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Brane gas cosmology in M theory: Late time behavior
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We investigate the late-time behavior of a universe containing a supergravity gas and wrapped 2-branes in
the context of M theory compactified onT10. The supergravity gas tends to drive uniform expansion, while the
branes impede the expansion of the directions about which they are wrapped. Assuming spatial homogeneity,
we study the dynamics both numerically and analytically. At late times the radii obey power laws which are
determined by the brane wrapping numbers, leading to interesting hierarchies of scale between the wrapped
and unwrapped dimensions. The biggest hierarchy that could evolve from an initial thermal fluctuation pro-
duces three large unwrapped dimensions. We also study configurations corresponding to string winding, in
which the M2-branes are all wrapped around the~small! 11th dimension, and show that this recovers the
scenario discussed by Brandenberger and Vafa.
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I. INTRODUCTION

The dual realizations that D-branes are an intrinsic co
ponent of string theory@1# and that the five distinct vacua o
string theory are actually different limits of eleven
dimensional M theory@2# have had dramatic implications fo
cosmology. Both developments widen the range of opti
open to model builders, but they also increase the numbe
constraints that a successful ‘‘string’’ cosmological mod
must satisfy. In particular, branes have given rise to a h
number of new models, which typically postulate that o
apparently three dimensional universe is actually a 3-br
embedded in a higher dimensional background@3#. Even in
‘‘standard’’ cosmological models, however, branes are
pected to be in thermal equilibrium with other matter in t
early universe, and must therefore be incorporated into
complete cosmological scenario.

Brane gas cosmologyis devoted to understanding the co
mological role of the ‘‘gas’’ of branes that inhabited the ea
universe. A particular focus of this program has be
whether brane gas cosmologies single out a special num
of ‘‘large’’ dimensions. In 1989, Brandenberger and Vafa
gued that cosmological models containing a gas of wind
strings can produce, at most, three macroscopic dimens
@4#. This work has been tested and extended in a numbe
ways since then@5–12#. The key observation underlying thi
work is that extended,p dimensional objects hav
(p11)-dimensional world volumes, and from a purely top
logical perspective these world volumes will only intersect
2(p11) spacetime dimensions or less. Thus, strings
only interact in three spatial dimensions~or less!, whereas
2-branes can find each other in up to five spatial dimensio
One obviously hopes that Brandenberger and Vafa’s con
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sion that strings naturally lead to a three dimensional u
verse is not undermined when branes are added to the
ture. Indeed Alexander, Brandenberger and Easson@8# have
argued that when branes are included, strings will still dom
nate the evolution of the universe at late times, so the b
Brandenberger-Vafa mechanism survives.

This paper extends brane gas cosmology in two impor
ways. First, rather than work with ten dimensional stri
theory, we take eleven-dimensional M theory as our start
point. This is a natural basis for any theory that hopes
understand the origin of the three large dimensions, si
string theory is itself a compactification of M theory, with th
compact direction providing the string dilaton@2#. Conse-
quently, string theory implicitly assumes that one direction
already on a different footing from the rest, and in the lo
run we would hope to explain this rather than inject it as
hypothesis. Second, rather than using solely thermodyna
arguments, we study the dynamical evolution of
M-theoretic universe containing M2-branes and a gas of
pergravity particles. We ignore the M5-branes that a
present in the M-theory spectrum, since they can annihi
in the full 11 dimensional M-theory spacetime. We are p
ticularly interested in cases where the different directio
~assumed to be toroidally compactified! are anisotropically
wrapped by M2-branes. We develop the equations of mo
for the general case in which each of the 10 spatial dim
sions is distinguishable from the others, and describe
configuration of wrapped branes and anti-branes with
‘‘wrapping matrix.’’ Although we assume a toroidal topo
ogy, numerical and analytical results@11# indicate that wrap-
ping dynamics should be insensitive to topology, and he
we believe our conclusions extend to more realistic comp
tifications.

Strings are obtained when one dimension of the M
branes gets wrapped on the 11th dimension, which is take
be much smaller than the Planck scale. Similarly, D-bra
in string theories can be obtained as various configuration
M2- and M5-branes. Thus we no longer need to consider
separate brane gas cosmology scenarios, one for each s
©2003 The American Physical Society01-1
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EASTHERet al. PHYSICAL REVIEW D 67, 123501 ~2003!
theory: our goal is to see if we can use M-theoretic model
make generic predictions about the overall form of the u
verse.

Motivated by the original Brandenberger-Vafa scenar
we focus on the late time asymptotics of universes with
subspace that has no wrapping modes, presenting bot
analytic discussion and specific numerical solutions. Here
are primarily concerned with what ispossible, rather than
what is probable, and focus on the most interesting initi
states that are permitted by general topological argument
a subsequent paper we will discuss the thermodynamics
brane dominated universe in more detail, in order to estab
the relative likelihood of different initial states. Cons
quently, we pay most attention to the following scenario. W
imagine that thermal fluctuations drive subspaces of vari
dimensions to momentarily expand to a larger than aver
size. If the fluctuation involves a five dimensional subspa
interesting nontrivial dynamics can ensue. Fully wrapp
2-brane–anti-2-brane pairs will generically annihilate in fi
space dimensions, thereby removing their restoring fo
This leaves partially wrapped 2-branes that have one dim
sion wrapped along the expanding five-space and one dim
sion wrapped along one of the other, smaller dimensio
From an effective five-dimensional perspective, such bra
appear to be wrapped one-dimensional objects—string
and naively appear to impede further expansion. Yet,
imagine that subsequent thermal fluctuations within this fi
dimensional environment will, once again, drive various s
spaces to expand further, and if such a subspace should
pen to have three~or fewer! dimensions, the effective
wrapped strings will be able to annihilate, thus allowing t
subspace to expand without further constraint. We there
see the possibility of generating an interesting hierarchy w
a large three dimensional subspace emerging from an in
mediate five dimensional subspace, with all remaining
mensions small@8#. One of our goals is to study this scenar
in detail to determine if the dynamics leverages the topolo
cal reasoning we have used and drives a hierarchy betw
the dimensions.

In Sec. II we derive the equations of motion and discu
some of their general properties. In Sec. III we present
merical solutions to the equations of motion, and in Sec.
we study the behavior at late times analytically. In Sec. V
consider string winding, to make contact with the origin
scenario of Brandenberger and Vafa. In Sec. VI we disc
the implications of our results, and outline possibilities f
future work.

II. HOMOGENEOUS BRANE GAS DYNAMICS

Our models are governed by M theory which is we
described by eleven-dimensional supergravity when the r
and curvature scales are larger than the eleven-dimens
Planck length. This assumption will be justified in hindsig
as the cosmologically relevant solutions we obtain cont
growing radii. We consider two types of matter. The first
the massless supergravity spectrum consisting of
bosonic and 128 fermionic degrees of freedom—we ign
massive modes since we expect that these will quickly de
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The second ingredient is wrapped M2-branes. Although
theory also contains M5-branes, these will annihilate quic
in 1011 dimensions and thus should not be significant to
late-time behavior. We assume that the M2-branes are at
and ignore fluctuations on the brane volume, as these eff
are subleading in our large radii assumption. Finally, to ma
the analysis tractable, we assume that the particle and b
gases are homogeneous.

Using the metric ansatz

ds252dt21(
i 51

d

„Ri~ t !…2du i
2 , 0<u i<2p ~1!

the non-vanishing Christoffel symbols are

G i j
t 5d i j RiṘi , G t j

i 5G j t
i 5d i

j

Ṙi

Ri
, ~2!

while the non-vanishing components of the Einstein ten
are

Gt
t5

1

2 (
k5” l

ṘkṘl

RkRl
, ~3!

Gi
i5(

k5” i

R̈k

Rk
1

1

2 (
k5” l

ṘkṘl

RkRl
2(

k5” i

ṘkṘi

RkRi
, ~4!

where there is no implied summation oni in the second line.
We first introduce a gas of massless supergravity partic

with energy densityrS and pressurepS. For simplicity we
take the gas to be homogeneous and isotropic, with a pe
fluid stress tensor

Tm
n5diag~2rS,pS, . . . ,pS!. ~5!

The equation of state appropriate ford spatial dimensions
fixespS5(1/d)rS, while covariant conservation of the stre
tensor requires

rS5
const

V(d11)/d
, ~6!

where the volume of thed dimensional torus is simply

V5)
i

2pRi . ~7!

The second source of stress-energy in our model univ
is a gas of 2-branes, wrapped on the various cycles of
torus. These are characterized by a matrix of wrapping nu
bers Ni j , where we takeNi , j to represent the number o
branes wrapped on the~ij ! cycle, whileNi . j represents the
number of antibranes. A single M2-brane is described by
Nambu-Goto action1

1See also a similar discussion of the action of ap-brane in@13#.
1-2
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BRANE GAS COSMOLOGY IN M THEORY: LATE TIME . . . PHYSICAL REVIEW D 67, 123501 ~2003!
S52T2E d3jA2detgab ~8!

gab5]aXm]bXngmn ~9!

where the brane tensionT251/(2p)2,11
3 . This leads to the

stress tensor

Tmn52T2E d3jd11
„X2X~j!…A2detg gab]aXm]bXn.

~10!

For simplicity we assume that the branes are at rest,
ignore any possible excitations on the brane world volum
Then, for a single brane wrapped on the~12! cycle and uni-
formly smeared over the transverseTd22, the stress tensor i

Tm
n52

T2

2pR3•••2pRd
diag~1,1,1,0, . . . ,0!. ~11!

With a matrix of wrapping numbers, the non-zero comp
nents of the brane gas stress tensor are

Tt
t52

T2

V
~2p!2(

k5” l
RkRlNkl ~12!

Ti
i52

T2

V
~2p!2(

k5” i
RkRi~Nki1Nik! ~13!

with no sum oni in the second line.
We now insert these two sources of energy-momen

into the right-hand side of thed-dimensional Einstein equa
tions,

Gm
n528pGTm

n ~14!

where the gravitational coupling is

16pG5~2p!8,11
9 . ~15!

The time-time equation can be solved for the energy den
and hence pressure of the supergravity gas,

8pGrS5
1

2 (
k5” l

ṘkṘl

RkRl
2

8pGT2

V
~2p!2(

k5” l
RkRlNkl .

~16!

After a little re-arrangement, the space-space equations y
the following set of second-order differential equations
the radii:

R̈i

Ri
5

8pGT2

V F 2d11

d~d21!
~2p!2(

k5” l
RkRlNkl

2~2p!2(
k5” i

RkRi~Nki1Nik!G
1

1

2d (
k5” l

ṘkṘl

RkRl
2(

k5” i

ṘkṘi

RkRi
. ~17!
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A. Some exact solutions

With no wrapped branes (Ni j 50) the model reduces to a
11 dimensional radiation dominated universe, and it is e
to find a number of exact solutions. In particular, with t
ansatz

Ri~ t !5ci~ t2t0!a i ~18!

we find the following solutions to Eq.~17!:
Flat spacetime, witha15•••5ad50, in which caserS

will vanish.
Kasner solutions, with( ia i5( i(a i)

251. The energy
densityrS vanishes, so these are vacuum solutions. Note
the exponentsa i must lie in the interval@21,1#, and that at
least one of thea i ’s must be negative.

Radiation dominated, witha15•••5ad52/(d11). The
energy density of the radiation is non-zero, fixed by the c
straint ~16!.

One can also find a solution with brane wrapping but
gravitons, in which we setNi j 5n for all i 5” j but takerS
50. Using the same ansatz~18!, but setting all theRi equal
~so thatci5c anda i5a), demanding thatrS50 implies

a2

2~ t2t0!2
5

8pGT2n

~2pR!d22
. ~19!

This equation is solved for all times by settinga52/(d
22), and choosing the value ofc appropriately. Given these
values, one can check that theR̈i equations~17! are also
satisfied.

The ansatz~18! does not give the most general solution
the equations of motion, since we ought to be able to spe
2d independent initial radii and velocities.

B. General features

To study the solutions of the field equations~17!, it is
convenient to work in terms of new variablesl i(t)
[ log„2pRi(t)… introduced in@5#. The field equations be
come

l̈ i1
V̇

V
l̇ i58pGS 1

d
rS1

3

d21
rBD

2
8pGT2

V
el i(

j 5” i
~Ni j 1Nji !e

l j . ~20!

The volume of the spatial torus is

V5e( il i, ~21!

the energy density from brane tension is

rB5T2V(
i 5” j

el iel jNi j ~22!

and the energy density from supergravity excitations is fix
by the constraint~16!

8pGrS5
1

2 (
i 5” j

l̇ i l̇ j28pGrB . ~23!
1-3
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As noted in@5#, this system of equations can be regard
as describing a non-relativistic particle moving ind dimen-
sions. The particle has a coefficient of friction, given
V̇/V, due to the expansion of the universe. A positio
dependent force acts on the particle, given by the right h
side of Eq.~20!. This force consists of two terms. The fir
term

Fi
(1)58pGS 1

d
rS1

3

d21
rBD ~24!

is positive definite and is the same for every value ofi. It
drives a uniform expansion of the universe. The second t

Fi
(2)52

8pGT2

V
el i(

j 5” i
~Ni j 1Nji !e

l j ~25!

is either zero or negative and it suppresses the growth
dimensions with large wrapping numbers. In the M-theo
context, this is the mechanism by which anisotropic wra
ping numbers lead to an anisotropic expansion of the u
verse. Another way of stating this is to note that the eq
tions of motion~20! imply that

l̈ i2l̈ j1
V̇

V
~ l̇ i2l̇ j !58pG~pi2pj ! ~26!

wherepi is the pressure exerted on thei th dimension. Thus
12350
d

-
d

m

of
y
-
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-

differential pressures, of the sort exerted by an anisotro
brane gas, lead to differential expansion rates.

Let us comment on some general properties of th
equations.2 First note that the volume of the torus increas
monotonically with time. This follows from rewriting the
constraint~23! in the form

S V̇

V
D 2

5S (
i

l̇ i D 2

5(
i

~ l̇ i !
2116pG~rS1rB!. ~27!

The right hand side is positive definite for all nontrivial mo
els, vanishing only for the trivial case of periodically iden
fied Minkowski space. We can choose the direction of tim
to makeV̇.0.

The rest of this paper is primarily concerned with mod
where the wrapping matrixNi j is anisotropic. Motivated by
our discussion in Sec. I, we assume that the spatial dim
sions fall into three classes. We refer to a directioni such that
Ni j 5Nji 50 for all j as unwrapped. Directions i for which
Ni j andNji are nonzero except for thosej corresponding to
an unwrapped direction are referred to asfully wrapped. Di-
rectionsi where some of theNi j or Nji are zero for values of
j which are not unwrapped are referred to aspartially
wrapped. That is, listing dimensions in the order unwrappe
partially wrapped, fully wrapped, the wrapping matrices w
will consider look like
partially

d.
¨

• 0 0 0 0 0 0 0 0 0

0 • 0 0 0 0 0 0 0 0

0 0 • 0 0 0 0 0 0 0

0 0 0 • 0 N4,6 N4,7 N4,8 N4,8 N4,10

0 0 0 0 • N5,6 N5,7 N5,8 N5,9 N5,10

0 0 0 N6,4 N6,5 • N6,7 N6,8 N6,9 N6,10

0 0 0 N7,4 N7,5 N7,6 • N7,8 N7,9 N7,10

0 0 0 N8,4 N8,5 N8,6 N8,7 • N8,9 N8,10

0 0 0 N9,4 N9,5 N9,6 N9,7 N9,8 • N9,10

0 0 0 N10,4 N10,5 N10,6 N10,7 N10,8 N10,9 •

©
. ~28!

The diagonal entries in the matrix are irrelevant. In this example the directions 1 through 3 are unwrapped, 4 and 5
wrapped, and 6 through 10 fully wrapped~assuming all theNi j written out explicitly in the above matrix are non-zero!.

Now consider what happens whenm dimensions are unwrapped andd2m dimensions are either partially or fully wrappe
We introduce

2These results overlap with the work of Don Marolf@14#.
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m5(
i 51

m

l i5 log ~volume of unwrapped torus!, ~29!

L5 (
i 5m11

d

l i5 log ~volume of wrapped torus!. ~30!

Summing over the appropriate values ofi, and using the
definition ofrB , we find the following differential equation
for m andL:

m̈1~ṁ1L̇ !ṁ58pGS m

d
rS1

3m

d21
rBD ~31!

L̈1~ṁ1L̇ !L̇58pGS d2m

d
rS1

d23m12

d21
rBD . ~32!

The overall character of the dynamics depends onm. For
smallm, both terms in the right hand side forL̈ are positive,
and if L̇ is zero, then the second derivative must be posit
leading to a local minimum. Conversely, with a larger val
of m, the right hand side of this equation has both a posit
and a negative term, and both local maxima and minima
allowed. Form there can never be a negative term on
right hand side, so if these directions are initially expand
they will then expand forever.

When d23m12 vanishes the brane tension does n
contribute to the growth of the internal dimensions. Th
picks out a special dimensionality of the unwrapped s
space, for which the internal dimensions have nearly c
stant radii. Whend510 this occurs form54.

Perhaps the most important feature of these equati
which we analyze in more detail in Sec. IV, is that an attr
tor mechanism governs the behavior at late times. That is
radii at late times are determined solely by the wrapp
matrix, and are~up to some scaling symmetries discussed
Sec. IV! independent of the initial radii and velocities. Th
is intuitively clear from examining the second term in t
‘‘force,’’ Eq. ~25!. Suppose one of the radii, sayR1, starts out
with an unusually small~or large! value. This does not affec
the force onR1 itself, sinceR1 appears in both the numerato
and denominator ofF1

(2) . But the force on the other rad
will become larger~or smaller!, in such a way as to restore
balance between the different radii. This suggests that
behavior at late times is solely determined by the wrapp
matrix.

III. NUMERICAL RESULTS

We now present numerical solutions to the equations
motion ~17!. The technique is to start with a set of initia
radii and velocities, then evolve the system both forwa
and backwards in time using a Runge-Kutta routine. Mo
vated by our discussion in Sec. I, we assume a wrapp
matrix with m1 unwrapped dimensions,m2 partially wrapped
directions, andm35d2m12m2 fully wrapped dimensions
For the specific casem153 andm252 in a ten dimensiona
universe we have the wrapping matrix given by Eq.~28!. The
wrapping numbers should be chosen based on an unders
12350
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ing of thermal fluctuations in the early universe. Pendi
this, for our numerical calculations we simply take the no
zero wrapping numbers to be randomly chosen integersNi j
P$1,2,3%. We take the initial radiiRi to be randomly chosen
between 1 and 5 Planck lengths, and we take the initial
locitiesṘi to be randomly chosen between20.5 and10.5. A
typical numerical solution for 3 unwrapped dimensions,
partially wrapped dimensions and 5 fully wrapped dime
sions, is shown in Fig. 1. A solution form153, m254 and
m353 is shown in Fig. 2.

The equations predict that the early universe is radiati
dominated, with the volume of the spatial torus being
;t2d/(d11). Thus the universe originates in a big ban
which we have taken to be att50. The big bang is appar
ently highly anisotropic, with some radii increasing whi
others go to zero, but we do not trust our equations of mot
at early times: the temperature diverges while many of
radii are sub-Planckian, so we do not expect supergravit
be valid. It would be interesting to understand what, if an
thing, resolves the initial singularity in M theory. Presumab
U duality plays a role, perhaps along the lines that have b
argued in string theory@4#.

We do expect supergravity to hold at late times, due to
growing radii and falling temperature. The growing radii a
low us to neglect brane-antibrane annihilation, which tu
off as the universe expands, and excitations on the bra
will get red-shifted away faster than the brane tension.
therefore trust our solutions to provide an accurate desc
tion of the system at late times, presumably until low-ene
dynamics eventually stabilize the moduli.

Thus the most significant feature of these solutions is th
after a rather long transition period, the unwrapped radii
gin to grow as a universal power oft. The partially and fully
wrapped radii also grow as universal powers oft, but with

FIG. 1. Radii vs time for three unwrapped dimensions~solid
curves!, two partially wrapped dimensions~dotted curves! and five
fully wrapped dimensions~dashed curves!. Distances and times
measured in Planck units.
1-5
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different ~smaller! exponents. This leads to the dynamic
formation of a hierarchy between the wrapped and
wrapped directions. We will determine the power laws a
lytically in the next section.

To conclude, let us comment on a less generic featur
these solutions. As we will see in the next section, the ex
nents appearing in the late-time power laws depend only
the values ofm1 , m2 , m3. However the coefficients in fron
of the power laws depend have complicated dependenc
the wrapping numbers. A wrapping matrix of the form~28!
tends to make the partially wrapped dimensions bigger t
the fully wrapped dimensions at late times. This effect can
seen in the figures, and suggests that brane gas cosmo
also leads to a sub-hierarchy in the sizes of the inte
dimensions.3 In the case of most interest, this suggests t
one may end up with five small dimensions, tw
intermediate-sized dimensions, and three decompactified
mensions. Such a hierarchy has also been argued to em
from weakly-coupled string theory@8#.

The intriguing possibility of the dynamical hierarch
comes with a number of qualifications, however. We nee
better understanding of thermal fluctuations at early times
determine what sort of wrapping numbers are reasonable
addition, in this scenario some low-energy mechanism m
eventually stabilize the moduli, and it is quite possible th
this mechanism will erase any hierarchy that forms.

IV. LATE TIME BEHAVIOR

To complement our numerical results, we proceed
study the behavior of the radii at late times analytica

3Of course the unwrapped dimensions grow with a faster po
law and always become much larger than the internal dimensio

FIG. 2. A plot with three unwrapped dimensions~solid curves!,
four partially wrapped dimensions~dotted curves! and three fully
wrapped dimensions~dashed curves!.
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Rather remarkably, there is an attractor mechanism at w
giving late-time behavior that is independent of the init
radii and velocities.

We study the late-time behavior withm1 unwrapped di-
mensions,m2 partially wrapped dimensions andm3 fully
wrapped dimensions. That is, we consider wrapping matr
of the form of Eq.~28!.

The late-time behavior of solutions to the equations
motion ~17! is captured by the ansatz

2pRi5el i

5H ait
a i 51, . . . ,m1 ~unwrapped!

bit
b i 5m111, . . . ,m11m2 ~partially wrapped!

ci t
g i 5m11m211, . . . ,d ~ fully wrapped!.

~33!

With this ansatz, the energy densities due to supergra
particles and brane tension are given by

rS5S const

V D (d11)/d

5S const

) ai) bi) ci t
m1a1m2b1m3gD (d11)/d

~34!

rB5
T2

) ai) bi) ci t
m1a1m2b1m3g

3S (
i 5” j

~Ni j 1Nji !bicj t
b1g1(

i 5” j
Ni j cicj t

2gD .

~35!

There are several distinct classes of behavior at late ti
since, depending on the values ofm1 , m2 , m3, certain con-
tributions to the energy density become negligible at l
times. The following four subsections exhaust the possib
ties.

A. Neglect rS

If the universe expands rapidly enough then it is bra
dominated at late times, withrB@rS. We begin by analyz-
ing this case, which turns out to be the one of greatest ph
cal interest.

Let us assume that every term inrB makes a comparable
contribution to the energy density. This amounts to assum
that b5g. Substituting the ansatz~33! into the equations of
motion~20!, and neglectingrS, the time dependence cance
out of the equations of motion as long as

m1a1~m21m322!b52. ~36!

The equation of motion for each unwrapped dimension
comes

a„m1a1~m21m3!b21…5
3

d21
8pGt2rB . ~37!r

s.
1-6
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On the other hand, summing the equations of motion ove
partially and fully wrapped dimensions~that is, fromi 5m1
11 to d) gives

b~m21m3!„m1a1~m21m3!b21…

5S 3~m21m3!

d21
22D8pGt2rB . ~38!

Comparing Eqs.~37! and ~38!, one must have

a

~m21m3!b
5

3

d23m112
. ~39!

The solution to Eqs.~36! and ~39! is

a5
6~d2m1!

d~d2m1!14m124
~40!

b5g5
2d26m114

d~d2m1!14m124
.

Note that the exponents depend on the spatial dimensiod
and the number of unwrapped dimensionsm1, but not onm2
or m3 separately.

The late-time power law exponents are therefore fixed
d andm1. We now show that the coefficients in front of th
power laws are also depend on the wrapping matrix. T
ansatz~33! reduces the equations of motion to a set of al
braic equations. The equations of motion for the unwrap
dimensions are all identical, and give a single nontriv
equation. The equations of motion for the partially and fu
wrapped dimensions give anotherm21m3 equations. In ad-
dition Eq. ~36! must be imposed. Thus we have a total
m21m312 equations. Now let’s count the unknowns. Sin
ai appears only in the combination) iai , there are a total of
m21m313 unknownsa, b5g, )ai , bi , ci . Thus for ge-
neric wrapping numbers the equations are sufficient to de
mine all of the unknowns in terms of the wrapping matr
up to a freedom to make rescalings

ai→Vai , bi→V2m1 /(m21m322)bi ,
~41!

ci→V2m1 /(m21m322)ci

which leave the equations invariant~for example, note tha
rB is invariant under this rescaling!.

This shows that there is an attractor mechanism at w
Modulo the scale symmetry~41!, the late time behavior is
determined solely by the wrapping matrix. That is, the s
tem forgets about the initial values of the radiiRi and veloci-
ties Ṙi .

Of course, this analysis assumes that we can ignorerS.
This is only consistent if

~m1a1m2b1m3g!~d11!/d.2 ~42!

or equivalently

m1,3d~d12!/~7d12!. ~43!
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This analysis also assumes that all terms inrB are compa-
rable. By comparing to Sec. IV B, this requiresm3.m2.

B. NeglectrS and full-full wrapping

For a highly anisotropic wrapping, the partially and ful
wrapped dimensions will behave differently at late times.
analyze this possibility, assume thatg,b. This makes the
full-full wrapping terms in the brane energy density neg
gible at late times. Let us also assume thatrS is negligible.

We get one equation by requiring thatrB;1/t2, namely

m1a1~m221!b1~m321!g52. ~44!

The equation of motion for the unwrapped dimensions re

a~m1a1m2b1m3g21!5
3

d21
8pGt2rB ~45!

while the sum of the equations of motion for the partia
wrapped dimensions gives

m2b~m1a1m2b1m3g21!5S 3m2

d21
21D8pGt2rB

~46!

and for the fully wrapped

m3g~m1a1m2b1m3g21!5S 3m3

d21
21D8pGt2rB .

~47!

This is sufficient to fix the exponents

a5
6m2m3

~d24!m2m31~d21!~m21m3!

b5
2m3~3m22d11!

~d24!m2m31~d21!~m21m3!

g5
2m2~3m32d11!

~d24!m2m31~d21!~m21m3!
.

A little equation counting shows that the coefficients of t
power laws are determined by the wrapping matrix, up to
freedom to make rescalings by

ai→Vai , bi→V2m1 /(m21m322)bi ,
~48!

ci→V2m1 /(m21m322)ci

and by

ai→ai , bi→V1/(m221)bi , ci→V21/(m321)ci .
~49!

This analysis assumes thatg,b, or equivalently thatm2
.m3. It also assumes thatrS is negligible, which is consis-
tent if

~m1a1m2b1m3g!~d11!/d.2 ~50!
1-7
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or equivalently

m2m3

m21m3
.

d~d21!

7d12
. ~51!

C. Neglect full-full wrapping

Next assume thatrS makes an important contribution a
late times, but thatg,b so that the full-full wrapping terms
in the brane energy density are negligible.

Requiring thatrS andrB scale like 1/t2 gives two condi-
tions on the exponents. Together with the equations of m
tion, this is sufficient to fix

a5
2

d11

d~m21m3!12m2m3

d~m21m3!24m2m3

b5
2

d11

d~m222m3!12m2m3

d~m21m3!24m2m3

g5
2

d11

d~m322m2!12m2m3

d~m21m3!24m2m3
.

The coefficients in front of the power laws are fixed up
the rescaling freedom

ai→Vm22m3ai , bi→V2m1bi , ci→Vm1ci ~52!

which leavesrS and the relevant terms inrB invariant.
Neglecting the full-full wrapping is consistent ifg,b, or

equivalently ifm2.m3. By comparison with Sec. IV B, we
needm2m3 /(m21m3),d(d21)/(7d12) in order forrS to
make an important contribution.

D. All terms important

Finally, consider the possibility that all terms in the e
ergy density are important. Plugging the ansatz~33! into the
equations of motion the time dependence cancels prov
that bothrS and rB scale like 1/t2. If we assume that al
contributions torB are equally important this fixes the exp
nents

a5
3d2m1

m1~d11!

~53!

b5g52
1

d11
.

Note that, just as in Sec. IV A, the exponents depend od
andm1, but not onm2 or m3 separately.

The equations of motion become a system ofm21m3
11 algebraic equations for them21m311 unknowns)ai ,
bi , ci . In this case there is a true attractor mechanism
work: the unknowns are uniquely determined since the s
symmetry~41! is broken. This analysis assumes that all co
tributions to the energy density are equally important at l
times. By comparing to the other cases we analyzed,
requiresm3.m2 andm1.3d(d12)/(7d12).
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To summarize, the late time behavior falls into fo
classes, depending on the values ofm1 , m2 , m3. The various
classes are characterized by whetherrS, certain terms inrB ,
or both can be neglected at late times. The exponents
each of these cases are worked out above; the results fd
510 andm3.m2 are given in Table I. Moreover, we hav
shown that the coefficients in front of the power laws a
~modulo possible scale symmetries! uniquely determined by
the wrapping matrix. This means, for example, that the ra
of the sizes of the fully wrapped dimensions stay constan
the universe evolves.

One important issue remains to be addressed—whe
we expect our equations of motion to provide an accur
description of the dynamics at late times. Classical sup
gravity is only valid if all radii are larger than the 11
dimensional Planck length, so we should only trust solutio
in which the radii are either constant or grow with time. F
such solutions we are also justified in neglecting mass
excitations on the branes, which redshift away faster than
brane tension. We can also neglect brane-antibrane anni
tion ~which will turn off as the transverse dimensions e
pand!. The condition for growing radii isb,g.0. This re-
stricts us to considering one of two cases: either
universes discussed in Sec. IV A but with

m1,
d12

3
~54!

or the universes discussed in Sec. IV B but with

m3.
d21

3
. ~55!

V. STRING GAS COSMOLOGY

Aside from the cases~54! and ~55! some of the wrapped
dimensions will shrink with time, and the supergravity a
proximation to M theory eventually breaks down. To follo
the evolution of the universe, one must take the U-dua
group of M theory onT10 into account@15#. As an example
of this analysis, we study the following rather special set
which will allow us to make contact with the original strin
gas scenario of@4,5#. Consider a wrapping matrix in which
the only non-zero matrix elements areNi ,10 and N10,i for i
51, . . . ,9. Regardingx10 as the dilaton direction, this cor
responds to type IIA string theory onT9, with a gas of fun-
damental strings wound around all directions of the tor
One can solve the equations of motion~17! at late times with
the following power-law ansatz for the radii:

TABLE I. Exponents ford510 spatial dimensions as a functio
of the number of unwrapped dimensionsm1, for universes with
more fully wrapped than partially wrapped dimensions (m3.m2).

m1 0 1 2 3 4 5 6 7 8 9 10

a – 3
5

4
7

7
13

1
2

5
11

4
11

23
77

1
4

7
33

2
11

b,g 1
4

1
5

1
7

1
13 0 2

1
11 2

1
11 2

1
11 2

1
11 2

1
11 –
1-8



d
gy

na
tly

u

e
t

.

rin
ng

n
e

can
ns
ing
s.
um-

ly
bi-

s
ring

are
ing
rger
pic
ly

d.’’
tely

ions
nal
ree
ef-
are
n-
cial
di-
ich

nce
al
ate

for
lar
r-
o-
our

ve

rly
nd

ra-
ns-
nd
-
e

ally
oge-
nd
his
pa-
ge
per-

n
et
en

BRANE GAS COSMOLOGY IN M THEORY: LATE TIME . . . PHYSICAL REVIEW D 67, 123501 ~2003!
Ri~ t !;tb, i 51, . . . ,9
~56!

R10~ t !;tg.

This analysis was performed in detail in Sec. IV C. One fin
that rS andrB make comparable contributions to the ener
density at late times. Moreover, one finds thatR10 shrinks
with time. This invalidates the use of an eleven-dimensio
equation of state for the supergravity gas, which is implici
encoded in the constraint~16!, and which would have

rS;S 1

t9b1gD 11/10

. ~57!

Instead the gas is effectively ten dimensional, and we sho
take the energy density to scale as

rS;
1

tgt10b
. ~58!

The energy from brane tension scales as

rB;
1

t (d22)b
. ~59!

The equations of motion~20! require that bothrS and rB
scale like 1/t2, which fixes the exponents4

b51/4, g521/2. ~60!

This determines the late-time behavior of the M-theory m
ric. But sinceR10 is shrinking, we should really reinterpre
this as a type IIA string solution, using@2#

dsM theory
2 5e22f/3dsstring

2 1e4f/3~dx10!2 ~61!

wheref is the dilaton anddsstring
2 is the string-frame metric

Thus

ef;t23/4, ~62!

dsstring
2 ;const. ~63!

This makes contact with the scenario of@4,5#, where a gas of
string winding modes leads to dimensions whose size~as
measured in the string frame! is stabilized at around the
string scale. Note that this scenario, which proposed st
winding as a way to stabilize radii, in fact has a growi
volume with respect to the M-theory frame.

VI. CONCLUSIONS

We have presented solutions to the equations of motio
M theory in which a hierarchy arises between the wrapp

4Although it may seem we are mixing 11-dimensional equatio
of motion with a 10-dimensional equation of state, we are secr
using the fact that type IIA supergravity can be obtained by dim
sional reduction from M theory.
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and unwrapped dimensions. Moreover, these solutions
potentially differentiate between the wrapped dimensio
themselves, depending on the specific form of the wrapp
matrix, producing a ‘‘sub-hierarchy’’ of compact dimension
While these results are very suggestive, we have left a n
ber of open issues.

First, while the wrapped directions grow far more slow
than the unwrapped directions, they are not actually sta
lized in the most interesting case with three unwrapped~and
therefore macroscopic! directions. However, the fluctuation
envisioned by the Brandenberger-Vafa mechanism in a st
dominated universe are actuallymore likely to generate one
or two macroscopic directions, since these fluctuations
smaller and thus favored over those that remove the wind
strings from a three dimensional subspace. Brandenbe
and Vafa resolve this problem by pointing out that anthro
arguments make it very unlikely that a universe with on
one or two large dimensions could actually be ‘‘observe
In the case discussed here, though, taking three comple
unwrapped dimensions results in a set of compact direct
that expands more slowly than the one or two dimensio
cases. Consequently, it is presumably easier for the th
dimensional models to be stabilized by non-perturbative
fects not accounted for by the supergravity action we
working with. Thus it is at least possible that a three dime
sional universe could eventually be picked out as a spe
case where one had both a permitted number of ‘‘large’’
mensions, and a stabilized set of compact directions, wh
is vital if we are to avoid constraints on the time depende
of Newton’s constant in the ‘‘effective’’ three dimension
universe. However, it is not clear whether one can elimin
the anthropic argument entirely from this scenario.

To conclude, let us mention some important directions
future work. In this paper we have focussed on particu
wrapping configurations, which lead to cosmologically inte
esting evolution. The simple topological argument intr
duced by Brandenberger and Vafa suffices to show that
wrapping configurations arepossible: they could arise from
thermal fluctuations in the early universe. However we ha
not attempted to analyze thelikelihoodof such a fluctuation.
We are currently studying the thermodynamics of the ea
universe in this scenario, including the thermal creation a
annihilation of branes@16#. An important ingredient in this is
calculating the growth of the cross section with wrapped
dii and temperature; this is analogous to the growth of tra
verse fluctuations of a string with oscillation number a
resolution time@17#. This will allow us to estimate the prob
ability of obtaining the brane wrapping configurations w
have investigated.

In the present paper we have only considered spati
homogeneous universes. The assumption of spatial hom
neity greatly simplifies the analysis, but to truly understa
the robustness of this scenario, it is important to relax t
assumption. Several new effects must be included in s
tially inhomogeneous universes. In particular the long-ran
forces between branes, mediated by the exchange of su
gravity particles, must be taken into account.
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