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Inflationary models inducing non-Gaussian metric fluctuations
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We construct explicit models of multifield inflation in which the primordial metric fluctuations do not
necessarily obey Gaussian statistics. These models are realizations of mechanisms in which non-Gaussianity is
first generated by a light scalar field and then transferred into curvature fluctuations. The probability distribu-
tion functions of the metric perturbation at the end of inflation are computed. This provides a guideline for
designing strategies to search for non-Gaussian signals in future CMB and large scale structure surveys.
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Inflation generically predicts Gaussian initial metric flu
tuations with an almost scale invariant power spectrum@1#. It
is interesting to determine how general this property is. W
the advent of large scale structure and cosmic microw
background~CMB! surveys it will be possible to test in de
tail whether or not the initial conditions were Gaussian a
in the latter case how they can be characterized. At the
ment, no non-Gaussian signal has been detected in C
data@2# but the number of modes that can be probed is s
small. In large-scale structure surveys the number of in
pendent modes that are observed is large but the diffic
arises from the nonlinear gravitational dynamics@3# which
can shadow the primordial non-Gaussianity@4#. Having at
our disposal models of inflation in which non-Gaussian ad
batic metric fluctuations are generated can then serve
guideline for designing strategies for detecting primord
non-Gaussianities.

Indeed, the detection of non-Gaussianity is a difficult ta
by principle. The reason is that neither the bi- nor tri-spec
are fully measurable; only some configuration averages
those are. This is the reason why it is not conceivable
design a universal estimator of non-Gaussianity. They h
to be constructed in light of the type of non-Gaussianit
that are aimed at. One merit for investigating explicit mod
is therefore to characterize the type of non-Gaussianity
can be present in the data.

In single field inflation, the slow-roll conditions, if valid
throughout the period during which the seeds of the la
scale structures are generated, prevent the generation o
servable primordial non-Gaussianities. The reason is tha
potential needs to be both flat enough for the fluctuation
develop and steep enough for the non-linearity to be sign
cant. Note however that starting from a nonvacuum ini
state@5# or allowing for sharp features in the potential@6#
could lead to primordial non-Gaussianities. In those ca
these features will be localized in a narrow band of wa
lengths and will affect the shape of the density fluctuat
power spectrum.

The situation is richer when more than one lig
scalar field is present during inflation. In multifield inflatio
models, a mixture of adiabatic and isocurvature fluctuati
@7#, that can be correlated or not@8#, are generically pro-
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duced. It opens the door to the generation of primordial n
Gaussianity@9# because the nonlinear couplings can be mu
stronger in the isocurvature direction than in the~inflaton!
adiabatic direction@9,10#. When the fields are coupled, ex
change between isocurvature and adiabatic modes can b
portant @11# which makes it possible to generate no
Gaussianity on a large band of wavelengths while preserv
an adiabatic slow-roll type primordial power spectrum@12#,
which is not the case of the original model of Ref.@9#.

In a previous study@12#, we have presented the buildin
blocks for such models. It is based on the generation of n
Gaussian isocurvature fluctuations which are subseque
transferred to the adiabatic mode due to a bend in the c
sical inflaton trajectory. The necessary ingredients for s
models are~i! the existence of a light scalar field that h
nonlinear coupling, typically quartic, and~ii ! a coupling term
in the potential leading to isocurvature-adiabatic mode m
ing. This latter mechanism can be given a simple geometr
interpretation. On super Hubble scales, curvature fluctuat
are induced by fluctuations of the total expansion in differ
parts of the universe. The relative duration of their inflatio
ary phase can be affected if inflaton trajectory is bent. Fl
tuations in the isocurvature modes generate a bundle of
allel trajectories along which inflation lasts longer or shor
depending on whether they lie in the outer or inner part
the bent~see Fig. 1 of Ref.@12#!.

In Ref. @12#, we characterized the expected statistic
properties of the metric fluctuations that were shown to
the superposition of a Gaussian and a non-Gaussian co
bution of the same variance@16#. The relative weight of the
two contributions is related to the bending angle in fie
space. We explicitly computed the probability distributio
function ~PDF! of the non-Gaussian contribution which a
pears to be described by a single new parameter,n3 @see Eq.
~6! below#. These results were obtained without the use
any explicit model. This Rapid Communication is dedicat
to the building of this kind of inflationary model involving
either two or three fields. The shape of their PDF will
computed and compared to our previous analytical exp
sion @12#.

In general the curvature fluctuations,R, can be computed
on superhorizon scales as@13#
©2003 The American Physical Society01-1
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R5Hdt. ~1!

Isocurvature fluctuations can then induce curvature fluc
tions only if in some way or another they can change
relative total number ofe-folds.

This can actually be obtained in a very simple way
hybrid type model of inflation with three fields. In that cas
one field,f, is the inflaton; the second field is a light scala
x, with quartic couplingl<1 and the third field,s, is
coupled to the two others so that the end of inflation is tr
gered whens undergoes a phase transition. To be more
plicit, let us examine the following model

V~f,x,s!5
1

2
m2f21

l

4!
x41

m

2
~s22s0

2!2

1
g

2
s2~f cosa1x sina!2 ~2!

wheres0 is the final vev ofs and a is the mixing angle
betweenf andx in their coupling tos.

Inflation ends when the effective mass ofs vanishes, that
is when

g~f cosa1x sina!222ms0
250. ~3!

The value off at the end of inflation is

fend[
6A2m/gs02x sina

cosa
. ~4!

For f.fend, s50 and the two fields evolve independentl
f drives the inflation whilex develops non-Gaussianity. Th
amount of non-Gaussianity ofx then depends only onl and
on the total number ofe-folds between horizon crossing an
the end of inflation.

When a is nonzero, fluctuations ofx induce curvature
fluctuations because they change the time at which the p
transition occurs. Thus thex-induced curvature fluctuation
read~assumingH is basically constant during the inflationa
period!,

R.Hdtend.2
3H2

V,f

sina

cosa
x. ~5!

We present in Fig. 1 the result of a numerical investig
tion in which the super-Hubble evolution of thex modes are
explicitly computed. The Klein-Gordon equations for the tw
fields and the Friedmann equations are integrated for a s
initial conditions leading to a bundle of classical trajectori
The parameters of this example were taken to bel51022

and an evolution for a number ofe-folds equal toNe550.
The shape of the PDF is compared to our analytical exp
sion @12#,

P~x!dx5A 1

2p U 12x2n3

~11x2n3/3!3U
3expF2

3x2

~612x2n3!sx
2G dx

sx
. ~6!
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which depends only on the variance ofx and on the param-
etern3 quantifying the amount of non-Gaussianity. The va
ance is directly proportional to the value of the Hubble co
stant at horizon crossing,Hc . The parametern3 is
proportional tol and is explicitly given by

n352lNe /~3Hc
2!'20.60. ~7!

In Fig. 1, the numerical results are compared to the exp
sion ~6! and to a Gaussian distribution of the same varian
It confirms that the analytic form~6! is a very good approxi-
mation of the probability distribution function. The value o
n3 in this plot is@17# n3520.15/sx

2 , which implies that the
value of the kurtosis of distribution is

s4[^x4&/^x2&22354n3sx
2 . ~8!

The curvature fluctuation PDF is related to the PDF of
field x. In the limit where the inflation ends abruptly th
relation is straightforward, Eq.~5!. It is more complex in
general and depends on the details of the phase of infla

The parameters of the potential~2! are tuned, as usual, s
that the amplitude of the fluctuations are compatible with
observations. No further fine-tunings are required for the
tial conditions: whatever the initial value for the fieldx, it
rolls down rapidly towardsx50 to follow the valley bottom,
as described in the previous paragraphs.

The model~2! reads as a simple polynomial potential
order four but involves three fields. It is actually possible
build models involving only two fields. In this case, it
clear that thex trajectory cannot be straight and has to ben
A possible explicit model can be obtained when the ze
mode trajectory is given by

x0~ t !5x` tanhS af0~ t !

x`
D ~9!

wherea andx` are free parameters. A model to get such
trajectory can be constructed by considering a term of

FIG. 1. The shape of the probability distribution function of th
isocurvature modes in case of a quartic coupling, 2~solid line!
compared to the analytic PDF of Eq.~6! ~dashed line! and to Gauss-
ian distribution ~dotted line!. In this example,l51022 and Ne

550.
1-2
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FIG. 2. PDF for the two-field model with potential~11! at different time step with the parameters~12!,~13!. The left panel describes th
field trajectory and the shape of the wave packet and the right panels compare the numerically obtained PDF~solid! to a Gaussian~dotted!
and to the analytical PDF~6! ~dash!. w is the effective equation of state parameter ands4 is defined in Eq.~8!.
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form (x2x0)4 in the potential, as first advocated in Re
@12#, so that the potential might take the form

V~f,x!5
1

2
m2f21

l

4! S x coshFaf

x`
G2x` sinhFaf

x`
G D 4

.

~10!
12130
Although it gives the adequate trajectory~9! in field space, it
is non-polynomial and does not induce significant met
non-Gaussianities. The reason is that thex fluctuations are
squashed as soon as the trajectory is bent, the bundl
trajectories being drastically focused much before any s
nificant bending. This is a generic feature of all models
1-3
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which the bending of the trajectory is driven by the no
linear coupling term.

A way to construct a model in which thex fluctuations
are not squashed is to consider the potential

V~f,x!5
1

2
m2S x21

x`
2

a2
sinh2Faf

x`
G D

1
l

4! S x coshFaf

x`
G2x`sinhFaf

x`
G D 4

. ~11!

Now, the zero mode trajectory (f0 ,x0) is not determined by
the nonlinear coupling. At lowest order in the coupling p
rameterl and in the slow-roll regime, the Klein-Gordo
equations forf and x can be integrated and lead to th
trajectory~9!.

In Fig. 2, we depict the behavior of the super-horizonf
andx fluctuations~left panels! and the curvature fluctuation
that are induced by the initialx fluctuations~right panels!.
The parameters of the model for the simulation of Fig
were chosen to be

m51027MPl. , a51 ~12!

x`51.5MPl. , l5531025, ~13!

so that it gives realistic fluctuation amplitudes ande-fold
number. The initial conditions are set up atf init54MPl. . At
this time the coupling constant is then about 0.15 and
number ofe-folds during the inflationary period is about 7
We integrate the Klein-Gordon equations and the Friedm
equation for the set of classical trajectories starting from
ferent initial conditions around (f init,0) Gaussian distributed
with ^(f2f init)

2&;^x2&;H init
2 .

As can be observed in the left panels the joint evolution
thef andx fluctuations is quite complex. This is due to th
fact that the fluctuation distribution is shaped by the non
ear couplings during the trajectory bend. The resulting c
vature fluctuations can however be simply describ
y

h

,

e

ot
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They are given by the sum of those induced by thef fluc-
tuations,Rf , ~Gaussian distributed! and those induced by
the x fluctuations,Rx . Both distributions have approxi
mately the same variance. For the parameters~12!, ~13!, our
numerical computations show that actually the rms of
former is about 18Hc , the rms of the latter 15Hc . The right
panels show the PDF shape of the non-Gaussian compo
of the curvature fluctuations,Rx . They follow the distribu-
tion function given in Eq.~6! as long asus4u&0.7 at least for
less than 3s events. The complete PDF of the curvatu
fluctuations can then be obtained as the convolution of
PDFs of the two components,Rf andRx .

In this Rapid Communication, we have introduced a
ries of multifield inflationary models leading to the gener
tion of non-Gaussian primordial curvature fluctuations. W
have been able to build explicit models with either two
three scalar fields. In the case of two-field models, it is d
ficult to design a simple potential: it has to be constructed
such a way that the nonlinear term does not damp the cu
ture fluctuations. In the case of three fields, we have sho
that models as simple as polynomial potentials of order f
work. In both cases we have illustrated our models by
merical computations and have shown that the analytic re
~6! derived in Ref.@12# is a very good approximation to th
primordial curvature fluctuation PDF when non
Gaussianities in thex distribution remain modest. Let u
emphasize that in the two-field models the potential has to
tuned but that this is not the case for the three-field mod
Moreover, the initial conditions are not required to be fin
tuned, as explained before, to produce a reasonable lev
non-Gaussianity.

Our calculations are valid whenl is smaller than unity.
Recent CMB constraints@15,16# suggest that at the relativ
level of non-Gaussianity of order 1023 is within range of
detection. This would correspond tol;1023 but a proper
investigation remains to be done. This description of the p
mordial non-Gaussianity is actually the starting point of fu
ther studies on its various observational aspects, both
CMB and large scale structure surveys@14#.
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