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Z decays into light gluinos: A calculation based on unitarity
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TheZ boson can decay to a pair of light gluinos through loop-mediated processes. Based on unitarity of the
Smatrix, the imaginary part of the decay amplitude is computed in the presence of a light bottom squark. This
imaginary part can provide useful information on the full amplitude. Implications are discussed for a recently
proposed light gluino and light bottom squark scenario.
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I. INTRODUCTION

A relatively light ~12–16 GeV! gluino g̃, along with a
lighter ~2–5.5 GeV! bottom squarkb̃, has been proposed@1#
to explain the excess of the cross section for bottom qu
production at hadron colliders. Theb̃ squark is assumed t
be a mixture ofb̃L and b̃R , the superpartners ofbL andbR .
Other supersymmetric~SUSY! particles, except the othe
bottom squarkb̃8 and one of the top squarks, are assumed
be sufficiently heavy. The masses ofb̃8 and the light top
squarkt̃ are constrained by the electroweak data to be be
180 and 98 GeV, respectively@2#. We follow the convention
in Ref. @1# to define

S b̃

b̃8
D 5S cosu b̃ sinu b̃

2sinu b̃ cosu b̃
D S b̃R

b̃L
D . ~1!

The introduction of these new particles gives rise to n
interactions in various processes. For example, the total
cay width of theY is raised since the decayY→b̃b̃* @3# is
now permitted; the decay width of theZ boson is also
changed@4,5#. As a result, the extraction of the strong co
pling constantas at these two mass scales will be affecte
By contributing to theb function, these SUSY particles slow
down the evolution ofas with energy scale@6#. The situation
has recently been studied in detail by Chianget al. @7# and
no clear-cut decision can be made in favor of either the s
dard model evolution or the evolution in the light gluin
light bottom squark scenario. The partial decay widthG(Z
→g̃g̃) remains a key quantity to be determined. A bet
evaluation ofG(Z→g̃g̃), among other things, can improv
our understanding of the effect of these new particles on
electroweak measurables at theZ pole and hence the dete
mination ofas(MZ) in the scenario.

To validate the proposition of these new particles, dir
searches for light gluinos and light bottom squarks ate2e1

colliders will definitely play a key role. An analysis has be
presented recently by Berge and Klasen@8# of gluino pair
production at lineare2e1 colliders. However, they only con
sidered the mass rangemg̃>200 GeV. Production of light
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gluino pairs was studied in Ref.@9# and its updated version
@10#. However, a chirally mixedlight bottom squark was no
included in either of these calculations. The decay of on-s
Z bosons into gluino pairs was first discussed in Re
@11,12#, but no chiral mixing between squarks was allowe
Djouadi and Drees@13# took into account chiral mixing and
computed an explicit expression forG(Z→g̃g̃). However,
they neglected the gluino mass and required all squark m
eigenstates to be heavier thanMZ/2. Production of light glui-
nos atpp̄ colliders was considered by Terekhov and Clave
@14# but without inclusion of the light bottom squark eithe
Therefore an analysis of light gluino production in the pre
ence of a light bottom squark will be very useful for gluin
searches.

Although all the previous calculations agree with ea
other that the branching ratio ofZ→g̃g̃ is less than
O(1023), they differ in some important features of the pr
cess. At the one-loop level the decay occurs through
types of diagrams; see Fig. 1. In type~a! diagrams theZ
couples to a pair of quarks and a squark is exchanged du

FIG. 1. Cut Feynman diagrams forZ→g̃g̃: ~a! Z→(bb̄)*

→g̃g̃ and ~b! Z→(b̃ b̄̃)* →g̃g̃. Similar diagrams with

g̃(k1)↔g̃(k2) are not shown but should be included in the calcu
tion with an overall minus sign.
©2003 The American Physical Society07-1



s
o

d
o

le
y
r-
-
h

is
ee
o
ep
o

w

r-

di
on
n
ie
e
n
g
ul

-
ss

h
fo
an

he

ul
th

he
or
I

-

h a
te
a

l

the

r-

the
cay
ry

ix
s

hell

-
tric

ZUMIN LUO PHYSICAL REVIEW D 67, 115007 ~2003!
the process, while in type~b! diagrams theZ couples to two
squarks and a quark is exchanged. References@8,11# disagree
with Refs.@10,13# in the relative sign between the two type
of diagrams. Considering only nonmixed chiral squarks
equal mass, Kane and Rolnick@12# claimed that the ampli-
tude of the process is identically zero whenmq5mq̃ is sat-
isfied for each supersymmetric pair, even if weak isospin
broken so that, for example,mtÞmb . However, other refer-
ences@8,10,13# state that for the contribution of quarks an
squarks of a given generation to vanish, we must have b
mass degeneracy in the quark isospin doublet~e.g., md
5mu) and mass degeneracy in the squark isospin doub
~e.g.,md̃5md̃85mũ5mũ8). There are also two contradictor
opinions with regard to cancellation of ultraviolet dive
gences. References@8,11,12# asserted that ultraviolet singu
larities cancel separately for each weak isospin partner, w
Djouadi and Drees@13# found that the amplitude is finite
only after summing over a complete isodoublet. This d
crepancy is essentially related to the relative sign betw
diagrams~a! and~b! in Fig. 1. The divergent parts of the tw
diagrams must have opposite signs for them to cancel s
rately for each isospin partner. There may not be any c
straint on the relative sign between~a! and ~b! for diver-
gences to cancel within an isodoublet, since the t
members in an isodoublet have oppositeI 3 ~the third com-
ponent of the weak isospin! and the divergences are gene
ally proportional toI 3.

A full calculation ofG(Z→g̃g̃) involves evaluation of the
Feynman diagrams in Fig. 1, with the cut~s!quark lines con-
nected. To get a meaningful result, one has to deal with
ficult one-loop integrals and remove singularities due to
shell particles. In this paper we try to provide a differe
approach to solving the above-mentioned discrepanc
Since 2mb,MZ and 2mb̃,MZ in the proposed scenario, th
decay amplitude has an imaginary part which is finite a
can be calculated in an easier way. It is likely that the ima
nary part can provide some useful information on the f
amplitude. Similar situations arise in theKS–KL mass differ-
ence and the decayKL→m1m2 @15#. In each case the high
momentum components of the loop diagrams are suppre
~through the presence of the charmed quark@16#!, leaving the
low-mass on-shell states (pp or gg, respectively! to pro-
vide a good estimate of the matrix element. In the lig
gluino and light bottom squark scenario, the decay width
Z→g̃g̃ usually turns out to be only a few times larger th
the contribution from the imaginary part alone.

This paper is organized as follows. Section II establis
the unitarity relation of theM matrix elements. Amplitudes
of the cut diagrams are calculated in Sec. III and the res
are listed in the Appendix. The lower bound based on
imaginary part of the decay amplitude forZ→g̃g̃ is pre-
sented in Sec. IV. Implications of the imaginary part for t
full amplitude are discussed in Sec. V. Implications f
gluino searches and running ofas are discussed in Secs. V
and VII, respectively. Section VIII summarizes.

II. UNITARITY RELATION

Let us first review the decaysKL,S→ l 2l 1 considered in
Ref. @15#. As is the case withZ→g̃g̃, both decays are for
11500
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bidden at the tree level. However, they can occur throug
two-photon (gg) intermediate state. Other intermedia
states such asppg and 3p are much less important. As
consequence of the unitarity of theS matrix @S†S[(1
1 iT)†(11 iT)51#, theT-matrix element between the initia
state KL,S and the final statel 2l 1 satisfies the following
relation:

Im@^ l 2l 1uTuKL,S&#5
1

2
@^ l 2l 1uT†TuKL,S&#, ~2!

where Im denotes the imaginary part. If we only consider
two-photon intermediate state, then

^ l 2l 1uT†TuKL,S&5(
e,e8

E d3k

~2p!3

d3k8

~2p!3

1

2E

1

2E8

3^ l 2l 1uT†ug~k,e!g8~k8,e8!&

3^g~k,e!g8~k8,e8!uTuKL,S&, ~3!

where ug(k,e)g8(k8,e8)& is a real two-photon state withk
and k8, e and e8 specifying the four-momenta and fou
polarizations, respectively. Since theT-matrix elements can
be expressed as the invariantM-matrix elements multiplied
by four-momentum-conservingd functions, Eqs.~2! and~3!
combine to give

Im@M~KL,S→ l 2l 1!#

5
1

2 (
e,e8

E d3k

~2p!3

d3k8

~2p!3

1

2E

1

2E8

3^g~k,e!g8~k8,e8!uMuKL,S&

3^g~k,e!g8~k8,e8!uMu l 2l 1&* ~2p!4

3d (4)~p2k12k2!, ~4!

times an overalld (4)(p2p12p2), with p, p1, andp2 being
the four-momenta ofKL,S , l 2, and l 1, respectively. It is
expected that the real part of the amplitude is roughly of
same order as the imaginary part, so that the actual de
width will exceed the lower bound based on the imagina
part by only a small factor.

Quite similarly, the imaginary part of the invariant matr
elementM(Z→g̃g̃) at the one-loop level can be written a

Im@M~Z→g̃g̃!#5
1

2 (
f
E dP fM~Z→ f !M* ~ g̃g̃→ f !

3~2p!4d (4)S p2(
i 51

nf

pi D , ~5!

where the sum runs over all possible intermediate on-s
statesf and dP f5) i 51

nf d3pi /(2p)31/2Ei with nf being the
numbers of particles in statef and pi being the three-
momenta of the particles. Sinceb̃ is the lightest supersym
metric particle in the scenario and all other supersymme
particles~exceptg̃) are expected to be heavier thanMZ/2,
7-2
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we only need to consider the cases wheref is bb̄ andb̃b̄̃. The
integral over the phase spaceP f can be simplified to the
integral over the solid angleV. In the case where the inte
mediate state is two particles with equal masses, we h
*dP f(2p)4d (4)(p2( i 51

nf pi)5 (v/32p2) *dV, where v is
the velocity of the on-shell intermediate particles.

III. AMPLITUDES OF THE CUT DIAGRAMS

We adopt the spinor convention of Peskin and Schroe
@17#, in which the metric tensorgmn5diagonal(1,21,21,
21) and

g05S 0 1

1 0D , g55S 21 0

0 1D , and g i5S 0 s i

2s i 0 D ,

i 51,2,3, ~6!

wheres i are the Pauli matrices. The uncrossed cut Feynm
diagrams that contribute to the imaginary part of the f
amplitude are shown in Fig. 1. The crossed diagrams w
g̃(k1)↔g̃(k2) are not shown but should also be included
the calculation. In the center-of-mass frame of theZ boson,
the four-momenta of the final gluinos arek15(E,k) andk2
5(E,2k), whereE5MZ/2 andk5(0,0,uku). Supposek is
along thez axis and the polarizations of theZ are quantized
along this axis, i.e.,em5(0,1,6 i ,0)/A2 or (0,0,0,1), corre-
sponding to helicitiesl561 or 0, respectively. The four
momenta of the intermediate bottom quarks arep15(E,p)
and p25(E,2p), with pÄupu(sinu cosf,sinu sinf,cosu).
The four-momenta of the intermediate bottom squarks
p̃15(E,p̃) and p̃25(E,2p̃), with p̃
5up̃u(sinu cosf,sinu sinf,cosu). The Feynman rules fo
the Majorana fields are given in a representation indepen
way in @18#.

The M-matrix element forZ→bb̄ is

M~Z→bb̄!52
gW

2 cosuW
ū~p1!e” ~p!~gL

bPL1gR
b PR!

3v~p2!d i j , ~7!

where e”[e•g, gL
b5gV

b1gA
b5 2

3 sin2uW21, gR
b5gV

b2gA
b

5 2
3 sin2uW, PL5(12g5)/2 , PR5(11g5)/2 , d i j is a Kro-

necker delta in the quark color indices, andp5p11p2 is the
four-momentum of theZ. The Dirac spinorsu(p1) andv(p2)
can be written as

u↑~p1!5S AE2upuj↑

AE1upuj↑D , u↓~p1!5S AE1upuj↓

AE2upuj↓D ,

v↑~p2!5S AE2upuh↑

2AE1upuh↑D , v↓~p2!5S AE1upuh↓

2AE2upuh↓D ,

~8!

where the arrows↑ and ↓ denote spin up and spin dow
alongp, respectively;
11500
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j↑5S cos
u

2

eifsin
u

2

D , j↓5S 2e2 ifsin
u

2

cos
u

2

D ,

h↑5S 2sin
u

2

eifcos
u

2

D , h↓5S e2 ifcos
u

2

sin
u

2

D .

We then have

M~Z→b↑b̄↑!5~0,i sinf1cosf cosu,2 i cosf

1sinf cosu,2sinu!•e~p!
gW

2 cosuW

3@~E2upu!gL
b1~E1upu!gR

b #d i j ,

M~Z→b↓b̄↓!5~0,2 i sinf1cosf cosu,i cosf

1sinf cosu,2sinu!•e~p!
gW

2 cosuW

3@~E1upu!gL
b1~E2upu!gR

b #d i j ,

M~Z→b↑b̄↓!5
gWmb

2 cosuW
e2 if@gL

b~21,sinu cosf,

sinu sinf,cosu!1gR
b

3~1,sinu cosf,sinu sinf,cosu!#•e~p!d i j ,

M~Z→b↓b̄↑!52
gWmb

2 cosuW
eif

3@gL
b~1,sinu cosf,sinu sinf,cosu!

1gR
b~21,sinu cosf,

sinu sinf,cosu!#•e~p!d i j .

For sin2uW50.2311 and without top quark corrections, th
partial decay width forZ to decay into masslessbb̄ is then
GFMZ

3/4A2p @(gL
b)21(gR

b)2#5368 MeV.

Now we considerbb̄→g̃g̃ via exchange of ab̃ or b̃8, the
matrix element for which is denotedM(bb̄→g̃g̃) or
M8(bb̄→g̃g̃), respectively. We have M(bb̄→g̃g̃)
5M (1)(bb̄→g̃g̃)1M (2)(bb̄→g̃g̃), with

M (1)~bb̄→g̃g̃!522gs
2 ~ tbta! j i

~p12k1!22mb̃
2 uD ~k1!~PLsinu b̃

2PRcosu b̃!u~p1!v̄~p2!

3~PRsinu b̃2PLcosu b̃!ṽ~k2!, ~9!
7-3



nd
f

ha

o

p

te

a
a

a

w
ch
of

p-
ela-

f

a
e

of

li-

ZUMIN LUO PHYSICAL REVIEW D 67, 115007 ~2003!
M (2)~bb̄→g̃g̃!522gs
2 ~ tatb! j i

~p12k2!22mb̃
2ṽT~k2!C21

3~PLsinu b̃2PRcosu b̃!u~p1!v̄~p2!

3~PRsinu b̃2PLcosu b̃!CuD T~k1!, ~10!

where the superscript~1! denotes the uncrossed diagram a
~2! the crossed diagram;a,b and i , j are the color indices o
the gluinos and the quarks, respectively;ta are the funda-
mental representation matrices of SU~3!; and C5 ig0g2 is
the charge conjugate matrix. It can be easily verified t
u(p,s)5Cv̄T(p,s) and v(p,s)5CūT(p,s), whereT means
‘‘transpose.’’ The Majorana spinorsũ(k1) and ṽ(k2) also
satisfy these relations@18#. Thus we can immediately write

ũ↑~k1!5S AE2ukuz1

AE1ukuz1
D , ũ↓~k1!5S AE1ukuz2

AE2ukuz2
D ,

ũ↑~k2!5S AE1ukuz1

AE2ukuz1
D , ũ↓~k2!5S 2AE2ukuz2

2AE1ukuz2
D ,

ṽ↑~k1!5S AE1ukuz2

2AE2ukuz2
D , ṽ↓~k1!5S 2AE2ukuz1

AE1ukuz1
D ,

ṽ↑~k2!5S AE2ukuz2

2AE1ukuz2
D , ṽ↓~k2!5S AE1ukuz1

2AE2ukuz1
D ,

~11!

with z15( 0
1) andz25(1

0). Here the arrows↑ and↓ denote
spin up and spin down alongk ~i.e., thez axis!, respectively.
Since ṽT(k2)C2152uD (k2) and CuD T(k1)5 ṽ(k1), Eq. ~10!
can alternatively be obtained from Eq.~9! by interchanging
k1 andk2 and adding an overall minus sign. The helicities
the final gluinos are determined byl, the initial helicity of
theZ. Forl51, both gluinos have spin up in thez direction,
while for l521, both have spin down in thez direction.
For l50, one of them has spin up and the other has s
down in the z direction. One expectsuIm M(Z↓→g̃↓g̃↓)u
5uIm M(Z↑→g̃↑g̃↑)u because the two processes are rela
by mirror symmetry. One also expects ImM(Z(0)→g̃↑g̃↓)
50, because these final gluinos have the same helicities
should therefore be excluded by the Pauli principle. The m
trix element M8(bb̄→g̃g̃) can be obtained fromM(bb̄

→g̃g̃) by replacingmb̃ , sinub̃ , and cosub̃ with mb̃8 , cosub̃ ,
and2sinub̃ , respectively.

Now consider the diagram in Fig. 1~b! and a similar dia-
gram with g̃(k1)↔g̃(k2), where the intermediate state is

pair of scalar quarks (b̃ andbD ). The tree-levelZb̃b̄̃ coupling
is proportional togL

bsin2ub̃1gR
bcos2ub̃ , so a mixing angle of

u b̃5arcsinA2 sin2uW/3.23° or 157° will make it vanish. A

weak Zb̃b̄̃ coupling is assumed@1# to satisfy the tight con-
straints imposed by precision measurements at theZ peak.

Consequently the contribution of theb̃b̄̃ intermediate state to
11500
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Im M(Z→g̃g̃) should also be small. However, to see ho
the two types of diagrams shown in Fig. 1 interfere with ea
other, we takeu b̃ to be a free parameter. For the first part
the cut diagram@Fig. 1~b!#, we have

M~Z→b̃b̄̃!52
gW

2 cosuW
@gL

bsin2u b̃1gR
bcos2u b̃#

3~ p̃12 p̃2!mem~p!d i j , ~12!

wherei and j are the squark color indices. The sign discre
ancy mentioned in the Introduction can be traced to the r
tive sign between Eqs.~7! and ~12! @8#. The current sign in
Eq. ~12! is consistent with the Feynman rules in Ref.@18#.
We will argue in favor of this sign from another point o
view in Sec. V. For the other part of the diagram,

M (1)~ b̃b̄̃→g̃g̃!52gs
2 ~ tbta! j i

~ p̃12k1!22mb
2ṽT~k2!C21

3@PLsinu b̃2PRcosu b̃#~p”̃ 12k” 11mb!

3@PRsinu b̃2PLcosu b̃#CuD T~k1!, ~13!

M (2)~ b̃b̄̃→g̃g̃!52gs
2 ~ tatb! j i

~ p̃12k2!22mb
2

uD ~k1!

3@PLsinu b̃2PRcosu b̃#~p”̃ 12k” 21mb!

3@PRsinu b̃2PLcosu b̃#ṽ~k2!, ~14!

where~1! denotes the uncrossed diagram and~2! the crossed
diagram. The relevant matrix elements forl51 are pre-
sented in the Appendix.

IV. LOWER BOUND ON G„Z\g̃g̃…

Now we are ready to put things together and obtain
lower bound onG(Z→g̃g̃). First we consider an extrem
case withmb5mb̃5mg̃50 and mb̃85`. In this limit, the
productM(Z→ f )M( f→g̃g̃) has an angular dependence
either (11cosu) or (12cosu). However, the cosu term
does not contribute to the imaginary part of the full amp
tude because integrating it over the solid angleV gives zero.
Note that tr(tatb)5tr(tbta)5dab/2. The only nonvanishing
amplitudes are

M~Z↑→bb̄!* M~bb̄→g̃↑g̃↑!5dabr W~gA
b2gV

bcos 2u b̃!,

M~Z↓→bb̄!* M~bb̄→g̃↓g̃↓!

52dabr W~gA
b2gV

bcos 2u b̃!,

M~Z↑→b̃b̄̃!* M~ b̃b̄̃→g̃↑g̃↑!

5dabr W~gV
b2gA

bcos 2u b̃!cos 2u b̃ ,
7-4
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M~Z↓→b̃b̄̃!* M~ b̃b̄̃→g̃↓g̃↓!

52dabr W~gV
b2gA

bcos 2u b̃!cos 2u b̃ ,

where the asterisks imply that we have integrated over
phase spaces and summed over all intermediate hel
states,r W5MZgWgs

2/2A2 cosuW. From the above equation
we can see that the imaginary parts of diagrams~a! and~b! in
Fig. 1 interfere destructively ifb̃ is more left-handed (45°
,u b̃,135°) or dominantly right-handed (u b̃,23° or u b̃
.157°); the contribution of diagram~b! remains negligible
in the neighborhood of the decoupling angle (23° or 157
The imaginary parts of the amplitudes are

Im M~Z↑→g̃↑g̃↑!52Im M~Z↓→g̃↓g̃↓! ~15!

5dabr W~gL
b2gR

b !sin2u b̃cos2u b̃ /~8p!.

The relation~15! also holds when all the particles have
finite mass. The lower bound onG(Z→g̃g̃) in the limit mb
5mb̃5mg̃50 andmb̃85` can be expressed as a ratio

G~Z→g̃g̃!

G~Z→bb̄!
>

1

2

@ Im M~Z↑→g̃↑g̃↑!#21@ Im M~Z↓→g̃↓g̃↓!#2

@ Im M~Z↑→b↑b̄↑!#21@ Im M~Z↓→b↓b̄↓!#2

5
as

2

6

~gL
b2gR

b !2sin4u b̃cos4u b̃

~gL
b!21~gR

b !2
. ~16!

The factor of 1/2 comes in because the final gluinos
identical. TakingG(Z→bb̄)5368 MeV, we plot the lower
bound on the decay widthG(Z→g̃g̃) as a function of the
bottom squark mixing angleu b̃ in Fig. 2 ~dotted curve!.
When all the masses are finite, we can no longer ignore

FIG. 2. Lower bound onG(Z→g̃g̃) as a function of the bottom
squark mixing angle u b̃ . Solid curve: mb54.1 GeV, mb̃

54.5 GeV,mg̃515 GeV, andmb̃85170 GeV; dashed curve: onl

the contribution from thebb̄ intermediate state is included with th
same set of masses; and dotted curve:mb5mb̃5mg̃50 and mb̃8
5`.
11500
e
ity

.

e

e

cosu terms because the denominators of the propagators
no longer of the form;(16cosu), which previously can-
celled with the same factors in the numerators of the am
tudes and gave only linear terms in cosu. However, it is still
not hard to perform the integration over the angles. Defin

I 6~x,y,z!5
1

2E0

p ~16cosu!2

x21y21z212xy cosu
sinudu,

I 0~x,y,z!5E
0

p sin2u

x21y21z212xy cosu
sinudu,

~17!

and let c65I 6(vb ,v g̃ ,r b̃), c68 5I 6(vb ,v g̃ ,r b̃8), c0

5I 0(vb ,v g̃ ,r b̃), c085I 0(vb ,v g̃ ,r b̃8), and c̃0

5I 0(v b̃ ,v g̃ ,r b), where r i52mi /MZ( i 5b,b̃,b̃8,g̃), v i

5A12r i
2 is the ‘‘velocity’’ of an on-shell particle i ( i

5b,b̃,g̃). The lower bound can then be written as

G~Z→g̃g̃!>
GFMZ

3as
2

96A2p
~A1vb1A18vb1A2v b̃!2v g̃ ,

~18!

where, up to a common factor of proportionality,A1vb and
A18vb are the imaginary parts of the amplitudes forZ

→(bb̄)* →g̃g̃ via exchange of ab̃ and b̃8, respectively;

A2v b̃ is the imaginary part of the amplitude forZ→(b̃b̄̃)*
→g̃g̃. We have

A15c1~gA
b2gV

bcos 2u b̃!2gA
b~c21c3sin 2u b̃!,

A185c18~gA
b1gV

bcos 2u b̃!2gA
b~c282c38sin 2u b̃!,

A25 c̃0v b̃
2v g̃~gV

b2gA
bcos 2u b̃!cos 2u b̃ ,

where c15c2(v g̃2vb)1c1(v g̃1vb)1c0r b
2v g̃ , c25(c2

1c11c0)r b
2v g̃ , andc35(c12c2)vbr br g̃ ; c18 , c28 , andc38

are defined similarly, withc6 and c0 all primed. All these
quantities only depend on the masses. Asmb , mb̃ , andmg̃

go to zero andmb̃8 goes to infinity,c1→1, c̃0v b̃
2v g̃→1, c2

→0, c3→0, c18→0, c28→0 and c38→0. Equation~16! is
thus recovered. As far as the imaginary part of the amplitu
is concerned, Eq.~18! agrees with Ref.@13# in the limit mg̃
50 except for the mentioned sign discrepancy. Compare
Ref. @13#, this unitarity calculation not only takes into ac
count a nonzero gluino mass but also is much simpler. F
there are no singularities to remove. Second, one only ha
evaluate a few elementary integrals in Eq.~17! instead of the
much more difficult one-loop two-and three-point function

The lower bound is plotted in Fig. 2~solid curve! as a
function of u b̃ for a specific set of values for the masse
mb54.1 GeV, mb̃54.5 GeV, mb̃85170 GeV, and mg̃
515 GeV. The small peak around 90° disappears if
gluino has a small mass~e.g.,mg̃<7 GeV) such that the sign
of the sumA1vb1A18vb1A2v b̃ does not change over 0
7-5
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<ub̃<180°. If g̃ were massless, the lower bound as a fu
tion of 0°<u b̃<180° would have two identical peaks~see
the dashed curve in Fig. 3!. Due to destructive interferenc
between diagrams~a! and ~b! for 45°,u b̃,135°, u b̃,23°,
andu b̃.157°, the lower bound is smaller than the contrib
tion from the bb̄ intermediate state alone~Fig. 2, dashed
curve! in these ranges.

V. IMPLICATIONS FOR THE FULL DECAY WIDTH
G„Z\g̃g̃…

Let us first examine under what conditions the decay a
plitude vanishes. We will see that Kane and Rolnick’s cla
@12# contradicts our unitarity calculation. Under their a
sumption, mq̃5mq̃85mq and u q̃50, so that ci5ci8( i

51,2,3) andc̃05 c̃08[I 0(v b̃8 ,v g̃ ,r b)56c0. We regard the
relative sign (6) between diagrams~a! and~b! as undecided
and only consider the contribution of the third generatio
i.e., q5t,b. DefineA28[2 c̃08v b̃8

2 v g̃(gV
b1gA

bcos 2ub̃)cos 2ub̃ .
Then the imaginary part of the amplitude is proportional
A11A181A21A2852@(c11c27c0)vb

2v g̃1(c12c2)vb#gA
b ,

which is nonzero for either sign. Therefore the amplitu
doesnot vanish under Kane and Rolnick’s conditions. F
the imaginary part to be zero, we must havemt5mb and
mt̃5mt̃ 85mb̃5mb̃8 and similar mass degeneracies in t
other two generations.~Of course, the imaginary part of th
amplitude automatically vanishes if all quark and squ
mass eigenstates are heavier thanMZ/2.! This is true whether
the relative sign between diagrams~a! and~b! is 1 or 2 and
is consistent with Refs.@8,10,13#.

Let us now investigate whether the imaginary part of
amplitude computed in the previous section can give us s
hint how loop divergences cancel and reasonably small

FIG. 3. G(Z→g̃g̃) as a function of the bottom squark mixin
angle u b̃ . We take u t̃550°, mb54.1 GeV, mb̃85170 GeV, mt

5174 GeV, mt̃595 GeV,mt̃ 85300 GeV, andmg̃50. Solid ~full
width! and dashed~unitarity lower bound! curves:mb̃54.5 GeV;
and dash-dotted~full width! and dotted curves~unitarity lower
bound!: mb̃5100 GeV.
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cay widths forZ→g̃g̃ can be obtained. Without actually ca
culating the full amplitude, we should be able to recover p
of it from the imaginary part. For simplicity we takemg̃
50 and consider only diagram~b! in Fig. 1. The imaginary
part of the amplitude for this diagram is proportional
A2v b̃5 c̃0v b̃

3(gV
b2gA

bcos 2ub̃)cos 2ub̃ . We have

p

2
c̃0v b̃

3
5F1

2
2

mb̃
2
2mb

2

s
Gv b̃p1Fmb

21
~mb̃

2
2mb

2!2

s
G p

s

3 log
~mb̃

2
2mb

2!/s2~12v b̃!/2

~mb̃
2
2mb

2!/s2~11v b̃!/2
,

wheres5MZ
2 . For mb̃,MZ/2, one can check that

Im B0~s,mb̃ ,mb̃!5v b̃p,

Im C0~s,mb̃ ,mb̃ ,mb!5
p

s
log

~mb̃
2
2mb

2!/s2~12v b̃!/2

~mb̃
2
2mb

2!/s2~11v b̃!/2
,

whereB0 andC0 are the scalar one-loop two-and three-po
functions@13,19–21#, respectively. If we define

A~m1 ,m2 ,m3!5F1

2
2

~m1
22m3

2!1~m2
22m3

2!

2s GB0~s,m1 ,m2!

1Fm3
21

~m1
22m3

2!~m2
22m3

2!

s G
3C0~s,m1 ,m2 ,m3!,

then by analyticity and symmetry, the following terms shou
be part of the full amplitude contributed by type~b! diagrams
in Fig. 1,

A~mb̃ ,mb̃ ,mb!~gV
b2gA

bcos 2u b̃!cos 2u b̃2A~mb̃8 ,mb̃8 ,mb!

3~gV
b1gA

bcos 2u b̃!cos 2u b̃2A~mb̃ ,mb̃8 ,mb!

32gA
bsin22u b̃1A~mt̃ ,mt̃ ,mt!~gV

t 2gA
t cos 2u t̃ !cos 2u t̃

2A~mt̃ 8 ,mt̃ 8 ,mt!~gV
t 1gA

t cos 2u t̃ !cos 2u t̃

2A~mt̃ ,mt̃ 8 ,mt!2gA
t sin22u t̃ . ~19!

Here the sin22uq̃ terms can be obtained by repeating the u

tarity calculation withf 5b̃b̄̃8. Alternatively, they can easily
be guessed if we note that the above terms should sum u
zero for mt5mb and mt̃5mt̃ 85mb̃5mb̃8 . Those terms in
Eq. ~19! are expected to be the only ones relevant to
argument@13#.

The top and bottom squark masses and mixing angles
determined by the following mass matrices@13#:

M t̃
2
5S mt̃ L

2
1mt

21gL
t s cos 2b/2 2mt~At1m cotb!

2mt~At1m cotb! mt̃ R

2
1mt

22gR
t s cos 2b/2D ,

~20!
7-6
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Mb̃
2
5S mb̃L

2
1mb

21gL
bs cos 2b/2 2mb~Ab1m tanb!

2mb~Ab1m tanb! mb̃R

2
1mb

22gR
bs cos 2b/2D ,

~21!

where mt̃ L

2 ,mt̃ R

2 ,mb̃L

2 ,mb̃R

2 are soft SUSY breaking masse

tanb is the ratio of the vacuum expectation values of the t
neutral Higgs fields in the MSSM;At ,Ab denote the trilinear
Higgs-stop,-sbottom couplings, respectively; andm is the
Higgsino mass parameter. SU~2! gauge invariance leads t
mt̃ L

2
5mb̃L

2 . It is reasonable to assume that we should ge

sensible decay widthG(Z→g̃g̃) for each specific set of pa
rameters. In particular, we can choose very large values
mt̃ ,mt̃ 8 ,mb̃ ,mb̃8 and should find a tinyG(Z→g̃g̃) for some
mixing anglesu t̃ and u b̃ . For simplicity we assumeAt
1m cotb5Ab1m tanb50 so that there is noL-R squark
mixing, and

mt̃ L

2
1gL

t s cos 2b/25mt̃ R

2
2gR

t s cos 2b/2,

mt̃ L

2
1gL

bs cos 2b/25mb̃R

2
2gR

bs cos 2b/2,

so thatmt̃5mt̃ 8 , mb̃5mb̃8 . The mass difference betwee
the top and bottom squarks is then

mt̃2mb̃5Amt̃ L

2
1mt

21gL
t s cos 2b/2

2Amt̃ L

2
1mb

21gL
bs cos 2b/2'

dm2

mt̃ L

,

with dm2[@2(mt
22mb

2)1(gL
t 2gL

b)s cos 2b#/4. The sum in
Eq. ~19! becomes simply

A~mb̃ ,mb̃ ,mb!2A~mt̃ ,mt̃ ,mt![dA. ~22!

In the heavy squark limit,

B0~s,mq̃ ,mq̃!5D1 log
mq̃

2

n2
,

C0~s,mq̃ ,mq̃ ,mq!52
1

mq̃
2
2mq

2
1

mq
2

~mq̃
2
2mq

2!2
log

mq̃
2

mq
2

,

whereD denotes the ultraviolet divergent part ofB0 andn is
the renormalization scale. We can see that theB0 and C0

terms in A(mq̃ ,mq̃ ,mq) vary as 2(mq̃
2
2mq

2)@ logmq̃
2/n2#/s

and2(mq̃
2
2mq

2)/s, respectively. So the leading term indA
comes fromB0 and varies as

@~mt̃
2
2mt

2!logmt̃
2
2~mb̃

2
2mb

2!logmb̃
2
#/s

;@~gL
t 2gL

b!cos 2b logmt̃ L

2
#/2.

Thus the sum in Eq.~19! is logarithmically divergent asmt̃ L

goes to infinity. Therefore we cannot get reasonable de
11500
o

a

or

ay

widths if this divergence is supposed to cancel within
isodoublet. So we do not agree with Djouadi and Dre
claim @13# that one can get meaningful results by summi
over a complete isodoublet. The only other way out is for
divergence to cancel for each weak isospin partner. Note
the ultraviolet divergent parts of theB0 terms in Eq.~19! not
only can cancel within an isodoublet, but also can cancel
each weak isospin partner. Indeed, if the relative sign
tween diagrams~a! and~b! in Ref. @13# is reversed, one finds
that both ultraviolet divergences and the divergences in
heavy squark limit~as discussed above! cancel separately fo
the top and bottom sectors. To understand how the la
divergences cancel, repeat the same reasoning as that le
to Eq. ~19! for type ~a! diagrams in Fig. 1 and observe th
those diagrams should contribute the following terms:

6@C~mb ,mb ,mb̃!~gA
b2gV

bcos 2u b̃!1C~mb ,mb ,mb̃8!~gA
b

1gV
bcos 2u b̃!C~mt ,mt ,mt̃ !~gA

t 2gV
t cos 2u t̃ !

1C~mt ,mt ,mt̃ 8!~gA
t 1gV

t cos 2u t̃ !#, ~23!

where again we keep an undecided relative sign and

C~m1 ,m1 ,m2![Fm1
21

~m2
22m1

2!2

s GC0~s,m1 ,m1 ,m2!.

For mt̃5mt̃ 8 andmb̃5mb̃8 , Eq. ~23! becomes

6@C~mt ,mt ,mt̃ !2C~mb ,mb ,mb̃!#[6dC. ~24!

One can check that whenmq̃ becomes large,

ReC0~s,mq ,mq ,mq̃!;2
1

mq̃
2
2mq

2
log

mq̃
2

s
.

Thus the leading term in RedC is exactly the same as th
leading term indA. The second-to-leading and higher ord
terms turn out to be finite after summing overq5t,b ~for
either relative sign! or over diagrams~a! and ~b! ~for only
one of the signs!. If we have chosen a correct relative sig
the divergences in type~b! diagrams should cancel exact
with those in type~a! diagramsseparatelyfor q5t,b. Oth-
erwise the divergences will add up and the total amplitu
will be logarithmically divergent as the squark masses go
infinity. We find that the sign in the current note rather th
that in Ref.@13# is favored.

Our numerical analysis not only verifies the above arg
ment but also shows that it works even if arbitraryL-R
squark mixing is allowed and the above constraints on
parameters are relaxed. Using the same formula in Ref.@13#
but with the sign flipped,1 we find that for mg̃.0, mb̃
<O(30) GeV, mb̃85O(150) GeV, mt̃5O(90) GeV, mt̃ 8
5O(300) GeV,G(Z→g̃g̃) is typically of order 0.1 MeV if
b̃ is not dominantly left-handed and only of order 0.01 Me

1The formula fails to produce sensible decay widths in the he
squark limit if the sign is not reversed, as argued in the text.
7-7
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ZUMIN LUO PHYSICAL REVIEW D 67, 115007 ~2003!
or less ifb̃ is dominantly left-handed, i.e.,u b̃'90°, and that
the top squark mixing angleu t̃ has little effect on the deca
width. If all squark masses are greater thanMZ/2, we con-
firm the statement in Ref.@13# that G(Z→g̃g̃) depends
weakly on the details ofL-R squark mixing and find that it is
of order 0.1 MeV for a wide range of MSSM paramete
Thus inclusion of a dominantly left-handed lightb̃ would
reduce the decay widthG(Z→g̃g̃), as is the case for the
unitarity lower bound plotted in Fig. 2. A relatively heavy o
not very left-handedb̃ will not change the decay width b
much. In Fig. 3 we plot the full decay widths as well as t
corresponding unitarity lower bounds formg̃50 and two sets
of squark masses. When all the squark mass eigenstate
heavier thanMZ/2, the full width is about an order of mag
nitude larger than the lower bound. When one of the bott
squarks is light@<O(30) GeV#, the shape of the full width
as a function ofu b̃ is similar to the lower bound and gene
ally only a few times higher than the latter. Although a
expression forG(Z→g̃g̃) is not available whenmg̃Þ0, we
expect the shape ofG(Z→g̃g̃) to be also similar to and only
a few times higher than the unitarity lower bound plotted
Fig. 2 ~solid curve! if the gluino has a mass around 15 Ge
and the light bottom squark has a mass around 4.5 GeV
G(Z→g̃g̃) should be of order 0.1 MeV in the light gluin
and light bottom squark scenario.

VI. IMPLICATIONS FOR GLUINO SEARCHES
IN Z DECAYS

Aside from Z→g̃g̃, there exist three other gluino
producingZ decays,Z→bbD g̃, Z→b̄b̃g̃, andZ→qq̄g̃g̃. The
first two processes are;aas at the tree level and have
combined decay width of 1.9–5.9 MeV depending on
sign of sin 2ub̃ @22#. The third process is;aas

2 and its decay
width is calculated in a model-independent way to be 0.7
0.21 MeV for mg̃512–16 GeV@23#. A recent analysis@24#

shows thatG(Z→bb̄g̃g̃) can be enhanced by 10%–60% d
to additional ‘‘sbottom splitting’’ diagrams. This will raise
G(Z→qq̄g̃g̃) by O(0.01) MeV. The new SUSY particles d
not always contribute positively to theZ width, however.
Cao et al. @5# and Baek@25# showed that the decay widt
G(Z→bb̄) can be reduced by 2–8 MeV. By fine-tuning th
parameters in the light gluino and light bottom squark s
nario, all the electroweak measurables@GZ , Ghad(Z), Rb ,
Rc] at the Z pole can be still within the 1s bounds of the
experimental values. Thus existence of the new particles
only be verified through direct searches for gluinos or bott
squarks. The light bottom squark is assumed to be long-li
at the collider scale or to decay promptly to light hadrons
this scenario. In either case, it forms a hadronic jet within
detector due to its color charge.g̃ decays exclusively tobbD

or b̄b̃ and becomes two hadronic jets. The smallness
G(Z→g̃g̃) implies the insignificance ofZ→g̃g̃ in gluino
searches. Searches for signals ofZ→bbD g̃1b̄b̃g̃ and Z

→qq̄g̃g̃ will be expected to play a pivotal role.
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VII. IMPLICATIONS FOR RUNNING OF as

Both the light gluinog̃ and the light bottom squarkb̃ can
change theb function that governs the energy-scale depe
dence~‘‘running’’ ! of the strong coupling constantas . At the
two-loop level,as(MZ) can be raised by 0.01460.001 @7#
with respect to its standard model value if extrapolated fr
the mass scalemb . A natural question arises: are values
as(MZ) determined from measurements at different ene

scales still in accordance in the presence ofg̃ and b̃? To
answer this question, the effects of the new SUSY partic
on measurements at different scales must be analyzed.
example, the hadronic width of theZ is changed in two
ways: ~1! the interference of the standard model diagra
and the diagrams with the SUSY particles in loops will r
duce the partial width ofZ→bb̄; and~2! the existence of the

new decay channelsZ→b̃b̄̃, Z→g̃g̃, Z→bbD g̃/b̄b̃g̃, andZ

→qq̄g̃g̃ will raise the hadronic width. The bottom squa
mixing angleu b̃ is chosen to be near 23° or 157° so th

G(Z→b̃b̄̃) is suppressed.2 G(Z→g̃g̃) is only of order 0.1
MeV at either of these angles. Thus these two channels c
bined will change the predicted hadronic width of theZ by a
very small amount compared to the decrease inG(Z→bb̄)
and the increase inGhad(Z) due to Z→bbD g̃/b̄b̃g̃ and Z

→qq̄g̃g̃. A better determination ofG(Z→bb̄), G(Z
→bbD g̃/b̄b̃g̃), andG(Z→qq̄g̃g̃), or a more precise measure
ment of Rb @which will constrain the value ofG(Z→bb̄)
more tightly#, is needed for a clear-cut decision in favor
either the standard model or the light gluino and light botto
squark scenario.

VIII. SUMMARY

We have calculated the imaginary part of the decay a
plitude for Z→g̃g̃ and used it to analyze the full amplitud
and solve some discrepancies in the literature. We have
firmed the argument that the decay width vanishes if b
quarks and squarks of a given generation are degenera
mass~the quarks and squarks in that generation do not n
to have equal mass!. We have found that both logarithmi
divergences in the heavy squark limit and ultraviolet div
gences cancel for each weak isospin partner, as previo
claimed by Refs.@11,12#. We also favor the relative sign o
Refs.@8,11# between diagrams~a! and~b! in Fig. 1. Borrow-
ing the formula forG(Z→g̃g̃) from Ref. @13# but with their
relative sign between diagrams~a! and~b! flipped to be con-
sistent with our calculation, we find that the decay width
of order 0.1 MeV in the proposed light gluino and light bo
tom squark scenario. Compared with other decay proce
like Z→bbD g̃/b̄b̃g̃ and Z→qq̄g̃g̃, Z→g̃g̃ will only play a
moderate role in searches for gluinos and analysis of eff
of the SUSY scenario onas(MZ).

2G(Z→b̃b̄̃) will be greater than 15 MeV if 40°<u b̃<140°.
7-8
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APPENDIX: RELEVANT M-MATRIX ELEMENTS

We define

A(1)522gs
2 ~ tbta! j i

~p12k1!22mb̃
2 ,

A(2)522gs
2 ~ tatb! j i

~p12k2!22mb̃
2 ,

Ã(1)522gs
2 ~ tbta! j i

~ p̃12k1!22mb
2

,

Ã(2)522gs
2 ~ tatb! j i

~ p̃12k2!22mb
2

,

B665A~E6uku!~E6upu!,

B̃665A~E6uku!~E6uku!,

Sb̃5sinu b̃ ,

Cb̃5cosu b̃ .

M-matrix elements forZ↑→bb̄→g̃↑g̃↑:

M~Z↑→b↑b̄↑!52
gW

A2 cosuW

eif@~E2upu!gL
b

1~E1upu!gR
b #

11cosu

2
d i j ,

M (1)~b↑b̄↑→g̃↑g̃↑!52A(1)e2 if~B12Sb̃2B21Cb̃!

3~B12Sb̃2B21Cb̃!
11cosu

2
,

M (2)~b↑b̄↑→g̃↑g̃↑!5A(2)e2 if~B22Sb̃2B11Cb̃!

3~B22Sb̃2B11Cb̃!
11cosu

2
,

M~Z↑→b↓b̄↓!5
gW

A2 cosuW

eif@~E1upu!gL
b

1~E2upu!gR
b #

12cosu

2
d i j ,
11500
i
-
in
.

M (1)~b↓b̄↓→g̃↑g̃↑!5A(1)e2 if~B11Sb̃2B22Cb̃!

3~B11Sb̃2B22Cb̃!
12cosu

2
,

M (2)~b↓b̄↓→g̃↑g̃↑!52A(2)e2 if~B21Sb̃2B12Cb̃!

3~B21Sb̃2B12Cb̃!
12cosu

2
,

M~Z↑→b↑b̄↓!52
gWmb

A2 cosuW

~gL
b1gR

b !
sinu

2
d i j ,

M (1)~b↑b̄↓→g̃↑g̃↑!52A(1)~B12Sb̃2B21Cb̃!

3~B11Sb̃2B22Cb̃!
sinu

2
,

M (2)~b↑b̄↓→g̃↑g̃↑!5A(2)~B22Sb̃2B11Cb̃!

3~B21Sb̃2B12Cb̃!
sinu

2
,

M~Z↑→b↓b̄↑!5
gWmb

A2 cosuW

e2if~gL
b1gR

b !
sinu

2
d i j ,

M (1)~b↓b̄↑→g̃↑g̃↑!5A(1)e22if~B11Sb̃2B22Cb̃!

3~B12Sb̃2B21Cb̃!
sinu

2
,

M (2)~b↓b̄↑→g̃↑g̃↑!52A(2)e22if~B21Sb̃2B12Cb̃!

3~B22Sb̃2B11Cb̃!
sinu

2
.

M-matrix elements forZ↑→b̃b̄̃→g̃↑g̃↑:

M~Z↑→b̃b̄̃!5
gW

A2 cosuW

eifup̃u@gL
bSb̃

2
1gR

bCb̃
2
#sinu,

M (1)~ b̃b̄̃→g̃↑g̃↑!5Ã(1)e2 ifup̃u~B̃22Sb̃
2
1B̃11Cb̃

2
!sinu,

M (2)~ b̃b̄̃→g̃↑g̃↑!52Ã(2)e2 ifup̃u~B̃11Sb̃
2
1B̃22Cb̃

2
!sinu.
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