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In a previous papefpaper ), we derived a set of near-optimal signal detection techniques for gravitational
wave detectors whose noise probability distributions contain non-Gaussian tails. The methods modify standard
methods by truncating or clipping sample values which lie in those non-Gaussian tails. The methods were
derived, in the frequentist framework, by minimizing false alarm probabilities at fixed false detection prob-
ability in the limit of weak signals. For stochastic signals, the resulting statistic consisted of a sum of an
autocorrelation term and a cross-correlation term; it was necessary to discard “by hand” the autocorrelation
term in order to arrive at the correct, generalized cross-correlation statistic. In the present paper, we present an
alternative derivation of the same signal detection techniques from within the Bayesian framework. We com-
pute, for both deterministic and stochastic signals, the probability that a signal is present in the data, in the limit
where the signal-to-noise ratio squared per frequency bin is small, where the signal is nevertheless strong
enough to be detectdihtegrated signal-to-noise ratio large compared)icahd where the total probability in
the non-Gaussian tail part of the noise distribution is small. We show that, for each model considered, the
resulting probability is to a good approximation a monotonic function of the detection statistic derived in paper
I. Moreover, for stochastic signals, the new Bayesian derivation automatically eliminates the problematic
autocorrelation term.
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I. INTRODUCTION AND SUMMARY Gaussian-noise case. Alternative methods for dealing with
non-Gaussian noise for stochastic signals have been explored
Most of the literature on gravitational-wave data analysisby Klimenko and Mitselmakhefi2].
assumes that the detector noise is Gaussian. However, sig- In paper |, we derived the statistics using the frequentist
nificant non-Gaussian tails have been a characteristic featurgiterion of minimizing false alarm probabilities at fixed
of the noise distributions in all gravitational wave detectorsfalse detection probabilities in the limit of weak signals. In
constructed to date. Standard detection strategies for bothe present paper, we present an alternative derivation of the
deterministic and stochastic signals, which were designedame signal detection techniques from within the Bayesian
under the assumption of Gaussian noise, perform mor&amework.
poorly when non-Gaussian noise is present. We start in Sec. Il by reviewing the foundations of the
In a previous paper in this serigg| (henceforth papen] two different approaches to determining detection statistics
we developed a new set of statistical signal-processing techused in paper | and this paper. We review the locally optimal
nigues to search for deterministic and stochastic gravitationadriterion used in paper | in Sec. Il A. In Sec. Il B we explain
waves in detector data. These techniques@rast meaning how Bayesian considerations lead to a unique choice of de-
that they will work well even if the detector noise is not tection statistic, as discussed by Fii#. In Secs. Ill and IV
Gaussian but falls into a broader statistical class that we exaef the paper, we compute, for a variety of different models
pect includes realistic detectors. These new methods am@nd sets of assumptions, that unique Bayesian statistic. We
similar to the older ones: one constructs matched filters t@how that for each case considered, the Bayesian statistic is
search for known waveforms or cross-correlates the instruequivalent to the statistics derived in paper |, in the sense
ment outputs at the different detector sites to search for #hat the false alarm versus false dismissal curves of the two
stochastic background. The essential difference is that thstatistics coincide to a good approximation.
statistics are modified by truncation: detector samples that The equivalence between the two types of statistic is valid
fall outside the central Gaussian-like part of the sample disenly under certain approximations, discussed below. Under
tribution are excluded fronor saturated when constructing those approximations, the Bayesian statistics which we ob-
the measurement statistic. For both deterministic and stdain are equivalent to a particular type of maximum likeli-
chastic signals, a robust statistic was found which perform$ood statistic described in Refd,5]. That type of maximum
better than the optimal linear filter in the case where thdikelihood statistic differs from the type of maximum likeli-
detector noise is non-Gaussian, and almost as well in theood statistic considered previously in gravitational wave
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data analysis in its treatment of noise parameters. say, and that one’s detection criterion is that a signal is

Section 1l deals with known, deterministic signals. In presentifl’(x)>I", and not present otherwise, whdrg is
Sec. Ill A we consider the case of a known signal of un-a threshold. Then the false alarm probability associated with
known amplitude, incident on a single detector with white,this statistic is
Gaussian noise, where the noise variance is assumed to be
known. For that case the Bayesian statistic is shown to be _
equivalent to the standard matched filtering statistic. Section ()= JF>F* dxp(x]0),
[Il B generalizes this analysis by allowing the noise variance
to be an unknown parameter, to be measured from the datand the false dismissal probability is
the same result is obtained. In Secs. Il C and Ill D we con-
sider the cases of white and colored non-Gaussian detector
noise. For both of these cases we show that the Bayesian BTy €)= fkr dxp(x|e). 2.9
statistic is equivalent to the corresponding locally optimal *
statistic derived in paper I. By eliminatingT", between Eqs(2.4) and (2.5) we obtain

In Sec. IV we give a similar analysis of stochastic sighals.the false-dismissal versus false-alarm curve
In Sec. IV A we compute the Bayesian statistic for the case
of a white stochastic signal, and of two co-aligned detectors B=pB(a,e) (2.6)
with white Gaussian noise, where the noise variance is as-
sumed to be known. The maximum likelihood statistic for which characterizes the performance of the statistic.
this case was previously computed, in a more general con- In paper | we showed that there is a unique statistic
text, by Finn and Romanf6]. In this case we recover the A(1)(X) which minimizesdg/de ate=0 for fixed a, defined
result of Finn and Romano: the optimal statistic is not theby the expansion
standard cross-correlation statistic, but instead is a sum of ) 3
the cross-correlation statistic and extra autocorrelation terms,  P(X|€)=P(X|0)[1+ €A (1)(X) + €°A2)(x) +O(€7)].
In Sec. IV B we show that, under the more realistic assump- 27

Eon (\j/vr:ere _the dncfnlse v?rzlange? artehtaketrr\] to bte udnkrglowns Phis statistic therefore has the best false-dismissal versus
€ determined from the dala, then e standard Cros3zise aiarm curve for weak signalglf A 1y(x) vanishes

gg:]rg:gro? ??jtéstgztc')srsrec.%verﬁ?é Fr']gﬁl_lé;nsggﬁ' nlg.sc; V;ii entically, thenA )(x) is the unique statistic that minimizes
iaer tw with white, ussl IS€, 2B/de? at e=0 for fixed a.] We applied this class of de-

Wer rle'gent\i/enﬂlf genrleirr?llzedﬁ r?tss-cilorlrel;eltaonns(’;atls:rl]cmofrpa[-ection statisticg(called locally optimal statistic$8]) to a
per 1. sectio contains a short conclusion and summary. variety of different gravitational-wave signal detection prob-

lems.

(2.9

1. FOUNDATIONS

oL B. Bayesian signal detection
We denote the output of a set of gravitational wave detec-

tors by a vectox, with In the Bayesian framework, the probabili§f?) that a
signal is present in the data is given

X=n+s. (2.2 p(1) p(0)
1—P(1)_A(X)1—P(°)’ (2.8
Here n is the detector noise, anslis a possibly present
gravitational wave signal. We can write whereP(® is thea priori probability that a signal is present,
andA (x) is the likelihood ratio. In the literature on Bayesian
s= €S, 2.2 statisticsA (X) is called aBayes factorThe Bayesian frame-

work uniquely determines a detection criterion, which is to
threshold on the probabilite*) that a signal is present.
wheree is a parameter governing the signal strength, and th@rom Eq.(2.9) it is clear thatP®) is a monotonic function of
magnitude of is fixed. As in paper I, we shall be specializ- A(x), So one can equivalently threshold drfx). Thus, an
ing to weak signals and using an expansion in powers of optimal detection statistic is uniquely determined in the
aboute=0 throughout this paper. Bayesian framework; however, that statistic does depend on
choices of prior probability distributions.
o ) We now describe how the likelihood ratio is computed. It
A. Frequentist signal detection is given by the formula
A key quantity is the probability distribution for given
€, p(x|€). This ql_Jantity can be_ used to compute the perfor- A(x)=j deA (x,€)p©(e) 2.9
mance of detection statistics in the frequentist framework.

Suppose one is given a statistic ) . S )
wherep®(e) is the prior probability distribution for the sig-

I'=r(x), (2.3 nal strengthe, and
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p(x|€) statistic has the same false alarm versus false dismissal curve
= oX0)° (210  as the original statistic, it follows that in each case the
uniquely determined Bayesian statisti¢x) is equivalent to

Suppose that the noiseis described by a probability distri- the statistic computed in paper I. Note, however, that the

bution p,(n), and the signals by a signal distribution €quivalence only applies at the level of choosing the detec-
p{(sl€). Then it follows from Eq.(2.1) that tion statistic, and not at the level of specifying thresholds.

The Bayesian and frequentist approaches lead to different

detection thresholds for a given specified significance level;
p(X|€):J dspn(x—s)py(sle). (21D see, for example, the discussion in Sec. Il C of K.
In deriving the formulas for the likelihood ratit (x), we
The formula(2.10 can therefore be written as shall invoke a number of different approximations. In assess-
ing the validity of those approximations, we shall be con-
Pr(X—19) cerned only with their effect on the false alarm versus false
A(X, e)zf dsm ps(sle). (212 gismissal curve of the statistic. In other words, the approxi-

mations might be very inaccurate for computing the value of
The formula for A(x,e) becomes more complex when A(X), but might nevertheless be very accurate in the sense
there are unknown signal and/or noise parameters preseithat they have only a small effect on the false alarm versus
Suppose the signal distribution depends on some parametgaise dismissal curvgWe do need to compute accurate nu-
0, in addition to the signal amplitude, which themselves merical values ofA(x), since we are not concerned here
are distributed according to a prior probability distribution with computing detection threshold$Ve shall use the nota-
p05(05| €). Then the signal distributiopy(s€) can be ex- tion

anded as

P Ay()=A5(X) (2.16

ps(se)= f do,py(sle, 0)p, (04e), (2.13  to mean that the false alarm versus false dismissal curves of
s the statisticsA 1(x) and A,(x) are approximately the same.

where p(sle, 8,) is the distribution fors given bothe and
0. Similarly suppose that the noise distribution contains un-

known parameters#, , W_h0§e a priori distribution is A. Single detector, white Gaussian noise, known variance
pgn(an). Then the noise distribution can be expanded as

IIl. DETERMINISTIC SIGNALS

We first treat the simple case where we are looking for a
signals, in a single detector, whose values in the time do-

pn(n):f donpn(n|0n)p(}n(0n)- (2.14 main are[12]
Inserting the expansion€.13 and (2.14 into Eq. (2.12 SiT €S 3.1

ives the final expression for the likelihood function: o .
g P We assume that the quantitigsare known and fixed, so that

the only unknown parameter characterizing the signal is its
f d6pn(X—56,)py (6n) amplitudee, which can be positive or negative. Without loss
of generality we can choose the normalization so that

A(x,e)= | ds
f f dépa(x|6,)py, (6]) .

x f dOpdsle, 0)ps(Ble). (215 o o
We assume that the detector noise is white and Gaussian with

zero mean and unit variance. Then, as shown in paper |, the

Equati 2.9 and(2.1 the foundational ti
quations(2.9) and(2.19 are the foundational equations distribution for the datx given e is

that we will use throughout this paper to compute the likeli-
hood ratioA (x). A key feature of this formalism is that the
) 1 1 -
noise parameter@, are treated as unknowns, to be measured _ L Ty a2
i > . p(x|e) exp — 5 (X~ €s))
from the detector data along with the gravitational wave sig- i 2w 2
nal, rather than being treated as knosvpriori. That feature
underlies the elimination of the autocorrelation terms endnserting this formula into Eq(2.10 gives
countered in paper | in the case of a stochastic gravitational R
wave background. A(x,€)=ex{ ee(x)— €2/2], (3.9
In the next few sections we will revisit several of the
signal detection problems considered in paper I. In each cas#here
we will show thatA (x) is, to a good approximation, a mono-
tpnic function of the locally optimgl dete(;tion statistic d.e— ;(X):E ngj (3.5
rived in paper |. Since a monotonic function of a detection ]

(3.3
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is the standard matched filtering statistic. Combining this

with Eq. (2.9) gives for the likelihood ratio p==, (3.12

€
g

A(x)=e;(x)2’2J dep©(e)e e <2, (3.6)  which from the normalization conditiof8.2) is the conven-
tional signal to noise ratio. The corresponding estimator is

Now the quantityle(x)| is effectively the signal-to-noise

ratio. Let us assume that we are in the relevant regime where p(x)= - (3.13
the signal is detectable with high confidence, so that a(X)
exp{é(x)2/2]>1. (3.7 The conventional matched filtering statistic is

Let us also assume that the prior distributipff)(€) is 1 .
slowly varying and does not strongly constrain the possible ;(X,S% (3.19
values ofe. Then, we can approximately evaluate the inte-

gral (3.6) using the Laplace approximation to obtain and if we replace the noise variance by its estimét@r) we

obtain the statistic

A(X)~\27pO[ e(x)]exd e(x)%/2]. (3.9

; - 1 -
Finally, we argue tha_t we can negle.ct the dependenoeaj_n p1(X)=——(x,5). (3.19
the factorp(®[e(x)] in the expressiorf3.8). The reason is a(X)
that the prior distributiorp®)(¢) is a slowly varying func- - _ .
tion of €, and so this factor has a much weaker dependencé/e shall show below that the likelihood ratio(x) is to a
on x than the exponential factor in the regirf®7). There- good approximation equivalent to the conventional statistic
fore, dropping the factop®[&(x)] will have a negligible 319
effect on the false alarm versus false dismissal curve of the 1€ noise distribution given is taken to be
statistic. In this approximation we see th&afx) is a mono-

N 2
tonic function of the standard detection statig¢x)|, nlo)= 1 exp{ _ N 3.1
i pn( | ) H \/EO’ 20_2 . . @
A(x)=exd e(x)?/2], (3.9

) The full noise distribution igcf. Eq. (2.14) abovd
as claimed13].

We remark that there is a key technical difference be- o
tween the above computation and the corresponding compu- pn(n)=f dop,(o)py(n|o), (3.17
tation in Sec. Il A of paper I. The Bayesian computation 0
presented here requires expanding the quantity(kye) to i i L
second order ire aboute=0 [Eq. (3.4) abovd, whereas in Wherep,(o) is the prior probability distribution foer. In-
paper | it sufficed to compute I(x, €) to linear order ine  Serting Eq.(3.17 into Eq. (3.16 and using the definition
[Egs.(2.3) and(2.5) of paper I. This difference is a common (3-11 we obtain
feature of all of our subsequent computations. B

pn(n)zf dop,(o)exd —NE(0)/2], (3.18
B. Single detector, white Gaussian noise, unknown variance 0

We now add one additional complication to the analysis
by taking the noise variance to be an unknown constant
We define an inner produgt) on the space of signals by

Where

~ 2
=(0)=In(2mo?) + ‘T(nz) . (3.19
g

(y)=20 xy;. (3.10

We can approximately evaluate the integfal18 in the

Note that this isnot the standard inner product used in dis- limit where N is large. The functiorE (o) can be expanded
cussions of matched filtering, which incorporates a weight- ' -

. . A about its local minimum atr= o as
ing factor of o~ 2. We define the statistio(x) by o

- 2 - -
&(X)ZE%U,X}, (3.12 E(a-)=1+|n(27702)+§(0—0)2+O[(0—0')3].
(3.20

whereN is the number of data points; this is the conventional
estimator ofo. We also define the quantity by Using this expansion we obtain
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(X, X)~(No?+ €?) + 2No*+ 4€°0°. (3.28

The notation here is that the first term gives the expected

Pn(n) = \/§<2we)N’Zpg[c‘rm)]&(n)wl)

1 value, and the second term gives an estimate of the statistical
X 1+O(\/_N> . (3.20)  fluctuations. We can rewrite this formula in terms of the
signal-to-noise ratip =€/ o as
We assume thap, (o) is slowly varying, and so have ne- p? p?
glected in Eq(3.21) a fractional error of order the fractional (x,x)~Ng? (1+ N + N+4W . (3.29
change inp,, over an interval of widths/\/N.
We next insert the formulé3.21) for the noise distribu-  Similarly we have
tion into the expressiof2.12) for the likelihood ratio, using A
R 5 322 (X,9)~exo. (3.30
€)=0"(S—€9). .
Ps We assume thatl>1 and thatp=1. We now consider two
The result is different cases:
(i) When p?/N<1, the fluctuations in(x,x) are small
. plo(x—e9]| a(x—eg] N compared to the expected value, and we have from Eq.
A(x)= fo dep©@(e) o 0] =% (3.29 that(x,x)~Na?* \No?. Using this together with Eq.
Pol o 7 (3.23 (3.30 shows that the first term in the argument of the loga-
' rithm in Eq.(3.29 is
Jo(x—es p 2
- J, depo P S L3Py 3
0 Polo(x)] (x,x) NN ™ '
N—1 (x,9) € and similarly the second term is
Xexpg — ——Inj 1-2¢ + . (324
2 %) (x,%)? & 2 PP
: : T~ = —— <1, :
To obtain the second line we used E@8.2) and (3.11). (x,x)y N 7 N8R 1 (3:32
Expanding the logarithm to second orderédnwe can re-
express this as Thus the approximation is good in this regime.
A A (i) When p?/N>1, a similar computation gives that
oc plo(x—e9)] . . (x,X)~p?a?+pa?. The first term in the argument of the
A(x)= fo d'Ep(o)(E)Wexdﬁw—bfzJr O(e®)],  logarithm in Eq.(3.24 now scales as
(3.25 (X,§> e 1 o
where o) p (3.33
A (x §> and similarly the second term scales as
a=(N— 1)—,\ (326) 2 1
(xx) <X6X>~1i—. (3.34
and ' P
. Thus, the approximation breaks down in this regime.
- 1 N_1 1 _2<X,5>2 (327 We now return to computing the likelihood ratit(x).
B 2( ) %) (x%)?] ' We can approximately evaluate the integi@R5 using the

Laplace approximation to obtain
Before proceeding further with the computation of the

likelihood ratio, we clarify the domain of validity of the ) p,lo(x—es)] [am a?

weak signal expansiofexpansion in powers o) used in A(x)~p™(e D Lo(X)] ?ex b (3.39
going from Eq.(3.24 to Eq. (3.25. We will estimate the 7

expected sizes and the scale of statistical fluctuations in thghere

two terms appearing in the argument of the logarithm in Eq.

(3.24); the expansion will be good when both of these terms . a(x)

and their fluctuations are small compared to unity. For the €(X)= IS (3.36
purpose of making these estimates we can idewtignd o, ()

andp, p, andp;. This approximation will be good whenever the exponential

We can compute the expected value and variance of thfactor in Eq.(3.35 is large, which it will be in the regime
statistic(x,x) using Eqs(2.1), (2.2) and(3.16), which gives  where the signal is detectablsee below, and when the
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prior probability distributionp(®)(e) is slowly varying. Us-  Sec. Il A of paper |, and assume that the noise samples in the

ing Egs.(3.11), (3.15, (3.26 and(3.27), we can write the time domain are statistically independent but identically dis-
exponential factor as tributed, with a known distribution. We can write the noise
probability distribution as

exp[E (A2/N)} (3.37)
2 9P ' pn(n)zﬂ e fn), (3.40
]

where the functiom is given byg(x) =x/(1—2x). Since we
are in the regim@?/N<1, the argument of the functiomis ~ We assume that the probability distributien’™® has a cen-

small, and we can replacg(p?/N) by p2/N. This gives, tral Gaussian regiofx|<x in which

usingN>1, 2

f(x)=—22x(r , (3.41)
A(x)~pQ)(e - - - 2
(x)~p™(e) o [o(0] R PLEY

p,lo(x—es)] [am F{L

which contains most of the probability, and a tail regjah
(3.39 =X}, containing a total probabilitpy; wWith pei<1.
As before, the signal is assumed to be known up to an
overall amplitude parameter. From E@2.11) and(3.22 we
obtain the following modified version of E¢3.3):

Finally, we argue as before that in the regime [@&(2]>1

where the signal is detectable, the dependence afrall the

other factors in Eq(3.38 can be neglected in comparison to

the exponential factor, assuming that the prior distributions

are slowly varying. This gives p(x|e)= H exd —f(x;— e%l-)], (3.42
j

- - 2
AB=exrpa(x)72], (339 and inserting this into Eq€2.9) and(2.10 gives

as claimed.
Our final answei3.39 is essentially the same as the an- A(X):f dep@(e)[] exq_f(xj_engf(Xj)]_
swer(3.9) obtained when the noise variangds assumed to j
be known. Therefore, treating as an unknown parameter (3.43
rather than as a fixed, known parameter does not make much ) o
difference in this case. However, we will see below for theEXpanding to second order ingives
case of stochastic signals that treating the properties of the
noise distribution as unknowns does have a significant effect A (x)= J dep©®(e)exg a(x)e—b(x)e2+0O(e%)],
on the analysis, and that the correct answer is obtained only
when those properties are treated as unknowns. (3.44
We end this subsection by recapitulating the various ap-
R . : . where
proximations and assumptions we have invoked:
(i) The largeN approximationN>1.
(i) The assumption that we are in the regime where the ax) =2 '(x)s; (3.45
signal is detectable, exp{2)>1. This is necessary for J
evaluating the integral over to obtain Eq.(3.39, and also
for the validity in neglecting the prefactors in deriving Eq.
(3.39. From a practical point of view the assumption 1
exp(p*2)>1 is not a serious restriction, as it does not matter b(x)== 2 f"(xj)ng_ (3.46
how our statistics perform in the regime exfie)~1 where 275
signals are not detectable. ) ) ]
(iii ) The assumption that the prior probability distributions Evaluating the integral over using the same types of argu-

and

p®(e) andp, (o) are slowly varying. ments as in Sec. Il B gives

(iv) We have clarified the “weak signal” assumption of .
paper |I; it is the assumption that the signal-to-noise ratio Al a(x)? 34
squared per data point is sma?/N<1. This requirement (x)=ex 2b(x) |’ (3.47

ensures that the presence of the signal does not significantly
bias the estimat€3.11) of the noise variance. In practice we

can always choose segments of data large enough to satis&I
this assumption.

Now the statistia(x) is the locally optimal statistic com-
ted in paper J[Eq. (2.9 of paper |. Therefore it remains to

show that we can neglect tixadependence of the factbfx)
in the argument of the exponential in E§.47).
We can split the sun§3.46 into contributions from the
We now turn to the case where the noise has a knownGaussian region and from the tail. Using the fact tHak)
non-Gaussian distribution. In this subsection we follow=1/0 in the Gaussian region, we obtain

C. Single detector, white non-Gaussian noise

122002-6
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. 1 s
b(x)=5 XZ T

B Rl
j<xb ag

Py

5 s ,,(Iiklz)[Re("x‘:"émz
Pk Pz

Py = Sk
(3.59

Most of the values ok; will fall in the central Gaussian R

region, Since(j = nj + Eé] , and 6§j<0- for each individuaﬁ As befOf.‘e,- the Statlstla(X) coincides with the |Oca”y Opti'
[14]. SinceEjéjz:l, the first term gives 1/(@2), up to frac- mal statistic derived in paper{Eqg. (2.2 of paperA], and it
tional corrections of ordep;. Similarly the second term Suffices to show that the dependence of the factb(x) can
will be bounded above by py;/(202), sincef’(x) will be D€ neglected in Eq(3.47. We evaluate the sums in Eq.
smaller in the tails than in the central Gaussian region. Wé3-59 by splitting them into Gaussian and tail contributions
conclude that as before. Sincg,(x)=1 in the Gaussian region, the first

term in Eq.(3.55) yields 23,/s,|%/P\[ 1+ O(pi)]. Also the

> (xS, (348 B(x)=2% g;(
XjBXb

N =

r 1 second term is proportional 0, sincegy(x) vanishes in
b(0) =752l 1+ OPuai)]. 349 he Gaussian region. Thus we obtain
It follows in particular that thex-dependent fluctuations in R 52
b(x) are smaller than its expected value by a factopgj b(x)= sz Py [1+O(Puai ], (3.58
<1, and therefore we can neglect thelependence df(x)
in Eq. (3.47), as required. and the rest of the argument follows as before.
D. Single detector, colored non-Gaussian noise E. Signals with unknown parameters

We next consider the model of colored, non-Gaussian We now generalize the analysis of the preceding subsec-
noise of Sec. Il B of paper |, where each frequency bin istions by allowing the signals to depend on additional param-
assumed to be statistically independent. This is given by eters other than the overall amplitude parametéve write

[(N=1)/2] e s=es(0y), (3.57
pum= Il —5-exp 29 5 -||. (350
k=1 k k where the signal parameteés are distributed according to
where the volume element is understood to be the distributionp,, ( 0 €). Then from Eq(2.15 we can write
[(N-1)/2]
- - A(X) = (0) A
H d(Renk)d(Imnk). (3.5]) (X) f dej d0$p (E)p95(03|6) (Xieyas)a
k=1 (3.58
Here whereA (x, €, 05) is given by Eq(2.11) with p4( €) replaced
by ps(S'€,6). In the regime where the signal is detectable,
~ 1 2mijkIN we can repeat the arguments of the preceding subsections to
nk:\/_ﬁ 2 e n; (352 approximately evaluate the integrals as
are the components of the discrete Fourier transform of the A(X):ma?x m:iXA(X’E’as)' (359

time domain samples;. The quantitiesP, describe the
noise spectrum. For each frequency kinhe functiong,(x)  Thus the result is to take the statistics previously derived and

is arbitrary except for the normalization conditions to maximize over the signal parameters. Such a maximiza-
tion is the standard thing to do for linear matched filtering;
jwdxe*gk(x)= fwdxxefgk(x)=1, (3.53 the above argument indicates that it is also the appropriate
0 0 procedure for the more general class of locally optimal sta-
tistics.
and the requirement thaj(x) =x in a central Gaussian re-
gion containing most of the probability. IV. STOCHASTIC SIGNALS

By paralleling the analysis of Sec. Ill C, we again arrive i i
at the formulas(3.44 and (3.47), where now the statistics The standard method of detecting a stochastic background
a(x) andb(x) are given by is to compute a cross-correlation between two different in-

strumentg9]; see Ref[10] for a detailed description. In Sec.
IV A below we compute the likelihood ratid (x) for the

- ~
é(x)=42 9L<M> Re(X; S) (3.54) si_mplest case of a_white_ stochastic sign_al, and of two co-

K Py Py aligned detectors with white Gaussian noise, where the noise

variance is assumed to be known. For this case we do not

and recover the standard cross-correlation statistic, but instead
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we obtain a statistic with extra autocorrelation terms. That 1 )

statistic was first derived and has been investigated in detail T1TN 2 X1j» (4.7

in a more general context by Finn and Rom&ép We then !

argue that it is unrealistic to take the noise variances to be

known parameters. In Sec. IV B we show that, when the (}2:£ 2 2. (4.9

noise variances are taken to be unknowns to be determined 20N g e '

from the data, then the likelihood ratid(x) is to a good

approximation equivalent to the standard cross-correlatioand

statistic. This computation is again in the simple context of

coincident aligned detectors with white noise. The computa- .1

tion of Sec. IV B is a simplified version of the computation =N E X1jX2j - 4.9

in Appendix A of Ref.[11]. J

We then turn to non-Gaussian noise models. In paper |, .

we derived a genera”zed Cross_corre'at(@(:c) statistic The statistice is the standard cross-correlation statistic.

appropriate for non-Gaussian noise, which is a modification Before proceeding further we discuss the validity of the

of the standard cross-correlation statistic. In Sec. IV C belowveak signal approximation in the context of a stochastic

we re-derive that statistic using the Bayesian approach. background signal. Suppose that a stochastic background is

present and just barely detectable by cross-correlating be-

A. Two coincident co-aligned detectors, white Gaussian noise, tween the two detectors. Then we have1/\/N. In the con-
known variances text of ground based detectors such as the Laser Interfero-

metric Gravitational Wave ObservatofiIGO), when this

The output of the pair of detectorsxs=(x;,xp), where analysis is generalized to colored noibkis replaced by the

X;=Ny+$ (4.1) productTAf, whereT is the observation time antif is the
effective bandwidth in the usual formula for the signal-to-
is the output of the first detector, and noise ratio[Eq. (1.2 of Ref. [11]]. Using the estimated
~1/3 year andA f~50 Hz we find
X,=Ny+S 4.2
is the output of the second. We assume, for simplicity, that e~ Lwlo—{ (4.10
the noise in each detector is white and Gaussian with unit VTAT

variance:
Therefore in all our analyses it will be sufficient to work to
1 first order ine. The approximation would only break down if
P, () =11 —ex;{—T 43 ne. 1S approxim g .
i N2 e~1, that is, if the stochastic background could be seen in a
single detector, which is thought to be very unlikely.
with a similar equgtion for the secc_md de_tector. We assuUme \ve define the statistic$, andd, by
that the stochastic background signal is also white and
Gaussian with variance:

di(x)=01(x)?— 1— €(x) (4.12)
(do-T1 — p[ ] (44 and
€)= exg — =—|, )
Ps I \2me 2e
N . 2 .=
wheree=0. As in earlier sections parametrizes the signal d2(X) = 02(X)"~ 1~ €(x). (4.12
strength, and we will be using a weak signal expansion of . . .
expanding in powers of aboute=0. Now <0’%>:l+ €, So the quantitiedl anddz will be small;
By inserting the distribution$4.3) and (4.4) into the for- X A
mulas(2.11) and(2.14 we obtain |d1¥2(x)|sO(1/\/N)+O(e). (4.13
p(x| e)=exp{— E~(E X) (4.5 We now insert Eqs(4.11) and (4.12 into the formula
2 (4.6) for the function=. We expand to second order én e,

d,, andd,, treating these quantities as formally all of the

h
where same order. We then insert the result into E@s9), (2.10),
Z(e,x)=2In(2m)+In[1+2¢] and(4.5), which yields
(1+€)o2+(1+e)og’—2ee . .
. T4 7e - . (49 A(x)=j dep®@(e)exd —N(e— ep)?+Nep], (4.19
and where where
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= — 2 2 2, 2
200 = 2(x)+ %[al(x)-l-az(x)] E(e,01,02)=2In(27)+In[oi05+ €(o]+ d5)]
(024 €) a5+ (05+ €)oa—2¢e

0'50'3-1— e( O'i‘f’ 0'%)

. 1.
= S0+ ZL1(0?- 1]

(4.19
1. . .
+ Z[Uz(x)z_l]- (4.15 To evaluate the mtegral over, aqd o5 in Eq. (4.18), we
make a change of variables to variabfgs f, defined by
Evaluating the integral over using the same types of argu- o2+ e=f2g2 (4.20
ments as in previous sections gives, uspf(e)=0 for e
<0, and

o5+ e=f503. (4.21)

A(X)~0(ep) \] =p© (&) exd Ne2 4.1
(0=0 (&) \ PO (e)exdNe].  (4.16
We also define the rescaled variables

Here ® is the step function. If follows by the same type of .
arguments as before that(x)=0 (e,)exgNez]. __f - € (4.22

Our final result identifies the statistig, as the optimal 0107 0107
detection statistic; see RdB] for a more general version of _ o
this statistic. From Eq4.15 this statistic is not the standard We expand= to second order around its local minimum at

cross-correlation statistie, but instead contains the autocor- f1=f2=1, a=a:

relation termso2— 1 ando3— 1. The interpretation of these .
terms is that it is ibl der th i f thi ~ A ~ l1ta
possible, under the assumptions of this = _, IN(2m&,05) +2+In(1— a?) + Aa?
subsection, to measure the stochastic background signal with 172 (1—a?)?
just one detector. If the detector’s noise variance is known,
then one can just measure the variance of the detector’s out- ) )
put and subtract the known noise variance to reveal the sto-  ~ 71— &Z)ZA“(MlJFAfz)* 1-ar? &Z)Z(AfﬁAfz
chastic background contribution.
Of course, in reality, the noise in detectors is not kn@awn +202AF2AF2). 4.23
priori, and is measured from the data. In particular, there is
no way that the detectors noise can be known beforehand tﬁereAflzfl—l, Af,=f,—1, andAa=a— a. At fixed a,
a fractional accuracy of 1¢f. Therefore we have to gener- — . .1 °
. . . : . : = is minimized at
alize the preceding analysis by allowing the noise varianceS’
to be unknown parameters. -

fi=f=1+ ———(a—a). (4.24
B. Two coincident co-aligned detectors, white Gaussian noise, (1+a%)
unknown variances

o ) . We now perform the Gaussian integral ovey, o, or fq,
We assume that the noise in each detector is white angd i i
5, Which gives

Gaussian with variances; and o,. We replace Eq(4.3
i PLo(e) ol )] (1- %)

X| €)= —= = J(e
| H 1 nfj @17 P(x|€) 2moo)Nt 41+ a?)V? e)
ny|o,)= expg — —5|, 4.1
P(alo) =l o exh =52 N A
——————(a—a)?|. (4.29
, . , , 2(1+a?)
with a similar equation for the second detector. The prior

distribution for the parameters;, o, will be written as - )
p.(01,05). By inserting the distribution§4.17 and (4.4  Here o(e) is the value ofo, at the peak(4.24 of the

into the formulag2.11) and(2.14 we obtain integrand, given from Eqs4.20 and(4.24 by
~ ~ 12
p(x|e)=f do'lf doyp,(oy,07)exg — 5 E(e,01,07)|, oip(€)=—€e+| 1+ ~ | 71 (4.20
0 0 2 1+«
(4.18 A
and similarly foro,,(€). The factor7(€) is a Jacobian fac-
where the functiorE is now given by tor given by

122002-9



ALLEN et al. PHYSICAL REVIEW D 67, 122002 (2003

—1/2 e —1/2 C. Two coincident, co-aligned detectors,
, (4.27 white non-Gaussian noise
f202

€
Je)= ( 1=

191 We next turn to the non-Gaussian noise model of Sec.
Il A of paper I. The noise in each detector is assumed to be

wheref, andf, are given in terms of by Egs.(4.22 and white, with each sample statistically independent and identi-

(4.24). cally distributed, so that
We next insert the resu{#.25 for p(x|e€) into Egs.(2.9
and(2.10. The result is pn(nl,n2)=H exd —fi(ny))—fa(ny)].  (4.3D)
— [ dep@ Polo1b(€),02n(€)] Te) However, it is clear that we cannot assume that the noise
€ D.[016(0),0pp(0)] J(0) distributionsef1 and e f2 in each detector are known in

advance. Otherwise, as explained in Sec. IV A, the analysis
would predict that one can measure the stochastic back-
(4.28  ground in a single detector by measuring the noise distribu-
tion and subtracting from it the “known” noise distribution.
Therefore, in this subsection, we will allow the functions
f1(x) andf,(x) to be arbitrary except for the normalization
conditions

A= WP‘O’(A) PoL710(€) 020(€)] ‘7(5) f e f1dx= J e f200qx=1, (4.32
p(,[(rlb(O) UZb (0)] J(0)

Na? . Formally, there are an infinite number of parameters to
Xex PSRN (¢
2(1+a”)

(), (4.29  specify to determine the functiorfy and f,. However, in
practice these distributions will be measured as histograms,
and invoking the arguments of Secs. Il A and Il B above
for neglecting the prefactors gives

determined by a finite set of nhumbers or parameters. We
identify this finite set of parameters with the noise param-
eters@, of Eq. (2.14). We rewrite Eq.(2.14) as
A Na?
X)=exp ———=5
2(1+a?)
Here for simplicity we have used a functional or path inte-
Thus, in the limita<1, A(X) is equivalent to the usual ghral ”Etart]'on for thel mteg:al over th(f? noise patr)ame(;even
though the integral is only over a finite number of param-
?2085)3(30562?3?4 ;t;tlstu@(a)a defined by Egs.(4.7), eterg. In Eq. (4.33, ps[f1,f,] is the prior probability den-
We end this subsection by recapitulating the various apS' funct|ona| for the functionsf, and f, and

,N,|f1,f5) is given by the expression on the right hand
proximations necessary to obtain the result: Pn(N1,Nalfy, f
(i) The largeN approximationN>1, necessary for the side of Eq.(4.31). The probability distributiorpy[ f,,f,] en-

validity of the Laplace approximation in integrating ovey, codes our assumption that the noise dlstr|bu_t|ons will have
. central Gaussian regions, with unknown varianegsand

(i) The assumption that we are in the regime where the’2 and arbitrary tail regions containing a small fractimg,
of the total probability.

signal is detectable, eEdN&2/2]>1. This is necessary for the We now insert the distribution&.4) and (4.33 into Egs.

evaluation of the integral over in Eq. (4.28, and for ne- 5 19 and(2.14 and expand to second orderdénThe result
glecting the prefactors in deriving E¢4.30. ( ) 2.14 P ¢ .

(iii) The assumption, as before, that the prior probab|I|ty
distributionsp®(¢e) andp,(o;,0,) are slowly varying.

(iv) The weak signal approximatiom<1, which will be p(x| 6):f 'Dfl’szpf[fl'fz]H e f1(xq)) = falxz))
satisfied unless the stochastic background contribution to the i
output of one of the detectors becomes comparable to the
noise in that detector. As discussed above, for signal ]I [1+eAj+eCi+ €26 +0(e%)], (4.34
strengths at the margin of detectability, and for several month ]
searches for a stochastic background with ground based in-

terferometers, we have~ 104, where

e —L( 2-2aa)
X 2(1+&2) o aa)|.

Finally, integrating ovek gives

R Pn(Ng,ny) = J' DflJ' Dfypn(ng, Nyl 1, f2)pe 1,121,
O(a). (4.30 (4.33
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Z(le)_

f;(xzj')],
(4.39

A =E[f'(x )2+ fh(X0)°— f
] 2 1 A1) 2 \A2j

and
Ci="11(x1j) F2(X)). (4.39

The quantity&; is a sum of terms of the fornﬁ(”)(xlj)m
f(“)(xz )™, and f(”)(xll)mf(')(xz )" for integers n,m,l,r,
whose exact form will not be needed here.

Working to second order ire, we can re-express Eg.

(4.3 as

pixde)= [ Dt [ Dpity foleni ~E(atfo)],
(4.37

where

E(e f1,f)=Eolfy,fo]+eE[f1,f]+ e Eo[f1,T5]

+0(€%), (4.38
where
Eo[fl,fz]z—; f1(Xg))+Fa(Xg)), (4.39
El[fl,fz]:; (A+C), (4.40
and
Ez[fl,fﬂ:}j‘, 5,—%(Aj+c,-)2 (4.4

We now note that we can eliminate the autocorrelatio

terms A; from Eq. (4.40 by making a change of variables.
We define the operatdP, that acts on functions via

1 1
(Péf)(x)=f(x)—Eef’(x)2+§ef”(x), (4.42

and we define the functiorts, andF, by
Fi=P.f1, F,=P.f5. (4.43

Using Eqgs.(4.35), (4.38—(4.40), (4.42 and(4.43 the func-
tional 2 can be rewritten as

E(e,fq,f)=Eo[F1,F 2]"‘6 1[F1,F 2]+€~2[F1, 2]
+0(€d). (4.44

Here the first order piecél consists only of the cross-
correlation term,

%1[':1,F2]:§j: F1(X1j)Fa(X2); (4.49

PHYSICAL REVIEW D 67, 122002 (2003

the corrections to this cross-correlation expression due to
changing fromf,, f, to F;, F, do not appear at thidinear)
order in e and instead contribute to the second order term

éz[Fl,Fz]. The exact form of the functionaéz[Fl,Fz]
will not be needed for our arguments below.

We define the function$;(x) and f,(x) to be the func-
tions corresponding to the measured noise distributions at the
two detectors. That is, they are step functions defined by the
requirement

fx e_fl(u)du: i 2 1,
— o N jowith xqj=<x

with a similar equation foff ,.

Consider now the evaluation of the integ(4l37 with =
given by the expressiof#.44). Consider first the—0 limit.
In this limit one can show from the normalization conditions
(4.32 that 2 will be minimized at the measured noise dis-
tributions:

(4.49

F]_:fl, F2:f2. (447)
For nonzerce, the leading order correction to tlee= 0 result
will be given by evaluating the functiof¥.44) at the local
minimum (4.47. We thus arrive at

e_lfz]eXp[_Eo[flafz]}

25 [T, 1,0} (448

Here J(x) is a width factor whose origin is approximating
the integrals ovef, andf, as the value of the integrand at
the peak times the “width” of the peakl5]. This factor is
analogous to the various factors that appear in front of the
exponential in Eq(4.29. It depends weakly ox in com-

p(x|e)=Tx)pi[ P, P

Xexp{_fél[?l,’fz]_f

nDal’ISOI’] to the exponential factors. The second order func-

tional B, in Eq. (4.48 will differ from the corresponding

functlonaIMZ in Eq. (4.449 since the location of the peak of
the integrand will receive a correction of ordeaway from
the value(4.47 which will give a correction of orde®(€?)
to the value of the integral.

We now insert the formuld4.48 for p(x,e) into Egs.
(2.9 and(2.10. This gives

= P, PO ~ . .
A(x)= f dep@(e) 20 P Ty 2 it 1)
0 pe[f1.f1]
—e?E,[ 1,1, (4.49
Evaluating the integral over gives
N ] ot PP Y
A= \/=p(e) PR
=P SHREME
=Z0h.B12] -
Xexp{ : : f 0(E,), (4.50
42, f1,15]
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and as before we can neglect the prefactors to give analyzed in Sec. IV B of paper[lL6]. However, the results
_ we have obtained make it very plausible that, for that more
p{ El[?l,fz]z} ~ general situation, the Bayesian statisti¢x) should again be
A(X)=exp) —=—— (Eq). (4.5)  equivalent to the generalized cross-correlation statistic de-
45, f1.f5] rived in paper |.

-~ . We also note that our assumption that the stochastic signal
Now the statisticE,[f,,f,] defined by Eqs.(4.49 and be Gaussian is necessary for our analysis. Modifying the
(4.46 coincides with the locally optimal statistic obtained in signal by making it non-Gaussian instead of Gaussian would
paper I[Eq. (3.8) of paper |, specialized to a white stochastic alter Eqs.(4.6), (4.19 and (4.39 at O(€?). Therefore, the
background, except for the following modification. One first derivation here does not generalize straightforwardly to non-
measures the noise probability distributions in each detectagaussian stochastic signals, unlike the corresponding deriva-
separatelyfcf. Eq. (4.46]. Then, one computes the general- tions in paper I. In Ref[5] it is shown that one can find
ized cross-correlation statistiel.45 using those distribu- detection techniques tailored to non-Gaussian stochastic sig-
tions and the measured data. nals that perform better, for such signals, than the methods

From Eq.(4.51), we see that\ (x) will be approximately  considered here.

equivalent to the locally optimal statistig [ f,,F,] if the

statisticZ,[ f,,f,] has a weak dependence on the datdo
establish this, consider the limg,;—0, wherep;<1 is The derivation in this paper, from a different framework,
the total probability in the noise distribution tails. In that of the detection strategies obtained in paper | gives us in-
limit our assumptions imply that the noise distributions in thecreased confidence in the utility of those strategies. In addi-
two detectors are Gaussians with unknown varianggs tion, the analysis of this paper has clarified the regime in
o5, and therefore the analysis of this subsection reduces tahich we expect the strategies to work well. For determin-
the analysis of Sec. IV B above. Therefore we can read offstic signals, data segments to be analyzed should be long

the p;—0 limit of the statisticéz[fl,fz] by comparing €nough that the_signal—tq—noise squareq per data point be
Egs.(4.28 and (4.49 and identifying the coefficients af? small. This requirement is easy to satisfy in practice, as

V. CONCLUSION

in the arguments of the exponentials. We thus obtain signal-to-noise thresholds are usually in the rangelb. In
addition, the strategies will only be close to optimal in the
< . . N 1 regime where signals are strong enough to be detectable; this
Eolfs,fo]= 551+ O0(pwi)]. (452  restriction is unimportant in practice, as the performance of

"2
2(1+a%) o103 detection statistics in the regime where signals are far too

weak to be detected is not important. Finally, for stochastic
signals, the signal must be small compared to the noise in
each individual detector, and the total probability in the tail
part of the noise distributions must be small.

In the limit @<1 we can neglect the dependence in Eq.
(4.52. We then see that the-dependent fluctuations in the
statistic are suppressed by either the small paranpeteras
in Secs. Il C and Il D above, or by the parametek/M/
governing the size of the fractional fluctuations of the statis- ACKNOWLEDGMENTS
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In order that the integrand in E¢#.37) be sharply peaked, it is
necessary to make the number of parameters specifying the
functionsf,, f,, f,, andf, considerably less than the number

N of data points, by modifying Eq4.46 to incorporate a
suitable coarse-graining of the binning. This modification does
not affect our argument.

For Gaussian noise, the equivalenceAdqf) and the standard
cross-correlation statistic has been demonstrated for separated,
nonaligned detectors with colored noise in Appendix A of Ref.
[11], in the limit of weak signals.



