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We construct explicit models of multifield inflation in which the primordial metric fluctuations do not
necessarily obey Gaussian statistics. These models are realizations of mechanisms in which non-Gaussianity is
first generated by a light scalar field and then transferred into curvature fluctuations. The probability distribu-
tion functions of the metric perturbation at the end of inflation are computed. This provides a guideline for
designing strategies to search for non-Gaussian signals in future CMB and large scale structure surveys.
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Inflation generically predicts Gaussian initial metric fluc- duced. It opens the door to the generation of primordial non-
tuations with an almost scale invariant power spectflinit Gaussianity 9] because the nonlinear couplings can be much
is interesting to determine how general this property is. Withstronger in the isocurvature direction than in ttieflaton)
the advent of large scale structure and cosmic microwaveadiabatic directior9,10. When the fields are coupled, ex-
background CMB) surveys it will be possible to test in de- change between isocurvature and adiabatic modes can be im-
tail whether or not the initial conditions were Gaussian andportant [11] which makes it possible to generate non-
in the latter case how they can be characterized. At the mosaussianity on a large band of wavelengths while preserving
ment, no non-Gaussian signal has been detected in CMBn adiabatic slow-roll type primordial power spectr{ih2],
data[2] but the number of modes that can be probed is stilwhich is not the case of the original model of REJ].
small. In large-scale structure surveys the number of inde- In a previous study12], we have presented the building
pendent modes that are observed is large but the difficultplocks for such models. It is based on the generation of non-
arises from the nonlinear gravitational dynamj8¢ which  Gaussian isocurvature fluctuations which are subsequently
can shadow the primordial non-Gaussiarfiy). Having at transferred to the adiabatic mode due to a bend in the clas-
our disposal models of inflation in which non-Gaussian adiasical inflaton trajectory. The necessary ingredients for such
batic metric fluctuations are generated can then serve asmodels are(i) the existence of a light scalar field that has
guideline for designing strategies for detecting primordialnonlinear coupling, typically quartic, ar{d) a coupling term
non-Gaussianities. in the potential leading to isocurvature-adiabatic mode mix-

Indeed, the detection of non-Gaussianity is a difficult tasking. This latter mechanism can be given a simple geometrical
by principle. The reason is that neither the bi- nor tri-spectranterpretation. On super Hubble scales, curvature fluctuations
are fully measurable; only some configuration averages o#re induced by fluctuations of the total expansion in different
those are. This is the reason why it is not conceivable tgarts of the universe. The relative duration of their inflation-
design a universal estimator of non-Gaussianity. They havary phase can be affected if inflaton trajectory is bent. Fluc-
to be constructed in light of the type of non-Gaussianitieduations in the isocurvature modes generate a bundle of par-
that are aimed at. One merit for investigating explicit modelsallel trajectories along which inflation lasts longer or shorter
is therefore to characterize the type of non-Gaussianity thalepending on whether they lie in the outer or inner part of
can be present in the data. the bent(see Fig. 1 of Ref[12]).

In single field inflation, the slow-roll conditions, if valid In Ref. [12], we characterized the expected statistical
throughout the period during which the seeds of the larggroperties of the metric fluctuations that were shown to be
scale structures are generated, prevent the generation of diie superposition of a Gaussian and a non-Gaussian contri-
servable primordial non-Gaussianities. The reason is that thigution of the same variandé6]. The relative weight of the
potential needs to be both flat enough for the fluctuations téwo contributions is related to the bending angle in field
develop and steep enough for the non-linearity to be signifispace. We explicitly computed the probability distribution
cant. Note however that starting from a nonvacuum initialfunction (PDF) of the non-Gaussian contribution which ap-
state[5] or allowing for sharp features in the potentj&l] = pears to be described by a single new parametdrsee Eq.
could lead to primordial non-Gaussianities. In those casef) below]. These results were obtained without the use of
these features will be localized in a narrow band of wave-any explicit model. This Rapid Communication is dedicated
lengths and will affect the shape of the density fluctuationto the building of this kind of inflationary model involving
power spectrum. either two or three fields. The shape of their PDF will be

The situation is richer when more than one lightcomputed and compared to our previous analytical expres-
scalar field is present during inflation. In multifield inflation sion[12].
models, a mixture of adiabatic and isocurvature fluctuations In general the curvature fluctuatiorf®, can be computed
[7], that can be correlated or np8], are generically pro- on superhorizon scales gE3]
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R=HSét. (1) 1.000F ' ' '
[ s,=-0.60384370
Isocurvature fluctuations can then induce curvature fluctua-
tions only if in some way or another they can change the
relative total number oé-folds. .
This can actually be obtained in a very simple way in o*
hybrid type model of inflation with three fields. In that case, }
one field,¢, is the inflaton; the second field is a light scalar, &
x, With quartic couplingh<1 and the third field,o, is 0.010¢
coupled to the two others so that the end of inflation is trig- ’
gered wherr undergoes a phase transition. To be more ex-
plicit, let us examine the following model

0.100

0.001 ¢ . . s . .

1 A "
V(¢,X,cr)=§m2¢2+ HXAJF 5(02—05)2 X/
g, ) ) FIG. 1. The shape of the probability distribution function of the
+ 57 (¢ cosa+ xsina) 2 isocurvature modes in case of a quartic couplings@lid line)
compared to the analytic PDF of E@) (dashed lingand to Gauss-
ian distribution (dotted ling. In this exampleA=10"2 and N,

where o is the final vev of¢ and « is the mixing angle 50

betweeng and y in their coupling too.

Inflation ends when the effective massmfzanishes, that which depends only on the variance pfand on the param-

's when eterv, quantifying the amount of non-Gaussianity. The vari-
9(¢ cosa+ ysina)?—2ucg=0. (3)  ance is directly proportional to the value of the Hubble con-
stant at horizon crossingH.. The parameterv; is
The value of¢ at the end of inflation is proportional to\ and is explicitly given by
+\2ulgoy— x sina v3=—ANg/(3H2)~—0.60. 7)
end= cosa : (4)

In Fig. 1, the numerical results are compared to the expres-

For > eng, o=0 and the two fields evolve independently: sion (6) and to a Gaussian distribution of the same variance.

¢ drives the inflation whiley develops non-Gaussianity. The 't confirms that the analytic forr(6) is a very good approxi-
amount of non-Gaussianity af then depends only on and mapon .of the _probablhty dlstr|bugon fqnct!on. _The value of
on the total number oé-folds between horizon crossing and V3 In this plot is[17] v3=—0.15/ , which implies that the
the end of inflation. value of the kurtosis of distribution is

When « is nonzero, fluctuations of induce curvature S4E(X4)/<X2>2—3=4V302- ®)
fluctuations because they change the time at which the phase X
transition occurs. Thus thg-induced curvature fluctuations The curvature fluctuation PDF is related to the PDF of the
read(assumingH is basically constant during the inflationary fjg|q y. In the limit where the inflation ends abruptly the

period, relation is straightforward, Eq5). It is more complex in
3H? sina general and depends on the details of the phase of inflation.
R=H Sten=— v, cosa X 5 The parameters of the potenti@) are tuned, as usual, so

that the amplitude of the fluctuations are compatible with the
_observations. No further fine-tunings are required for the ini-
tial conditions: whatever the initial value for the field it
rolls down rapidly towardg = 0 to follow the valley bottom,

gp described in the previous paragraphs.

The model(2) reads as a simple polynomial potential of

We present in Fig. 1 the result of a numerical investiga
tion in which the super-Hubble evolution of themodes are
explicitly computed. The Klein-Gordon equations for the two
fields and the Friedmann equations are integrated for a set
initial conditions leading to a bundle of classical trajectories. ‘ ; ’ :
The parameters of this example were taken to\bel0™2 orc_ier four but _mvolv_es three flelds_. Itis actua_lly p055|b_le_ to
and an evolution for a number @folds equal toN,=50. build models involving only two fields. In this case, it is

The shape of the PDF is compared to our analytical expreézlear that they trajectory cannot be straight and has to bend.
sion[12] A possible explicit model can be obtained when the zero-

mode trajectory is given by

P(x)d \/ LI _1zxws )
X)O0x= > I a t
27| (14 x?4/3)? o tan)'( o ) ©
3x? dyx
Xexg = ——————| —. (6) wherea andy., are free parameters. A model to get such a
(6+2x“v3)o | Tx trajectory can be constructed by considering a term of the
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FIG. 2. PDF for the two-field model with potentiéll) at different time step with the parametéi®),(13). The left panel describes the
field trajectory and the shape of the wave packet and the right panels compare the numerically obtaifsali@®Dé& a Gaussiaridotted

and to the analytical PDF6) (dash. w is the effective equation of state parameter apis defined in Eq(8).

form (x—xo)* in the potential, as first advocated in Ref. Although it gives the adequate trajectd8) in field space, it
is non-polynomial and does not induce significant metric

[12], so that the potential might take the form

1 N
V(g x)=5m*¢*+ 4

cosin—-
X X

©

: ’_{aqﬁ
— X Sint —
X Yor

)

100  nificant bending. This is a generic feature of all models in

non-Gaussianities. The reason is that ghéuctuations are
squashed as soon as the trajectory is bent, the bundle of
trajectories being drastically focused much before any sig-
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which the bending of the trajectory is driven by the non-They are given by the sum of those induced by éhéuc-

linear coupling term. tuations, R, (Gaussian distributgdand those induced by
A way to construct a model in which the fluctuations the x fluctuations, R, . Both distributions have approxi-
are not squashed is to consider the potential mately the same variance. For the paramet&®s (13), our
numerical computations show that actually the rms of the
1 Xi . ad former is about 1B, the rms of the latter 13.. The right
V(p,x)= Emz X2+ —ZSIHI"? — panels show the PDF shape of the non-Gaussian component
« Xoo of the curvature fluctuationsy, . They follow the distribu-
N ad apl\? tion function given in Eq(6) as long ags,|=<0.7 at least for
o Xcosr{— —Xxsin)—{— ) . (1) less than & events. The complete PDF of the curvature
41 Xee X fluctuations can then be obtained as the convolution of the

PDFs of the two component® 4 andR .

In this Rapid Communication, we have introduced a se-
ries of multifield inflationary models leading to the genera-
tion of non-Gaussian primordial curvature fluctuations. We
have been able to build explicit models with either two or
three scalar fields. In the case of two-field models, it is dif-
ficult to design a simple potential: it has to be constructed in
such a way that the nonlinear term does not damp the curva-
ture fluctuations. In the case of three fields, we have shown
that models as simple as polynomial potentials of order four
work. In both cases we have illustrated our models by nu-

Now, the zero mode trajectorypg, xo) is not determined by
the nonlinear coupling. At lowest order in the coupling pa-
rameterA and in the slow-roll regime, the Klein-Gordon
equations for¢ and y can be integrated and lead to the
trajectory(9).

In Fig. 2, we depict the behavior of the super-horiztn
andy fluctuations(left panel$ and the curvature fluctuations
that are induced by the initig} fluctuations(right panels$.
The parameters of the model for the simulation of Fig. 2
were chosen to be

m=10""Mp,, a=1 (12)  merical computations and have shown that the analytic result
' (6) derived in Ref[12] is a very good approximation to the
Xo=15Mp, A=5x1075, (13 primordial curvature fluctuation PDF when non-

Gaussianities in thee distribution remain modest. Let us
so that it gives realistic fluctuation amplitudes aedold  emphasize that in the two-field models the potential has to be
number. The initial conditions are set up@t=4Mp . At tuned but that this is not the case for the three-field model.
this time the coupling constant is then about 0.15 and th@loreover, the initial conditions are not required to be fine-
number ofe-folds during the inflationary period is about 72. tuned, as explained before, to produce a reasonable level of
We integrate the Klein-Gordon equations and the Friedmannon-Gaussianity.
equation for the set of classical trajectories starting from dif- Our calculations are valid whek is smaller than unity.
ferent initial conditions aroundd;,;,0) Gaussian distributed Recent CMB constraintgl5,16 suggest that at the relative
with ((¢— dini)>) ~ (X2 ~HZ, . level of non-Gaussianity of order 18 is within range of

As can be observed in the left panels the joint evolution ofdetection. This would correspond to~10"2 but a proper
the ¢ and y fluctuations is quite complex. This is due to the investigation remains to be done. This description of the pri-
fact that the fluctuation distribution is shaped by the nonlin-mordial non-Gaussianity is actually the starting point of fur-
ear couplings during the trajectory bend. The resulting curther studies on its various observational aspects, both for
vature fluctuations can however be simply describedCMB and large scale structure surveyigt].
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