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Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detecto
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According to quantum measurement theory, ‘‘speed meters’’—devices that measure the momentum, or
speed, of free test masses—are immune to the standard quantum limit~SQL!. It is shown that a Sagnac-
interferometer gravitational-wave detector is a speed meter and therefore in principle it can beat the SQL by
large amounts over a wide band of frequencies. It is shown, further, that, when one ignores optical losses, a
signal-recycled Sagnac interferometer with Fabry-Perot arm cavities has precisely the same performance, for
the same circulating light power, as the Michelson speed-meter interferometer recently invented and studied by
Purdue and the author. The influence of optical losses is not studied, but it is plausible that they be fairly
unimportant for the Sagnac interferometer, as for other speed meters. With squeezed vacuum~squeeze factor
e22R50.1) injected into its dark port, the recycled Sagnac interferometer can beat the SQL by a factorA10
.3 over the frequency band 10 Hz& f &150 Hz using the same circulating powerI c;820 kW as is to be used
by the~quantum limited! second-generation Advanced LIGO interferometers—if other noise sources are made
sufficiently small. It is concluded that the Sagnac optical configuration, with signal recycling and squeezed-
vacuum injection, is an attractive candidate for third-generation interferometric gravitational-wave detectors
~LIGO-III and EURO!.

DOI: 10.1103/PhysRevD.67.122004 PACS number~s!: 04.80.Nn, 03.67.2a, 42.50.Dv, 95.55.Ym
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I. INTRODUCTION

After decades of planning and development, an array
large-scale laser interferometric gravitational-wave detec
~interferometers for short!, consisting of the Laser Interfer
ometer Gravitational-wave Observatory~LIGO!, VIRGO,
GEO and TAMA @1#, is gradually becoming operative, ta
geted at gravitational waves in the high-frequency ba
(10–103 Hz). Michelson-type laser interferometry is used
these detectors to monitor gravitational-wave-induc
changes in the separations of mirror-endowed test mas
More specifically, a laser beam is split in two by a 50/
beamsplitter, and the two beams are sent into the two a
~which may contain Fabry-Perot cavities! and then brought
back together and interfered, yielding a signal that senses
difference of the two arm lengths. Although it is plausib
that gravitational waves will be detected, for the first time
history, by these initial interferometers, a significant upgra
of them must probably be made before a rich program
observational gravitational-wave astrophysics can be car
out @2#. In the planned upgrade of the LIGO interferomete
~Advanced LIGO, tentatively scheduled to begin operatio
in 2008 @3#!, the Michelson topology will still be used, a
also is probably the case for Advanced LIGO’s internatio
counterparts, for example the Japanese LCGT@4#.

An alternative to the Michelson topology, the Sagnac
pology, originally invented in 1913 for rotation sensing@5#,
can also be used for gravitational-wave detection, if the li
circumscribes zero area@6,7#. In a Sagnac interferometer, a
in a Michelson interferometer, a laser beam is split in tw
but each of the two beams travels successively through
arms, though in the opposite order~in opposite directions!.
When the two beams are finally recombined, a signal se
tive to thetime-dependent partof the arm-length difference
is obtained.

Until now, there has been little motivation to switch fro
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the more mature Michelson topology to the Sagnac topolo
because~i! the technical advantages provided by the Sag
topology ~e.g., simpler control system required, high tole
ance to reflectivity imbalance between the arms! have not
been able to overcome its disadvantages~e.g., low tolerance
to beamsplitter reflectivity error and beamsplitter tilt! @7–9#,
and ~ii ! the shot-noise limitedsensitivities of ideal Sagna
interferometers have not exhibited any interesting featu
with astrophysical distinction that cannot be equally realiz
by signal-recycled Michelson interferometers@10#. Neverthe-
less, a sustained research effort is still being made on
Sagnac topology, aimed at third generation gravitation
wave detectors~beyond Advanced LIGO!. In particular, an
all-reflective optical system suitable for the Sagnac is be
developed@11#, with the promise of being able to cope wit
the very high laser powers that may be needed in the t
generation, by avoiding high-intensity light from passin
through the substrate. At the same time, all-reflective op
also provides the flexibility of using non-transparent su
strate materials that have superior thermal properties,
silicon.

In this paper, a theoretical study of the idealized no
performance of Sagnac-based interferometers at high l
powers is carried out. It is shown that, by contrast with t
previously studied low-power regime, the~ideal! Sagnac in-
terferometer might be significantly better at high powers th
its ideal Michelson counterparts, and thus is an attrac
candidate for third-generation interferometric gravitation
wave detectors, e.g., LIGO-III and EURO@12#.

In advanced gravitational-wave interferometers, the la
power is increased to lower the shot noise. However, at th
higher light powers, the photons in the arms exert stron
random forces on the test masses, thereby inducing stro
radiation-pressure noise. At high enough laser power
~above about 850 kW in Advanced LIGO!, the radiation-
pressure noise can become larger than the shot noise
©2003 The American Physical Society04-1
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YANBEI CHEN PHYSICAL REVIEW D 67, 122004 ~2003!
dominate a significant part of the noise spectrum~usually at
all frequencies below the noise-curve minimum!. As was first
pointed out by Braginsky in the 1960s@13,14#, a balance
between the two noises gives rise to a standard quan
limit ~SQL!. As was later realized, again by Braginsk
@13,14#, the SQL can be circumvented by clever desig
which he named quantum nondemolition~QND! schemes.

The advanced LIGO interferometers were origina
planned to operate near or at the SQL@3#, but it was later
shown by Buonanno and Chen that they can actually bea
SQL by a moderate amount over a modest frequency b
due to a change in interferometer dynamics@15–17# induced
by detuned signal-recycling@18,19#.

Generations beyond Advanced LIGO, however, will ha
to beat the SQL by significant amounts over a broad
quency band; i.e., they must bestrongly QND. Currently
existing schemes for strongly QND interferometers w
Michelson topology include:~i! The use of two additiona
kilometer-scale optical filters to perform frequenc
dependent homodyne detection@20# at the output of a con-
ventional Michelson interferometer, as invented and a
lyzed by Kimble, Levin, Matsko, Thorne and Vyatchan
~KLMTV ! @21#. ~Reference@21# can be used as a gener
starting point for the quantum-mechanical analysis of QN
gravitational-wave interferometers.! ~ii ! The speed-meter in
terferometer, originally invented by Braginsky and Khal
@22#, developed by Braginsky, Khalili, Gorodetsky an
Thorne@23#, and later incorporated into the Michelson topo
ogy by Purdue and Chen@24,25#. In its Michelson form, the
speed meter uses at least one additional kilometer-scale
tical cavity to measure the relative momentum of the free
masses over a broad frequency band.

The speed meter is motivated, theoretically, by the f
that the momentum of a free test mass is aQND observable
@27,28#, i.e., it can be measured continuously to arbitra
accuracy without being limited by the SQL. This fact can
understood by noticing that the momentum of a free mas
a conserved quantity. In a continuous measurement on f
mass momentum, the measurement-induced kicks on
placement, its canonical conjugate, will not affect its futu
values. In this way, there can in principle be vanishing ba
action noise in such a measurement. Practically, Q
schemes based on a Michelson speed meter can ex
broadband QND performances using only one additio
kilometer-scale cavity, by contrast with the two addition
cavities needed for QND schemes based on a conventi
Michelson interferometer~a position meter!. Michelson–
speed-meter-based QND schemes are also less suscept
optical losses than those based on Michelson position me
~Sec. V of@25#!.

Surprisingly, so far as we are aware nobody has pre
ously noticed that, because the Sagnac interferometer is
sitive only to thetime-dependent partof the arm-length dif-
ference, it is automatically a speed meter. Moreover, as
shall see in this paper, with the help ofsignal-recycling
@18,19#, i.e., by putting one additional mirror at its dark ou
put port, a Sagnac interferometer can be optimized to ha
comparable performance to a Michelson speed meter,with-
out the need for any additional kilometer-scale cavities. In
12200
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particular, a signal-recycled Sagnac interferometer with r
cavities in its arms has exactly the same performance as
Michelson speed meters of Ref.@25#, aside from~presumably
minor! differences due to optical losses.

This paper is organized as follows: in Sec. II we deri
the input-output relation of signal-recycled Sagnac interf
ometers, with either optical delay lines or ring-shaped Fab
Perot cavities in the arms, showing that they are indeed m
suring the relative speed of test masses. In Sec. III,
evaluate the noise spectral density of ideal Sagnac inte
ometers, obtaining comparable performances to the Mic
son speed meters. In Sec. IV, we discuss some technica
sues that deserve further investigation. Finally, Sec.
summarizes our conclusions. The Appendix contains det
in the calculations of the input-output relation of a sing
interferometer arm, which might contain an optical delay li
or a ring cavity.

II. THE SAGNAC AS A SPEED METER, AND ITS
INPUT-OUTPUT RELATIONS

A. The Sagnac optical configuration

Two well-known variants of Sagnac interferometers a
shown in Figs. 1 and 2, which uses optical delay lin
~henceforth abbreviated as DL! or ring-shaped Fabry-Pero
cavities~henceforth abbreviated as FP!, formed by input test-
mass mirrors~ITMs! and end test-mass mirrors~ETMs! ~the
ring cavity has an additional perfect mirror!, in the arms to
enhance signal strength. A power-recycling mirror~PRM!
and a signal-recycling mirror~SRM! are also used@6,18#, in
order to enhance further the circulating power inside
arms, and to modify and improve the frequency response
the interferometer.

As a brief historical note, the ideas of using optical del
lines and Fabry-Perot cavities in arms were due to Weiss@26#
and Drever@6#, respectively. These two signal-recycled Sa
nac configurations can be traced back equivalently to the

FIG. 1. Schematic plot of a Sagnac interferometer with opti
delay lines in the arms.
4-2
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SAGNAC INTERFEROMETER AS A SPEED-METER- . . . PHYSICAL REVIEW D 67, 122004 ~2003!
original designs of Drever, as shown in Figs. 9 and 10 of R
@6#. These original Sagnac designs by Drever were inten
to explain the idea of what is currently known as signal
cycling, instead of the zero-area Sagnac topology its
However, the currently widely-used signal-recyclin
schemes were invented by Meers@18# based on the idea o
Drever, but much simplified. In this paper we have adop
the the signal-recycling scheme of Meers.

In both variants shown in Figs. 1 and 2, the carrier lig
enters the interferometer from the left port~also called the
‘‘bright port’’ ! of the beamsplitter~BS!. The light gets split
in two and travels into the two arms in opposite orders;
denote by R the beam that enters the North~N! arm first and
the East~E! arm second, and by L that which enters E fi
and N second. As the mirrors are all held fixed at their eq
librium positions, the carrier R and L beams, upon arrivi
again at the beamsplitter, will combine in such a way that
lights exits to the port below the beamsplitter~the ‘‘dark
port’’ !. Similarly, any vacuum fluctuations that enter the
terferometer at the bright port along with the carrier lig
will also be suppressed in the dark-port output. Only vacu
fluctuations that entered the interferometer from the d
port can leave the interferometer through the dark port. A
result, the dark port is decoupled from the bright port, as i
Michelson interferometer. This fact is crucial to the suppr
sion of laser noise in the dark-port output.

B. The Sagnac’s speed-meter behavior

When the end mirrors of the two arms are allowed
move, they phase modulate the carrier light, generating s
band fields. Only antisymmetric, non-static changes in
arm lengths can contribute to the dark-port output; this i
result of the cancellation at the beamsplitter, and the fact
the two beams pass through the two arms in opposite or
A more detailed but still rough exploration of this point r
veals the Sagnac’s role as a speed-meter interferometer

Denoting bytarm the ~average! storage time of light in the
arms and byxN, E the time-dependent displacements of t

FIG. 2. Schematic plot of a Sagnac interferometer with r
cavities in the arms.
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end mirrors, we have for the phase gained by the R an
beams after traveling from the bright entry port through t
two arms to the dark exit port:

dfR;xN~ t !1xE~ t1tarm!,

dfL;xE~ t !1xN~ t1tarm!.

The amplitude of the dark-port output is proportional to t
phase difference of the two beams at the beamsplitter:

dfR2dfL;@xN~ t !2xN~ t1tarm!#2@xE~ t !2xE~ t1tarm!#.
~1!

As a consequence, the Sagnac interferometer isnot sensitive
to any time-independent displacement of the test masses
expanding Eq.~1! in powers oftarm, we see that, at frequen
cies much smaller than 1/tarm, the speedof the test-mass
motion is measured, and at higher frequencies, a mixtur
the speed and its time derivatives is measured—as also i
case in other speed meters@22,24,25#.

In reality, the storage timetarm is determined by the
round-trip time of light inside the arm, 2L/c, times the num-
ber of round trips the light makes before leaving the ar
which can either be fixed by the geometry of the optic
delay lines, or be determined~in an average sense! by the
input power transmissivityT the arm cavity~average number
of bounces'2/T). Although a smaller storage time can giv
a broader bandwidth, the sensitivity achieved with a fix
amount of optical power will also be lower. It is therefo
advisable to put 1/tarm in the middle of interested frequenc
spectrum, which is around 2p3100 Hz for earth-based
gravitational-wave interferometers. For the LIGO facili
with L54 km, this corresponds to the requirement of
60-bounce optical delay line, or an input power transmiss
ity of around 3%.

C. Input-output relations without a signal-recycling mirror

As a foundation for evaluating the performances of S
nac interferometers in the high-power regime, we shall n
derive their quantum mechanicalinput-output relations—i.e.,
we shall derive equations for the quantum mechanical da
port output fieldq in terms of the input~vacuum! fields p at
the dark port andz at the bright port~see Figs. 1 and 2!,
which in the end does not appear inq, and the gravitational-
wave strainh. Here we have denoted byaRN,RE,LN,LE the
input sideband fields of the R and L beams at the N an
arms, and bybRN,RE,LN,LE the output sideband fields. For th
moment, we shall ignore the existence of the signal-recyc
mirror ~SRM!; and throughout we shall ignore the powe
recycling mirror~PRM! since~as for Michelson topologies!
it merely serves to provide a larger input power at the bea
splitter and has no other significance for the interferomete
quantum noise.

In this paper, we shall use the Caves-Schumaker t
photon formalism@29# ~briefly introduced in Sec. IIA of
KLMTV !, which breaks the time-domain sideband fields,
any given spatial location, into the following form,
4-3
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TABLE I. Expressions forCarm, Karm, CsagnacandKsagnacin the DL ~optical delay line! and FP~ring-
shaped Fabry-Perot cavity! cases. Herev0 is the carrier frequency,c the speed of light,L the arm length,m
the mirror mass,I c the circulating power in the arms,B the number of bounces inside the optical delay lin
andT, R the power transmissivity and reflectivity of the ring-cavity ITM, withT1R51.

DL FP

Carm BVL/c arctanS11AR

12AR
tan

VL

c D
Karm

8Icv0

mBV2c2 S sinBVL/c

sinVL/c D2 8Icv0

mV2c2 S T

122ARcos~2VL/c!1R
D

Csagnac 2BVL/c1p/2 2arctanS11AR

12AR
tan

VL

c D 1p/2

Ksagnac

32I cv0

mLcS c

LBD 3 F sin2~BVL/c!

~BVL/c!~BsinVL/c!G
2 32I cv0

mV2c2 F ~11AR!ATsin~VL/c!

122ARcos~2VL/c!1R
G2
l
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E~ t !5A4p\v0

Ac
@E1~ t !cos~v0t !1E2~ t !sin~v0t !#, ~2!

wherev0 is the carrier frequency,A is the cross sectiona
area of the beam. HereE1,2(t) are slowly varying fields
called the cosine~or amplitude! and sine~or phase! quadra-
tures. These quadratures fields can be thought of as am
tude or phase modulations on a carrier field of the fo
Dcos(v0t). The quadrature fields can be expanded as

E1,2~ t !5E
0

1`dV

2p
~a1,2e

2 i V t1a1,2
† e1 i V t!, ~3!

in terms of the quadrature operatorsa1,2(V). A more general
quadrature operator can be constructed froma1,2:

aF5a1cosF1a2sinF. ~4!

The set of propagation equations common to both of
Sagnac configurations@with either delay lines~DL! or ring-
shaped Fabry-Perot cavities~FP! inside the arms# are: ~i! at
the beamsplitter,

aRN5
z1p

A2
, aLE5

z2p

A2
, q5

bLN2bRE

A2
; ~5!

and ~ii ! when the beams leave one arm and enter the oth

aRE5bRN, aLN5bLE. ~6!

The above equations~5! and~6! are for both quadratures. B
writing down these equations, we assume the distances
tween the BS and ITMs to be small, and also integer m
tiples of the laser wavelength.

The input-output relations for the arms, i.e., theb–a re-
lations, are evaluated in the Appendix~in an manner analo
gous to that of KLMTV for Michelson configurations!, for
the distinct cases of DL and FP. The results can be put
the following simple form:
12200
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b1
IJ5e2iCarma1

IJ , ~7!

b2
IJ5e2iCarm@a2

IJ2Karm~a1
LJ1a1

RJ!#

1eiCarm
A2Karm

hSQL
A2 x̃J

GW/L. ~8!

Here I 5L, R stands for either one of the two beams, andJ
5E, N stands for either one of the two arms. The quan
x̃J

GW is the gravitational-wave induced displacement of t
Jth ETM ~in frequency domain!, L is the arm length. The
standard quantum limit is given by

hSQL5A 8\

mV2L2
, ~9!

wherem is the mass of the ITM and the ETM. Expressio
for Carm andKarm, in the cases of DL and FP, are given
the Appendix @Eqs. ~A17!, ~A18!, ~A28! and ~A29!# and
summarized in Table I. Combining Eqs.~5!–~8!, we obtain
q1,2 in terms of the input fields and the dimensionle
gravitational-wave strain~in frequency domain!, h̃ @also us-
ing h̃5( x̃E

GW2 x̃N
GW)/L]:

q15e2iCsagnacp1 , ~10!

q25e2iCsagnac~p22Ksagnacp1!

1eiCsagnac
A2Ksagnac

hSQL
h̃, ~11!

with

Csagnac52Carm1
p

2
, ~12!

Ksagnac54Karmsin2Carm. ~13!
4-4
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SAGNAC INTERFEROMETER AS A SPEED-METER- . . . PHYSICAL REVIEW D 67, 122004 ~2003!
Expressions forCsagnacandKsagnacin the DL and FP case
can be obtained by inserting Eqs.~A17!, ~A18!, ~A28! and
~A29! into Eqs.~12! and~13!, with results summarized agai
in Table I. Indeed, as mentioned at the beginning of t
section, the bright-port input fieldz does not appear in th
dark-port output quadratures,q1,2.

The input-output relations~10! and ~11! have the same
general form as those of a conventional Michelson inter
ometer, Eq.~16! of @21#, and those of a Michelson spee
meter, Eqs.~27! of @24# or Eqs.~12! of @25#. In particular, as
discussed in the Appendix, the output phase quadratureq2
@Eq. ~10!# is a sum of three terms: the shot noise~first term!,
the radiation-pressure noise~second term! and the
gravitational-wave signal~third term!, while the output am-
plitude quadratureq1 @Eq. ~11!# contains only shot noise.

D. Influence of signal recycling on the input-output relations

Since the input-output relations of Sagnac interferome
have the same form as those of a conventional Michel
interferometer, the quantum noise of signal-recycled Sag
interferometers can be obtained easily using the prescript
of Refs. @15,16#. For simplicity, we shall restrict the signa
recycling cavity to be either resonant with the carrier f
quency~‘‘tuned SR’’! or anti-resonant~‘‘tuned RSE’’!, leav-
ing the detuned case for future investigations. In these ca
the dynamics of the interferometer are not modified by
signal recycling, and the input-output relation has the sa
form as Eqs.~10! and~11!, with Ksagnacreplaced by~see Sec.
IIIC of Ref. @15#!

Ksagnac SR5
t2

122rcos2Csagnac1r2
Ksagnac, ~14!

andCsagnacreplaced by a quantityCsagnac SRwhose value is
not of interest to us. Herer andt are the~amplitude! reflec-
tivity and transmissivity of the signal-recycling mirror, wit
rPR, t.0 andr21t251. Expressions forKsagnac SRcan
be obtained by using results in Table I.

Using the fact thatVL/c!1 ~for earth-based interferom
eters in the high-frequency band!, B@1 ~for the DL case!
andT!1 ~for the FP case!, we can obtain some approxima
formulas forKsagnac SR~which also apply to the non-SR cas
with r→0 andt→1): in the DL case

Ksagnac SR
DL 5

32I cv0

mLcgDL
3 F t2

112rcos~4V/gDL!1r2G
3Fsin~V/gDL!

V/gDL
G4

, ~15!

with

gDL5
c

BL
, ~16!

and in the FP case
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Ksagnac SR
FP 5

16I cv0

mLc

d

~V22Vs
2!21d2V2

, ~17!

with

d52S 11
T

2D 12r

11r
gFP, Vs5S 11

T

2DgFP, ~18!

where

gFP5
Tc

4L
. ~19!

Interestingly, Eq.~17! is identical to Eqs.~22! and ~23! of
Ref. @25#, with substitutions~this paper→ Purdue and Chen!
I c→Wcirc ~circulating power!, Vs→V ~sloshing frequency!,
d→d ~extraction rate!, V→v ~sideband frequency!, and
Ksagnac SR

FP →k. As we shall explain further in the following
sections, the coupling constantKsagnac SR alone ~besides
hSQL, which depends onm andL) will determine the quan-
tum noise of the interferometer. This means that a sign
recycled Sagnac interferometer with ring cavities in its ar
is equivalent in performance to the Michelson speed me
proposed in Refs.@24,25# ~if we ignore the influence of op-
tical losses and other noise sources!.

E. Frequency dependence of coupling constantsK,
and Sagnac interferometers as speed meters

As can be seen both analytically in Eqs.~17! and~18! and
graphically in Fig. 3, the coupling constantKsagnacof a Sag-
nac interferometer without signal recycling~i.e., t51, r
50) approaches a constant asV→0, which also turns out to
be its maximum. This fact, combined with the input-outp
relation~11!, suggests that the second output quadratureq2 is
indeed sensitive to the speed of the interferometer indu
by the gravitational wave, since at low frequencies

q2~signal part!}VAK~V50!x̃GW}momentum. ~20!

FIG. 3. The coupling constantKsagnac(V) for non-signal-
recycled DL@in solid line, Eq.~15! with r50, t51] and FP@in
dashed line, Eq.~17! with d52Vs] Sagnac interferometers, in ar
bitrary ~logarithmic! units, with V measured in units ofgDL ~DL
case! andVs ~FP case!, respectively.
4-5
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FIG. 4. The coupling constantKsagnac SR(V) for signal-recycled DL@left panel, Eq.~15!# and FP@right panel, Eq.~17!# Sagnac
interferometers, in arbitrary~linear! units, with V measured in units ofgDL ~DL case! andVs ~FP case!, respectively. For DL: cases with
r50 ~solid curve!, 0.1 ~dotted curve! and 0.2~dashed curve! are plotted. For FP cases withd52Vs ~solid curve!, A2Vs ~dotted curve!, and
Vs ~dashed curve! are plotted, corresponding tor50, 0.172, and 0.333.
e

.

tio

,
dd
m
L

ut-
r
.

ity
~A more detailed discussion of the link betweenK and a
speed meter’s performance is given in Sec. IIIA of Ref.@25#;
that discussion, in the framework of a Michelson spe
meter, is equally valid for a Sagnac speed meter.! When sig-
nal recycling is added, the shape ofK(V) can be adjusted
for optimization purposes; examples are shown in Fig. 4

III. NOISE SPECTRAL DENSITY

In this section, we shall assume that homodyne detec
can be carried out on any~frequency-independent! quadra-
ture,

qF5q1cosF1q2sinF. ~21!

Homodyne detection is essential for QND interferometers
they are to beat the SQL by substantial amounts; the a
tional noise associated with heterodyne detection sche
can seriously limit an interferometer’s ability to beat the SQ
@30,31#.
12200
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The noise spectral density associated with the inp
output relations~10! and ~11! can be obtained in a manne
analogous to that of Sec. IV of KLMTV or Sec. III of Ref
@25#. The result is

Sh5F ~cotF2Ksagnac SR!
211

2Ksagnac SR
GhSQL

2 . ~22!

As is also discussed in Refs.@23–25#, the optimal quadrature
to observe is the one with

cotF5Kmax[max
V

Ksagnac SR~V!; ~23!

for this quadrature the noise spectral density is

Sh5F ~Kmax2Ksagnac SR!
211

2Ksagnac SR
GhSQL

2 . ~24!

In the left panel of Fig. 5, we plot the noise spectral dens
s

FIG. 5. The noise spectral density@for the optimized quadrature, see Eq.~23!# of non-signal-recycled DL~left panel! and FP~right panel!
Sagnac interferometers@Eq. ~24!, settingr50 andt51], assumingI c58.2 MW andm540 kg. @By injecting squeezed vacuum~with
squeeze factore22R) into the dark port, one can reduceI c by a factore2R;10.# For DL: cases withB540 ~dotted curve!, 60 ~solid curve!
and 80~dashed curve! are plotted. For FP: cases withVs52p3200 Hz~dotted curve!, 2p3220 Hz~solid curve! and 2p3240 Hz~dashed
curve! are plotted. The noise curves for the fiducial speed meter~in gray! and the SQL~dark straight lines! are also plotted in both panel
for comparison.
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FIG. 6. The solid curves are the noise spectral densities of signal-recycled DL~left panel! and FP~right panel! Sagnac interferometers
@Eq. ~24!#, assumingI c58.2 MW andm540 kg. @By injecting squeezed vacuum into the dark port, one can reduceI c by a factore2R

;10.# For DL, we takeB560, r50.12; for FP, we takeVs52p3173 Hz andd52p3200 Hz, which correspond toT50.0564 andr
50.268. The corresponding non-recycled noise curves are also shown, as dashed curves. The noise curve of the fiducial Miche
meter is plotted in gray in the left panel and is identical to the solid, signal-recycled FP Sagnac noise curve in the right panel; the
quantum limit is shown as dark straight lines.
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of a delay-line Sagnac interferometerwithout signal recy-
cling, with m540 kg andI c58.2 MW ~the characteristic cir-
culating power used for the Michelson speed meter in R
@24,25#!, and withB540, 60, 80@corresponding to power
in a single beam equal to 102.5 kW, 68.3 kW and 51.3 k
respectively; see Eq.~A9!; these powers can be lowered b
injecting squeezed vacuum into the dark port, as we s
discuss below#. The noise spectral density of the fiduci
Michelson speed meter of Refs.@24,25#, with the sameI c and
m, and ~in their notation! V52p3173 Hz, d52p
3200 Hz, is also plotted for comparison. In the right pan
we plot the noise spectral density of a ring-cavity Sagn
interferometerwithoutsignal recycling, with the samem and
I c , and with gFP52p3200 Hz, 2p3220 Hz and 2p
3240 Hz. As one can see in the two panels, both confi
rations of non-recycled Sagnac interferometers exh
broadband QND performance, with the beating of the S
concentrated at low frequencies.

Signal recycling allows us to improve and optimize t
Sagnac interferometers so they have similar performance
Michelson speed meter; i.e., so they beat the SQL b
roughly constant factor over a substantially broader f
quency band than without signal recycling. In particul
since the spectral density~22! only depends onK, and
Ksagnac SR

FP is the same as that of a Michelson speed meter,
signal-recycled Sagnac interferometers with ring cavit
will have the same performance as the Michelson sp
meters. In Fig. 6, we give one example for each of the
and FP configurations. In the left panel we plot the no
spectral density for a signal-recycled DL Sagnac withm
540 kg, I c58.2 MW, B560 ~and therefore I b568 kW)
and r50.12 ~dark solid curve!, compared with that of the
corresponding non-recycled (r50) interferometer~dashed
curve!, and that of the fiducial Michelson speed meter~gray
solid curve!. In the right panel we plot the the noise spect
density of a signal-recycled FP Sagnac interferometer w
T50.0564,r50.268, corresponding toVs52p3173 Hz,
and d52p3200 Hz @from Eq. ~18!#. This interferometer
12200
s.

,

ll

l,
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-
it
L

a
a
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s
d

L
e

l
h

has the same noise spectral density as the fiducial Miche
speed meter.@The two noise curves agree perfectly, appe
ing as the solid curve in the panel.# The corresponding non
recycled noise curve~with r50) is also plotted~the dashed
curve! for comparison.

As conceived by Caves@28# and discussed in Refs
@21,25#, injecting squeezed vacuum into the dark port c
lower the required circulating power. For example, as d
cussed in Sec. IVA of Ref.@25#, for speed meters with input
output relations with the form of Eqs.~10! and ~11!, the
circulating power can be lowered by the squeeze fac
e22R, while maintaining the same performance. In t
LIGO-III era, it is reasonable to expecte22R;0.1 @21#, so
the circulating powers cited above can be lowered by a fa
;10. The resulting fiducial circulating power,I c
58.2 MW/105820 kW is about the same as planned for t
second-generation Advanced LIGO interferometers.

Finally, for signal-recycled FP Sagnac interferomete
since they are equivalent to the Michelson speed meter
Ref. @25#, one can further improve the high-frequency pe
formance by performing frequency-dependent homodyne
tection with the aid of two kilometer-scale optical filters
the dark-port output; see Sec. IVB of@25#.

IV. DISCUSSION OF TECHNICAL ISSUES

We shall now comment on three technical issues t
might affect significantly the performances of Sagnac spe
meter interferometers:

Optical losses.So far in this paper, we have regarded
interferometers as ideal; most importantly, we have igno
optical losses. As has been shown by several studies o
Michelson case@21,25#, optical losses can sometimes be t
limiting factor on the sensitivity of a QND interferomete
However, as shown in Ref.@25#, Michelson speed meters ar
less susceptible tooptical losses than Michelson positio
meters @even though the losses may be enhanced by
larger number of optical surfaces on which to scatter or
4-7
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sorb, and by the fact that the coupling constantK(V) re-
mains finite asV→0 rather than growing to infinity#. It is
plausible that this feature will be retained, at least for opti
losses associated with the individual optical elements,
with the readout scheme, but rigorous calculations are ye
be carried out. Moreover, the losses due to the use of diff
tive optics and polarization techniques in some Sagnac c
figurations@11# deserve serious study.

High power through the beam splitter.As we saw at the
end of Sec. III, for FP Sagnac interferometers, in order
optimize the shape of the noise curve, the required value
the power transmissivity of the ITM can become as large
0.05, which may require optical powers at the level of tens
kilowatts through the beamsplitter~even when squeeze
vacuum is injected into the dark port!; this may pose a prob
lem for implementation. In Michelson speed meters,
resonant-side-band-extraction technique can be used
greatly reduce the power through the beamsplitter with
affecting the interferometer’s performance, but it is not cle
whether an analogous trick exists for Sagnac interferome

Susceptibility to mirror tilt and imperfections.In the low-
laser-power limit, the Sagnac interferometer is known to
more susceptible to mirror tilting than are Michelson inte
ferometers, but less susceptible to geometric imperfect
of mirrors @9#. A study of these susceptibilities needs to
carried out in the context of high laser power, in order to s
whether they pose any serious difficulty in the implemen
tion of Sagnac speed meters.

V. CONCLUSIONS

In this paper, a quantum-mechanical study of idealiz
Sagnac interferometers, including radiation-pressure effe
has been carried out. As was already known, Sagnac in
ferometers are sensitive only to the time varying part of
antisymmetric mode of mirror displacement. It was a sh
and trivial step, in this paper, to demonstrate that this me
a Sagnac interferometer measures the test masses’ re
speed or momentum and therefore is a speed meter
QND capabilities. Detailed computations revealed that,
for other speed meters, a broad-band QND performance
be obtained, when frequency-independent homodyne de
tion is performed at the dark port. Signal recycling can
employed to further optimize the noise spectrum so it
comparable to that of a Michelson speed meter~or exactly
the same, for Sagnac configurations with ring cavities in
arms!; and, by contrast with the Michelson, this can
achieved without the need for any additional kilometer-sc
FP cavity. @In the case of frequency-dependent homody
detection with the aid of two kilometer-scale filter cavitie
the Sagnac speed meter still needs one less optical c
than its Michelson counterpart.# If further technical issues
including those related to optical losses~Sec. IV!, can be
resolved, the Sagnac optical topology will be a strong can
date for third-generation gravitational-wave interferomete
such as LIGO-III and EURO.
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APPENDIX: INPUT-OUTPUT RELATIONS
FOR THE ARMS

Since the north and east arms are identical, we need
analyze one of them. For concreteness, we study the
arm. In Appendix B of Ref.@21#, KLMTV derived the input-
output relation for a simple FP cavity, using the same Cav
Schumaker quadrature formalism@29# as we use here. The
input-output relations for optical delay-line arms and ri
cavities can be derived analogously:

1. Optical delay line „DL …

Following the procedure of KLMTV, we initially suppos
that the ITM is not moving~its motion will be accounted for
later!, and we denote the displacement of the ETM byxE(t).
Suppose the R beam has an electric field amplitude

ERE in~ t !5@D1E1
RE in~ t !#cosv0t1E2

RE in~ t !sinv0t
~A1!

at the location where it enters the E arm; hereD is the~clas-
sical! carrier amplitude andE1,2

RE in(t) are the sideband
quadrature fields

E1,2
RE in~ t !5A4p\v0

Ac E
0

1`dV

2p
@a1,2

REe2 iVt1h.c.#,

~A2!

with ‘‘h.c.’’ meaning ‘‘Hermitian conjugate.’’ The output
beam afterB bounces is delayed by

Dt52BL/c12@xE~ t2L/c!1xE~ t23L/c!

1•••1xE„t2~2B21!L/c…#, ~A3!

so

ERE out~ t !5ERE in~ t2Dt !

'@D1E1
RE in~ t22BL/c!#cosv0t

1E2
RE in~ t22BL/c!sinv0t

1
2v0D

c (
k51

B
xE„t2~2k21!L/c…. ~A4!

Comparing with

E1,2
RE out~ t !5A4p\v0

Ac E
0

1`dV

2p
@b1,2

REe2 iVt1h.c.#,

~A5!

we obtain

b1
RE5e2iBVL/ca1

RE, ~A6!
4-8
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b2
RE5e2iBVL/ca2

RE

1
2v0

c
A 2I b

\v0
S sinBVL/c

sinVL/c DeiBVL/cx̃E, ~A7!

where x̃E is the Fourier transform ofxE(t). Here I b is the
power of the beam,

I b5
D2Ac

8p
, ~A8!

which is related to the total circulating power by

I b5
I c

2B . ~A9!

The physical meanings of Eqs.~A6! and~A7! can be roughly
explained as follows:~i! the gravitational-wave signal em
bodied inx̃E is only present in the second~phase! quadrature,
b2

RE, of the output sideband field, i.e., in the second term
the right-hand side of Eq.~A7!; ~ii ! the first term on the
right-hand sides of Eqs.~A6! and ~A7! represents the sho
noise, which originates from the quantum fluctuations of
input field. Obviously, the relations~A6! and~A7! also apply
to the L beam, with the change of superscript R to L.

Next we must study the motion of the end mirror, which
influenced by both the passing gravitational wave and
radiation-pressure force:

xE5xE
GW1xE

BA, ẍBA5
1

m
FRP. ~A10!

Here xBA is the displacement induced by the radiatio
pressure force, or theback actionof the measurement pro
cess, which eventually gives rise to theradiation-pressure
noise.The radiation-pressure forceFRP comes from both the
L and R beams:

FRP~ t !5
A
2p (

k51

B
$@ERE in

„t2~2k21!L/c…#2

1@ELE in
„t2~2k21!L/c…#2%. ~A11!

However, we are only interested in thefluctuatingand low-
frequencypart ~in the gravitational-wave band! of the force,
which comes from the beating of the sideband fields aga
the carrier:

FRP
fluc~ t !5

DA
2p (

k51

B
@E1

RE in
„t2~2k21!L/c…

1E1
LE in

„t2~2k21!L/c…#. ~A12!

Combining Eqs.~A10! and ~A12! and transforming into the
frequency domain, we obtain the Fourier transform of
mirror displacement in the GW frequency band@note that Eq.
~A8! is used again#:
12200
f

e

e

-

st

e

x̃E5 x̃E
GW2

4

mV2c
A2\v0I bS sinBVL/c

sinVL/c DeiBVL/cS a1
RE1a1

LE

2 D .

~A13!

This, when combined with Eq.~A7!, yields

b2
RE5e2iBVL/ca2

RE

2
16I bv0

mV2c2 S sinBVL/c

sinVL/c D 2

e2iBVL/cS a1
RE1a1

LE

2 D
1

2v0

c
A 2I b

\v0
S sinBVL/c

sinVL/c D x̃E
GW. ~A14!

The second term on the right-hand side is the radiati
pressure noise.

In reality, the ITM’s, the beamsplitter, and the connecti
mirror will also move under the radiation-pressure force~but
they arenot influenced by gravitational waves!. When B
@1 andVL/c!1, only the ITM need be taken into accoun
in addition to the ETM, and the effect is just a doubling
the radiation pressure noise in Eq.~A14!. Hence we arrive at
the complete input-output relation for the East arm, put in
a more compact form~similar to those in KLMTV@21#!:

b1
RE5e2iCDLa1

RE, ~A15!

b2
RE5e2iCDL@a2

RE2KDL~a1
RE1a1

LE!#

1eiCDL
A2KDL

hSQL
A2 x̃E

GW/L, ~A16!

where

CDL5BVL/c, ~A17!

KDL5
16I bv0

mV2c2 S sinBVL/c

sinVL/c D 2

5
8I cv0

mBV2c2 S sinBVL/c

sinVL/c D 2

. ~A18!

The input-output relation for the L beam can be obtained
exchanging RE and LE in Eqs.~A15! and ~A16!.

2. Ring-shaped Fabry-Perot cavity„FP…

Again, let us consider the East arm. Suppose again
tially that only the ETM is allowed to move~motions of the
other two ring-cavity–mirrors will be accounted for later!.
Then the input-output relations for the fields immediate
inside the ITM can be obtained easily from the results
optical delay lines@Eqs.~A15!–~A18!, with a factor 1/2 mul-
tiplying the radiation-pressure noise term, since again a
first step we are only allowing the ETM to move#:

B1
RE5e2iVL/cA1

RE, ~A19!
4-9
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B2
RE5e2iVL/cFA2

RE2K DL
B51S A1

RE1A1
LE

2 D G
1eiVL/c

A2KDL
B51

hSQL
A2 x̃E/L, ~A20!

where

KDL
B515

8I cv0

mV2c2
. ~A21!

As before, the input-output relation for the L beam is o
tained by exchanging RE and LE. The fields outside the IT
are related to these fields by

b1,2
RE52ARa1,2

RE1ATB1,2
RE, A1,2

RE5ATa1,2
RE1ARB1,2

RE,

~A22!

b1,2
LE52ARa1,2

LE1ATB1,2
LE , A1,2

LE5ATa1,2
LE1ARB1,2

LE .

~A23!

HereT andR are the power transmissivity and reflectivity
the ITM, T1R51. Combining Eqs.~A19!–~A23!, we ob-
tain

b1
RE5

e2iVL/c2AR

12e2iVL/cAR
a1

RE, ~A24!

b2
RE5

e2iVL/c2AR

12e2iVL/cAR

3Fa2
RE2

TKDL
B51

122ARcos~2VL/c!1R
S a1

RE1a1
LE

2 D G
1

eiVL/cAT

12e2iVL/cAR

A2KDL
B51

hSQL
A2 x̃E/L. ~A25!

As before, the first terms on the right-hand sides of E
~A24! and~A25! represent the shot noise, the second term
r-
R,
n

,’’

SC
GO
u

12200
-

.
n

the right-hand side of Eq.~A25! represents the radiation
pressure noise, and the third term on the right-hand sid
Eq. ~A25! is the gravitational-wave signal. Again, other o
tical elements besides the ETM can also be influenced by
radiation-pressure force; but whenT!1, we need only con-
sider the radiation-pressure force on the ITM and the ot
cavity mirror near the ITM, in addition to the ETM. Suppos
all three sides of the ring cavity are on resonance with
carrier frequency. Then it is obvious that, at leading order
VL/c andT, the momentum fluxes carried by the beams
the locations of the three mirrors~to and from within the
cavity! are the same. However, since the in-cavity light
incident on the two near mirrors at 45°, the motions of ea
of them induced by the radiation pressure is 1/A2 that of the
ITM, and are in the directions normal to their surfaces. A
because their motion directions are again 45° to the pro
gation direction of the beams, the resulting radiatio
pressure noise is reduced by an additional 1/A2. In the end,
the net radiation-pressure noise due to the two near mirro
equal to that due to the end mirror. Doubling the radiatio
pressure noise in Eq.~A25!, we obtain the input-output rela
tion of the ring cavity, which we put into a form similar t
that of the optical delay line:

b1
RE5e2iCFPa1

RE, ~A26!

b2
RE5e2iCFP@a2

RE2KFP~a1
RE1a1

LE!#

1eiCFP
A2KFP

hSQL
A2 x̃E

GW/L, ~A27!

with

CFP5arg
eiVL/c

12e2iVL/cAR
5arctanS 11AR

12AR
tan

VL

c D ,

~A28!

KFP5S T

122ARcos2VL/c1R
D 8I cv0

mV2c2
.

~A29!
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