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Bispectrum and the trispectrum of the Ostriker-Vishniac effect
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We present analytical expressions for the Fourier analogue of the cosmic microwave background three-point
and four-point correlation functions, the spatial bispectrum and trispectrum, of the Ostriker-Vishniac effect in
the linear and mildly nonlinear regime. Through this systematic study, we illustrate a technique to tackle the
calculation of such statistics making use of the effects of its small-angle and vectorlike properties through the
Limber approximation. Finally we discuss its configuration dependence and detectability in the context of
Gaussian theories for the currently favored Ad€DM cosmology.
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[. INTRODUCTION tangle in measurements from nonlinear contributions. Sev-

In recent years, with the prospect of the increase in theral derivations for its power spectrum have been carried out

sensitivity and angular resolution of the forthcoming cosmic[11—-13 but no one has fully addressed the calculation of its
microwave backgroundCMB) satellite and interferometry Pispectrum or trispectrum. _ ,

experimentd1-3,84, efforts have been driven to the theo- Itis ther_1 timely to obtain these expressions and_to quallfy

retical study of the secondary anisotropies contributions ti%n% quantify thzn}. V\{ﬁ therlefolref exte?(ilhang\fjletall previous

the temperature fluctuations on arcminute scales and beloy;¢N'duUes Usea for the caicu'ation of the LUV power Spec-
While the primordial anisotropies from recombination aretrum to the calculation of its higher-order statistics. As will

: . be shown, for the particular case of fields which are vector-
thought to be well understood, secondary anisotropies frorﬂke in nature. such as the OV effect even moments will
reionization are not. . 4

; _ . dominate over odd moments, making the trispectrum a much
As is well known, the currently favored inflationary .,..e sensitive statistics than the bispectrum.

model of structure formation predicts a nearly Gaussian  Gijyen the low redshifts of formation of structure, it is
probability distribution for the primordial density fluctua- interesting to consider whether nonlinear effects can further
tions. In this case, the CMB is completely described by itsenhance these statistics. So we will extend our study to the
two-point correlation function or power spectrum in Fourier weakly nonlinear regime, allowing us to probe the most
space. All higher-order correlations can be expressed ipatural extension of the OV effect to nonlinear scales, the
terms of it. Primordial nonlinearities and secondary effectsso-called kinetic Sunyaev-Zel'dovidiKSZz) effect. On small
introduce deviations from Gaussianity, producing a detectscales, both arise from the density modulation of the Doppler
able signal in both the power spectrum and higher-order staeffect from large-scale bulk flows.
tistics. Recent work provides the theoretical background for We review the relevant properties and parameters of the
the calculation of estimators of these higher-order statisticadiabatic cold dark matteifCDM) cosmology for structure
[4,5] and constrains possible non-Gaussian primordial conformation in Sec. Il A. In Sec. Il B we review the theory of
tributions to the bispectrum and the trispectrum on degreéhe OV effect and in Sec. Il C we discuss the basic statistical
and subdegree angular scales using actual [@t8]. The  Properties of a general field through ftgpoint functions. In
interest is now in forecasting the expected signals on smallep€C: Il D we show how the homogeneous theory of turbu-
scales due to secondary anisotropies, checking whether thé§nce combined with the Limber approximation enables one
are detectable and understanding how they can be separafégnfer the dominant contribution amomgpoint statistics of
from each other and from the primary anisotropies in light of2 VECtor field effect like the OV effect. In Sec. Il E, we in-
vodce he sandard formalem of the Sgra-tomole
The Ostriker-VishniadOV) effect[10] was found to be a : : ; . )
the dominant linear secondary contribution to the CMBtenCy’ in Sec. Il ¥ we apply our method in detail to the

. . . . .~ calculation of the OV power spectrum as well as its nonlin-
anisotropies pelow the Silk-damping scales at the arcminutg, - extension. In Secs. Il and in IV we present the steps of
level [11]. It is caused by Thomson scattering off of the

X , 9 the calculation of the OV bispectrum and of the trispectrum
CMB photons by moving electrons during the initial phase ofyagpectively and its nonlinear counterparts. We also present

reionization. It has the advantage of taking place during thgne results. Finally in Sec. V we conclude. In Appendix A we
linear regime of structure evolution and of being a small-generalize the Limber approximation to the 3-point and

angle effect enabling one to obtain analytical expressions fof_point correlation functions. This may be useful for other
its higher-order correlation functions in the small-angle limit. cosmological studies.

Because of the highly predictive power of linear theory, any
measurement of such statistics would be a sensitive probe of Il. GENERAL CONSIDERATIONS
the reionization history of the universe, difficult to disen- _
A. Cosmological model
We work in the context of the adiabatic cold dark matter
*Email address: pcastro@astro.ox.ac.uk (CDM) family of models. In units of the critical densit{),
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is the contribution to the nonrelativistic-matter densidy, is ~ ia(t)D . . ia(t) D
the contribution to the baryonic matter densify, is the v(k,t)= Wk&(k,t)=
contribution of the cosmological constant and#l,

=100h km sec 'Mpc ! is the Hubble constant today. The A seful relation[14] is
Friedmann equations for the evolution of the scale factor of

the Universea(t), are then D a a 50,a (1+2)2

D 5 a 2 alE@D@)

kz—ID()k5°(k)' (5)

(6

E = HoE(Z)

a Although we maintain generality in the derivations, we
_ 3 5 illustrate our results with a flat CDM model with a cosmo-
=HoVQo(1+2)7+ 0y +(1- Qo= 0y)(1+2)% () logical constant, the\ CDM model. The parameters for this

model are Q,=0.35,Q,=0.05,Q,=0.65,h=0.65 and

) 3 spectral indexn=1. Concerning the reionization contribu-

ngo[QA_Qo(l’LZ) 12], (2 tion we consider two reionization histories, both assuming

steep reionization with ionization fractiok,=1 and
eAz,/(1+z,)=0.1. In the first one, reionization takes place
at z,=8. The second one assumgs=17 and relies on the
latest results from the Wilkinson Microwave Anisotropy

Probe (WMAP) experiment(see below. Note that in an

open or closed universe one replaces in the factors thfat

appear in the equations

where the over-dot denotes a derivative with respect to tim
The scale factor is chosen such tlagH = 2c.

Useful measures of distan¢end timeg are the conformal
distance(and conformal timg If an observer is at the origin
z=0 then an object at redshiftis at a comoving distance,
w(z)=3 [§[dZ/E(zZ')] and at a time t(2)

=(1/Hy) f.Z [dZ'/(1+2Z")E(Z")]. The conformal t|'me Is S(agHo V1= Qo— Q)

then obtained fromd »=dt/a, such that the comoving dis- n— @)
tance to the horizon is the conformal time todayyg aoHoV[1 00—y

=w().

) ) - whereS(x) = sinhx in an open universe arfs(x) = sinxin a
If the CDM density contrast at comoving position at  ¢|gsed universe.

timetis 6(vT/,t), then the power spectrui(Kk,t) is defined
by the expectation value over all realizations B. The Ostriker-Vishniac effect

e+ S* (! _ 3 L R

(3(k,1)3* (K", 1)) = (2m)*6p(k— k') P(k,t) where & Is the The reionization of the Universe is one of the most im-

Dirac delta function. In linear theory, §(w,t)  portant physical processes that took place in the early uni-
= 5o(W)D(t)/D(ty), wheret, is the age of the Universe, verse(see[19,20). The most accepted sources for reioniza-

50(\,(,)55(\;, to), and the growth factor, as a function of red- tion, which requires a source of ultraviolet photons, are an
shift. is [14]’ ’ ' early generation of massive stars formed in dwarf galaxies or

an early generation of quasars/AGNs in galaxies. In the cur-

, rently favored adiabatic CDM class of models for structure

D(2)= 500 E(2) Jw 1+z S, (3y  formation, reionization is expected to occur in the range 8
2 z [E(z")]® =<z,<30. Measurements of the CMB anisotropies on subde-

gree scalef21-23 have been used to put an upper bound on

The power spectrum is given bp(k,t)=P(K)(D/Dy)?, the reionization redsfhit af,=30[24,25. Very recently, us-

whereD,=D(t,). For P(k)=P(k,t,) we use ing polarization and temperature anisotropies of the CMB,
0=D(to) (k) =P(kto) WMAP has placed a fairly model-independent constfany
2 on the optical depth to electron scattering7ef 0.17+0.04
p(k):%gﬁ(k/z)nﬁ(kp Mpc/hT), (4 at 68% C.L. which translates inta,=17+3 for instant

reionization[27,28. Interestingly, the measurement of an in-

crease of the neutral fractions with redshift in higlquasar
where T(q) is the CDM transfer function,k,=ka,  spectra[29,3(Q and a first detection of the “Gunn-Peterson
=kHy/2c is the physical wave number with our conventionstrough” [31] in a quasar spectra at6.28 by SLOAN[32]
and I', the shape parameter, is defined gE5] I’ point to a reionization redshift af. =6 [33], in disagreement
=0,(h/0.5) exp Qp,—Q/Qg). As we choseagHy=2c, with WMAP results. However, even a fraction of neutral
there is an extra factor of 8 in the denominator in . For  hydrogen as small as 0.1% in the IGM could explain the
the transfer function, we use the Bardesral. [16] fitting result due to the large cross-section to dyphotons. To-
formulas for CDM models instead of the improved versiongether with the results from WMAP, highguasar measure-
of Eisenstein and H{i17], to facilitate comparison with pre- ments indicate that the reionization history is more complex
vious work. Fordy, we take the fits to the Cosmic Back- than previously thought and attempts are being made to fully

ground ExplorefCOBE) data given in18]. understand if34-34.
In linear theory, the continuity equation relates the Fourier Though extensive analyticdfor a complete derivation
components of the velocity field and the density field see[11,12) and numerical studiegssee references below
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have been done to try to quantitatively understand many of .y — r7cds’ o-n(»"). Also 8(9 andv(® are
the effects originated by reionization on the CMB, accuracy, () f(? 7' orhe(7"). ( 7.7’7]) ( 77.’77) .
S o . X -~~~ ’the density contrast and bulk velocity along the line of sight,
is difficult to reach and uncertainties still remain. Reioniza- ) ) i

tion will leave multiple distinctive imprints on the CMB Ne(7) s the mean electron density given bye(7)
anisotropies by bringing the CMB photons and the free mov-= b pXe(7)(1+2)°/my,, oy is the Thomson cross-
ing electrons into scattering contact again. Through that winSECtion x. is the ionization fraction anth, the proton mass.
dow, the lowz period of the universe evolution can be Ve assume that the visibility function is approximated as a
probed experimentally in more detail from the appearance ofaussian in conformal time

the first sources of ionization to the formation of the observ-

able present large-scale structure. Studies have been done on (7)= 1-e™™ e~ V2l(n=)?(An,)?) (10)

the calculation of the contributions to the power spectrum of 9tm= \/W '

the CMB due to ionization induced effects like the Doppler

effect on large angular scal§€37,38, the thermal SZ effect Following JK[53], we choose a coordinate system such

and its kinetic analog39-46, the inhomogeneous reioniza- that § represents a three-dimensional unit vector along the
tion [47-5] and the OV effect on smaller scalgk3,52,53.

. X . X . line of sight andd refers to a two-dimensional unit vector in
Enlightening comparative studies between different effect%he plane perpendicular to the line of sight. So we will have
can also be foun{54]. ;

As ionization effects introduce non-Gaussianities in the?=(01,62,0) ~and  0=(6,,6,,\V1— 61— 63)=(61,6,1)
anisotropies, further studies were done on the calculation ofhere this approximation arises from the small-scale nature
their possible contributions to the bispectrum. Many authorf the effect. Bold letters represent three-dimensional vec-
[565-59 investigated contributions to mixed bispectra due totors- .
couplings between lensing effects, the integrated Sachs- The OV is a small-angle effect so we can work under the
Wolfe (ISW) effect, thermal Sz, and Doppler effects, such asf!at-sk_y approximation and expand the temperature perturba-
the OV effect. The trispectrum of ionization secondafig] ~ tions in Fourier space
has not been explored very much. No one has addressed the

calculation of the pure bispectrum and trispectrum of the OV A_T > | f 2
effect until now. = (K= dng(n) | d76
In the linear regime, for the power spectrum, the domi-
nant small-angular scale contribution from reionization was d’q .. ~ IO,
found to be the OV effedt10,13. It arises from the second f (277)30' p(a,7)e 74 (13)

order modulation of the Doppler effect by density fluctua-
tions which affect the probability of scattering. Because of its -
density weighting, it peaks at small angular scales, typicallyVNered=(dx.dy.dz), K=(Ky,Ky,0) and
arcminute scales in CDM models, and should produgeK ) . 3

anisotropies. Its contributions to the temperature fluctuations (0 7)= ia(7)DD f d°k 3ok Bo(q—K)
along the line of sight can be written in the manner of Jaffe ' 2D(2) (2m)3 0 0

and KamionkowskiJK) [53]:

g—k k
AT . 0 " " X( +—) (12
T (0)=" f:dng(ma-p(an,n) ® lg—Kk[2 " [K[2

R R R is the Fourier transform gf(#7,7) (see JK[53]). D and D
where p(67n,n)=v(67n,7)5(0n,n7) and g is the visibility = depend on». We made use of the continuity equation in

function given by Fourier spacd5) and of the linear evolution of the density
L field.
a'( 7]) O'Tne( 77) — ()
g(np)=—"—"""¢€e "7 . _ _
c C. Statistical properties of a general field
0.139).h The statistical properties of a field can be characterized by
= [1+2( )] e (9)  the n-point correlation functions in real space or by the

n-point spectra in Fourier space. If the field is Gaussian in

) ] N ) nature, like the primordial density fluctuations field in the
which gives the probability of scattering. The prefactor 0.138¢rrent favored inflationary cosmology, the connected part of

is obtained assuming that all the baryons are in the form of,¢ n-point functions disappears fon>2. The nonzero
protons(if we use the fact that the mass fraction of helium is (eyenn)-point correlation functions can be expressed with
25% then one should multiply it by 7/8). The visibility func- the 2-point correlation function. As a result, a Gaussian dis-
tion is normalized such thgt]°g(»)dn=1—e" " wherer,  tribution is completely described by the two-point correlation
is the optical depth to the surface of last scattering at recomfunction, or power spectrum, and any non-Gaussian field will
bination. Note thag is only dependent on time, and not on be detectable by measuring the connected part of-fisint
position for the OV effect. The optical depth is given by correlation function.
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If we consider a general statistically homogeneous andhation of dominant/subdominant/dominant higher order cor-

isotropic 2-dimensional fielp with zero mean, its power relation functions provides a unique signal distinguishing the
spectrumP, bispectrumB and trispectrunil are defined by OV effect from other non-vector-like sgcondary anisotropies
the following equations in the appropriate Fourier conven-2nd consequently can enable one to disentangle it from other

tion: contributions at similar angular scales.
(5(I21) 5(I22)> =(2m)?P(ky) 5%(I21+ IZZ) E. Signal-to-noise
e L ) A fundamental issue is to know how well we can separate
(p(k1)p(Ka)p(K3))e=(27)?B(ky Kz, K3) 55 the OV signal, which is non-Gaussian, from the Gaussian
. . signal, noise and foregrounds which are always present in a
X (ky+katks) (13 measurement from an experiment. A way of quantifying this
detection is to calculate the® statistics(as in[55,62)). To do
(P(K1)p(K2)p(K3)p(Ka))e=(27)2T(Kq Kz, k3, Ks) 55 so, one needs to calculate the Fisher information mix
L (for a good review seg63]). If we think of the datax as a
X (kg +ky+kstky) random variable with a likelihood functiob(x; 8) where 8

is a vector of model parameters, the Fisher information ma-
where the subscript stands for connected. The OV effect trix is defined as
being a secondary effect will introduce non-Gaussianities in 5
the original primordial Gaussian distributed temperature oo < d7In L(x; 0)>
fluctuations. As a consequence, contributions to its bispec- e 30,0
trum and trispectrum are expected.

(14)

By a very powerful theorem, called the Cramer-Rao inequal-
D. Dominant contributions among the statistics ity, it was shown[64,65 that the variance of any unbiased
of the OV effect estimator of a certain parameter in a model cannot be less

_l . .
Combining the homogeneous theory of turbulence Withthar? F )ilill AS theIS|gnaI cglc_:ulateq IS expected tO" Ze
the Limber approximation enables one to infer the dominan%attet;.l‘?‘tma ' WeSaSrEénéere_?;e |fn estimating its O\tﬁr? th e
contribution amongi-point statistics of an isotropic and ho- ectability as in[55,56,63. Therefore, we assume that the

mogeneous vectorlike field effect whose statistical propertiego.rm of our modeld (in our case the _bispect_rum and the
vary slowly in time. In particular, we can apply this to the trispectrum is correct and that the only interesting parameter

OV effect. In short, the theory of homogeneous turbulencdS IS @mplitudeA, where the true value oh=1. Then the
shows how to build invariant spectral tensors of arbitraryCramer-Rao inequality tells us that theivlarlance of the mea-
order, corresponding to expectation values of arbitrary prodSUrement ofA is no less tharr“(A) =(F "~ )aa and we de-
ucts of statistically homogeneous vector fields. It is based of{n€ thex” statistics as

techniques proposed in the area of homogeneous turbulence

in the 1940s by Robertsdi60]. Relying on this theory, all , [S 2 1

expectation values of an odd product of an isotropic X E(ﬁ) =02(A) =(F)an- (15
3-dimensional vector fielg(q) with g=(qy,q,,q,) must be

proportional to at least one of tlegvectors, contrary to the ) ) ) o
expectation values of even products. The calculation of the Fisher matri¥, 5 of the statistics of

Because of the Limber approximation, extended to highthe OV effect involves the calculation of the contribution of
statistics in Appendix A, which states that the only contribu-the noise to the power spectru@}®***, as it will be shown.
tions to the projected correlation function on the sky comelhe noise depends on the experiment characteristics.
from the Fourier modes perpendicular to the line of sight of We consider a hypothetical experiment which maps a
the angular correlation function, all thg, terms tend to be ~ fraction of the skyf, with a Gaussian beam with full width
suppressed. There will be different levels of suppression deat half maximuméy,,, and pixel noiser,=s/\t,;,, where
pending on the order of the;, dependence of our statistics. Sis the detector sensitivity artd;, is the time spent observ-

Combining these two results, we can conclude that eveiild each pixel. We use the inverse weight per solid angle,
correlation functions of the OV effect dominate over oddW ™ '=(0p0rwnm/To)?, in order to have a measure which is
correlation functions making the trispectrum a much more
sensitive statistics than the bispectrum. Also, we expect the TABLE I. Experimental parameters f@WW)MAP and Planck.
correlation functions to obey the homogeneous and isotropy
theory fully and thus to be the result of contributions of MAP Planck
different or_ders in t_hein terms. We have _developed_ a (GH2) a1 61 95 100 143 217
method which permits to calculate the dominant contrlbu-e (arcm 318 210 138 107 80 55
tion, under the Limber approximation. fwhm ' ' ' ' ' '

This is a characteristic of all effects physically described”? (1K) 198 300 456 46 54 117
by an isotropic vector field and can thus be useful for otherfsky 0.80 0.80
studies. As noted previously by Scannapi¢é), the alter-
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independent of the pixel sizE66,67. To=2.73 K is the MAP and Planck Hence we can estimatg?°'*® for any
CMB thermodynamic temperature. If only a fractibg,, of ~ experiment with characteristity, Otwhm, S andtp.

the sky is mapped, treating the pixel noise as Gaussian and For the precise cases of MARenamed WMAP recently
ignoring any correlations between pixels, a good estimate ofind Planck, for which we used the specifications in Table I,

the c?O‘Se [56,66,67 is we need to take into account their multifrequency coverage
. , with different characteristics. Th€(°'*¢ is then defined as
C?mse: fskyW_ 1eab€(€+l) (16) [56]

whereoy,, in radians, is the width of the beam if we assume

it has a Gaussian profile. It is related ®,nm,, in arc- Cn0|se EV n0|se( ) (17)
minutes, byo,=+/8 In 2 6;,,mX w/10800. Note that if an

experiment maps the full sky and then a fraction i, is ~ where the sum runs over all channels of the experiment and
subtracted, one should not multiply * by fsky (case of v is the frequency of the channel.

F. Power spectrum of the OV effect
1. Linear power spectrum

In Fourier space, the flat-sky power spectrum of the OV effect is re[&qd(13)] to the following two-point expectation
value of the OV temperature field perturbatiai/T:

ﬂ,z)zjlz) _Ef”"d )J""d )fdzafdza
?( 1 ?( 21=35 ), 719( 7, o 729( 72 1 2

d3q d3q,
Xf (277)13f (2m)° 91|021 [<p(Q1:771)pJ(QZa772)>+<p(QZaﬂz)pJ a1, 71))]

X ei(lzl' 01-mdr- 91)ei(K2' A (18

wherep is defined as in Eq(12). Many authors have derived the expression for this statiftits13,53,6] We use the JK
formalism but a different technique which will be useful in what follows.

As we see, this expression involves a double integration in time, angle and wave number, being numerically long to
evaluate. It is useful to note that as the statistical properties of thedielary slowly in time and as the OV effect is a
small-angle effect we can employ the Limber approximafsee Eq(Al)] to considerably simplify our derivations. We stress
here that we are allowed to use this approximation as the OV effect takes place at sufficientlyviigine the difference
between the approximation and the integral is very small.

As the two permutation@)if)j) are symmetric due to statistical homogeneity, we only consider the first one and multiply

the result by 2. Using Eq12) forﬁ and the Wick theorem for the Gaussian 3-dimensional density field correlation function
which states

(8(Kkq) 8(ay—Kq) 8(Ky) 8(da—Ka)) = (277) P (Kq) P(|dy — Ka|)[ 85 (K + G — ko) Sp (a1 + Ko —Ky)
+ 0p (k1K) 83(dr— Ky + 02— k)] (19

whereP (k) is the power spectrum of density perturbations, = (iaDD/2D3) and the general tensorial functioRg; given
we obtain two nonzero terms f()p,p,) which can be written by
as

b2
X (d110p) (20) (21

- - . b, b
(P, 71)P;(d2, 72)) = — 2G(71) G(72) Fij (1) 55 Faﬂ<qi>=J dSK'P<a)P<b>(% —)(a’ﬁ B)

with the time dependence functions gathered G ») wherea=K' andb=q;—K'. We could now replace the two
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previous expressions directly in E@.8) but, for clarity pur-  where we have performed a spherical coordinate transform
poses as it will become obvious soon, we refrain from doingsych that u=gq; -K’, a=y;q; and b=y,q; with y,

so and instead we keep working wikh, s . _ _=+\1+y?—2y, 4. To obtain the components &, in the
Indeed, in the small-sky approximation, for which the unit ohosen coordinate system, we used the Limber approxima-
vector§=(0,0,1), we can contract ths of expression(18) tion to assumey;,=0, such thaK,=1— 2. This assump-
with the vectorsa andb of the last expressio(21) such that  tion preserves our dominant term but suppresses any sub-
we are left with the line of sight components@fndb. We  dominant term that could naturally arise when calculating the
can thus define a new scalar functiBrsuch that integral. As a consequence, in E(QB), the dominant term
9 (in g°) may contain hidden contributions to the subdominant
term (in g3). That this indeed is the case can be understood
by a very simple reasoning. Consider E82). It is easy to
show that the terms inZ andb? give identical contributions
to the integral, such that if we calculate twice the integral in
aZ we should obtain the same result at the end, i.e., various
terms depending on different orders g, . By doing this,
The interesting step that follows is to expand this function inPU" €rm ing?, present in Eq(23) simply disappears. We
a,=K. andb,=q,— K/ might then_ expect it to show up in th.e integral calcglatlon.
Lo e e But, most interestingly, when performing the calculations as
> ) previously using the Limber approximation, we obtain the

0, ¢ Sk a z
F(0)= 01,025F .5~ | d°K'P(a)P(b) St
a? 2ahb, b?

- f d3K’P(a)P(b)(a—z+ 202 i) (22

e same result, i.e., Eq24). As a consequence, by imposing

K2
“la* b* a%? gi,=0 in this example, we are in fact suppressing a sub-

F(a)= f &K’ P(a)P(b)

5 dominant term we know should be present. In conclusion,
20;; 20 Qiz there are more terms contributing to the subdominant power
5 T\ = (23 -
a?b? bt b4 spectrum than the one present in E2R) and these are not
so easily calculated. Hence we neglect all the subdominant
terms in the Limber approximation. In the following, for the
bispectrum and the trispectrum calculations, similar prob-
lems are present but they will not affect the lowest order

!
z

Expressions of this type will occur in the following and they
illustrate the previous discussion in Sec. Il D. By looking at

. A :
tr}eKu:]t_egral, we Stie t:at t"iz mtegéatmfnt;ortodd pros::rli;:ts terms inq;, and even order ik, , which are the dominant
of K, is zero as the dependence kh of the terms wi terms of interest to us.

andb is even. Therefore we are left with nonzero contribu- ) ; .
. . . We can finally combine Eq18), (20) and(24). Applying
12
tions fr(?(r)n the first termwith K;%) and from the last term  jiser's method and the Limber approximation as described
(with K,7). By applying the Limber approximation we can i the Appendix, we obtain the well-known expression for

also infer that the dominant contribution has to come ffoMhe dominant contribution to the linear OV power spectrum
the K,2 term as it has no explicit dependence@p. As we

know, in the Limber approximation, Fourier modes perpen-

2 S 2
dicular to the line of sightterms ong;,) tend to be sup- pgg/m( )= i 79 (ﬂ)[a( 77)]2<E> S(K/7)dy
pressed. We are then left with 2 terms which we will label 8m?Jo  7? Do
dominant and subdominant terms depending on the order of (25

their cancellation. We are interested in the dominant one.
This cancellation was forecasted in Sec. Il D in view of the
homogeneous turbulence theory. Indeed, the power spectru
of the OV effect is expected to have contributions only from
terms with no dependence am, and with aq;,q;, type

W'here

] 1
st =k [y, [ dupiio)

dependence.
After some straightforward algebra, in the Limber ap- ) )
proximation framework, we find for the dominant contribu- (1) (1—2puy,)

(1+y5—2uy;)?

L1 1 2) (26)
K2l S+ —=——

a* b* a%?

F(ai)= f d°K’'P(a)P(b)

The Limber approximation reduced the dimension of the in-
tegral from 6 to 3 and helped to find an easier numerical and

% 1
= —2mq; f dylf duP(g;y1)P(qiy2) analytical expression. We note here that we obtain a differ-
0 -1 ence of a factor 1/2 compared to JK, a discrepancy pointed
(1— u?)(1—2uy,)? out by them when comparing to previous work.
X 2 (24 For illustration we show plots of the linear dominant con-
Y2 tribution of the OV power spectrum in Fig. 1 for the fiducial
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107 g T T 3 density field contribution. Following HUu'E58] approach, we

] replace the linear density power spectrum with its nonlinear
] analogue but leave the contribution from the velocity power
T spectrum the same

T T T
Z

10*12

,\10713

1 1 2(1) DD\ 2
E Pg‘ém(K)Zﬁ 0770977—277[61(77)]2<D_0>

PNY(K/ )

_ XWS(K/W)CW 27

+1)c/(2m

10—14

where PNt stands for the nonlinear CDM power spectrum
E and where the mode coupling integfivas calculated pre-
] viously [Eq. (26)] under linear theory. This expression in-
| cludes both the OV and the KSZ effects.
Ll L L . To calculate the nonlinear power spectrum, we assume
100 1000 10* that the baryonic gas traces the dark mai6&]. We follow
! Hamilton et al. [69] who presented a scaling relation for the
FIG. 1. The linea(label L) and nonlineaflabel NL) OV power  correlation function in the nonlinear regime that was gener-
spectrum for the fiduciah CDM model. Thedot dashlines corre-  alized to its Fourier analogue by Peacock and Dodts.
spond toz,=8 and thesolid lines to z,=17. In both cases we The basic hypothesis is that nonlinear fluctuations on a scale
assumedz,=0.1(1+z). k arise from linear fluctuations on a larger scale

10—15

~._ T T T

10718

ACDM model assuming,=8 andz,=17. The correspon- ) s
dence between full-sky multipole momer@s and the flat- Kin=[1+A% (K)]~ "k (28)

sky Fourier spacd?(K) is straightforwardC,=P(K=¢).

As expected, the, =17 scenarigkeepingx.=1) increases

the amplitude of the power spectrum, due to the rise of th&o that there is a function relating the nonlinear and linear
optical depth, and shifts its peak towards smaller angulapower spectra at these two scales

scales. Numerically, we find for the amplitude of the power

spectrum the approximate scaling depende@ge 5o5=7.5

x10 ¥ xZlog®41+z). We advise the reader to consult A2 (K)=fp [AZIM (ki) ] (29)
[53] for the impact of changing the cosmological parameters ¢ ¢

(or the reionization histopyon the power and peak of the
effect as well as for the important detectability issues. Th
cosmological dependence applies as well for the higher-ord
statistics.

Svhich can be fit to simulations. We use tfigl] proposed
Eiarxpression forfy, . For stronger nonlinearities other correc-
tions are necessary. See for exanif@&]. One also needs the
_ _ relation A3(k) =k3/(27w2) P(K).
2. Nonlinear extension: the KSZ effect power spectrum As discussed iri68], this estimate should be seen as an

This extension was calculated previougl§8] and we  upper limit of the KSZ because on very small scales the gas
present it for the dominant power spectrum for the sake opressure, unaccounted for, smooths the gas density as com-
consistency. The kinetic Sunyaev-Zel'dovich effect resultspared to the dark matter density. The assumption that the
from a Doppler effect suffered by the CMB photons as theybaryonic gas traces the dark matter was shown to break down
travel through large scale structures emerged in a bulk flowat multipoles¢=10" [68,73. We show a plot of the power
As pointed out by H(i68] among other§40,54), in adiabatic ~ Spectrum corrected for mild nonlinearities in Fig. 1 for illus-
CDM cosmologies, nonlinearities only affect the densitytration of the nonlinear enhancement of the power spectrum
field below the coherence scale of the bulk velocities and s@t small scales for, =8 andz,=17.
the nonlinear density field is uncorrelated with the large-
scale velocity field, which remains linear. Hence, the mild
nonlinear extension of the density contribution in the OV Ill. THE BISPECTRUM OF THE OV EFFECT
effect expressions naturally becomes the KSZ effect from
large scale structures.

As the result of this, we can use the previous calculations In analogy with the power spectrum, the flat-sky bispec-
of the OV effect power spectrum to obtain a similar exprestrum of the OV effect is connected by Ed.3) to the follow-
sion for the KSZ by introducing a nonlinear correction in theing expectation value:

A. Linear bispectrum
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AT . AT . AT . -1 (0 70 70 5 5 )
?(Kl) (Ky)=(K3) “% J, dn19(71) fo d7.9(72) Jo dﬂaQ(’?s)Jd 01jd azJ’d 03

d3q, d3q, o Ns PR ~ ~
XJ'(Zw)sf(27T)3f(277_)301i02j03l[<pi(q11”l)pj(qu772)pl(q3v773)>+perm-]

X ei(lzl- 01~ 771(11-?7’1)ei (Kz. 62~ 12012 -bz)ei(ﬁs- 03~ 13d3-03) (30)

where the five permutations are with respect to the ordergge.qs). Proceeding in a similar way as we did for the
derivation of the power spectrum, this numerically heavy expression to integrate can be considerably simplified by using a
generalization of the Limber equation to higher-order statisses the Appendjx

We start by calculating a simplified expression for the first permute(ﬁlpﬁjﬁ). At the end we generalize the results to

include the total six permutations. Using expres<ib? for p and the Wick theorem for the Gaussian 3-dimensional density
field 6-point correlation function( 8(k4) (g, —Kky) 8(ks) 8(g,—k,) 8(ks) 5(gs—ks)) we obtain CS«C§/3!=15 terms for
<5i5jﬁ|> of which 8 are nonzero. After some simple calculations, these 8 terms can be condensed into

(Pi(d1,71)P;(G2, 72)Pi(s, 73)) = 4G (171) G(72) G( 73)[ Fijy (A1, 0z) + Fiji (01,03) 193 (Aa + U2+ 0l3) (31)

with the time dependence functi@h(z)=(iaD D/2D§) and the general tensorial functioksg g, given by

Fosnl0 )= | B P@P(OIP(E)| 22~ 2
afBy\Mi 1) a2 b2
cg bglfa, c
(—‘b—)(—‘—) 2

wherea=K’, b=K'—q; andc=K'+q;. We concentrate of and combine all the terms in E¢31) when appropriate.

Again using the small-angle approximation for whi&h(o,o,l), we can contract this with the vectorsa, b andc such
that we are left with the line of sight componentsapfb andc. We can thus define a new scalar functirsuch that

F(ql !qj) = élaaZBb(%yFaﬁy
3 a, bz C; bz a, ¢C;
2] d°K P(a)P(b)P(c) g—— S Sl 2T S (33)

Expanding this expression in different orders K will give us the different levels of contributions under the Limber
approximation to the bispectrum

- LS 1 1 1 1 1 1
F(ai.q;) = f d°K"P(a)P(b)P(c)| K; 70 2’ azc4+b2c4+ P i
2 1 1 2 2 2 1 1
Qiz| — + +qu - +

a’b*  a%h? b?c* b*c? a’c* b%c* a%*c?® b*c?

+K.2 +K,

1 1
diz a2b4_b402

2 1 2 1
+| 920z T o2 +0,0i; ot [ (34

1 1 2 2
| gt gt T e gt~ o

Again, and as detailed before in Sec. Il F, the integrékjn  terms which do not have such a dependence. This result
for odd products oK, is zero, and we are left with nonzero again confirms the discussion in Sec. Il D, which predicts
contributions from the second terfwith K.?) and the last that the bispectrum of the OV effect has contributions only
term (with K.%). The dominant contribution will come from from terms with a dependence o or on products of g, .

the K2 though it has a dependence gg which, by the We are interested on the domina@j? term which can be
Limber approximation, tends to be suppressed compared taritten as
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F(gi,d;)=ai.f1(ai,q;) +a;.f2(0,9;) (35 pendence. This is the step that allows us to keep this term,
which was expected to be suppressed under the Limber ap-
where proximation. Then we follow Kaiser’'s method and apply the
Limber approximation, and using E@L3) we obtain the ex-
f1(q,0)) = f 43K’ P(a)P(b)P(c)K .2 E_ressmn for one of the six possible permutation terms of the
ispectrum
x| — 2 + 1 — 1 + 2 (36) Bdot:/m(KliKZ!K3)
a’b* a%? b?c* bic?
L 7w  hZoh . . - o
and - 16’7‘[’3 fo dﬂ? %[f(qliqZ)—i_f(qlqu)] (39)
fo(q,q)) = f d3K’P(a)P(b)P(c)K? where
aDD
2 2 1 1 h(n)=|g
X( - a2c? + b2c? + atc? - b4cz) - (37 D(Z)

If we were to replace directly these last three expressi0n§nd

in Eq. (30) and then apply the Limber approximation we - - - - - -

would have a direct cancellation. We wish to obtain a non- f(a;,a;)=fa(qi,a;) +f2(ai,qy)-

null expression which enhances the dominant character, as o i

compared to the other subdominant terms, of this second- " order to simplify the functions, andf,, we need’to

order contribution. To do so, we use again the small-angldind an explicit relation betweea, b, ¢ andg;, g; andK"'.
L s . To do so, we express botk’ and a, b, ¢ in the basis

approximation and considet=(0,0,1) to write P : - -~

(e,,q;,q;) where we remind the reader that,=(q,,.0)
F(ai,9)=0-qif1(q,q)+ 8;-q:fo(q,q). (38  under the Limber approximation. Again, as for the power

. . b ! spectrum(see discussion in Sec. I)Fthis suppresses any
Now we replace this particular equation in E§l)and then subdominant contribution that could arise in the process but
in Eg. (30) and finally integrate once by parts the time de-leaves our dominant contribution intact. We obtain

f(q; an):f(|CIi|a|q1' ﬁi'&j)

1 1 2 2 1 1
_ i _ 2 12 _ _
= deZfdufdv\/l nP(a)P(b)P(c)K, a4b2+a4c2 o a2c4+b2c4+b4c2 (40
|
where wheref is given by Eq.(40). We thus reduced our initial
a=(K.2+u2+v2+2uvp)*? expression with twelve integrations to a four-dimensional in-
‘ tegral, which can be numerically calculated for a chosen con-

k2 2, .2 112 figuration of the wave numbels.
b=[Kz"+ (U= a) vt 2(u=go ]l ™ ’ Note that we obtain the first order time derivativetofit
involves one single derivation, which indicates tie can-
cellation. Ash is smooth and slowly varying, the contribu-
tion from this term should be very small. Hence, the Limber

‘T}”dl“: q;.q; - As this ex]EJressmn porreSpondséo only |°2|e Of cancellation at small scales reveals itself in the derivatives of
the permutation terms of expressit0), we need to include ¢ fime dependent functions.

the other 5 to obtain the final expression for the dominant
flat-sky bispectrum

c=[K 2+ (v+q))2+u?+2(v+q)up]?

B. Nonlinear extension: The KSZ effect bispectrum

i 7 h2dh We follow the same approach as for the power spectrum
BOY (Kq,Ky,Kg)= —sf dn—p in Sec. Il F and apply it to the dominant contribution. As we
8w~ Jo L have three CDM power specta showing up in the expression
n=3 > for the bispectrum, which we need to divide among linear/
X z f ﬁﬁ) (41) nonlinear contributions from density/velocity contributions,
ij=1ii#] n 7 we will assume the following bispectrum effect:
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BgX;NL(Kl Ky, K3) little is known about them. For the noise power spectrum we
use Eqs(16)—(17) applied to MAP and Planck.
i (7w hZoh 3 PNYNK /)| %2 We will study the contributions to thg? per log interval
= Q . 77; %i,j,kﬂ;i#j (W) in €. It gives us more sensibility on the angular scales of

stronger detectability, depending of the effects considered.

Ki K. This also enables us to directly compare our results with
><f(—,—J . (42)  Cooray and HU56]. We calculate the totaB/N for each
non experiment by integrating over the multipafe
A useful relation between the flat-sky bispectrum and the
C. The signal-to-noise spherical harmonic angular averaged bispectfGiris

To define they? statistics of Eq(15), we need to calcu-
late the likelihoodL of observing the bispectrum elements (2€1+1)(2€2+1)(2€3+1)/€1 0, €4
B ey, = \/
1%2"3

B_BE Bflgzga_given th_e tru_e parameteps and calculate the = \ 0 0 0
Fisher matrix as defined in EqL4)
XB(Ky=€1,Ky=€5,Kz=1€3). (47)
#%In L(B;p)
Fi=—\——= /- (43 Since the Wigner-3j vanishes #f;, + £, + ¢3=o0dd, the full-
ap;dp; . .
sky bispectrum can only be estimated for even terms.
Assuming that the likelihood is Gaussian, we follow the Co-
oray and HU56] approach to calculate the” statistics D. Results
We are concerned with the overall detectability of the
2 . .
, [S 2 16,04 dominant term, previously calculated. Hence we choose the
X =] =fsky 2 2 ' (44) simplest of the possible configurations, highly localized in
N l3=0,=0 o-(le

2t3 Fourier spaceK,=K,=K;=1, for which the flat-sky domi-

. . i nant bispectrum becomes
wheresz(3 is the angular averaged bispectrum defined on

the spherefs,, represents the reduction in signal-to-noise 3 h2 oh [ ¢

due to incomplete sky coverage anr@llez,g3 comes from the BOY (K=4{)=— j% dyp— _f(_) (48)
. . . 3 4

covariance matrix of the angular averaged bispectrum as- 47 Jo 7t In

suming a nearly Gaussian bispectrum and full-sky coverage
[55,75 wheref is defined by Eq(40). The nonlinear analog follows

from the previous equation.

With this configuration, depending only on the multipole
¢, there is a simple way of calculating an estimate of the
order of magnitude of the{N)? were we to include all the
€., £, and {3 modes[5] of the full-sky bispectrum. Indeed
where C°" stands for the sum of the power spectra of theln Ed: (44)2' we see that thf number of modesac??gngqtmg to
primary cosmic signal, the thermal SEhS2) effect which ~ the (S/N)© increases ag” and in Eq.(47) €°(500° in-
contributes significantly at the scales of interest, the lineafréases as 0.36 so
OV effect, the detector noise and the foregrounds respec-
fively dX2~ 3B_§~f €3€3(€ 4 6)252(6)

o2 0 0O 2

gy

0% 0,0,=CEOCECE[ 1+ 85(€1+ €)) + 55 (€r+€3)

+ 83 (€3t €1) + 285 (€14 €5) 53(£1+ €3)] (45)

C%ot: Co+ CtghSZ_l_ C?V_L-l- C?oise_l_ C€ foregrounds. (46)
B2(K=1¢)

o (49

The thermal SZ effect was taken froji4] and was calcu- ~0.36f gy 0
lated semianalytically at 30 GHz for a normalization factor

0g=0.9. Weinclude the linear OV effect contributiofsee

Sec. Il B although its amplitude is small as compared with The o7 is calculated using Eq45) for all the £’s equal and
the primary and the thermal SZ signals at the scales considB(£) using Eq.(48).

ered in this work. The primary cosmic signal was computed We show the plots for the linear and the nonlinear flat-sky
with cMBFAST [76] and we will not consider any foreground. OV bispectrum in Fig(2) for z,=8 andz,=17 in the con-
Indeed, for the case of MAP and Planck, studies indicate thaext of our fiducial cosmological model. Fay=8 the peak
the totalC, should increase by 10% maximufi7]. How-  of the effect occurs around multipole=500 with an ampli-
ever, caution is required as this result assumes that fordude of €3B(€)/(2m)=1.2x10 # whereas forz,=17 the
grounds have a Gaussian distribution. The foregrounds corpeak takes place at a higher multipole ©£700 with a
tribution to the higher-order statistics could in fact be ourstronger amplitude of¢3B(¢)/(2m)=3x10" 23 as ex-
main obstacle in measuring non-Gaussian effects and venyected. We find numerically for the amplitude of the bispec-
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FIG. 2. Left panel—tinear (label L) flat-sky bispectrum of the OV effect and its nonlinear extendiafel NL). Right panel—
Contribution toy? per log interval in¢ for the OV full-sky linear bispectrum with no instrumental noisep), Planck noisgmiddle and
MAP noise (bottorm included in the variance. We used the specifications in Table I. All the plots were calculated for the fid0EIM
model. Thedot dashlines correspond ta@,=8 and thesolid lines toz,=17. We assumedz,=0.1(1+z). The totalS/N for the OV
full-sky linear bispectrum for MAP, Planck and a perfect experiment respectively arg:18.6', 1.5x10 2 and 7x10 ? assumingz,
=8, and 8. 10 4, 8x10 2 and 0.6 assuming,=17.

trum the approximate scaling dependence with reionizatiomalanced by the coupling to higher amplitude effects, like the
history B(£= 50)=1.7x10 ?° xg log(1+z). The depen- SZ effect, and by the matching in redshift between the den-
dence withz, is neither in agreement with the one obtainedsity and velocity fields of the OV effect and the secondaries
for the power spectrunisee Sec. Il Fnor with the one ob- to which is couples. This is the case of the hybrid coupling
tained for the trispectrunisee Sec. IY. This can be ex- ISW-SZ-OV presented bf56], that has the largest signal of
plained by looking at the bispectrum equati@®) where we  all secondaries that couple with OV.

have the first order time derivative of contrary to the cor- A more revealing quantity than the power of the effect is
responding expressions for the power spectfliin. (25]  the signal-to-noise ratio. We plot in Fig. 2, the estimated
and the trispectruniEq. (65)]. This derivative ofh intro-  contributions toy? per log interval in¢ of the linear full-sky
duces a stronger scaling relation withfor the amplitude of  pispectrum had we included all the modes for MAP, Planck

the bispectrum as compared to the one for the other tw 1] and no instrumental noise. We show the results Zor

statistics. For both reionization scenarios, the most interest- g 4 2.=17. The experimental specifications can be

ing feature is the rapid drop of power aﬁgr the peak WhiCh iS'found in Table I. We found no necessity of plotting the cor-
irect conseqence of the Limber cancellafion a small angUSSPONANJGYC/Ge for the nonlinear bispectra due o it
imilarity to the linear bispectra. The structure in the?/d¢

lar scales. The fact that the bispectrum is not considerably". Ay f h f the CMB ori
enhanced by nonlinearities, which take place at small angulf"'S€S mainly from the structure of the primary power

scales, is also the result of the effect peaking at intermediat&P€ctrum at>200. We point out that the continuous rise at
multipoles. The second, but expected, result is the low overt =3000 for a perfect experiment is due to the fact that the
all amplitude of the effect. The,=8 case(which we can signal decreases slower than the contributions t&Cth&om
easily compare with previous results in the literajuig  Primary, linear OV and thermal SZ anisotropies up to these
lower by more than 10 orders of magnitude than the lensingcales. Though it is not explicit in the figure, thg*/d¢ is
couplings presented by Cooray and Fi6], and by a few zero when 3 is odd. As we can see, considering thermal SZ
orders of magnitude than most of the OV couplings involv-contributions to the noise evaluated at 30 GHz, the signal-to-
ing the SZ effect, though it should be comparable to the OWnoise of the OV bispectrum is very small, even for a perfect
couplings involving the Doppler or ISW-SW effects. Despite experiment, for which the tot&®/N~7x 102 for z,=8 and

the fact that such OV couplings suffer the Limber cancella-S/N~0.6 for z,=17. These values can be compared to the
tion as well(they correspond to expectation values of an oddvalue S/IN~1.7 obtained by Cooray and Hi56] for the
product of a vector field this cancellation can be counter- bispectrum generated by the coupling ISWYsDV.
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Hence, even for early reionization, no detection is to be exthe values obtained for th&/ N are most probably upper
pected from future experiments unable to remove the thermaimits on the real values expected and should thus be consid-
Sz effect. For the ideal case of a perfect multi-frequencyered accordingly.

experiment observing in the millimeter and sub-millimeter

capable of subtracting all of the thermal SZ effect, the total IV. THE TRISPECTRUM OF THE OV EFFECT
signal-to-noise increases 8IN~5.3 for z,=17, indicating

a possible very marginal detection. But our results for the
S/N rely on various convenient assumptions required to con- We follow the same procedure used for the power spec-
siderably simplify the analytical expression for the estimatetrum and the bispectrum. The trispectrum contribution to the
of the S/N (see Secs. Il E and Sec. II)CThis means that temperature fluctuations is connected by E@) to

A. Linear trispectrum

P e e L
?( 1)?( 2)?( 3)?( 4)

1 70 70 70 70 2 5 2 2
=24, d7:9(71) . d7,9(7,) . d739(73) . d749(ns) | %6, | d°0, | d°05 | d“6,

dg, d*q, d3qs d*qq. . . . ~ ~ ~ ~
Xf (277)3f (277)3f (277)3f(277)391i02193|94m[<pi((11,7]1)pj(Q2,772)|0|(Q3'ﬂs)pm(Q4:774)>+pel’m-]

X gl (Ky.01= 710y 'bl)ei (Kz.02 7505 -?92)ei(|23- 03~ 1303 -bs)ei (Kg. 04 1494.04) (50)

The 24 total permutations arise from symmetries under per- a
mutation invariance. Again we concentrate on the first of the f,,.(q;,q;,0,) = f d3K’P(a)P(b)P(c)P(d)(—;+
permutations and then generalize at the end. We obtain this a
time for the first permutation term of the previous equation

<5i5j5|5m> by the Wick theorem applied to the Gaussian x(ﬂ— &) (24_ %) (ﬂ_ C_W) (53)
3-dimensional density field 8-point correlation functie§ d> c¢?/\b? d?/\a? «c?
-CS-C5/41=105 terms of which 12 nonzero terms for the

Gaussian contribution and 48 nonzero terms for the con- , , , ,

nected part interest us here. Performing some exhaustive arﬁpere a=K’, b=K'=g;, c=K'+q; and d=K'+q;+q.
systematic calculations these 48 terms can be written in th gain we will work with a singlef and at the end generalize

following condensed form: ﬁ]e resu!t. L .
Applying the small-angle approximation again we can re-

move the tensorial dependence of our expression and con-
tract the#, with our vectors. We obtain the scalfr

by

b?

(Pi(d1, 71) P; (02, 72) Pi(3, 73) P U 7))
=4G(71)G(72)G(173)G(74)[Fimij(d1,92,093,d4)
+Fijim(G1,04.92,03) + Fiijm(03,04,01,02) F(0 .05 .0) = O1002503, 05wy s(ali 105 .0
+ Fijmi(d3,d1,92,94) + Fjmi(d2,03,d1,04)
+Fjiim(02,04,01,03)16%(01 + Q2+ Q3+ 0y), (51

:f d*K’P(a)P(b)P(c)P(d) E+E
a? b?

where G is defined in the previous section and the general d, c;\(b, d;\[a, ¢,
tensorial functiorF ;. is defined as 2 2/ \p? g?2/laz o2 (54)
Fapys(di 0j .01 ,Gm) = Fapys(di 0,00+ ayps(di 0 Om) and the scalaF,
(52
where a generdl,y,, is given by F(qi,9;,0q,9m) = f(q;,d;,q) + f(di .G ,dm). (59
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Expandingf in order ofK, and keeping the non-nulls terrfsee previous sectigni.e. the terms which are evenky, , we are

left with
1 1)1 1)f1 1)1 1
a p2)\cz o2/l p?f\c? a?

L[ 1 1 1 1 1 1 1 1 1 1
Uz| hacs ~ %pic? | a'd®  alb’d®  acPd® | bPc’dt albid?  atb’d® b | bicid?

f(gi,9;,9)= f d3KP(a)P(b)P(c)P(d){ K4

+K.2

2 1 1 1 1 1 1 1 1
+ aZbZCZdZ +qu b4C4 + a2b2c4 + aZC4d2 + bZCAdZ +q|Z a4d4 + a2b2d4 - b2c2d4 - b2C4d2

4 2 2 1 2 1 2 1
+0i.Qjz| — bic?®  ab2c? + a2bc? + a’b2c?  a?c2ct  b2cid? " a’c*d?  atc?d?
2 2 2 1 1 2 2
1020, a4d4 - a2C2d4 - a2b4d2 - a4b2d2 - b2C4d2 + b4c2d2 + a2b2C2d2
2 2 2 2 1 1 2
T T oz bectdt | alctd | o'l atcld b a’h’cid?
, 1 1 , o 1 1 , 2 1
+ 9iz9;2 m_ bc2d2 0,05, b2 o b2c4d?2 * 029201z b2c2g4 N b*c2d?
5 1 ) 1
*0i20j1z| — b2chd? +0iz0j24i; v2ezat] || (56)

We concentrate on the dominant term which can be simpliany subdominant term that could show (gee discussion in
fied using the same method applied to the calculation of th&ec. Il B. So in that basis our functiohcan be expressed in
dominant term of the power spectrum. It can be written as the following simplified way:

1 1 f(a,9;,9)="Ff(ql.lq,|al.q-9;,9 -G ,q; -q))
f(qi,qj,qn:fdSK'P(a)P(b)P(c)P(dm;“(;—?) Capa)=rablablala.g.6.9-9
ZdeéJ'duJ’ dv\1—a?

2 2/l w22 4a2) 1 1

AL AL XP(a)P(b)P(c)P(d)K;“(—Z—E)
To find an explicit relation betwees b, ¢, d andq;, q;, q a
and K’ we express bottK’ and a, b, ¢, d in the basis 1 1 1 1 1 1
(€,.;,0;). We should say here that using the Limber ap- 2 2l\g e 2 (58)

proximation will allow only two of our initial vectors among

the set of four ¢1, 0,, 03, 04) to be independent. Indeed \yhere
all parallel components to the line of sight will be negligible

and the four vectors will be inside the same plane, the one a=ai~aj. B=q;-q, and y= é,-~&|-
perpendicular to the line of sight. This justifies the use of the

basis chosen. We stress one time more that this eliminatelso
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a=(K.2+u?+v2+2uwa)'?  b=[K.2+(u—q)2+v2+2(u—q)val*?
c=[K 2+ (v+0))2+u?+2(v+q)ual’? d=[K,2+ (v +0;+y)?+ (u+X)2+2(v+q;+y) (u+x) a]*?
with

(1-a?) (1-a?)

y=q

Our f only depends on the norms of its arguments and on the angles between their directions. We can combine these
expressions to simplify the expressit0). Following Kaiser's method and proceeding with the Limber approximation, we
obtain the expression for one of the 24 possible permutation terms of the trispectrum

1 J% “a(n)*
d
2m3 Jo

aDD . R . R . R .
— [F(K1/5,Ky/5,Kg, /7Ky m) + F (K1 5,K4 1 5,K5 1 59,K31 )
7
+F (Kl 1,Kal 9.K1 /0, Kolm)+F(Kgl5,K 11 9,Ko 9, Kal )+ F(Kyl 9,K319,K 1 /9, Kyl 1)

o
DG

Tdoglm(K11K21K3,K4)=3

+F(Ky Kol 9Ky 1 9.Kz/ )] (59)

whereF is defined by Eq(55) and thef by Eq.(58). Finally,

. : : . . S\? 1 Te e,e,(DIP
by including all the permutation terms in E¢O) we obtain 2= 2| =f . > 8
X =N sky _,“~, _, 2L+ 1~tot~tot~tottot
ov T ¢y =<to=t3=t, C,C.lC.Cy
Tdom(Kvi21K31K4) 1 2 3 4
Ca (62
_ 3 (m_ (abD} g'(#n) whereT, ¢,¢,c,(L) is one of the possible configurations of
83 Jo 7 D% 7° the full-sky trispectrum as defined in what follows. The co-
- o variance matrix used to obtain the Fisher matrix is calculated
e Ki K; K| assuming full-sky coverage anf<¢,<{3;<{, by Ko-
><i T f P (60)  matsu[59] in the weakly non-Gaussian limit. 1f,<¢,

<{3=<4{, is not respected, the covariance would be distrib-
wheref is given by Eq.(58). The power of the Limber ap- uted across mani’s and can lead to overestimates of the
proximation was to reduce an almost impossible integratiorp!9nal-to-noisé68]. By not respecting this last constraint in

to a 4-dimensional integral, which can be numerically calcu- 9. (62) we are calculating an upper limit of H&/N esti-

- - mate.
lated for a chosen configuration of the wave numbers Concerning the equivalence between the full-sky and flat-

sky formalisms, we follow Hu's Appendik4] where it is
B. Nonlinear extension: The KSZ effect trispectrum argued that we can find a relation between the two formal-
We follow the same approach as for the power spectra an§ms by breaking up the trispectrum in the three possible
bispectrum and again we calculate the nonlinear extensiofombinations —in  each  configuration  defined by
for the dominant contribution. As we have four CDM power \*1: 2:03,€4)

spectrum showing up in the expression for the trispectrum, Ter,656,= Teer0,)(650) (L1 Teegep e (L1a)
which we need to divide among linear/nonlinear contribu-
tions from density/velocity contributions, we will assume the +T(€1€4)(€3€2)('-14) (63)

following trispectrum statistic: where L;; correspond to the side of the triangle of sides

TONY KK, K g, Ky) (€i, €, Ljj). Each of theT(eiej)((kem)(Lij) is then related to
the flat-sky equivalent by

. 4 4
:i o abD\ g'(n) T(eiej)((k(m)(l—ij)
8m Jo D3 7°
_2L+1
. n=4 (P"“‘(Kk/n)>2(&&& o _?J(zeﬁ1)(2ej+1)(2€|+1)(2€m+1)
LkETiej# | P(K/ ) n'n'nl) G4 L\ b Cn L
(0 0 o)(o 0 0

C. Signal-to-noise

As pointed out by Zaldarriagir8] and later by HU68], XTUKi= £, K =€), (K=, Kn=E€m) (Lij).
the maximal signal-to-noise can be proven to be (64)
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FIG. 3. Left panel-inear andright panel—nonlinear flat-sky trispectrum of the OV effect for geometrical configurations such that
—0.95<€=<0.00 in steps of 0.05. The amplitude of the trispectrum decreasesdasreases from 0.00 te 0.95. Because the power is
symmetric ine around 0.00 we only plotted the negatie® All the plots were calculated for the fiduci&ICDM model. Thedot dashlines
correspond te, =8 and thesolid lines toz,=17. We assumedz,=0.1(1+z).

As for the bispectrum, the Wigner-3j vanishes {f+¢; metric aroundé= /2 reflecting the symmetry of the con-
+Ljj=o0dd. So the full-sky trispectrum can only be esti- figuration. The nonlinear analog follows from the previous
mated for even terms. equation.
With this configuration which depends only on the multi-
pole ¢ and the angle&® between two sides one can calculate
D. Results an estimate of the order of magnitude of tI&N)?(6) per

We are interested in the numerical evaluation of the domibin of £ were we to include all the differertt;, €,, €3 and
nant contribution of the trispectrum as it may be of cosmo-{4 modes of the full-sky trispectrum. Indeed in Eg2), we
logical interest in the near future due to the next generatiogee that the number of modes contributing to tS&N)?
of experiments. We choose the trapezoidal configuration ifncreases aé* so we will have the following relation fog?
Fourier spacd;=K,=Kz;=K,=I with an anglef between in a bin of I:
two consecutive sides. This will give rise to the following

flat-sky trispectrum: dx?(0 " TUL))?
y p X )~€4fsk z ITe(L)] (66)
4 de YISt (2L,+1)(Cloy#
TOV (¢ )= — f”‘)d abb| 'g*(n) | '
H = 7]
dor 2m3 Jo Dg 7° whereT,(L;) is one of the 3 possible configurations of the

full-sky trispectrum for a given multipol¢ and angleéd
ﬁ,_l,el_f)) +f(£’_1,_ 6,6)> which needs to be calculated from its flat-sky counterpart
[Eq. (65)] using Eq.(63) and (64). The C{°" is calculated as
¢ for the bispectrunisee Eq.(46)]. Again, f, represents the
— —€,— 116)) reduction in signal-to-noise due to incomplete sky coverage.
7 We show the plots for the linear and the nonlinear OV
¢ ¢ flat-sky trispectrum for—0.95<e<<0.00, assuming both,
—,e,—e,—l)) +f(—,—e,e,—l” =8 andz,=17, in Fig. 3. As the trispectrum is symmetric
7 K around e=0.00 we only plotted the negatives, but this
(65  choice was arbitrary. Far,=8 the linear trispectrum peaks
around multipolef =2x 10° and has a maximum amplitude
_ _ _ of €4T(€)/(2m)=2.4x10"?%", regardless of the configura-
wheree= cos () andf is defined by Eq(58). The varioust  tion, Choosing an earlier reionization @f=17 shifts the
correspond to the different specific configurations due to th%eak tof =3x 10° and increases the overall amplitude of the
ordering of the vector&s in the sum over the functiohin  trispectrum tol*T(¢)/(27)=1.2x 10 25, Numerically we
Eq. (60). Note that the analytical expression'bgg’m issym-  find for the amplitude of the trispectrum the approximate

x| f

+f +f

¢ -9
_161_ 7_6
n

+f
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scaling dependence with reionization histoff¢= 170) 10°
=2.6x10 3 x? log®8(1+2), in agreement with the rela- 10°
tion found for the power spectrum. The effect of increasing 10
the value of angle between two consecutive sides of the trap 10
ezoid is to increase the power at small scakes 10%), such 10?
that only small scales are sensitive enough to probe differen 10
configurations. At those small scales, the power is maximum 1
for e=0.00 and then decreases as we decrease the angle. {_ o.1
at small angular scales the square configuration is the oniz 102
contributing the most. We could have expected this behavior§ 107
as the QV effect has a quite symmetric morphological signa-= ;4
ture, such that a morélamentarystructure probed by the 10°
collapsed configuration of the trispectrum is not as likely.
Here we do not observe the sharp drop in power at small
scales due to the Limber cancellation which enables one tc
speak of the trispectrum of the KSZ effect. Indeed, concern-
ing the nonlinear trispectrum, we observe an interesting fea:
ture. Contrary to the bispectrum and similarly to the power Ly
spectrum, the trispectrum is strongly affected by the weak 100 1000
nonlinear enhancement due to formation of structure at smali
scales. This enhancement has the power to broaden the FIG. 4. Contribution to they? per log interval in¢ for e=
shape, to shift the peak of the effect to smaller angular scales0.95 for the OV full-sky linear/nonlinear trispectrum with no in-
and to increase slightly the amplitude in a configuration destrumental noisétop), Planck noisgmiddle and MAP noise(bot-
pendent way. Séfor z, = 8/z,=17) we measure a higher and tom) included in the variance. Again we used the specifications in
higher maximum amplitude=2.4—7.2x10 ?"/=1.9—4.8  Table I. All the plots were calculated for the fiduciaCDM model.
X 10725 at a smaller and smaller anglé£1—4x10% The dot dashlines correspond ta,=8 and thesolid lines to z,
when you go from the collapsed trapezoid to the square cor=17. We assumediz,=0.1(1+2z). The higher amplitudes for
figuration. It is worth noticing that, whereas the amplitude oféach of the experiments correspond to the contributions from the
the nonlinear trispectra increases, the multipoles correspondili-sky nonlinear trispectrum. The horizontal line d?/d In(l)
ing to the peak of the effect remain the same for both reion=1 shows the minimum detection threshold.

ization scenarios. This is because the nonlinearities takgyajyated at 30 GHz, an eventual detection is possible at
place at the same instant in time for both reionization scearcminute scales as can clearly be seen in the figure. Most of
narios, leaving an imprint at the same characteristic angulgfe contributions come from multipoles betweér1—2
scale. X 10°. This probably is the most important conclusion of this
But the most important quantity is the signal-to-noise. Wework and illustrates our predictions. This result should be
show in Fig. 4 the estimated contributions {8 per log  taken with caution as it corresponds to a very optimistic
interval in € for the linear and the nonlinear OV full-sky upper limit on theS/N (see Secs. Il E and Sec. I\) GFirstly,
trispectrum ¢,=8 and z,=17) had we included all the the use of the Fisher matrix formalism gives the minimum
modes fore=—0.95 with no instrumental noise, Planck variance for our statistitsee section Sec. I)ESecondly, the
noise and MAP noise included in the variari¢g We chose 2 method assumes that the form of the model is correct,
e=—0.95, i.e. the collapsed configuration, because it genefwhich may not be the case. Thirdly, when calculating the
ates the highest contributions to the full-sky trispectrum neatovariance matrix of the Fisher matrix, two simplifying as-
the peak of the effect, contrary to the flat-sky trispectrum forsumptions were used: that the main contribution to the cova-
which the square configuration was the one producing théiance was Gaussian in nature and that we observed with
highest amplitude. The square configuration continues teull-sky coverage.
provide the strongest contribution at very small angular Finally, other physical mechanisms, such as for example
scales, but at larger angular scales the collapsed configurensing effects or the thermal SZ effefet,58,78,79, and
tion dominates. This is due to the angular averaged factorgnaccounted foreground37] can contribute to the trispec-
relating flat- to full-sky trispectrésee Eq(64)]. Though itis  trum at this level and so the separability problem needs to be
not explicit in the figure, thedy?/dIn¢ is zero when 2 addressed in due time. Of course, uncertainties of roughly an
+L is odd. Again, as for the bispectrum case, the structure irder of magnitude in the modeling of the thermal SZ signal
the dx?/d¢ arises mainly from the structure of the CMB are also a source of error in our estimates. The forecasted
primary power spectrum at>200. The continuous rise at ability of future multifrequency experiments to remove most
€£=3000 for a perfect experiment is due to the fact that theof the thermal SZ contributions would minimize these uncer-
signal decreases slower than the contributions t@€Cthfom tainties and would much favor a detection. Last but not least,
primary, OV and thermal SZ anisotropies up to these scalegurther progress in the implementation of optimal unbiased
Contrary to the common and most naive expectation, fotrispectrum estimators to probe such small scales and power
Planck and considering thermal SZ contribution to the noisés required.

Linear and Nonlinear /—é

107®
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V. CONCLUSIONS versely, having a template of the OV effect can help in ex-
tracting the nonlinear contributions to reionization at those
ngular scales, providing another possible window on the
omplex physics associated with reionization.

Because of its strong predictive power, linear theory is
very sensitive probe of the early stages of the reionizatior&
history through the Ostriker-Vishniac effect. Analytical ex-
pressions for its correlation functions can be derived and
their measurement would be of high value to our present
knowledge of that still unclear epoch of the universe evolu- | am much indebted to Pedro G. Ferreira whose sugges-
tion. We have presented detailed calculations of the thredons, comments and constant support have been invaluable
Fourier statistics of interest of the OV effect, the power specduring the preparation of this work. | thank also Asantha
trum, the bispectrum and the trispectrum. For that purpos€ooray for very helpful discussions and comments and for
we have developed a new technique that allows one to obtaithe thermal SZ data used to facilitate direct comparison with
their dominant contributions under the Limber approxima-his results, Evan Scannapieco for helping to improve the
tion framework. This method is applicable to the derivationmanuscript and to correct a fundamental error in the calcu-
of any statistics involving correlations among vectorlike ef-lations, Nabila Aghanim for her support and the thermal SZ
fects. It illustrates what was expected under statistical homodata used throughout the article, Andrew Jaffe for his com-
geneity and isotropy assumptions and the vector and smaments and Martin Kunz for his encouragement. This work

scale nature of the OV effect. We also evaluated numericallyVaS Supported by the Fundacpara a Ciacia e a Tecnolo-
as a function of scale and for a specific configuratiequi- gia under the reference PRAXIS XXI/BD/21249/99.

lateral for the bispectrum and trapezoidal for the trispec-

trum), these statistics for a flat CDM cosmology and two APPENDIX: LIMBER APPROXIMATION
reionization scenarios. The first one is based on our pre-
WMAP knowledge ¢,=8) and the second one takes into
account the high values for the electron optical depth me
sured by WMAP ¢,=17). We numerically obtained ap-

ACKNOWLEDGMENTS

We review the fundamental steps of the Limber approxi-
mation as used in the text. The Limber equat[@Q] de-

%cribes the two-point statistics of a field which is the two-
) . : ’ dimensional projection on the sky of a three-dimensional
proximate scaling relations for the amplitude of the OV Sta-ie)d whose statistical properties vary slowly along the line of

tistics on the reiqnization history cqns_ide(ed and .found thaEight. The Fourier space analog of this result was calculated
the dependence is stronger on the ionization fraction than o

the redshift of reionization. We have also studied their de

tectability in view of future satellite experiments. The alter- cosmologies by Hu and Whi{&2] and to open cosmologies
nation of dominant/subdominant/dominant higher order corby Hu [68]. Buchalteret al. [82] derived the Fourier space

Lglatmn funct|onst) ;\ias r&umerlcally shovt\)/n. Wh:{le the gnalog of the Limber’s equation for the bispectrum. Here we
_f|spectrum IS probably un e;:—:‘cta% ebeven' y ‘;’1‘ pehr ect r|n§ review the bispectrum derivation of Buchaltgral. and gen-
tirequency experiment capable of subtracting the therma Eralize it to the trispectrum. This applies as well to higher-

contributions, the trispectrum could be measured by Planck, o gtatistics. The error introduced by the Limber approxi-
or by interferometer experiments targeting arcminute scaIeFhation is inferior to 1% for effects with>200[56,83

with high sensitivity and for a sufficiently long period of th ecti | the li f siaht
time. This provides a unique signal distinguishing the OV Suppose we observe the projection along the line of sig

. . . f a three-dimensional statistically homogeneous and isotro-
effect from other non-vector-like secondary anisotropies an(ﬁic random fieldf
could be useful when trying to separate different physical

mechanisms imprinting themselves on these measurable sta- w0

tistics. One should bear in mind that despite this useful char- p(6)= J d7nq(7)f(786) (A1)
acteristic signature, our results are quite optimistic, although 0

encouraging, as they rely on various analytically helpful ide- N R

alized assumptions, as described previously. Also, other corwhered=(#0,,6,,0) andd=(6,,6,,1). We propose to find a
tributions to the signal are to be expected at the arcminuteelation between the spatial bispectr@p(K,,K;,K3) of p
level and thus further study of CMB small-scale secondaryand the spatial bispectruBy(K,,K,,K3) of f. Following the
anisotropies and foregrounds contributions to the trispectruriaiser method, we considerto be the sum of the contribu-

is required and much justified. In order to obtain an uppetions from narrow shells with a width » much bigger than
limit on the possible KSZ contributions, we also extendedthe relevant wavelength, that <A »/»<<1. This choice

our calculations to the mildly nonlinear regime. We found allows us to look at fluctuations on scales much less than the
that, contrary to the bispectrum, there is a noticeable eneharacteristic scale over whiapvaries and to assume that
hancement of the contributions of the trispectrum in a morcontributions from different shells are statistically indepen-
phologically dependent way and that this enhancement redent. We then calculate the contributions to the bispectrum
flects itself on the calculations of the signal-to-noise. Hencdrom each of the shells. At the end we can sum the power for
nonlinearities are expected to enhance the even norall the shells relying on their statistical independence.
Gaussian signals produced by the OV effect and further com- Assuming thag varies very little along the shell and that
plicate its disentanglement from inevitable model-dependerthe section of the shell is plane-symmetric the contribution
nonlinear effects arising from structure formation. Con-from the shell of widthA 7 centered aty, is

'sky approximation to an all-sky approach for spatially flat
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. 7o+ A7l2 perform thed?@ integral which is (27)% 7253 (k—K/ 7o)
Ap(8)=a( 7o) - dnf(n001,7002,7m). (A2) g the time integral which id 7] o(k,A 7/2) to yield
Decomposing the fields in Fourier space, the spectrutkpf S A dk._
s Ap(K) "Q(%)f(z;) ( 2, k)Jo(k Anl2),

— (A4)
Ap(K)=q(70)

Using
xf d20ei(”0‘z"z)'5f”0+ ! dne'z7 (A3) F Ok VF(KF 3
o Anl2 (k)T (ka)F(ka))=(27)Br(Ky Kz, K3) S5 (K1 +Kp+Ks)

where K= (K, ,K,,0) andk=(k,,k, k,)=(kk,). We can the three-point spectrum is

__ Aniq? K3 K3
DAP(K)AP(Kg))= 7 (WO)f dklzf dkzzf dks,B (\/ ; o \/—+k22,\/ §+k )
Un) Un)

X jo(K1zA 7/2)j o( Koz 17/2) j o( Ka A 17/2) 85 (K, /770+K2/770+K I10) 6p(Ky,+ Ko, +Ks,)

_ Ay q3( 70) K3 Ka . K3
S | [ day| G\ e\ Gt
7o 7o 7o

X j o(K1zA 712)j o( Koz 1712) o[ (— Ky,— Kop) A 912] 53(Ky + Ko+ Ks). (A5)

N
o
~_~~
Xt

The important simplification comes from the fact that the <"A“( K JAp(K, )Ap(K3)>
major contribution from the first two Bessel functions comes

from k;,<1/A 5 andk,,<1/A 5. But by assumptiorK /7, ,A 793(70) Ky Ko K\ ,

>1/A7n, Ky/no>1/An and K3/ > 1/A 7. Therefore k,, =4m ————B¢| —,—, — | op(K1 + K+ Kj)
<K /750, koy<Ky/no and ky,+ky,<Kg/75,. SO we can 7o 70 70" 7o

neglect all Fourier modes parallel to the line of sight. To a (A7)
very good approximaton

5 K2 K2 =(2m)?By(K1,Kz,K3) 85(Ky + Ko +Ky)
2 2 2 3
klzv 2+k221 2 (klz+k22) 3
o 7o a°(») Kl K2 Ks
Bp(K11K21K3): d7] T T T
Ky Kz Kj 77 n'n'n
=B¢l —,—,—|. (A8)
7o 7o 7o
The exact same reasoning can be applied to the calculation
The integration of the Bessel functions gives of the trispectrum. This time we obtain for the same projec-
tion
au [ dojgioviouto) =7 (a6) o) Ky Ky Ky K
J To(Ks Ko Ko Ka) = | dn&?n(—l,—z,—?—“).
7 n n N 7
We obtain finally (A9)
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