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Adiabatic modes in cosmology
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We show that the field equations for cosmological perturbations in the Newtonian gauge always have an
adiabatic solution, for which a quantif§ is nonzero and constant in all eras in the limit of large wavelength,
so that it can be used to connect observed cosmological fluctuations in this mode with those at very early times.
There is also a second adiabatic mode, for whichanishes for a large wavelength, and in general there may
be nonadiabatic modes as well. These conclusions apply in all eras and whatever the constituents of the
universe, under only a mild technical assumption about the wavelength dependence of the field equations for
a large wavelength. In the absence of anisotropic inertia, the perturbations in the adiabatic modes are given for
a large wavelength by universal formulas in terms of the Robertson-Walker scale factor. We discuss an
apparent discrepancy between these results and what appears to be a conservation law in all modes found for
a large wavelength in the synchronous gauge: it turns out that, although equivalent, the synchronous and
Newtonian gauges suggest inequivalent assumptions about the behavior of the perturbations for a large wave-
length.
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[. INTRODUCTION spatial curvature on comoving spatial surfaf&k given in
the Newtonian gauge By

If observations are to be used to tell us something about
inflation, then we need some way of connecting the proper- R=—-V¥+Hosu. 1)
ties of the cosmological fluctuations produced during infla- o
tion to the properties of fluctuations much closer to theThe rate of change @R is given by the general formuf&]
present. Inconveniently, in inflationary cosmologies the era 5
of inflation was followed by a period when the energy in Q_> \I,_(E
scalar fields was converted into matter and radiation, and a2 H
about this process we know essentially nothing. Subse-
quently, there may have been other periods about which Weereq is the comoving wave numbesg is a measure of the
are equally ignorant, such as the often-hypothesized era withnjsotropic stresdand
temperatures between£0GeV and 18! GeV, when super-
symmetry may have become broken by unknown strong — =
f ; : pop—pop
orces. These mysterious eras occurred when fluctuations of X=———-. (3)
cosmological interest were far outside the horizon, but this 3(p+p)?
does not rule out some effect on the strength or even the
wavelength dependence of these fluctuatiomberefore, in ~ Thus R is conserved in the limit of small wave number if
relating the cosmological fluctuations produced during infla-and only if X=0 in this limit.
tion with those observed in the cosmic microwave back- The limit of smallq is of some interest in itself, but its
ground or in large-scale cosmic structures, it is essential tomportance lies chiefly in the circumstance that those factors
employ some sort of conservation law that is valid at largeof g that arise from the field equatiorisather than from the
wavelengths whatever the details of cosmic evolution. initial conditiong are always accompanied by factors of

In much work on fluctuations in cosmology, the con- 1/a(t), because it is only/a(t) that is independent of the
served quantity is taken to be a quantfy related to the units chosen for the comoving spatial coordinatéslt is

*Electronic address: weinberg@physics.utexas.edu

1By a mode being “beyond the horizon” we only mean that the physical wave number is much less than the expansion rate. This does not
necessarily have anything to do with causality; indeed, the point of inflation is to make the true particle horizon radius much larger than the
inverse expansion rate.

’Here H=ala is the expansion rate, with overdots denoting ordinary time derivatives. In Newtonian gauge the perturbations to the
gravitational field are taken to h#gy,=—2® anddg;; = — 2a2*lf5ij . Also, p, p, andésu are the perturbations to the total energy density,
pressure, and velocity potential in the Newtonian gauge, while we use an overbar to denote unperturbed quantities like the unperturbed
energy density and pressur@. For simplicity we assume a vanishing unperturbed spatial curvature.

3The quantitydo is defined by writingT;; for scalar perturbations ag;p+ d;d;60. In this formalism,p includes the effects of bulk
viscosity, whileigéu is the velocity of energy transport and so includes the effects of heat conduction. For this formalism, $8¢ Ref.
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usually a good guess that terms in the perturbations propor- Sp; Sp

tional to such factors o will be negligible if g/a(t)H(t) == (5)

<1. Hence, although here we study the behavior of the per- ptt Pt ptp

turbations in the limit of smalg, it is expected that this will o ) , ,
provide insight into the behavior of perturbations @) which is .often taken to be what is meant by an adiabatic
increases. In particular, we expect thatXif&~0 for g—0,  Perturbation. . _

and if the coefficient ofg? in the second term in Eq2) Things appear very different in synchronous gauge. As
remains finite in this limit, then at any given epo&hwill be shown in Sec. IV, when we take the limit of vanishing wave
small if g/aH is sufficiently small. In any mode for whick ~ Number in the field equations of synchronous gauge, we find
is non-zero in this limit, the fractional rate of change7of f[hatthese equations respect the conservation of a quantity A
will then also be small in this limit. in all modes whatever the contents of the univepsevided

Now, the quantityX vanishes in all modes and for al only that none of the perturbations in synchronous gauge

— . . blow up in the limitg—0. At first sight, this presents an
when the perturbed pressupe- dp is a function only of the apparent paradox. All gauges are equivalent, so how can

perturbed energy densify+ dp, as is the case in a universe there be a quantity that is conserved for zero wave number in
dominated either by pure radiation or by pure cold matterg|| modes during all eras in the synchronous gauge and no
but not when both radiation and cold matter are importantequally universal conservation law for zero wave number in
and also not during inflation or in the curvaton mo@4].  the Newtonian gauge? We will find the answer to be that
The quantityX does vanish for all modes in the limjt~0in \when we speak of the limi=0 we mean different things in
the case of inflation with a single scalar field, but this is notgjfferent gauges. Although mathematically equivalent, the
true W|th Several Scalar fleldS Section Il of th|S paper ShOW%ynchronous gauge and the Newtonian gauge Suggest differ-
that in general, whatever the contents of the universe, witlnt hypotheses about how perturbations behave in this limit,
only a mild technical assumption about the dependence ofpading to different conditions for the validity of the conser-
wave number of the field equations for cosmological perturyation law forq=0.

bations in the Newtonian gauge, these equations always have |4 some work on cosmological fluctuations, a quantity

a physical solution for whiclk—0 and R approaches a related to the spatial curvature on spacelike surfaces of con-

non-zero constant in the limit— 0, although there may also  stant energy density, is used in placgfIt is defined in the
be other modes for whicR is not constant. In fact, there are Newtonian gauge bj5]

always at least two solutions witi=0 andR constant in
the limit g—0: one solution for whictR#0, and another (=—W—Héplp=—V+p/3(p+p). (6)
with R=0. These solutions will be illustrated in Sec. Il for
the case of inflation with any number of interacting scalarBy taking a suitable linear combination of the time-time and
fields. The existence of such solutions is well known in spetime-space components of the Einstein field equation and the
cial cases, but | do not know of a previous general proof ofpart of the space-space component proportionaf;tp one
their existence. can derive a general constra[i]

Solutions of this sort are usually callediabatic even in
contexts where thermodynamics has no relevdnis.we
also show in Sec. Il, in theories in which the energy-
momentum tensor is the sum of a number of ten3grsfor
a set of fluids labeled, we have the stronger result that for SO that
g=0 in the adiabatic modes, the perturbations in each fluid

%a

3 _ 3/ 1A
a“dp—3Ha*(p+p)du+ ypere

)\PZO, (7)

2

satisfy _(_d
R—-{= . (8)
¢ (SaZH

dpi_ 9pi _dp _op .

— T T 4 and therefore in all modes— R in the limit g—0.

pt P+ p P
In the special case where the unperturbed energy-momentum Il. ADIABATIC MODES IN NEWTONIAN GAUGE
tensors are separately conserved, we also haye We consider a general cosmological model, based on the
—3H(p;+ps), in which case Eq(4) implies that the ratios Einstein field equations, supplemented with whatever other
Sp¢l(p;+py) are equal: equations are needed to give the energy density, pressure,

and velocity potential perturbations in terms of independent
dynamical variables, and the field equations satisfied by
4Sometimes the non-adiabatic solutions of the field equations arIahOS(_a varlab_les. We will Qemonstrate th? general (_EX|ste:nce of
called isocurvature perturbations. This is a misnomer, because evéh Pair of adiabatic solutions of these field equations in the
for q=0 it is only possible forR to have the constant value zero if Newtonian gauge: one witi #0 and constant in the limit
X=0. Nevertheless, as we see in Sec. IV, in the synchronous gaudé— 0, and the other wittR =0 in this limit. In order to draw
there is a sense in which the solutions that do not correspond to tH&iese conclusions without specifying the formulas for
adiabatic solutions of the Newtonian gauge can indeed be regardedp, op, and éu, we use a trick, based on the fact that, al-
as isocurvature modes. though there is no remaining gauge symmetry in the New-
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tonian gauge foig#0, for q=0 there is a remnant gauge or several scalar fields

symmetry of the field equations in the Newtonian gauge, )

which makes it easy to find exact general solutions of the S¢i=— @ie, (18)

field equations fog=0. Not all of these solutions are physi-

cal. To be physical, such a solution must be the limitgas wheree(t) is an arbitrary function of time anll is an arbi-

—0 of a solution of the field equations for#0 in at least trary constant(lt is not necessary for this that the energy-

the neighborhood ofj=0. For this to be the case, it is nec- momentum tensors of the individual fluids or scalar fields be

essary for they=0 solution to satisfy certain conditions im- separately conserved; all we need is that they are tepsors.

posed by the Einstein field equations, which limit the physi- Of course, for generaé(t) and A this is just a gauge

cal solutions to a linear combination of just two independentmode. For it to have any physical significance, it must satisfy

adiabatic modes. We then make a mild technical assumptiogertain conditions that allow it to be extended to the case of

about the dependence of the field equationsgprwhich — non-zero wave number. In particular, the part of the space-

guarantees that these two solutions are the limitg-a® of  space component of the Einstein field equations that is not

physical solutions fog+0. proportional tog;; takes the formwith o the anisotropic
Whatever the constituents of the universe, or0 the  Stres$

field equations in Newtonian gauge for scaliee., compres-

siona) modes will always be invariant under the gauge trans- qi9;(®—¥)=—-87Gqq;do, (19

formation induced by a redefinition of the time coordinate so this equation disappears fge=0. In order for the solu-

t—t+e(t), (99  tion (15—(18) of the field equations to be extended do
#0, we must have
and a re-scaling of the space coordinate
o O=V-87Gdo, (20)
X' —x'(1—N\), (10
and therefores(t) and\ must satisfy the condition
with e(t) an arbitrary infinitesimal function of time andan
arbitrary infinitesimal constant. For scalar modés;, is e+He=\—87Gdo, (21
proportional tog;, and the part ofég;; not proportional to
8;j is proportional tog;q;, so both automatically vanish for which can always be satisfied by a suitable choice(®J.
g—0, and we therefore do not need to impose any condi- There is another equation that disappearsder0: for
tions on e(t) and A to remain in Newtonian gauge fay ~ scalar modes the spacetime component of the Einstein field
=0. Equationg9) and(10) provide the most general space- equations reads
time transformations of purely scalar perturbations that pre- ) . )
serve the conditiom=0. qi(—2¥ —-2H®)=8wG(p+p)g;ou= —2Hq; U,
Under this gauge transformation, the=0 perturbations (22)

undergo the transformation . . - .
where éu is the velocity potential in the Newtonian gauge,

VoW+He—\, Pod—e, (11) which does not appear in the equations der0. Hence, in
order for the solution we have found to be extendedjto

Sp— 5P—;6, 5pH5p_3& (12 #0, this solution must also have a velocity potential given

by
Likewise, in the case of separate fluids with energy density . .
and pressure; and p; or separate scalar fields , Hou=¥+HO, (23)
— - or, using the resulfl15),
Ops— Opt— pt€, OPs— OPs— Pre, (13 g as

or du=e. (24)
- This agrees with what would be found from the gauge trans-
S¢i— dpi— ¢re. (14 formation induced by the coordinate transformati®).

It follows that there is always a solution of the Newtonian Likewise, with several fluids,

gauge field equations far=0, in which

Sus=e€. (25)
V=He-\, ®=-g¢ (19 From Eqgs.(16) and (24) it follows that 8p=3H (p+ p)éu,
. L so the constraint equatiofY) is automatically satisfied for
Sp=—pe, Op=—pe, (16)  g=0 by this solution. By inserting Eq$15), (16), and(24)
) in Egs.(1) and(6), we now find that forg=0, this solution
and for several fluids has
Spr=—pre, OP;=—pre, (17) R={=\, (26)
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so'R and{ are indeed constant and equal for this solution inin an imperfect fluid giveséo=—2% Su, so hereX =
the limit g—0, as was to be shown. They are also non-zero~27.) In all such cases, Eq21) has the general solution
as long as we take#0.

Now we have to ask what additional conditions are Nt
needed to ensure that this solution is the limitgas0 of a ()= mj a(t’) dt, (30
solution withg#0. In general, any closed set of linear ho-
mogeneous ordinary differential equations for a finite set ofynere
dependent variables can be put in the first-order form

t
YaD)+ S Com(Dym(t)=0. 27) “(”Ea“)ex'[’(s”‘;f E(t')dt')’ @

and the lower limit on the integral in E§30) is arbitrary.

There is also a second mode, corresponding to the possi-
bility of shifting the lower limit of the integral in Eq(30),
for which e(t) goes as(t)=1/a(t). Since shifting the lower
bound on the integral in Eq30) has no effect on the value
(26) of R and{, this solution hask=/=0.

In the special case of vanishing anisotropic stress we have

)H Ym(to)

n

[If some of the original set of field equations involve deriva-
tives of higher than first order, we can still write the equa-
tions in the form(27) by including some derivatives of the
field variables among thg,(t).] This has the general solu-
tion

yo()= 2>

. 60=0, so heredb=V, and «(t) is just the Robertson—

Walker scale factoa(t). The general solution of Eq21) is
then

T{ exp( — ftt C(t"dt’
0

(28)

with tq arbitrary, and withT denoting a time-ordered product
defined by a power series expansion of the exponential, e(t)sza(t’)dt’ (32)
which for finite matrices is always convergent. The initial a(t) '
conditions may be subject to constraints like Ef, which
can be written with an arbitrary lower limit. This eventually increases in
absolute value at for Robertson-Walker scale factors that
grow as any power of, while in the other modee(t)
«1/a(t) decreases with time. Inserting the re<G) in Egs.
(15—(18) gives explicit results for the perturbations in the
[Equation(7) is such a constraint, because the equations ofjravitational field and various pressures and energy densities
energy and momentum conservation and the gravitationas functions of time.
field equation® +H®=H su imply that the left-hand side The results presented in this section can be interpreted in
of Eq. (7) is time independerit. terms of what Liddle and Lyth in Refl] call a “separate
Our “mild technical” assumption is that, as long as the universe” picture, which in one form or another has been
Einstein equation$19) and (22) are written instead in the used since the beginning of inflationary theory to deal with
stronger form(20) and(23), the matrix element€,,(t) and ~ cosmological fluctuations in the case of a single scalar field.
the constraint coefficients, are continuous functions afin ~ For instance, Bardeen, Steinhardt, and Turner in RR&f.
at least the neighborhood qf=0. In this case thg,(t,) that ~gave what they called a “heuristic argument” that in this
satisfy Eq.(29) and the matrix in Eq(28) will also be con- ~ case any portion of the universe tha}t is larger tha_m the hori-
tinuous ing, so that any solution of Eq27) for =0 can be  ZON 1H but smaller than the physical perturbation wave-
extended to a solution faqy#0 in a neighborhood ofj=0 length a/q would have to look like a separate unperturbed
by using Eqs(28) and(29) with the values of(t) andc for universe, with ¢+ 5fp foIIowing_ the unique evolutionary _
q+0. The next section shows the validity of this assumptionPath of the scalar field, and with all of these separate uni-
in one illustrative example: inflation with several scalarVerses therefore the same except for a variation in the time at
fields and an arbitrary potential. Becausgenerally enters which the scala_r field satisfies some specific in_itial condition
the field equations and constraint equations in such a simpf@ few Hubble times after horizon exit. As pointed out by
manner, we expect that this assumption will always be satisBardeenet al,, it follows then thatsp/p= dp/p, and hence
fied, and in any case it is easy to check for any specificx=0, for g/a<H.
model. Forg#0, there is no remaining gauge freedom in  There is a potential problem with this sort of argument,
Newtonian gaugdas there is forq=0), so the adiabatic that there are two fields involved, the inflaton and the gravi-
solution found in this way will be the limit ag—0 of a tational field, so that different separate universes might have
physical solution, not a mere gauge mode. different ratios of these fields. The argument of Bardeen
We expect the anisotropic stress coefficiéatfor a wide et al. was formulated in a gauge in which it is unnecessary to
class of theories to be some linear combinatiorsof Sp, consider fluctuations in the gravitational field, but it applies
anddp, so that for the solutiofl5)—(17), (24),(25), o may  also to the Newtonian gauge, because in this gauge the con-
be written asdo= €3, with 3 (t) depending only on unper- straint(7) allows the gravitational potential to be expressed
turbed quantities(For instance, a non-zero shear viscosjty in terms of fluctuations in the scalar field. But, as we have

2 CnYn(to)=0. (29)
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seen in this section, in the Newtonian gauge it is necessary QP P
not only to allow shifts in the time at which the scalar field H+ = |¥=47G > (et oider).  (35)
reaches some given value after horizon crossing, but also to a f

re-scale the comoving coordinates used in each separate unj- . . .
verse. In the synchronous gauge there is no constraint likd/e can write Eqas(33) and(34) in thg form (27) by taking
Eq. (7) that allows us to express the gravitational field inthey, to run over¥ and all ¢ and ¢¢, in which case the
terms of the scalar field, and so, as we will see in Sec. IV, th€onstraint(35) is of the form(29). Here obviouslyC,,(t)
solutions even for inflation with a single scalar field do notandc, are continuous i in the neighborhood ofj=0; in
satisfyX=0 in the limit q—0. fact, they are just linear functions gf. Hence any solution
There is another potential problem, that the equation oPf Egs.(33)—(35) that we find forg=0 can be extended to a
motion of the scalar field is second-ordedifferential equa-  Solution forq+0.
tion, so that there are two independent solutions whose rela- Let us try for a solution forg=0 in which all of the
tive coefficients may vary from one separate universe to anmgividual velocity potentials- d¢;/¢; are equal, so that
other. Bardeert al. and other authors avoid this problem by
assuming that the scalar field experiences a period of “slow
roll” inflation, in which the differential equation satisfied by
the scalar field is of first order, to a good approximation. Wewith the common value satisfying
have not had to make this assumption, for a reason already
pointed out by Guth and Fi7]: the Wronskian of these two Su=—1. (37)
solutions decays rapidly after horizon crossing, so that it is as
if there were only one independent solutidgGuth and Pi  Using the time derivative of the unperturbed scalar field
considered the case &1 constant, but even with a time- equation
dependentH the Wronskian still decays, although not pre- o
cisely exponentially. a— — dV(e)
In any case, it has always been clear that such “separate pr+3Hest o =0, (38)
universe” arguments do not rule out non-adiabatic solutions g
in the case of several scalar fields, where the ratios of thge can put Eq(34) for g=0 in the form
scalar fields may vary from one “separate universe” to an-
other. The results of this section may be interpreted as the Hu+Hasu+ su=0. (39)
statement that in this and all other cases it is always possible
to find an adiabatic solution of the field equations in theAIso, the gravitational field equatiof33) now readsw

Newtonian gauge in which the separate universes appear the

same, except for a shift in the time coordinate and a re—JrH\I’:Héu’ which Eq. (39) guarantees is automatically

scaling of the comoving space coordinates. satisfied by thel' given by Eq.(37). The general solution is

Sei=—@du, (36)

A
IIl. AN EXAMPLE: MULTIFIELD INFLATION ou= Ef adt, W=Hou-x (40

For illustration, and to confirm the reasoning of the theo-jth \ an arbitrary constaptjust as we found above in Egs.

rem of the previous section in a case whxrgoes notvanish  (15) (24), and(32). The perturbations to the energy density
for all modes, let us consider the case of inflation with anyng pressure of théth field here are

arbitrary number of scalar fields;, and with a general po-
tential V that may include interactions among the various N\ .
scalars. The energy-momentum tensor of the scalar fields has 8p;=—V ¢?+ ¢S+ — dp;=— (V¥ + 5u);f2—pf5u
the perfect-fluid form, so here=0 and®=Y¥. The field It

equations in the Newtonian gauge are

——pdu (41)
V+HT=47G S, od0;, (33 2
f
AV R
B 9dp— —= Spr=—(¥+oU)pi—prou
) ) V(o) 2 Pf
S 3Hop S SO oy q—2> S5o; -~

i dpideg a =—pséu, (42)

NV () so this mode is adiabatic, in the sense tkatO for q—0.

=—2¥ ———+4V gy, (34) Inserting Eq.(40) in Eqg. (1) again givesR=A\.

9P Once again, because of the freedom to shift the lower
limit of the integral in Eq.(40), there are two adiabatic
and the constrainf7) is here modes here, the second wilux1/a andR=0.
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For a single scalar field, Eq$33) and (34) are a third-  From Eqs.(45) and (46) together with the relation #G(p

order set of differential equations and therefore have a thir L 0)=—H it follows that

independent solution. The third solution can also be found
explicitly, and turns out to hav®o1/a®H for q=0, so this A= —q2H Su® (49
solution is not adiabatic. However, this third solution is

eliminated by the constraint E¢85), which as we have seen where

in the previous section, is automatically satisfied by any o, 24 () 2 )

adiabatic solution, but is not satisfied by the non-adiabatic A=a‘Hy—4nGa’dp”—q°Hou™. (50
solution of Eqs(33) and (34). For N scalar fields Eqs(33)

and (34) have 2N+ 1 independent solutions, of which two Here is the proof. Equatiod6) can be written

are adiabatic and one is eliminated by E85), leaving 2N _ K
— 2 non-adiabatic solutions. 8p+3H(8p S+ 5p) = cl-a 2g26u(9),
a
IV. SYNCHRONOUS GAUGE and it follows immidiately from Eq(45) that
We now turn to the synchronous gauge. With zero unper- d(a2H ) .
turbed spatial curvature, the perturbed metric has the compo- —gr - 47G a’H(8p O +36p®)+a?Hy.
nents

giixt)=a2(t) 8 +h (%), doo=—1, gio=0 Eliminating H from these two equations gives
i y i i ] ] ] i ]

(43) d 2
a‘Hy)

, , o dHy) = —47Ga?H(5pD+35p)

with h;; a small perturbation. We now assume for simplicity dt

that the perturbed energy-momentum tensor takes the

perfect-fluid form +47Ga? 5p+3H(5p9+ 5p9)]

+q2H8u',
T,= P+ (P+p)U,U, . (44) q

L or in other words
The unperturbed quantitigsandp depend only on time,_and

the unperturbed velocity four-vector has componeufs di[azH y—AnGa2spd]=q2Hsu'S.
=1, u'=0. The normalization conditiom, u“=—1 then t
requires that the velocity perturbatidu is purely spatial.

. . .+ The quantity in square brackets on the left is not invariant
[A superscript(S) is used to denote perturbed quantities in ; y 9

. ; under the gauge transformations that preserve the condition
the synchronous g(aS)UQeWe Scons_|der only compressional 43 tor the synchronous gauge, so instead we work with the
modes, for whichsu{®=gou®/x'. Then the relevant field oj5teqd gauge-invariant quantit§0), for which Eq.(49) fol-
equations for a Fourier component with wave numpeare  |os immediately.

8] As long as the velocity potential remains finite in the limit
g—0, Eqg.(49) yields a conservation law:

d
—(a2y)=—-4 2050 +38p® 4 .
g (@Y= 4mGat(5p™+3op) (45) A=0 for q=0. (51)
and This is true for all modes in all cases, including inflation with
several scalar fields, and for the transition from radiation to
5b(s)+3H(5p(s)+5p(s))= _(;JFE) (y—a2q2sud). matter dominance. The conservation/in the limit g=0

(46) can also be derived by simply perturbiat), p(t), and the
curvature constarK in the Friedmann equation, which gives

Herey is a field employed in recent work using the synchro—5K: —2A/3.

nous gaugég], By taking suitable linear combinations of solutions, it is
always possible to arrange that fg=0 just one of a com-
d/ h. plete set hasA#0, while all the other solutions hava
= _(L) . (47) =0. Examples are given in the Appendix to this paper. Be-
dt| 2a2 cause of the connection & with the spatial curvature, it is

legitimate to call the solutions witPA=0 isocurvature

There is also a Euler equation that will be needed later in thisnodes. Whery is small but non-zero the isocurvature solu-
section: tions usually have botA andA of orderq?, so that Eq(49)
q does not keepA for these solutions from undergoing large
a0t suST1= —a3sp®. fractional _changes. Th_ls_ gloes not vitiate the u_sefulness (_)f the
dt[a (pp)our] a’op (48) conservation law for initial conditions that give a physical
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perturbation in which all solutions make contributions with Y+ HWY = —47TG(;+E) Su=Hau. (55)
comparable coefficients. In this case, the contributions of the

isocurvature modes t& may be rapidly varying, but at any
given time they will be small as long as is sufficiently
small. The physical solution will have a rapidactional
variation in A only if the coefficient of the mode with\
#0 for q=0 is suppressed, or if the coefficients of the
isocurvature modes are enhanced.

There is a simple relation between the quan#ityntro-
duced in this section and the more familiar quanfiydis-
cussed in Secs. I-Ill. Given perturbatioWs Sp and éu in = E(H(Su) (56)
the Newtonian gauge, we can find the perturbations dt
&, 8p®, andsu® in the synchronous gauge from the trans-

We work in the limitq=0, assuming that the solution is
normalized so that in the Newtonian gauge all fluctuations
remain finite in this limit.(As we shall see, this assumption
is less innocent than it may segrithen for modes that for
g=0 are adiabatic in the sense thét0, Egs.(1) and(2)
give

formation equations for q=0. Combining this with Eq(55) gives
. d . .
¢=—3\I’—Sa(He)+(q/a)ze, opS=6p—ep ¥=-4u. (57)
(S _ Thus according to Eq(53) we can adopt a particular syn-
ou Su+e, (52 i )
chronous gauge such that the transformation paranaeiter
where Eq. (52 is
e=". (53 e=—4u. (59

(The possibility of shiftinge by a constant term corresponds
to the possibility of making gauge transformations that pre
serve the conditions for the synchronous gauBg.applying
these equations to the quant{§0), it is elementary to show

Using Eqs(56) and(58) in Eq. (52) shows immediately that,
for g=0,

that A is related to the quantitR defined in Eq.(1) by ¥=0. (59
A=—0g?R. (54) Furthermore, Eq(55) together with the Newtonian gauge
Euler equation supplies a general constraint equivalent to Eq.
Thus for any finiteq the fractional rate of change iR will (7) for q=0:
be the same as the fractional rate of changelinin some
treatments of multi-field inflatiof10] and in discussions of —AnGSp=3HH . (60)

the curvaton mode€ll4], it is simply assumed that the mode
with R# 0 and hencé& +# 0 is somehow suppressed, which is
enough to explain why these authors find a significant frac
tional change ifR. But why more generally does the condi-
tion X=0 play an important role in establishing the conser-

Equations(52) and(60) give the synchronous gauge density
fluctuation

vation of R for g—0 in the Newtonian gauge, while there  —47G8pS=—4nG[ 5p— ep]
seems to be no similar condition needed for the conservation . o
of A in the synchronous gauge? =3HHSu+[—47G]éu[—3H(p+p)]

As a first step toward resolving this apparent paradox, we
note from Eq.(54) that the limit asq—0 of the perturbed
quantitiessp® andy in the synchronous gauge in the mode __ . R i
for which A0 in this limit is not obtained by applying a Finally, the velocity potential in this synchronous gauge is
gauge transformation to the perturbed quantities in the cor-
responding mode in the Newtonian gauge €p#0, since su®=su+e=0. (62)
that would giveA=0 for g=0. We can go further, and show
in general that forq=0, the synchronous gauge solution  Thus no synchronous gauge perturbation with non-
corresponding to any adiabatic solution of the Newtonianvanishing values of or 5p® or su'® (apart from those that
gauge field equations (normalized to not diverge as@  can be eliminated by a transformation to a different synchro-
has vanishing values not only for, But also(up to a choice nous gaugg such as modes 1, 2, and 3 of the radiation plus
of a particular synchronous gauder ¢ and the total density the cold dark matter model of the Appendix, can be the
fluctuation 5p'S and velocity potentiabu(®. gauge transformation of one of tlie=0 adiabatic Newton-

The reasoning here is essentially the reverse of that usédn gauge solutions. Rather, the synchronous gauge solutions
to prove the theorem of Sec. Il. We use the space-time confor =0 with A a non-zero constant must be the gauge trans-
ponent of the Einstein field equations in the Newtonianformations of the terms of ordey® in the adiabatic Newton-
gauge, ian gauge solution wittlR # 0, re-normalized by dividing by

=0. (61)
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a factorg?.® With this re-normalization of the synchronous There is nothing about either gauge that makes it a more
gauge modes, as in the Appendix, the conserved quakigy reliable guide to our intuition about this than the other.

not necessarily of ordeg?, as would be expected from Eq. It is generally expected that for inflation with several sca-
(54), but can have a finite limit foq—0, as we will find it  lar fields the general solution does not ha&epproaching a
does in the Appendix. constant for increasing(t), in agreement with what would

Now at last we come to the point. Working in the New- be expected from the behavior fgr0 suggested by the the
tonian gauge, it is most natural to assume that, with an ovefNewtonian gauge but not the synchronous gauge. But there
all normalization factor chosen so th&t is finite and non- are cases of multi-field inflation in which the non-adiabatic
zero in the limitq=0, all density fluctuations and velocity Contributions toR die out asa(t) increases, so that and

potentials as well a¥ are non-zero in this limit. Under this henceA do approach constants for generic initial conditions,
as would be expected from the behavior épr-0 suggested

assumption, if the contribution of non-adiabatic modes isby the synchronous gauge but not the Newtonian gauge. One
comparable to that of the adiabatic mod& will undergo case is a potential given by a sum of exponential: '

significant changes with time. Transforming this sort of so-
lution to the synchronous gauge, we found above that the

density fluctuations and the total velocity potential receive V= g, eXp—An@n). (63
contributions of ordeg? (relative to the Newtonian gauge n

perturbations from the adiabatic modes but of order unity

from the non-adiabatic modes, so thais of orderqg?, while
A is also of orderg? and soA does suffer significant
changes with time. Or we can re-normalize the synchronous V= F( 2 <pﬁ), (64)
gauge fluctuations by an overall factor of ordeg?/in n

which caseA and the density fluctuations and velocity po- . . _ ) _
with F an arbitrary function. It would be interesting to char-

tentials receive contributions of order unity fqe=0 from i . S :
the adiabatic modes, as in the Appendix, while the contribu@cterize the general class of potentials for multi-field infla-

tion of the non-adiabatic modes to the total velocity potentiafion for which A andR approach constants for generic initial

if present is enhanced by a peculiar looking factor @21/ ~conditions asa(t) increases. ,
L : . Note added in proofThe methods used in Sec. Il can also
giving both A and A non-zero limits forg—0.

L .. . be applied to tensor modéwith \ in Eq. (10) replaced with
mo(gtnrfgﬁl rgtlhg 22::&:1?;2?gwli?hsgrqCg\r/g?;;rigrﬁlgnig;;olsan infinitesimal symmetric traceless matrixand used to

factor ch tha is finit ’ d in the limi "how that there is always a tensor mode that becomes time
actor chosen so IS finite and non-zero in the limq independent outside the horizon, even in the presence of

=0, aII. d_en§|ty f!ucf[uz.itlons and yelouty potgnha}s as well SJraceless divergenceless dissipative terms in the stress tensor.
¢ are finite in this limit. Under this assumption, it makes no

difference whether the contribution of non-adiabatic modes
is comparable to that of the adiabatic modes; even if iis, ACKNOWLEDGMENTS

will undergo no significant changes with time. Transforming | 5 grateful for helpful correspondence with E. Bertsch-
this sort of solution to the Newtonian gauge, one finds theqnger D. Lyth, S. Mukhanov, and N. Turok. This research
the density fluctuations and the total velocity potential re~, ¢ ’supportea in part by thé Robert A. Welch Foundation

ceive contributions of order q? from the adiabatic modes 4nq NSF Grants PHY-0071512 and PHY-9511632.
and of order unity from the non-adiabatic modes/&ds of

order 142 while its rate of change is only of order unity. Or

we can re-normalize the Newtonian gauge fluctuations by an APPENDIX: LONG-WAVELENGTH SOLUTIONS

overall factor of ordeg?, in which caseR and the density IN SYNCHRONOUS GAUGE

fluctuations and velocity potentials receive contributions of | this appendix we will study several examples of calcu-
order unity forq=0, while the contribution of any non- |ations for zero wave number in the synchronous gauge, to
adiabatic modes is suppressed by a peculiar looking factor Gxhibit both solutions withA+0 and those witA=0. All

Another is a potential of the form

g, giving R a zero rate of change far=0. ~quantities here will be in the synchronous gauge, so we will
So which is right? The issue is not the overall normaliza-grop the label §).
tion of the total perturbations, but thelative magnitude of As a first example, consider inflation with just a single

its adiabatic and non-adiabatic terms in the limi=0. o <o(ar fieldo= @ (t) + So(x,t), and potentiaV(¢). As

is well known, the unperturbed pressure and energy density

- . . . _ are
SThis is why it is possible for the quantitg not to vanish in any

mode forq=0 in the synchronous gauge, as we find in the Appen- 1. 1 .

dix in the case of inflation, while there are two modes in the New- =—¢’+V(e), p=z¢°—V(p), (A1)
tonian gauge in whictkX—0 for g—0, despite the fact thaX is 2 2

gauge invariant. It is not thaX is different in the two gauges, but

rather that the limij— 0 means different things in the synchronous from which we find the equation of motion of the unper-
and Newtonian gauges. turbed scalar field
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(A2) (The lower limit 0 on the integral ovef is arbitrary; chang-
ing it just amounts to adding some of mode 2 to mode 1.

The perturbations to the energy density and pressure are  £9uation(s0) gives the values ok for q=0 in these two
modes as the constants

5p=Sp+V' ()¢, p=9de—V'(¢)d¢. (A3) A=1, A,=0, (AL3)

@+3Ho+V'(9)=0.

Also, the perturbed velocity potential is even though neither of these solutions satisfies the adiabatic
— condition X=0. A general mixture of modes with coeffi-
du=—3d¢l¢. (A4) cientsc, andc, will have A=c, for q=0, providedc, does
not blow up in this limit. With this proviso, the conservation
of A allows the value ofc, that is calculated for a given
inflaton potential to be used to find the strength of the non-
d oy - isocurvature mode at later times. However, if the valueof
qil@¥)=—4nGa (4pdp—2V'(@)d¢), (A5)  for the physical solution found after horizon crossing went as
c/g? for q—0, while ¢; remained finite, then Eqg49),
(A2), (A6), and(A10) would give

The field equation$45) and (46) for the Fourier component
of the perturbations with wave numbegrhere take the form

56+3H8p+ V() dp+a 20280=—o,  (AB)

. . —cH?(1)
where A—CAy— —+— for q—0,
a’(t)H(t)
; 2
EE: 87G ¢ — and there would be no useful conservation law evengfor
H +V(p) |. (A7) . ) Co
a 3 2 =0. As discussed in Sec. IV, this is just what we would
. ) ) ) expect if we assumed that, with an overall normalization
The Euler equatiori48) gives no new information here. factor chosen so thak is finite and non-zero in the limig
There is a gauge mode, with=r¢ and ¢=r(3H =0, all density fluctuations and velocity potentiais the

—q%a?), wherer is an arbitrary time-independent function Newtonian gaugas well as¥ are finite and non-zero in this

of g. Knowing this solution allows us to reduce the degree ofiMit.

Egs.(A3) and(A4) from three to two, in agreement with the _FOr another example, we consider a later epoch, when the
: éjomlnant constituents of the universe were radiation and

cold dark matter.(For simplicity, we are neglecting the
baryon density compared with the density of cold dark mat-
ter, but supposing that there are still enough baryons to keep
-— . " the radiation in thermal equilibrium, and we are ignoring the
do=Ffe, ¢=(f+9)(3H—q7a%). (A8)  effects of free-streaming neutrinpdNe adopt a particular

. synchronous gauge in which the cold dark matter is at rest.
Equations(A3) and(A4) then become a second-order set ofrpe fie|q equations then are Edé6) and (48) for the radia-

in Sec. lll. We introduce time-dependent functidredg by
writing

equations for the gauge-invariant quantitieand g: tion energy density perturbatiofpr and velocity potential
. L , Sug; Eq. (46) for the cold dark matter densifyp ; and Eq.
f+3Hf+(H/H)f=—(3H-g%a%g, (A9)  (45) for i, with the total energy density and pressure appear-

ing on the right hand side:

0 N2/42)\, i o — i 27142\ ¥ . _
(3H—qg%/a?) g+ (6HH+3H)g=(H+qg%a?)f, Spr+4H Spr=— (413 pr(y—a~2q?sug), (Al4)

(A10)
in which the gauge mode appears in the possibility of adding 4;[33;}?5['“?] =—a38pg, (A15)
a constant td. These equations can be solved exactlydor t
=0 andH(t) arbitrary. There are two physical solutions. . —
Mode 1: opp+3Hdpp=—pp¥, (A16)
1 t i 20N — _ 2
9(1)(t):—-f at)dt’, o(a2)) = —4mGa(25pat dpp).  (ALT)
3ad(t)H(t) Jo
The unperturbed radiation and dark matter densities go as
£ = 1- H(t) ta(t’)dt’ a”*anda?, respectively. It is convenient here to normalize
a?(t)H(t) a(t) Jo ' a so thata=1 whenpg=pp, so that
(A11) — I .
PR=PEQA ", PD=PEQd *, (A18)
Mode 2: .
wherepgq is constant.
H(t) quations(A14)—(A17) are a fourth-order system of_ dif-
g?(t)= ———, fOt)=— —"—. ferential equations, so there are four modes, all of which are
3ad(t)H(1) a’(t)H(t) physical because the gauge has been fixed by choosing

(A12) Sup=0. Forq=0, they take the following forms.
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Mode 1:

opP= s(16+8a—2a’+a’),

7Ga

a 3 aa* da
uf) = - —ZEo),
4pgq ¥V 8mGpeq 1+a

G 5(16+8a—2a2+a3),
TGa

i

— 32+8a—a
87TGPEQ a’ ¢ )

(A19)

6\/1+a,

7Ga

a 3 aa* da
SuR)=— J SR,
4peq V87Gpeq) 1+a

(A20)

5[)&3): 5P(D3): y¥=0

sufoca, (A21)

PHYSICAL REVIEW D67, 123504 (2003

Mode 4:

1
S (4) _
PR =G

a6(8+4a—a2—8\/1+a),

a 3 aa* da
suf=~ —=S50f9),
4peq Y 87Gpeq 1+a

sps)= a5(8+4a—8\/1+a),
8 3
1//<4>—— 8§7Gp ((4+a)\/1+ —4-3a).

(A22)

The lower bounds on the integrals in the formulasdag in
modes 1, 2, and 4 are arbitrary; changing this lower limit in
any of these integrals just amounts to adding some of mode
3 to that mode.

Note that modes 1, 2, arittivially) 3 are adiabatic, in the
sense that

5PD: Opr
Pop PRTPR

(A23)

(and soX=0), while mode 4 is not adiabatic in this sense.
The values ofA for the four modes are

A]_:l, A2:A3:A4:0. (A24)

Thus modes 2 and 3 are both adiabatic and isocurvature. An
arbitrary mixture of modes will havé constant unless the
coefficients of modes 2, 3, or 4 blow up ag/din the limit
g—0, which will be the case if the fluctuations in the non-
adiabatic modes in the Newtonian gauge have non-zero lim-
its for g—0.
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