand that the Einstein-frame metric be , h’ 2 25 o
that of Minkowski, while the dilaton assumes a constant h'+-——=h r—2+4?\Ao(h -7 (19
value, i.e.
~ ~ and
D 0y= P o= ()= o, (16)
so that, at this order, gravity is described by general relativity Q'— QT - qZQAth, (20)

in both frames and the Jordan-Fierz metric can be taken, in a

cylindrical coordinate systent,g,r,6), as . . .
and the boundary conditions for these fields to describe a

B 1 vortex line read
9l =Ao *n"'=AyDiag| 1,-1,-1,— = |, (17
r h(0)=0, Q(0)=1,

i.e. again the Minkowski metrifup to a constant scaling ; _ - _

factor Ag=A(¢g)]. The usual Newton constant is théh rlmh(r) 7 ,lmQ(r) 0. @D
=®,'=G*A2 Note that in Eq(17) we have inserted the

(constant conformal factor in the Jordan-Fierz metric: this is The field equation$19) and (20), together with the condi-
just for further convenience since we will be mostly working tions (21) are usually solved numerically; an example of
in the Einstein frame in which this extra factor will then be such a solution is shown on Fig. 1, adapted from RE5).
absent. On the figure are shown the dimensionless quantities
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h OE T T T T
X=— (22
n 3
and Q(p) as functions of the rescalddimensionlessdis- “% ]
tance to the string core S E
t |
r e ]
p=—, wherer,=\"1%571 (23 & E
rh 1.
is the Compton wavelength of the Higgs field. Such a generic : E
configuration acts as a source for the dilaton field. : . , ‘ . 3
In order to derive the internal string solution for the dila- 0 2 4 6 8 10
ton field in which we are interested, we need to first obtain Dimensionless distance p to the string core

the stress-energy tens , hamel , . . .
9y a3 y FIG. 2. Source function for the dilaton in EqR9 with the

~ 1 1. vortex solution of Fig. 1.
T, =50(D,@)'D,¢+(D,¢)'D ]~ 59,.,/Del? 3
takes the formT=A*T. Inserting Eqs.(25)—(27) into Eq.

~ 1 2 =ap 5 (12), we obtain the dynamical equation, up to first order in
+0,,V(e)+ ZgWH 0% H,Hop, (24) the gravitational constant, for the dilaton as
and, setting=V(h)=\(h?— 7?2, this yields the follow- h2Q?2
ing components: O¢=—47G* a o)Al h'?+ ——+4NAj(h?— 77)?|,
r
- A2l 1 2] (28)
2=Vt —-|h'2t —2(h2Q2+ —(3 -1l @9
r q°Ap/ | which may be expressed as
- Al 1 2 O=eAr 29
Trr:V_ L h’2__ hZQZ_ Q , (26) ¢ € ( )7 ( )
2 r2 qZAg
) : where we have sety=a(¢g). The functionF on the right
A-2[ 1 Q2 hand side of Eq(29) is given, in terms of the dimensionless
T0,=V+—|h'2— = | h2Q?+ (27)  quantities, bysee Eq.(22) and below
2 r a*As/) )
=y _ aoAf| (dX\? X2Q%
andT',=T%. This zeroth order stress-energy tensor should in F=—— @ + —2+4A0(X2—1)2 , (30
principle be used as a source for the modified Einstein equa- N P P
tions.
It can be noted that, as is clear from E¢k9) and(20) as  and is exhibited in Fig. 2. _ .

well as Eqgs.(25)—(27), the normalizatiom, of the dilaton In Eg. (29), we have emphasized the constant combina-

function A(¢) can be modified at will provided one per- tion
forms simultaneously a redefinition of the coupling constants

\ andq throughhA =A3\ andq=A,g. In fact, this normal-
ization turns out to be completely irrelevant for the vortex
configurations since all the properties of such vortices only
depend on the ratipl5] )\/qzzf/az_ This stems from the which will be used in what follows as a small expansion
fact thatA2T#, can be expressed in terms)ofaindq only, so ~ Parameter. Indeed, even for the highest possible energy phase
the only effect is a normalization one. It is therefore possibldransition leading to cosmic strings compatible with cosmo-
in principle to setA,=1, a convention within which the logical d?ta[Z%], i.e. the GUT scale, the quantity is of
metrics in either the Jordan-Fierz or the Einstein frame ar@rder 18°~10' GeV, which is at most three orders of mag-
exactly equal. In order to distinguish between these frame)itude smaller than the Planck scal.=Gy, ™~ so that one

we shall however not adopt this convention, unless statefase=<10"°. . . _
otherwise. Let us now expand all the fields involved in terms of the

small parametee. In what follows, we shall concentrate on
the dilaton field, because the solution of the Einstein equa-
tions (11) for the metric has already been obtained in the

We now switch to the Einstein frame. The stress-energyosmic string casg6]. In this reference, it had been found
tensor just derived then provides the new frame one througthat the external metric, far from the string core, was of the
the relation(14), so that the trace needed in E42) thus  Kasner-like form

2
: (3D)

Y
— * 2
e=47G* g 477( M,

IV. FIRST ORDER DILATON SOLUTION
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k -2k —

d32=(rL) (dtz—dzz)—drz—Frz(rL) de?, (32 9= G0t e, =5

0 0 where, as beforeg, is the constant dilaton value in the

with I and k two arbitrary constants, and that it could be absence of string, anl; depends on the radial coordinate

matched with the interior solution providéd=4/3 ork=0  as well as the string coordinatgsandt (we assume rota-

in the presence of the string. tional symmetry so that,¢,=0), Eqg.(29) inside the string,
From Fig. 2, it is clear that there exists a distangsuch  up to first order ine, becomes

that forr=r, the source function is approximately vanish-

ing, so that the exterior solution for the dilaton should satisfy .= 14 ( dy

(¢1—¢1)—FE rW):f(r), (36)

U dex=0. (33

: , . where a dot and a bar respectively stand for derivations with
Therefore, the dilaton field, in vacuunT (,=0), assumes respect to the coordinatésindz

the general fornj6] As we want to match the solution of Eq&5) and (36)
, with the already derived solutiai34), we seek the following
Dexi= Pot k1IN r_) ) (34 form:
0
1(t,r,2)=x(r)+f(r)(z,1), (37)

where ¢, and x are constant, the latter being determined by

a matching with the _int_ernal soluti(_)n, while the former gives,ynere the functiorf (r) is required to vanish asymptotically
the strength of gravitational coupling. far from the defect, i.e. in practice far=r,, in order to

Yp=Fr). (38

L) + X (40
lo S

In the absence of a string, one would have 0, as de-  gngyre that the corresponding effect is localized into the

manded also by the requirement that the Ricci tensor bgqrgsheet only. Note that the and t dependence of the

regular[6]. This solution, as it turns ouiB], is valid, to first  gjjaton in Eq.(37) is not incompatible with the assumption

order in the weak field approximation, both inside and out-sf jme-independence and cylindrical symmetry for the met-

side the string. We will thus use this solution to derive the. 4t the first order ine. Indeed, as can readily be seen in

string structure itself, and show, for self-consistency, that %gs. (11) and(35), the leading contribution in the metric of

modification of the dilaton solution with respect to RE8]  he correctiong, is second order i. With such a tentative

does not modify this metriagain, at least to first order in solution, Eq.(36) reduces to

€). The mild (logarithmig divergence observed in E¢34)

for the dilaton far from the string stems from the infinite ] df

string approximation we are making use of, and can easily be (p—in)f—— —( (r—

accounted for by introducing a long range cutoff such as, e.g. rdr dr

the curvature radius of the string, or the interstring distance ) )

in a cosmological network. We shall see later that it can alsé! ©rder for our solution to be valid regardless of the behav-

be altogether cancelled once the source term is taken intQ" Of #(z.1), i.e. including the cas¢=0, we demand that

accountsee the discussion below E@3)]. the func_tlon]-" sources only the pure radial component of the
It is interesting to note here that the soluti¢a#) for the  dilaton, i.e. we impose

dilaton actually also diverges as—0, implying a break-

down of the underlying four-dimensional effective field n E = F(r) (39)

theory. This is similar to the situation encountered when the XX '

axion field is taken in consideration in cosmic strings formed

at the symmetry breaking of the pseudo-anomalo(s that  which implies

characterizef24] most cases of superstring compactification

[25], indicating that topological defect cores might be objects

of comparable theoretical interest as black hole or cosmo- x=A+BIn

logical singularities in that they probably require a full

knowledge of the nonlinear theory to be properly understoodyhere A and B are two arbitrary constants and the special

In what follows, we shall assume a short-range cutoff for they,tion

dilaton, expected to be of ordM;l, and subsequently ne-

glect distances shorter than the Planck length; inclusion of cdr

this cutoff scale merely renormalizes the string energy per X :f TJ F(r)rdr, (41)

unit length and tension by factors of order urfig4] that are S ity

irrelevant to the following discussion. Another implication of

this divergence is that some cosmologically interesting efdependsa priori on the two constants; andr,. Note how-

fects, such as formation of wakes by dilatonic strings, mayever thatr; andr, have no physical influence and can be

break down due to the logarithmic divergence of this solu-chosen at will. In particular, it is convenient to sgt=r,

tion [26]. =0, so that, withF~ Fy+ F,r?, which is the short distance

Assuming the dilaton to behave as behavior of F (see Fig. 2, one gets
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r

o

Fo , F2

d2
x~A+BIn +Tr2+ ?r3+~~, (42) (wz—k2)£=W¢- (48)

close to the string core, i.e. in the limit-0. The special

. . X ; An overall rescaling of the coordinates being always pos-
solution y, cannot alleviate the divergence of the dilaton d d yS P

sible, we can without lack of generality assume that

near the string core. +(w?—k?). The positive sign choice however leads to ex-
On the other hand, E¢41) can also be used to match the ponentially growing or decaying solutions in the variahble

exterior solution(34) to the interior solution. In particular, it which are either unbounded or vanishing, hence physically

is interesting to note that for large distances, and because thgelevant. We are thus led to impose the negative sign,
function F vanishes exponentially fatone has, for large namely

values ofr, e.g.r>r,, with r, far away from the string core,

~ - w=k>— w?, (49)
e dr (v ——— (rdr [T ——
X~ fo ?fof(f)fdﬂff 7f0]-'(r)rdr and the solution for the dilaton
[
= SiN(kz— wt) + ycodkz— wt). (50
© r
=to+ fo Anrer 'n(E)' (43 It is worth noting that ifw=0 (respectivelyw=0), the vari-

ableu defines a new spacelikeesp. timelike coordinate. In
where “f.p.” stands for the finite part of the above relation. order to simplify the following calculations, we shall per-
Because the constaBtin Eq. (40) is, at this stage, arbitrary, form a Lorentz boost along the string such thavi#0 (re-
it can be chosen to exactly compensate for the asymptotigpectivelyw=0), the new time and space coordinateand
logarithmic divergence iy, in such a way that the exterior z' and the corresponding new constaatsandk’ are such

solution for the dilaton can be consistently imposed to be dhat g:klzl (resp. u=—w’t’) and w=k'? (resp. w=
constant, i.ex=0 in Eq. (34). As opposed to any other — @ °).Assuming this new frame from now on, we will then
choice, this one leads to a finite amount of energy. This i§Irop the primes as there is no risk of cogfgsmn. .
reminiscent of what happens around the vortices studied in Consider first the case for whish= — <, i.e. a negative
Ref. [24], whose coupling with the axion made them local Constant. It can be seen that E@6) then becomes the
even though they were initially global. Bessel equation of order zero, with general solufipr

Now, returning to Eq(38) in which we insert the solution

for ¥ and separating, we obtain FN) =1 Jo(wr)+1 Yo(wr), (5D

with a priori arbitrary numerical coefﬁcientf;J and fY, Jo

1
J =W, (44) and Y, being respectively Bessel functions of the first and
second kind. The boundary condition thfashould vanish
with w a constant. Therefore, we have the following set ofasymptotically is not enough to impose any condition on the
equations: choice of the constants; even the fact tgtdiverges near
the axis does not lead to any new constraint si¥géwr)
Wi, (45) «In(wr), i.e. a divergence similar to that already observed for
the radial party(r), for which a cutoff needs to be imposed
and at the Planck scale. However, as we shall show later, there
are other constraints stemming from the requirement that the
n Ef’zwf, (46) eigenvalues of the energy-momentum tensor, once integrated
r in the directions transverse to the string, be finite.

o » . Let now w be a positive constant, i.ev=k?. Equation
for f satisfying the boundary condition ljm..f(r)=0. The  (4¢) is in this case the modified Bessel function of order
arbitrary constantv can assume priori both positive and zero. with solution

negative values, so we will inspect both cases in turn later,

o= 1 1
(¢—¢)_?f+rf

i,-b—

but from now on let us consider E@5) for the phase modu- f(ry="f Io(kr)+f Kg(kr). (52
lation ¢ depending on the variables, ), and seek a solu- ! «
tion of the form Here again, the constanlt;sande area priori arbitrary and

t.2)= (kz— wt)=(u), 4 must_ be d_esigned in such a way as to match the e>_<teri0r

¥(t.2) =y o) =y¢(u) “7) solution. It is clear however that since we demand the dilaton

which gives first order correction to vanish asymptotically, we must im-
posef|=0 sincel y is exponentially divergent for large argu-

ments. Note that here as well as in the previous ¢a¥e the

This can be seen through a careful examination of the asymptotigolution involves a logarithmic divergence reminiscent of the
behaviors of the various fields involved, as derived, e.g. in Refbehavior given by Eq(34), whose significance is discussed
[15]. underneath that equation.
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Equationg51) and(52), together with Eq(50), appear to  with a=0,1 andX“(&,) defining the two-parameter locus of
completely determine the space-time behavior of the dilatorthe string. In the case at hand for which the string is aligned
field in all possible situations. We now turn to the conse-along thez axis, the coordinates, can be identified with
guences that this solution produces in the effective stresandz we shall make this choice in what follows.

energy tensor. Since one expecfﬁ(‘e}) to be conservedby virtue of Eq.
(2), reproducing the steps of Réfl1] leads to the fact that
V. EFFECTIVE STRESS-ENERGY TENSOR T, can only depend on two integrated quantities. It turns out

We now consider the effective stress-energy tefi that it can in fact be given the form

that is seen by an observer wishing to describe the string ~ o v
behavior in the framework of Einstein general relativity. This T,=Uuiu"=To ", (58)

meansT Y, is given by assuming Eq2) takes the form . . T :
(et 1S9 4 g Ed2) with u andv respectively a unit timelike and spacelike vector

5 1. 5 parallel to the string worldsheet; again, in our case, these are
Ry, — ngR:Sﬂ-GNTEff), (53  u=(1,0,0,0) andv=(0,1,0,0)[recall Eq.(17)].
The eigenvalues O?M are the energy per unit length
a relation that we will use later to identify the effective en- and the tensiof, which we are now in a position to express
ergy per unit length and tension of the string to first order indirectly from the effective stress-energy tensor as
€. In order to achieve this goal, let us remark that E3).

implies that U= 27rf Tiemrdr, (59

1
5~G*A§(1+26a0¢1), (54 and

i.e. Doc(1—2eayep;), Which depends on space and/or time T= —Zﬂf Tiemrdr. (60)

coordinates only through the first order dilaton fiefd.

Plugging this form back into Eq53), keeping in mind that  Turning back to Eq(55), it is straightforward to convince

GNT(eﬁ) is already a first order quantity and thaﬁti'): oneself that these gquantities take the form
—2ap€d,¢1/Gy, we find that, to first order, the effective

stress-energy tensor we are seeking reads U= m§+27rf 2Hrdr,

BTN =871 )+ (9,0,~T*,,0,— 7,0 P+02,
(59 T=mi— f #2drdr, (61)

whereT(o) is the zeroth order stress-energy tensor given by

Eqs (25) 27 andO(z) contains only terms proportional to wheremO is an integral over the transverse direction of the

€2 part of the microscopic fields that depends only on the radial
In order to determine the influence of the dilaton field ondistancer, i.e. a constant with the dimension of a mass

the string dynamics, let us first recall the relevant pieces ofduare(hence the notation

formalism needed to describe it from the macroscopic point Using the solution$37) and(50) together with the expan-

of view [14]. We shall consider our string to be describablesion (54), we get

by means of a surface action and accordingly integrate the

;erfefzcét(i)vrﬁ ?t;ess-energy tensor over the transverse degrees of U=m§+4waowzew(kz— wt)f f(r)rdr, (62)

and

Tf‘ f T(eﬁ) (56)

where dx* accounts for the transverse measure around the

string. To the required zeroth ord@ince the integranﬁfiff)
is of first ordej and given the symmetry in the solution, this

is d?x* =2rr dr. The macroscopic stress-energy ten%ﬁr

depending only on the internal string coordinags is de-
rivable from the relation

T=m(2)—41'raok261//(kz— wt)f f(ryrdr, (63

relations that imply that not only is the stress-energy tensor
no longer degenerate when inclusion of the dilatonic field is
taken into account, but also that the resulting string is not of

2Note in that respect that E3) can be seen as a simple conse-

Tuviyey— | Fuvsrya_ ya 2 guence of Egs(2) and (4), i.e. of the conservation of the matter
Tﬁ (x%) fTM O =X*(&a)J0E, (57 stress-energy tensor and that of Einstein tensor.
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the Witten superconducting kijd 3,15 since the energy per <wy=My. Itis remarkable that this threshold is, just like in
unit length and tension explicitly depend on the internal cothe Witten superconducting string mod#&B], also set by the

ordinates.

mass of what one could thus, by analogy, call therent

From Egs.(62) and (63) and the solution(51), one sees carrier.
immediately that because of the asymptotic behavior of the From the point of view of cosmology, the stress-energy

Bessel functionsl; and Y, the timelike casev<<O is ex-

tensor eigenvalues given by E@62) and(63) depend on the

cluded for the case at hand since it leads to divergent inteénternal worldsheet coordinates, but in a very special way. In

grals inU and T. Indeed, the integralésee Eq.(5.52/1) in
Ref. [27]) aré proportional to [rZg(wr)dr=(r/
w)Z,(wr), which asymptotically behaves a§.., with r.,

an appropriate cutoff, for the timelike caggl), and expo-

nentially converges for the spacelike c458).

fact, defining the average of the quantitpver the spacelike
or timelike variableu=kz— wt by means of

1 (=
(X)= EJ_WX(u)du, (70)

The timelike case can however be accounted for by add-
ing a potential term for the dilaton, i.e. by substituting thewe obtain the very simple Nambu-Gajta0] relation

Einstein frame actiori7) with

1
(pot) — 4 _ _ v
S¢ 16”G*dev 9[R—29*7d,¢d,¢+ V()]
+Sm[\ymaA2(¢)g,uv]u (64)

which turns Eq(12) into

O¢p= Ldv 47 G* T 65
Defining the dilaton masM 4 through

1 d?v

4 gy

[eX N}

: (66)
o= 4’0

and following the same steps as in Sec. IV, we find that th

first order dilatong, satisfies

rﬂ@%wﬁ¢ffux 67)

. =_19
R e

ror

instead of Eq(36). To obtain Eq(67), we have made use of
the fact that in this contexigp, is the vacuum expectation
value of ¢ and the dilaton is stabilized in the sense that
dv/d¢=0 for ¢p= o and thatM§>0. Making use again of
the expansion37) and choosing the purely radial part to

satisfy

1
X'+ X = Max=Fr), (68)

instead of Eq(39), one sees that E¢45) is left unchanged,
implying the same solutiofb0), while Eq.(46) is turned into

1 2
4 f = (ME+W)T, (69)

. . 2
whose solution is an exponentially convergent modifiedthe string is found to bE:T

(U)y=(T)=mg, (71)

showing that on distances much larger than the characteristic
dilaton length scale, for instance over distances of cosmo-
logical relevance, a network of such cosmic strings will
evolve in a way that is similar to ordinargnon-current-
carrying strings. In particular, one therefore expects the
overall network to rapidly reach a scaling solution and to
produce a large number of small logd®)]. At this level, all

the cosmological predictions of the ordinary string models
are unchanged.

Once we consider the smaller loops, however, the situa-
tion can be drastically modified, in a fashion comparable to
the vorton cas¢l6]: since the degeneracy betwedrand T
is raised microscopically, one might also expect centrifugally
supported equilibrium configurations to exist, leading to the

éjsual vorton excess problem. Indeed, the presence of an ex-

plicit phase factok/ in their definition implies that the quan-
tization condition in the spacelike case

kL=2mN, (72)

with N e N andL the loop circumference, must hold. It is not
clear however if the dilaton can leave the string, and the
mechanism by which it could be possible presumably de-
pends on what happens below the cutoff at short distance.
Finally, one can note that the difference between the ei-
genvaluedJ andT is U — T ¢, which, given Eq(50), is not
positive definite. This can be traced back to the well-known
expected violation of the null energy conditighlEC) in
such scalar-tensor theories. A similar violation allows cosmo-
logical solutions to have bouncing scale factors with ordi-
nary matter componentdluids and/or scalar fieldq2,28].
In the string case under consideration here, this seemingly
acausal violation of the NEC stems from the coupling of the
dilaton field to the matter fields. The causality issue here
stems from the fact that in the usual treatment of string per-
turbationd 14|, the velocity of transverse perturbations along
=T/U, which clearly exceeds

Bessel functioricf. Eq. (50)] provided the phase frequency, unity if the NEC is violated. However bizarre it may sound,

in the frame in whichk— 0, is below the thresholftl5] o

SWe call Z, any Bessel function, modified or not, of order

this need not worry us unduly. Indeed, since the theory given
by Eq.(1) satisfies the requirement of causality however, it is
clear thatcf cannot, in this framework, represent the propa-

gation velocity of transverse perturbations along the string.
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VI. CONCLUSIONS range effects of the dilaton. As the stress-energy tensor ei-
envalues depend explicitly on the string worldsheet
oordinates in a periodic way, it is necessary, in order to
orm a string loop, that the wave number of the dilatonic
s%erturbation along the string be quantized.

" We also found that even though a short-distance cutoff
ust be imposed, just like in the axionic situati@¥], the

We have reexamined the field equations of a cosmic strin&
coupled to a tensor-scalar theory of gravity. This coupling isf
shown to induce effects along the string comparable to
current flow in the sense that the resulting effective stres
energy tensor eigenvalues, the energy per unit lebigénd

tenspnT, are no longer degenerate, due to the presence ({’Eng—distance behavior of the dilaton can be adjusted so as to
the dilaton. However, we have found that there are many.

differences with the ordinary mechanism of current forma- uppress the logarithmic divergence. This means that a dila-

tion in cosmic strings as was first proposed by Wift&8]. In tonic network of strings, apart from having an energy per

. unit length that should be renormalized by inclusion of
the Iatter_ case, it was Sho"?“f’] fchat the gene_rategl cur_rents Planck scale effects, behaves exactly as a usual network.
can be either of the spacelike kind or of the timelike kind. In

: SR . g Accordingly, all the results derived for the lat{di9] may be
the dilatonic situation under scrutiny here, the timelike Cas%pplied straightforwardly to the former, in particular in re-
is found to be pathological and can be accounted for only b)f;ards of the predictions relative to the loop production and

addition of a potential term for the dilaton. Once this is donethe would-be “vorton” production.

e o b oo bt S Mote work nieds o b done n sueh stings, s I o
P clear in particular whether there is any way to get rid of the

the timelike kind of “current” can only be reached provided “current.” If no possibility can be found, that would mean

tmhgsesquwalent of the state parameter is larger than the dllatotrﬁat the vortons-like configurations produced after the rel-

. . vant phase transition would be absolutely stable. As a result,
Another difference concerns the fact that the current is no : .

) . L ne would have to conclude that cosmic strings cannot be
formed after the string forming phase transition but shoul

instead appear exactly at the same time. This is due to thormed in the early universe if the underlying theory of grav-
fact that the dilaton is not an ordinary scalar field but acts a'?y Is of the scalar-tensor type. Such models, stemming from

a component of the gravitational interaction. From this pecu%mng theory, would therefore be incompatible with cosmic

liarity also stems the possibility for the surface stress-ener gtrings; in view of the recently released CMB dgt8], this
y Pos: Y Lo g}Qwight be presented as a useful constraint for the underlying
tensor to be NEC-violating, in the sense that its timelike . I
i ) ) : . . _“microscopic field theory.
eigenvalue is not necessarily larger than its spacelike eigen-
value, as shoulld b_e the case in the more restrictive field ACKNOWLEDGMENTS
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