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Adiabatic modes in cosmology

Steven Weinberg*
Theory Group, Department of Physics, University of Texas, Austin, Texas 78712, USA

~Received 24 February 2003; published 6 June 2003!

We show that the field equations for cosmological perturbations in the Newtonian gauge always have an
adiabatic solution, for which a quantityR is nonzero and constant in all eras in the limit of large wavelength,
so that it can be used to connect observed cosmological fluctuations in this mode with those at very early times.
There is also a second adiabatic mode, for whichR vanishes for a large wavelength, and in general there may
be nonadiabatic modes as well. These conclusions apply in all eras and whatever the constituents of the
universe, under only a mild technical assumption about the wavelength dependence of the field equations for
a large wavelength. In the absence of anisotropic inertia, the perturbations in the adiabatic modes are given for
a large wavelength by universal formulas in terms of the Robertson-Walker scale factor. We discuss an
apparent discrepancy between these results and what appears to be a conservation law in all modes found for
a large wavelength in the synchronous gauge: it turns out that, although equivalent, the synchronous and
Newtonian gauges suggest inequivalent assumptions about the behavior of the perturbations for a large wave-
length.
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I. INTRODUCTION

If observations are to be used to tell us something ab
inflation, then we need some way of connecting the prop
ties of the cosmological fluctuations produced during infl
tion to the properties of fluctuations much closer to t
present. Inconveniently, in inflationary cosmologies the
of inflation was followed by a period when the energy
scalar fields was converted into matter and radiation,
about this process we know essentially nothing. Sub
quently, there may have been other periods about which
are equally ignorant, such as the often-hypothesized era
temperatures between 1013 GeV and 1011 GeV, when super-
symmetry may have become broken by unknown stro
forces. These mysterious eras occurred when fluctuation
cosmological interest were far outside the horizon, but t
does not rule out some effect on the strength or even
wavelength dependence of these fluctuations.1 Therefore, in
relating the cosmological fluctuations produced during in
tion with those observed in the cosmic microwave ba
ground or in large-scale cosmic structures, it is essentia
employ some sort of conservation law that is valid at la
wavelengths whatever the details of cosmic evolution.

In much work on fluctuations in cosmology, the co
served quantity is taken to be a quantityR related to the
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spatial curvature on comoving spatial surfaces@1#, given in
the Newtonian gauge by2

R52C1Hdu. ~1!

The rate of change ofR is given by the general formula@2#

Ṙ5X1S q2

a2D F S Ḧ13HḢ

3Ḣ2 D C2S H

Ḣ
D 4pGdsG . ~2!

Hereq is the comoving wave number,ds is a measure of the
anisotropic stress,3 and

X[
ṙ̄dp2 ṗ̄dr

3~ r̄1 p̄!2
. ~3!

Thus R is conserved in the limit of small wave number
and only if X50 in this limit.

The limit of small q is of some interest in itself, but its
importance lies chiefly in the circumstance that those fac
of q that arise from the field equations~rather than from the
initial conditions! are always accompanied by factors
1/a(t), because it is onlyq/a(t) that is independent of the
units chosen for the comoving spatial coordinatesxi . It is
does not
than the

to the
ity,
perturbed

f.
*Electronic address: weinberg@physics.utexas.edu
1By a mode being ‘‘beyond the horizon’’ we only mean that the physical wave number is much less than the expansion rate. This

necessarily have anything to do with causality; indeed, the point of inflation is to make the true particle horizon radius much larger
inverse expansion rate.

2Here H5ȧ/a is the expansion rate, with overdots denoting ordinary time derivatives. In Newtonian gauge the perturbations
gravitational field are taken to bedg00522F anddgi j 522a2Cd i j . Also, dr, dp, anddu are the perturbations to the total energy dens
pressure, and velocity potential in the Newtonian gauge, while we use an overbar to denote unperturbed quantities like the un

energy densityr̄ and pressurep̄. For simplicity we assume a vanishing unperturbed spatial curvature.
3The quantityds is defined by writingTi j for scalar perturbations asgi j p1] i] jds. In this formalism,p includes the effects of bulk

viscosity, whileiqdu is the velocity of energy transport and so includes the effects of heat conduction. For this formalism, see Re@3#.
©2003 The American Physical Society04-1
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usually a good guess that terms in the perturbations pro
tional to such factors ofq will be negligible if q/a(t)H(t)
!1. Hence, although here we study the behavior of the p
turbations in the limit of smallq, it is expected that this will
provide insight into the behavior of perturbations asa(t)
increases. In particular, we expect that ifX→0 for q→0,
and if the coefficient ofq2 in the second term in Eq.~2!

remains finite in this limit, then at any given epochṘ will be
small if q/aH is sufficiently small. In any mode for whichR
is non-zero in this limit, the fractional rate of change ofR
will then also be small in this limit.

Now, the quantityX vanishes in all modes and for allq

when the perturbed pressurep̄1dp is a function only of the
perturbed energy densityr̄1dr, as is the case in a univers
dominated either by pure radiation or by pure cold mat
but not when both radiation and cold matter are importa
and also not during inflation or in the curvaton model@4#.
The quantityX does vanish for all modes in the limitq→0 in
the case of inflation with a single scalar field, but this is n
true with several scalar fields. Section II of this paper sho
that in general, whatever the contents of the universe, w
only a mild technical assumption about the dependence
wave number of the field equations for cosmological pert
bations in the Newtonian gauge, these equations always
a physical solution for whichX→0 and R approaches a
non-zero constant in the limitq→0, although there may als
be other modes for whichR is not constant. In fact, there ar
always at least two solutions withX50 andR constant in
the limit q→0: one solution for whichRÞ0, and another
with R50. These solutions will be illustrated in Sec. III fo
the case of inflation with any number of interacting sca
fields. The existence of such solutions is well known in s
cial cases, but I do not know of a previous general proof
their existence.

Solutions of this sort are usually calledadiabatic, even in
contexts where thermodynamics has no relevance.4 As we
also show in Sec. II, in theories in which the energ
momentum tensor is the sum of a number of tensorsTf

mn for
a set of fluids labeledf, we have the stronger result that fo
q50 in the adiabatic modes, the perturbations in each fl
satisfy

dr f

ṙ̄ f

5
dpf

ṗ̄f

5
dr

ṙ̄
5

dp

ṗ̄
. ~4!

In the special case where the unperturbed energy-momen

tensors are separately conserved, we also haveṙ̄ f5

23H( r̄ f1 p̄f), in which case Eq.~4! implies that the ratios
dr f /( r̄ f1 p̄f) are equal:

4Sometimes the non-adiabatic solutions of the field equations
called isocurvature perturbations. This is a misnomer, because
for q50 it is only possible forR to have the constant value zero
X50. Nevertheless, as we see in Sec. IV, in the synchronous g
there is a sense in which the solutions that do not correspond to
adiabatic solutions of the Newtonian gauge can indeed be rega
as isocurvature modes.
12350
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dr f

r̄ f1 p̄f

5
dr

r̄1 p̄
, ~5!

which is often taken to be what is meant by an adiaba
perturbation.

Things appear very different in synchronous gauge.
shown in Sec. IV, when we take the limit of vanishing wa
number in the field equations of synchronous gauge, we
that these equations respect the conservation of a quanti
in all modes whatever the contents of the universe, provided
only that none of the perturbations in synchronous ga
blow up in the limit q→0. At first sight, this presents a
apparent paradox. All gauges are equivalent, so how
there be a quantity that is conserved for zero wave numbe
all modes during all eras in the synchronous gauge and
equally universal conservation law for zero wave number
the Newtonian gauge? We will find the answer to be t
when we speak of the limitq50 we mean different things in
different gauges. Although mathematically equivalent,
synchronous gauge and the Newtonian gauge suggest d
ent hypotheses about how perturbations behave in this li
leading to different conditions for the validity of the conse
vation law forq50.

In some work on cosmological fluctuations, a quantityz,
related to the spatial curvature on spacelike surfaces of c
stant energy density, is used in place ofR. It is defined in the
Newtonian gauge by@5#

z[2C2Hdr/ ṙ̄52C1dr/3~ r̄1 p̄!. ~6!

By taking a suitable linear combination of the time-time a
time-space components of the Einstein field equation and
part of the space-space component proportional tod i j , one
can derive a general constraint@6#

a3dr23Ha3~ r̄1 p̄!du1S q2a

4pGDC50, ~7!

so that

R2z5S q2

3a2Ḣ
D C ~8!

and therefore in all modesz→R in the limit q→0.

II. ADIABATIC MODES IN NEWTONIAN GAUGE

We consider a general cosmological model, based on
Einstein field equations, supplemented with whatever ot
equations are needed to give the energy density, pres
and velocity potential perturbations in terms of independ
dynamical variables, and the field equations satisfied
those variables. We will demonstrate the general existenc
a pair of adiabatic solutions of these field equations in
Newtonian gauge: one withRÞ0 and constant in the limit
q→0, and the other withR50 in this limit. In order to draw
these conclusions without specifying the formulas
dr, dp, anddu, we use a trick, based on the fact that, a
though there is no remaining gauge symmetry in the Ne
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tonian gauge forqÞ0, for q50 there is a remnant gaug
symmetry of the field equations in the Newtonian gau
which makes it easy to find exact general solutions of
field equations forq50. Not all of these solutions are phys
cal. To be physical, such a solution must be the limit asq
→0 of a solution of the field equations forqÞ0 in at least
the neighborhood ofq50. For this to be the case, it is ne
essary for theq50 solution to satisfy certain conditions im
posed by the Einstein field equations, which limit the phy
cal solutions to a linear combination of just two independ
adiabatic modes. We then make a mild technical assump
about the dependence of the field equations onq, which
guarantees that these two solutions are the limits asq→0 of
physical solutions forqÞ0.

Whatever the constituents of the universe, forq50 the
field equations in Newtonian gauge for scalar~i.e., compres-
sional! modes will always be invariant under the gauge tra
formation induced by a redefinition of the time coordinate

t→t1e~ t !, ~9!

and a re-scaling of the space coordinate

xi→xi~12l!, ~10!

with e(t) an arbitrary infinitesimal function of time andl an
arbitrary infinitesimal constant. For scalar modes,dgi0 is
proportional toqi , and the part ofdgi j not proportional to
d i j is proportional toqiqj , so both automatically vanish fo
q→0, and we therefore do not need to impose any con
tions on e(t) and l to remain in Newtonian gauge forq
50. Equations~9! and~10! provide the most general spac
time transformations of purely scalar perturbations that p
serve the conditionq50.

Under this gauge transformation, theq50 perturbations
undergo the transformation

C→C1He2l, F→F2 ė, ~11!

dr→dr2 ṙ̄e, dp→dp2 ṗ̄e. ~12!

Likewise, in the case of separate fluids with energy den
and pressurer f andpf or separate scalar fieldsw f ,

dr f→dr f2 ṙ̄ fe, dpf→dpf2 ṗ̄ fe, ~13!

or

dw f→dw f2 ẇ̄ fe. ~14!

It follows that there is always a solution of the Newtoni
gauge field equations forq50, in which

C5He2l, F52 ė, ~15!

dr52 ṙ̄e, dp52 ṗ̄e, ~16!

and for several fluids

dr f52 ṙ̄ fe, dpf52 ṗ̄ fe, ~17!
12350
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or several scalar fields

dw f52 ẇ̄ fe, ~18!

wheree(t) is an arbitrary function of time andl is an arbi-
trary constant.~It is not necessary for this that the energ
momentum tensors of the individual fluids or scalar fields
separately conserved; all we need is that they are tenso!

Of course, for generale(t) and l this is just a gauge
mode. For it to have any physical significance, it must sati
certain conditions that allow it to be extended to the case
non-zero wave number. In particular, the part of the spa
space component of the Einstein field equations that is
proportional tod i j takes the form~with ds the anisotropic
stress!

qiqj~F2C!528pGqiqjds, ~19!

so this equation disappears forq50. In order for the solu-
tion ~15!–~18! of the field equations to be extended toq
Þ0, we must have

F5C28pGds, ~20!

and thereforee(t) andl must satisfy the condition

ė1He5l28pGds, ~21!

which can always be satisfied by a suitable choice ofe(t).
There is another equation that disappears forq50: for

scalar modes the spacetime component of the Einstein
equations reads

qi~22Ċ22HF!58pG~ r̄1 p̄!qidu522Ḣqidu,
~22!

wheredu is the velocity potential in the Newtonian gaug
which does not appear in the equations forq50. Hence, in
order for the solution we have found to be extended toq
Þ0, this solution must also have a velocity potential giv
by

Ḣdu5Ċ1HF, ~23!

or, using the result~15!,

du5e. ~24!

This agrees with what would be found from the gauge tra
formation induced by the coordinate transformation~9!.
Likewise, with several fluids,

duf5e. ~25!

From Eqs.~16! and ~24! it follows that dr53H( r̄1 p̄)du,
so the constraint equation~7! is automatically satisfied for
q50 by this solution. By inserting Eqs.~15!, ~16!, and~24!
in Eqs.~1! and~6!, we now find that forq50, this solution
has

R5z5l, ~26!
4-3
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STEVEN WEINBERG PHYSICAL REVIEW D67, 123504 ~2003!
soR andz are indeed constant and equal for this solution
the limit q→0, as was to be shown. They are also non-ze
as long as we takelÞ0.

Now we have to ask what additional conditions a
needed to ensure that this solution is the limit asq→0 of a
solution withqÞ0. In general, any closed set of linear h
mogeneous ordinary differential equations for a finite se
dependent variables can be put in the first-order form

ẏn~ t !1 (
m

Cnm~ t !ym~ t !50. ~27!

@If some of the original set of field equations involve deriv
tives of higher than first order, we can still write the equ
tions in the form~27! by including some derivatives of th
field variables among theym(t).# This has the general solu
tion

yn~ t !5 (
m

FTH expS 2E
t0

t

C~ t8!dt8D J G
nm

ym~ t0!

~28!

with t0 arbitrary, and withT denoting a time-ordered produc
defined by a power series expansion of the exponen
which for finite matrices is always convergent. The init
conditions may be subject to constraints like Eq.~7!, which
can be written

(
n

cnyn~ t0!50. ~29!

@Equation~7! is such a constraint, because the equations
energy and momentum conservation and the gravitatio
field equationĊ1HF5Ḣdu imply that the left-hand side
of Eq. ~7! is time independent.#

Our ‘‘mild technical’’ assumption is that, as long as th
Einstein equations~19! and ~22! are written instead in the
stronger form~20! and~23!, the matrix elementsCnm(t) and
the constraint coefficientscn are continuous functions ofq in
at least the neighborhood ofq50. In this case theyn(t0) that
satisfy Eq.~29! and the matrix in Eq.~28! will also be con-
tinuous inq, so that any solution of Eq.~27! for q50 can be
extended to a solution forqÞ0 in a neighborhood ofq50
by using Eqs.~28! and~29! with the values ofC(t) andc for
qÞ0. The next section shows the validity of this assumpt
in one illustrative example: inflation with several sca
fields and an arbitrary potential. Becauseq generally enters
the field equations and constraint equations in such a sim
manner, we expect that this assumption will always be sa
fied, and in any case it is easy to check for any spec
model. ForqÞ0, there is no remaining gauge freedom
Newtonian gauge~as there is forq50), so the adiabatic
solution found in this way will be the limit asq→0 of a
physical solution, not a mere gauge mode.

We expect the anisotropic stress coefficientds for a wide
class of theories to be some linear combination ofdu, dr,
anddp, so that for the solution~15!–~17!, ~24!,~25!, ds may
be written asds5eS, with S(t) depending only on unper
turbed quantities.~For instance, a non-zero shear viscosityh
12350
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in an imperfect fluid givesds522h du, so hereS5
22h.! In all such cases, Eq.~21! has the general solution

e~ t !5
l

a~ t ! E
t

a~ t8! dt8, ~30!

where

a~ t ![a~ t ! expS 8pG E t

S~ t8! dt8 D , ~31!

and the lower limit on the integral in Eq.~30! is arbitrary.
There is also a second mode, corresponding to the po

bility of shifting the lower limit of the integral in Eq.~30!,
for which e(t) goes ase(t)}1/a(t). Since shifting the lower
bound on the integral in Eq.~30! has no effect on the value
~26! of R andz, this solution hasR5z50.

In the special case of vanishing anisotropic stress we h
ds50, so hereF5C, and a(t) is just the Robertson–
Walker scale factora(t). The general solution of Eq.~21! is
then

e~ t !5
l

a~ t ! E
t

a~ t8! dt8, ~32!

with an arbitrary lower limit. This eventually increases
absolute value ast for Robertson-Walker scale factors th
grow as any power oft, while in the other modee(t)
}1/a(t) decreases with time. Inserting the result~32! in Eqs.
~15!–~18! gives explicit results for the perturbations in th
gravitational field and various pressures and energy dens
as functions of time.

The results presented in this section can be interprete
terms of what Liddle and Lyth in Ref.@1# call a ‘‘separate
universe’’ picture, which in one form or another has be
used since the beginning of inflationary theory to deal w
cosmological fluctuations in the case of a single scalar fie
For instance, Bardeen, Steinhardt, and Turner in Ref.@5#
gave what they called a ‘‘heuristic argument’’ that in th
case any portion of the universe that is larger than the h
zon 1/H but smaller than the physical perturbation wav
length a/q would have to look like a separate unperturb
universe, with w1dw following the unique evolutionary
path of the scalar field, and with all of these separate u
verses therefore the same except for a variation in the tim
which the scalar field satisfies some specific initial condit
a few Hubble times after horizon exit. As pointed out b

Bardeenet al., it follows then thatdr/ ṙ̄5dp/ ṗ̄, and hence
X50, for q/a!H.

There is a potential problem with this sort of argume
that there are two fields involved, the inflaton and the gra
tational field, so that different separate universes might h
different ratios of these fields. The argument of Barde
et al.was formulated in a gauge in which it is unnecessary
consider fluctuations in the gravitational field, but it appli
also to the Newtonian gauge, because in this gauge the
straint ~7! allows the gravitational potential to be express
in terms of fluctuations in the scalar field. But, as we ha
4-4
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seen in this section, in the Newtonian gauge it is neces
not only to allow shifts in the time at which the scalar fie
reaches some given value after horizon crossing, but als
re-scale the comoving coordinates used in each separate
verse. In the synchronous gauge there is no constraint
Eq. ~7! that allows us to express the gravitational field
terms of the scalar field, and so, as we will see in Sec. IV,
solutions even for inflation with a single scalar field do n
satisfyX50 in the limit q→0.

There is another potential problem, that the equation
motion of the scalar field is asecond-orderdifferential equa-
tion, so that there are two independent solutions whose r
tive coefficients may vary from one separate universe to
other. Bardeenet al. and other authors avoid this problem b
assuming that the scalar field experiences a period of ‘‘s
roll’’ inflation, in which the differential equation satisfied b
the scalar field is of first order, to a good approximation. W
have not had to make this assumption, for a reason alre
pointed out by Guth and Pi@7#: the Wronskian of these two
solutions decays rapidly after horizon crossing, so that it is
if there were only one independent solution.~Guth and Pi
considered the case ofH constant, but even with a time
dependentH the Wronskian still decays, although not pr
cisely exponentially.!

In any case, it has always been clear that such ‘‘sepa
universe’’ arguments do not rule out non-adiabatic solutio
in the case of several scalar fields, where the ratios of
scalar fields may vary from one ‘‘separate universe’’ to a
other. The results of this section may be interpreted as
statement that in this and all other cases it is always poss
to find an adiabatic solution of the field equations in t
Newtonian gauge in which the separate universes appea
same, except for a shift in the time coordinate and a
scaling of the comoving space coordinates.

III. AN EXAMPLE: MULTIFIELD INFLATION

For illustration, and to confirm the reasoning of the the
rem of the previous section in a case whereX does not vanish
for all modes, let us consider the case of inflation with
arbitrary number of scalar fieldsw f , and with a general po
tential V that may include interactions among the vario
scalars. The energy-momentum tensor of the scalar fields
the perfect-fluid form, so heres50 andF5C. The field
equations in the Newtonian gauge are

Ċ1HC54pG (
f

ẇ̄ fdw f , ~33!

dẅ f13Hdẇ f1(
f 8

]2V~ w̄ !

]w̄ f]w̄ f 8

dw f 81S q2

a2D dw f

522C
]V~ w̄ !

]w̄ f

14Ċẇ̄ f , ~34!

and the constraint~7! is here
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S Ḣ1
q2

a2D C54pG (
f

~2 ẇ̄ fdẇ f1 ẅ̄ fdw f !. ~35!

We can write Eqs.~33! and ~34! in the form ~27! by taking
the yn to run overC and allf f and ḟ f , in which case the
constraint~35! is of the form ~29!. Here obviouslyCnm(t)
andcn are continuous inq in the neighborhood ofq50; in
fact, they are just linear functions ofq2. Hence any solution
of Eqs.~33!–~35! that we find forq50 can be extended to
solution forqÞ0.

Let us try for a solution forq50 in which all of the

individual velocity potentials2dw f / ẇ̄ f are equal, so that

dw f52 ẇ̄ fdu, ~36!

with the common value satisfying

du̇52C. ~37!

Using the time derivative of the unperturbed scalar fie
equation

ẅ̄ f13H ẇ̄ f1
]V~ w̄ !

]w̄ f

50, ~38!

we can put Eq.~34! for q50 in the form

Ḣdu1Hdu̇1dü50. ~39!

Also, the gravitational field equation~33! now readsĊ

1HC5Ḣdu, which Eq. ~39! guarantees is automaticall
satisfied by theC given by Eq.~37!. The general solution is

du5
l

aE adt, C5Hdu2l ~40!

~with l an arbitrary constant!, just as we found above in Eqs
~15!, ~24!, and~32!. The perturbations to the energy dens
and pressure of thef th field here are

dr f52Cẇ̄21 ẇ̄dẇ1
]V

]w̄ f

dw f52~C1du̇!ẇ̄ f
22 ṙ̄ fdu

52 ṙ̄ fdu ~41!

and

dpf52Cẇ̄21 ẇ̄dẇ2
]V

]w̄ f

dw f52~C1du̇!ẇ̄ f
22 ṗ̄ fdu

52 ṗ̄ fdu, ~42!

so this mode is adiabatic, in the sense thatX→0 for q→0.
Inserting Eq.~40! in Eq. ~1! again givesR5l.

Once again, because of the freedom to shift the low
limit of the integral in Eq.~40!, there are two adiabatic
modes here, the second withdu}1/a andR50.
4-5



hi
n

is
n
n

at

o

e
p

ity
th

in
l

ro

th

ant
ition
the

it

th
to

s

is

e-

u-

e
the
al

STEVEN WEINBERG PHYSICAL REVIEW D67, 123504 ~2003!
For a single scalar field, Eqs.~33! and ~34! are a third-
order set of differential equations and therefore have a t
independent solution. The third solution can also be fou
explicitly, and turns out to haveṘ}1/a3Ḣ for q50, so this
solution is not adiabatic. However, this third solution
eliminated by the constraint Eq.~35!, which as we have see
in the previous section, is automatically satisfied by a
adiabatic solution, but is not satisfied by the non-adiab
solution of Eqs.~33! and ~34!. For N scalar fields Eqs.~33!
and ~34! have 2N11 independent solutions, of which tw
are adiabatic and one is eliminated by Eq.~35!, leaving 2N
22 non-adiabatic solutions.

IV. SYNCHRONOUS GAUGE

We now turn to the synchronous gauge. With zero unp
turbed spatial curvature, the perturbed metric has the com
nents

gi j ~x,t !5a2~ t !d i j 1hi j ~x,t !, g00521, gi050,
~43!

with hi j a small perturbation. We now assume for simplic
that the perturbed energy-momentum tensor takes
perfect-fluid form

Tmn5pgmn1~p1r!umun . ~44!

The unperturbed quantitiesp̄ andr̄ depend only on time, and
the unperturbed velocity four-vector has componentsū0

51, ūi50. The normalization conditionumum521 then
requires that the velocity perturbationdum

(S) is purely spatial.
@A superscript~S! is used to denote perturbed quantities
the synchronous gauge.# We consider only compressiona
modes, for whichdui

(S)5]du(S)/]xi . Then the relevant field
equations for a Fourier component with wave numberq are
@8#

d

dt
~a2c!524pGa2~dr (S)13dp(S)! ~45!

and

dṙ (S)13H~dr (S)1dp(S)!52~ r̄1 p̄! ~c2a22q2du(S)!.
~46!

Herec is a field employed in recent work using the synch
nous gauge@9#,

c[
d

dt S hii

2a2D . ~47!

There is also a Euler equation that will be needed later in
section:

d

dt
@a3~ r̄1 p̄!du(S)#52a3dp(S). ~48!
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From Eqs.~45! and ~46! together with the relation 4pG( r̄
1 p̄)52Ḣ it follows that

Ȧ52q2Hdu̇(S) ~49!

where

A[a2Hc24pGa2dr (S)2q2Hdu(S). ~50!

Here is the proof. Equation~46! can be written

dṙ (S)13H~dr (S)1dp(S)!5
Ḣ

4pG
~c2a22q2du(S)!,

and it follows immidiately from Eq.~45! that

d~a2Hc!

dt
524pGa2H~dr (S)13dp(S)!1a2Ḣc.

Eliminating Ḣc from these two equations gives

d~a2Hc!

dt
524pGa2H~dr (S)13dp(S)!

14pGa2@dṙ (S)13H~dr (S)1dp(S)!#

1q2Ḣdu(S),

or in other words

d

dt
@a2Hc24pGa2dr (S)#5q2Ḣdu(S).

The quantity in square brackets on the left is not invari
under the gauge transformations that preserve the cond
~43! for the synchronous gauge, so instead we work with
related gauge-invariant quantity~50!, for which Eq.~49! fol-
lows immediately.

As long as the velocity potential remains finite in the lim
q→0, Eq. ~49! yields a conservation law:

Ȧ50 for q50. ~51!

This is true for all modes in all cases, including inflation wi
several scalar fields, and for the transition from radiation
matter dominance. The conservation ofA in the limit q50
can also be derived by simply perturbinga(t), r(t), and the
curvature constantK in the Friedmann equation, which give
dK522A/3.

By taking suitable linear combinations of solutions, it
always possible to arrange that forq50 just one of a com-
plete set hasAÞ0, while all the other solutions haveA
50. Examples are given in the Appendix to this paper. B
cause of the connection ofA with the spatial curvature, it is
legitimate to call the solutions withA50 isocurvature
modes. Whenq is small but non-zero the isocurvature sol
tions usually have bothA andȦ of orderq2, so that Eq.~49!
does not keepA for these solutions from undergoing larg
fractional changes. This does not vitiate the usefulness of
conservation law for initial conditions that give a physic
4-6
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perturbation in which all solutions make contributions w
comparable coefficients. In this case, the contributions of
isocurvature modes toA may be rapidly varying, but at an
given time they will be small as long asq is sufficiently
small. The physical solution will have a rapidfractional
variation in A only if the coefficient of the mode withA
Þ0 for q50 is suppressed, or if the coefficients of th
isocurvature modes are enhanced.

There is a simple relation between the quantityA intro-
duced in this section and the more familiar quantityR dis-
cussed in Secs. I–III. Given perturbationsC, dr anddu in
the Newtonian gauge, we can find the perturbatio
c, dr (S), anddu(S) in the synchronous gauge from the tran
formation equations

c523Ċ23
d

dt
~He!1~q/a!2e, dr (S)5dr2eṙ̄

du(S)5du1e, ~52!

where

ė5C. ~53!

~The possibility of shiftinge by a constant term correspond
to the possibility of making gauge transformations that p
serve the conditions for the synchronous gauge.! By applying
these equations to the quantity~50!, it is elementary to show
that A is related to the quantityR defined in Eq.~1! by

A52q2R. ~54!

Thus for any finiteq the fractional rate of change inR will
be the same as the fractional rate of change inA. In some
treatments of multi-field inflation@10# and in discussions o
the curvaton model@4#, it is simply assumed that the mod
with RÞ0 and henceAÞ0 is somehow suppressed, which
enough to explain why these authors find a significant fr
tional change inR. But why more generally does the cond
tion X50 play an important role in establishing the cons
vation of R for q→0 in the Newtonian gauge, while ther
seems to be no similar condition needed for the conserva
of A in the synchronous gauge?

As a first step toward resolving this apparent paradox,
note from Eq.~54! that the limit asq→0 of the perturbed
quantitiesdr (S) andc in the synchronous gauge in the mo
for which AÞ0 in this limit is not obtained by applying a
gauge transformation to the perturbed quantities in the
responding mode in the Newtonian gauge forq50, since
that would giveA50 for q50. We can go further, and show
in general that forq50, the synchronous gauge solutio
corresponding to any adiabatic solution of the Newtoni
gauge field equations (normalized to not diverge as q→0)
has vanishing values not only for A, but also~up to a choice
of a particular synchronous gauge! for c and the total density
fluctuationdr (S) and velocity potentialdu(S).

The reasoning here is essentially the reverse of that u
to prove the theorem of Sec. II. We use the space-time c
ponent of the Einstein field equations in the Newton
gauge,
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Ċ1HC524pG~ r̄1 p̄!du5Ḣdu. ~55!

We work in the limit q50, assuming that the solution i
normalized so that in the Newtonian gauge all fluctuatio
remain finite in this limit.~As we shall see, this assumptio
is less innocent than it may seem.! Then for modes that for
q50 are adiabatic in the sense thatX50, Eqs.~1! and ~2!
give

Ċ5
d

dt
~Hdu! ~56!

for q50. Combining this with Eq.~55! gives

C52du̇. ~57!

Thus according to Eq.~53! we can adopt a particular syn
chronous gauge such that the transformation parametere in
Eq. ~52! is

e52du. ~58!

Using Eqs.~56! and~58! in Eq. ~52! shows immediately that
for q50,

c50. ~59!

Furthermore, Eq.~55! together with the Newtonian gaug
Euler equation supplies a general constraint equivalent to
~7! for q50:

24pGdr53HḢdu. ~60!

Equations~52! and~60! give the synchronous gauge dens
fluctuation

24pGdr (S)524pG@dr2eṙ̄#

53HḢdu1@24pG#du@23H~ r̄1 p̄!#

50. ~61!

Finally, the velocity potential in this synchronous gauge i

du(S)5du1e50. ~62!

Thus no synchronous gauge perturbation with no
vanishing values ofc or dr (S) or du(S) ~apart from those tha
can be eliminated by a transformation to a different synch
nous gauge!, such as modes 1, 2, and 3 of the radiation p
the cold dark matter model of the Appendix, can be t
gauge transformation of one of theq50 adiabatic Newton-
ian gauge solutions. Rather, the synchronous gauge solu
for q50 with A a non-zero constant must be the gauge tra
formations of the terms of orderq2 in the adiabatic Newton-
ian gauge solution withRÞ0, re-normalized by dividing by
4-7
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a factorq2.5 With this re-normalization of the synchronou
gauge modes, as in the Appendix, the conserved quantityA is
not necessarily of orderq2, as would be expected from Eq
~54!, but can have a finite limit forq→0, as we will find it
does in the Appendix.

Now at last we come to the point. Working in the New
tonian gauge, it is most natural to assume that, with an o
all normalization factor chosen so thatR is finite and non-
zero in the limitq50, all density fluctuations and velocit
potentials as well asC are non-zero in this limit. Under this
assumption, if the contribution of non-adiabatic modes
comparable to that of the adiabatic modes,R will undergo
significant changes with time. Transforming this sort of s
lution to the synchronous gauge, we found above that
density fluctuations and the total velocity potential rece
contributions of orderq2 ~relative to the Newtonian gaug
perturbations! from the adiabatic modes but of order uni

from the non-adiabatic modes, so thatȦ is of orderq2, while
A is also of orderq2, and so A does suffer significan
changes with time. Or we can re-normalize the synchron
gauge fluctuations by an overall factor of order 1/q2, in
which caseA and the density fluctuations and velocity p
tentials receive contributions of order unity forq50 from
the adiabatic modes, as in the Appendix, while the contri
tion of the non-adiabatic modes to the total velocity poten
if present is enhanced by a peculiar looking factor of 1/q2,
giving bothA and Ȧ non-zero limits forq→0.

On the other hand, working in synchronous gauge, i
most natural to assume that, with an overall normalizat
factor chosen so thatA is finite and non-zero in the limitq
50, all density fluctuations and velocity potentials as well
c are finite in this limit. Under this assumption, it makes
difference whether the contribution of non-adiabatic mod
is comparable to that of the adiabatic modes; even if it isA
will undergo no significant changes with time. Transformi
this sort of solution to the Newtonian gauge, one finds t
the density fluctuations and the total velocity potential
ceive contributions of order 1/q2 from the adiabatic mode
and of order unity from the non-adiabatic modes, soR is of
order 1/q2 while its rate of change is only of order unity. O
we can re-normalize the Newtonian gauge fluctuations by
overall factor of orderq2, in which caseR and the density
fluctuations and velocity potentials receive contributions
order unity for q50, while the contribution of any non
adiabatic modes is suppressed by a peculiar looking facto
q2, giving R a zero rate of change forq50.

So which is right? The issue is not the overall normaliz
tion of the total perturbations, but therelative magnitude of
its adiabatic and non-adiabatic terms in the limitq→0.

5This is why it is possible for the quantityX not to vanish in any
mode forq50 in the synchronous gauge, as we find in the App
dix in the case of inflation, while there are two modes in the Ne
tonian gauge in whichX→0 for q→0, despite the fact thatX is
gauge invariant. It is not thatX is different in the two gauges, bu
rather that the limitq→0 means different things in the synchrono
and Newtonian gauges.
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There is nothing about either gauge that makes it a m
reliable guide to our intuition about this than the other.

It is generally expected that for inflation with several sc
lar fields the general solution does not haveR approaching a
constant for increasinga(t), in agreement with what would
be expected from the behavior forq→0 suggested by the th
Newtonian gauge but not the synchronous gauge. But th
are cases of multi-field inflation in which the non-adiaba
contributions toR die out asa(t) increases, so thatR and
henceA do approach constants for generic initial condition
as would be expected from the behavior forq→0 suggested
by the synchronous gauge but not the Newtonian gauge.
case is a potential given by a sum of exponentials@11#:

V5 (
n

gn exp~2lnwn!. ~63!

Another is a potential of the form

V5FS (
n

wn
2D , ~64!

with F an arbitrary function. It would be interesting to cha
acterize the general class of potentials for multi-field infl
tion for whichA andR approach constants for generic initi
conditions asa(t) increases.

Note added in proof.The methods used in Sec. II can als
be applied to tensor modes@with l in Eq. ~10! replaced with
an infinitesimal symmetric traceless matrix#, and used to
show that there is always a tensor mode that becomes
independent outside the horizon, even in the presence
traceless divergenceless dissipative terms in the stress te
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APPENDIX: LONG-WAVELENGTH SOLUTIONS
IN SYNCHRONOUS GAUGE

In this appendix we will study several examples of calc
lations for zero wave number in the synchronous gauge
exhibit both solutions withAÞ0 and those withA50. All
quantities here will be in the synchronous gauge, so we
drop the label (S).

As a first example, consider inflation with just a sing
real scalar fieldw5w̄(t)1dw(x,t), and potentialV(w). As
is well known, the unperturbed pressure and energy den
are

r̄5
1

2
ẇ̄21V~ w̄ !, p̄5

1

2
ẇ̄22V~ w̄ !, ~A1!

from which we find the equation of motion of the unpe
turbed scalar field

-
-

4-8
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ẅ̄13H ẇ̄1V8~ w̄ !50. ~A2!

The perturbations to the energy density and pressure ar

dr5 ẇ̄dẇ1V8~ w̄ !dw, dp5 ẇ̄dẇ2V8~ w̄ !dw. ~A3!

Also, the perturbed velocity potential is

du52dw/ ẇ̄. ~A4!

The field equations~45! and~46! for the Fourier componen
of the perturbations with wave numberq here take the form

d

dt
~a2c!524pGa2

„4ẇ̄dẇ22V8~ w̄ !dw…, ~A5!

dẅ13Hdẇ1V9~ w̄ ! dw1a22q2dw52 ẇ̄c, ~A6!

where

H[
ȧ

a
5A8pG

3
S ẇ̄2

2
1V~ w̄ !D . ~A7!

The Euler equation~48! gives no new information here.

There is a gauge mode, withw5tẇ̄ and c5t(3Ḣ
2q2/a2), wheret is an arbitrary time-independent functio
of q. Knowing this solution allows us to reduce the degree
Eqs.~A3! and~A4! from three to two, in agreement with th
number of physical solutions found in the Newtonian gau
in Sec. III. We introduce time-dependent functionsf andg by
writing

dw5 f ẇ̄, c5~ f 1g!~3Ḣ2q2/a2!. ~A8!

Equations~A3! and ~A4! then become a second-order set
equations for the gauge-invariant quantitiesḟ andg:

f̈ 13H ḟ 1~Ḧ/Ḣ ! ḟ 52~3Ḣ2q2/a2!g, ~A9!

~3Ḣ2q2/a2!ġ1~6HḢ13Ḧ !g5~Ḣ1q2/a2! ḟ ,
~A10!

in which the gauge mode appears in the possibility of add
a constant tof. These equations can be solved exactly foq
50 andH(t) arbitrary. There are two physical solutions.

Mode 1:

g(1)~ t !5
1

3a3~ t !Ḣ~ t !
E

0

t

a~ t8!dt8,

ḟ (1)~ t !5
1

a2~ t !Ḣ~ t !
F12

H~ t !

a~ t ! E0

t

a~ t8!dt8G .
~A11!

Mode 2:

g(2)~ t !5
1

3a3~ t !Ḣ~ t !
, ḟ (2)~ t !52

H~ t !

a3~ t !Ḣ~ t !
.

~A12!
12350
f

e

f

g

~The lower limit 0 on the integral overt8 is arbitrary; chang-
ing it just amounts to adding some of mode 2 to mode 1!

Equation~50! gives the values ofA for q50 in these two
modes as the constants

A151, A250, ~A13!

even though neither of these solutions satisfies the adiab
condition X50. A general mixture of modes with coeffi
cientsc1 andc2 will have A5c1 for q50, providedc2 does
not blow up in this limit. With this proviso, the conservatio
of A allows the value ofc1 that is calculated for a given
inflaton potential to be used to find the strength of the n
isocurvature mode at later times. However, if the value ofc2
for the physical solution found after horizon crossing went
c/q2 for q→0, while c1 remained finite, then Eqs.~49!,
~A2!, ~A6!, and~A10! would give

Ȧ→c2Ȧ2→
2cH2~ t !

a3~ t !Ḣ~ t !
for q→0,

and there would be no useful conservation law even foq
50. As discussed in Sec. IV, this is just what we wou
expect if we assumed that, with an overall normalizati
factor chosen so thatR is finite and non-zero in the limitq
50, all density fluctuations and velocity potentialsin the
Newtonian gaugeas well asC are finite and non-zero in this
limit.

For another example, we consider a later epoch, when
dominant constituents of the universe were radiation a
cold dark matter.~For simplicity, we are neglecting the
baryon density compared with the density of cold dark m
ter, but supposing that there are still enough baryons to k
the radiation in thermal equilibrium, and we are ignoring t
effects of free-streaming neutrinos.! We adopt a particular
synchronous gauge in which the cold dark matter is at r
The field equations then are Eqs.~46! and~48! for the radia-
tion energy density perturbationdrR and velocity potential
duR ; Eq. ~46! for the cold dark matter densityrD ; and Eq.
~45! for c, with the total energy density and pressure appe
ing on the right hand side:

dṙR14HdrR52~4/3!r̄R~c2a22q2duR!, ~A14!

4
d

dt
@a3r̄RduR#52a3drR , ~A15!

dṙD13HdrD52 r̄Dc, ~A16!

d

dt
~a2c!524pGa2~2drR1drD!. ~A17!

The unperturbed radiation and dark matter densities go
a24 anda23, respectively. It is convenient here to normali
a so thata51 whenr̄R5 r̄D , so that

r̄R5rEQa24, r̄D5rEQa23, ~A18!

whererEQ is constant.
Equations~A14!–~A17! are a fourth-order system of dif

ferential equations, so there are four modes, all of which
physical because the gauge has been fixed by choo
duD50. Forq50, they take the following forms.
4-9
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Mode 1:

drR
(1)5

1

pGa6
~1618a22a21a3!,

duR
(1)52

a

4rEQ
A 3

8pGrEQ
Ea a4 da

A11a
drR

(1) ,

drD
(1)5

3

4pGa5
~1618a22a21a3!,

c (1)52A 3

8pGrEQ

A11a

a4
~3218a2a3!.

~A19!

Mode 2:

drR
(2)5

1

pGa6
A11a,

duR
(2)52

a

4rEQ
A 3

8pGrEQ
Ea a4 da

A11a
drR

(2) ,

drD
(2)5

3

4pGa5
A11a,

c (2)5A 3

8pGrEQ
~413a!. ~A20!

Mode 3:

drR
(3)5drD

(3)5c (3)50,

duR
(3)}a. ~A21!
o-
ho
tin

v.

12350
Mode 4:

drR
(4)5

1

pGa6
~814a2a228A11a!,

duR
(4)52

a

4rEQ
A 3

8pGrEQ
Ea a4 da

A11a
drR

(3) ,

drD
(4)5

3

8pGa5
~814a28A11a!,

c (4)5
8

a4
A 3

8pGrEQ
~~41a!A11a2423a!.

~A22!

The lower bounds on the integrals in the formulas forduR in
modes 1, 2, and 4 are arbitrary; changing this lower limit
any of these integrals just amounts to adding some of m
3 to that mode.

Note that modes 1, 2, and~trivially ! 3 are adiabatic, in the
sense that

drD

r̄D

5
drR

r̄R1 p̄R

~A23!

~and soX50), while mode 4 is not adiabatic in this sens
The values ofA for the four modes are

A151, A25A35A450. ~A24!

Thus modes 2 and 3 are both adiabatic and isocurvature
arbitrary mixture of modes will haveA constant unless the
coefficients of modes 2, 3, or 4 blow up as 1/q2 in the limit
q→0, which will be the case if the fluctuations in the no
adiabatic modes in the Newtonian gauge have non-zero
its for q→0.
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