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Aspects of string-gas cosmology at finite temperature
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We study string-gas cosmology in dilaton gravity, inspired by the fact that it naturally arises in a string
theory context. Our main interest is the thermodynamical treatment of the ideal string-gas and the resulting
implications for the cosmology. Within an adiabatic approximation, thermodynamical equilibrium and a small,
toroidal universe as initial conditions, we numerically solve the corresponding equations of motions in two
different regimes describing the string-gas thermodynaniicthe Hagedorn regime, with a single scale factor,
and (ii) an almost-radiation dominated regime, which includes the leading corrections due to the lightest
Kaluza-Klein and winding modes, with two scale factors. The scale factor in the Hagedorn regime exhibits
very slow time evolution with nearly constant energy and negligible pressure. By contrast, ifii casefind
interesting cosmological solutions where the large dimensions continue to expand and the small ones are kept
undetectably small.
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[. INTRODUCTION been pointed out if4] that the low energy effective action of
a dilaton-gravity system, naturally emerging in string theory,

String cosmology is rapidly growing in importance for at has a duality symmetry that is a manifestation of the string
least two reasons. First, unless there is a fortunate conspiradyduality R— «'/R symmetry, that plays a crucial role in the
of scales and one or more of the extra dimensions aranalysis off11]. In this respect, the dilaton-gravity system is
~0O(TeV 1) [1], we cannot reasonably expect to detect anymore suitable than standard general relativity for the BV sce-
stringy effects in accelerators in the foreseable future. Henceario [11]. Although some works have already shown that
string cosmology may provide the only means of testingthe BV scenario can be realized and extended in a variety of
string or M theory concretely, through e.g. noncommutativeways[12—22 (see alsd23]), a full string-theory analysis is
effects[2] or the AdS conformal field theoryCFT) corre-  very complicated and still not completed, even in the sim-
spondencé3]. plest toroidal compactification.

On the other hand, traditional cosmology has been fet- In this paper, inspired by the BV scenario, we numerically
tered by the chains of the singularity theorems of generagolve the dilaton-gravity equations of motipt2] with some
relativity and is therefore usually only seen as understandintypes of “stringy matter.” Adiabatic evolutiorfwhich im-
the evolution of our Universe over the past 15 billion yearsplies constant entropyweak string coupling and thermody-
or so since the big bang. String theory offers the excitingnamical equilibrium are always assumed in our analysis. For
possibility of a resolution to the big bang singularity therebysimplicity, we analyze type 1l1A or IIB closed string theory on
opening up a potentially infinite prehistory of the big bang.a T° torus, with no branes.In particular, we consider the
Models constructed in this vein include the pre-big-bangfollowing two regimes:

[4,5] (see alsd6,7]) and the recent ekpyrotic or cyclic mod- (i) Hagedorn matter at high energy densities in a very
els[8,9] which has lead to new work on string propagation insmall homogeneous and isotropic universe with a common
orbifold backgrounds with curvature singularitigld]. compactification radius- Ja', and

Traditional cosmology, because of the limitations of gen-  (ii) an almost-radiation dominated regime with two inde-
eral relativity, suffers from another great lacking: it is unablependent scale factors, associated with the large and small
to make any predictions about the number of dimensions weimensions.
live in or about the spatial topology of the Universe. String In the latter case, the lightest Kaluza-Kle{KkK) and
theory and M theory, in contrast, predict that we live in eitherwinding mode contributions are also taken into account.

10 or 11 spacetime dimensions. Perhaps the greatest chal- It is important to stress here that in both of these regimes,
lenge for string cosmology, after understanding the big-ban@ur matter is manifestif-duality invariant. This symmetry
singularity, is to explain why and how three dimensions be-s broken in our setup only by th@rbitrary) choice of initial
came observable and large while 6 or 7 are either small ovalues. The main relevant questions in the two cases are
unobservable for some other reason. Perhaps the only preespectively: which is the evolution of the universe at early
posal in this direction so far is the so-called Brandenberger-

Vafa (BV) scenarid 11] where it is assumed that the universe

is small and compact and that exactly three space dimensionsin [17] it has been shown that fundamental strings, even in the
become large because of the dynamics of winding modesresence of D-branes, are still the dominant degrees of freedom for
which play a particularly important role. Subsequently it hasthe realization of the BV scenario.
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times for a free Hagedorn string gas in thermal equilibrium? There are clearly several open issues that we do not con-
Assuming large and small dimensions as initial conditionssider but that deserve further investigation. First of all, ther-
how do they evolve? In particular, do the small dimensiongnal equilibrium, as well as isotropy and homogeneity along
remain small? all directions, should be relaxed and string interactions need
String matter in the Hagedorn phase was already briefljo be taken into account. Further, since toroidal compactifi-
discussed if12] where it was realized that, to a first ap- cations are not realistic, always leading to non-chiral theo-
proximation in which the energy is constant, it leads to afi€S, Study of more general topologies is required. See
very slow evolution of the universe, as in Eg4). We com- [19,2Q for recent progress in this direction. All the above
plete the analysis dfL2] by relaxing this approximation and simplifications makes our setup clearly far from being real-
imposing the conservation laws for KK and winding modes.iStic and should therefore be viewed as a first attempt to
We find that in any practical sense there is no departure frorfOnsider more realistic scenarios. o _
the behavior dictated by E424), and thus no relevant dy- _ Another very important issue unexplored in this work is
namics emerges in this setup. It is important to recall how tg€ transition from dilaton gravity to general refativity. A
interpret this result and its connection to the original BV ommon lore is to assume that supersymmetry breaking oc-
scenario. The above result is obtained by assuming therm&Hrs at later times and stabﬂmesﬁﬂ_moduh, including the
equilibrium and a free, ideal, string gas, whereas the dynanflilaton, which then becomes massivieis not clear how the

ics and interactions of winding modes at very early times aré&Vvolution of the large and small dimensions are altered by
crucial in the BV scenario. The results we get in céigare this transition to an effective description in terms of general

therefore not closely connected with the original BV pro-rélativity. Notice, however, that if one considers in céisg
posal[11] or, rather, they have to be taken the other wayPure radiation with no matter, then the late-time behavior of
around. Namely, unless string interactions are taken into adhe dilatonic gravity solutions lead to a standard Friedmann-
count and/or thermal equilibrium is relaxed, no interestingRoPertson-Walker(FRW) radiation-dominated cosmology
dynamics emerges. for the large dimensions, whereas the small ones are con-
On the other hand. the evolution of the small and |argestant. This behavior nicely matches with the solution found

dimensions in caséi) is much more interesting. First of all, PY [26] in general relativity in a purely KK extra-
we will show that when there is only pure radiation, the dimensional scenario. o o o
small dimensions can be stabilized and kept small relative to Finally, we assume an adiabatic approximation to simplify
the large dimensions. Essentially, it is only required that théh€ analysis. A deeper justification of this approximation, or
initial expansion rate of the large dimensions is bigger or ofh€ dynamics which arises when it is dropped, is required.
the same order than that of the small oAcEhis mainly One can naively expect dropping this condition to yield a

comes from the fact that the pressure in the small dimensionider variety of dynamics, including more violent evolution.
vanishes in the case of pure radiation. This paper is organized as follows. In Sec. Il some gen-

When matter, in the form of KK and winding modes, is eral aspects of dilaton gravity are briefly reviewed. In Sec. llI
included, the choice of initial conditions becomes more rel-We analyze the dynamics of the system in the extreme Hage-
evant. The crucial point is played by winding modes that arél0rn regime of high energy densities with a single scale fac-
able to distinguish large and small dimensions, leading retor- In Sec. IV the dilaton-gravity equations are solved in an
spectively to a positive or negative contribution to the pres-2lmost-radiation dominated regime with large and small
sure along the large or small dimensions, as is clear fronfc@le factors, as well as in the presence of some massive
Egs. (46) and (47). This turns out in an expansion of the stringy matter. We present some conclusions in the final sec-
large dimensions and at the same time the possibility of®n and present some useful formulas in the Appendix. We

keeping almost constant the small ones. In fact we found thatet the string scale’=1 in the following.
there exists a wide range of parameters for which the small
dimensions actually remain smalsee Fig. 4, while the Il. DILATON GRAVITY

large ones expand as required in the presence of radiation We shall study the dilaton gravity equations of motion

e oA el A1 & Massies dion f corespondng 1o the (o
o~ ) .. energy effective action of string theory M+ 1 space-time
close to the self-dual radiuga’, together with the condition ; . -
; . : J dimensions, described ky,5,12
of the expansion rate mentioned in the pure radiation case.
These are the most important results of the paper. There i1 . 5
exist a wide range of initial conditions for which the small S=f d”"xy—gle “M{R+4(VD)F+Ly], (D)
dimensions are stabilized around the self-dual radius before
entering into a purely radiation dominated phase, regime inhereg is the determinant of the background metgig, ,
which they are asymptotically stabilized anyway to a nearlyand £,, corresponds to the Lagrangian of some matter. The
constant value.

3An alternative would be the models in which the dilaton stays
2t is actually quite hard to imagine initial conditions where the massless but has universal couplings. It is even possible to reconcile
expansion rate of the small dimensions are bigger than that of thehis with quintessence if the dilaton has a divergent runaway behav-
large ones. ior [24,25.
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coupling of ® with gravity is the standard one arising in —dp2—(9—d) 2+ p2=e’E 9)
string theory. Hereafter we shall consider the case With ’
=9. We are interested in the case where the whole universe

is small and compact, corresponding to a Tidttorus. In this = u= Ee'//pd , (10
case, if one considers field configurations that are spatially 2
homogeneous, assuming only slow time dependence and
adopting an adiabatic approximation it has been shown in w1 v
[4,12] that the actior(1) exhibits a duality symmetry, a low v=yr=5€"Py g, (11)
energy manifestation of the strifgduality R— 1/R symme-
try. The ansatz for the metric and dilaton we use is ) _ 1
zp—duz—(g—d)vz=§e'/’E, (12)
9
ds?=—dt?+ >, RAt)dx?, Ri=eM®, d=d(t).
i=1 where
2
JIF )
Here theR; denotes thd-th scale factor of the torus. The Pg=— EP Vi=1,...4d, (13
equations of motion simplify if one introduces a shifted di- !
laton, ¢, via O -
9 Pg_d__(}’_yi’ Vi=d+1,...,9, (14
Y= 2@—21 Ai. 3

in terms of the free energy.

lee_n the metriq2) the equations of motions of the dilaton- Il HAGEDORN REGIME
gravity system are thefil2]
According to the original BV proposl 1], the very early
) ) universe was compact over all nine spatial dimensions with
- N+ yP=elE, (4)  radiir~1 in string units. In this section we study the dilaton-
=1 gravity equationg4)—(6), with E andP the total energy and
pressure of a free string gas in thermal equilibrium in such a
compact, small universe. For simplicity, we consider the
string gas associated with type IIA-11B string theory compac-
tified on a squardl®-torus, simple product of nine circles,
9 1 with radii all equal to a common value=¢e". Although the
{ﬂ_E )'\i2: —e'E, (6) strict thermodynamical limit/—co cannot be taken for this
i=1 2 system, thermodynamics is still trustable as long as the sys-
tem contains many degrees of freedom. In our case, this im-
with E the total energy andP; the total pressure along the plies having an energy density>1. Our first step is then to
i-th direction found by multiplying the total spatial volume derive the equation of state of the string matter in this re-
of the space by the energy density and pressure appearing dgfime, or equivalently the energy and pressure entering in
Ly of Eq. (1). Here a dot denotes derivative with respect toEqs. (4)—(6).
cosmic timet. These equations are manifestly invariant un-
der the duality symmetrj4,12]

9

. .. 1
)\i_'J/)\erdeiy 5

A. Microcanonical ensemble

String thermodynamics in the high density phase has been
N— =\, <I>—><I>—2 \i (7)  a subject of intense study in the pafdr a review see e.qg.
: [27]). The most important point is the emergence of a critical
) _ ) _ _ _ ) ) temperature, the Hagedorn temperatliye[28], where the
under whichy defined in Eq(3) is left invariant. It is typi-  partition function of a free string gas diverges. It was soon
cally assumed that the scale factétsare the same in all yeglized that in this regime the usual thermodynamical
directions, i.e.R;=R. In contrast, we also consider in Sec. equivalence between the canonical and microcanonical en-
IV a scenario where the background is homogeneous angembles can break down and the latter, more fundamental
isotropic in d-spatial large dimensions and {@l)-spatial  ensemble, must hence be used. Furthermore, due to the pres-
small dimensions. We denote the |arge and small dimensiorﬁ]ce of W|nd|ng modesl the thermodynamica' properties of a

with their corresponding scale factors, as string system at finite volume differs substantially from that
of an infinitely extended systef1,29. Following[29], it is
R=e#, r=e". (8) useful to derive the energy density of stafeéE) by ana-
lyzing the singularities of the one-loop string partition func-
In this case Eqs4)—(6) take the form tion in the complexB plane, whereB=1/T is the inverse
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temperature. This analysis has already been carried out il 14 . . .
[29] but for completeness we report some useful details in ,, 1
the Appendix. /’/'

For a totally compact space at high energy, the leading 10 \ ]
singularity (a simple polg of the partition function at3 45

= By is not sufficient to establish the thermodynamical prop- r
erties of the systeriil1,29. The first next-to-leading singu- 060 ]
larities are poles of order 18 with a dependence on the com o, ]
pactification radius. In this case a useful parametrization of P

the one-loop partition functiod is given in Eq.(A9), from 020 / ]
which one computes the density of staf®&E) by means of 0.0
Eq. (A10) and thus the associated entrofy: log Q(E).* It

reads 020

S(E,r)z,BHEHog{ 1- 5 L(n<E) e 7E
KW

rig» FIG. 1. The evolution of andP for the initial conditions\
=103, Ag=0.2, y=—5 andE,=10® in the Hagedorn regime.
W, is determined by the constraint equatie. We plot the evolu-
tion of r using both the analytic approximatid@4) and the full

+(qwE) e ”WE]}, (15)
numerical result, which show very good agreement each other.

whereBy=22, and

/ 2
77K=\/§7T[2— 4——2
r

nw=\2m[2—4—2r?],

andy= y«E, z=nE, w=ncyE. As usual in the microca-
nonical ensemble, the temperature is a derived quantity
(from SandE) and its explicit form is needed only to com-
pute the pressure. When the radius is close to unity;T and

P are approximately given by

1 1 -
5 = T—+ClEl7e’ e (21)
anzﬁw[ 2-\/4-5 —[2—\/4—2r2]]. (16) ;
r -
P~C,Ele & (22

The energy as a function ofis given directly by Eq(15),
sinceS=constant, by the assumption of adiabatic evolution, . ... = =7y for r~1, andC, and C, are certain

On the other hand, the temperature and pressure, defined as ) | ~
polynomial functions ofp and ny -

2S T 4S We_ numerically solved the dilaton-gravity equatidnss—_ N

(17 (6) using a standard Runge-Kutta routine. We adopted initial
conditions aroundey~ 1000, ry~1, which comes from the
requirement ofT duality. The shifted dilaton is chosen to
satisfy the conditiore®<1 to ensure that the string coupling

1 1 1 2\ 18 constant is initially small and hence that perturbation theory

T m[ (W) yr(17—-y)e and the ideal gas approximation are trustable. The initial con-

H dition for A is somewhat arbitrary and we have carried out

18217( 17-2)e? simulations for a wide variety of different initial values »of

Notice thaty3 is fixed by the constraint equati¢d) and that

the negative solution is taken to remain in the perturbative

Tx1 regime of small string coupling constant.

P=5--, (19 For initial conditionsrye[0.8,1.4 and E,~ 1000, the

temperature is very close to the Hagedorn temperature with a

nearly constant value. This is clear from Eg1), since the

last term in Eq(22) is vanishingly small relative to the first

1 (yz) 18( e Y e‘z) term, due to the exponential suppression giveneB);?E.

1
T P79 d(logr)’

yield

; (18

where

Xx=1-— m (20 Similarly we haveP=0 for the above initial conditions from
Eq. (22). Therefore the system is effectively described by a

_— pressureless dust as shown in Fig. 1. In this case ona has
“We have numerically checked that the teA3,R) in Eq. (A9) =A¢’ from Eq. (5), with A an integration constant. Suptract-
is negligible and thus is not reported in the following. ing Eq. (6) from Eq. (4), we find a simple relation,g ¥)

w

123506-4



ASPECTS OF STRING-GAS COSMOLOGY AT FINH. .. PHYSICAL REVIEW D 67, 123506 (2003

=E/2. Taking note tha€E is nearly constantE=E,), the the Hagedorn temperature, is enough to study the thermal
analytic solutions of Eqs(4)—(6) in the Hagedorn regime behavior of the system. In particular, the leading singularity

may be written as now depends on the compactification radius induced by the
conservation laws. The entropy of such an ideal gas can be
E B2—dA? easily computed, yieldin
e V=~ _Ot2+ Bt+ ——, (23) y p y g
4 Eo 9 2
S(E.r)=8 E-—— — +NZ2|-9InE
1 |(Eqgt+2B—2dA)(B+dA)| ’ ENGT=N = R T '

)\2)\0+

Che (Egt+2B+2VdA)(B— VdA)| 24 (27)

We see that in Eq27) there are two suppression terms with
respect to the leading terByE in Eq. (15). This is expected,
because Eq(15) counts states with all values of charges
whereas Eq(27) counts a smaller set of states in which the
value of the charge is fixed. Moreover, the number of states
decreases abl; or N; are increased, since less energy is
available for the oscillators. The temperature and pressure
obtained from the entrop{27) are

A and B are integration constants depending on the initial
values for\, ¢ and . In particular

A=Noe %0, B=— e %o, (25

andd is the number of dimensior(sve are now considering
the case wittd=D=9). Notice that due to Eq4), ¢, and
thus B, cannot be taken to be vanishing.

In Fig. 1 we plot the evolution af that corresponds to the 2

9
analytic solution(24), together with the full numerical re- E: 1 g+ 1 1 > —i+Ni2f2)- (28)
sults. They show very good agreement, which implies that T Ty E 227E21 0 12
the Hagedorn regime is well described by a state with a
constant energy and negligible pressure. This actually en- T 7 1 |2
sures the validity of the analytic estimation in REF2] dis- P=5-5E > — —N&r? (29)
cussed briefly in its Appendix. 2y2 Ei=t

As long as\, is positive (negative, the radius grows

) The pressure vanishes if one imposes vanishing winding and
(decreasestowards the asymptotic value

KK charge,M;=N;=0. The energ)E evolves very slowly

U for E, of order 1000 in which case the radiusasymptoti-

B+ \dA (26) cally approaches a constant value after some growth from

B—+dA ro=1, thereby showing similar behavior to Fig. 1. When

M;,N;#0, due to presence of thefactor in the denomina-

with r getting smaller with time(see Fig. 1 We have tor of Eq.(29), the system evolves similarly to the caldl

checked this for values af, very close to 1, up to,=(1  =N;=0, as long as the summation terms in E@8.and(6)

+1x10719, and found no substantial changes in behaviorare unimportant. The dynamics changeMif andN; are of

If one chooses exactly,=1, Eq.(15) should be replaced by order 10, since the scale factor can have respectively a sig-

another similar relation, since now the two poles of order 1gnificant expansion or decreasing rate. As expected, winding

in the B-plane approach each other to a single pole of ordefodes prevent expansion, whereas KK modes, as standard

36. The above results apply also in this case: the pressure fgatter, favor it.

almost zero and the evolution of the system is very slow in As a last remark, notice that the string gas defined by Egs.

time. (28) and (29) has a negative specific heat. Systems with
For initial values ofE in the rangeE, < [500,500Q, the  negative specific heat are unstable in noncompact spaces, but

dynamics of the system is practically the same as explaine@ctually can be in thermal equilibrium in a finite space.

above. For initial energieE,=1000 the scale factor is es- Along the lines of[31,32, we have evaluated the critical

sentially constant in time. On the other hand the system i¥olume V; under which the system is in equilibrium and

typically unstable fofE,<1000 and not thermodynamically found that this is actually the case fgg>1, implying that
meaningful for such low values d,. the system can be actually in equilibrium with radiation. It

should also be emphasized that this system is trustable as
long as string corrections are completely neglected. When
string interactions are included, the system is most likely to

We can also address the question of what happens whefhdergo a phase transiti¢83] whose details are so far un-
conservation laws are taken into account. In the case of thgnown.

toroidal compactification we consider, the conserved quanti-

ties are taken to be the total winding numibgrand the KK

momentaM; in each compact dimension=1,...,9). This

is performed by introducing a chemical potential for each Assuming that some dimensioft) start to expand while

conserved charges0]. the remaining (9-d) dimensions remain small by means of
A crucial difference with respect to the previous case issome mechanism, the system will eventually reach a tem-

that the leading singularity of the partition function, namely perature below the Hagedorn regime where the dynamics is

r :e)‘O

)

B. Conservation laws

IV. ALMOST-RADIATION REGIME
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mostly governed by massless states, i.e., radidtionthis 1 oF@
Lo L . (9-d)_ _ rad

case, it is important to see the conditions under which the Piag /= 9—dainn) 2

large dimensions continue to expand. At the same time, it is

important to study whether the small dimensions remainzrom the adiabatic equatidB0), we easily get the following

small or if they also enter an expanding phase. Differentg|ation

from the Hagedorn regime discussed in Sec. lll, the micro-

canonical ensemble agrees with the canonical one for the

(33

range of temperatures and energy densities involved now. In B:,BOR_O! (34)
the following we shall use the latter ensemble, which is more
convenient for practical purposes. relating the temperature and scale factor in a radiation-

Assuming again thermodynamical equilibrium and adia-dominated universe, witfg, andR, being initial conditions
batic evolution, we shall solve the dilaton-gravity equationssatisfying 8(R,) = 8,. In this case the dilaton-gravity equa-
(9-(12), with E and P obtained from the free energy of a tions (9)—(12) read
string gas at temperatures beldwy . The entropySis con-

ith ti i ' ' - .11 ., 1.
;sig;\{ed with time under the assumption of adiabatic evolu = EdM2+ E(Q—d)v2+§¢2, (35
d_ d/ ,dF| P
at>-atl A o) (30 p= g+ 5Py, (36)
Equation(30) is solved by lettingB and the scale factors =, 37)

\i=logR, be slowly varying functions of tim¢s— B(t),
Ai—Ai(t)]. In this way one can derive a differential equation together with the constraint equation
whose solution giveg8= B(\;) with S=const. We denote

the radii of the larged dimensions, taken all equal, iy P=e’ED +du?+(9—d)r2 (38)
=e*, whereas the radii of the (9d) small dimensions,
again all equal, by =e”. Equation(37) is integrated to give

A. Pure radiation v=wee’" Vo, (39

As a first step, let us consider the case of pure radiatioghere ;,O and ¢, are the initial values of and . We see

(see the Appendix for the free energy in the context of thef C - .
. . from Eq. (39) that whenv, is positive(negative the expan-
canonical ensemble The energy and pressure are eaSIIysion rate for the small dimensions is always positimega-

evaluated from Eq(AS) tive). In order to avoid unbounded growth of the dilaton

Eg)d towards the strongly coupled regime®=1), it is natural to
Eﬁé”d= Fgg)ﬁfﬁw consider the case with negative In this case the absolute

value of » decreases with time.

dR d+1 | ) i .

_ur 9 (d+1)/2 n the absence of the pressU?égd in Eq. (36), the evo

2w D0 F( 2 )(477) fd+1) lution of the large dimensions is similar to that of the small
X(1—2 (@+1))g-d-1 (31) ones. In the cas&/y<0 and uy>0, we haveu<O0 for

P =0 from Eq.(36). This corresponds to the universe with

whereas the pressurléﬁg)d for the d spatial dimensions is expand_ing large dimensions with a.decreasing Hubb]e rate.
Numerically we found that the evolution of the system in this

iven b
g y case is trivial, namely the large dimensions soon approach a
d _ 1 aFﬁg)d __F Eﬁg)d - nearly constant value v(\j/ith very smaﬂ. _
rad~ T g 3(nR) Al g (32 When the pressurB(?), is taken into account, this works

as a positive source term in E@@6). Therefore it is possible
which corresponds to the equation of state for radiatiod in to make the right-hand sid&kHS) of Eq. (36) positive even
spatial dimensions. _quationiSl) is nothing but the wheny<0 andu>0. We have made numerical simulations
d-dimensional g%nerallzatlpn of the St_efgn-BoItzmann law inyith initial conditionsRy>T g~ 1, ho<0, and several differ-
presence oD (0)</2 bosonic and fermionic degrees of free- : : - .

ent values ofug andvy. As long asu is positive, the large

i (d)
doml.l i[ncd:,a}d does n.o';‘de'pend anthe pressure along the dimensions expand in the presence of the pressure due to
small dimensions vanisnes. radiation. The contribution of the pressure term in E2f)
inhibits the rapid decrease of, thereby leading to different

i imp(d) — -
SNotice that the system is already in an almost radiation regimeevOIUtIon of R compared to the case wit;3=0. The ex

for B=11 and it is essentially governed by pure radiation only forpansion rate for the small dimensions is exponentially sup-
B=14, in string units. pressed with the decrease ¢f [see EQ.(39)]. Therefore
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10° . . T T unless loop or derivative corrections are added to the tree-
R level action[34,35. It is quite interesting to be able to obtain
10 L » bour]cing solgtions only by including radiation in dilaton-
gravity equations.
It is worth investigating the asymptotic behavior of the
10 haNg 3 dynamical system of Eq$35)—(37), along the lines of12].
B Introducing new parameterg,=§¢, v=17, =f, and using
1o | 3 the fact that the pressure in the large dimensions is connected
= r to the energye(?Y, through Eq.(32), Egs.(35—(38) become
1.0
T DU L e (40)
B LA A A
0‘10 1 1 1 1
0 20 40 60 30 100 2
) 1, (9 5 f
t §=—§§+ a—l n +f§+%, (41)
FIG. 2. The evolution oR, r and g for the pure radiation case
with d=3. We choose the initial conditionsy= 1.0, ny=4.0, vy -
=-0.01, 15=0.0, o= — 16 andB,=15. 7=, (42)

Since we are considering the case with decreaging as-
unless the initial value ofv| is much larger than unity, the ymptotically approaches zero from E@9), i.e. =0 is an
radiusr can stay small around~1. attractive solution. In this case, the analysis is closely related

We have numerically succeeded to obtain ideal solution¥vith the one outlined in the Appendix ¢1.2]. In particular
with growing R and small, roughly constant, satisfyingr ~ one finds that the line described by
§R. One typical (_avolutlon is pIott_ed |.n _F_lg. 2. These: solu- flé=—d, 5=0, (43)
tions can be achieved by choosing initial values wjth
=|v|, Ry>ro~1 and y,<0. When uy<|v| holds ini- IS an attractor. From Eq3) the time-derivative of the dilaton

tially, it is difficult to keep the small dimensions small rela- is given as ﬂ>=f+d§+(9—d)n. Therefore we haveb

tive to the large ones. lfio<0, we haveu,>0 from Eq. =0 for the attractor43), again in complete analogy to the

(36). This leads to the growth of the expansion rateSince case of the single scale factd2]. Substituting Eq(43) for

) i i ) Eqg. (41) and integrating this relation, one finds
u continues to be negative by the time it crosses zero, the

large dimensions contract during this stage. Afiechanges £or
sign, R begins to grow. This implies that bouncing solutions (d+1)t’
may be obtained ifuq<0. We have numerically found that
this is actually the case; see Fig. 3. During the contractin
phase, the temperature increases according td3. The
temperature is maximum at the bounce wheiie minimum.

In the context of pre-big-banip] or ekpyrotic cosmologies
[8], nonsingular bouncing solutions are difficult to construct

ROCtZ/(d+1). (44)

This indicates that the late time evolution for the large di-
$nensions can be described by that of the standard radiation
dominant phase in FRW cosmology fde=3, even in the
presence of the small dimensions. The key point is that the
pressure in the small dimensions vanishes for the massless
case, thereby leading tp=0 as an attractor. Notice that a
cosmological solution of this kind has been also obtained in

70 ' - ' standard general relativity and in a purely Kaluza-Klein
60 E E extra-dimensional scenario §j26].
In the case of the fixed equation of statp/d=w
50 7 =const), analytic solutions for the systdit) were already
40 E \ ] derived in Refs[36,37. The asymptotic behavior given by
R Eq. (44) agrees with these past works.

30 ¢ E When the equation of state deviates from radiatioe.,
20 | g p 3 changingw), it is not easy to obtain generic analytic solu-

~_____ ] tions. In the next subsection we shall numerically investigate
1o o r 7 the case where the massive state is taken into account in
0.0 E £ addition to pure radiation.
‘o . . . We also analyzed the evolution of the system by varying

the value ofd, and found that the situation is not basically

0 50 100 150 200
t
. FIG. 3. The evolution oi.?,.r. and8 fqr the pure radiation case  6Rgcently it was found in Ref§38,39 that it is possible to have
with d=3. We choose the initial conditions,=—0.04, 1o=4.0,  analytic solutions even in the dilaton-axion-modulus system when
vo=—0.01, v,=0.0, )p=—16 andB,=15. the matter source is radiation.
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changed compared to thé=3 case discussed above. As
long as the initial conditions satisfyozﬁzol, Ro>ro~1

and (<0, the large dimensions continue to expand due to

the presence of radiation while the small dimensions are kept ) ) .

to be small ¢<R). In this case the large dimensions asymp-HereD(0)°=256 is a string degeneracy factwee the Ap-
totically approach the radiation-dominant FRW solutigd). ~ pendi. Note that we only consider the=1 term in Eq.
When the initial value ofi is negative, we found that it is (A6), implying the approximation of the bosonic or fermi-
possible to have a bouncing cosmological solution that ap@nic statistics with the Maxwell-Boltzmann distribution. The

(d+1)2(18— 24
2”) MD(0)2. (48)

@22
C(B) (B

proaches the expanding FRW universe given by (E4). pressureP!?) along the large dimensions is always positive,
which aids expansion of the universe in addition to the pres-
B. Inclusion of matter sure P{%, from the massless states. The first and second

Although massless states, pure radiation, dominate thi&"ms in square brackets in E¢46) and(47) come from the
thermodynamical ensemble in this phase, this dominant corKK and winding mode, respectively. The above equations
tribution has a trivial dependence on the small dimensions (45)—(47) are all manifestly invariant under the duality sym-
In particular, F{%, does not depend on and the pressure Metry (7) acting on the small dimensions;—1/r. Notice
along the small dimensions trivially vanishes. It is then im-that the winding modes give rise to a standard positive pres-
portant to see if and how matter terms can alter this behaviogure along the large dimensiorsecond term in Eq46)] but
For this purpose, we study the leading terms that have anegative along the small ongsecond term in Eq47)].
explicit dependence anin the infinite sums appearing in Eq. ~ We numerically solved the dilaton-gravity equatid@s—
(A6). We have numerically estimated that it is enough to(12), with E=EY,+E(,, P@=pd +pd and pO-9

rad
consider the first KK and winding modes along a small di-=p(®_ 91 p(®_d "by carefully taking into account the adia-

rection, i.e. the terms wit{N=N=0m;=(1,0,...,0)n;  baticity condition (30). The pressure?> % for the small
=0} (as well asm; andn; exchangellin Eqg. (A6), plus the  dimensions vanishes at the self-dual critical radius1.
remaining 8-d inequivalent permutations. The enerBf),  Therefore it is expected that the effect of the massive states
and pressure®\), and P79 along the large and small for the small dimensions is weak around 1. In fact we

dimensions associated with these states are simply evaluatggve numerically found that this is the case. As seen from the
starting from the general expressioh6). The equation of case(b) in Fig. 4, the evolution of the small dimensions is

state for these leading order terms are hardly altered by including the massive mode for the initial
1-d value ofr very close to unity. From Eq47) one notes that
E@) — —VdC([:’)(d)[ d—l/z_K(dH)IZ(E) POY<0 for 0<r<1 and P, Y>0 for r>1 (the
r@nez 2 r asymptotic values are{};¥ -0 forr—0 andr—o). This

indicates that the pressure of the massive state makes the
small dimensions contract for<0r <1 while its effect tends

to expand the small dimensions for 1.

1-d The effect of the massive states emerges by choosing the
r(d“)IZTK(dH)/z(ﬂf) initial values ofrq that are slightly smaller or larger than

unity. For 0<r,<1 with v,>0, the small dimensions can be

+ r(d+1)/2?K(d+l)/2 ?

1 B, (,3)

J’_

s larger tharr =1 for large initial values ob. In this case the
+r@D2K (B | 1 (45  small dimensions continue to grow after they crossl.

When v is not large ¢o<1), the massive effect can lead to
B the contraction of the small dimensions due to the negative
) pressure for<1. As found from the casé) in Fig. 4, the

1
Psr?s)itzvdc(lg)(d){WK(d+l)/2<
r small dimensions always increase in the massless case,

r
whereas the small dimensions begin to contract if the mas-
+r(d“)’2K(d+1),2(,8r)}, (46) sive effect is included. Therefore we can keep the-(9
dimensions small (&r<1) for these initial conditions.
We have also made numerical simulations fer>1.

,3) When 1,>0 and v,>0, both large and small dimensions

r expand in the presence of positive pressureéo lis largely
negative, the small dimensions contract by passing through
_(d+3)/2 r=1. Meanwhile, if|vg|<1, the small dimensions can ex-
A K(dl)’Z(’Br)l’ @D hibit bouncing Withr|>1|, instead of crossing=1 [see the
case(a) in Fig. 4]. This means that the radiuscan grow in
whereK,, are modified Bessel functions, the prime denotesghe presence of the massive states. Since the small dimen-
derivative with respect to, and sions continue to expand after the bounce, this is not an ideal

) 1
Pﬁatd)=VdC(ﬂ)(d)B{mK(d1)/2(
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4.0 T - - - - the system by varying the valukwith 1<d<8. We found

35 | 3 that the numerical results are quite similar to the case ex-
w0 | K’/ plained above {=4). As long as the conditiongs,=| v
(@) andRy=ry~1, are satisfied, the small dimensions are kept

5 F e E small, while the large ones expand as required in the pres-
= 20 | TS ence of radiation and string matter.
We have also considered the case with the conservation of
KK and/or winding modes. Under this circumstance, the par-
wi ® : tition function must be taken summing only over the con-
080 b (€) mmmomommee oo eee e ] figurations that respect the conservation laws. As before, this
is done by introducing a chemical potential corresponding to
00 : ' ' ) ' each conserved quantity in the partition function. It turns out
t that no significant changes are found compared to the case

where no conservation laws are imposed.

15 F e

FIG. 4. The evolution of the small dimensions fib=4 when

the massive states are taken into accasntid curve. The dotted V. CONCLUSIONS

curves correspond to the case where the massive states are ne-

glected(only massless statesNe choose the initial conditiong, We have studied string-gas cosmology at finite tempera-
=1.0, uo=4.0, hy= — 16, Bo=12 With (a) vo=—0.1, vo=1.0, (b) ture 'in a torgidal univer.se. We' mqke use of the djlaton-
o= 0.1, 1=0.05, (¢) ¥o=0.1, vo=—1.0. gravity equations of motion, satisfying tHe— 1/R duality

symmetry, to study the evolution of the system, which is

case where the small dimensions stav small. Nevertheless tassumed adiabatic. Our setup is as follows: the universe, ini-
y : tﬁ?‘;’\lly homogeneous, isotropic and in thermal equilibrium, is

small dimensions can be made small compared to the larggie g it an ideal gas of closed strings. The 9 spatial di-

dimensions as long g80= vo. _ ~ mensions, compactified on a 9-torus, evolve adiabatically
When the massive states are taken into account, this givagarting from a Hagedorn regime.
rise to an extra source term for the enefgin Eq. (9). Then In order to find an acceptable equation of state that de-

|| gets larger compared to the pure massless case. Typcribes such a system in string theory at finite temperature,
cally this leads to the suppression of the RHS of @)) via  we evaluate the energy and pressure in a microcanonical ap-
the e” term, thereby vyielding the smaller expansion rate proach. Close to the Hagedorn regime, the scale faRtor
for the large dimensions. The large dimensions in the masexhibits a slow time evolution aroun@~1, as shown in
sive case grow slower relative to the massless case, as sefelg- 1. In this case the dynamics of the system is effectively
in Fig. 5. In addition, the massive effect suppresses thé&escribed by a nearly constant energy and negligible pres-
growth of B, i.e. the temperature decreases faster in théure. We found that the analytic solution in the Hagedorn
massless case. regime shows very good agreement with the full numerical
As expected, the massive terms get smaller as the initidlesult. No substantial changes are observed even when the
value of 8 is increased. For example, in the cases shown irfonservation of Kaluza-KleitkKK) and winding modes is
Figs. 4 and 5, the system is effectively described by thédmposed, as long as the conserved charges are of order one.
massless states f@,>15. We also analyzed the behavior of ~We have also investigated a “low” temperature regime, in
which the equation of state is derived in a canonical context.
e We first considered the dynamics of 3 “large” and 6 “small”
compact dimensions in the presence of a pure gas of radia-
tion (given by the massless staktek turns out, as expected,
that there exist interesting cosmological solutions where the
large dimensions continue to expand while the small dimen-
sions remain nearly constant and small relative to the large
ones(see Fig. 2 The attractor solutions for the large dimen-
sions can be described by the evolution of the standard ra-
diation dominant phase in FRW cosmology whereas the
small dimensions always asymptotically approach to a con-
stant value. We also found bouncing solutions for the large
dimensions if their Hubble rates are negative initialbee
Fig. 3.
We then analyzed the case where the massive string states
-20 0 20 40 60 80 100 ; . e >
t are taken into accountlln addition to .the pure radiation. The
presence of the massive states typically leads to a slower
FIG. 5. The evolution of the large dimensions ghdhat corre-  €xpansion of the “large” dimensions relative to the massless
sponds to the cage) in Fig. 4. The dotted curves correspond to the case(see Fig. . Meanwhile the behavior of the small di-
case where the massive states are negldotedsless states oply mensions strongly depends on the initial conditionsrfand

100 |
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r, resulting in either expansion or contraction of the smallworld-sheet torus, takes the following forfsee e.g[42]):
dimensions(see Fig. 4. The radiusr can be kept small as
!ong asr is initial_ly close to _unity,_since the pressure van- F@(g)— Vyq fl/Z dr foo dr, [A(r 7)o
ishes at the duality symmetric radius=1). The vanishing 277\/? PPy 7_(23+d)/2 '
of the pressure at=1 is a purely stringy effect, since it is
due to winding modes, whose negative contribution compen- * -
sates that of KK states. The important point is that, even in X >, e FPHATRIM,|2(7), (A1)
the presence of the massive state, there exist a wide range of p=1
the initial condition space for which the small dimensions arg here
stabilized around the self-dual radius and are kept small rela-
tive to the large ones. These behaviors are found to be insen- +oo
sitive to the number of large dir_nensiomis,We als_o <_:onsid- A(r;7)= 2 q(1/4)(m/r+nr)2a1/4)(m/rfnr)2, (A2)
ered the case for the conservation of KK and winding modes m
and found no substantial change compared to the case with-
out imposing the conservation laws. represents the contributions of the whole KK and winding

In this work we did not investigate the later stage of themodes along the small dimensionsis the so-called modu-
cosmological evolution. From the view point of cosmology, lar parameter of the world-sheet torus apd exp(d 7). In
it is important to have an inflationary stage in order to solvederiving Eq.(A1) the winding modes along the large dimen-
the major cosmological problentsuch as the flatness prob- sions have been completely neglected and the sum over the
lem) as well as to generate the seeds for large-scale structur€K modes has been approximated by an integral over con-
One way to address this problem is to assume that the dilatdinuous momenta. Note that in Eq. (A1) runs only over
(or modul) acquires mass, which may lead to inflation at positive odd numbers and correspond to taking the correct
later Stages_ Recenﬂy, for examp|e, an interesting proposﬂuantum statistic for bosons and fermions. Taklng only the
was made by Parry and Stddg], who showed that inflation term p=1 in the above sum corresponds to replacing the
can occur on a moving 3-brane due to the nonminimal couquantum bosonic or fermionic distribution with the classical
pling of the dilaton to the brane matter. It was also shown inMaxwell-Boltzmann distributionV is the volume of the
Ref. [41] that brane inflation could result from the negative large dimensions in (4?) units’
pressure of winding modes. Although it is not clear at present
whether these proposals are directly applicable to our string-
gas work, it is certainly of interest to extend the present Vo= —— o, (27R)?=R", (A3)

o NS (47r2)d2

analysis in that direction.

n=—om

The M, factor in Eq.(Al) encodes the contribution to the
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ported by the EC through the RTN network “The quantumfactor at levelN [D(0)=16, for exampl¢ The value ofN
structure of space-time and the geometric nature of fundacorresponds to each string mass level. Theand r, inte-

D(N)g. (A4)

mental interactions,” contract HPRN-CT-2000-00131. grals in Eq.(Al) can be easily performed. It is convenient to
consider the term wittN=N=m;=n;=0 in Eq. (Al) sepa-
APPENDIX: THE ONE-LOOP STRING PARTITION rately from the remaining ones. This is the contribution of
FUNCTION the purely massless states, which we will henceforth denote

asF,,q (Wwhere “rad” stands for radiation We get
A thermal canonical partition function at temperatdre

can be computed in the Euclidean approach by compactify- g R 5 +1 I

ing the time direction on a circle of lengiB=1/T. We are Fioh=— 5,00 F(T)(Arﬂ)( TRz (d+1)

then led to consider type IIA-B string theory with all ten

space-time directions compactified. For simplicity, we take X (1—27(@d+1)yg=d=1 (A5)

the tori to be all rectangulaj.e. simple products of circles

and compute the free energy for the case in whick @9  where £(x) is the Riemann zeta function. The remaining
spatial dimensions are compactified on small radii all equafmatter” terms give

to a common value denotad whereas the remaining di-

rections are taken very large, and all equalRoThe free

energy, after having unfolded the fundamental region of the “Recall that we are setting’ =1.
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L

mat

% (2 M)(d+1)/2

T mn pzl NEN Bp
X S +n-NoD(N)D(N)K (g 1) BPM),
(A6)

whereK 4 1), are modified Bessel functions, and

2
—7+n 2r2

E

+2(N+N).
(A7)

M=M(m;,n;,r;,N, N

The total free energy is given by

FO=F{Q+Fil (A8)
The infinite sum oveN andN is not always convergent. In
fact, the degeneracy factoi3(N), for large values of\,
have a leading exponential behavibi(N)~exp(2my2N).

On the other hand, for large values of its argument, the modi-
fied Bessel functiorK,,(z) admits an asymptotic expansion

whose leading term is-exp(—2). Hence, the sum ové\ and

N in Eq. (A6) converges only fo3> By =2m2. The tem-
peratureTy=1/8y is the Hagedorn temperature.

PHYSICAL REVIEW D 67, 123506 (2003

we can work with the canonical ensemble. On the other
hand, for high energy densities a microcanonical description
has to be used. In this case the energy density of states is
governed by the analytic structure of the canonical partition
function Z=exp(— BF), in the complexB plane. Taking into
account the leading singularities of Hé\1), we can param-
etrize the partition function as

7 ) ( nw
B—Bx] \B—PBw

eMBR)
Z(B,R)= (

18
, A9
B=Bn ) (A9
where 5 and 7 are defined by Eq(16) with B«x= 84
— nx andByw= Bn— nw- A(B,R) is an entire function irB.
The microcanonical energy distribution functidd(E), is
then given by

By+ie dp
Q(E):JBH_M Z—WiZ(ﬁ,R)eﬁE

#ﬁc 7o —Z(B,R)e’E, (A10)

I—H K,W

where Cy, Cx and Cy are the three contours encircling
respectively the poles iBy, Bk and By in the complexs

As long as we deal with a range of energies where Egplane. The entropy and the rest of the thermodynamical
(A1) converges and no large energy fluctuations are presemuantities easily follow from Eq(A10).
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