
PHYSICAL REVIEW D 67, 123505 ~2003!
Large scale magnetogenesis from a nonequilibrium phase transition in the radiation dominated era
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We study the generation of large scale primordial magnetic fields by a cosmological phase transition during
the radiation dominated era. The setting is a theory ofN charged scalar fields coupled to an Abelian gauge field,
that undergoes a phase transition at a critical temperature much larger than the electroweak scale. The dynam-
ics after the transition features two distinct stages: a spinodal regime dominated by linear long-wavelength
instabilities, and a scaling stage in which the nonlinearities and back reaction of the scalar fields are dominant.
This second stage describes the growth of horizon sized domains. We implement a recently introduced formu-
lation to obtain the spectrum of magnetic fields that includes the dissipative effects of the plasma. We find that
large scale magnetogenesis is very efficient during the scaling regime. The ratio between the energy density on
scales larger thanL and that in the background radiationr (L,T)5rB(L,T)/rcmb(T) is r (L,T);10234 at the
electroweak scale andr (L,T);10214 at the QCD scale forL;1 Mpc. The resulting spectrum is insensitive to
the magnetic diffusion length. We conjecture that a similar mechanism could be operative after the QCD chiral
phase transition.
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I. INTRODUCTION

A variety of astrophysical observations including Zeem
splitting, synchrotron emission, Faraday rotation measu
ments~RM! combined with pulsar dispersion measureme
~DM! and polarization measurements suggest the presen
large scale magnetic fields@1–6#. The strength of typical
galactic magnetic fields is measured to be;m G @2–4,6#
and they are correlated on very large scales up to galact
even larger reaching to scales of cluster of galaxies;1 Mpc
@2–5#. The origin of these large scale magnetic fields is s
a subject of much discussion and controversy. It is curre
agreed that a variety of dynamo mechanisms are efficien
amplifyingseed magnetic fields with typical growth ratesG
;Gyr21 over time scales;10–12 Gyr~for a thorough dis-
cussion of the mechanisms and models see@4#!. The ratio of
the energy density of the seed magnetic fields on sc
larger thanL ~today! to that in the cosmic background radi
tion, r (L)5rB(L)/rcmb must ber (L;1 Mpc)>10234 for a
dynamo mechanism to amplify it to the observed value,
r (L;1 Mpc)>1028 for the seed to be amplified solely b
the gravitational collapse of a protogalaxy@5#.

There are also different proposals to explain the origin
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the initial seed. Astrophysical batteries rely on gradients
the charge density concentration and pressure and their
ciency in producing seeds of the necessary amplitude is
very much discussed@2,4#. Primordial magnetic fields tha
could be the seeds for dynamo amplification can be ge
ated at different stages in the history of the early Universe
particular during inflation, preheating and or phase tran
tions @3–5#. Primordial ~hyper! magnetic fields may have
important consequences in electroweak baryogenesis@7#, big
bang nucleosynthesis~see@3#!, the polarization of the cosmic
microwave background~CMB! @8# via the same physica
processes as Faraday rotation, and structure forma
@3,5,9#, thus sparking an intense program to study the ori
and consequences of the generation of magnetic fields in
early Universe@10–24#.

A reliable estimate of the amplitude and correlations
seed magnetic fields must include the dissipative proper
of the plasma, in particular the conductivity@11,13,14#. In
Ref. @25# we have introduced a formulation that allows us
compute the generation of magnetic fields from proces
strongly out of equilibrium. This formulation, which is base
on the exact set of Schwinger-Dyson equations for the tra
verse photon propagator is manifestly gauge invariant an
general for any matter fields and any cosmological ba
ground ~conformally related to Minkowski space-time!. In
the case in which strongly out of equilibrium effects ari
from long-wavelength fluctuations, such as during pha
transitions, this formulation allows to separate the contrib
©2003 The American Physical Society05-1



e
e

t
to
on
f
e

hi
an

-
i-

b

n

r
C
w
d
e
in
h
fi
d

all
m
e

at
on

ne

th

ra
on

ob
d

th
a
ic

Th
gt
th
rg

e
b
ld

a

ran-
the
the
ing
the
are

r-
n in

is in

rand
e
any
e
m-
o-
the
t

r
sso-

at
of

e

he
eld

y.

The
t ar-
n-

its

uge
g-

t

-
try

tic

le-
ion
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tion of the hard degrees of freedom which are in local th
modynamic equilibrium from that of the soft degrees of fre
dom that fall out of LTE~local thermal equilibrium! during
the phase transition and whose dynamics is strongly ou
equilibrium. This separation of degrees of freedom leads
consistent incorporation of the dissipative effects via the c
ductivity ~for details see@25#!. In that reference a study o
magnetogenesis in Minkowski space-time during a sup
cooled phase transitions was presented and the results
lighted the main aspects of the generation of magnetic
electric fields in these situations.

The goals of this article.In this article we study the gen
eration of large scale~hyper! magnetic fields by a cosmolog
cal phase transition during a radiation dominated era
implementing the formulation introduced in Ref.@25#. The
setting is a theory ofN charged scalar fields coupled to a
Abelian gauge field~hypercharge!. We consider the situation
when this theory undergoes a phase transition after the
heating stage and before either the electroweak or the Q
phase transition, since we expect that these transitions
lead to new physical phenomena. The nonperturbative
namics out of equilibrium is studied in the limit of a larg
numberN of ~hyper! charged fields and to leading order
the gauge coupling. The nonequilibrium dynamics of t
charged scalar sector features two distinct stages. The
one describes the early and intermediate time regime an
dominated by the spinodal instabilities which are the h
mark of the process of phase separation and domain for
tion and growth. This stage describes the dynamics betw
the time at which the phase transition takes place and th
which nonlinearities become important via the back reacti
The second stage corresponds to ascaling regimewhich de-
scribes the slower nonequilibrium evolution of Goldsto
bosons and the process of phase ordering@26# and growth of
horizon-sized domains. This scaling regime is akin to
solution found in theclassicalevolution of scalar field mod-
els with broken continuous symmetries after the phase t
sition that form the basis for models of structure formati
based on topological defects@27,28#.

The solution of the scalar field dynamics@26# is the input
in the expression for the spectrum of the magnetic field
tained in@25# to obtain the amplitude of the primordial see
generated during both stages.

We find that scaling stage is the most important for
generation of large scale magnetic fields. Large scale m
netic fields are generated via loop effects from the dynam
of modes that are at the scale of the horizon or smaller.
resulting spectrum is rather insensitive to the diffusion len
scale which is much smaller than the horizon during
radiation dominated era. The ratio of the magnetic ene
density on scales larger thanL ~today! to the energy density
in the background radiationr (L,h)5rB(L,h)/rcmb(h) is
summarized in a compact formula@Eq. ~4.34!#. For L
;1 Mpc ~today! we find r (L,h);10234 at the electroweak
scale andr (L,h);10214 at the QCD scale, suggesting th
possibility that these primordial seeds could be amplified
dynamo mechanisms to the values of the magnetic fie
consistent with the observed ones on these scales.

In Sec. II we introduce the model; in Sec. III we summ
12350
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rize the dynamics in the different stages after the phase t
sition and discuss the dynamics of gauge fields including
dissipative effects of the plasma. In Sec. IV we compute
spectrum of the primordial magnetic field generated dur
the different stages and assess the regime of validity of
approximations invoked. Our results and conclusions
summarized in Sec. V.

II. MAGNETIC FIELDS IN FRIEDMANN-ROBERTSON-
WALKER COSMOLOGY

The cosmological setting in which we are primarily inte
ested corresponds to a symmetry breaking phase transitio
a radiation dominated universe. Such a phase transition
principle different from the electroweak one1 and presum-
ably occurs at a much higher energy scale, such as the g
unified theory~GUT! scale;1015 GeV but is assumed to b
described by a particle physics model that includes m
fields with ~hyper!-charge either fermionic or bosonic. W
will not attempt to study a particular gauge theory pheno
enologically motivated by some GUT scenario, but will f
cus our study on a generic scalar field model in which
scalar fields carry an Abelian~hyper!charge. The simples
realization of such model is scalar electrodynamics withN
charged scalar fieldsf r , r 51, . . . ,N and one neutral scala
field c whose expectation value is the order parameter a
ciated with the phase transition.

This model is inspired by theO(4) linear sigma model
which is the low energy effective theory of QCD th
describes chiral symmetry breaking and the dynamics
pions@29,30#. In this low energy effective theory theneutral

field associated withc;^q̄q& acquires an expectation valu
while the three pion fieldsp6, p0 are the~quasi!-Goldstone
modes associated with chiral symmetry breaking. T
charged pions couple minimally to the electromagnetic fi
@29# and obviously chiral symmetry breaking~a nonzero ex-
pectation for the neutral field! preserves the gauge symmetr
We argue later that the model@see Eq.~2.1!# can describe
magnetogenesis during the QCD phase transition.
mechanisms of magnetogenesis discussed in the presen
ticle is therefore akin to the photoproduction during the no
equilibrium chiral phase transition@31#.

The neutral field is not coupled to the gauge field and
acquiring an expectation value does not break theU(1)
gauged symmetry. This guarantees that the Abelian ga
symmetry identified with either hypercharge or electroma
netism isnot spontaneously brokento describe the correc
low energy sector with unbrokenU(1)EM . We will take the
neutral and theN complex~charged! fields to form a scalar
multiplet under anO(2N11) isospin symmetry. As the neu
tral field acquires an expectation value this isospin symme
is spontaneously broken toO(2N). The explicit breaking of
the O(2N11) symmetry induced by the electromagne
coupling further reduce this symmetry toSU(N)3U(1). If

1If the electroweak phase transition is weakly first order, nuc
ation will be almost indistinguishable from spinodal decomposit
and the phenomena studied here may be of relevance.
5-2
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LARGE SCALE MAGNETOGENESIS FROM A . . . PHYSICAL REVIEW D67, 123505 ~2003!
the neutral field acquires a non vanishing expectation va
the isospin symmetry breaking does not affect the massl
ness of the photon~it will obtain a Debye screening mas
from medium effects!.

The action that describes this theory in a general cos
logical background is given by

S5E d4xA2gFgmnS 1

2
]mc]nc1Dmf* Dnf D

1m2S c2

2
1f* f D2

l

4N S c2

2
1f* f D 2

2
1

4
FmnF abgmagnbG ~2.1!

where

Dm5]m2 ieAm and Fmn5]mAn2]nAm ~2.2!

and

f†f5(
r 51

N

f r
†f r ,

Dmf†Dmf5(
r 51

N

~]m1 ieAm!f r
†~]m2 ieAm!f r .

Furthermore, anticipating a nonperturbative treatment of
nonequilibrium dynamics of the scalar sector in a largeN
expansion, we have rescaled the quartic coupling in suc
way as to display the contributions in terms of powers
1/N, keepingl fixed in the largeN limit.

A Friedmann-Robertson-Walker line element

ds25dt22a2~ t !dxW2, ~2.3!

is conformally related to a Minkowski line element by intr
ducing the conformal timeh and scale factorC(h) as

h5E dt

a~ t !
, C~h!5a„t~h!…. ~2.4!

In terms of these the line element and metric are given b

ds25C2~h!~dh22dxW2!, gmn5C2~h!hmn , ~2.5!

where hmn5diag(1,21,21,21) is the Minkowski metric.
Introducing the conformal fields

Am~h,xW !5A„t~h!,xW…, F r~h,xW !5C~h!f r„t~h!,xW…,

1<r<N, C~h,xW !5C~h!c„t~h!,xW…

and in terms of the conformal time, the action now reads
12350
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S5E dhd3xFhmnS 1

2
]mC]nC1DmF* DnF D2M2~h!

3S C2

2
1F* F D2

l

4N S C2

2
1F* F D 2

2
1

4
FmnFabhmnhabG ~2.6!

with

M2~h!52m2C2~h!2
C9~h!

C~h!
, Dm5]m2 ieAm ,

Fmn5]mAn2]nAm , ~2.7!

and the primes refer to derivatives with respect to conform
time. Obviously the conformal rescaling of the metric a
fields turned the action into that of a charged scalar fi
interacting with a gauge field inflat Minkowski space-time,
but the scalar field acquires a time dependent mass term2 In
particular, in the absence of electromagnetic coupling,
equations of motion for the gauge fieldAm are those of a free
field in flat space time. This is the statement that gauge fie
areconformallycoupled to gravity and no generation of ele
tromagnetic fields can occur from gravitational expans
alone without coupling to other fields or breaking the co
formal invariance of the gauge sector. The generation
electromagnetic fields must arise from a coupling to ot
fields that are not conformally coupled to gravity, or by ad
ing extra terms in the Lagrangian that would break the c
formal invariance of the gauge fields@11#.

The conformal electromagnetic fieldsEW,BW are related to
the physicalEW ,BW fields by the conformal rescaling

EW 5
EW

C2~h!
, BW 5

BW
C2~h!

, ~2.8!

corresponding to fields of scaling dimension two. A gau
invariant formulation leads to the following Lagrangian de
sity ~for details see@25,32#!

L5
1

2
]mC]mC1]mF†]mF1

1

2
]mAW T•]mAW T1

1

2
~¹A0!2

2M2~h!S 1

2
C21F†F D2

l

4N S 1

2
C21F†F D 2

2 ieAW T•~F†¹F2¹F†F!2e2~AW T
22A0

2!F†F

2 ieA0~Ḟ†F2F†Ḟ!, ~2.9!

whereF is a gauge invariantlocal field which is nonlocally
related to the original fields, andAW T is the transverse com
ponent of the vector field (¹W •AW T50) andA0 is a nonpropa-

2Here we neglect the effect of the conformal anomaly@20#.
5-3
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BOYANOVSKY, de VEGA, AND SIMIONATO PHYSICAL REVIEW D67, 123505 ~2003!
gating field as befits a Lagrange multiplier, its dynamics
completely determined by that of the charge density@25,32#.

The main point of this discussion is that the framework
obtain the power spectrum of the generated magnetic fi
presented below is fullygauge invariant.

The theory described by the Lagrangian Eq.~2.6! above
bears some similarity to the scalar-gauge field theory
describes semilocal strings@33–35#, however there are im
portant differences between the model studied here and
studied in Refs.@33–35#: ~i! we assume that symmetr
breaking occurs along the neutral direction thus the char
scalar fielddoes notacquire an expectation value, whereas
the semilocal theory of Refs.@33–35# the charged fields ac
quire an expectation value, and the gauge symmetry is s
taneously broken.~ii ! We study the dynamics beginning from
an initial state in LTE above the critical temperature, follo
the dynamicsthrough the phase transition and compute sy
tematically to lowest order inaem the nonequilibrium spec
trum of magnetic fields generated by the process of ph
separation. The goal of the studies in Ref.@34# are very dif-
ferent focusing on the rate of production of semilocal strin
The initial state studied in these references places the s
field at the minimum of the~classical! potential and the
phases are distributed at random, with particular initial c
ditions on the gauge fields, namely conditions correspond
to zero temperature, broken symmetry states. Furtherm
the dynamics in Ref.@34# is studied in flat space time with a
ad hocdissipative term for the scalar field.

In contrast, we study the full quantum dynamics beg
ning from a state of LTE aboveTc evolving the quantum
Heisenberg equations of motion and calculate the magn
field consistently to lowest order ina. Thus while the theory
studied here and that proposed in Refs.@33–35# bear a re-
semblance, they describe very different physics and we s
a different set of phenomena.

III. PHASE TRANSITIONS IN RADIATION DOMINATED
COSMOLOGY

A. Kinematics

We consider a phase transition corresponding to the
namics of small field models where the scalar field has v
ishing expectation value but with a symmetry breaking p
tential, namely at the top of the potential hill.

In a radiation dominated cosmology, the initial state
that of local thermodynamic equilibrium at an initial tem
peratureT@Tc . Using finite temperature field theory in a
expanding background geometry, it is shown@26# that the
effective time dependent mass term depends on the effe
time dependent temperatureT(t)5T/a(t) which reflects the
cooling from the cosmological expansion~see below!. Hence
at a given time the temperature equals the critical and
phase transition occurs. Field modes with wavectors m
larger than the symmetry breaking scalem will remain in
LTE and will not be affected by the symmetry breaking d
namics@36#.

We normalize the scaling factorC(h) at the reheating
time h5hR in such a way thatC(hR)51 then the explicit
expression forC(h) reads
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C~h!5HRh ~3.1!

whereHR is the Hubble constant at the reheating time,HR

5hR
21 .

We can relateHR to the reheating temperature and t
Planck massG21/2 through the equation

r5
p2g*

30
TR

4 ~3.2!

and the Einstein-Friedmann equation

HR5S 8

3
pGr D 1/2

5
TR

2

M*
, ~3.3!

whereg* is the effective number of degrees of freedom
the reheating temperature and we introduced the scaleM* of
the order of the Planck mass

M* 5
3A5

2p3/2

1

Ag* G
. ~3.4!

In radiation dominated epoch the time dependence of
mass term~2.7! is given by the expression

2M2~h!5m2HR
2h25m̃4h2, ~3.5!

where we see the emergence of a new mass scale

m̃5AmHR. ~3.6!

This scale will play an important role in the following dis
cussion and in the comparison with results obtained
Minkowski space-time@25#. There is a last scale which play
a relevant role, the horizon scaler H(h) which is fixed by the
evolution on the time of the Hubble constant:

r H~h!5
1

H~h!
5C~h!h5HRh2. ~3.7!

Modes with physical wavelengthlphys52p/kphys inside the
horizon

lphys~h!;kphys
21 ~h!,r H~h! ~3.8!

are causally connected; modes outside the horizon are c
ally disconnected.

The relaxation rate of hard modes of the charged field
given by @37#

G~h!;aT~h!ln
1

a
, ~3.9!

where the effective temperature varies with time as

T~h!5
TR

C~h!
~3.10!

and the expansion rate given by
5-4
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LARGE SCALE MAGNETOGENESIS FROM A . . . PHYSICAL REVIEW D67, 123505 ~2003!
H~h!5
T2~h!

M*
. ~3.11!

Therefore,

G~h!

H~h!
;

1016

T~h!~GeV!
. ~3.12!

Thus hard modes are in thermal equilibrium forT(h)
<1015 GeV.

In particular, modes withk;TR are the hard modes tha
give the leading contribution to the conductivity in the hig
temperature limit@38,39#. Modes withk,m will manifest
the long-wavelength spinodal instabilities and their dynam
will be strongly out of equilibrium@36,40–42#. Their ampli-
tude becomes nonperturbatively large@36,40–42# and will be
responsible for the nonequilibrium generation of the prim
dial magnetic field@25#.

Using Eqs.~3.1! and ~3.10! we can write the conforma
time as

h5
TR

HRT~h!
. ~3.13!

As it will become clear below an important cosmologic
quantity is the product

kh5
k

C~h!
C~h!h5

kphys~h!

T~h!
T~h!r H~h!5

2p

LTR

M*
T~h!

.

~3.14!

The ratio

kphys~h!

T~h!
5

2p

LTR
~3.15!

is a kinematical invariant. Its value today is determined
the scaleL which will be typically chosen to correspond to
galactic scale or the scale of galaxy clusters, and the t
perature of the CMB. It is given by

LTR53.731025S L

MpcD . ~3.16!

Therefore,

kh;1029
TEW

T~h! S Mpc

L D
5H 10222 for T~h!5TR;1015 GeV,

1029 for the EW transition,

1026 for the QCD transition

~3.17!

for L;1 Mpc. Thus, during the regime of interest in th
article, kh!1 for scales of galaxy clusters. A noteworth
aspect of Eq.~3.17! is that the wavelengths corresponding
the scale of galaxies or clusters today were well outside
horizon during the radiation dominated era when the e
troweak and QCD phase transitions occurred.
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Another important quantity is the ratio of the wave vect
k of the primordial magnetic field to the conductivity.

As it will be discussed below, the physical conductivity
given by

s~h!5
CN~h!T~h!

a ln
1

aN~h!

, ~3.18!

whereC is a constant ofO(1), N(h) is the number of ul-
trarelativistic charged species, and we have neglected
~logarithmic! dependence on the energy scale in the runn
coupling constant. For this discussion we will neglect t
time dependence ofN(h) assuming that the number o
charged ultrarelativistic species remains constant~this as-
sumption can be relaxed without qualitative modifications
the main argument!. Under this assumption

s~h!5
sR

C~h!
, ~3.19!

with sR being thecomovingconductivity determined at the
time of reheating

sR5
CNTR

a ln
1

aN

. ~3.20!

Thus the ratio,

kphys~h!

s~h!
;

2pa

NLTR
;10227S Mpc

L D , ~3.21!

neglecting logarithmic corrections.
Furthermore,

s~h!r H~h!;
M*

aT~h!
;H 105 for T~h!5TR;1015 GeV,

1018 for the EW phase transition,

1021 for the QCD phase transition
~3.22!

where we have neglected logarithmic corrections. Theref
sRh@1 throughout the radiation dominated era conside
in this article. The regimesRh@1; k2h/sR!1 is dominated
by the~slow! hydrodynamic relaxation of the magnetic fiel

Another relevant estimate involves the~comoving! diffu-
sion lengthjdi f f(h)5Ah/sR

jdi f f~h!

h
;AaT~h!

M*

;H 1023 for T~h!5TR;1015 GeV,

1029 for the EW phase transition,

10210 for the QCD phase transition

~3.23!
5-5
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where again we have neglected logarithmic terms. There
the diffusion length is much smaller than the Hubble rad
during the radiation dominated era. Finally, combining E
~3.23! and ~3.17! we find

10225<kjdi f f~h!<10216, ~3.24!

between reheating and the time of the QCD phase transi
The contribution from the hard modes of both the charg

scalar and gauge fields which remain in local thermodyna
equilibrium lead to an effective mass for the scalar field. T
thermalmass is obtained from the long-wavelength limit
the scalar field self-energy and includes the hard ther
loop contributions from the gauge and scalar fields@43,44#.
This thermal mass is given by

mT
25

TR
2

24
~l13e2!. ~3.25!

Finally, another important quantity is the Debye screen
length that determines the scale at which long-range fo
are screened by the polarizability of the medium. In an
trarelativistic plasma, the comoving Debye screening len
is given by@43,44#

jD;
1

eTR
~3.26!

the ratio of the Debye screening length to the Hubble rad
is given by

jD

dH
;

1

e

T~h!

M*
. ~3.27!

Hence jD!dH(h) for T(h)<1016 GeV, thus long range
forces are screened over very short distances. The forma
of long-wavelength domains with typical size of the order
the Hubble radius@26# leading to strong charge and curre
fluctuations that will seed magnetic fields, will not be hi
dered by long-range forces, which are effectively scree
over sub-horizon distances.

Magnetic field generation via charge asymmetries dur
a period in which electromagnetism was spontaneously
ken was previously studied by Dolgov and Silk@45# who
argued that long-range forces would be screened by
Higgs mechanism. This is different from the situation stud
in this article, where theU(1) symmetry associated wit
electromagnetism~rather hypercharge! is not spontaneously
broken. Long range forces are screened by the plasm
situation not considered in@45#.

B. Scalar fields dynamics

For completeness and to highlight the aspects of the n
equilibrium dynamics most relevant to the generation
magnetic fields, we summarize the main features of sc
field dynamics. For further details the reader is referred
@40–42#. In what follows we will neglect the back reactio
of the gauge fields on the dynamics of the scalar fields.
rationale for this is that the main nonequilibrium proces
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that lead to magnetogenesis will be nonperturbative in
scalarsector and result from the instabilities associated w
the phase transition. The contribution from the gauge fie
in the form of self-energies for the scalar fields, do not fe
ture the instabilities associated with the phase transition
will, furthermore, be suppressed at least by one power oa
the ~hyper! electromagnetic coupling constant as compa
to the scalar self-interaction.

As described above, the nonequilibrium evolution
long-wavelength modes begins with the spinodal instabilit
which result in an exponential growth of the amplitudes
long-wavelength fluctuations. When the nonlinearity b
comes of the same order as the tree-level terms in the e
tions of motion, the back reaction of these fluctuations sh
off the instabilities @40–42#. Therefore a nonperturbativ
treatment of the dynamics is required. The largeN limit of
the scalar sector allows a systematic nonperturbative tr
ment of the dynamics which is renormalizable and mainta
the conservation laws@40,41#.

We will therefore study the dynamics in leading order
the largeN limit that already reveals the important nonequ
librium features of the evolution.

1. Radiative corrections

The contribution from the gauge fields to the equations
motion of the long-wavelength modes of the scalar fie
arise through self-energy corrections. To lowest order ina
these are dominated by the hard modes of the gauge fi
with momenta;T ~hard thermal loops! which lead to a con-
tribution to the thermal mass given byeT/A8 @43,44#. Thus
the lowest order radiative corrections had already been
counted for in the thermal mass Eq.~3.25!.

The nonequilibriumeffects in the gauge contribution o
the scalar self-energy will arise from polarization loops
the photon propagator. This in turn will induce nonequili
rium radiative corrections to the self-energy of the sca
fields of the orderO(a2). These small contributions can b
safely neglected in this context. Thus, to this order the rad
tive corrections to the scalar field from the gauge field pro
gator in the scalar self-energy are accounted for in the th
mal mass.

Hence the dynamics of the scalar field is studied along
same lines as presented in Refs.@40–42# but the only differ-
ence is in the initial conditions in the modes that reflect
thermal mass in LTE.

Since symmetry breaking is chosen along the direction
the neutral fieldC we write

C~xW ,h!5ANw~h!1x~xW ,h!, ^x~xW ,h!&50 ~3.28!

where the expectation value is taken in the time evolv
density matrix or initial state. The leading order in the lar
N limit is obtained either by introducing an auxiliary fiel
and establishing the saddle point or equivalently by the f
torizations@40,41#
5-6



he
a

io

n
er
x

itia

a
in

th

-
ol
he

c
s

s-
r

h
-

mic

lly
ther-
e-
e,
a

h-
that
and
the
be-
e

c-

c-

es
per
the
s
rm
b-

ion
s re-

ld

LARGE SCALE MAGNETOGENESIS FROM A . . . PHYSICAL REVIEW D67, 123505 ~2003!
~F†F!2→2^F†F&F†F

xF†F→x^F†F&.

This factorization that yields the leading contribution in t
largeN limit makes the Lagrangian for the scalar fields qu
dratic ~in the absence of the gauge coupling! at the expense
of a self-consistent condition: thus charged fieldsf acquire a
self-consistent time dependent mass.

The dynamics is determined by the Heisenberg equat
of motion of the neutral fieldC and the charged fieldsF
@40–42#. We will consider that at the onset of the radiatio
dominated era, the system is in the symmetric high temp
ture phase in local thermal equilibrium with a vanishing e
pectation value for the scalar fields. Consequently, the in
conditions are ^C(xW ,0)&5ANw(0)50, ^Ċ(xW ,0)&
5ANẇ(0)50, ^F r(0,xW )&50, ^Ḟ r(0,xW )&50.

In the absence of explicit symmetry breaking perturb
tions the expectation value of the scalar field will rema
zero throughout the evolution, thusw[0.

It is convenient to introduce the mode expansion of
charged fields

F r~h,xW !5E d3k

A2~2p!3
@ar~kW ! f k~h!eik•W xW

1br
†~kW ! f k* ~h!e2 ik•W xW#, r 51, . . . ,N,

~3.29!

with ^ar(kW )&5^br(kW )&50.
In leading order in the largeN limit, the Heisenberg equa

tions of motion for the charged fields translate into the f
lowing equations of motion for the mode functions and t
expectation value of the neutral field forh.hR @40–42#:

F d2

dh2
1k22M2~h!1

l

2
w2~h!1

l

2N
^F†F&G f k~h!50,

F d2

dh2
2M2~h!1

l

2
w2~h!1

l

2N
^F†F&Gw~h!50.

~3.30!

Obviously, the initial conditionsw(0)50, ẇ(0)50 imply
thatw(h)50 for all times. That is,w(h)50 is a fixed point
of the dynamics.

We must now append initial conditions for the mode fun
tions f k(h). The initial conditions on the mode function
f k(h) depend on the value of the wave vectork as compared
to the horizon scaleHR

21 at the reheating time:
k.HR : for fluctuations inside the horizon, we may a

sume thermal quasiparticle boundary conditions at the
heating temperature:

f k~hR!5
1

AWk

, f k8~hR!52 iWkf k~hR!, Wk5Ak21mT
2,

~3.31!
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where the frequenciesWk are quasiparticle frequencies wit
thermal massmT

2 given by Eq.~3.25! at the reheating tem
perature,

Wk5Ak21mT
2.

For these modes the assumption of local thermodyna
equilibrium is well motivated and we have

^ar
†~kW !as~kW !&5^br

†~k!bs~k!&5d rsnk , nk5
1

eWk /T21
.

~3.32!

k,HR : for superhorizon fluctuations, which are causa
disconnected at the reheating time, we cannot assume a
malized distribution. The correct distribution has to be d
rived by following the dynamics from the inflationary stag
when the fluctuations were well inside the horizon. While
complete discussion of the initial conditions is left to a fort
coming article, the case under consideration we will see
the dependence on the initial conditions is rather weak
only during the initial stages of the phase transition. For
later stages, dominated by the scaling solution described
low, the dynamics isuniversaland does not depend on th
initial conditions. We will simply assume that bothWk and
nk have a finite nonzero limit ask→0 namely the only im-
portant quantities for the dynamics of long-wavelength flu
tuations are

lim
k→0

Wk5W0 , 0,W0,`, lim
k→0

nk5n0 , 0,n0,`.

~3.33!

With this choice of the initial state we find the back rea
tion term to be given by

l

2N
^F†F&5

l

4E d3k

~2p!3
u f k~h!u2@112nk#. ~3.34!

This expectation value is ultraviolet divergent, it featur
quadratic and logarithmic divergences in terms of an up
momentum cutoff. The quadratic divergence and part of
logarithmic divergence~the one proportional to the mas
term! are absorbed in a renormalization of the mass te
m2→mR

2 and the remainder logarithmic divergence is a
sorbed into a renormalization of the scalar couplingl
→lR . While these aspects are not relevant for the discuss
here, they are mentioned for completeness, the reader i
ferred to@26# for details.

After renormalization the self-consistent fie
(l/2N)^F†F& is subtracted twice, and is given by~for de-
tails see@26# and references therein!
5-7
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BOYANOVSKY, de VEGA, AND SIMIONATO PHYSICAL REVIEW D67, 123505 ~2003!
l

2N
^F†F&5lR@J~h!1I ~h!#,

lRJ~h!5
lR

4p2E0

`

q2dqu f q~h!u2nq ,

lRI ~h!5
lR

8p2E0

`

q2dqH u f q~h!u22
1

q

1
Q~q2K2!

2q3 F2mR
21

l

2N
^F†F&G J

~3.35!

and the mass and coupling are replaced by their renorma
counterpartsmR

2 ;lR respectively. HereK is an arbitrary
renormalization scale. In order to avoid cluttering of notati
we now drop the subscriptR for renormalized quantities, in
what followsm;l stand for the renormalized quantities.

The finite temperature termJ(h) has contributions from
short wavelengths for which the mode functions are of
form f q(h);eiqh/Aq and contributions from long wave
lengths. The contribution from short wavelengths is the sa
as that in equilibrium in Minkowski space time and dete
mines the hard-thermal loop@43,44# contribution to the self-
energy given by@26#

JHTL5
TR

2

24
~3.36!

where we have used that the short wavelength modes a
thermal equilibrium at the reheating temperatureTR . This
hard thermal loop contribution has been self-consistently
counted for in the thermal mass of the scalar field Eq.~3.25!.

It is convenient to separate the hard thermal loop com
nent Eq.~3.36! from Eq. ~3.35! and define

lS~h!5
l

8p2E0

`

q2dqH u f q~h!u2~112nq!

2
1

q F11
2

eq/TR21
G1

Q~q2K2!

2q3

3@2m21lS~h!#J . ~3.37!

After renormalization and in terms of dimensionless qua
ties, the nonequilibrium dynamics of the charged scalar fie
is completely determined by the following equations of m
tion @26,40–42#:

F d2

dh2
1M 2~h!1q21lS~h!G f q~h!50,

f q~hR!5
1

AWq

, f q8~hR!52 iWqf q~hR! ~3.38!
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with Wq given by Eq.~3.5! and the effective,~conformal!
time dependent mass is given by

M 2~h!5C2~h!m2F TR
2

C2~h!Tc
2

21G ~3.39!

Tc
25

24m2

l13e2
, ~3.40!

where we have usedw50 as a fixed point of the dynamics
The time dependent mass termM 2(h) includes the high

temperature corrections and clearly displays the cooling
sociated with the expansion in the form of a time depend
effective temperatureTe f f(h)5TR /C(h). The phase transi-
tion occurs at a timehc when Te f f(hc)5Tc , thus for h
.hc the effective time dependent mass term isM 2(h)
5M2(h)52m2HR

2h252m̃4h2 as given by Eqs.~3.5!,
~3.6!.

The full time evolution of mode functions in a radiatio
dominated cosmology has been studied analytically and
merically in detail in Refs.@26,40#. Here we highlight the
most important features which are necessary ingredient
study magnetogenesis. The reader is referred to@26# for a
more comprehensive discussion.

The are two main dynamical stages in the evolution:
Spinodal stage: this is the stage immediately after

phase transition which is dominated by spinodal decomp
tion and the growth of long-wavelength fluctuations@25#.
This stage spans the time scalehc<h<hnl where the non-
linear time scalehnl is determined by~see below!

hnl
2 5

lS~hnl!

m̃4
. ~3.41!

During this stage the back reaction, determined by the te
lS(h), can be neglected and the dynamics islinear.

Scaling stage: This is a stage in which the non-linea
encoded by the back-reaction termlS(h) are very impor-
tant and compete with the tree level term in the equations
motion. This stage is described by a scaling solution of
equations of motion for the modes with small wave vect
and describes the nonequilibrium relaxation of lon
wavelength fluctuations@26–28#.

2. Spinodal stage

After the phase transition but before the nonlinear tim
scale after which the back reaction becomes importa
namely for hc!h,hnl the time dependent mass term
given byM 252m̃4h2, and for weak couplingl!1 we can
neglect the back reactionlS(h). The equations of motion
for the mode functions during this stage are given by

F d2

dh2
1q22m̃4h2G f q~h!50, q,m̃2h. ~3.42!

We note that forTc;1015 GeV
5-8
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LARGE SCALE MAGNETOGENESIS FROM A . . . PHYSICAL REVIEW D67, 123505 ~2003!
m̃hc5SAl13e2

24

M*
Tc

D 1/2

;10 ~3.43!

and therefore forh.hc we are in the regimem̃h@1. It is
clear that the mode functionsf q(h) will increase exponen-
tially in the band ofunstablewave vectorsq,m̃2h. Equa-
tion ~3.42! can be solved exactly in terms of Hermite fun
tions @46#

f q~h!5bqe2(1/2)(m̃h)2
H (1/2)(q2/m̃221)~m̃h!

1aqe(1/2)(m̃h)2
H2(1/2)(q2/m̃211)~ i m̃h! ~3.44!

where the constantsaq andbq are fixed by the initial condi-
tions ~3.38!. For m̃h@1 we can use the asymptotic behavi
of the Hermite functions@46#,

Hn~z! 5
z@1

~2z!nF11OS 1

z2D G
and we find for the mode functions,

f q~h! 5
m̃h@1

aqe(1/2)(m̃h)2
~m̃h!2q2/m̃221F11OS 1

m̃2h2D G .

~3.45!

Since the exponentially damped solution becomes neglig
the phases of the mode functionsf q(h) freeze, namely, they
become constant in time and are slowly varying functions
q for long wavelengths.

This is very similar to the situation in Minkowski spac
time, where the mode functions however increase asemt, i.e.
much slower. In any case the soft (q→0) modes are the
most amplified at the end of the evolution, therefore,
quantum fluctuations~3.37! are dominated by the lower in
tegration boundq50.

We notice that the freezing of the long-wavelength mo
functions will play an important role in the discussion abo
the magnetic field generation, since it assures the inde
dence of the final result from the initial particle distributio
function, except for subleading corrections.

The physics of the phase transition is essentially the s
as in Minkowski space-time@25,40–42#, since the exponen
tial growth of modes in the spinodally unstable band w
make the back reaction termlS(h) begin to grow and even
tually cancel the term2m̃4h2 in the equations of motion~for
h@hc the effective time dependent temperature vanishe!.

This will happen at anonlinear time scale defined by
@40,41#

lS~hnl!5m̃4hnl
2 . ~3.46!

Two important aspects are described byhnl : ~i! at this time
scale the phase transition is almost complete sincelS(hnl)
5m̃4hnl

2 means thatl^F†F&/2N5m̃4hnl
2 , namely the mean

square root fluctuations in the scalar field probe the mani
of minima of the potential.
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~ii ! At h;hnl the mean square root fluctuations of th
field are of orderM2(hnl)/l probing the vacuum manifold
and the nonlinearities become very important. The back
action lS(hnl) becomes comparable toM2(hnl) and the
instabilities shut off. Thus forhc,h,hnl the dynamics is
described by thelinear spinodal instabilities while forh
.hnl a full nonlinear treatment of the evolution is require
As it will be discussed below this later stage is described
the emergence of a scaling solution.

For hnl.h@m̃21 the asymptotic form~3.45! for the
mode functions apply and we find for the quantum fluctu
tions ~3.37! which dominated by the lower integration boun
q50,

lS~hnl!5l~112n0!
m̃2ua0u2

32p5/2

em̃2hnl
2

m̃hnl@ ln~m̃hnl!#
3/2

3F11OS 1

m̃hnl
D G . ~3.47!

This leads to the following estimate for the spinodal time
weak couplingl

hnl
2 5

1

m̃2 F lnS 32p5/2

l~112n0!ua0u2m̃
D

1
3

2
ln lnS 32p5/2

l~112n0!ua0u2m̃
D 1OS ln ln ln

1

l D G .

~3.48!

The important point is that the dependence on boundary c
ditions and the initial distribution is solelylogarithmic, thus
we may expect out predictions to be very robust with resp
to changes of the initial conditions. In particular, the sc
factor at this nonlinear time scale is given by

C~hnl!5
TR

AM* Tc
S 24

l13e2D 1/4

Aln
1

lF 11OS 1

ln
1

l
D G ,

~3.49!

where we have used Eqs.~3.3! and ~3.40!.
The amplitude of the long-wavelength modes at the n

linear time, roughly speaking at the end of the phase tra
tion is approximately

u f q~hnl!u5A 32p5/2

l~112n0!m̃
F ln

32p5/2

l~112n0!G
1/42q2/2m̃2

.

~3.50!

As we will discuss in detail below this nonperturbative sca
will ultimately determine the strength of the magnetic fiel
generated during the phase transition.

During the intermediate time regime the equal times c
relation function is approximately
5-9
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^Fq,a
† ~h!Fq,b~h!&5da,buaqu2em̃2h2

e2(q2/m̃211)ln[m̃h] .
~3.51!

and its Fourier transform for long wavelengths is of the fo

^Fa~xW ,h!Fb~0W ,h!&5da,bua0u2
em̃2h2

m̃h
m̃3F p

ln m̃h
G 3/2

e2xW2/j2(h)

~3.52!

which determines the time dependent correlation length
the scalar field,

j~h!5
2

m̃
Aln m̃h52Aln~AmHRh!

mHR

. ~3.53!

This expression is valid in the intermediate time regimehc
,h,hnl during which the nonequilibrium dynamics
dominated by the spinodal instabilities. The detailed analy
of the dynamics in Refs.@40–42# and the discussion of th
main features presented above can be summarized as
lows:

At intermediate timesm̃21!h<hnl;m̃21Aln 1/l the
mode functions grow exponentially for modes in the spino
ally unstable bandq,M (h). The phase of these mode fun
tions freezes, namely, becomes independent of time a
slowly varying with momentum.

At a time scale determined by the spinodal time the b
reaction shuts off the instabilities and the phase transitio
almost complete. This can be understood from the followi
the back reaction becomes comparable with the tree-l
term ~for h.hR) when (l/2N)^F†F&'m̃4h2. This relation
determines that the mean square root fluctuation of the sc
field probes the minima of the tree level potential.

During the spinodal stage the correlation length of
scalar field grows in time and is given by Eq.~3.53!. This is
interpreted as the formation of correlated domains that g
in time, and is the hallmark of the process of phase sep
tion and ordering. This correlation length will be importa
in the analysis of the correlation of magnetic fields later.

The large fluctuations associated with the growth of sp
odally unstable modes of the charged fields will lead tocur-
rent fluctuations which in turn will lead to the generatio
magnetic fields. Thus the most important aspect of the n
equilibrium dynamics of the charged fields during the ph
transition is that large fluctuations of the charged fields as
ciated with the spinodal instabilities will lead to the gene
tion of magnetic fields. Since the modes with longer wa
length are the most unstable the magnetic field gener
through the process of phase separation will be of lo
wavelength. Furthermore we expect that the magnetic fi
generated by these nonequilibrium processes will be co
lated on length scales of the same order as that of the cha
field above.

3. Scaling stage

A remarkable result of the evolution in the asympto
regime~when the effective temperature has vanished! found
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in Ref. @26# is that there is a very precise cancellation b
tween the tree level term2m2C2(h) and the back reaction
lS(h) in the equations of motion~3.38!. The self-
consistency condition requires that for a radiation domina
cosmology@26#

lS~h!2m2C2~h! 5
h→`

2
15

4h2
. ~3.54!

In this asymptotic regime the solutions of the equations
motion

F d2

dh2
1k22

15

4h2G f k~h!50 ~3.55!

are given by

f k~h!5AhFAk

J2~kh!

k2
1Bkk

2N2~kh!G . ~3.56!

This solution can be written in terms of the scaling variab

x5kh ~3.57!

in a more illuminating form

f k~h!5Akh
5/2

J2~x!

x2
1Bk

x2N2~x!

h3/2
. ~3.58!

As discussed in detail in Ref.@26#, the relevant integrals are
dominated byx;1, namely by modes with wavelength o
the order of the Hubble radius, thus the second contribu
proportional toN2(x) can be safely neglected at long time

For x&1 in the long time regime we can further approx
mateAk;A0 and the asymptotic solution during this stage
of the scaling form

f k~h!5A0h5/2
J2~x!

x2
. ~3.59!

Since forx&3 and large time the modes with small wav
vector have the largest amplitudes, these dominate the b
reaction. The very precise cancellation~3.54! leads to the
following sum rule@26#:

l

8p2E k2dku f k~h!u2~112n0! 5
h→`

m̃4h2. ~3.60!

Since for largeh the integral is dominated by soft modesk
;1/h→0 the distribution function can be approximated
n0 and the amplitude byuA0u2. The sum rule Eq.~3.60! then
leads to the identity

uA0u2~112n0!5
30p3

l
m2HR

2 , ~3.61!

where we used the integral@46#
5-10
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E
0

` dx

x2
J2

2~x!5
4

15p

which is dominated byx&3. This is a remarkable result: th
product uA0u2@112n0# in the scaling regimedoes not de-
pend on the initial conditions on the evolution, namely it is
universal in the sense that it is independent of the previ
history through the phase transition. This is an import
result which will play an important role in the power spe
trum of the magnetic fields.

An important consequence of this scaling solution is t
the equal time two-point correlation function of the sca
field is given by

^Fa~xW ,h!Fb~0W ,h!&5da,bD~z!, z5
uxW u
2h

~3.62!

which reveals that the correlation length is given by the s
of the causal horizon@26#. The dynamical evolution during
the scaling stage is precisely determined by the growth
horizon-sized domains@26#.

We summarize below the important features of the so
tions in the scaling regime that will be used in the compu
tion of the power spectrum of the magnetic fields.

For h@hnl a scaling regime emerges in which the mo
functions are given by Eq.~3.59! with x5kh. This scaling
solution describes the relaxation of long-wavelength fluct
tions of the charged fields. Again the phase of these mo
freezesnamely is independent of time. This is important b
cause this fact will entail that the retarded self-energy of
transverse photon polarization tensor will give a sublead
contribution to the generation of magnetic fields.

The sum rule Eq.~3.60! constrains the product of th
amplitude times the occupation of the long wavelength s
ing modes to be given by Eq.~3.61!.

The scaling solution described above is akin to that fou
in classical models of formation of topological defect
@27,28#. The scaling regime describes the evolution of lon
wavelength fluctuations and the adjustment of the spatial
relation length of the scalar field to the Hubble radius@26#.

C. Gauge field dynamics

In a high temperature plasma a very important aspect
must be taken into account in the dynamics of gauge field
the electric conductivity, which leads to dissipative pr
cesses. As discussed in@25#, the electric conductivity se
verely hinders magnetogenesis, and also introduces the
fusion length scale which could limit the correlation of th
magnetic fields that are generated.

In Minkowski space in equilibrium the conductivity i
obtained from the imaginary part of the photon polarizat
and it is dominated by charged particles of momentap;T in
the loop with exchange of photons of momentaeT,k!T
@38,39#. A careful analysis including Debye~electric! and
dynamical~magnetic! screening via Landau damping lea
to the conclusion that the conductivity is given by@38,39#
12350
s
t

t
r

e

f

-
-

-
es
-
e
g

l-

d

-
r-

at
is
-

if-

s5
CNT

a ln
1

aN

~3.63!

with N the number of charged fields andC;O(1).
In an expanding cosmology an in particular during pha

transitions, a more precise assessment of the contribut
and meaning of the conductivity must be provided. As it w
discussed in Ref.@25#, the fluctuations of the charged field
during a phase transition will have very different behavior
the typical wave vector of these modes is of the order of
smaller than the symmetry breaking scale or much lar
than this scale.

Short wavelength modes, those with typical wave vect
much larger than the symmetry breaking scale are insen
tive to the phase transition and are always in local therm
dynamic equilibrium~LTE!. For short wavelength mode
deep inside the horizon, the mode functions are of the f
field type f q(h);eiqh/Aq.

Long wavelength modes, those with wavectors of the
der of or smaller than the symmetry breaking scale unde
critical slowing down and fall out of equilibrium during th
phase transition. These modes become spinodally unst
during the early stages of the transition as summarized ab
and analyzed in detail in Refs.@26,40–42#.

Thus the contributions from the charged particle fluctu
tions to the photon polarization must be separated into
very different regimes:~a! the hard momentap@uM (h)u
correspond to charge fluctuations that are always in lo
thermodynamic equilibrium; ~b! the soft momenta p
!uM (h)u fall out of equilibrium and undergo long
wavelength spinodal instabilities and enter the scaling
gime.

The contribution from hard momenta will lead to a larg
equilibrium conductivity in the medium, while the contribu
tion to the polarization from soft momenta will contain a
the nonequilibrium dynamics that lead to the generation
electromagnetic field fluctuations.

As the instabilities during the phase transition develo
the fluctuations of the charged fields will generate no
equilibrium fluctuations in the long-wavelength compone
of the electric and magnetic fields with the ensuing gene
tion of long-wavelength magnetic fields. However the lar
conductivity of the medium will hinder the generation
electromagnetic fluctuations, hence the conductivity mus
fully taken into account to assess the spectrum of the m
netic and electric fields generated during the nonequilibri
stage@25#.

We are interested in the generation of long wavelen
magnetic fields, namelyk!T but alsok!a2T, since within
the astrophysical application, the wavelength of interest
magnetic fields are of galactic scale, whileT corresponds to
a wavelength at the peak of the CMB; millimeters. Thus
the physical situation corresponds to studying the photon
larization tensor for long wavelength.

The polarization tensor has local~tadpole! and nonlocal
contributions. The equilibrium contribution to the tadpo
;^F†F& is dominated by momenta;TR leading to the
5-11
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hard-thermal loop result̂F†F&;TR
2 . This contribution is

actually cancelled by the zero frequency-momentum limit
the nonlocal polarization~bubble diagram!. This cancellation
in equilibrium is a consequence of the Ward identities a
implies the vanishing of the magnetic mass in absence
symmetry breaking@44,47#. In equilibrium the inverse
propagator vanishes in the limit of zero frequency and m
mentum@47,44# in the absence of symmetry breaking at a
temperature.

Out of equilibrium, the tadpole and the nonlocal polariz
tion ~bubble diagram! exactly cancel each other in the lon
wavelength, longtime limit as shown in Ref.@48# @see Eq.
~6.12! in the reference# indicating the vanishing of the pho
ton mass.

In equilibrium the long-wavelength and low frequen
limit ( k,v→0) of the spatial and temporal Fourier transfor
of the transverse polarization is given by

PT~k,v!5 ivs. ~3.64!

Thus we write for the full transverse polarization for lon
wavelength electromagnetic fields

PT~h,h8,k!5s
d

dh8
d~h2h8!1Pnoneq~h,h8,k!.

~3.65!

The first term above includes the contribution from the h
momentum modesp;TR in the transverse polarization
while Pnoneq(h,h8,k) is the contribution from the long
wavelength modes which are unstable in the spinodal s
and take the scaling form in the scaling regime. Thus i
very well defined sense, the polarization~3.65! describes the
effective low energy theory for the transverse photon fiel

Our strategy is to obtain the nonequilibrium contributi
to the spectrum of electromagnetic fields to lowest order ia
but treating the conductivityexactly.

In a cosmological space-time, the temperature scales
the inverse of the conformal factor

T~h!5
TR

C~h!
~3.66!

and therefore the conductivitys5s(h) becomes time-
dependent. If we are interested in time scales where the n
ber of ultrarelativistic charge carriers does not change
nificantly, which is the case that we will consider in wh
follows, then the time evolution of the conductivity is pure
kinematic:

s~h!5
sR

C~h!
. ~3.67!

An important effect of the conductivity, as discussed in@25#,
is the introduction of a diffusion scale in the transverse p
ton propagator. The long-time behavior of the zeroth or
propagators for the transverse gauge fields: retarded~R!, ad-
vanced~A!, symmetric~H!
12350
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D R,A,H
i j ~h,h8,k!5P i j ~ p̂!DR,A,H~h,h8,k!

obey @11# ~see@25# for details!

F d2

dh2
1k21s~h!C~h!

d

dhGDR~h,h8,k!

5d~h2h8!, DR~h,h8!50 for h,h8

F d2

dh2
1k21s~h!C~h!

d

dhGDA~h,h8,k!

5d~h2h8!, DA~h,h8!50 for h.h8
~3.68!

F d2

dh2
1k21s~h!C~h!

d

dhGDH~h,h8,k!

50,

with the transverse projector

Pi j ~ p̂!5d i j 2p̂i p̂j . ~3.69!

Due to Eq. ~3.67! the comoving conductivity sR
5s(h)C(h) is an invariant quantity in the regime in which
the number of ultrarelativistic charge carriers is constant. T
estimate given by Eq.~3.22! clearly indicates that during the
radiation dominated era between reheating and the Q
phase transition,sRh@1.

Then fork!sR ~which is certainly satisfied since the re
evant wave vectors arek!T!T/a;sR) and h@1/sR we
can safely neglect the second order time derivatives in E
~3.68!, leading to the following equations:

DR~h,h8,k!5DC~h,h8;k!u~h2h8!,

DA~h,h8,k!5DC~h,h8;k!u~h82h! ~3.70!

DH~h,h8,k!5 i
e2(k2/sR)(h1h8)

sR
,

DC~h,h8;k!5
e2(k2/sR)(h2h8)

sR
. ~3.71!

IV. MAGNETIC FIELD SPECTRUM

As discussed in detail in Ref.@25#, the quantity of astro-
physical relevance is the correlation function

^B̂i~h,xW !B̂i~h,0W !&r , ~4.1!

where the sum on repeated indices is understood.B(h,xW )
above is aHeisenberg operatorand the expectation value i
in the initial density matrix. From this quantity, the spectru
of the magnetic field is obtained in the coincidence limit
5-12
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SB~h,k!5
1

2
lim

h8→h

E d3x^$B̂i~h,xW !,B̂i~h8,0W !%&reikW•xW,

~4.2!

where$ % denotes the anticommutator. And fromSB(h,k) we
can extract thephysicalmagnetic energy density stored o
comovinglength scales larger than a givenL

DrB~L,h!5
1

2p2E0

2p/L

k2SB~h,k!dk ~4.3!

where we have restored the powers of the scale factor ari
from the transformation to conformal time. Denoting b
DrB(L,h) the contribution from the nonequilibrium gener
tion ~subtracting the local thermodynamic equilibrium co
tribution!, a quantity of cosmological relevance to assess
relative strength of the generated magnetic field is given
the ratio of the power on scales larger thanL to the energy
density in the radiation background

r ~L,h!5
DrB~L,h!

rg~h!
, ~4.4!
ia

n

c
he

12350
ng

e
y

where

rg5
p2TR

4

15
~4.5!

is the comovingenergy density in the thermal equilibrium
background of photons.

The physicalenergy densitiesDrB,phys(L,h),rg,phys are
obtained from the comoving expressions above by resca
r→r/C4(h) as can be seen from the conformal rescal
~2.8!. Thus the ratior (L,h) would be a constant in the ab
sence of nonequilibrium generation or dissipative proces
Hence the time dependence of the ratio~4.4! only is solely a
consequence of the nonequilibrium generation mechani
or dissipative processes~such as magnetic diffusion in a con
ducting plasma! but not through the cosmological expansio

Using the results obtained in Ref.@25# that lead to a first
principle derivation of the spectrum, we just quote its expr
sion to leading order ina ~here and in what followsSB refers
solely to the nonequilibrium contribution to the spectrum!,

SB~h,k!5SB
I ~h,k!1SB

H~h,k! ~4.6!

with
SB
I ~h,k!5e2NE d3q

~2p!3
q2~12cos2u!F ~11nq!~11nuqW 1kWku!U E

hR

h
dh1kDC~h,h1 ,k! f q~h1! f uqW 1kWku~h1!U2

1~11nq!nuqW 1kWkuU E
hR

h
dh1kDC~h,h1 ,k! f q~h1! f uqW 1kuW

* ~h1!U21nq~11nuqW 1kuW !U
3E

hR

h
dh1kDC~h,h1 ,k! f q* ~h1! f uqW 1kWku~h1!U21nqnuqW 1kWkuU E

hR

h
dh1kDC~h,h1 ,k! f q* ~h1! f uqW 1kuW

* ~h1!U2G ~4.7!
on-
-
m

-
re-
and

SB
H~h,k!52 ik2F~h,h;k!, ~4.8!

where F(h,h8;k) satisfies the homogeneous different
equation

F d2

dh2
1k21s~h!C~h!

d

dhGF~h,h8,k!

1E dh1@P l~h1!d~h2h1!1PR~h,h1!#F~h1 ,h8,k!

50, ~4.9!

with P l(h),PR(h,h8) being the one loop tadpole~local!
and retarded~nonlocal! contributions transverse polarizatio
@25#.

We note that the functionF(h,h8;k) obeys the same
equation as the transverse gauge mean field@25#, but as it
will be argued in detail below, its contribution to the spe
trum of primordial magnetic fields generated during t
l

-

phase transitions is subleading in the scalar coupling c
stantl. The equation of motion~4.9! can be solved system
atically in an expansion in powers of the nonequilibriu
polarization,

F~h,h;k!5F (0)~h,h;k!1F (1)~h,h;k!1O~a2!,

F (0)~h,h8,k!5DH~h,h8,kW !,

F (1)~h,h8,k!5E
hR

h
dh1DC~h2h1 ,kW !

3E
hR

h
dh2@P l~h2!d~h12h2!

1PR~h1 ,h2 ;kW !#DH~h22h8,kW !1~h↔h8!,

~4.10!

whereP l ,PR are the tadpole~local! and the retarded contri
bution from the one-loop transverse photon polarization
spectively~for details see@25#!.

These are given by@25#
5-13
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P l~h!52 ie2NE d3q

~2p!3
G.~h,h,q!,

PR~h1 ,h2 ,kW !5@P.~h1 ,h2 ,kW !

2P,~h1 ,h2 ,kW !#Q~h12h2! ~4.11!

with

P.~h1 ,h2 ,k!52ie2NE d3q

~2p!3
q2~12cos2u!

3G.~h1 ,h2 ,q!G.~h1 ,h2 ,uqW 1kuW !,

P,~h1 ,h2 ,k!5P.~h2 ,h1 ,k!.

The scalar propagatorG.(h,h8;k) is constructed from the
mode functionsf q(h) that satisfy the mode equations~3.42!
and is given by

G.~h1 ,h2 ;k!5
i

2
@~11nk! f k~h1! f k* ~h2!

1nkf k* ~h1! f k~h2!#. ~4.12!

Therefore

PR~h1 ,h2 ,kW !54e2NE d3q

~2p!3
q2~12cos2u!

3Im@G.~h1 ,h2 ,q!G.~h1 ,h2 ,uqW 1kW u!#

3Q~h12h2!. ~4.13!

This expression for the retarded self-energy must be c
trasted with that of the contribution fromSB

I (h,k) which

requires the real part Re@G.(h1 ,h2 ,q)G.(h1 ,h2 ,uqW
1kWku)#. This is an important difference, the long waveleng
modes of largest amplitude in either phase given by
~3.45! or by Eq.~3.59! are such that their phases are froze
namely they do not depend on time, therefore the produ
f q(h1) f upW 1qW u(h2) with only the growing mode solutions ar
real and such products will contribute only toSB

I (h,k). This
freezing of phases is a consequence of the classicalizatio
the scalar field fluctuations@26#.

We now argue that the contribution fromSB
H is sublead-

ing. First of all, the termF (0)(h,h;k) in Eq. ~4.10! is the
solution of the homogeneous equation in absence of n
equilibrium fluctuations and leads to the local thermod
namic equilibrium contribution to the power spectrum
which is independent of the nonequilibrium generati
mechanisms. This contribution has been analyzed in deta
Ref. @25# and will be subtracted. In what follows we focu
solely on the contribution from the nonequilibrium fluctu
tions.

For intermediate times after the phase transition dur
the spinodal stagehc<h,hnl , the long-wavelength mode
functions are approximately given by Eq.~3.45!.
12350
n-
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,
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of

n-
-
,
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g

Near the end of the phase transition forh;h8;hnl the
leading order time dependence of the scalar Green’s fu
tions is approximately given by

f k~h! f k~h8!}
1

l
, ~4.14!

where we used Eq.~3.50!. Thus the contribution from the
tadpole~local term in the self-energy! is of the order

P tad~h!h;hnl
}

e2

l
1subleading. ~4.15!

This estimate is consistent with the fact that the tadpole c
tribution ise2^F†F& and near the end of the phase transiti
the mean square root fluctuations of the scalar field probe
vacuum state, namelŷuFu2&;m2/l. Since the phases o
these modes are frozen, there is no contribution from
leading order to the retarded polarization, since it requi
the imaginary part of the product of propagators as displa
in Eq. ~4.13!. Because of this cancellation of the leadin
term, the contribution from the retarded polarization bub
is of the same order as that of the tadpole@25,48#

PR}
e2

l
. ~4.16!

A similar argument based on the sum rule~3.60! leads to the
same conclusion in the scaling regime.

For late times, thek→0 limit of the retarded polarization
exactly cancels the contribution from the tadpole@see Eq.
~6.12! in Ref. @48##.

The contribution fromSB
I is in both cases ofO(1/l2)

since each long-wavelength mode function is of order 1/Al
at the end of the spinodal stage or, by the sum rule~3.60! in
the scaling regime. Thus we can safely neglect the contr
tion from SB

H to the magnetic spectrum.
Thus the leading contribution to the power spectrum g

erated by nonequilibrium fluctuations is given by

SB~h,k!5~112n0!2
aNk2

psR
2

e2(2k2/sR)h

3E
0

`

q4dqd~cosu!~12cos2u!

3U E
hR

h
e(k2/sR)h1f q~h1! f uqW 1kWku~h1!dh1U2

,

~4.17!

whereu is the angle between the vectorsqW andkW and where
we have replaced

~112nq!~112nuqW 1kWku!.~112n0!2,

since as highlighted in Secs. III B 2 and III B 3 the dynami
during both the spinodal stage as well as the scaling stag
dominated by the long-wavelength modes that acquire n
perturbatively large amplitudes.
5-14
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The final form of the power spectrum generated by
nonequilibrium dynamics given by Eq.~4.17! is the basis for
the study of primordial magnetogenesis during the differ
stages after the phase transition.

A. Magnetogenesis during the spinodal stage

The long-wavelength mode functions in the spinoda
unstable band are given by the expression~3.45!.

The integral overh1 for large h can be computed inte
grating by parts in Eq.~4.17! as an expansion in 1/(m̃h)2.
The integral is dominated by the upper limit, which leads
the cancellation of the exponentials that contain the cond
tivity.

The integrals over momenta and angles in Eq.~4.17! can
be done straightforwardly when the mode functions
given by Eq. ~3.45!. Thus from Eq.~4.17! we obtain the
following expression for the spectrum of magnetic fiel
generated by the nonequilibrium fluctuations

SB~k,h;hnl!5
512p9/2Nak2

l2sR
2m̃4j5~hnl!

e2(1/4)k2j2(hnl)

3F 11OS 1

ln
1

l
D G , ~4.18!

wherej(h) is given by Eq.~3.53!. In obtaining this result we
used the following:

@112n0#2ua0u4

~m̃hnl!
6

e2(m̃hnl)
2
5

1024p5

l2m̃2
~4.19!

@see Eq.~3.48!# and the identities@46#

E
21

11

dx~12x2!e2(4qkx/m̃2)ln m̃h

5
m̃6

16~qk ln m̃h!3 H 4qk

m̃2
ln~m̃h!coshF4qk

m̃2
ln m̃hG

2sinhF4qk

m̃2
ln m̃hG J ~4.20!

and

E
0

`

qdqe2j2q2
@j2qk cosh~j2qk!2sinh~j2qk!#

5
Ap

8
k3je(1/4)k2j2

. ~4.21!

Notice that the magnetic field spectrum~4.18! is indepen-
dent on the amplitudeua0u and on the initial occupation (1
12n0)2. Therefore this result is quite robust.

This result is the same as for the Minkowski space-ti
@see Eq.~7.47! in Ref. @25##, except for a multiplicative fac-
12350
e

t

c-

e

e

tor m̃6j6(hnl).8 ln3
„ln(1/l)… and the expression for the co

relation length in the radiation dominated universe~3.53!.
As in Minkowski space-time, the presence of a high co

ductivity plasma severely hinders the generation of magn
fields. However, a noteworthy aspect is that up to the n
linear time the magnetic field is still correlated over the s
of the scalar field domains rather than the diffusion len
jdi f f'Ah/sR. The diffusion scale determines the spat
size of the region in which magnetic fields are correlated
theabsenceof nonequilibrium generation. The ratio betwee
the domain sizej(h) given by Eq.~3.53! and the diffusion
length scalejdi f f(h) is given by

j~hnl!

jdi f f~hnl!
.

2

m̃
AsRln~m̃hnl!

hnl
;S M Pl

2 ln
1

l

m2
D 1/4

@1,

~4.22!

where we have used the relations~3.3!, ~3.4!, ~3.20! and
~3.48!. Thus an important conclusion of this study is that t
magnetic fields generated via spinodal decomposition
correlated over regions comparable to the size of scalar fi
domains which aremuch largerthan the diffusion scale.

The spectrum for the electric field can be obtained fro
that of the magnetic field by simply replacingkDC→ḊC .
In the soft regime and for time scales 1/sR!h!sR /k2 we
haveḊC.2k2/sR

2 whereaskDc.k/sR . Therefore the elec-
tric field spectrum is suppressed by a factork2/sR

2 with re-
spect to the magnetic field, namely

SE
sR~ t,k!5

k2

sR
2

SB
sR~ t,k!. ~4.23!

Thus, in a high temperature plasma with large conductiv
the nonequilibrium processes favor the generation of m
netic photons instead of electric photons, and again equi
tition is not satisfied.

The energy density on large scales>L again can be com-
puted in closed form in the limitsL@j(tnl) andL!j(tnl).
We find, in the first case from Eq.~4.3!,

DrB~hnl ,L !5
213p15/2

5l2

Na

@m̃j~hnl!#
4sR

2j~hnl!L
,

3
1

L4 @j~ tnl!. ~4.24!

We find, for the opposite case,

DrB~hnl ,L !5
33210p3Na

l2m̃4sR
2j10~hnl!

, L!j~ tnl!.

~4.25!

The ratio of the magnetic energy density on scales lar
than L at the spinodal time and the total radiation ener
given by the Stefan-Boltzmann lawrg5p2Tnl

4 /15 results:
5-15
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r ~hnl ,L !5
DrB~hnl ,L !

rg

5
33213p11/2

l2

Na

@m̃j~hnl!#
4sR

2j~hnl!L

1

~LTR!4
,

L@j~ tnl!. ~4.26!

This result is the same as for the Minkowski space-time@see
Eq. ~7.53! in Ref. @25##, except for a multiplicative factor
m̃6j6(hnl).8 ln3

„ln(1/l)… and the expression for the corre
lation length in the radiation dominated universe~3.53!.

The factor (LTR)24 is purely dimensional and is ulti
mately the determining factor for the strength of the gen
ated magnetic fields on a given scale. These combinat
are invariant under cosmological expansion and are det
mined by the ratio of the scales of interest today~galactic! to
the thermal wavelength~today! of the cosmic microwave
background radiation at the Wien peak. In particularLTR
;1025 for L;1 Mpc ~today! @see Eq.~3.16!#.

It is clear that the production during this regime is e
tremely small, due to the large values of (LT)4 and of the
ratio sR

2/m2. In order to obtain an estimate for the amplitu
of the seed magnetic field, we consider the following set
parameters: l51022, a51022, m51014 GeV, TR
51016 GeV ~corresponding to a critical temperatureTc
51015 GeV). We then obtain

r ~L51 Mpc!;102157. ~4.27!

Therefore, the amplitude of the magnetic field generated
ing the spinodal stage is completely negligible. This resul
similar to the result obtained in Minkowski space-time
Ref. @25# and is expected on the basis of dimensional ana
sis.

B. Magnetogenesis from the scaling regime

In the scaling regimeh@hnl the spectrum of the mag
netic field is given by Eq.~4.17! with the mode functions in
the scaling regime given by Eq.~3.59!.

The final expression for the leading contribution, given
Eq. ~4.17! reveals a noteworthy aspect. As we have argu
above, the modesk of astrophysical relevance today, we
well outside the horizon during the radiation dominated
between reheating and the QCD phase transition. The m
functions Eq.~4.17! attain the largest amplitude at long time
for x5qh<2 –3, thus momenta in the polarization loop th
are within the horizon lead to generation of magnetic fie
with long wavelengths well outside the horizon. This, w
believe, is an important mechanism, loop corrections lea
a coupling between modes inside the horizon with those
side. Thus in this manner, causal fluctuations can actu
lead to the generation of fields with wavelengths much lar
than the horizon.

Sincekh!1 the power spectrum Eq.~4.17! takes the fol-
lowing form using the scaling mode functions Eq.~3.59!:
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SB~h,k!5~112n0!2
aNk2

psR
2

uA0u2E
0

`

dqE
hR

h
J2~qh1!h1dh1

3E
hR

h
J2~qh2!h2dh2I ~q,k,h1 ,h2!, ~4.28!

where we set the exponentials equal to unity in Eq.~4.17!
sincekh!1 andk!sR and

I ~q,k,h1 ,h2![E
21

11

dx
12x2

~q21k222kqx!2

3J2~Aq21k222kqxh1!

3J2~Aq21k222kqxh2!.

Using the summation theorem@46#

J2~Aq21k222kqxh!5
4~q21k222kqx!

q2k2h2

3(
l 50

`

~ l 12!Jl 12~qh!Jl 12~kh!

3Cl
2~x!

where theCl
2(x) are Gegenbauer polynomials. Forkh!1

the l 50 terms dominate and we can use the small argum
behavior of the Bessel functionsJ2(kh)5 1

8 (kh)2@1
1O(k2h2)#. We finally obtain

I ~q,k,h1 ,h2!5
4

3q4
J2~qh1!J2~qh2!@11O~k2h2!#.

~4.29!

Inserting Eq.~4.29! into Eq. ~4.28! yields

SB~h,k!5~112n0!2
aNk2

3psR
2

uA0u2

3E
0

` dq

q4
$h2@J2

2~qh!2J1~qh!J3~qh!#

2~h→hR!%2@11O~k2h2!#, ~4.30!

where we used the formula@46#

E
0

y

zJ2
2~bz!dz5

y2

2
@J2

2~by!2J1~by!J3~by!#.

~4.31!

Sinceh@hR we can neglect the terms withhR and we find,
for k!h21

SB~h,k!5DaN

l2

k2

sR
2

m4HR
4h7@11O~k2h2!#,

D548.61 . . . , ~4.32!
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where we used Eq.~3.61! and we computed numerically th
integral

E
0

` dx

x4
@J2

2~x!2J1~x!J3~x!#250.0005295 . . . .

This integral is dominated by the regionx>1, namely, by
modes that are inside the horizon. From the estimate~3.24!,
the correctionsO„k2jdi f f

2 (h)… are truly negligible between
reheating and the QCD phase transition.

The dependence on the conformal time;h7 is a direct
consequence of the scaling form of the solution for the m
functions. The strong time dependence is a consequenc
the causal relaxation of the Goldstone fields, a result of
phase ordering kinetics that entails that the size of the
mains grow with the horizon.

The spectrum Eq.~4.32! exhibits the following important
features:

~i! The exponential associated with the diffusion leng
cancels out, a reflection that the long time behavior of
integrals above are dominated by the upper limit. Hence
final result for the spectrum does not feature the exponen
suppression with the diffusion length.

~ii ! The result for the spectrum only depends on the ini
amplitudeA0 and initial occupation numbern0 in the com-
binationuA0u2(112n0) which is constrained by the sum ru
Eq. ~3.60!. Hence the final spectrum isinsensitiveto the
initial conditions on the mode functions or occupation
which in principle carry information of the early history be
ginning from the inflationary stage. This is a consequence
the scaling solution being a fixed point of the dynamics
the scalar field@26–28#.

~iii ! A noteworthy result is that superhorizon magne
fields are generated by the nonequilibrium dynamics
modes inside but near the Hubble radius. This is a con
quence of the polarization loop, wherein the propagators
respond to momentaq and uqW 1kW u. The momentak corre-
sponding the wave vector~scale! of the magnetic field is
such that the wavelength is larger than the Hubble radius,
the momentaq corresponding to the charged scalar field flu
tuations are inside the horizon. The correlation length of
charged scalar field is of the order of the Hubble radius. T
acausal, superhorizon magnetic fields are generated byloop
effects.

In order to reveal the enhancement during the scaling
gime in a more transparent manner, it is convenient to
the relations~3.3!, ~3.13!, ~3.40! and the explicit expression
for the conductivity~3.63! in the form

sR5c@a,N#
NTR

a
, c@a,N#[

C

lnF 1

aNG ;O~1!.

~4.33!

Then, the ratior (L,h) for L@h is given by
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240pDa3

Nc2@a,N#@LTR#5 S m

AlT~h!
D 4S M*

T~h! D
3

,

~4.34!

where D is given in Eq.~4.32!. We note that in the final
result ~4.34! there is no dependence on the reheating te
perature but only on the scale of symmetry breakingm, the
temperature at the timeh and the scalar and gauge co
plings. This is expected since the nonequilibrium proces
begin in earnest after the phase transition, local thermal e
librium prevailed between the time of reheating and t
phase transition.

The dependence on the scalar self coupling}1/l2 is a
hallmark of the nonperturbative nature of the growth of u
stable modes and spinodal decomposition, it is ubiquitou
the nonequilibrium dynamics of phase transitions@26,40,41#.

Large scale magnetogenesis is more efficient for la
symmetry breaking scalem, since the larger the symmetr
breaking scale, the longer lasts the scaling stage.

Consider for instance the case in which the symme
breaking scalem;1013 GeV andl;a;1022, correspond-
ing to a critical temperature of order of a GUT scaleTc
;1015 GeV and suppose that the scaling regime lasts u
the electroweak phase transition scale, i.e.,h is such that
T(h)5TEW;102 GeV. Then the factor

S m

AlTEW
D 4S M*

TEW
D 3

;10100

compensates for the factor (LTR)25. TakingN andg* of the
order of 10~these values are taken as representative and
can be changed simply in the final expressions! we can write
the expression for the ratio as

r „T~h!,L….10234S L

1 MpcD
25S TEW

T~h! D
7

. ~4.35!

Therefore

r ~T~h!,L !;H 10234 at the EW transition,

10214 at the QCD transition.
~4.36!

Thus if the scaling regime lasts until a time between the E
and the QCD phase transitions the amplitude of the la
scale magnetic fields is within the range necessary to be
plified by some dynamo models. The amplitude of the se
magnetic field is strongly dependent on the duration of
scaling regime. We have only focused on a scaling reg
terminating either at the EW or QCD phase transition sin
there will surely be new phenomena associated with th
that must be included in the dynamics of magnetogenes

C. Discussion

Validity of the approximations.There are two main ap
proximations that were used to obtain the results quo
above:~i! the long-wavelength approximationkh!1 and~ii !
the weak coupling approximation. We now provide an es
5-17
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mate of the reliability of both these approximations to est
lish the limit of validity of our results.

(i) Long-wavelength approximation.In order to reach our
final result for the rater (L,h) we have explicitly used a
series of approximations which are valid for long wav
lengths but whose validity must be checked before we re
any conclusion regarding the spectrum atsmall scales. In
particular we must address the limits of applicability of t
result Eq.~4.34!. This result has been obtained by integrati
the magnetic spectrum on scales 0,k,kmax with kmax
52p/Lmin ; the formula for the magnetic spectrum w
valid in the limit

kmaxhmax!1. ~4.37!

In order to provide an estimate may take forhmax to be the
~conformal! time at which the EW phase transition occu
namely hEW;1 GeV21. As discussed in the Introduction
we are considering a situation in which the magnetic field
considered as a perturbation of a preexisting thermal bla
body background. For consistency this requires that

r ~Lmin ,hWE!!1. ~4.38!

This relation translates in a condition

kmaxhmax!FCNa3

242c2 S Tc

TEW
D 4S TEW

M*
D 2G21/5

. ~4.39!

For Tc;1015 GeV this giveskmaxhmax!0.0176 which in
turn translates into

L@Lmin;70 fm. ~4.40!

However, this is the comoving length normalized at the
heating time. In order to convert to the present time, we h
to take in account the redshift

zR5
TR

T0
.431028 for TR;1015 GeV; ~4.41!

this gives

Lminu today;0.1 pc. ~4.42!

Thus the approximations invoked are reliable to estimate
amplitude of primordial seeds on galactic scales or larg
today.

(ii) Weak electromagnetic coupling.In order to study the
amplitude for much smaller scales the calculations mus
done without the long wavelength approximations invok
above. In this case we must expect a breakdown of pertu
tion theory and we cannot give a reliable estimate in
present framework. Furthermore, for scales well inside
Hubble radius, microphysical processesnot includedin our
approximations, such as scattering between charged fi
and between charged and gauge fields must be inclu
These processes will restore equilibrium between the dif
ent fields, if there is a substantial transfer of power from
charged fluctuations to the radiation field, this may lead t
change in the equation of state and the full back reaction
12350
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the metric must be included. At longer time scales the effe
of the backreaction of the gauge fields on the dynamics
the scalar field, as well as the nonequilibrium contributio
to equation of state and the Friedmann equations mus
included self-consistently.

Generation on short distance scales.For scales well in-
side the horizon during the scaling regime, namelyqh@1,
we must account for causal microscopic processes that
to equilibrate the electromagnetic fields generated by
nonequilibrium processes. In order to understand these
cesses we must look at the kinetics of equilibration. T
mode functions for wave vectors well inside the horizon a
Minkowski-like, of the form

f q~h!5
aq

Aq
e2 iqh1

bq

Aq
eiqh,

where the coefficientsaq ,bq must be determined from a ful
numerical evolution. However the constancy of the Wron
ian entails that

uaqu22ubqu251

which suggests the identificationuaqu[11Nq ; ubqu[Nq ,
Nq is the number of~asymptotic! quanta created during th
time evolution. This form of the asymptotic mode functio
leads to the equipartition between the electric and magn
field generation, since spatial and time derivatives are
same. In turn this entails that we can understand the gen
tion of electric and magnetic fields by obtaining akinetic
equation for the number of photons. Such kinetic equat
must necessarily be of the form

dNk~h!

dh
5@11Nk~h!#Gk

.~h!2Nk~h!Gk
,~h!

which displays the familiar gain minus loss contributions
terms of the forward and inverse rates. Eventually a ste
state will be reached which will describe a stationary dis
bution of photons. The computation of the forward@Gk

.(h)#
and inverse@Gk

,(h)# require adetailed knowledge of the
distribution Nq @48# since these generalized rates are fun
tionals of these occupation numbers. Clearly such comp
tion lies beyond the scope of this article and is a task that
will undertake elsewhere. However, the kinetic equatio
above will tend to an equilibrated state of local thermod
namic equilibrium.

Effect on the LSS.It is important to estimate the effect o
the magnetic field on scales corresponding to those of
last scattering surface, which today areLLSS;100 Mpc.
From Eq.~4.36! we see that at the electroweak temperat
r (TEW ,LLSS);10244, taking the fourth root we can provid
an estimate of the temperature fluctuation induced by

primordial magnetic field dT/TuLSS;@r (TEW ,LLSS)# 1
4

;10211 which is negligible compared to the CMB temper
ture fluctuation at this scale;1025. On the other hand, a
similar estimate at the time of the QCD phase transit
givesdT/TuLSS;1026 which is marginally compatible with
the current observations. Thus the reliability of the appro
5-18
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mation of weak gauge coupling combined with the effects
the temperature anisotropy at the last scattering surface s
to lead us to conclude thatif a phase transition during
radiation dominated era occurs near the GUT scale and
sults in a scaling stage, our results for primordial magne
genesis will be reliable down to the scale of electrowe
symmetry breaking.

V. CONCLUSIONS

In this article we studied large scale primordial magne
genesis during a phase transition in the radiation domina
era after reheating in a model ofN-charged scalars couple
to an Abelian gauge field. The spectrum of the magnetic fi
generated during the nonequilibrium evolution was co
puted using the formulation recently introduced in Ref.@25#.
The dissipative effects of the conductivity are included
separating the contribution from hard modes~with momenta
of order T) to the polarization tensor of the gauge field
These modes are always in local thermodynamic equ
rium. The nonperturbative, nonequilibrium dynamics of t
scalar field after the phase transition was studied in the la
N limit. The dynamics after the phase transition features t
distinct stages: an early and intermediate time, spino
stage, which is dominated by the growth of long-wavelen
fluctuations, followed by a scaling regime during which t
scalar field becomes correlated over horizon-sized doma
During both regimes, strong non-equilibrium fluctuatio
lead to large current-current correlation functions which
tail the generation of magnetic fields. The scaling regime
the most effective for primordial magnetogenesis since
stage lasts the longest. During this stage magnetic fields
superhorizon wavelengths are generated vialoop effects, the
scalar field momenta in the polarization loop correspond
wavelengths of the order of or shorter than the horizon. T
causal scalar field fluctuations lead to the generation of m
netic fields on superhorizon scales. The generation of m
netic field is hindered by the large conductivity of the plas
and equipartition between electric and magnetic fields d
not hold. The spectrum of the primordial magnetic field
insensitive to the magnetic diffusion length which is subh
rizon during the radiation era.

Our final result for the spectrum generated during
scaling regime is given by Eq.~4.32!. The ratio of the energy
density of the magnetic fields on scales larger thanL to the
energy density in the cosmic background radiationr (L,h)
5rB(L,h)/rcmb(L,h) is given by Eq.~4.34!. For values of
N, and the gauge coupling consistent with particle phys
models we find that

r „T~h!,L….10234S L

1 MpcD
25S TEW

T~h! D
7

. ~5.1!
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Therefore,

r „T~h!,L…;H 10234 at the EW transition,

10214 at the QCD transition.
~5.2!

Therefore, the large scale primordial magnetic fields gen
ated during the scaling stage after a phase transition ma
a plausible mechanism to generate primordial magnetic fie
which will be further amplified by the collapse of protoga
axies and by astrophysical dynamos.

Probably a phase transition at a temperature much la
than the electroweak leading to a scaling regime lasting u
the QCD phase transition is ruled out by the temperat
inhomogeneities at the last scattering surface. Furtherm
the generation of electromagnetic fields on subhorizon sc
requires a full kinetic equation that incorporates the mic
scopic causal processes that lead to thermalization, the s
of these is beyond the scope of this article.

Magnetogenesis after the QCD phase transition?The
model that we studied here is assumed to describe the ro
features from the nonequilibrium dynamics of a charged s
tor coupled to a~hyper! charge gauge field. GUT’s or SUSY
theories may provide the corresponding framework.

However we now argue that precisely the model stud
here can actually describe the nonequilibrium dynamicsafter
the QCD phase transition~s!. After hadronization and chira
symmetry breaking most of the hadrons produced will
pions, at least this is the experimental situation in ultrare
tivistic heavy ion collisions. Neglecting the charge form fa
tor ~which is justified for momenta much smaller than ther
meson massmr;770 MeV) the charged pions couple to th
electromagnetic field with minimal coupling. The chiral tra
sition is conjectured to be in the same universality class
theO(4) linear sigma model@30#. Thus the model presente
in this article is thelow energy effective field theoryfor the
triplet of pions, two charged and one neutral. Thus we c
jecture that the study in this articledoesdescribe the genera
tion of magnetic fields by long-wavelength pions. Therefo
the analysis of this article can apply to magnetogenesis
ing the chiral phase transition in QCD. While the charge
pions couple to electromagnetism via the minimal coupl
in the long-wavelength limit, the neutral pion couples to t
electromagnetic field through the chiral anomalyp0→2g
and such process will also produce magnetic fields. We
study the possibility of large scale primordial magnetoge
esis during the chiral phase transition in QCD in a forthco
ing article.
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