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Aspects of string-gas cosmology at finite temperature
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We study string-gas cosmology in dilaton gravity, inspired by the fact that it naturally arises in a string
theory context. Our main interest is the thermodynamical treatment of the ideal string-gas and the resulting
implications for the cosmology. Within an adiabatic approximation, thermodynamical equilibrium and a small,
toroidal universe as initial conditions, we numerically solve the corresponding equations of motions in two
different regimes describing the string-gas thermodynamics:~i! the Hagedorn regime, with a single scale factor,
and ~ii ! an almost-radiation dominated regime, which includes the leading corrections due to the lightest
Kaluza-Klein and winding modes, with two scale factors. The scale factor in the Hagedorn regime exhibits
very slow time evolution with nearly constant energy and negligible pressure. By contrast, in case~ii ! we find
interesting cosmological solutions where the large dimensions continue to expand and the small ones are kept
undetectably small.
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I. INTRODUCTION

String cosmology is rapidly growing in importance for
least two reasons. First, unless there is a fortunate consp
of scales and one or more of the extra dimensions
;O(TeV21) @1#, we cannot reasonably expect to detect a
stringy effects in accelerators in the foreseable future. He
string cosmology may provide the only means of test
string or M theory concretely, through e.g. noncommutat
effects @2# or the AdS conformal field theory~CFT! corre-
spondence@3#.

On the other hand, traditional cosmology has been
tered by the chains of the singularity theorems of gene
relativity and is therefore usually only seen as understand
the evolution of our Universe over the past 15 billion yea
or so since the big bang. String theory offers the excit
possibility of a resolution to the big bang singularity there
opening up a potentially infinite prehistory of the big ban
Models constructed in this vein include the pre-big-ba
@4,5# ~see also@6,7#! and the recent ekpyrotic or cyclic mod
els@8,9# which has lead to new work on string propagation
orbifold backgrounds with curvature singularities@10#.

Traditional cosmology, because of the limitations of ge
eral relativity, suffers from another great lacking: it is unab
to make any predictions about the number of dimensions
live in or about the spatial topology of the Universe. Stri
theory and M theory, in contrast, predict that we live in eith
10 or 11 spacetime dimensions. Perhaps the greatest
lenge for string cosmology, after understanding the big-b
singularity, is to explain why and how three dimensions b
came observable and large while 6 or 7 are either sma
unobservable for some other reason. Perhaps the only
posal in this direction so far is the so-called Brandenberg
Vafa ~BV! scenario@11# where it is assumed that the univer
is small and compact and that exactly three space dimens
become large because of the dynamics of winding mod
which play a particularly important role. Subsequently it h
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been pointed out in@4# that the low energy effective action o
a dilaton-gravity system, naturally emerging in string theo
has a duality symmetry that is a manifestation of the str
T-duality R→a8/R symmetry, that plays a crucial role in th
analysis of@11#. In this respect, the dilaton-gravity system
more suitable than standard general relativity for the BV s
nario @11#. Although some works have already shown th
the BV scenario can be realized and extended in a variet
ways@12–22# ~see also@23#!, a full string-theory analysis is
very complicated and still not completed, even in the si
plest toroidal compactification.

In this paper, inspired by the BV scenario, we numerica
solve the dilaton-gravity equations of motion@12# with some
types of ‘‘stringy matter.’’ Adiabatic evolution~which im-
plies constant entropy!, weak string coupling and thermody
namical equilibrium are always assumed in our analysis.
simplicity, we analyze type IIA or IIB closed string theory o
a T9 torus, with no branes.1 In particular, we consider the
following two regimes:

~i! Hagedorn matter at high energy densities in a v
small homogeneous and isotropic universe with a comm
compactification radius;Aa8, and

~ii ! an almost-radiation dominated regime with two ind
pendent scale factors, associated with the large and s
dimensions.

In the latter case, the lightest Kaluza-Klein~KK ! and
winding mode contributions are also taken into account.

It is important to stress here that in both of these regim
our matter is manifestlyT-duality invariant. This symmetry
is broken in our setup only by the~arbitrary! choice of initial
values. The main relevant questions in the two cases
respectively: which is the evolution of the universe at ea

1In @17# it has been shown that fundamental strings, even in
presence of D-branes, are still the dominant degrees of freedom
the realization of the BV scenario.
©2003 The American Physical Society06-1
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BASSETTet al. PHYSICAL REVIEW D 67, 123506 ~2003!
times for a free Hagedorn string gas in thermal equilibriu
Assuming large and small dimensions as initial conditio
how do they evolve? In particular, do the small dimensio
remain small?

String matter in the Hagedorn phase was already bri
discussed in@12# where it was realized that, to a first ap
proximation in which the energy is constant, it leads to
very slow evolution of the universe, as in Eq.~24!. We com-
plete the analysis of@12# by relaxing this approximation an
imposing the conservation laws for KK and winding mode
We find that in any practical sense there is no departure f
the behavior dictated by Eq.~24!, and thus no relevant dy
namics emerges in this setup. It is important to recall how
interpret this result and its connection to the original B
scenario. The above result is obtained by assuming the
equilibrium and a free, ideal, string gas, whereas the dyn
ics and interactions of winding modes at very early times
crucial in the BV scenario. The results we get in case~i! are
therefore not closely connected with the original BV pr
posal @11# or, rather, they have to be taken the other w
around. Namely, unless string interactions are taken into
count and/or thermal equilibrium is relaxed, no interest
dynamics emerges.

On the other hand, the evolution of the small and la
dimensions in case~ii ! is much more interesting. First of al
we will show that when there is only pure radiation, t
small dimensions can be stabilized and kept small relativ
the large dimensions. Essentially, it is only required that
initial expansion rate of the large dimensions is bigger or
the same order than that of the small ones.2 This mainly
comes from the fact that the pressure in the small dimens
vanishes in the case of pure radiation.

When matter, in the form of KK and winding modes,
included, the choice of initial conditions becomes more r
evant. The crucial point is played by winding modes that
able to distinguish large and small dimensions, leading
spectively to a positive or negative contribution to the pr
sure along the large or small dimensions, as is clear fr
Eqs. ~46! and ~47!. This turns out in an expansion of th
large dimensions and at the same time the possibility
keeping almost constant the small ones. In fact we found
there exists a wide range of parameters for which the sm
dimensions actually remain small~see Fig. 4!, while the
large ones expand as required in the presence of radia
and string matter~see Fig. 5!. This is actually achieved fo
the natural initial condition where the small dimensions
close to the self-dual radiusAa8, together with the condition
of the expansion rate mentioned in the pure radiation ca

These are the most important results of the paper. Th
exist a wide range of initial conditions for which the sma
dimensions are stabilized around the self-dual radius be
entering into a purely radiation dominated phase, regime
which they are asymptotically stabilized anyway to a nea
constant value.

2It is actually quite hard to imagine initial conditions where t
expansion rate of the small dimensions are bigger than that o
large ones.
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There are clearly several open issues that we do not c
sider but that deserve further investigation. First of all, th
mal equilibrium, as well as isotropy and homogeneity alo
all directions, should be relaxed and string interactions n
to be taken into account. Further, since toroidal compac
cations are not realistic, always leading to non-chiral th
ries, study of more general topologies is required. S
@19,20# for recent progress in this direction. All the abov
simplifications makes our setup clearly far from being re
istic and should therefore be viewed as a first attempt
consider more realistic scenarios.

Another very important issue unexplored in this work
the transition from dilaton gravity to general relativity.
common lore is to assume that supersymmetry breaking
curs at later times and stabilizes all moduli, including t
dilaton, which then becomes massive.3 It is not clear how the
evolution of the large and small dimensions are altered
this transition to an effective description in terms of gene
relativity. Notice, however, that if one considers in case~ii !
pure radiation with no matter, then the late-time behavior
the dilatonic gravity solutions lead to a standard Friedma
Robertson-Walker~FRW! radiation-dominated cosmolog
for the large dimensions, whereas the small ones are c
stant. This behavior nicely matches with the solution fou
by @26# in general relativity in a purely KK extra-
dimensional scenario.

Finally, we assume an adiabatic approximation to simp
the analysis. A deeper justification of this approximation,
the dynamics which arises when it is dropped, is requir
One can naively expect dropping this condition to yield
wider variety of dynamics, including more violent evolutio

This paper is organized as follows. In Sec. II some g
eral aspects of dilaton gravity are briefly reviewed. In Sec.
we analyze the dynamics of the system in the extreme Ha
dorn regime of high energy densities with a single scale f
tor. In Sec. IV the dilaton-gravity equations are solved in
almost-radiation dominated regime with large and sm
scale factors, as well as in the presence of some mas
stringy matter. We present some conclusions in the final s
tion and present some useful formulas in the Appendix.
set the string scalea851 in the following.

II. DILATON GRAVITY

We shall study the dilaton gravity equations of motio
with a massless dilaton fieldF corresponding to the low-
energy effective action of string theory inD11 space-time
dimensions, described by@4,5,12#

S5E dD11xA2g@e22F$R14~¹F!2%1LM#, ~1!

whereg is the determinant of the background metricgmn ,
andLM corresponds to the Lagrangian of some matter. T

he

3An alternative would be the models in which the dilaton sta
massless but has universal couplings. It is even possible to reco
this with quintessence if the dilaton has a divergent runaway beh
ior @24,25#.
6-2
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ASPECTS OF STRING-GAS COSMOLOGY AT FINITE . . . PHYSICAL REVIEW D 67, 123506 ~2003!
coupling of F with gravity is the standard one arising
string theory. Hereafter we shall consider the case withD
59. We are interested in the case where the whole univ
is small and compact, corresponding to a flatT9-torus. In this
case, if one considers field configurations that are spati
homogeneous, assuming only slow time dependence
adopting an adiabatic approximation it has been shown
@4,12# that the action~1! exhibits a duality symmetry, a low
energy manifestation of the stringT-duality R→1/R symme-
try. The ansatz for the metric and dilaton we use is

ds252dt21(
i 51

9

Ri
2~ t !dxi

2 , Ri5el i (t), F5F~ t !.

~2!

Here theRi denotes thei-th scale factor of the torus. Th
equations of motion simplify if one introduces a shifted d
laton,c, via

c[2F2(
i 51

9

l i . ~3!

Given the metric~2! the equations of motions of the dilaton
gravity system are then@12#

2(
i 51

9

l̇ i
21ċ25ecE, ~4!

l̈ i2ċl̇ i5
1

2
ecPi , ~5!

c̈2(
i 51

9

l̇ i
25

1

2
ecE, ~6!

with E the total energy andPi the total pressure along th
i-th direction found by multiplying the total spatial volum
of the space by the energy density and pressure appeari
LM of Eq. ~1!. Here a dot denotes derivative with respect
cosmic time,t. These equations are manifestly invariant u
der the duality symmetry@4,12#

l i→2l i , F→F2(
i

l i , ~7!

under whichc defined in Eq.~3! is left invariant. It is typi-
cally assumed that the scale factorsRi are the same in al
directions, i.e.Ri5R. In contrast, we also consider in Se
IV a scenario where the background is homogeneous
isotropic in d-spatial large dimensions and (92d)-spatial
small dimensions. We denote the large and small dimens
with their corresponding scale factors, as

R5em, r 5en. ~8!

In this case Eqs.~4!–~6! take the form
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2dṁ22~92d!ṅ21ċ25ecE, ~9!

m̈2ċṁ5
1

2
ecPd , ~10!

n̈2ċṅ5
1

2
ecP92d , ~11!

c̈2dṁ22~92d!ṅ25
1

2
ecE, ~12!

where

Pd52
]F

]m i
, ; i 51, . . . ,d, ~13!

P92d52
]F

]n i
, ; i 5d11, . . . ,9, ~14!

in terms of the free energyF.

III. HAGEDORN REGIME

According to the original BV proposal@11#, the very early
universe was compact over all nine spatial dimensions w
radii r;1 in string units. In this section we study the dilato
gravity equations~4!–~6!, with E andP the total energy and
pressure of a free string gas in thermal equilibrium in suc
compact, small universe. For simplicity, we consider t
string gas associated with type IIA-IIB string theory compa
tified on a squareT9-torus, simple product of nine circles
with radii all equal to a common valuer 5el. Although the
strict thermodynamical limitV→` cannot be taken for this
system, thermodynamics is still trustable as long as the
tem contains many degrees of freedom. In our case, this
plies having an energy densityr@1. Our first step is then to
derive the equation of state of the string matter in this
gime, or equivalently the energy and pressure entering
Eqs.~4!–~6!.

A. Microcanonical ensemble

String thermodynamics in the high density phase has b
a subject of intense study in the past~for a review see e.g
@27#!. The most important point is the emergence of a criti
temperature, the Hagedorn temperatureTH @28#, where the
partition function of a free string gas diverges. It was so
realized that in this regime the usual thermodynami
equivalence between the canonical and microcanonical
sembles can break down and the latter, more fundame
ensemble, must hence be used. Furthermore, due to the
ence of winding modes, the thermodynamical properties o
string system at finite volume differs substantially from th
of an infinitely extended system@11,29#. Following @29#, it is
useful to derive the energy density of statesV(E) by ana-
lyzing the singularities of the one-loop string partition fun
tion in the complexb plane, whereb51/T is the inverse
6-3
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BASSETTet al. PHYSICAL REVIEW D 67, 123506 ~2003!
temperature. This analysis has already been carried ou
@29# but for completeness we report some useful details
the Appendix.

For a totally compact space at high energy, the lead
singularity ~a simple pole! of the partition function atb
5bH is not sufficient to establish the thermodynamical pro
erties of the system@11,29#. The first next-to-leading singu
larities are poles of order 18 with a dependence on the c
pactification radius. In this case a useful parametrization
the one-loop partition functionZ is given in Eq.~A9!, from
which one computes the density of statesV(E) by means of
Eq. ~A10! and thus the associated entropyS5 logV(E).4 It
reads

S~E,r !.bHE1 logH 12
1

G~18!hKW
18 @~hKE!17hW

18e2hKE

1~hWE!17hK
18e2hWE#J , ~15!

wherebH52A2p, and

hK5A2pF22A42
2

r 2G ,

hW5A2p@22A422r 2#,

hKW5A2pH F22A42
2

r 2G2@22A422r 2#J . ~16!

The energy as a function ofr is given directly by Eq.~15!,
sinceS5constant, by the assumption of adiabatic evoluti
On the other hand, the temperature and pressure, define

1

T
5

]S

]E
, P5

T

9

]S

]~ log r !
, ~17!

yield

1

T
5

1

TH
2

1

xEG~18! F S z

wD 18

y17~172y!e2y

1S y

wD 18

z17~172z!e2zG , ~18!

P5
T

9

ẋ

x

1

l̇
, ~19!

where

x[12
1

G~18! S yz

w D 18S e2y

y
1

e2z

z D , ~20!

4We have numerically checked that the termL(b,R) in Eq. ~A9!
is negligible and thus is not reported in the following.
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andy[hKE, z[hWE, w[hKWE. As usual in the microca-
nonical ensemble, the temperature is a derived quan
~from S andE) and its explicit form is needed only to com
pute the pressureP. When the radiusr is close to unity,T and
P are approximately given by

1

T
;

1

TH
1C1E17e2h̃E, ~21!

P;C2E17e2h̃E, ~22!

where h̃.hK.hW for r;1, and C1 and C2 are certain
polynomial functions ofh̃ andhKW .

We numerically solved the dilaton-gravity equations~4!–
~6! using a standard Runge-Kutta routine. We adopted ini
conditions aroundE0;1000, r 0;1, which comes from the
requirement ofT duality. The shifted dilaton is chosen t
satisfy the conditioneF!1 to ensure that the string couplin
constant is initially small and hence that perturbation the
and the ideal gas approximation are trustable. The initial c
dition for l̇ is somewhat arbitrary and we have carried o
simulations for a wide variety of different initial values ofl̇.
Notice thatċ0

2 is fixed by the constraint equation~4! and that
the negative solution is taken to remain in the perturbat
regime of small string coupling constant.

For initial conditions r 0P@0.8,1.2# and E0;1000, the
temperature is very close to the Hagedorn temperature w
nearly constant value. This is clear from Eq.~21!, since the
last term in Eq.~21! is vanishingly small relative to the firs
term, due to the exponential suppression given bye2h̃E.
Similarly we haveP.0 for the above initial conditions from
Eq. ~22!. Therefore the system is effectively described by
pressureless dust as shown in Fig. 1. In this case one hl̇
.Aec from Eq.~5!, with A an integration constant. Subtrac

ing Eq. ~6! from Eq. ~4!, we find a simple relation, (e2̈c)

FIG. 1. The evolution ofr and P for the initial conditionsl0

51023, l̇050.2, c0525 andE05103 in the Hagedorn regime

ċ0 is determined by the constraint equation~4!. We plot the evolu-
tion of r using both the analytic approximation~24! and the full
numerical result, which show very good agreement each other.
6-4
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5E/2. Taking note thatE is nearly constant (E.E0), the
analytic solutions of Eqs.~4!–~6! in the Hagedorn regime
may be written as

e2c.
E0

4
t21Bt1

B22dA2

E0
, ~23!

l.l01
1

Ad
logU~E0t12B22AdA!~B1AdA!

~E0t12B12AdA!~B2AdA!
U . ~24!

A and B are integration constants depending on the ini
values forl̇, c and ċ. In particular

A5l̇0e2c0, B52ċ0e2c0, ~25!

andd is the number of dimensions~we are now considering
the case withd5D59). Notice that due to Eq.~4!, ċ0, and
thusB, cannot be taken to be vanishing.

In Fig. 1 we plot the evolution ofr that corresponds to th
analytic solution~24!, together with the full numerical re
sults. They show very good agreement, which implies t
the Hagedorn regime is well described by a state with
constant energy and negligible pressure. This actually
sures the validity of the analytic estimation in Ref.@12# dis-
cussed briefly in its Appendix.

As long as l̇0 is positive ~negative!, the radius grows
~decreases! towards the asymptotic value

r `5el0UB1AdA

B2AdA
U1/Ad

, ~26!

with ṙ getting smaller with time~see Fig. 1!. We have
checked this for values ofr 0 very close to 1, up tor 05(1
11310215), and found no substantial changes in behav
If one chooses exactlyr 051, Eq.~15! should be replaced by
another similar relation, since now the two poles of order
in the b-plane approach each other to a single pole of or
36. The above results apply also in this case: the pressu
almost zero and the evolution of the system is very slow
time.

For initial values ofE in the rangeE0P@500,5000#, the
dynamics of the system is practically the same as expla
above. For initial energiesE0*1000 the scale factor is es
sentially constant in time. On the other hand the system
typically unstable forE0!1000 and not thermodynamicall
meaningful for such low values ofE0.

B. Conservation laws

We can also address the question of what happens w
conservation laws are taken into account. In the case of
toroidal compactification we consider, the conserved qua
ties are taken to be the total winding numberNi and the KK
momentaMi in each compact dimension (i 51, . . . ,9).This
is performed by introducing a chemical potential for ea
conserved charge@30#.

A crucial difference with respect to the previous case
that the leading singularity of the partition function, name
12350
l

t
a
n-

r.

8
r
is

n

d

is

en
he
ti-

s

the Hagedorn temperature, is enough to study the ther
behavior of the system. In particular, the leading singula
now depends on the compactification radius induced by
conservation laws. The entropy of such an ideal gas can
easily computed, yielding

S~E,r !.bHE2
p

4A2E
(
i 51

9 S Mi
2

r 2
1Ni

2r 2D 29 lnE.

~27!

We see that in Eq.~27! there are two suppression terms wi
respect to the leading termbHE in Eq. ~15!. This is expected,
because Eq.~15! counts states with all values of charg
whereas Eq.~27! counts a smaller set of states in which t
value of the charge is fixed. Moreover, the number of sta
decreases asMi or Ni are increased, since less energy
available for the oscillators. The temperature and press
obtained from the entropy~27! are

1

T
5

1

TH
2

9

E
1

1

2A2p

1

E2 (
i 51

9 S Mi
2

r 2
1Ni

2r 2D , ~28!

P5
T

9

p

2A2

1

E (
i 51

9 S Mi
2

r 2
2Ni

2r 2D . ~29!

The pressure vanishes if one imposes vanishing winding
KK charge,Mi5Ni50. The energyE evolves very slowly
for E0 of order 1000 in which case the radiusr asymptoti-
cally approaches a constant value after some growth f
r 0.1, thereby showing similar behavior to Fig. 1. Whe
Mi ,NiÞ0, due to presence of theE factor in the denomina-
tor of Eq. ~29!, the system evolves similarly to the caseMi
5Ni50, as long as the summation terms in Eqs.~5! and~6!
are unimportant. The dynamics changes ifMi andNi are of
order 105, since the scale factor can have respectively a s
nificant expansion or decreasing rate. As expected, wind
modes prevent expansion, whereas KK modes, as stan
matter, favor it.

As a last remark, notice that the string gas defined by E
~28! and ~29! has a negative specific heat. Systems w
negative specific heat are unstable in noncompact spaces
actually can be in thermal equilibrium in a finite spac
Along the lines of@31,32#, we have evaluated the critica
volume Vc under which the system is in equilibrium an
found that this is actually the case forVc@1, implying that
the system can be actually in equilibrium with radiation.
should also be emphasized that this system is trustabl
long as string corrections are completely neglected. W
string interactions are included, the system is most likely
undergo a phase transition@33# whose details are so far un
known.

IV. ALMOST-RADIATION REGIME

Assuming that some dimensions~d! start to expand while
the remaining (92d) dimensions remain small by means
some mechanism, the system will eventually reach a te
perature below the Hagedorn regime where the dynamic
6-5
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BASSETTet al. PHYSICAL REVIEW D 67, 123506 ~2003!
mostly governed by massless states, i.e., radiation.5 In this
case, it is important to see the conditions under which
large dimensions continue to expand. At the same time,
important to study whether the small dimensions rem
small or if they also enter an expanding phase. Differ
from the Hagedorn regime discussed in Sec. III, the mic
canonical ensemble agrees with the canonical one for
range of temperatures and energy densities involved now
the following we shall use the latter ensemble, which is m
convenient for practical purposes.

Assuming again thermodynamical equilibrium and ad
batic evolution, we shall solve the dilaton-gravity equatio
~9!–~12!, with E and P obtained from the free energy of
string gas at temperatures belowTH . The entropyS is con-
served with time under the assumption of adiabatic evo
tion:

d

dt
S5

d

dt S b2
]F

]b D50. ~30!

Equation ~30! is solved by lettingb and the scale factor
l i5 logRi , be slowly varying functions of time@b→b(t),
l i→l i(t)]. In this way one can derive a differential equatio
whose solution givesb5b(l i) with S5const. We denote
the radii of the larged dimensions, taken all equal, byR
5em, whereas the radii of the (92d) small dimensions,
again all equal, byr 5en.

A. Pure radiation

As a first step, let us consider the case of pure radia
~see the Appendix for the free energy in the context of
canonical ensemble!. The energy and pressure are eas
evaluated from Eq.~A5!

Erad
(d) 5Frad

(d) 1b
]Frad

(d)

]b

5
dRd

2p
D~0!2GS d11

2 D ~4p!(d11)/2z~d11!

3~1222(d11)!b2d21, ~31!

whereas the pressurePrad
(d) for the d spatial dimensions is

given by

Prad
(d) 52

1

d

]Frad
(d)

]~ ln R!
52Frad

(d) 5
Erad

(d)

d
, ~32!

which corresponds to the equation of state for radiation id
spatial dimensions. Equation~31! is nothing but the
d-dimensional generalization of the Stefan-Boltzmann law
presence ofD(0)2/2 bosonic and fermionic degrees of fre
dom. SinceFrad

(d) does not depend onr, the pressure along th
small dimensions vanishes:

5Notice that the system is already in an almost radiation reg
for b*11 and it is essentially governed by pure radiation only
b*14, in string units.
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Prad
(92d)52

1

92d

]Frad
(d)

]~ ln r !
50. ~33!

From the adiabatic equation~30!, we easily get the following
relation

b5b0

R

R0
, ~34!

relating the temperature and scale factor in a radiati
dominated universe, withb0 andR0 being initial conditions
satisfyingb(R0)5b0. In this case the dilaton-gravity equa
tions ~9!–~12! read

c̈5
1

2
dṁ21

1

2
~92d!ṅ21

1

2
ċ2, ~35!

m̈5ċṁ1
1

2
ecPrad

(d) , ~36!

n̈5ċṅ, ~37!

together with the constraint equation

ċ25ecErad
(d) 1dṁ21~92d!ṅ2. ~38!

Equation~37! is integrated to give

ṅ5 ṅ0ec2c0, ~39!

where ṅ0 and c0 are the initial values ofṅ and c. We see
from Eq. ~39! that whenṅ0 is positive~negative! the expan-
sion rate for the small dimensions is always positive~nega-
tive!. In order to avoid unbounded growth of the dilato
towards the strongly coupled regime (eF*1), it is natural to
consider the case with negativeċ. In this case the absolut
value of ṅ decreases with time.

In the absence of the pressurePrad
(d) in Eq. ~36!, the evo-

lution of the large dimensions is similar to that of the sm
ones. In the caseċ0,0 and ṁ0.0, we havem̈,0 for
Prad

(d) 50 from Eq.~36!. This corresponds to the universe wi
expanding large dimensions with a decreasing Hubble r
Numerically we found that the evolution of the system in th
case is trivial, namely the large dimensions soon approa
nearly constant value with very smallṁ.

When the pressurePrad
(d) is taken into account, this work

as a positive source term in Eq.~36!. Therefore it is possible
to make the right-hand side~RHS! of Eq. ~36! positive even
whenċ,0 andṁ.0. We have made numerical simulation
with initial conditionsR0@r 0;1, ċ0,0, and several differ-
ent values ofṁ0 and ṅ0. As long asṁ0 is positive, the large
dimensions expand in the presence of the pressure du
radiation. The contribution of the pressure term in Eq.~36!

inhibits the rapid decrease ofṁ, thereby leading to differen
evolution ofR compared to the case withPrad

(d) 50. The ex-

pansion rateṅ for the small dimensions is exponentially su
pressed with the decrease ofc @see Eq.~39!#. Therefore

e
r

6-6
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unless the initial value ofuṅu is much larger than unity, the
radiusr can stay small aroundr;1.

We have numerically succeeded to obtain ideal soluti
with growing R and small, roughly constant,r satisfying r
!R. One typical evolution is plotted in Fig. 2. These sol
tions can be achieved by choosing initial values withṁ0

*uṅ0u, R0@r 0;1 and ċ0,0. When ṁ0!uṅ0u holds ini-
tially, it is difficult to keep the small dimensions small rel
tive to the large ones. Ifṁ0,0, we havem̈0.0 from Eq.
~36!. This leads to the growth of the expansion rateṁ. Since
ṁ continues to be negative by the time it crosses zero,
large dimensions contract during this stage. Afterṁ changes
sign,R begins to grow. This implies that bouncing solutio
may be obtained ifṁ0,0. We have numerically found tha
this is actually the case; see Fig. 3. During the contrac
phase, the temperature increases according to Eq.~34!. The
temperature is maximum at the bounce whereR is minimum.
In the context of pre-big-bang@5# or ekpyrotic cosmologies
@8#, nonsingular bouncing solutions are difficult to constru

FIG. 2. The evolution ofR, r andb for the pure radiation case

with d53. We choose the initial conditionsṁ051.0, m054.0, ṅ0

520.01, n050.0, c05216 andb0515.

FIG. 3. The evolution ofR, r andb for the pure radiation case

with d53. We choose the initial conditionsṁ0520.04, m054.0,

ṅ0520.01, n050.0, c05216 andb0515.
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unless loop or derivative corrections are added to the t
level action@34,35#. It is quite interesting to be able to obtai
bouncing solutions only by including radiation in dilaton
gravity equations.

It is worth investigating the asymptotic behavior of th
dynamical system of Eqs.~35!–~37!, along the lines of@12#.
Introducing new parameters,ṁ[j, ṅ[h, ċ[ f , and using
the fact that the pressure in the large dimensions is conne
to the energyErad

(d) through Eq.~32!, Eqs.~35!–~38! become

ḟ 5
d

2 Fj21S 9

d
21Dh2G1

1

2
f 2, ~40!

j̇52
1

2 Fj21S 9

d
21Dh2G1 f j1

f 2

2d
, ~41!

ḣ5 f h. ~42!

Since we are considering the case with decreasingċ, h as-
ymptotically approaches zero from Eq.~39!, i.e. h50 is an
attractive solution. In this case, the analysis is closely rela
with the one outlined in the Appendix of@12#. In particular
one finds that the line described by

f /j52d, h50, ~43!

is an attractor. From Eq.~3! the time-derivative of the dilaton
is given as 2Ḟ5 f 1dj1(92d)h. Therefore we haveḞ
50 for the attractor~43!, again in complete analogy to th
case of the single scale factor@12#. Substituting Eq.~43! for
Eq. ~41! and integrating this relation, one finds

j}
2

~d11!t
, R}t2/(d11). ~44!

This indicates that the late time evolution for the large
mensions can be described by that of the standard radia
dominant phase in FRW cosmology ford53, even in the
presence of the small dimensions. The key point is that
pressure in the small dimensions vanishes for the mass
case, thereby leading toh50 as an attractor. Notice that
cosmological solution of this kind has been also obtained
standard general relativity and in a purely Kaluza-Kle
extra-dimensional scenario by@26#.

In the case of the fixed equation of state (p/r[w
5const), analytic solutions for the system~1! were already
derived in Refs.@36,37#. The asymptotic behavior given b
Eq. ~44! agrees with these past works.6

When the equation of state deviates from radiation~i.e.,
changingw), it is not easy to obtain generic analytic sol
tions. In the next subsection we shall numerically investig
the case where the massive state is taken into accoun
addition to pure radiation.

We also analyzed the evolution of the system by vary
the value ofd, and found that the situation is not basical

6Recently it was found in Refs.@38,39# that it is possible to have
analytic solutions even in the dilaton-axion-modulus system w
the matter source is radiation.
6-7
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changed compared to thed53 case discussed above. A

long as the initial conditions satisfyṁ0*uṅ0u, R0@r 0;1

and ċ0,0, the large dimensions continue to expand due
the presence of radiation while the small dimensions are k
to be small (r !R). In this case the large dimensions asym
totically approach the radiation-dominant FRW solution~44!.
When the initial value ofṁ is negative, we found that it is
possible to have a bouncing cosmological solution that
proaches the expanding FRW universe given by Eq.~44!.

B. Inclusion of matter

Although massless states, pure radiation, dominate
thermodynamical ensemble in this phase, this dominant c
tribution has a trivial dependence on the small dimensionr.
In particular, Frad

(d) does not depend onr and the pressure
along the small dimensions trivially vanishes. It is then i
portant to see if and how matter terms can alter this behav
For this purpose, we study the leading terms that have
explicit dependence onr in the infinite sums appearing in Eq
~A6!. We have numerically estimated that it is enough
consider the first KK and winding modes along a small
rection, i.e. the terms with$N5N̄50,mi5(1,0, . . . ,0),ni
50% ~as well asmi andni exchanged! in Eq. ~A6!, plus the
remaining 82d inequivalent permutations. The energyEmat

(d)

and pressuresPmat
(d) and Pmat

(92d) along the large and sma
dimensions associated with these states are simply evalu
starting from the general expression~A6!. The equation of
state for these leading order terms are

Emat
(d) 52VdC~b!(d)H F 1

r (d11)/2

12d

2
K (d11)/2S b

r D
1

1

r (d11)/2

b

r
K (d11)/28 S b

r D G
1F r (d11)/2

12d

2
K (d11)/2~br !

1r (d11)/2brK (d11)/28 ~br !G J , ~45!

Pmat
(d) 5VdC~b!(d)F 1

r (d11)/2
K (d11)/2S b

r D
1r (d11)/2K (d11)/2~br !G , ~46!

Pmat
(92d)5VdC~b!(d)bF 1

r (d13)/2
K (d21)/2S b

r D
2r (d13)/2K (d21)/2~br !G , ~47!

whereKn are modified Bessel functions, the prime deno
derivative with respect tor, and
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C~b!(d)5S 2p

b D (d11)/2~1822d!

p
D~0!2. ~48!

HereD(0)25256 is a string degeneracy factor~see the Ap-
pendix!. Note that we only consider thep51 term in Eq.
~A6!, implying the approximation of the bosonic or ferm
onic statistics with the Maxwell-Boltzmann distribution. Th
pressurePmat

(d) along the large dimensions is always positiv
which aids expansion of the universe in addition to the pr
sure Prad

(d) from the massless states. The first and sec
terms in square brackets in Eqs.~46! and~47! come from the
KK and winding mode, respectively. The above equatio
~45!–~47! are all manifestly invariant under the duality sym
metry ~7! acting on the small dimensions,r→1/r . Notice
that the winding modes give rise to a standard positive p
sure along the large dimensions@second term in Eq.~46!# but
negative along the small ones@second term in Eq.~47!#.

We numerically solved the dilaton-gravity equations~9!–
~12!, with E5Erad

(d) 1Emat
(d) , P(d)5Prad

(d) 1Pmat
(d) and P(92d)

5Prad
(92d)1Pmat

(92d) , by carefully taking into account the adia
baticity condition ~30!. The pressurePmat

(92d) for the small
dimensions vanishes at the self-dual critical radiusr 51.
Therefore it is expected that the effect of the massive st
for the small dimensions is weak aroundr;1. In fact we
have numerically found that this is the case. As seen from
case~b! in Fig. 4, the evolution of the small dimensions
hardly altered by including the massive mode for the init
value of r very close to unity. From Eq.~47! one notes that
Pmat

(92d),0 for 0,r ,1 and Pmat
(92d).0 for r .1 ~the

asymptotic values arePmat
(92d)→0 for r→0 andr→`). This

indicates that the pressure of the massive state makes
small dimensions contract for 0,r ,1 while its effect tends
to expand the small dimensions forr .1.

The effect of the massive states emerges by choosing
initial values of r 0 that are slightly smaller or larger tha

unity. For 0,r 0,1 with ṅ0.0, the small dimensions can b

larger thanr 51 for large initial values ofṅ. In this case the
small dimensions continue to grow after they crossr 51.

Whenṅ0 is not large (ṅ0!1), the massive effect can lead t
the contraction of the small dimensions due to the nega
pressure forr ,1. As found from the case~c! in Fig. 4, the
small dimensions always increase in the massless c
whereas the small dimensions begin to contract if the m
sive effect is included. Therefore we can keep the (92d)
dimensions small (0,r ,1) for these initial conditions.

We have also made numerical simulations forr 0.1.
When ṁ0.0 and ṅ0.0, both large and small dimension
expand in the presence of positive pressures. Ifṅ0 is largely
negative, the small dimensions contract by passing thro
r 51. Meanwhile, if uṅ0u!1, the small dimensions can ex
hibit bouncing withr .1, instead of crossingr 51 @see the
case~a! in Fig. 4#. This means that the radiusr can grow in
the presence of the massive states. Since the small dim
sions continue to expand after the bounce, this is not an id
6-8
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ASPECTS OF STRING-GAS COSMOLOGY AT FINITE . . . PHYSICAL REVIEW D 67, 123506 ~2003!
case where the small dimensions stay small. Nevertheles
small dimensions can be made small compared to the l
dimensions as long asṁ0* ṅ0.

When the massive states are taken into account, this g
rise to an extra source term for the energyE in Eq. ~9!. Then
uċ0u gets larger compared to the pure massless case. T
cally this leads to the suppression of the RHS of Eq.~10! via
the ec term, thereby yielding the smaller expansion rateṁ
for the large dimensions. The large dimensions in the m
sive case grow slower relative to the massless case, as
in Fig. 5. In addition, the massive effect suppresses
growth of b, i.e. the temperature decreases faster in
massless case.

As expected, the massive terms get smaller as the in
value ofb is increased. For example, in the cases shown
Figs. 4 and 5, the system is effectively described by
massless states forb0.15. We also analyzed the behavior

FIG. 4. The evolution of the small dimensions ford54 when
the massive states are taken into account~solid curve!. The dotted
curves correspond to the case where the massive states ar

glected~only massless states!. We choose the initial conditionsṁ0

51.0, m054.0, c05216, b0512 with ~a! ṅ0520.1, n051.0, ~b!

ṅ0520.1, n050.05, ~c! ṅ050.1, n0521.0.

FIG. 5. The evolution of the large dimensions andb that corre-
sponds to the case~c! in Fig. 4. The dotted curves correspond to t
case where the massive states are neglected~massless states only!.
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the system by varying the valued with 1<d<8. We found
that the numerical results are quite similar to the case
plained above (d54). As long as the conditions,ṁ0*uṅ0u
andR0*r 0;1, are satisfied, the small dimensions are k
small, while the large ones expand as required in the p
ence of radiation and string matter.

We have also considered the case with the conservatio
KK and/or winding modes. Under this circumstance, the p
tition function must be taken summing only over the co
figurations that respect the conservation laws. As before,
is done by introducing a chemical potential corresponding
each conserved quantity in the partition function. It turns o
that no significant changes are found compared to the c
where no conservation laws are imposed.

V. CONCLUSIONS

We have studied string-gas cosmology at finite tempe
ture in a toroidal universe. We make use of the dilato
gravity equations of motion, satisfying theR→1/R duality
symmetry, to study the evolution of the system, which
assumed adiabatic. Our setup is as follows: the universe,
tially homogeneous, isotropic and in thermal equilibrium,
filled with an ideal gas of closed strings. The 9 spatial
mensions, compactified on a 9-torus, evolve adiabatic
starting from a Hagedorn regime.

In order to find an acceptable equation of state that
scribes such a system in string theory at finite temperat
we evaluate the energy and pressure in a microcanonica
proach. Close to the Hagedorn regime, the scale factoR
exhibits a slow time evolution aroundR;1, as shown in
Fig. 1. In this case the dynamics of the system is effectiv
described by a nearly constant energy and negligible p
sure. We found that the analytic solution in the Hagedo
regime shows very good agreement with the full numeri
result. No substantial changes are observed even when
conservation of Kaluza-Klein~KK ! and winding modes is
imposed, as long as the conserved charges are of order

We have also investigated a ‘‘low’’ temperature regime,
which the equation of state is derived in a canonical conte
We first considered the dynamics of 3 ‘‘large’’ and 6 ‘‘smal
compact dimensions in the presence of a pure gas of ra
tion ~given by the massless states!. It turns out, as expected
that there exist interesting cosmological solutions where
large dimensions continue to expand while the small dim
sions remain nearly constant and small relative to the la
ones~see Fig. 2!. The attractor solutions for the large dime
sions can be described by the evolution of the standard
diation dominant phase in FRW cosmology whereas
small dimensions always asymptotically approach to a c
stant value. We also found bouncing solutions for the la
dimensions if their Hubble rates are negative initially~see
Fig. 3!.

We then analyzed the case where the massive string s
are taken into account in addition to the pure radiation. T
presence of the massive states typically leads to a slo
expansion of the ‘‘large’’ dimensions relative to the massle
case~see Fig. 5!. Meanwhile the behavior of the small d
mensions strongly depends on the initial conditions forr and

ne-
6-9
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BASSETTet al. PHYSICAL REVIEW D 67, 123506 ~2003!
ṙ , resulting in either expansion or contraction of the sm
dimensions~see Fig. 4!. The radiusr can be kept small as
long asr is initially close to unity, since the pressure va
ishes at the duality symmetric radius (r 51). The vanishing
of the pressure atr 51 is a purely stringy effect, since it i
due to winding modes, whose negative contribution comp
sates that of KK states. The important point is that, even
the presence of the massive state, there exist a wide ran
the initial condition space for which the small dimensions
stabilized around the self-dual radius and are kept small r
tive to the large ones. These behaviors are found to be in
sitive to the number of large dimensions,d. We also consid-
ered the case for the conservation of KK and winding mo
and found no substantial change compared to the case w
out imposing the conservation laws.

In this work we did not investigate the later stage of t
cosmological evolution. From the view point of cosmolog
it is important to have an inflationary stage in order to so
the major cosmological problems~such as the flatness prob
lem! as well as to generate the seeds for large-scale struc
One way to address this problem is to assume that the dil
~or moduli! acquires mass, which may lead to inflation
later stages. Recently, for example, an interesting prop
was made by Parry and Steer@40#, who showed that inflation
can occur on a moving 3-brane due to the nonminimal c
pling of the dilaton to the brane matter. It was also shown
Ref. @41# that brane inflation could result from the negati
pressure of winding modes. Although it is not clear at pres
whether these proposals are directly applicable to our str
gas work, it is certainly of interest to extend the pres
analysis in that direction.
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APPENDIX: THE ONE-LOOP STRING PARTITION
FUNCTION

A thermal canonical partition function at temperatureT
can be computed in the Euclidean approach by compac
ing the time direction on a circle of lengthb51/T. We are
then led to consider type IIA-B string theory with all te
space-time directions compactified. For simplicity, we ta
the tori to be all rectangular~i.e. simple products of circles!
and compute the free energy for the case in which (92d)
spatial dimensions are compactified on small radii all eq
to a common value denotedr, whereas the remainingd di-
rections are taken very large, and all equal toR. The free
energy, after having unfolded the fundamental region of
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world-sheet torus, takes the following form~see e.g.@42#!:

F (d)~b!52
Vd

2pAa8
E

21/2

1/2

dt1E
0

` dt2

t2
(31d)/2 @L~r ;t!#92d

3 (
p51

`

e2b2p2/4pt2uM2u2~t!, ~A1!

where

L~r ;t!5 (
m,n52`

1`

q(1/4)(m/r 1nr)2
q̄(1/4)(m/r 2nr)2

, ~A2!

represents the contributions of the whole KK and windi
modes along the small dimensions,t is the so-called modu-
lar parameter of the world-sheet torus andq5exp(2ipt). In
deriving Eq.~A1! the winding modes along the large dime
sions have been completely neglected and the sum ove
KK modes has been approximated by an integral over c
tinuous momenta. Note thatp in Eq. ~A1! runs only over
positive odd numbers and correspond to taking the corr
quantum statistic for bosons and fermions. Taking only
term p51 in the above sum corresponds to replacing
quantum bosonic or fermionic distribution with the classic
Maxwell-Boltzmann distribution.Vd is the volume of the
large dimensions in (4p2) units:7

Vd[
1

~4p2!d/2
~2pR!d5Rd. ~A3!

The M2 factor in Eq.~A1! encodes the contribution to th
free energy of the whole tower of massive strings, and can
expanded in powers ofq:

M2~t!5
u2~t!4

h~t!12
5 (

N50

`

D~N!qN. ~A4!

Hereu2 andh are modular functions on the torus~see e.g.
@43# for an explicit expression! andD(N) is the degeneracy
factor at levelN @D(0)516, for example#. The value ofN
corresponds to each string mass level. Thet1 and t2 inte-
grals in Eq.~A1! can be easily performed. It is convenient
consider the term withN5N̄5mi5ni50 in Eq. ~A1! sepa-
rately from the remaining ones. This is the contribution
the purely massless states, which we will henceforth den
asFrad ~where ‘‘rad’’ stands for radiation!. We get

Frad
(d) 52

Rd

2p
D~0!2GS d11

2 D ~4p!(d11)/2z~d11!

3~1222(d11)!b2d21, ~A5!

where j(x) is the Riemann zeta function. The remainin
‘‘matter’’ terms give

7Recall that we are settinga851.
6-10
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Fmat
(d) 52

Vd

p (
mi ,ni

(
p51

`

(
N,N̄

S 2pM

bp D (d11)/2

3dmini1N2N̄,0D~N!D~N̄!K (d11)/2~bpM!,

~A6!

whereK (d11)/2 are modified Bessel functions, and

M5M ~mi ,ni ,r i ,N,N̄![A(
i 51

92d S mi
2

r 2 1ni
2r 2D 12~N1N̄!.

~A7!

The total free energy is given by

F (d)5Frad
(d) 1Fmat

(d) . ~A8!

The infinite sum overN and N̄ is not always convergent. In
fact, the degeneracy factorsD(N), for large values ofN,
have a leading exponential behaviorD(N);exp(2pA2N).
On the other hand, for large values of its argument, the m
fied Bessel functionKn(z) admits an asymptotic expansio
whose leading term is;exp(2z). Hence, the sum overN and
N̄ in Eq. ~A6! converges only forb.bH52pA2. The tem-
peratureTH51/bH is the Hagedorn temperature.

As long as we deal with a range of energies where
~A1! converges and no large energy fluctuations are pres
ijo
.

ys

.

12350
i-

.
nt,

we can work with the canonical ensemble. On the ot
hand, for high energy densities a microcanonical descrip
has to be used. In this case the energy density of state
governed by the analytic structure of the canonical partit
functionZ5exp(2bF), in the complexb plane. Taking into
account the leading singularities of Eq.~A1!, we can param-
etrize the partition function as

Z~b,R!.
eL(b,R)

b2bH
S hK

b2bK
D 18S hW

b2bW
D 18

, ~A9!

where hK and hW are defined by Eq.~16! with bK5bH
2hK andbW5bH2hW . L(b,R) is an entire function inb.
The microcanonical energy distribution functionV(E), is
then given by

V~E!5E
bH2 i`

bH1 i` db

2p i
Z~b,R!ebE

. (
i 5H,K,W

R
Ci

db

2p i
Z~b,R!ebE, ~A10!

where CH , CK and CW are the three contours encirclin
respectively the poles inbH , bK andbW in the complexb
plane. The entropy and the rest of the thermodynam
quantities easily follow from Eq.~A10!.
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