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Large scale magnetogenesis from a nonequilibrium phase transition in the radiation dominated era
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We study the generation of large scale primordial magnetic fields by a cosmological phase transition during
the radiation dominated era. The setting is a theoyl oharged scalar fields coupled to an Abelian gauge field,
that undergoes a phase transition at a critical temperature much larger than the electroweak scale. The dynam-
ics after the transition features two distinct stages: a spinodal regime dominated by linear long-wavelength
instabilities, and a scaling stage in which the nonlinearities and back reaction of the scalar fields are dominant.
This second stage describes the growth of horizon sized domains. We implement a recently introduced formu-
lation to obtain the spectrum of magnetic fields that includes the dissipative effects of the plasma. We find that
large scale magnetogenesis is very efficient during the scaling regime. The ratio between the energy density on
scales larger thah and that in the background radiatioflL,T) = pg(L,T)/pemi(T) is r(L,T)~10"3* at the
electroweak scale anqL,T)~10 **at the QCD scale fot~1 Mpc. The resulting spectrum is insensitive to
the magnetic diffusion length. We conjecture that a similar mechanism could be operative after the QCD chiral
phase transition.
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[. INTRODUCTION the initial seed. Astrophysical batteries rely on gradients of
the charge density concentration and pressure and their effi-
A variety of astrophysical observations including Zeemanciency in producing seeds of the necessary amplitude is still
splitting, synchrotron emission, Faraday rotation measurevery much discussef,4]. Primordial magnetic fields that
ments(RM) combined with pulsar dispersion measurementscould be the seeds for dynamo amplification can be gener-
(DM) and polarization measurements suggest the presence afled at different stages in the history of the early Universe, in
large scale magnetic fields—6]. The strength of typical particular during inflation, preheating and or phase transi-
galactic magnetic fields is measured to bgx G [2-4,§  tions [3-5]. Primordial (hype) magnetic fields may have
and they are correlated on very large scales up to galactic @mportant consequences in electroweak baryogefiéibig
even larger reaching to scales of cluster of galaxidsMpc  bang nucleosynthesiseg[3]), the polarization of the cosmic
[2-5]. The origin of these large scale magnetic fields is stillmicrowave backgroundCMB) [8] via the same physical
a subject of much discussion and controversy. It is currentlyprocesses as Faraday rotation, and structure formation
agreed that a variety of dynamo mechanisms are efficient if8,5,9], thus sparking an intense program to study the origin
amplifying seed magnetic fields with typical growth rates and consequences of the generation of magnetic fields in the
~Gyr ! over time scales- 10-12 Gyr(for a thorough dis-  early Universg10—24.
cussion of the mechanisms and models[gée The ratio of A reliable estimate of the amplitude and correlations of
the energy density of the seed magnetic fields on scaleseed magnetic fields must include the dissipative properties
larger tharL (today to that in the cosmic background radia- of the plasma, in particular the conductivifg¢1,13,14. In
tion, r(L) = pg(L)/pemp Must ber (L~1 Mpc)=10 3*fora  Ref.[25] we have introduced a formulation that allows us to
dynamo mechanism to amplify it to the observed value, ocompute the generation of magnetic fields from processes
r(L~1 Mpc)=10"8 for the seed to be amplified solely by strongly out of equilibrium. This formulation, which is based
the gravitational collapse of a protogala)g). on the exact set of Schwinger-Dyson equations for the trans-
There are also different proposals to explain the origin ofverse photon propagator is manifestly gauge invariant and is
general for any matter fields and any cosmological back-
ground (conformally related to Minkowski space-tien
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tion of the hard degrees of freedom which are in local ther+ize the dynamics in the different stages after the phase tran-
modynamic equilibrium from that of the soft degrees of free-sition and discuss the dynamics of gauge fields including the
dom that fall out of LTE(local thermal equilibriumduring  dissipative effects of the plasma. In Sec. IV we compute the

the phase transition and whose dynamics is strongly out ospectrum of the primordial magnetic field generated during

equilibrium. This separation of degrees of freedom leads to &e different stages and assess the regime of validity of the
consistent incorporation of the dissipative effects via the con@Pproximations invoked. Our results and conclusions are
ductivity (for details sed25]). In that reference a study of Summarized in Sec. V.

magnetogenesis in Minkowski space-time during a super-

cooled phase transitions was presented and the results highti. MAGNETIC FIELDS IN FRIEDMANN-ROBERTSON-

lighted the main aspects of the generation of magnetic and WALKER COSMOLOGY
electric fields in these situations. i o ) o
The goals of this articleln this article we study the gen- ~ The cosmological setting in which we are primarily inter-

eration of large scaléhypen magnetic fields by a cosmologi- ested_ cqrresponds to a symmetry breaking phase tra}n.sitic_)n.in
cal phase transition during a radiation dominated era by _rad_latlon.domlnated universe. Such a phase transition is in
implementing the formulation introduced in Ré®5]. The Principle different from the electroweak ohend presum-
setting is a theory oN charged scalar fields coupled to an @bly occurs at a much higher energy scale, such as the grand
Abelian gauge fieldhypercharge We consider the situation unified theory(GUT) scale~10' GeV but is assumed to be
when this theory undergoes a phase transition after the rélescribed by a particle physics model that includes many
heating stage and before either the electroweak or the QCfiglds with (hypep-charge either fermionic or bosonic. We
phase transition, since we expect that these transitions wiWill not attempt to study a particular gauge theory phenom-
lead to new physical phenomena. The nonperturbative dyenologically motivated by some GUT scenario, but will fo-
namics out of equilibrium is studied in the limit of a large CUS our study on a generic scalar field model in which the
numberN of (hype) charged fields and to leading order in Scalar fields carry an Abeliathypejcharge. The simplest
the gauge coupling. The nonequilibrium dynamics of therealization of su_ch model is scalar electrodynamics Wth
charged scalar sector features two distinct stages. The firsharged scalar fieldg,, r=1,... N and one neutral scalar
one describes the early and intermediate time regime and fild ¢ whose expectation value is the order parameter asso-
dominated by the spinodal instabilities which are the hall-Ciated with the phase transition. _ _
mark of the process of phase separation and domain forma- This model is inspired by th©(4) linear sigma model
tion and growth. This stage describes the dynamics betweefhich is the low energy effective theory of QCD that
the time at which the phase transition takes place and that &escribes chiral symmetry breaking and the dynamics of
which nonlinearities become important via the back reactionPions[29,30. In this low energy effective theory theeutral
The second stage corresponds tecaling regimewhich de-  field associated withy~(qq) acquires an expectation value
scribes the slower nonequilibrium evolution of Goldstonewhile the three pion fieldsr—, #° are the(quas)-Goldstone
bosons and the process of phase ordeff2@d and growth of modes associated with chiral symmetry breaking. The
horizon-sized domains. This scaling regime is akin to thecharged pions couple minimally to the electromagnetic field
solution found in theclassicalevolution of scalar field mod- [29] and obviously chiral symmetry breakirig nonzero ex-
els with broken continuous symmetries after the phase trarpectation for the neutral fielgoreserves the gauge symmetry.
sition that form the basis for models of structure formationWe argue later that the modidee Eq.(2.1)] can describe
based on topological defedt®7,28. magnetogenesis during the QCD phase transition. The
The solution of the scalar field dynamig26] is the input  mechanisms of magnetogenesis discussed in the present ar-
in the expression for the spectrum of the magnetic field obticle is therefore akin to the photoproduction during the non-
tained in[25] to obtain the amplitude of the primordial seed equilibrium chiral phase transitior81].
generated during both stages. The neutral field is not coupled to the gauge field and its
We find that scaling stage is the most important for theacquiring an expectation value does not break thel)
generation of large scale magnetic fields. Large scale magrauged symmetry. This guarantees that the Abelian gauge
netic fields are generated via loop effects from the dynamicsymmetry identified with either hypercharge or electromag-
of modes that are at the scale of the horizon or smaller. Thaetism isnot spontaneously broketo describe the correct
resulting spectrum is rather insensitive to the diffusion lengtHow energy sector with unbroked(1)g),. We will take the
scale which is much smaller than the horizon during theneutral and théN complex(charged fields to form a scalar
radiation dominated era. The ratio of the magnetic energynultiplet under arO(2N+ 1) isospin symmetry. As the neu-
density on scales larger than(today) to the energy density tral field acquires an expectation value this isospin symmetry
in the background radiation(L, )= pg(L,7)/pcm(7) isS is spontaneously broken ©(2N). The explicit breaking of
summarized in a compact formulgEq. (4.34]. For L the O(2N+1) symmetry induced by the electromagnetic
~1 Mpc (today we findr(L,7)~10 34 at the electroweak coupling further reduce this symmetry 8U(N)x U(1). If
scale and (L, 7)~10 * at the QCD scale, suggesting the
possibility that these primordial seeds could be amplified by ———
dynamo mechanisms to the values of the magnetic fields!if the electroweak phase transition is weakly first order, nucle-
consistent with the observed ones on these scales. ation will be almost indistinguishable from spinodal decomposition
In Sec. Il we introduce the model; in Sec. lll we summa-and the phenomena studied here may be of relevance.
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the neutral field acquires a non vanishing expectation value, 5
the isospin symmetry breaking does not affect the massless- S=J dndx
ness of the photoiit will obtain a Debye screening mass

1
n””(E§MW&V‘P+DMCI>*DVCI>) —M?2(7)

from medium effects P2 . N (P2 . 2
The action that describes this theory in a general cosmo- X 5 +®*®|— 5| -+ %D
logical background is given by
1
4 , 1 . - ZF,uVFa,Bn#V”?aB (26)
s= f d'x\=g| 9| 5,40, + D, $* Dyeb
5 5 5 with
v N[
+M2 _+¢*¢ o _+¢*¢ C//
2 aN| 2 20 v 2p2 S0 g i
R P L Vﬁ} (2.1
47w g9 ) Fo=d,A,—d,A,, 2.7
where and the primes refer to derivatives with respect to conformal

time. Obviously the conformal rescaling of the metric and
D,=d,~ied, and F,,=d,A,—d,A4, (2.2 fields turned the action into that of a charged scalar field
interacting with a gauge field iflat Minkowski space-time
and but the scalar field acquires a time dependent massaémm.
particular, in the absence of electromagnetic coupling, the
N equations of motion for the gauge fiedd, are those of a free
b= E ¢;r¢r , field in flat space time. This is the statement that gauge fields
r=1 areconformallycoupled to gravity and no generation of elec-
tromagnetic fields can occur from gravitational expansion
N alone without coupling to other fields or breaking the con-
DM¢TD“¢=Z (aﬂ+ieAﬂ)¢rT(&“—ieA")¢,. formal invariance_ of the gauge sector. The ggneration of
r=1 electromagnetic fields must arise from a coupling to other
fields that are not conformally coupled to gravity, or by add-

Furtherr_nor_e, anticipati.ng a nonperturbative treatment of thehg extra terms in the Lagrangian that would break the con-
nonequilibrium dynamics of the scalar sector in a laMje formal invariance of the gauge fieldis1].

expansion, we have rescaled the quartic coupling in such a
way as to display the contributions in terms of powers of
1/N, keepingh fixed in the largeN limit.

The conformal electromagnetic fields53 are related to
the physicalE,B fields by the conformal rescaling

A Friedmann-Robertson-Walker line element 2 B
: E=——, B=——, (2.8
ds’=dt?—a?(t)dx?, (2.3 C(n) C(n)

corresponding to fields of scaling dimension two. A gauge
invariant formulation leads to the following Lagrangian den-
sity (for details se¢25,32)

is conformally related to a Minkowski line element by intro-
ducing the conformal time; and scale facto€(#) as

d
_ (4t _ 1 1. 1
7 fa(t)’ Clm)=alt(n). @ L= S0+ 0,0 D+ S0, A Bt S (VA

In terms of these the line element and metric are given by ) 1 .. Nl 2
~MA(p)| sV H+PO| - ——| -V +DTD

2 4N\ 2
ds?=C2(p)(d5?—dx?), =C%(n)n,,, (2.5 ) )
(m)(d7 ) O (1) 70 —ieAr-(PTVO-VDTd)—e?(A2-A2)DTD
where »,,=diag(1-1,—1,—1) is the Minkowski metric. n ekt
Introducfng the conformal fields 1eAg(PTP—D D), (2.9
R R R . where® is a gauge invariarbcal field which is nonlocally
Au(n,X)=At(n),X), P(n,x)=C(n7)d(t(7),X), related to the original fields, anél; is the transverse com-
A ) ponent of the vector fieldV{- A;=0) andA, is a nonpropa-

1sr<N, ¥(7,%)=C(n)¥(t(n),X)

and in terms of the conformal time, the action now reads  2Here we neglect the effect of the conformal anon{&g].
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gating field as befits a Lagrange multiplier, its dynamics is C(n)=Hgr7n (3.1
completely determined by that of the charge den|sify,32.

The main point of this discussion is that the framework towhereHpy, is the Hubble constant at the reheating tirhig,
obtain the power spectrum of the generated magnetic fielg- 1;,;1.
presented below is fullgauge invariant We can relateHy to the reheating temperature and the

The theory described by the Lagrangian E26) above  Planck mas$ ~ Y2 through the equation
bears some similarity to the scalar-gauge field theory that
describes semilocal string83—35, however there are im- g,
portant differences between the model studied here and that P="30
studied in Refs.[33-35: (i) we assume that symmetry
breaking occurs along the neutral direction thus the chargednd the Einstein-Friedmann equation
scalar fielddoes notacquire an expectation value, whereas in
the semilocal theory of Ref§33—35 the charged fields ac- 8 vz T2
quire an expectation value, and the gauge symmetry is spon- Hgr= (gWGP) M. 3.3
taneously broker(ii) We study the dynamics beginning from *
an initial state in LTE above the critical temperature, follow whereg* is the effective number of degrees of freedom at
the dynamicghroughthe phase transition and compute sys-the reheating temperature and we introduced the $dglef
tematically to lowest order i, the nonequilibrium spec- the order of the Planck mass
trum of magnetic fields generated by the process of phase
separation. The goal of the studies in R&4]| are very dif- 35 1
ferent focusing on the rate of production of semilocal strings. M., = = (3.9
The initial state studied in these references places the scalar 2m 9. G
field at the minimum of the(classical potential and the . . .
phases are distributed at random, with particular initial con-In rad;atlonz do.m'”f”“ed bep?r?h the time dependence of the
ditions on the gauge fields, namely conditions correspondingr]nass enm(2.7) is given by the expression
to zero temperature, broken symmetry states. Furthermore . 2 o
the dynamics in Ref:34] is studied in flat space time with an —M?(m)=pu?Hgn’=u'n’, 3.9
ad hocdissipative term for the scalar field.

In contrast, we study the full quantum dynamics begin-
ning from a state of LTE abové@_ evolving the quantum ~ — JuA (3.6
Heisenberg equations of motion and calculate the magnetic K= VAR '
field_consistently to lowest order un Thus while the theory  This scale will play an important role in the following dis-
studied here and that proposed in R¢&3-33 bear a re- ¢ ssion and in the comparison with results obtained in
semblance, they describe very different physics and we studyjinkowski space-tim¢25]. There is a last scale which plays
a different set of phenomena. a relevant role, the horizon scalg(#) which is fixed by the

evolution on the time of the Hubble constant:

Th (3.2

where we see the emergence of a new mass scale

Ill. PHASE TRANSITIONS IN RADIATION DOMINATED

COSMOLOGY 1
rH(ﬂ):m:C(n)ﬂ:Han- 3.7
A. Kinematics K
We consider a phase transition corresponding to the dymodes with physical wavelengthy,, <= 27/K,pysinside the

namics of small field models where the scalar field has vanhorizon
ishing expectation value but with a symmetry breaking po-
tential, namely at the top of the potential hill. Nphyd 17)~krjhlys( 7)<ru(n) (3.9

In a radiation dominated cosmology, the initial state is
that of local thermodynamic equilibrium at an initial tem- are causally connected; modes outside the horizon are caus-
peratureT>T,.. Using finite temperature field theory in an ally disconnected.
expanding background geometry, it is sho&6] that the The relaxation rate of hard modes of the charged fields is
effective time dependent mass term depends on the effectivgiven by[37]
time dependent temperatufét) =T/a(t) which reflects the
cooling from the cosmological expansi¢see below. Hence
at a given time the temperature equals the critical and the
phase transition occurs. Field modes with wavectors much
larger than the symmetry breaking scalewill remain in  where the effective temperature varies with time as
LTE and will not be affected by the symmetry breaking dy-

1
L(y)~aT(n)n=, (3.9

namics[36]. _Tr

We normalize the scaling factdZ(#) at the reheating T(m)= C(7n) (3.10
time »= ng in such a way thaC(#7g)=1 then the explicit
expression foiC( ) reads and the expansion rate given by
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T%(7) Another important quantity is the ratio of the wave vector
Him=—— (3.1) K of the primordial magnetic field to the conductivity.
* As it will be discussed below, the physical conductivity is
Therefore, given by
['(n) 10'° CN(7)T(7)
~ : (3.12 o(n)=——"—", (3.18
H(n)  T(7)(GeV) 1

aln——
aN(7)

Thus hard modes are in thermal equilibrium fo( »)
<10'° GeV.

In particular, modes withkk~Tg are the hard modes that
give the leading contribution to the conductivity in the high
temperature limif38,39. Modes withk<u will manifest
the long-wavelength spinodal instabilities and their dynamic
will be strongly out of equilibriun{36,40—42. Their ampli-

where(C is a constant ofd(1), N(#) is the number of ul-
trarelativistic charged species, and we have neglected the
(logarithmig dependence on the energy scale in the running
coupling constant. For this discussion we will neglect the
Yime dependence oN(7) assuming that the number of

) . charged ultrarelativistic species remains constnis as-
tude begomes nonperturba’q_vel_y Ia[@@,40—_42 and will b_e sumption can be relaxed without qualitative modifications of
responsible for the nonequilibrium generation of the primor-

dial magnetic field25]. the main argument Under this assumption
Using E@s.(3.1) and (3.10 we can write the conformal

time as (9)= IR (3.19
7Ty '
Tr
n= HgT(7%)" 313 yith or being thecomovingconductivity determined at the
time of reheating
As it will become clear below an important cosmological
quantity is the product CNTg
OR="7 (3.20
k Konyd 7) 27 M, aln—
K= _ “phy T(mr _ _ aN
7 _CC(n) (m)m T(7) (m)ru(n) LTa T(7)
(3.14 Thus the ratio,
The ratio . )
phys 7 B 27« e Mpc
kphys( 7]) _ 2_77 (3 15) 0'( 7’) NLTR 10 L/ (321)
T(p)  LTg '

. . o ) ] ) neglecting logarithmic corrections.
is a kinematical invariant. Its value today is determined by Fyrthermore,

the scald_ which will be typically chosen to correspond to a
galactic scale or the scale of galaxy clusters, and the tem- 10° for T(7)=Tr~10' GeV,
perature of the CMB. It is given by

() ry(n)~ aT(* ~1{ 10" for the EW phase transition,
_ 5 L) 10?7 for the QCD phase transition
LTRr=3.7x10° (Mpc . (3.16 (3.22
Therefore, where we have neglected logarithmic corrections. Therefore
orn>1 throughout the radiation dominated era considered
Kyp~10°9 Tew (M) in this article. The regimer7>1; k?5/o0g<1 is dominated
T(n)\ L by the(slow) hydrodynamic relaxation of the magnetic field.
o B 5 Another relevant estimate involves tk@omoving diffu-
10722 for T(75)=Tgr~10" GeV, sion lengthé((n) = Vnlog
={ 10°° for the EW transition, (3.17)

10" ¢ for the QCD transition aitt(m)  [aT(n)
n M

for L~1 Mpc. Thus, during the regime of interest in this _3* 5

article, ky<1 for scales of galaxy clusters. A noteworthy 1072 for T(7)=Tr~10" GeV,
aspect of Eq(3.17) is that the wavelengths corresponding to ~1{ 10°° for the EW phase transition,
the scale of galaxies or clusters today were well outside the 10 "
horizon during the radiation dominated era when the elec- 107 for the QCD phase transition
troweak and QCD phase transitions occurred. (3.23
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where again we have neglected logarithmic terms. Thereforthat lead to magnetogenesis will be nonperturbative in the
the diffusion length is much smaller than the Hubble radiusscalar sector and result from the instabilities associated with
during the radiation dominated era. Finally, combining Egsthe phase transition. The contribution from the gauge fields,
(3.23 and(3.17) we find in the form of self-energies for the scalar fields, do not fea-
ture the instabilities associated with the phase transition and
— 25 — 16
107<KkEqire(7) <107 (3.249 will, furthermore, be suppressed at least by one power of

between reheating and the time of the QCD phase transitiofi"€ (NyPeD electromagnetic coupling constant as compared
The contribution from the hard modes of both the charged® the scalar self-interaction. - _
scalar and gauge fields which remain in local thermodynamic AS described above, the nonequilibrium evolution of
equilibrium lead to an effective mass for the scalar field. Thigong-wavelength modes begins with the spinodal instabilities
thermalmass is obtained from the long-wavelength limit of Which result in an exponential growth of the amplitudes for
the scalar field self-energy and includes the hard thermdpng-wavelength fluctuations. When the nonlinearity be-
loop contributions from the gauge and scalar figl43,44. comes of the same order as the tree-level terms in the equa-
This thermal mass is given by tions of motion, the back reaction of these fluctuations shuts
off the instabilities[40—47. Therefore a nonperturbative
treatment of the dynamics is required. The laMNd&imit of
the scalar sector allows a systematic nonperturbative treat-
ment of the dynamics which is renormalizable and maintains
Finally, another important quantity is the Debye screeninghe conservation law0,41].
length that determines the scale at which long-range forces We will therefore study the dynamics in leading order in

are screened by the polarizability of the medium. In an ulthe largeN limit that already reveals the important nonequi-
trarelativistic plasma, the comoving Debye screening lengthiprium features of the evolution.

is given by[43,44]

T2
m$=2—2()\+3ez). (3.25

1 1. Radiative corrections
ép~ oo (3.26 The contribution from the gauge fields to the equations of
R

motion of the long-wavelength modes of the scalar fields
the ratio of the Debye screening length to the Hubble radiugrise through self-energy corrections. To lowest ordewin

is given by these are dominated by the hard modes of the gauge fields
with momenta~T (hard thermal loopswhich lead to a con-
o 1T(n) (3.27 tribution to the thermal mass given leyi/ /8 [43,44]. Thus

dy e M, ° ' the lowest order radiative corrections had already been ac-

counted for in the thermal mass E®.25).
Hence é&,<dy(7n) for T(77)<10'" GeV, thus long range The nonequilibriumeffects in the gauge contribution of
forces are screened over very short distances. The formatiaRe scalar self-energy will arise from polarization loops in
of long-wavelength domains with typical size of the order ofthe photon propagator. This in turn will induce nonequilib-
the Hubble radiu$26] leading to strong charge and current rjym radiative corrections to the self-energy of the scalar
fluctuations that will seed magngtic fields, wi!l not be hin- fia|ds of the orde(a?). These small contributions can be
dered by long-range forces, which are effectively screenedytely neglected in this context. Thus, to this order the radia-

over sub-horizon distances. tive corrections to the scalar field from the gauge field propa-

Magnetic field generation via charge asymmetries duringyaiqr in the scalar self-energy are accounted for in the ther-
a period in which electromagnetism was spontaneously bros a1 mass.

ken was previously studied by Dolgov and S[kS] who Hence the dynamics of the scalar field is studied along the

argued that long-range forces would be screened by thg;me jines as presented in Ré#0—47 but the only differ-
Higgs mechanism. This is different from the situation studiedyce s in the initial conditions in the modes that reflect the
in this article, where théJ(1) symmetry associated with {yarmal mass in LTE.

electromagnetisnirather hypercharges not spontaneously Since symmetry breaking is chosen along the direction of
broken. Long range forces are screened by the plasma, {gq neutral field we write

situation not considered i#%5].

B. Scalar fields dynamics ‘lf()z, 7= \/Nso(n)+x(>?,n), <X()Z, 7)=0 (3.289

For completeness and to highlight the aspects of the non-
equilibrium dynamics most relevant to the generation of
magnetic fields, we summarize the main features of scalavhere the expectation value is taken in the time evolved
field dynamics. For further details the reader is referred talensity matrix or initial state. The leading order in the large
[40-43. In what follows we will neglect the back reaction N limit is obtained either by introducing an auxiliary field
of the gauge fields on the dynamics of the scalar fields. Thand establishing the saddle point or equivalently by the fac-
rationale for this is that the main nonequilibrium processesorizations[40,41]
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(®TD)2-2(D D) DD where the frequencied/, are quasiparticle frequencies with
thermal massn? given by Eq.(3.29 at the reheating tem-
x®TO— (DT D), perature,

This factorization that yields the leading contribution in the

largeN limit makes the Lagrangian for the scalar fields qua- W= Vk?+ m%.

dratic (in the absence of the gauge couplireg the expense

of a self-consistent condition: thus charged fiefdacquire a ) )

self-consistent time dependent mass. For.t'he_se modes the. assumption of local thermodynamic
The dynamics is determined by the Heisenberg equation€duilibrium is well motivated and we have

of motion of the neutral fieldl and the charged field$

[40—47. We will consider that at the onset of the radiation

. T o 1
dominated era, the system is in the symmetric high tempera- /5t kKya.(K))=(bT(K)b.(k)}= &..n n=—

ture phase in local thermal equilibrium with a vanishing ex- (@ (k)as(k))=(br (k)bs(k)) = drshic. M eW/T—1
pectation value for the scalar fields. Consequently, the initial (3.32
conditons  are (¥(x,0))=Ne(0)=0, (W¥(x,0))

=VNg(0)=0, (®,(0x))=0, (P,(0x))=0. k<Hg: for superhorizon fluctuations, which are causally

~ In the absence of explicit symmetry breaking perturba-gisconnected at the reheating time, we cannot assume a ther-
tions the expectation value of the scalar field will remainmajized distribution. The correct distribution has to be de-

zero throughout the evolution, thys=0. . rived by following the dynamics from the inflationary stage,
It is convenient to introduce the mode expansion of th&yhen the fluctuations were well inside the horizon. While a
charged fields complete discussion of the initial conditions is left to a forth-

5 coming article, the case under consideration we will see that
@, ( ;):f d°k [ the dependence on the initial conditions is rather weak and
7 J2(2m)3 only during the initial stages of the phase transition. For the
. later stages, dominated by the scaling solution described be-
+b;f(|2)f;(7])e*ik-x], r=1,... N, low, the dynamics isuiniversaland does not depend on the
initial conditions. We will simply assume that boW, and
(3.29 n, have a finite nonzero limit as— 0 namely the only im-
portant quantities for the dynamics of long-wavelength fluc-
tuations are

a,(K)f ()&

with (a, (k))=(b,(k))=0.

In leading order in the largH limit, the Heisenberg equa-
tions of moation for the charged fields translate into the fol-
lowing equations of motion for the mode functions and the limW,=W,, 0<Wy<w, limn=n,, 0<ny<c.
expectation value of the neutral field feg=> 7g [40—42: k—0 k—0 (3.33

2
L e- M)+ 5 62+ L@T‘P)
47 2 2N

f(7)=0,

With this choice of the initial state we find the back reac-
tion term to be given by
i M2(n)+ > @)+ (@T®) |o(7)=0
d7]2 n 2 ¢ (7 2N eln . \ \ K
(3.30 j
(2m)?

If(m1+2n]. (3.39

2 it =
2N )7
Obviously, the initial conditionsp(0)=0, ¢(0)=0 imply
that ¢(#)=0 for all times. That isp(7%)=0 is a fixed point
of the dynamics.

We must now append initial conditions for the mode func-
tions f,(#). The initial conditions on the mode functions

This expectation value is ultraviolet divergent, it features
quadratic and logarithmic divergences in terms of an upper
momentum cutoff. The quadratic divergence and part of the
logarithmic divergencethe one proportional to the mass
Ig(tz)edhipr?zr:)ic:::gl]; Y?Igtetﬁfet?:hvev:;ﬁ v:;:l:c:s compared term) are absorbed in a renormalization of the mass term
k>Hpg: for quctuaF;ions inside the hgorizon., we may as- ’uzﬂﬂé.and the remain_der_logarithmic divergence i_s ab-
sume thermal quasiparticle boundary conditions at the reg,orbed mFo a renormalization of the scalar cou.plmg .
heating temperature: —\R- While these aspects are not relevant for the dlscus_smn
here, they are mentioned for completeness, the reader is re-
ferred to[26] for details.
W, = m After  renormalization the self-consistent field
(N2N)(DTd) is subtracted twice, and is given Igfor de-
(3.32) tails se€/26] and references thergin

1
fllmr)=—, fr(nr)=—1Wif(7R),

H
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Y ) with W, given by Eq.(3.5 and the effective(conforma)
(P @) =NlI() 1 ()], time dependent mass is given by
R
_ M [ 2 M?(9)=C*(n)u? ——1] (3.39
}\RJ(”'?)_ij q°dq|fq(7)|“ng, C2(p)T?
AR [ 2 21 T2= 24u° (3.40
Nl = % [ e (P~ T -
O(q—K?) 2 N where we have used=0 as a fixed point of the dynamics.
e | AR NP The time dependent mass teri 2( ) includes the high
q temperature corrections and clearly displays the cooling as-

(3.35 sociated with the expansion in the form of a time dependent
) . _ effective temperatur@.¢¢(7) =Tr/C(7). The phase transi-
and the mass and coupling are replaced by their renormalizeghy occurs at a timey, when Tor(7:) =Te, thus for 7
counterpartsué;)\R respectively. HereK is an arbitrary > 5. the effective time dependent mass termAg2(7)
renormalization scale. In order to avoid cluttering of notation_ y,2, \ _ 2042 2 _ T4 2 ;
. . =M =—uHgnp=— as given by Egs.(3.5),
we now drop the subscrifR for renormalized quantities, in 3.6 () AR wen g y Eas(39
Wh?LfO;I_O\_’;’S{{‘;}‘ stantd fortthe ren(;]rmahze;j_gu?nunefs. The full time evolution of mode functions in a radiation
€ Tinite temperature _ernh( 7) has con ributions 1rom - 45 minated cosmology has been studied analytically and nu-
short wavelengths for which the mode functions are of themerically in detail in Refs[26,40. Here we highlight the
~ | 1 i - . - ! : - .
form fq(7)~€'97/\Jq and contributions from long wave- e important features which are necessary ingredients to

lengths. The contribution from short wavelengths is the Samy,dy magnetogenesis. The reader is referref26 for a
as that in equilibrium in Minkowski space time and deter- 5.6 comprehensive discussion.

mines th_e hard-thermal lod@3,44 contribution to the self- The are two main dynamical stages in the evolution:
energy given by26] Spinodal stage: this is the stage immediately after the
T2 phase transition which is dominated by spinodal decomposi-
JurL==— (3.39  tion and the growth of long-wavelength fluctuatiof5].
24 This stage spans the time scajg< »=< 7, where the non-

linear time scal is determined by(see belo
where we have used that the short wavelength modes are in i Y w

thermal equilibrium at the reheating temperatdie. This S (7))
hard thermal loop contribution has been self-consistently ac- "= ~’7“' _ (3.4))
counted for in the thermal mass of the scalar field BR5. w?
It is convenient to separate the hard thermal loop compo-
nent Eq.(3.36 from Eq.(3.35 and define During this stage the back reaction, determined by the term

N2 (7), can be neglected and the dynamicéinigear.

N[ Scaling stage: This is a stage in which the non-linearity
A (n)= —zf qqu{ [fq(m]?(1+2ny) encoded by the back-reaction teix (7) are very impor-
8m<Jo . . .
tant and compete with the tree level term in the equations of
1 2 0(q—K?) motion. This stage is described by a scaling solution of the
- =1+ equations of motion for the modes with small wave vectors
4 e¥Tr—1 2q° and describes the nonequilibrium relaxation of long-
wavelength fluctuationf26-2§.
2
X[=m +)\2(77)]}' (3379 2. Spinodal stage

Aft lizati dint £ di ionl i After the phase transition but before the nonlinear time
Mer renormaiization and in terms ol dimensioniess quanti-g.ae after which the back reaction becomes important,
ties, the nonequilibrium dynamics of the charged scalar field

. . i . <pn< i i
is completely determined by the following equations of mo-?]f’:1rne|y for 277° 714 772“' the time depende_nt mass term Is
tion [26,40—42: given by M “= — u*n*, and for weak coupling <1 we can

neglect the back reactionX (7). The equations of motion

2 for the mode functions during this stage are given by

d
—+ M)+ + A2 (7)
dn

d ~
— =t

o= fo(m=0, a<p?n.  (3.42

1
fo(nr)=—=, fo(nr)=—1W4fy(7r) (3.39
’ VW, ‘ e We note that fofT .~ 10'° GeV

o
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_ A +3eZM, 12 (i) At »~ »n,, the mean square root fluctuations of the
M= 4 T ~10 (3.43  field are of ordeM?( ,)/\ probing the vacuum manifold,
C

and the nonlinearities become very important. The back re-
~ i 2
and therefore fom> . we are in the regime.n>1. It is ﬁ]csttlggiI)i\tizegsnglkzutbigfor?re]jsc% r:]pir:lil eﬂ Mth(en&l;)/nzrrfictshﬁs
" [ _ . c nl
clear that the mode functionfg(#) will increase exponen described by thdinear spinodal instabilities while fory

. . ~2

tially in the band ofunstablewave vectorsy<u”z. Equa-  ~ , 3 fyll nonlinear treatment of the evolution is required.
tion (3.42) can be solved exactly in terms of Hermite func- ag'it will be discussed below this later stage is described by
tions[46] the emergence of a scaling solution.

—h o (12)(un)? - ~ For 7,>n>un"t the asymptotic form(3.45 for the
fa(m)=Dbqe Hwz) @21~ 7) mode functions apply and we find for the quantum fluctua-
~ ~ . . . . .
+ag VAU H_ yp oma 1y(iy) (3.4 t|o=ns(3.37) which dominated by the lower integration bound

where the constant, andb,, are fixed by the initial condi-

~ ~ -~ 2
tions (3.39. For w#>1 we can use the asymptotic behavior w?|ag|? e i
of the Hermite function$46, A2 (770) =N(1+2n0) 52 ~ In( %
327wyl InCunn))

2 x

This leads to the following estimate for the spinodal time for
weak couplingh

]3/2

z>1

H,(2) = (22)" 1+ 0 1+0

(3.47

M Tni

and we find for the mode functions,

f (ﬂ)ﬁfla e’ (G )~ -1 11 0 1
! ! s , 1 32752
3.4 77nI:~_2 In 2~
(3.49 p?[ IN(L1+2ng)[ag’u
Since the exponentially damped solution becomes negligible 3 32757 1
the phases of the mode functiofi{ %) freeze namely, they + 5'” n >~ | 0| Inn |nx .
S . . A1+ 2ng)|agl?u
become constant in time and are slowly varying functions of
g for long wavelengths. (3.48

This is very similar to the situation in Minkowski space-
time, where the mode functions however increase*dsi.e.  The important point is that the dependence on boundary con-
much slower. In any case the sofj--0) modes are the ditions and the initial distribution is solelpgarithmic, thus
most amplified at the end of the evolution, therefore, thewe may expect out predictions to be very robust with respect
guantum fluctuation$3.37) are dominated by the lower in- to changes of the initial conditions. In particular, the scale

tegration boundj=0. factor at this nonlinear time scale is given by
We notice that the freezing of the long-wavelength mode
functions will play an important role in the discussion about Tk oa \ V4 1 1
the magnetic field generation, since it assures the indepen-C(7,)= NP In—| 1+0| —| |,
. o . L N 1
dence of the final result from the initial particle distribution M, Tc N +3e A |nX

function, except for subleading corrections.
The physics of the phase transition is essentially the same (349

as in Minkowski space-timg25,40—-42, since the exponen-

tial growth of modes in the spinodally unstable band will Where we have used E¢S.3) and(3.40.

make the back reaction terw®, () begin to grow and even- The.amplitude of the Io_ng—wavelength modes at the non-
~4 2 . . linear time, roughly speaking at the end of the phase transi-
tually cancel the term- u” % in the equations of motioffor

o tion is approximatel
7> 7. the effective time dependent temperature vanishes PP y
This will happen at anonlinear time scale defined by

42072
[40.41] 14— 212

| . ( ) | 3271_5/2 [ I 32775/2
ni)1= =~ In

— s at N(1+2ng) L M(1+2ng)

ANZ (7701) = p 75 - (3.46 (3.50

Two important aspects are describedy : (i) at this time  As we will discuss in detail below this nonperturbative scale
scale the phase transition is almost complete sNE€7,)  will ultimately determine the strength of the magnetic fields
=u*7? means than(®Td)/2N=1u*7Z,, namely the mean generated during the phase transition.

square root fluctuations in the scalar field probe the manifold During the intermediate time regime the equal times cor-
of minima of the potential. relation function is approximately
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ot ® = 5. |a.|2er? e (@¥u?+ 1)inlun] in Ref. [26] is that there is a very precise cancellation be-
(Dg.a(m) Pa(7)) = Saply| (351  tween the tree level term u?C?() and the back reaction
A3(7) in the equations of motion(3.39. The self-

and its Fourier transform for long wavelengths is of the formconsistency condition requires that for a radiation dominated

cosmology[26]
27 - 132 o
<cDa(Xr77)(Db(Oa77)>:5a,b|ao|2 —u®| —= e X&) o 7T 15
wn o LInpy AZ()—pC(p) = ——. (3.59
(3.52 4y
which determines the time dependent correlation length ofn this asymptotic regime the solutions of the equations of
the scalar field, motion
e d? 15
2 —= In(vuHg7) — K- =
gp=NInpn=2\/———— (353 a7 22| 470 (359
M mHR
. L - . . . . are given by
This expression is valid in the intermediate time regime
<n<mp, during which the nonequilibrium dynamics is Jo(k7)
dominated by the spinodal instabilities. The detailed analysis ()= 17| A 2 5 +Bk?Ny(kn) [ (3.5
of the dynamics in Refd40-42 and the discussion of the k

main features presented above can be summarized as fol- ) ) i i .
lows: This solution can be written in terms of the scaling variable

At intermediate timesp ‘< p<7n,~pn VIn1I\ the x=kz (3.57
mode functions grow exponentially for modes in the spinod- '
ally unstable band<M(#). The phase of these mode func- in a more illuminating form
tions freezes namely, becomes independent of time and
slowly varying with momentum. Jo(X) x2N,(x)

At a time scale determined by the spinodal time the back fi(m) =A™=~ +B——, (3.58
reaction shuts off the instabilities and the phase transition is X K

almost complete. This can be understood from the following:

the back reaction becomes comparable with the tree-levej S d_|scussed in detail in Ref26], the releyant integrals are
ominated byx~1, namely by modes with wavelength of

t 4.2 H H ) i .
term (for 7> 7g) when \/2N)(®'®)~u" 7. This relation e order of the Hubble radius, thus the second contribution
determines that the mean square root fluctuation of the Scalﬁrroportional toN,(x) can be safely neglected at long times.

field probes the minima of the tree level potential. Forx=1 in the long time regime we can further approxi-

During the spinodal stage the correlation length of themateA ~ A, and the asvmbptotic solution during this stage is
scalar field grows in time and is given by E&.53. This is K i ymp g g

of the scaling form
interpreted as the formation of correlated domains that grow g

in time, and is the hallmark of the process of phase separa- 3,(X)
tion and ordering. This correlation length will be important fi(7)=Ayn>? 2 S (3.59
in the analysis of the correlation of magnetic fields later.

The large fluctuations associated with the growth of spin-_ ) )
odally unstable modes of the charged fields will leaduo ~ Since forx<3 and large time the modes with small wave
rent fluctuations which in turn will lead to the generation Vector have the largest amplitudes, these dominate the back
magnetic fields. Thus the most important aspect of the nonteaction. The very precise cancellati¢®.54 leads to the
equilibrium dynamics of the charged fields during the phasdollowing sum rule[26]:
transition is that large fluctuations of the charged fields asso-
ciated with the spinodal instabilities will lead to the genera- A K
tion of magnetic fields. Since the modes with longer wave- QJ k2dk|fi ()3 (1+2ng) = w'n®.  (3.60
length are the most unstable the magnetic field generated

through the process of phase separation will be of longsince for largey the integral is dominated by soft modles
wavelength. Furthermore we expect that the magnetic field_ 1/7—0 the distribution function can be approximated by

generated by these nonequilibrium processes will be corrg; and the amplitude bjAy|2. The sum rule Eq(3.60 then
lated on length scales of the same order as that of the charggd, 45 1o the identity

field above.

— 00

3
a
w?HZ, (3.61)

3. Scaling stage |Ag|2(1+2ng) =

A remarkable result of the evolution in the asymptotic
regime(when the effective temperature has vanigHednd  where we used the integrgd6]

123505-10



LARGE SCALE MAGNETOGENESIS FROMA . .. PHYSICAL REVIEW B7, 123505 (2003

= dx 4 ~ CNT
fo 2 20=15, Y (3:63
ain aN

which is dominated bx=<3. This is a remarkable result: the
product|Ag|?[142n,] in the scaling regimeloes not de- with N the number of charged fields adge- O(1).
pend on the initial conditions on the evolutjomamely it is In an expanding cosmology an in particular during phase
universal in the sense that it is independent of the previoutransitions, a more precise assessment of the contributions
history through the phase transition. This is an importanfaind meaning of the conductivity must be provided. As it was
result which will play an important role in the power spec- discussed in Ref.25], the fluctuations of the charged fields
trum of the magnetic fields. during a phase transition will have very different behavior if

An important consequence of this scaling solution is thathe typical wave vector of these modes is of the order of or
the equal time two-point correlation function of the scalarsmaller than the symmetry breaking scale or much larger
field is given by than this scale.

Short wavelength modes, those with typical wave vectors
1% much larger thanthe symmetry breaking scale are insensi-
(<I>a(>2, ﬂ)‘Db(ﬁ,ﬂ»: S.pD(2), z=7— (3.62 tive to the phase transition and are always in local thermo-
n dynamic equilibrium(LTE). For short wavelength modes
deep inside the horizon, the mode functions are of the free
which reveals that the correlation length is given by the sizdield typefq(n)~e'q”/\/a.
of the causal horizoh26]. The dynamical evolution during Long wavelength modes, those with wavectors of the or-
the scaling stage is precisely determined by the growth ofler of or smaller than the symmetry breaking scale undergo
horizon-sized domaing26]. critical slowing down and fall out of equilibrium during the

We summarize below the important features of the soluphase transition. These modes become spinodally unstable
tions in the scaling regime that will be used in the computa-during the early stages of the transition as summarized above
tion of the power spectrum of the magnetic fields. and analyzed in detail in Reff26,40-42.

For > 7, a scaling regime emerges in which the mode Thus the contributions from the charged particle fluctua-
functions are given by Eq3.59 with x=Kkz. This scaling tions to the photon polarization must be separated into two
solution describes the relaxation of long-wavelength fluctuavery different regimes{a) the hard momentg>|M(7)|
tions of the charged fields. Again the phase of these modegorrespond to charge fluctuations that are always in local
freezesnamely is independent of time. This is important be-thermodynamic equilibrium; (b) the soft momentap
cause this fact will entail that the retarded self-energy of the<|M(7)| fall out of equilibrium and undergo long-
transverse photon polarization tensor will give a subleadingvavelength spinodal instabilities and enter the scaling re-
contribution to the generation of magnetic fields. gime.

The sum rule Eq(3.60 constrains the product of the The contribution from hard momenta will lead to a large
amplitude times the occupation of the long wavelength scalequilibrium conductivity in the medium, while the contribu-
ing modes to be given by E@3.61). tion to the polarization from soft momenta will contain all

The scaling solution described above is akin to that foundhe nonequilibrium dynamics that lead to the generation of

in classical models of formation of topological defects electromagnetic field fluctuations.
[27,28. The scaling regime describes the evolution of long- As the instabilities during the phase transition develop,
wavelength fluctuations and the adjustment of the spatial cothe fluctuations of the charged fields will generate non-
relation length of the scalar field to the Hubble radigs]. equilibrium fluctuations in the long-wavelength components
of the electric and magnetic fields with the ensuing genera-
tion of long-wavelength magnetic fields. However the large
conductivity of the medium will hinder the generation of

In a high temperature plasma a very important aspect thalectromagnetic fluctuations, hence the conductivity must be
must be taken into account in the dynamics of gauge fields ifully taken into account to assess the spectrum of the mag-
the electric conductivity, which leads to dissipative pro-netic and electric fields generated during the nonequilibrium
cesses. As discussed [&5], the electric conductivity se- stage[25].
verely hinders magnetogenesis, and also introduces the dif- We are interested in the generation of long wavelength
fusion length scale which could limit the correlation of the magnetic fields, namelgy<T but alsok< «T, since within
magnetic fields that are generated. the astrophysical application, the wavelength of interest for

In Minkowski space in equilibrium the conductivity is magnetic fields are of galactic scale, whilecorresponds to
obtained from the imaginary part of the photon polarizationa wavelength at the peak of the CMB millimeters. Thus
and it is dominated by charged particles of momental in  the physical situation corresponds to studying the photon po-
the loop with exchange of photons of mometa<k<T larization tensor for long wavelength.

C. Gauge field dynamics

[38,39. A careful analysis including Debyéelectrig and The polarization tensor has locéhdpole and nonlocal
dynamical(magneti¢ screening via Landau damping leads contributions. The equilibrium contribution to the tadpole
to the conclusion that the conductivity is given [88,39 ~(®'®) is dominated by momenta Ty leading to the
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hard-thermal loop resuk®'®)~TZ. This contribution is (71 K =PI(P)Dr an(n 7' ,K)
actually cancelled by the zero frequency-momentum limit of RARLTT A
the nonlocal polarizatiofbubble diagram This cancellation  obey[11] (see[25] for detaily

in equilibrium is a consequence of the Ward identities and

implies the vanishing of the magnetic mass in absence of d? d
symmetry breaking[44,47. In equilibrium the inverse — +k+o( mC(n) g, (Prln.n" k)
propagator vanishes in the limit of zero frequency and mo- dy 7
mentum[47,44] in the absence of symmetry breaking at any —8(n—7'), Dx(p,7')=0 for p<nu'
temperature.
Out of equilibrium, the tadpole and the nonlocal polariza- 42 d
tion (bubble diagramexactly cancel each other in the long- {_+k2+g( 7)C(5)=—|Da( 1,7’ ,K)
wavelength, longtime limit as shown in Rd#8] [see Eq. d»? dz
(6.12 in the referencgindicating the vanishing of the pho-
ton mass. =8(n—7n'), Da(n,mp')=0 for >z
In equilibrium the long-wavelength and low frequency (3.68
limit (k,w—0) of the spatial and temporal Fourier transform
of the transverse polarization is given by d? ) d
FH( +0(77)C(77)ﬁ Dy(n,7".K)
II(k,0)=iwo. (3.64) K
Thus we write for the full transverse polarization for long- =0,
wavelength electromagnetic fields with the transverse projector
Pij(p)=4"—p'p". (3.69

d
HT(n,n',k)=UF5(ﬂ— 7))+ Mnoned 7,7",K).
g (3.69 Due to Eg. (3.67 the comoving conductivity og
= g(7)C(7n) is aninvariant quantity in the regime in which
The first term above includes the contribution from the hardhe number of ultrarelativistic charge carriers is constant. The
momentum mode~Tg in the transverse polarization, esti_mgte given_ by E(q3.22 clearly indicates_ that during the
while Tloned 7,7’ ,K) is the contribution from the long radiation dqmlnated era between reheating and the QCD
wavelength modes which are unstable in the spinodal stag@h@se transitiongg7>1. _ o
and take the scaling form in the scaling regime. Thus in a Then fork<og (which is certainly satisfied since the rel-
very well defined sense, the polarizatith65 describes the €vant wave vectors arfe<T<T/a~og) and > 1log we
effective low energy theory for the transverse photon field. @n safely neglect the second order time derivatives in Egs.
Our strategy is to obtain the nonequilibrium contribution (3-68, leading to the following equations:
to the spectrum of electromagnetic fields to lowest order in
but treaFt)ing the conductivityefactly Dr(.7",K)=Dc(n,7":K) 0(n=n"),
In a cosmological space-time, the temperature scales with , . ,
the inverse of tr?e con?ormal factor P Dal.m",K)=Dc(n,7"K) 0(n" = n) 3.70

T :
R (3.66 e~ (KloR)(n+7")

C(n) DH(’L’?',k)=iU—R,

T(n)=

and therefore the conductivityr=o(7) becomes time- (@lew) ()

dependent. If we are interested in time scales where the num- D ) = € R 37
ber of ultrarelativistic charge carriers does not change sig- c(mn'k) OR ' 3.7
nificantly, which is the case that we will consider in what

follows, then the time evolution of the conductivity is purely V. MAGNETIC FIELD SPECTRUM

kinematic:
As discussed in detail in Reff25], the quantity of astro-
OR physical relevance is the correlation function
o(n)==—. (3.67)
C(n) f e
(B'(7,x)B'(7,0)),, (4.)

An important effect of the conductivity, as discussedas], .

is the introduction of a diffusion scale in the transverse phowhere the sum on repeated indices is underst@&{d;, x)
ton propagator. The long-time behavior of the zeroth ordemabove is aHeisenberg operatoand the expectation value is
propagators for the transverse gauge fields: retaffgcad-  in the initial density matrix. From this quantity, the spectrum
vanced(A), symmetric(H) of the magnetic field is obtained in the coincidence limit
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1 P R where
Sa(nk= 5 lim [ @808, 001,

214
7' =7 TR

4.2 Py= 15 (4.5

where{} denotes the anticommutator. And fra®g(7,k) we  is the comovingenergy density in the thermal equilibrium
can extract thephysicalmagnetic energy density stored on background of photons.
comovinglength scales larger than a given The physicalenergy densities\ pg pnydL,7),0,.phys are
obtaineaj from the comoving expressions above by rescaling
1 [2#iL —plC as can be seen from the conformal rescalin
Aps(L,m)= FL k?Sg(7,k)dk (4.3 ?2.8)13. Thl(JZ)the ratior (L, %) would be a constant in the ab-g
m sence of nonequilibrium generation or dissipative processes.
where we have restored the powers of the scale factor arisifigence the time dependence of the radod) only is solely a
from the transformation to conformal time. Denoting by consequence of the nonequilibrium generation mechanisms
Apg(L,7) the contribution from the nonequilibrium genera- ©F dissipative processésuch as magnetic diffusion in a con-
tion (subtracting the local thermodynamic equilibrium con-ducting plasmabut not through the cosmological expansion.

tribution), a quantity of cosmological relevance to assess the USing the results obtained in R¢25] that lead to a first
relative strength of the generated magnetic field is given byrinciple derivation of the spectrum, we just quote its expres-
the ratio of the power on scales larger thano the energy SION t0 leading order i (_here and in what followSg refers
density in the radiation background solely to the nonequilibrium contribution to the spectjum

Sa(7,K)=Sg(7,k) + S§(7,k) (4.6
r(L,7)= W, a8y °
Y

3

2
Sk(7,k) = esz ((21:)3 g%(1—cog0)

(1+ng)(1+ng4i)

7
f d71kDe( 7, 71,K) Fo(72) g (72)
7R

+(1+NgNg+ik 2+ ng(1+NnG.1)

n
J d7akDe( 7,71, fo( D) F G, (70
R

7 7 2
<[ amk0etmm it i i [ dmakpen ot )| | @
7R R
|
and phase transitions is subleading in the scalar coupling con-
y _ stant\. The equation of motioi4.9) can be solved system-
S (7,k) = —ik*F (7, 7:k), (4.8 atically in an expansion in powers of the nonequilibrium
o . _ polarization,
where F(7,7';k) satisfies the homogeneous differential
equation F(n,7:K)=FO(5,7:k)+FD (9, 7:k) + O(?),
d2 2 d , F(o)(”flaﬂlak):DH(ﬂa"],'E)y
— +k+o(7)C(n) 7—|F(7,7".K)
dzy dn 7 .
FO(n,7' k)= | dniDc(n— 71,k
R
+J doa[11'(72) (7= 71) + TR( 7, 71) IF (791, 7" K)
7
X | dao[ T (770) 8( 91—
:0, (49) f"}R 7]2[ (7]2) (7]1 772)
with IT'(#),Ix(7,7') being the one loop tadpoldocal) + (71, 72;K) 1Du( 92— 7' K) + (= 7'),
and retardednonloca) contributions transverse polarization
[25]. (4.10

We note that the functioF(7,7’;k) obeys the same wherell' Il are the tadpoléocal) and the retarded contri-
equation as the transverse gauge mean fi24d, but as it  bution from the one-loop transverse photon polarization re-
will be argued in detail below, its contribution to the spec-spectively(for details se¢25]).
trum of primordial magnetic fields generated during the These are given bj25]
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d3q Near the end of the phase transition for ' ~ 7, the
'(n)= —iesz 3G=(7.7,9), leading order time dependence of the scalar Green’s func-
(2m) tions is approximately given by
g( 71, 72,K) =117 (71, 72,K Noe 1
R(71, 72, K)=[17 (771, 72.K) fi( ) (7 )OCX’ (4.14

~I5(71,72.0010(m—7,) (41D
where we used Eq3.50. Thus the contribution from the

with tadpole(local term in the self-energyis of the order
d3q d e .
H>(7]1,7]2,k):2iesz 2 )3q2(1_C0520) It (n)nw,,mocy-i-subleadlng. (4.195
T

> This estimate is consistent with the fact that the tadpole con-
X +
G- (m1,72,0)G=(n, 2.+ K, tribution ise?(®T®) and near the end of the phase transition
I_( K)=TI( k) the mean square root fluctuations of the scalar field probe the
<\ 72 =412 7715 vacuum state, namely{®|?)~ u2/\. Since the phases of

The scalar propagatd®- (7, 7':k) is constructed from the these modes are frozen, there is no contribution from the

mode functiond () that satisfy the mode equatiof@42) leading order to the retarded polarization, since it requires
and is given byq the imaginary part of the product of propagators as displayed

in Eq. (4.13. Because of this cancellation of the leading
term, the contribution from the retarded polarization bubble

[
G (72, 72;K) = S[(1+n) fi( 71 fk (72) is of the same order as that of the tadp8,49
2
0§ () f(72) . (4.12 T gec % 4.16
Therefore -
A similar argument based on the sum r(860 leads to the
) d3q same conclusion in the scaling regime.

T ( nl,nz,k)=4e2Nf S 0°(1—cos') For late times, th&—0 limit of the retarded polarization

(2m) exactly cancels the contribution from the tadppsee Eg.

- = (6.12 in Ref.[48]].
XIM[G= (71, 72,0) G (71, 72,[q )] The contribution fromSg is in both cases of2(1/\?)
XO(n,— 12). (4.13  since each long-wavelength mode function is of ordef\l/
at the end of the spinodal stage or, by the sum (8160 in
This expression for the retarded self-energy must be corthe scaling regime. Thus we can safely neglect the contribu-
trasted with that of the contribution frorﬁ'B(n,k) which  tion from SE to the magnetic spectrum.

requires the real part REG-(71,7%2,9)G=(71.72./q Thus the leading contribution to the power spectrum gen-

+Kkk|)]. This is an important difference, the long wavelength€'ated by nonequilibrium fluctuations is given by
modes of largest amplitude in either phase given by Eq. )
(3.45 or by Eq.(3.59 are such that their phases are frozen, Sa(7,K)=(1+2ng)? aNk e (2K%oR) 7

namely they do not depend on time, therefore the products moh
fq(71)f15+6/(72) with only the growing mode solutions are

real qnd such prodqcts will contribute only @(n,k.). This_ « qu“dqd(cose)(l—cos’-a)
freezing of phases is a consequence of the classicalization of 0

the scalar field fluctuation26]. 5
We now argue that the contribution fro@ is sublead- % J”e(kz/aR)nlf () ficid(70)d7
ing. First of all, the termF(©)(», 7;k) in Eq. (4.10 is the - L e+ kU
solution of the homogeneous equation in absence of non- 4.17)
equilibrium fluctuations and leads to the local thermody- |
namic equilibrium contribution to the power spectrum, | hare g is the angle between the vectafrsandIZand where
which is independent of the nonequilibrium generationWe have replaced
mechanisms. This contribution has been analyzed in detail in

Ref. [25] and will be subtracted. In what follows we focus (1+2ng)(1+ 2”|&+f«|):(1+2”0)2’
solely on the contribution from the nonequilibrium fluctua-
tions. since as highlighted in Secs. 11l B 2 and Ill B 3 the dynamics

For intermediate times after the phase transition duringluring both the spinodal stage as well as the scaling stage is
the spinodal stagen.< n<7,, the long-wavelength mode dominated by the long-wavelength modes that acquire non-
functions are approximately given by E@.45. perturbatively large amplitudes.
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The fi_na_l form of the power spectrum _generateq by thetor,ﬂﬁge(nm)zS In3(In(1/\)) and the expression for the cor-
nonequilibrium dynamics given by EG.17) is the basis for  g|ation length in the radiation dominated unive(8es3.
the study of primordial magnetogenesis during the different 5 iy Minkowski space-time, the presence of a high con-

stages after the phase transition. ductivity plasma severely hinders the generation of magnetic
fields. However, a noteworthy aspect is that up to the non-
A. Magnetogenesis during the spinodal stage linear time the magnetic field is still correlated over the size

The long-wavelength mode functions in the spinodaIIyOf the scalar field domains rather than the diffusion length
unstable band are given by the expressida5. Eqitt~mlor. The diffusion scale determines the spatial
The integral overs, for large 7 can be computed inte- size of the region in which magnetic fields are correlated in
grating by parts in Eq(4.17) as an expansion in ;). the absenceof nonequilibrium generation. The ratio between

The integral is dominated by the upper limit, which leads tothe ?r?mairr size( n).giv.en b% Eq.(3.53 and the diffusion
the cancellation of the exponentials that contain the condud€nath scalegyis(7) is given by

tivity. 1\ V4

The integrals over momenta and angles in &ql7) can = M2.In=
be done straightforwardly when the mode functions are §(7n1) 23 orIn( 7n1) A =1
given by Eq.(3.45. Thus from Eq.(4.17) we obtain the Eaitt(mm) i u? '
following expression for the spectrum of magnetic fields (4.22

generated by the nonequilibrium fluctuations
where we have used the relatio(.3), (3.4), (3.20 and
51279N ak? —(ARE ) (3.48. Thus an important conclusion of this study is that the
N202 A E5( 7/n|)e ! magnetic fields generated via spinodal decomposition are
correlated over regions comparable to the size of scalar field
domains which arenuch largerthan the diffusion scale.
X 1+O0[ — | | (4.18 The spectrum for the electric field can be obtained from

In~- that of the magnetic field by simply replacidg>c— De.
In the soft regime and for time scalesok< n<or/k? we

where&(7) is given by Eq(3.53. In obtaining this result we haveDc=—k?/ oz whereakD,=k/ag . Therefore the elec-

Se(K, 7~ 1n) =

used the following: tric field spectrum is suppressed by a fad(éhr% with re-
spect to the magnetic field, namely
1+2ng)?aol* .~ 10247°
wez(ﬂﬂnl)zz T (419 k2
(p 701 AN SER(t,k) = — SgR(1, k). 4.23
g

[see Eq.(3.48] and the identitie$46] ®

Thus, in a high temperature plasma with large conductivity

the nonequilibrium processes favor the generation of mag-
netic photons instead of electric photons, and again equipar-
tition is not satisfied.

+1 e~
f dX(l—xz)e_(4qk"/" )Inpwny

u® [4qkI (im) {4qk| ~ The energy density on large scake¢ again can be com-
== 3| =5 INup)cos—-Inun puted in closed form in the limite> &(t,,) andL<<&(t,).
3 2 2 nl nl
16(akin un)”{ u M We find, in the first case from E@4.3),
gk -
_sin?‘{%ln uwn ] (4.20 Ao O 2131512 Na
M pe(7n,L)= = ,
" BA? [é(m)] oRe(mm)L
and 1
. ><F>§(tn,). (4.249
fqdqe’gzqz[gzchosf(?qk)—sinh(izqk)]
0 We find, for the opposite case,
= gk%ew“)szz- (4.2 3% 207 Na
App(mn, L)= =750 L<é(ta).
_ o o " N2t oRE A ) "
Notice that the magnetic field spectruymh 18 is indepen- (4.29
dent on the amplitudéa,| and on the initial occupation (1
+2n,)2. Therefore this result is quite robust. The ratio of the magnetic energy density on scales larger

This result is the same as for the Minkowski space-timethan L at the spinodal time and the total radiation energy
[see Eq(7.47) in Ref.[25]], except for a multiplicative fac- given by the Stefan-Boltzmann lap, = szﬁ,/15 results:
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_ App(7q1,L) , aNK
r(nm,L)—p— Sa(7,k)=(1+2ng)

Y

* 7
> |Ao|zf dQJ Jo(dn1) 71d7ma
TOR 0 R
3x 21341102 Na 1

N2 [RéE(mpa)]teRé(a)L (LTR*

n
XJ J2(q72) 20 121 (A, K, 71, 772) (4.28
7R

where we set the exponentials equal to unity in Eg17)

L>£(tn)). (4.26 sincekn<1 andk< oy and
This result is the same as for the Minkowski space-tisee +1 1—x2
Eqg. (7.53 in Ref. [25]], except for a multiplicative factor |(q,k.771,772)5f dX———
1€ (m)=81In*(In(1/\)) and the expression for the corre-
lation length in the radiation dominated univeK8e53. X Jo(\o2+k?—2kgxz;)
The factor (Tg) * is purely dimensional and is ulti-
mately the determining factor for the strength of the gener- X Jo(NoZ+ k2= 2k xay).

ated magnetic fields on a given scale. These combinations .
are invariant under cosmological expansion and are deter-USing the summation theorefAe]
mined by the ratio of the scales of interest todaalactio to AP+ K2 2k
the thermal wavelengtiitoday) of the cosmic microwave j /G?5 k2= 2kqxy) = (9 9%
background radiation at the Wien peak. In particuldig q2k?7?
~10% for L~1 Mpc (today) [see Eq(3.16)].

It is clear that the production during this regime is ex-

oo

tremely small, due to the large values afT)* and of the X,ZEO (1+2)d112(a77) 1 o(k )
ratio (T%/,uz. In order to obtain an estimate for the amplitude )
of the seed magnetic field, we consider the following set of X Ci(x)

parameters: A\=102, a=102, u=10"GeV, T 5 .

— 10 GeV (corresponding to a critical temperatufe, ~ Where theCi(x) are Gegenbauer polynomials. Fop<1

=10'5 GeV). We then obtain thel =0 terms dominate and we can use the small argument
behavior of the Bessel functionsl,(kn)=3(k#)?1

2.2 ; :
r(L=1 Mpc)~10" 157 4.27) +O(k“7%%)]. We finally obtain

4
Therefore, the amplitude of the magnetic field generated dur-  1(a.K, 71,72)= —— J2(q71)32(A72) [ 1+ O(K* 7).
ing the spinodal stage is completely negligible. This result is 39

similar to the result obtained in Minkowski space-time in (4.29
Ref.[25] and is expected on the basis of dimensional a”a|y1nserting Eq.(4.29 into Eq. (4.28) yields

sis.

aNKk?
Sp(7,k)=(1+2ng)* ——|Aq|?
3moR

B. Magnetogenesis from the scaling regime

In the scaling regimep> 5, the spectrum of the mag-
netic field is given by Eq(4.17 with the mode functions in
the scaling regime given by E@3.59.

The final expression for the leading contribution, given by
Eq. (4.17 reveals a noteworthy aspect. As we have argued —(n— R} [1+0(K*7%)], (4.30
above, the modek of astrophysical relevance today, were
well outside the horizon during the radiation dominated eraVhere we used the formu(ae]
between reheating and the QCD phase transition. The mode y y2
functions Eq(4.17) attain the Iarg_est amplltuqle gt long times J ZJ%(BZ)dZZ 7[33(33,)_‘]1(33/)33(3),)],
for x=q#»n=2-3, thus momenta in the polarization loop that 0
are within the horizon lead to generation of magnetic fields (4.30

with long wavelengths well outside the horizon. This, We?’%incen> 772 We can neglect the terms withs and we find,

= d
XJ —?{772[35((1n)—Jl(qn)Js(qv)]
0 q

believe, is an important mechanism, loop corrections lead t

a coupling between modes inside the horizon with those ou or k<7 !

side. Thus in this manner, causal fluctuations can actually aN K2

lead to the generation of fields with wavelengths much larger Se(7,K) =D— — w*HE 5 [1+O(K25?)],
than the horizon. \? o2

Sincekn<1 the power spectrum E@.17) takes the fol-
lowing form using the scaling mode functions Eg§.59: D=4846l..., (4.32
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yv:]ere \llve used Eq3.61) and we computed numerically the L) 240mDad " 4( M, )3
integra r(nL)= ,
T NPLa NILTRE | W T(p) | | T(m)
(4.39
* dx
f —4[J§(x)—Jl(x)J3(x)]2=0.00052‘5 ce where D is given in Eq.(4.32. We note that in the final
0 X

result (4.34) there is no dependence on the reheating tem-
perature but only on the scale of symmetry breakingthe
temperature at the time and the scalar and gauge cou-
plings. This is expected since the nonequilibrium processes
begin in earnest after the phase transition, local thermal equi-
librium prevailed between the time of reheating and the
phase transition.

The dependence on the scalar self couplintA? is a
lImark of the nonperturbative nature of the growth of un-

This integral is dominated by the regiot=1, namely, by
modes that are inside the horizon. From the estinia24),
the corrections@(kzgﬁiff(n)) are truly negligible between
reheating and the QCD phase transition.

The dependence on the conformal timey’ is a direct
consequence of the scaling form of the solution for the moder,1

functions. The strong time dependence is a consequence Qable modes and spinodal decomposition, it is ubiquitous in

the causal relaxation of the Goldstone fields, a result of th?h . . o
. - : I e nonequilibrium dynamics of phase transiti¢26,40,41.
phase ordering kinetics that entails that the size of the do- Large qscale mag)rgetogenesisp is more efficient for large

mains grow with the horizon. ; -
- N symmetry breaking scalg, since the larger the symmetr
The spectrum Eq4.32 exhibits the following important b)r/eakingyscale, thg Ionggr lasts the scaligng stage?/ y

features: ; : ; >
(i) The exponential associated with the diffusion Iengthbr eiiinnsg;dse,}(; a];;iin]_s(;%néee\;h:ngiiealz j‘-"(’)fj'f hc'éhrreessgcr)r:]g_etry
cancels out, a reflection that the long time behavior of th%ng to a critical temperature of order of a’ GUT scdle

integrals above are dominated by the upper limit. Hence the_ 101° GeV and suppose that the scaling regime lasts until

final result for the spectrum does not feature the exponentiaH]e electroweak phase transition scale, i.is such that

suppression with the diffusion length. _ N
(i) The result for the spectrum only depends on the initiaIT( 7)=Tew~10" GeV. Then the factor

amplitudeA, and initial occupation humber, in the com- JEVIRE
bination|Ag|2(1+ 2n,) which is constrained by the sum rule K ( * ) ~ 10L00
Eqg. (3.60. Hence the final spectrum igmsensitiveto the WTew/ | Tew

initial conditions on the mode functions or occupations,
which in principle carry information of the early history be- compensates for the factdc Tg) ~°. TakingN andg, of the
ginning from the inflationary stage. This is a consequence obrder of 10(these values are taken as representative and they
the scaling solution being a fixed point of the dynamics ofcan be changed simply in the final expressjoms can write
the scalar field26-—2§. the expression for the ratio as

(i) A noteworthy result is that superhorizon magnetic .
fields are generated by the nonequilibrium dynamics of _ B EW
modes inside but near the Hubble radius. This is a conse- r(T(7),L)=10 34(1 NlpC> (T( 77)) - 438
guence of the polarization loop, wherein the propagators cor-

respond to momentg and |(i+l2|. The moments corre-  Therefore

sponding the wave vectdiscale of the magnetic field is

such that the wavelength is larger than the Hubble radius, but 10734 at the EW transition,

the momentay corresponding to the charged scalar field fluc- r(T(n),L)~ 1014 atthe QCD transition. 4.39

tuations are inside the horizon. The correlation length of the

charged scalar field is of the order of the Hubble radius. Thughus if the scaling regime lasts until a time between the EW

acausal, superhorizon magnetic fields are generatdddpy and the QCD phase transitions the amplitude of the large

effects. scale magnetic fields is within the range necessary to be am-
_In order to reveal the enhancement during the scaling replified by some dynamo models. The amplitude of the seed

gime In a more transparent manner, It Is convenient t0 Usghagnetic field is strongly dependent on the duration of the

the relations(3.3), (3.13, (3.40 and the explicit expression scaling regime. We have only focused on a scaling regime

for the conductivity(3.63 in the form terminating either at the EW or QCD phase transition since

there will surely be new phenomena associated with these

that must be included in the dynamics of magnetogenesis.

NTR
ogr=cla,N]—, c[a,N]=—F——=~0(1).
1o 1 . .
In — C. Discussion
“ (4.33 Validity of the approximationsThere are two main ap-

proximations that were used to obtain the results quoted
above:(i) the long-wavelength approximatidm; <1 and(ii)

Then, the ratia (L, ») for L># is given by the weak coupling approximation. We now provide an esti-
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mate of the reliability of both these approximations to estabthe metric must be included. At longer time scales the effects
lish the limit of validity of our results. of the backreaction of the gauge fields on the dynamics of
(i) Long-wavelength approximatioin order to reach our the scalar field, as well as the nonequilibrium contributions
final result for the rate’(L,7) we have explicitly used a to equation of state and the Friedmann equations must be
series of approximations which are valid for long wave-included self-consistently.
lengths but whose validity must be checked before we reach Generation on short distance scaldsr scales well in-
any conclusion regarding the spectrumsatall scales. In  side the horizon during the scaling regime, nameghs1,
particular we must address the limits of applicability of thewe must account for causal microscopic processes that tend
result Eq.(4.34). This result has been obtained by integratingto equilibrate the electromagnetic fields generated by the
the magnetic spectrum on scales<R<Kkq.x with k,.x  nonequilibrium processes. In order to understand these pro-
=2m/Lyin; the formula for the magnetic spectrum was cesses we must look at the kinetics of equilibration. The

valid in the limit mode functions for wave vectors well inside the horizon are
Minkowski-like, of the form
I(max7]max< 1. (4.37
In order to provide an estimate may take fgy,,, to be the fo(n)= ﬁe*iqw &eiq”,
(conforma) time at which the EW phase transition occurs, \/a q

namely 7eyw~1 GeV 1. As discussed in the Introduction, . )
we are considering a situation in which the magnetic field igvhere the coefficienta, , 5, must be determined from a full

considered as a perturbation of a preexisting thermal blackUmerical evolution. However the constancy of the Wronsk-
body background. For consistency this requires that lan entails that

2 2_
(L min, 7we) <1. (4.38 |aq| _|:8q| =1

This relation translates in a condition which suggests the identificatidiag|=1+Ng; |Bg|=NG,

/ Nj is the number ofasymptotig quanta created during the
—-1/5

CNa®[ T¢ \4 Tew\? time evolution. This form of the asymptotic mode functions
Kmaxtmax<| 55| 7-—| |\ (4.39  leads to the equipartition between the electric and magnetic
2&c EW * field generation, since spatial and time derivatives are the

same. In turn this entails that we can understand the genera-
tion of electric and magnetic fields by obtainingkmetic
equation for the number of photons. Such kinetic equation

For T,~10™ GeV this giveskax7max<0.0176 which in
turn translates into

L>L,ip~70 fm. (4.40 must necessarily be of the form
However, this is the comoving length normalized at the re- dN(7) - -
heating time. In order to convert to the present time, we have dy =[1+ NIl (7) = Ni() I ()

to take in account the redshift

which displays the familiar gain minus loss contributions in

terms of the forward and inverse rates. Eventually a steady

state will be reached which will describe a stationary distri-

bution of photons. The computation of the forwaid ()]

this gives and inversd T, ()] require adetailed knowledge of the
Lol 0.1 pe (4.42 d.istribution/\/q [48] sincg these generalized rates are func-

minltoday™ V-1 PC. : tionals of these occupation numbers. Clearly such computa-

Thus the approximations invoked are reliable to estimate thon liés beyond the scope of this article and is a task that we

amplitude of primordial seeds on galactic scales or Iarger‘{‘”” undgrtake elsewhere._ _However, the kinetic equations
today. above will tend to an equilibrated state of local thermody-

(i) Weak electromagnetic couplingn order to study the namic equilibrium. . .
amplitude for much smaller scales the calculations must b% Effect on_the_: LS3t is important to estimate the effect of
done without the long wavelength approximations invoked® Magnetic field on scales corresponding to those of the
above. In this case we must expect a breakdown of perturbd@St scattering surface, which today argss~100 Mpc.
tion theory and we cannot give a reliable estimate in thd "M Ed.(4.36 we see that at the electroweak temperature

present framework. Furthermore, for scales well inside thé (TewsL1s9~10 *, taking the fourth root we can provide
Hubble radius, microphysical processest includedin our 2" estimate of the temperature fluctuation induced by the
approximations, such as scattering between charged fielg¥imordial magnetic field 5T/T| ss~[r(Tew.Lis91z

and between charged and gauge fields must be included:10~ ! which is negligible compared to the CMB tempera-
These processes will restore equilibrium between the differture fluctuation at this scale-10™°. On the other hand, a
ent fields, if there is a substantial transfer of power from thesimilar estimate at the time of the QCD phase transition
charged fluctuations to the radiation field, this may lead to ajives 6T/T| s~ 10 ¢ which is marginally compatible with
change in the equation of state and the full back reaction othe current observations. Thus the reliability of the approxi-

.
zR=T—jz4><1028 for Tg~10° GeV; (4.41)
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mation of weak gauge coupling combined with the effects onTherefore,

the temperature anisotropy at the last scattering surface seem

to lead us to conclude that a phase transition during a T L)~
" . r(T(»n),L)

radiation dominated era occurs near the GUT scale and re-

sults in a scaling stage, our results for primordial magneto:l_h ; the | | imordial tic field
genesis will be reliable down to the scale of electroweakate%r%l?rrﬁ]’ tf?e 22%?”]502; pé'gf?ér': rﬂ:gg?[rgnslﬁioﬁ ?nznege
symmetry breaking. g g stag p y

a plausible mechanism to generate primordial magnetic fields
which will be further amplified by the collapse of protogal-
V. CONCLUSIONS axies and by astrophysical dynamos.

In this article we studied large scale primordial magneto-, Frobably a phase transition at a temperature much larger
genesis during a phase transition in the radiation dominate an the electroweak leading to a scaling regime lasting until

era after reheating in a model bFcharged scalars coupled t ﬁ QCD ph_?se trta?hsnuljn tls rult(ted_out byf the t:;:-mg:arature
to an Abelian gauge field. The spectrum of the magnetic field{?} omogentgl |esf al te as SC? (:T:"nrlldg sur ac&" ur ermcljre
generated during the nonequilibrium evolution was com- € generation of electromagnetic ields on subhorizon scales

puted using the formulation recently introduced in R&6). requires a fu:l Kinetic equ{'ﬁ“?? tr:jatt |rt1t(1:orpor|§1te§ thetr:mcrto-d
The dissipative effects of the conductivity are included bySCOpIC causal processes that lead to thermalization, the study

; - : f these is beyond the scope of this article.
separating the contribution from hard modesth momenta 0 . .
of order T) to the polarization tensor of the gauge fields. Magnetogenesis after the QCD phase transitichie

These modes are always in local thermodynamic equilibmc’del that we studied here is assumed to describe the robust

rium. The nonperturbative, nonequilibrium dynamics of thefeatures from the nonequilibrium dynamics of a charged sec-

scalar field after the phase transition was studied in the Iarg%?r co_upled to a(hy%eljt(r:]harge gaugedfieldf. GUT's Oli SUSY
N limit. The dynamics after the phase transition features wd eHorles may provide the cotLretspon _Ingll rtarl]mewoc; I tudied
distinct stages: an early and intermediate time, spinodqlI owever we now argue that precisely the model studie

e - tually describe the nonequilibrium dynaraftsr
stage, which is dominated by the growth of long-wavelengt ere can ac - o i
fluctuations, followed by a scaling regime during which the he QCD phase transitis). After hadronization and chiral

scalar field becomes correlated over horizon-sized domain§Y™MetY breaking most of the hadrons produced will be
During both regimes, strong non-equilibrium fluctuations P'ONs. at least this is the experimental situation in ultrarela-

lead to large current-current correlation functions which enlvistic heavy ion collisions. Neglecting the charge form fac-

tail the generation of magnetic fields. The scaling regime idor (which is justified for momenta much §mal|er than fhe
the most effective for primordial magnetogenesis since thign€son masen,~ 7.70 M?V) t_hg charged pions coup]e to the
stage lasts the longest. During this stage magnetic fields Witﬁ!gctrqmagn§t|c field with ”!'”'ma' coupllng: The thral tran-
superhorizon wavelengths are generatedads effects, the sition is c_onjectu_red to be in the same universality class as
scalar field momenta in the polarization loop corresponds t(5heo_(4) I_mea_r sigma model0]. Thu_s the_ madel presented
wavelengths of the order of or shorter than the horizon. Thud! this artlgle is thelow energy effective field theofyr the
causal scalar field fluctuations lead to the generation of maj—r|p|6t of pions, two charged and one neutral. Thus we con-

10734 at the EW transition,

. 5.2
10 '* at the QCD transition. 5.2

netic fields on superhorizon scales. The generation of ma ecture that the study in this articttoesdescribe the genera-

netic field is hindered by the large conductivity of the plasmaion of rragne';ichfields_bly Iong-wa\1elength pions. Ther_efc()jre
and equipartition between electric and magnetic fields derhe analysis of this article can apply to magnetogenesis dur-
Ing the chiral phase transition in QCD. While the charged

not hold. The spectrum of the primordial magnetic field is”. . - o :
insensitive to the magnetic diffusion length which is subho-P'ONS couple to eIectromagneUsm via the_ minimal coupling
rizon during the radiation era in the long-wavelength limit, the neutral pion couples to the

Our final result for the spectrum generated during thef!ectromagnetic field through the chiral anomaty—2y

scaling regime is given by E§4.32. The ratio of the energy and such process will also produce m.agnet.ic fields. We wil
density of the magnetic fields on scales larger thao the study the possibility of large scale primordial magnetogen-

energy density in the cosmic background radiatigh, 7) esis during the chiral phase transition in QCD in a forthcom-

=pge(L, )/ pemi(L, 7) is given by Eq.(4.34). For values of ing article.
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