
PHYSICAL REVIEW D 67, 123001 ~2003!
Bispectrum and the trispectrum of the Ostriker-Vishniac effect
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We present analytical expressions for the Fourier analogue of the cosmic microwave background three-point
and four-point correlation functions, the spatial bispectrum and trispectrum, of the Ostriker-Vishniac effect in
the linear and mildly nonlinear regime. Through this systematic study, we illustrate a technique to tackle the
calculation of such statistics making use of the effects of its small-angle and vectorlike properties through the
Limber approximation. Finally we discuss its configuration dependence and detectability in the context of
Gaussian theories for the currently favored flatLCDM cosmology.

DOI: 10.1103/PhysRevD.67.123001 PACS number~s!: 98.70.Vc
th
i

o-
t

lo
re

ro

y
ia
-
it

ier

ct
c

st
fo
tic
on
re

ll
th
ra
o

B
u
e
o
th
ll
f
it
n
e
n-

ev-
out
its

lify
ous
ec-
ill
tor-

ill
uch

is
her
the
st

the

ler

the

f
ical

u-
ne

-
lcu-
is-
e

in-
of

m
sent
e

nd
er

ter
I. INTRODUCTION

In recent years, with the prospect of the increase in
sensitivity and angular resolution of the forthcoming cosm
microwave background~CMB! satellite and interferometry
experiments@1–3,84#, efforts have been driven to the the
retical study of the secondary anisotropies contributions
the temperature fluctuations on arcminute scales and be
While the primordial anisotropies from recombination a
thought to be well understood, secondary anisotropies f
reionization are not.

As is well known, the currently favored inflationar
model of structure formation predicts a nearly Gauss
probability distribution for the primordial density fluctua
tions. In this case, the CMB is completely described by
two-point correlation function or power spectrum in Four
space. All higher-order correlations can be expressed
terms of it. Primordial nonlinearities and secondary effe
introduce deviations from Gaussianity, producing a dete
able signal in both the power spectrum and higher-order
tistics. Recent work provides the theoretical background
the calculation of estimators of these higher-order statis
@4,5# and constrains possible non-Gaussian primordial c
tributions to the bispectrum and the trispectrum on deg
and subdegree angular scales using actual data@6–9#. The
interest is now in forecasting the expected signals on sma
scales due to secondary anisotropies, checking whether
are detectable and understanding how they can be sepa
from each other and from the primary anisotropies in light
future data.

The Ostriker-Vishniac~OV! effect @10# was found to be
the dominant linear secondary contribution to the CM
anisotropies below the Silk-damping scales at the arcmin
level @11#. It is caused by Thomson scattering off of th
CMB photons by moving electrons during the initial phase
reionization. It has the advantage of taking place during
linear regime of structure evolution and of being a sma
angle effect enabling one to obtain analytical expressions
its higher-order correlation functions in the small-angle lim
Because of the highly predictive power of linear theory, a
measurement of such statistics would be a sensitive prob
the reionization history of the universe, difficult to dise
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tangle in measurements from nonlinear contributions. S
eral derivations for its power spectrum have been carried
@11–13# but no one has fully addressed the calculation of
bispectrum or trispectrum.

It is then timely to obtain these expressions and to qua
and quantify them. We therefore extend and detail previ
techniques used for the calculation of the OV power sp
trum to the calculation of its higher-order statistics. As w
be shown, for the particular case of fields which are vec
like in nature, such as the OV effect, even moments w
dominate over odd moments, making the trispectrum a m
more sensitive statistics than the bispectrum.

Given the low redshifts of formation of structure, it
interesting to consider whether nonlinear effects can furt
enhance these statistics. So we will extend our study to
weakly nonlinear regime, allowing us to probe the mo
natural extension of the OV effect to nonlinear scales,
so-called kinetic Sunyaev-Zel’dovich~KSZ! effect. On small
scales, both arise from the density modulation of the Dopp
effect from large-scale bulk flows.

We review the relevant properties and parameters of
adiabatic cold dark matter~CDM! cosmology for structure
formation in Sec. II A. In Sec. II B we review the theory o
the OV effect and in Sec. II C we discuss the basic statist
properties of a general field through itsn-point functions. In
Sec. II D we show how the homogeneous theory of turb
lence combined with the Limber approximation enables o
to infer the dominant contribution amongn-point statistics of
a vector field effect like the OV effect. In Sec. II E, we in
troduce the standard formalism of the signal-to-noise ca
lation by means of the Fisher matrix. For general cons
tency, in Sec. II F we apply our method in detail to th
calculation of the OV power spectrum as well as its nonl
ear extension. In Secs. III and in IV we present the steps
the calculation of the OV bispectrum and of the trispectru
respectively and its nonlinear counterparts. We also pre
the results. Finally in Sec. V we conclude. In Appendix A w
generalize the Limber approximation to the 3-point a
4-point correlation functions. This may be useful for oth
cosmological studies.

II. GENERAL CONSIDERATIONS

A. Cosmological model

We work in the context of the adiabatic cold dark mat
~CDM! family of models. In units of the critical density,V0
©2003 The American Physical Society01-1
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is the contribution to the nonrelativistic-matter density,Vb is
the contribution to the baryonic matter density,VL is the
contribution of the cosmological constant andH0
5100 h km sec21Mpc21 is the Hubble constant today. Th
Friedmann equations for the evolution of the scale facto
the Universe,a(t), are then

ȧ

a
5H0E~z!

[H0AV0~11z!31VL1~12V02VL!~11z!2, ~1!

ä

a
5H0

2@VL2V0~11z!3/2#, ~2!

where the over-dot denotes a derivative with respect to ti
The scale factor is chosen such thata0H052c.

Useful measures of distance~and time! are the conformal
distance~and conformal time!. If an observer is at the origin
z50 then an object at redshiftz is at a comoving distance
w(z)5 1

2 *0
z @dz8/E(z8)# and at a time t(z)

5(1/H0) *z
` @dz8/(11z8)E(z8)#. The conformal time is

then obtained fromdh5dt/a, such that the comoving dis
tance to the horizon is the conformal time today,ch0
5w(`).

If the CDM density contrast at comoving positionwW at
time t is d(wW ,t), then the power spectrumP(k,t) is defined
by the expectation value over all realizatio

^d̃(kW ,t) d̃* (kW8,t)&5(2p)3dD
3 (kW2kW8)P(k,t) wheredD

3 is the

Dirac delta function. In linear theory, d(wW ,t)
5d0(wW )D(t)/D(t0), where t0 is the age of the Universe
d0(wW )[d(wW ,t0), and the growth factor, as a function of re
shift, is @14#

D~z!5
5V0 E~z!

2 E
z

` 11z8

@E~z8!#3
dz8. ~3!

The power spectrum is given byP(k,t)5P(k)(D/D0)2,
whereD0[D(t0). For P(k)[P(k,t0) we use

P~k!5
2p2

8
dH

2 ~k/2!nT2~kp Mpc/hG!, ~4!

where T(q) is the CDM transfer function,kp5ka0
5kH0/2c is the physical wave number with our conventio
and G, the shape parameter, is defined as@15# G
.V0(h/0.5) exp (2Vb2Vb /V0). As we chosea0H052c,
there is an extra factor of 8 in the denominator in Eq.~4!. For
the transfer function, we use the Bardeenet al. @16# fitting
formulas for CDM models instead of the improved versi
of Eisenstein and Hu@17#, to facilitate comparison with pre
vious work. FordH , we take the fits to the Cosmic Back
ground Explorer~COBE! data given in@18#.

In linear theory, the continuity equation relates the Four
components of the velocity field and the density field
12300
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vW̃ ~kW ,t !5
ia~ t !

k2

Ḋ

D
kW d̃~kW ,t !5

ia~ t !

k2

Ḋ

D0
kW d̃0~kW !. ~5!

A useful relation@14# is

Ḋ

D
5

ä

ȧ
2

ȧ

a
1

5V0

2

ȧ

a

~11z!2

@E~z!#2D~z!
. ~6!

Although we maintain generality in the derivations, w
illustrate our results with a flat CDM model with a cosm
logical constant, theLCDM model. The parameters for thi
model are V050.35,Vb50.05,VL50.65,h50.65 and
spectral indexn51. Concerning the reionization contribu
tion we consider two reionization histories, both assum
steep reionization with ionization fractionxe51 and
Dzr /(11zr)50.1. In the first one, reionization takes plac
at zr58. The second one assumeszr517 and relies on the
latest results from the Wilkinson Microwave Anisotrop
Probe ~WMAP! experiment~see below!. Note that in an
open or closed universe one replaces in the factors ofh that
appear in the equations

h→ S~a0H0hAu12V02VLu!

a0H0Au12V02VLu
~7!

whereS(x)5 sinhx in an open universe andS(x)5 sinx in a
closed universe.

B. The Ostriker-Vishniac effect

The reionization of the Universe is one of the most im
portant physical processes that took place in the early
verse~see@19,20#!. The most accepted sources for reioniz
tion, which requires a source of ultraviolet photons, are
early generation of massive stars formed in dwarf galaxie
an early generation of quasars/AGNs in galaxies. In the c
rently favored adiabatic CDM class of models for structu
formation, reionization is expected to occur in the range
<zr<30. Measurements of the CMB anisotropies on sub
gree scales@21–23# have been used to put an upper bound
the reionization redsfhit ofzr.30 @24,25#. Very recently, us-
ing polarization and temperature anisotropies of the CM
WMAP has placed a fairly model-independent constrain@26#
on the optical depth to electron scattering oft50.1760.04
at 68% C.L. which translates intozr51763 for instant
reionization@27,28#. Interestingly, the measurement of an i
crease of the neutral fractions with redshift in high-z quasar
spectra@29,30# and a first detection of the ‘‘Gunn-Peterso
trough’’ @31# in a quasar spectra atz56.28 by SLOAN@32#
point to a reionization redshift ofzr.6 @33#, in disagreement
with WMAP results. However, even a fraction of neutr
hydrogen as small as 0.1% in the IGM could explain t
result due to the large cross-section to Ly-a photons. To-
gether with the results from WMAP, high-z quasar measure
ments indicate that the reionization history is more comp
than previously thought and attempts are being made to f
understand it@34–36#.

Though extensive analytical~for a complete derivation
see @11,12#! and numerical studies~see references below!
1-2
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have been done to try to quantitatively understand many
the effects originated by reionization on the CMB, accura
is difficult to reach and uncertainties still remain. Reioniz
tion will leave multiple distinctive imprints on the CMB
anisotropies by bringing the CMB photons and the free m
ing electrons into scattering contact again. Through that w
dow, the low-z period of the universe evolution can b
probed experimentally in more detail from the appearanc
the first sources of ionization to the formation of the obse
able present large-scale structure. Studies have been do
the calculation of the contributions to the power spectrum
the CMB due to ionization induced effects like the Dopp
effect on large angular scales@37,38#, the thermal SZ effect
and its kinetic analog@39–46#, the inhomogeneous reioniza
tion @47–51# and the OV effect on smaller scales@13,52,53#.
Enlightening comparative studies between different effe
can also be found@54#.

As ionization effects introduce non-Gaussianities in
anisotropies, further studies were done on the calculatio
their possible contributions to the bispectrum. Many auth
@55–59# investigated contributions to mixed bispectra due
couplings between lensing effects, the integrated Sa
Wolfe ~ISW! effect, thermal SZ, and Doppler effects, such
the OV effect. The trispectrum of ionization secondaries@58#
has not been explored very much. No one has addresse
calculation of the pure bispectrum and trispectrum of the
effect until now.

In the linear regime, for the power spectrum, the dom
nant small-angular scale contribution from reionization w
found to be the OV effect@10,13#. It arises from the second
order modulation of the Doppler effect by density fluctu
tions which affect the probability of scattering. Because of
density weighting, it peaks at small angular scales, typic
arcminute scales inL CDM models, and should producemK
anisotropies. Its contributions to the temperature fluctuati
along the line of sight can be written in the manner of Ja
and Kamionkowski~JK! @53#:

DT

T̄
~uW !52 E

0

h0
dhg~h!û•p~ ûh,h! ~8!

where p( ûh,h)[v( ûh,h)d( ûh,h) and g is the visibility
function given by

g~h!5
a~h!sTnē~h!

c
e2t(h)

5
0.138Vbh

c
@11z~h!#2xe~h!e2t(h) ~9!

which gives the probability of scattering. The prefactor 0.1
is obtained assuming that all the baryons are in the form
protons~if we use the fact that the mass fraction of helium
25% then one should multiply it by 7/8). The visibility func
tion is normalized such that*0

h0 g(h)dh512e2tr wheret r

is the optical depth to the surface of last scattering at rec
bination. Note thatg is only dependent on time, and not o
position for the OV effect. The optical depth is given b
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t(h)5 *0
h cdh8sTne(h8). Also d( ûh,h) and v( ûh,h) are

the density contrast and bulk velocity along the line of sig
nē(h) is the mean electron density given bynē(h)
5Vb rcxe(h)(11z)3/mp , sT is the Thomson cross
section,xe is the ionization fraction andmp the proton mass.
We assume that the visibility function is approximated a
Gaussian in conformal time

g~h!5
12e2tr

A2p~Dh r !
2

e21/2[(h2hr )
2/(Dhr )

2] . ~10!

Following JK @53#, we choose a coordinate system su
that û represents a three-dimensional unit vector along
line of sight anduW refers to a two-dimensional unit vector i
the plane perpendicular to the line of sight. So we will ha
uW 5(u1 ,u2,0) and û5(u1 ,u2 ,A12u1

22u2
2).(u1 ,u2,1)

where this approximation arises from the small-scale na
of the effect. Bold letters represent three-dimensional v
tors.

The OV is a small-angle effect so we can work under
flat-sky approximation and expand the temperature pertu
tions in Fourier space

DT̃

T̄
~KW !52 E

0

h0
dhg~h! E d2u

3E d3q

~2p!3
û•p̃~q,h!ei (KW •uW 2hq• û) ~11!

whereq[(qx ,qy ,qz), KW [(Kx ,Ky,0) and

p̃~q,h!5
ia~h!ḊD

2D0
2 E d3k

~2p!3
d̃0~k!d̃0~q2k!

3S q2k

uq2ku2
1

k

uku2D ~12!

is the Fourier transform ofp( ûh,h) ~see JK@53#!. D and Ḋ
depend onh. We made use of the continuity equation
Fourier space~5! and of the linear evolution of the densit
field.

C. Statistical properties of a general field

The statistical properties of a field can be characterized
the n-point correlation functions in real space or by th
n-point spectra in Fourier space. If the field is Gaussian
nature, like the primordial density fluctuations field in th
current favored inflationary cosmology, the connected par
the n-point functions disappears forn.2. The nonzero
~even-n!-point correlation functions can be expressed w
the 2-point correlation function. As a result, a Gaussian d
tribution is completely described by the two-point correlati
function, or power spectrum, and any non-Gaussian field
be detectable by measuring the connected part of itsn-point
correlation function.
1-3
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If we consider a general statistically homogeneous
isotropic 2-dimensional fieldpW with zero mean, its powe
spectrumP, bispectrumB and trispectrumT are defined by
the following equations in the appropriate Fourier conve
tion:

^pW ~kW1!pW ~kW2!&5~2p!2P~k1!dD
2 ~kW11kW2!

^pW ~kW1!pW ~kW2!pW ~kW3!&c5~2p!2B~k1 ,k2 ,k3!dD
2

3~kW11kW21kW3! ~13!

^pW ~kW1!pW ~kW2!pW ~kW3!pW ~kW4!&c5~2p!2T~k1 ,k2 ,k3 ,k4!dD
2

3~kW11kW21kW31kW4!

where the subscriptc stands for connected. The OV effe
being a secondary effect will introduce non-Gaussianities
the original primordial Gaussian distributed temperat
fluctuations. As a consequence, contributions to its bisp
trum and trispectrum are expected.

D. Dominant contributions among the statistics
of the OV effect

Combining the homogeneous theory of turbulence w
the Limber approximation enables one to infer the domin
contribution amongn-point statistics of an isotropic and ho
mogeneous vectorlike field effect whose statistical proper
vary slowly in time. In particular, we can apply this to th
OV effect. In short, the theory of homogeneous turbulen
shows how to build invariant spectral tensors of arbitra
order, corresponding to expectation values of arbitrary pr
ucts of statistically homogeneous vector fields. It is based
techniques proposed in the area of homogeneous turbul
in the 1940s by Robertson@60#. Relying on this theory, all
expectation values of an odd product of an isotro
3-dimensional vector fieldp(q) with q[(qx ,qy ,qz) must be
proportional to at least one of theq vectors, contrary to the
expectation values of even products.

Because of the Limber approximation, extended to hig
statistics in Appendix A, which states that the only contrib
tions to the projected correlation function on the sky co
from the Fourier modes perpendicular to the line of sight
the angular correlation function, all theqiz terms tend to be
suppressed. There will be different levels of suppression
pending on the order of theqiz dependence of our statistic

Combining these two results, we can conclude that e
correlation functions of the OV effect dominate over o
correlation functions making the trispectrum a much m
sensitive statistics than the bispectrum. Also, we expect
correlation functions to obey the homogeneous and isotr
theory fully and thus to be the result of contributions
different orders in theqiz terms. We have developed
method which permits to calculate the dominant contrib
tion, under the Limber approximation.

This is a characteristic of all effects physically describ
by an isotropic vector field and can thus be useful for ot
studies. As noted previously by Scannapieco@61#, the alter-
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nation of dominant/subdominant/dominant higher order c
relation functions provides a unique signal distinguishing
OV effect from other non-vector-like secondary anisotrop
and consequently can enable one to disentangle it from o
contributions at similar angular scales.

E. Signal-to-noise

A fundamental issue is to know how well we can separ
the OV signal, which is non-Gaussian, from the Gauss
signal, noise and foregrounds which are always present
measurement from an experiment. A way of quantifying t
detection is to calculate thex2 statistics~as in@55,62#!. To do
so, one needs to calculate the Fisher information matrixFi j
~for a good review see@63#!. If we think of the datax as a
random variable with a likelihood functionL(x;u) whereu
is a vector of model parameters, the Fisher information m
trix is defined as

Fi j [2 K ]2ln L~x;u!

]u i]u j
L . ~14!

By a very powerful theorem, called the Cramer-Rao inequ
ity, it was shown@64,65# that the variance of any unbiase
estimator of a certain parameter in a model cannot be
than (F21) i i . As the signal calculated is expected to
rather small, we are interested in estimating its overall
tectability as in@55,56,62#. Therefore, we assume that th
form of our modelu ~in our case the bispectrum and th
trispectrum! is correct and that the only interesting parame
is its amplitudeA, where the true value ofA51. Then the
Cramer-Rao inequality tells us that the variance of the m
surement ofA is no less thans2(A)5(F21)AA and we de-
fine thex2 statistics as

x2[S S

ND 2

5
1

s2~A!
5~F !AA . ~15!

The calculation of the Fisher matrix (F)AA of the statistics of
the OV effect involves the calculation of the contribution
the noise to the power spectrumC,

noise, as it will be shown.
The noise depends on the experiment characteristics.

We consider a hypothetical experiment which maps
fraction of the skyf sky with a Gaussian beam with full width
at half maximumu f whm and pixel noisesp5s/Atpix, where
s is the detector sensitivity andtpix is the time spent observ
ing each pixel. We use the inverse weight per solid ang
w21[(spu f whm/T0)2, in order to have a measure which

TABLE I. Experimental parameters for~W!MAP and Planck.

MAP Planck

n (GHz) 41 61 95 100 143 217
u f whm ~arcm! 31.8 21.0 13.8 10.7 8.0 5.5
sp (mK! 19.8 30.0 45.6 4.6 5.4 11.7

f sky 0.80 0.80
1-4
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independent of the pixel size@66,67#. T052.73 K is the
CMB thermodynamic temperature. If only a fractionf sky of
the sky is mapped, treating the pixel noise as Gaussian
ignoring any correlations between pixels, a good estimat
the C,

noise @56,66,67# is

C,
noise5 f skyw

21esb
2,(,11) ~16!

wheresb , in radians, is the width of the beam if we assum
it has a Gaussian profile. It is related tou f whm, in arc-
minutes, bysb5A8 ln 2 u f whm3p/10800. Note that if an
experiment maps the full sky and then a fraction 12 f sky is
subtracted, one should not multiplyw21 by f sky ~case of
s

12300
nd
of

MAP and Planck!. Hence we can estimateC,
noise for any

experiment with characteristicf sky, u f whm, s and tpix .
For the precise cases of MAP~renamed WMAP recently!

and Planck, for which we used the specifications in Tabl
we need to take into account their multifrequency covera
with different characteristics. TheC,

noise is then defined as
@56#

1

C,
noise

5 (
n

1

C,
noise~n!

~17!

where the sum runs over all channels of the experiment
n is the frequency of the channel.
long to
a
ss

ltiply
ction
F. Power spectrum of the OV effect

1. Linear power spectrum

In Fourier space, the flat-sky power spectrum of the OV effect is related@Eq. ~13!# to the following two-point expectation
value of the OV temperature field perturbationDT/T̄:

K DT̃

T̄
~KW 1!

DT̃

T̄
~KW 2!L 5

1

2 E0

h0
dh1g~h1!E

0

h0
dh2g~h2!E d2u1E d2u2

3E d3q1

~2p!3 E d3q2

~2p!3
û1i û2 j @^ p̃i~q1,h1! p̃ j~q2,h2!&1^ p̃i~q2,h2! p̃ j~q1,h1!&#

3ei (KW 1•uW 12h1q1• û1)ei (KW 2•uW 22h2q2• û2) ~18!

wherep̃ is defined as in Eq.~12!. Many authors have derived the expression for this statistics@11–13,53,61#. We use the JK
formalism but a different technique which will be useful in what follows.

As we see, this expression involves a double integration in time, angle and wave number, being numerically
evaluate. It is useful to note that as the statistical properties of the fieldp vary slowly in time and as the OV effect is
small-angle effect we can employ the Limber approximation@see Eq.~A1!# to considerably simplify our derivations. We stre
here that we are allowed to use this approximation as the OV effect takes place at sufficiently highl, where the difference
between the approximation and the integral is very small.

As the two permutationŝp̃i p̃ j& are symmetric due to statistical homogeneity, we only consider the first one and mu
the result by 2. Using Eq.~12! for p̃ and the Wick theorem for the Gaussian 3-dimensional density field correlation fun
which states

^d~k1!d~q12k1!d~k2!d~q22k2!&5~2p!6P~k1!P~ uq12k1u!@dD
3 ~k11q22k2!dD

3 ~q11k22k1!

1dD
3 ~k11k2!dD

3 ~q12k11q22k2!# ~19!
whereP(k) is the power spectrum of density perturbation
we obtain two nonzero terms for^ p̃i p̃ j& which can be written
as

^ p̃i~q1,h1! p̃ j~q2,h2!&522G~h1!G~h2!Fi j ~q1!dD
3

3~q11q2! ~20!

with the time dependence functions gathered inG(h)
,5(iaDḊ/2D0
2) and the general tensorial functionsFab given

by

Fab~qi !5 E d3K8P~a!P~b!S aa

a2
1

ba

b2D S ab

a2
1

bb

b2D
~21!

wherea5K 8 andb5qi2K 8. We could now replace the two
1-5
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previous expressions directly in Eq.~18! but, for clarity pur-
poses as it will become obvious soon, we refrain from do
so and instead we keep working withFab .

Indeed, in the small-sky approximation, for which the u
vectorû.(0,0,1), we can contract theû ’s of expression~18!
with the vectorsa andb of the last expression~21! such that
we are left with the line of sight components ofa andb. We
can thus define a new scalar functionF such that

F~qi !5 û1aû2bFab. E d3K8P~a!P~b!S az

a2
1

bz

b2D 2

5 E d3K8P~a!P~b!S az
2

a4
1

2azbz

a2b2
1

bz
2

b4D . ~22!

The interesting step that follows is to expand this function
az5Kz8 andbz5qiz2Kz8

F~qi !5 E d3K8P~a!P~b!FKz8
2S 1

a4
1

1

b4
2

2

a2b2D
1Kz8S 2qiz

a2b2
2

2qiz

b4 D 1S qiz
2

b4 D G . ~23!

Expressions of this type will occur in the following and the
illustrate the previous discussion in Sec. II D. By looking
the integral, we see that theKz8 integration for odd products
of Kz8 is zero as the dependence onKz8 of the terms witha
andb is even. Therefore we are left with nonzero contrib
tions from the first term~with Kz8

2) and from the last term
~with Kz8

0). By applying the Limber approximation we ca
also infer that the dominant contribution has to come fr
theKz8

2 term as it has no explicit dependence onqiz . As we
know, in the Limber approximation, Fourier modes perpe
dicular to the line of sight~terms onqiz) tend to be sup-
pressed. We are then left with 2 terms which we will lab
dominant and subdominant terms depending on the orde
their cancellation. We are interested in the dominant o
This cancellation was forecasted in Sec. II D in view of t
homogeneous turbulence theory. Indeed, the power spec
of the OV effect is expected to have contributions only fro
terms with no dependence onqiz and with a qizqjz type
dependence.

After some straightforward algebra, in the Limber a
proximation framework, we find for the dominant contrib
tion,

F~qi !5 E d3K8P~a!P~b!FKz8
2S 1

a4
1

1

b4
2

2

a2b2D G
522pqi E

0

`

dy1 E
21

1

dmP~qiy1!P~qiy2!

3
~12m2!~122my1!2

y2
4

~24!
12300
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where we have performed a spherical coordinate transf
such that m5q̂i •K̂8, a5y1qi and b5y2qi with y2

5A11y1
222y1m. To obtain the components ofKz8 in the

chosen coordinate system, we used the Limber approxi
tion to assumeqiz.0, such thatKz85A12m2. This assump-
tion preserves our dominant term but suppresses any
dominant term that could naturally arise when calculating
integral. As a consequence, in Eq.~23!, the dominant term
~in qiz

0 ) may contain hidden contributions to the subdomina
term ~in qiz

2 ). That this indeed is the case can be understo
by a very simple reasoning. Consider Eq.~22!. It is easy to
show that the terms inaz

2 andbz
2 give identical contributions

to the integral, such that if we calculate twice the integral
az

2 we should obtain the same result at the end, i.e., vari
terms depending on different orders inqiz . By doing this,
our term in qiz

2 present in Eq.~23! simply disappears. We
might then expect it to show up in the integral calculatio
But, most interestingly, when performing the calculations
previously using the Limber approximation, we obtain t
same result, i.e., Eq.~24!. As a consequence, by imposin
qiz.0 in this example, we are in fact suppressing a s
dominant term we know should be present. In conclusi
there are more terms contributing to the subdominant po
spectrum than the one present in Eq.~23! and these are no
so easily calculated. Hence we neglect all the subdomin
terms in the Limber approximation. In the following, for th
bispectrum and the trispectrum calculations, similar pro
lems are present but they will not affect the lowest ord
terms inqiz and even order inKz8 , which are the dominan
terms of interest to us.

We can finally combine Eq.~18!, ~20! and~24!. Applying
Kaiser’s method and the Limber approximation as descri
in the Appendix, we obtain the well-known expression f
the dominant contribution to the linear OV power spectru

Pdom
OV ~K !5

1

8p2 E0

h0 g2~h!

h2
@a~h!#2S ḊD

D0
D 2

S~K/h!dh

~25!

where

S~k!5k E
0

`

dy1 E
21

1

dmP~ky1!

3P~kA11y1
222y1m!

~12m2!~122my1!2

~11y1
222my1!2

.

~26!

The Limber approximation reduced the dimension of the
tegral from 6 to 3 and helped to find an easier numerical
analytical expression. We note here that we obtain a dif
ence of a factor 1/2 compared to JK, a discrepancy poin
out by them when comparing to previous work.

For illustration we show plots of the linear dominant co
tribution of the OV power spectrum in Fig. 1 for the fiduci
1-6
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LCDM model assumingzr58 andzr517. The correspon-
dence between full-sky multipole momentsC, and the flat-
sky Fourier spaceP(K) is straightforwardC,5P(K5,).
As expected, thezr517 scenario~keepingxe51) increases
the amplitude of the power spectrum, due to the rise of
optical depth, and shifts its peak towards smaller angu
scales. Numerically, we find for the amplitude of the pow
spectrum the approximate scaling dependenceC,. 500.7.5
310218 xe

2 log0.4(11zr). We advise the reader to consu
@53# for the impact of changing the cosmological paramet
~or the reionization history! on the power and peak of th
effect as well as for the important detectability issues. T
cosmological dependence applies as well for the higher-o
statistics.

2. Nonlinear extension: the KSZ effect power spectrum

This extension was calculated previously@68# and we
present it for the dominant power spectrum for the sake
consistency. The kinetic Sunyaev-Zel’dovich effect resu
from a Doppler effect suffered by the CMB photons as th
travel through large scale structures emerged in a bulk fl
As pointed out by Hu@68# among others@40,54#, in adiabatic
CDM cosmologies, nonlinearities only affect the dens
field below the coherence scale of the bulk velocities and
the nonlinear density field is uncorrelated with the larg
scale velocity field, which remains linear. Hence, the m
nonlinear extension of the density contribution in the O
effect expressions naturally becomes the KSZ effect fr
large scale structures.

As the result of this, we can use the previous calculati
of the OV effect power spectrum to obtain a similar expr
sion for the KSZ by introducing a nonlinear correction in t

FIG. 1. The linear~label L! and nonlinear~label NL! OV power
spectrum for the fiducialLCDM model. Thedot dashlines corre-
spond tozr58 and thesolid lines to zr517. In both cases we
assumeDzr50.1(11zr).
12300
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density field contribution. Following Hu’s@68# approach, we
replace the linear density power spectrum with its nonlin
analogue but leave the contribution from the velocity pow
spectrum the same

Pdom
NL ~K !5

1

8p2 E0

h0 g2~h!

h2
@a~h!#2S ḊD

D0
D 2

3
PNL~K/h!

P~K/h!
S~K/h!dh ~27!

where PNL stands for the nonlinear CDM power spectru
and where the mode coupling integralS was calculated pre-
viously @Eq. ~26!# under linear theory. This expression in
cludes both the OV and the KSZ effects.

To calculate the nonlinear power spectrum, we assu
that the baryonic gas traces the dark matter@68#. We follow
Hamilton et al. @69# who presented a scaling relation for th
correlation function in the nonlinear regime that was gen
alized to its Fourier analogue by Peacock and Dodds@70#.
The basic hypothesis is that nonlinear fluctuations on a s
k arise from linear fluctuations on a larger scale

klin5@11Ddc

2 ~k!#21/3k ~28!

so that there is a function relating the nonlinear and lin
power spectra at these two scales

Ddc

2 ~k!5 f NL@Ddc

2(lin)~klin!# ~29!

which can be fit to simulations. We use the@71# proposed
expression forf NL . For stronger nonlinearities other corre
tions are necessary. See for example@72#. One also needs the
relationDd

2(k)5k3/(2p2)P(k).
As discussed in@68#, this estimate should be seen as

upper limit of the KSZ because on very small scales the
pressure, unaccounted for, smooths the gas density as
pared to the dark matter density. The assumption that
baryonic gas traces the dark matter was shown to break d
at multipoles,>104 @68,73#. We show a plot of the powe
spectrum corrected for mild nonlinearities in Fig. 1 for illu
tration of the nonlinear enhancement of the power spect
at small scales forzr58 andzr517.

III. THE BISPECTRUM OF THE OV EFFECT

A. Linear bispectrum

In analogy with the power spectrum, the flat-sky bispe
trum of the OV effect is connected by Eq.~13! to the follow-
ing expectation value:
1-7
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K DT̃

T̄
~KW 1!

DT̃

T̄
~KW 2!

DT̃

T̄
~KW 3!L 5

21

6 E
0

h0
dh1g~h1! E

0

h0
dh2g~h2! E

0

h0
dh3g~h3! E d2u1 E d2u2 E d2u3

3 E d3q1

~2p!3 E d3q2

~2p!3 E d3q3

~2p!3
û1i û2 j û3l@^ p̃i~q1,h1!p̃ j~q2,h2! p̃l~q3,h3!&1perm.#

3ei (KW 1.uW 12h1q1 .û1)ei (KW 2.uW 22h2q2 .û2)ei (KW 3.uW 32h3q3 .û3) ~30!

where the five permutations are with respect to the ordering (q1 ,q2 ,q3). Proceeding in a similar way as we did for th
derivation of the power spectrum, this numerically heavy expression to integrate can be considerably simplified by
generalization of the Limber equation to higher-order statistics~see the Appendix!.

We start by calculating a simplified expression for the first permutation^ p̃i p̃ j p̃l&. At the end we generalize the results
include the total six permutations. Using expression~12! for p̃ and the Wick theorem for the Gaussian 3-dimensional den
field 6-point correlation function̂ d(k1)d(q12k1)d(k2)d(q22k2)d(k3)d(q32k3)& we obtain C2

6
•C2

4/3!515 terms for

^ p̃i p̃ j p̃l& of which 8 are nonzero. After some simple calculations, these 8 terms can be condensed into

^ p̃i~q1 ,h1! p̃ j~q2 ,h2! p̃l~q3 ,h3!&54G~h1!G~h2!G~h3!@Fi jl ~q1 ,q2!1Fi jl ~q1 ,q3!#dD
3 ~q11q21q3! ~31!

with the time dependence functionG(h)5( iaDḊ/2D0
2) and the general tensorial functionsFabg given by

Fabg~qi ,qj !5 E d3K8P~a!P~b!P~c!S aa

a2
2

ba

b2D
3S cb

c2
2

bb

b2D S ag

a2
2

cg

c2D ~32!

wherea5K 8, b5K 82qi andc5K 81qj . We concentrate onF and combine all the terms in Eq.~31! when appropriate.
Again using the small-angle approximation for whichû.(0,0,1), we can contract theû ’s with the vectorsa, b andc such

that we are left with the line of sight components ofa, b andc. We can thus define a new scalar functionF such that

F~qi ,qj !5 û1aû2bû3gFabg

. E d3K8P~a!P~b!P~c!S az

a2
2

bz

b2D S cz

c2
2

bz

b2D S az

a2
2

cz

c2D . ~33!

Expanding this expression in different orders inKz8 will give us the different levels of contributions under the Limb
approximation to the bispectrum

F~qi ,qj !5 E d3K8P~a!P~b!P~c!H Kz8
3S 1

a2b4
2

1

a4b2
2

1

a2c4
1

1

b2c4
1

1

a4c2
2

1

b4c2D
1Kz8

2FqizS 2
2

a2b4
1

1

a4b2
2

1

b2c4
1

2

b4c2D 1qjzS 2
2

a2c4
1

2

b2c4
1

1

a4c2
2

1

b4c2D G1Kz8Fqiz
2 S 1

a2b4
2

1

b4c2D
1qjz

2 S 1

b2c4
2

1

a2c4D 1qizqjzS 2

b4c2
2

2

c4b2D G1Fqiz
2 qjzS 2

1

b4c2D 1qjz
2 qizS 2

1

b2c4D G J . ~34!
o

d

sult
cts
nly
Again, and as detailed before in Sec. II F, the integral inKz8
for odd products ofKz8 is zero, and we are left with nonzer
contributions from the second term~with Kz8

2) and the last
term ~with Kz8

0). The dominant contribution will come from
the Kz8

2 though it has a dependence onqz which, by the
Limber approximation, tends to be suppressed compare
12300
to

terms which do not have such a dependence. This re
again confirms the discussion in Sec. II D, which predi
that the bispectrum of the OV effect has contributions o
from terms with a dependence onqiz or on products of 3qz .

We are interested on the dominantKz8
2 term which can be

written as
1-8
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F~qi ,qj !5qizf 1~qi ,qj !1qjzf 2~qi ,qj ! ~35!

where

f 1~qi ,qj !5 E d3K8P~a!P~b!P~c!Kz8
2

3S 2
2

a2b4
1

1

a4b2
2

1

b2c4
1

2

b4c2D ~36!

and

f 2~qi ,qj !5 E d3K8P~a!P~b!P~c!Kz8
2

3S 2
2

a2c4
1

2

b2c4
1

1

a4c2
2

1

b4c2D . ~37!

If we were to replace directly these last three expressi
in Eq. ~30! and then apply the Limber approximation w
would have a direct cancellation. We wish to obtain a no
null expression which enhances the dominant characte
compared to the other subdominant terms, of this seco
order contribution. To do so, we use again the small-an
approximation and considerû i.(0,0,1) to write

F~qi ,qj !5 û i•qi f 1~qi ,qj !1 û j•qj f 2~qi ,qj !. ~38!

Now we replace this particular equation in Eq.~31!and then
in Eq. ~30! and finally integrate once by parts the time d
o

an

12300
s

-
as
d-
le

-

pendence. This is the step that allows us to keep this te
which was expected to be suppressed under the Limber
proximation. Then we follow Kaiser’s method and apply t
Limber approximation, and using Eq.~13! we obtain the ex-
pression for one of the six possible permutation terms of
bispectrum

Bdom
OV ~K1 ,K2 ,K3!

5
i

16p3 E0

h0
dh

h2

h4

]h

]h
@ f ~qW 1 ,qW 2!1 f ~qW 1 ,qW 3!# ~39!

where

h~h!5S g
aDḊ

D0
2 D

and

f ~qW i ,qW j !5 f 1~qW i ,qW j !1 f 2~qW i ,qW j !.

In order to simplify the functionsf 1 and f 2, we need to
find an explicit relation betweena, b, c andqi , qj andK 8.
To do so, we express bothK 8 and a, b, c in the basis
(êz ,q̂i ,q̂ j ) where we remind the reader thatq̂a.(q̂a',0)
under the Limber approximation. Again, as for the pow
spectrum~see discussion in Sec. II F!, this suppresses an
subdominant contribution that could arise in the process
leaves our dominant contribution intact. We obtain
f ~qi ,qj !5 f ~ uqi u,uqj u,q̂i•q̂ j !

5 E dKz8 E du E dvA12m2P~a!P~b!P~c!Kz8
2S 1

a4b2
1

1

a4c2
2

2

a2b4
2

2

a2c4
1

1

b2c4
1

1

b4c2D ~40!
l
in-
on-

-
er

s of

um
e
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ar/
s,
where

a5~Kz8
21u21v212uvm!1/2,

b5@Kz8
21~u2qi !

21v212~u2qi !vm#1/2,

c5@Kz8
21~v1qj !

21u212~v1qj !um#1/2

andm5q̂i .q̂ j . As this expression corresponds to only one
the permutation terms of expression~30!, we need to include
the other 5 to obtain the final expression for the domin
flat-sky bispectrum

Bdom
OV ~K1 ,K2 ,K3!5

i

8p3 E0

h0
dh

h2

h4

]h

]h

3 (
i , j 51;iÞ j

n53

f S KW i

h
,
KW j

h
D ~41!
f

t

where f is given by Eq.~40!. We thus reduced our initia
expression with twelve integrations to a four-dimensional
tegral, which can be numerically calculated for a chosen c
figuration of the wave numbersK.

Note that we obtain the first order time derivative ofh. It
involves one single derivation, which indicates theqiz can-
cellation. Ash is smooth and slowly varying, the contribu
tion from this term should be very small. Hence, the Limb
cancellation at small scales reveals itself in the derivative
the time dependent functions.

B. Nonlinear extension: The KSZ effect bispectrum

We follow the same approach as for the power spectr
in Sec. II F and apply it to the dominant contribution. As w
have three CDM power specta showing up in the express
for the bispectrum, which we need to divide among line
nonlinear contributions from density/velocity contribution
we will assume the following bispectrum effect:
1-9
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Bdom
0V2NL~K1 ,K2 ,K3!

5
i

8p3 E0

h0
dh

h2

h4

]h

]h (
i , j ,k51;iÞ j

n53 S PNL~Kk /h!

P~Kk /h! D 3/2

3 f S KW i

h
,
KW j

h
D . ~42!

C. The signal-to-noise

To define thex2 statistics of Eq.~15!, we need to calcu-
late the likelihoodL of observing the bispectrum elemen
Bb[B,1,2,3

given the true parametersp, and calculate the
Fisher matrix as defined in Eq.~14!

Fi j [2 K ]2ln L~B;p!

]pi]pj
L . ~43!

Assuming that the likelihood is Gaussian, we follow the C
oray and Hu@56# approach to calculate thex2 statistics

x2[S S

ND 2

5 f sky (
,3 >,2>,1

B,1,2,3

2

s,1,2,3

2
, ~44!

whereB,1,2,3
is the angular averaged bispectrum defined

the sphere,f sky represents the reduction in signal-to-noi
due to incomplete sky coverage ands,1,2,3

2 comes from the

covariance matrix of the angular averaged bispectrum
suming a nearly Gaussian bispectrum and full-sky cover
@55,75#

s,1,2,3

2 5C,1

totC,2

totC,3

tot@11dD
3 ~ø11ø2!1dD

3 ~ø21ø3!

1dD
3 ~ø31ø1!12dD

3 ~ø11ø2!dD
3 ~ø11ø3!# ~45!

whereC,
tot stands for the sum of the power spectra of t

primary cosmic signal, the thermal SZ~thSZ! effect which
contributes significantly at the scales of interest, the lin
OV effect, the detector noise and the foregrounds resp
tively

C,
tot5C,1C,

thSZ1C,
OV2L1C,

noise1C,
foregrounds. ~46!

The thermal SZ effect was taken from@74# and was calcu-
lated semianalytically at 30 GHz for a normalization fac
s850.9. Weinclude the linear OV effect contribution~see
Sec. II F! although its amplitude is small as compared w
the primary and the thermal SZ signals at the scales con
ered in this work. The primary cosmic signal was compu
with CMBFAST @76# and we will not consider any foreground
Indeed, for the case of MAP and Planck, studies indicate
the totalC, should increase by 10% maximum@77#. How-
ever, caution is required as this result assumes that f
grounds have a Gaussian distribution. The foregrounds c
tribution to the higher-order statistics could in fact be o
main obstacle in measuring non-Gaussian effects and
12300
-
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little is known about them. For the noise power spectrum
use Eqs.~16!–~17! applied to MAP and Planck.

We will study the contributions to thex2 per log interval
in ,. It gives us more sensibility on the angular scales
stronger detectability, depending of the effects conside
This also enables us to directly compare our results w
Cooray and Hu@56#. We calculate the totalS/N for each
experiment by integrating over the multipole,.

A useful relation between the flat-sky bispectrum and
spherical harmonic angular averaged bispectrum@5# is

B,1,2,3
5A~2,111!~2,211!~2,311!

4p S ,1 ,2 ,3

0 0 0 D
3B~K15,1 ,K25,2 ,K35,3!. ~47!

Since the Wigner-3j vanishes if,11,21,35odd, the full-
sky bispectrum can only be estimated for even terms.

D. Results

We are concerned with the overall detectability of t
dominant term, previously calculated. Hence we choose
simplest of the possible configurations, highly localized
Fourier space,K15K25K35 l , for which the flat-sky domi-
nant bispectrum becomes

Bdom
OV ~K5, !5

3i

4p3 E0

h0
dh

h2

h4

]h

]h
f S ,

h D ~48!

wheref is defined by Eq.~40!. The nonlinear analog follows
from the previous equation.

With this configuration, depending only on the multipo
,, there is a simple way of calculating an estimate of t
order of magnitude of the (S/N)2 were we to include all the
,1 , ,2 and,3 modes@5# of the full-sky bispectrum. Indeed
in Eq. ~44!, we see that the number of modes contributing
the (S/N)2 increases as,3 and in Eq. ~47! ,3(0 0 0

, , ,)2 in-
creases as 0.36, so

dx2

d,
; f sky,

3
B,

2

s,
2
; f sky,

3,3S , , ,

0 0 0D
2B2~, !

s,
2

;0.36f sky,
4
B2~K5, !

s,
2

. ~49!

The s,
2 is calculated using Eq.~45! for all the , ’s equal and

B(,) using Eq.~48!.
We show the plots for the linear and the nonlinear flat-s

OV bispectrum in Fig.~2! for zr58 andzr517 in the con-
text of our fiducial cosmological model. Forzr58 the peak
of the effect occurs around multipolel .500 with an ampli-
tude of ,3B(,)/(2p).1.2310223 whereas forzr517 the
peak takes place at a higher multipole of,.700 with a
stronger amplitude of,3B(,)/(2p).3310223, as ex-
pected. We find numerically for the amplitude of the bispe
1-10
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FIG. 2. Left panel—Linear ~label L! flat-sky bispectrum of the OV effect and its nonlinear extension~label NL!. Right panel—
Contribution tox2 per log interval in, for the OV full-sky linear bispectrum with no instrumental noise~top!, Planck noise~middle! and
MAP noise~bottom! included in the variance. We used the specifications in Table I. All the plots were calculated for the fiducialLCDM
model. Thedot dashlines correspond tozr58 and thesolid lines to zr517. We assumedDzr50.1(11zr). The totalS/N for the OV
full-sky linear bispectrum for MAP, Planck and a perfect experiment respectively are: 3.631024, 1.531022 and 731022 assumingzr

58, and 8.231024, 831022 and 0.6 assumingzr517.
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the
trum the approximate scaling dependence with reioniza
history B(,. 50).1.7310229 xe

3 log(11zr). The depen-
dence withzr is neither in agreement with the one obtain
for the power spectrum~see Sec. II F! nor with the one ob-
tained for the trispectrum~see Sec. IV!. This can be ex-
plained by looking at the bispectrum equation~48! where we
have the first order time derivative ofh, contrary to the cor-
responding expressions for the power spectrum@Eq. ~25!#
and the trispectrum@Eq. ~65!#. This derivative ofh intro-
duces a stronger scaling relation withzr for the amplitude of
the bispectrum as compared to the one for the other
statistics. For both reionization scenarios, the most inter
ing feature is the rapid drop of power after the peak which
not observed for the power spectrum~see Fig. 1!, which is a
direct consequence of the Limber cancellation at small an
lar scales. The fact that the bispectrum is not considera
enhanced by nonlinearities, which take place at small ang
scales, is also the result of the effect peaking at intermed
multipoles. The second, but expected, result is the low o
all amplitude of the effect. Thezr58 case~which we can
easily compare with previous results in the literature! is
lower by more than 10 orders of magnitude than the lens
couplings presented by Cooray and Hu@56#, and by a few
orders of magnitude than most of the OV couplings invo
ing the SZ effect, though it should be comparable to the
couplings involving the Doppler or ISW-SW effects. Desp
the fact that such OV couplings suffer the Limber cance
tion as well~they correspond to expectation values of an o
product of a vector field!, this cancellation can be counte
12300
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balanced by the coupling to higher amplitude effects, like
SZ effect, and by the matching in redshift between the d
sity and velocity fields of the OV effect and the secondar
to which is couples. This is the case of the hybrid coupli
ISW-SZ-OV presented by@56#, that has the largest signal o
all secondaries that couple with OV.

A more revealing quantity than the power of the effect
the signal-to-noise ratio. We plot in Fig. 2, the estimat
contributions tox2 per log interval in, of the linear full-sky
bispectrum had we included all the modes for MAP, Plan
@1# and no instrumental noise. We show the results forzr

58 and zr517. The experimental specifications can
found in Table I. We found no necessity of plotting the co
respondingdx2/d, for the nonlinear bispectra due to it
similarity to the linear bispectra. The structure in thedx2/d,
arises mainly from the structure of the CMB primary pow
spectrum at,.200. We point out that the continuous rise
,.3000 for a perfect experiment is due to the fact that
signal decreases slower than the contributions to theC, from
primary, linear OV and thermal SZ anisotropies up to the
scales. Though it is not explicit in the figure, thedx2/d, is
zero when 3, is odd. As we can see, considering thermal
contributions to the noise evaluated at 30 GHz, the signal
noise of the OV bispectrum is very small, even for a perf
experiment, for which the totalS/N;731022 for zr58 and
S/N;0.6 for zr517. These values can be compared to
value S/N;1.7 obtained by Cooray and Hu@56# for the
bispectrum generated by the coupling ISW-SZNL-OV.
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Hence, even for early reionization, no detection is to be
pected from future experiments unable to remove the ther
SZ effect. For the ideal case of a perfect multi-frequen
experiment observing in the millimeter and sub-millime
capable of subtracting all of the thermal SZ effect, the to
signal-to-noise increases toS/N;5.3 for zr517, indicating
a possible very marginal detection. But our results for
S/N rely on various convenient assumptions required to c
siderably simplify the analytical expression for the estim
of the S/N ~see Secs. II E and Sec. III C!. This means that
e
th
th

ion
an

e
on
a
th

ra
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the values obtained for theS/N are most probably uppe
limits on the real values expected and should thus be con
ered accordingly.

IV. THE TRISPECTRUM OF THE OV EFFECT

A. Linear trispectrum

We follow the same procedure used for the power sp
trum and the bispectrum. The trispectrum contribution to
temperature fluctuations is connected by Eq.~13! to
K DT̃

T̄
~KW 1!

DT̃

T̄
~KW 2!

DT̃

T̄
~KW 3!

DT̃

T̄
~KW 4!L

5
1

24E0

h0
dh1g~h1! E

0

h0
dh2g~h2! E

0

h0
dh3g~h3!E

0

h0
dh4g~h4! E d2u1 E d2u2 E d2u3 E d2u4

3E d3q1

~2p!3 E d3q2

~2p!3 E d3q3

~2p!3 E d3q4

~2p!3
û1i û2 j û3l û4m@^ p̃i~q1,h1! p̃ j~q2,h2!p̃l~q3,h3! p̃m~q4,h4!&1perm.#

3ei (KW 1.uW 12h1q1 .û1)ei (KW 2.uW 22h2q2 .û2)ei (KW 3.uW 32h3q3 .û3)ei (KW 4.uW 42h4q4 .û4). ~50!
e

re-
con-
The 24 total permutations arise from symmetries under p
mutation invariance. Again we concentrate on the first of
permutations and then generalize at the end. We obtain
time for the first permutation term of the previous equat

^ p̃i p̃ j p̃l p̃m& by the Wick theorem applied to the Gaussi
3-dimensional density field 8-point correlation functionC2

8

•C2
6
•C2

4/4!5105 terms of which 12 nonzero terms for th
Gaussian contribution and 48 nonzero terms for the c
nected part interest us here. Performing some exhaustive
systematic calculations these 48 terms can be written in
following condensed form:

^ p̃i~q1,h1! p̃ j~q2,h2! p̃l~q3,h3! p̃m~q4,h4!&

54G~h1!G~h2!G~h3!G~h4!@Fiml j~q1 ,q2 ,q3 ,q4!

1Fi jlm~q1 ,q4 ,q2 ,q3!1Fli jm~q3 ,q4 ,q1 ,q2!

1Fl jmi~q3 ,q1 ,q2 ,q4!1F jmli~q2 ,q3 ,q1 ,q4!

1F jilm~q2 ,q4 ,q1 ,q3!#d3~q11q21q31q4!, ~51!

whereG is defined in the previous section and the gene
tensorial functionFabgd is defined as

Fabgd~qi ,qj ,ql ,qm!5 f abgd~qi ,qj ,ql !1 f agbd~qi ,qj ,qm!

~52!

where a generalf xyzw is given by
r-
e
is

-
nd
e

l

f xyzw~qi ,qj ,ql !5 E d3K8P~a!P~b!P~c!P~d!S ax

a2
1

bx

b2D
3S dy

d2
2

cy

c2D S bz

b2
1

dz

d2D S aw

a2
2

cw

c2 D ~53!

where a5K 8, b5K 82qi , c5K 81qj and d5K 81qj1ql .
Again we will work with a singlef and at the end generaliz
the result.

Applying the small-angle approximation again we can
move the tensorial dependence of our expression and
tract theu i with our vectors. We obtain the scalarf,

f ~qi ,qj ,ql !5 û1aû2bû3gû4d f abgd~qi ,qj ,ql !

. E d3K8P~a!P~b!P~c!P~d!S az

a2
1

bz

b2D
3S dz

d2
2

cz

c2D S bz

b2
1

dz

d2D S az

a2
2

cz

c2D ~54!

and the scalarF,

F~qi ,qj ,ql ,qm!5 f ~qi ,qj ,ql !1 f ~qi ,qj ,qm!. ~55!
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Expandingf in order ofKz8 and keeping the non-nulls terms~see previous section!, i.e. the terms which are even inKz8 , we are
left with

f ~qi ,qj ,ql !5 E d3KP~a!P~b!P~c!P~d!H Kz8
4S 1

a2
2

1

b2D S 1

c2
2

1

d2D S 1

d2
2

1

b2D S 1

c2
2

1

a2D
1Kz8

2Fqiz
2 S 1

b4c4
2

1

a2b4c2
1

1

a4d4
2

1

a2b2d4
2

1

a2c2d4
1

1

b2c2d4
2

1

a2b4d2
2

1

a4b2d2
2

1

b2c4d2
1

1

b4c2d2

1
2

a2b2c2d2D 1qjz
2 S 1

b4c4
1

1

a2b2c4
1

1

a2c4d2
1

1

b2c4d2D 1qlz
2 S 1

a4d4
1

1

a2b2d4
2

1

b2c2d4
2

1

b2c4d2D
1qizqjzS 2

4

b4c4
2

2

a2b2c4
1

2

a2b4c2
1

1

a4b2c2
2

2

a2c2c4
2

1

b2c2d4
1

2

a2c4d2
2

1

a4c2d2D
1qizqlzS 2

a4d4
2

2

a2c2d4
2

2

a2b4d2
2

1

a4b2d2
2

1

b2c4d2
1

2

b4c2d2
1

2

a2b2c2d2D
1qjzqlzS 2

2

a2c2d4
2

2

b2c2d4
1

2

a2c4d2
1

2

b2c4d2
2

1

a4c2d2
2

1

b4c2d2
2

2

a2b2c2d2D G
1Fqiz

3 qjzS 1

b2c2d2
2

1

b4c2d2D 1qiz
2 qiz

2 S 1

b4c2
2

1

b2c4d2D 1qiz
2 qjzqlzS 2

b2c2d4
2

1

b4c2d2D
1qizqjz

2 qlzS 2
1

b2c4d2D 1qizqjzqlz
2 S 1

b2c2d4D G J . ~56!
pl
th
s

p

d
le
on
th
at
We concentrate on the dominant term which can be sim
fied using the same method applied to the calculation of
dominant term of the power spectrum. It can be written a

f ~qi ,qj ,ql !5 E d3K8P~a!P~b!P~c!P~d!Kz8
4S 1

a2
2

1

b2D
3S 1

c2
2

1

d2D S 1

d2
2

1

b2D S 1

c2
2

1

a2D . ~57!

To find an explicit relation betweena, b, c, d andqi , qj , ql
and K 8 we express bothK 8 and a, b, c, d in the basis
(êz ,q̂i ,q̂ j ). We should say here that using the Limber a
proximation will allow only two of our initial vectors among
the set of four (q1 , q2 , q3 , q4) to be independent. Indee
all parallel components to the line of sight will be negligib
and the four vectors will be inside the same plane, the
perpendicular to the line of sight. This justifies the use of
basis chosen. We stress one time more that this elimin
12300
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e

-

e
e
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any subdominant term that could show up~see discussion in
Sec. II F!. So in that basis our functionf can be expressed in
the following simplified way:

f ~qi ,qj ,ql !5 f ~ uqi u,uqj u,uql u,q̂i .q̂ j ,q̂i .q̂l ,q̂ j .q̂l !

5 E dKz8 E du E dvA12a2

3P~a!P~b!P~c!P~d!Kz8
4S 1

a2
2

1

b2D
3S 1

c2
2

1

d2D S 1

d2
2

1

b2D S 1

c2
2

1

a2D ~58!

where

a5q̂i•q̂ j , b5q̂i•q̂l and g5q̂ j•q̂l .

Also
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a5~Kz8
21u21v212uva!1/2, b5@Kz8

21~u2qi !
21v212~u2qi !va#1/2,

c5@Kz8
21~v1qj !

21u212~v1qj !ua#1/2, d5@Kz8
21~v1qj1y!21~u1x!212~v1qj1y!~u1x!a#1/2

with

y5ql

g2ba

~12a2!
and x5ql

b2ga

~12a2!
.

Our f only depends on the norms of its arguments and on the angles between their directions. We can combi
expressions to simplify the expression~50!. Following Kaiser’s method and proceeding with the Limber approximation,
obtain the expression for one of the 24 possible permutation terms of the trispectrum

Tdom
OV ~K1 ,K2 ,K3 ,K4!5

1

32p3 E0

h0
dhS aDḊ

D0
2 D 4

g~h!4

h6
@F~KW 1 /h,KW 2 /h,KW 3 ,/hKW 4 /h!1F~KW 1 /h,KW 4 /h,KW 2 /h,KW 3 /h!

1F~KW 3 /h,KW 4 /h,KW 1 /h,KW 2 /h!1F~KW 3 /h,KW 1 /h,KW 2 /h,KW 4 /h!1F~KW 2 /h,KW 3 /h,KW 1 /h,KW 4 /h!

1F~KW 2 /h,KW 4 /h,KW 1 /h,KW 3 /h!# ~59!
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whereF is defined by Eq.~55! and thef by Eq.~58!. Finally,
by including all the permutation terms in Eq.~50! we obtain

Tdom
OV ~K1 ,K2 ,K3 ,K4!

5
3

8p3 E0

h0
dhS aDḊ

D0
2 D 4

g4~h!

h6

3 (
i , j ,l 51;iÞ j Þ l

n54

f S KW i

h
,
KW j

h
,
KW l

h
D ~60!

where f is given by Eq.~58!. The power of the Limber ap
proximation was to reduce an almost impossible integra
to a 4-dimensional integral, which can be numerically cal
lated for a chosen configuration of the wave numbersK.

B. Nonlinear extension: The KSZ effect trispectrum

We follow the same approach as for the power spectra
bispectrum and again we calculate the nonlinear exten
for the dominant contribution. As we have four CDM pow
spectrum showing up in the expression for the trispectru
which we need to divide among linear/nonlinear contrib
tions from density/velocity contributions, we will assume t
following trispectrum statistic:

Tdom
OV2NL~K1 ,K2 ,K3 ,K4!

5
3

8p3 E0

h0
dhS aDḊ

D0
2 D 4

g4~h!

h6

3 (
i , j ,l ,k51;iÞ j Þ l

n54 S PNL~Kk /h!

P~Kk /h! D 2

f S KW i

h
,
KW j

h
,
KW l

h
D . ~61!

C. Signal-to-noise

As pointed out by Zaldarriaga@78# and later by Hu@68#,
the maximal signal-to-noise can be proven to be
12300
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n

,
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x2[S S

ND 2

5 f sky(
L

(
,1 <,2<,3<,4

1

2L11

uT,1,2,3,4
~L !u2

C,1

totC,2

totC,3

totC,4

tot

~62!

whereT,1,2,3,4
(L) is one of the possible configurations o

the full-sky trispectrum as defined in what follows. The c
variance matrix used to obtain the Fisher matrix is calcula
assuming full-sky coverage and,1<,2,,3<,4 by Ko-
matsu @59# in the weakly non-Gaussian limit. If,1<,2
,,3<,4 is not respected, the covariance would be distr
uted across manyL ’s and can lead to overestimates of th
signal-to-noise@68#. By not respecting this last constraint i
Eq. ~62! we are calculating an upper limit of theS/N esti-
mate.

Concerning the equivalence between the full-sky and fl
sky formalisms, we follow Hu’s Appendix@4# where it is
argued that we can find a relation between the two form
isms by breaking up the trispectrum in the three poss
combinations in each configuration defined
(,1 ,,2 ,,3 ,,4)

T,1,2,3,4
5T(,1,2)(,3,4)~L12!1T(,1,3)(,2,4)~L13!

1T(,1,4)(,3,2)~L14! ~63!

where Li j correspond to the side of the triangle of sid
(, i , , j , Li j ). Each of theT(, i, j )(,k,m)(Li j ) is then related to
the flat-sky equivalent by
T(, i, j )(,k,m)~Li j !

5
2L11

4p
A~2, i11!~2, j11!~2, l11!~2,m11!

3S , i , j L i j

0 0 0 D S ,k ,m Li j

0 0 0 D
3T„~Ki5, i ,K j5, j !, ~Kk5,k ,Km5,m!~Li j !….

~64!
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FIG. 3. Left panel—linear andright panel—nonlinear flat-sky trispectrum of the OV effect for geometrical configurations such t
20.95<e<0.00 in steps of 0.05. The amplitude of the trispectrum decreases ase decreases from 0.00 to20.95. Because the power i
symmetric ine around 0.00 we only plotted the negativees. All the plots were calculated for the fiducialLCDM model. Thedot dashlines
correspond tozr58 and thesolid lines tozr517. We assumedDzr50.1(11zr).
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As for the bispectrum, the Wigner-3j vanishes if, i1, j
1Li j 5odd. So the full-sky trispectrum can only be es
mated for even terms.

D. Results

We are interested in the numerical evaluation of the do
nant contribution of the trispectrum as it may be of cosm
logical interest in the near future due to the next genera
of experiments. We choose the trapezoidal configuration
Fourier spaceK15K25K35K45 l with an angleu between
two consecutive sides. This will give rise to the followin
flat-sky trispectrum:

Tdom
OV ~,,u!5

3

2p3 E0

h0
dhS aDḊ

D0
2 D 4

g4~h!

h6

3F f S ,

h
,21,e,2e) D1 f S ,

h
,21,2e,e) D

1 f S ,

h
,e,21,2e) D1 f S ,

h
,2e,21,e) D

1 f S ,

h
,e,2e,21)D1 f S ,

h
,2e,e,21D G

~65!

wheree5 cos (u) and f is defined by Eq.~58!. The variousf
correspond to the different specific configurations due to
ordering of the vectorsKW s in the sum over the functionf in
Eq. ~60!. Note that the analytical expression ofTdom

OV is sym-
12300
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metric aroundu5p/2 reflecting the symmetry of the con
figuration. The nonlinear analog follows from the previo
equation.

With this configuration which depends only on the mul
pole , and the angleu between two sides one can calcula
an estimate of the order of magnitude of the (S/N)2(u) per
bin of , were we to include all the different,1 , ,2 , ,3 and
,4 modes of the full-sky trispectrum. Indeed in Eq.~62!, we
see that the number of modes contributing to the (S/N)2

increases as,4 so we will have the following relation forx2

in a bin of l:

dx2~u!

d,
;,4f sky (

i 51

n53 uT,~Li !u2

~2Li11!~C,
tot!4

~66!

whereT,(Li) is one of the 3 possible configurations of th
full-sky trispectrum for a given multipole, and angleu
which needs to be calculated from its flat-sky counterp
@Eq. ~65!# using Eq.~63! and ~64!. TheC,

tot is calculated as
for the bispectrum@see Eq.~46!#. Again, f sky represents the
reduction in signal-to-noise due to incomplete sky covera

We show the plots for the linear and the nonlinear O
flat-sky trispectrum for20.95,e,0.00, assuming bothzr
58 andzr517, in Fig. 3. As the trispectrum is symmetr
arounde50.00 we only plotted the negativee ’s, but this
choice was arbitrary. Forzr58 the linear trispectrum peak
around multipole,.23103 and has a maximum amplitud
of ,4T(,)/(2p).2.4310227, regardless of the configura
tion. Choosing an earlier reionization ofzr517 shifts the
peak to,.33103 and increases the overall amplitude of t
trispectrum tol 4T(,)/(2p).1.2310226. Numerically we
find for the amplitude of the trispectrum the approxima
1-15
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scaling dependence with reionization historyT(,. 170)
.2.6310231 xe

4 log0.8(11zr), in agreement with the rela
tion found for the power spectrum. The effect of increas
the value of angle between two consecutive sides of the t
ezoid is to increase the power at small scales (,.104), such
that only small scales are sensitive enough to probe diffe
configurations. At those small scales, the power is maxim
for e50.00 and then decreases as we decrease the angl
at small angular scales the square configuration is the
contributing the most. We could have expected this beha
as the OV effect has a quite symmetric morphological sig
ture, such that a morefilamentarystructure probed by the
collapsed configuration of the trispectrum is not as likely

Here we do not observe the sharp drop in power at sm
scales due to the Limber cancellation which enables on
speak of the trispectrum of the KSZ effect. Indeed, conce
ing the nonlinear trispectrum, we observe an interesting
ture. Contrary to the bispectrum and similarly to the pow
spectrum, the trispectrum is strongly affected by the we
nonlinear enhancement due to formation of structure at sm
scales. This enhancement has the power to broaden
shape, to shift the peak of the effect to smaller angular sc
and to increase slightly the amplitude in a configuration
pendent way. So~for zr58/zr517) we measure a higher an
higher maximum amplitude (.2.427.2310227/.1.924.8
310226) at a smaller and smaller angle (,.1243104)
when you go from the collapsed trapezoid to the square c
figuration. It is worth noticing that, whereas the amplitude
the nonlinear trispectra increases, the multipoles corresp
ing to the peak of the effect remain the same for both rei
ization scenarios. This is because the nonlinearities t
place at the same instant in time for both reionization s
narios, leaving an imprint at the same characteristic ang
scale.

But the most important quantity is the signal-to-noise. W
show in Fig. 4 the estimated contributions tox2 per log
interval in , for the linear and the nonlinear OV full-sk
trispectrum (zr58 and zr517) had we included all the
modes for e520.95 with no instrumental noise, Planc
noise and MAP noise included in the variance@1#. We chose
e520.95, i.e. the collapsed configuration, because it ge
ates the highest contributions to the full-sky trispectrum n
the peak of the effect, contrary to the flat-sky trispectrum
which the square configuration was the one producing
highest amplitude. The square configuration continues
provide the strongest contribution at very small angu
scales, but at larger angular scales the collapsed config
tion dominates. This is due to the angular averaged fac
relating flat- to full-sky trispectra@see Eq.~64!#. Though it is
not explicit in the figure, thedx2/d ln , is zero when 2,
1L is odd. Again, as for the bispectrum case, the structur
the dx2/d, arises mainly from the structure of the CM
primary power spectrum at,.200. The continuous rise a
,.3000 for a perfect experiment is due to the fact that
signal decreases slower than the contributions to theC, from
primary, OV and thermal SZ anisotropies up to these sca
Contrary to the common and most naive expectation,
Planck and considering thermal SZ contribution to the no
12300
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evaluated at 30 GHz, an eventual detection is possible
arcminute scales as can clearly be seen in the figure. Mo
the contributions come from multipoles between,5122
3103. This probably is the most important conclusion of th
work and illustrates our predictions. This result should
taken with caution as it corresponds to a very optimis
upper limit on theS/N ~see Secs. II E and Sec. IV C!. Firstly,
the use of the Fisher matrix formalism gives the minimu
variance for our statistic~see section Sec. II E!. Secondly, the
x2 method assumes that the form of the model is corre
which may not be the case. Thirdly, when calculating t
covariance matrix of the Fisher matrix, two simplifying a
sumptions were used: that the main contribution to the co
riance was Gaussian in nature and that we observed
full-sky coverage.

Finally, other physical mechanisms, such as for exam
lensing effects or the thermal SZ effect@4,58,78,79#, and
unaccounted foregrounds@77# can contribute to the trispec
trum at this level and so the separability problem needs to
addressed in due time. Of course, uncertainties of roughly
order of magnitude in the modeling of the thermal SZ sig
are also a source of error in our estimates. The foreca
ability of future multifrequency experiments to remove mo
of the thermal SZ contributions would minimize these unc
tainties and would much favor a detection. Last but not le
further progress in the implementation of optimal unbias
trispectrum estimators to probe such small scales and po
is required.

FIG. 4. Contribution to thex2 per log interval in, for e5
20.95 for the OV full-sky linear/nonlinear trispectrum with no in
strumental noise~top!, Planck noise~middle! and MAP noise~bot-
tom! included in the variance. Again we used the specifications
Table I. All the plots were calculated for the fiducialLCDM model.
The dot dashlines correspond tozr58 and thesolid lines to zr

517. We assumedDzr50.1(11zr). The higher amplitudes for
each of the experiments correspond to the contributions from
full-sky nonlinear trispectrum. The horizontal line atdx2/d ln( l )
51 shows the minimum detection threshold.
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V. CONCLUSIONS

Because of its strong predictive power, linear theory i
very sensitive probe of the early stages of the reioniza
history through the Ostriker-Vishniac effect. Analytical e
pressions for its correlation functions can be derived a
their measurement would be of high value to our pres
knowledge of that still unclear epoch of the universe evo
tion. We have presented detailed calculations of the th
Fourier statistics of interest of the OV effect, the power sp
trum, the bispectrum and the trispectrum. For that purp
we have developed a new technique that allows one to ob
their dominant contributions under the Limber approxim
tion framework. This method is applicable to the derivati
of any statistics involving correlations among vectorlike
fects. It illustrates what was expected under statistical ho
geneity and isotropy assumptions and the vector and s
scale nature of the OV effect. We also evaluated numerica
as a function of scale and for a specific configuration~equi-
lateral for the bispectrum and trapezoidal for the trisp
trum!, these statistics for a flatLCDM cosmology and two
reionization scenarios. The first one is based on our p
WMAP knowledge (zr58) and the second one takes in
account the high values for the electron optical depth m
sured by WMAP (zr517). We numerically obtained ap
proximate scaling relations for the amplitude of the OV s
tistics on the reionization history considered and found t
the dependence is stronger on the ionization fraction than
the redshift of reionization. We have also studied their
tectability in view of future satellite experiments. The alte
nation of dominant/subdominant/dominant higher order c
relation functions was numerically shown. While th
bispectrum is probably undetectable even by a perfect m
tifrequency experiment capable of subtracting the thermal
contributions, the trispectrum could be measured by Pla
or by interferometer experiments targeting arcminute sc
with high sensitivity and for a sufficiently long period o
time. This provides a unique signal distinguishing the O
effect from other non-vector-like secondary anisotropies
could be useful when trying to separate different physi
mechanisms imprinting themselves on these measurable
tistics. One should bear in mind that despite this useful ch
acteristic signature, our results are quite optimistic, altho
encouraging, as they rely on various analytically helpful id
alized assumptions, as described previously. Also, other c
tributions to the signal are to be expected at the arcmin
level and thus further study of CMB small-scale second
anisotropies and foregrounds contributions to the trispect
is required and much justified. In order to obtain an up
limit on the possible KSZ contributions, we also extend
our calculations to the mildly nonlinear regime. We fou
that, contrary to the bispectrum, there is a noticeable
hancement of the contributions of the trispectrum in a m
phologically dependent way and that this enhancement
flects itself on the calculations of the signal-to-noise. Hen
nonlinearities are expected to enhance the even n
Gaussian signals produced by the OV effect and further c
plicate its disentanglement from inevitable model-depend
nonlinear effects arising from structure formation. Co
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versely, having a template of the OV effect can help in e
tracting the nonlinear contributions to reionization at tho
angular scales, providing another possible window on
complex physics associated with reionization.
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APPENDIX: LIMBER APPROXIMATION

We review the fundamental steps of the Limber appro
mation as used in the text. The Limber equation@80# de-
scribes the two-point statistics of a field which is the tw
dimensional projection on the sky of a three-dimensio
field whose statistical properties vary slowly along the line
sight. The Fourier space analog of this result was calcula
by Kaiser@81#. Later it was further extended from the fla
sky approximation to an all-sky approach for spatially fl
cosmologies by Hu and White@52# and to open cosmologie
by Hu @68#. Buchalteret al. @82# derived the Fourier spac
analog of the Limber’s equation for the bispectrum. Here
review the bispectrum derivation of Buchalteret al.and gen-
eralize it to the trispectrum. This applies as well to high
order statistics. The error introduced by the Limber appro
mation is inferior to 1% for effects withl .200 @56,83#.

Suppose we observe the projection along the line of s
of a three-dimensional statistically homogeneous and iso
pic random fieldf

p~uW !5 E
0

`

dhq~h! f ~hû ! ~A1!

whereuW 5(u1 ,u2,0) andû5(u1 ,u2,1). We propose to find a
relation between the spatial bispectrumBp(K1 ,K2 ,K3) of p
and the spatial bispectrumBf(K1 ,K2 ,K3) of f. Following the
Kaiser method, we considerp to be the sum of the contribu
tions from narrow shells with a widthDh much bigger than
the relevant wavelength, that isu!Dh/h!1. This choice
allows us to look at fluctuations on scales much less than
characteristic scale over whichq varies and to assume tha
contributions from different shells are statistically indepe
dent. We then calculate the contributions to the bispectr
from each of the shells. At the end we can sum the power
all the shells relying on their statistical independence.

Assuming thatq varies very little along the shell and tha
the section of the shell is plane-symmetric the contribut
from the shell of widthDh centered ath0 is
1-17



P. G. CASTRO PHYSICAL REVIEW D 67, 123001 ~2003!
Dp~uW !5q~h0! E
h02Dh/2

h01Dh/2

dh f ~h0u1 ,h0u2 ,h!. ~A2!

Decomposing the fields in Fourier space, the spectrum ofDp
is

D p̃~KW !5q~h0! E d3k

~2p!3
f̃ ~k!

3E d2uei (h0kW2KW )•uW E
h02Dh/2

h01Dh/2

dheikzh ~A3!

where KW 5(Kx ,Ky,0) and k5(kx ,ky ,kz)5(kW ,kz). We can
he
e

a

t
er

du

12300
perform thed2u integral which is (2p)2/h0
2dD

2 (kW2KW /h0)
and the time integral which isDh j 0(kzDh/2) to yield

D p̃~KW !5
Dhq~h0!

h0
2 E dkz

~2p!
f̃ S Kx

h0
,
Ky

h0
,kzD j 0~kzDh/2!.

~A4!

Using

^ f̃ ~k1! f̃ ~k2! f̃ ~k3!&5~2p!3Bf~k1 ,k2 ,k3!dD
3 ~k11k21k3!

the three-point spectrum is
^D p̃~KW 1!D p̃~KW 2!D p̃~KW 3!&5
Dh3q3~h0!

h0
6 E dk1z E dk2z E dk3zBfSAK1

2

h0
2

1k1z
2 ,AK2

2

h0
2

1k2z
2 ,AK3

2

h0
2

1k3z
2 D

3 j 0~k1zDh/2! j 0~k2zDh/2! j 0~k3zDh/2!dD
2 ~KW 1 /h01KW 2 /h01KW 3 /h0!dD~k1z1k2z1k3z!

5
Dh3q3~h0!

h0
4 E dk1z E dk2zBfSAK1

2

h0
2

1k1z
2 ,AK2

2

h0
2

1k2z
2 ,AK3

2

h0
2

1~k1z1k2z!
2D

3 j 0~k1zDh/2! j 0~k2zDh/2! j 0@~2k1z2k2z!Dh/2#dD
2 ~KW 11KW 21KW 3!. ~A5!
tion
c-
The important simplification comes from the fact that t
major contribution from the first two Bessel functions com
from k1z,1/Dh andk2z,1/Dh. But by assumptionK1 /h0
@1/Dh, K2 /h0@1/Dh and K3 /h0@1/Dh. Therefore,k1z
!K1 /h0 , k2z!K2 /h0 and k1z1k2z!K3 /h0. So we can
neglect all Fourier modes parallel to the line of sight. To
very good approximation

BfSAK1
2

h0
2

1k1z
2 ,AK2

2

h0
2

1k2z
2 ,AK3

2

h0
2

1~k1z1k2z!
2D

.Bf S K1

h0
,
K2

h0
,
K3

h0
D .

The integration of the Bessel functions gives

E du E dv j 0~u! j 0~v ! j 0~u1v !5p2. ~A6!

We obtain finally
s
^D p̃~KW 1!D p̃~KW 2!D p̃~KW 3!&

54p2
Dhq3~h0!

h0
4

Bf S K1

h0
,
K2

h0
,
K3

h0
D dD

2 ~KW 11KW 21KW 3!.

~A7!

Summing over the shells, and using^ p̃(KW 1) p̃(KW 2) p̃(KW 3)&
5(2p)2Bp(K1 ,K2 ,K3)dD

2 (KW 11KW 21KW 3)

Bp~K1 ,K2 ,K3!5 E dh
q3~h!

h4
Bf S K1

h
,
K2

h
,
K3

h D .

~A8!

The exact same reasoning can be applied to the calcula
of the trispectrum. This time we obtain for the same proje
tion

Tp~K1 ,K2 ,K3 ,K4!5 E dh
q4~h!

h6
Tf S K1

h
,
K2

h
,
K3

h
,
K4

h D .

~A9!
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