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We considetN=1 supersymmetric Yang-Mills theory with fundamental matter in the I&gepproxima-
tion in 1+1 dimensions. We add a Chern-Simons term to give the adjoint partons a mass and solve for the
meson bound states. Here “mesons” are color-singlet states with two partons in the fundamental representa-
tion. The spectrum is exactly supersymmetric, and there is complete degeneracy between the fermion and
boson bound states. We find that the mass spectrum is composed of two distinct bands. We analyze the
properties of the bound states in each band and find a number of interesting properties of these states. In both
bands, some of the states are nearly pure quark-gluon bound states while others are nearly pure squark-gluon
bound states. The structure functions of many of the bound states found are very strongly peaked near
=0. The convergence of the numerical approximation appears to be very good in all cases.
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I. INTRODUCTION studying (1+1)-dimensional models, we are also interested
in investigating them as the first step toward solvi@g-1)-

At this point there is no direct evidence for supersymme-dimensional models. A2+1)-dimensional model can be
try. Nevertheless supersymmetry is such a beautiful symmenuch more realistic, since it includes some transverse
try and provides such elegant solutions to a host of theoredynamics.
ical problemd 1] that many believe that it must be presentin  Currently there are several numerical approaches to solv-
nature. It is a pressing experimental issue to see if naturing field theories. For QCD-like theories, lattice gauge
takes advantage of this elegant option. Of course, we alreadireory is probably the most popular approach, since the lat-
know that supersymmetry is rather badly broken, since wdice approximation does not break the most important sym-
do not see any superpartners for the particles of the standandetry, gauge symmetry. Similarly for supersymmetric theo-
model. It is assumed that all of the superpartners are in fagies, supersymmetric discrete light-cone quantization
very heavy and that we will see them as we go to highefSDLCQ) [5,7,9,1Q is probably the most powerful approach
energies in accelerators. It is therefore extremely interestingince the discretization does not break the most important
to investigate what the properties of supersymmetricsymmetry, supersymmetrjll]. In this paper we consider
bound states might look like. There are indications thatsupersymmetric theories and follow this latter approach. To
some unusual things can happen in a theory with supesimplify the calculation we will consider only the lardé-
symmetry[2,3]. limit [4], which has proven to be a powerful approximation

We present here the solution of A= 1 super Yang-Mills ~ for bound-state calculations. While baryons can be con-
(SYM) theory with fundamental matter in+11 dimensions. structed in this limit[12], they have an infinite number of
We also add a Chern-Simori€9) term to give the adjoint partons, and thus practical calculations for such states are
matter a mass. There are several motivations to looklat complicated.
+1)-dimensional models. 't Hooft4] showed long ago that Throughout this paper we use the word “meson” to indi-
two-dimensional models can be powerful laboratories for thecate the group structure of the state. Namely, we define a
study of the bound-state problem. These models remaimeson as a bound state whose wave function can be written
popular to this day because they are easy to solve and shams a linear combination of parton chains, each chain starting
many properties with their four-dimensional cousins, mostand ending with a creation operator in the fundamental rep-
notably stable bound states. Supersymmetric twofesentation. In supersymmetric theories, the states defined
dimensional models are particularly attractive, since they ar¢his way can have either bosonic or fermionic statistics.
also super-renormalizable. Given that the dynamics of the Previously we saw that the lightest bound statesMn
gauge field is responsible for the strong interaction and for=1 supersymmetric theories are very interestjagf]. In
the formation of bound states, it comes as no surprise that 8YM theories in #1 and 2+1 dimensions, the lightest
great deal of effort has gone into the investigation of boundbound states in the spectrum are massless Bogomol'nyi-
states of pure glue in supersymmetric modél$|. Exten-  Prasad-SommerfielPS bound statef5]. These states are
sive study of the meson spectrum of non-supersymmetriexactly massless at all couplings. When we add a CS term to
theories has been dorisee[7] for a review. Recently an the (1+1)-dimensional SYM theory, which gives a mass to
initial study addressed some of these states in the context tifie constituents, we find approximate BPS states. The masses
supersymmetric mode[8]. In addition to these reasons for of these states are approximately independent of the cou-
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pling, and at strong coupling these states are the lightest 1 i
bound states in the theory2]. In (2+1)-dimensional S:fd3xtr(—ZFWFW+§AF”DMA+DM§TDM§
SYM-CS theory we also find that at strong coupling there are

anomalously light bound stat¢8]. In both 2+1 and H-1
dimensions, these interesting states appear because of the
exact BPS symmetry in the underlying SYM theory. We have__ i i ]
also looked at the lightest bound states of SYM-CS theonyl NiS action describes a system of a gauge figjd repre-

. : . senting gluons, and its superpartider representing gluinos,
\k’)v(;tgnzmsc,:zg :n;?é n;?t;%i?;]hﬁgﬁlnhgerz fﬁ;nﬂ:)?ethﬁ;:ﬂgt?:v both taking values in the adjoint representationSaj(N.),
9 y 19 nd two complex fields, a scal&representing squarks and a

Yirac fermion¥ representing quarks, transforming accord-
massless and well below threshold. . ~ing to the fundamental representation of the same group. In
We will see that this model has a number of interestingmatrix notation the covariant derivatives are given by
bound states in addition to the lowest mass state that we _ ; _ ;
D,A=d,A+ig[A,,A]l, D,£=0,6+igA¢,

studied previously13]. The bound states separate into two
bands, a low-mass band and a high-mass band. Interestingly D,¥=9,¥+igA,V. (2.2

the low mass permits two solutions for bound states. Thel’he action(2.1) is invariant under the following supersym-
preferred solution has an unusual oscillatory convergenc hetry transférmations which are parametrized by a two-

Some of the states in the low-mass band are very light an ; .
well below threshold. The upper band has the standard IinearOmponent Ma]orf';ma fermios: 1
convergence. In both bands, some of the states are nearly SA _L el A, SA==F
pure quark-gluon states, and some are nearly pure squark and 2 4
gluons. Some have structure functions that are very sharply P 1
peaked at small longitudinal momentum fractions, and some 8¢=5¢eW¥, 6W=-—;T"eD ¢ (2.3
have several of these properties. 2 2

Throughout this paper we completely ignore the zero-Using standard techniques one can construct the Noether cur-
mode probleni14,15; however, it is clear that considerable rent corresponding to these transformations as
progress on this issue could be made following our earlier _ i o P
work on the zero modes of the two-dimensional supersym- sq":Z sl““'@l““tr(/\Faﬁ)+§D“§Ts\l’ﬂL Eg*sl“f“’D,,\If
metric model with only adjoint field§16].

The paper has the following organization. In Sec. Il A we i — [T
consider three-dimensional supersymmetric QCERCD —5 VeD¥e+ 5D, W el (2.4
with a CS term and dimensionally reduce it te-1 dimen-
sions. We perform the light-cone quantization of the resulting We will consider the reduction of this system to two di-
theory by applying canonical commutation relations at fixedmensions, which means that the field configurations are as-
x*=(x°+x1)/y2 and choosing the light-cone gaugad®(  sumed to be independent of the transverse coordifatén
=0) for the vector field. After solving the constraint equa- the resulting two-dimensional system we will implement
tions, we obtain a model containing four dynamical fields.light-cone quantization, where the initial conditions as well

We construct the supercharge for this dimensionally reduce@S canonical commutation relations are imposed on a light-
theory. In Sec. Il B we discuss the structure of the lighterlike Surfacex™ =const. In particular, we construct the super-
meson bound states in the layg-approximation. In Sec. charge by Integrating the curre2.4) over the light-like

Il C we discuss the addition of a CS term to the supercharg&t'face to obtain

[17-19. We explain that, in the context of this model, thisis — :f dx—dx2

equivalent to adding a mass to the partons in the adjoint eQ X ax
representation. In Sec. lll we discuss the bound-state solu- ) ) )
tions that we find, including the mass spectrum, structure n '_§T8—F+VDV,I,_ ! TeD ¢+ I_DV\I_,FJrng .
functions and the numerical convergence of the various 2 2 2

bound states. In Sec. IV we discuss our results and the future (2.5
directions that are indicated by this research. '

+iWD, AP —g[WAE+ETAT]. (2.2)

I'“e,

v

i — i —
_ afBr+ _ T
7 eT T (AR ) 45D €TeW

Since all fields are assumed to be independent®fthe
integration over this coordinate gives just a constant factor,

Il. SUPERSYMMETRIC SYSTEMS which we absorb by a field redefinition.
WITH EUNDAMENTAL MATTER If we use the fOIIOWing SpeCifiC representation for the
Dirac matrices in three dimensions:

A. Construction of the supercharge 0 1 5
. . . ) I'=0,, I'=io,, I'*=io,, 2.6
We consider the supersymmetric models in two dimen- 2 ! 3 2.6

sions which can be obtained as the result of dimensionahe Majorana fermiom\ can be chosen to be real. It is also
reduction of SQCB, ;. Our starting point is the three- convenient to write the fermion fields and the supercharge in
dimensional action component form as
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A=A\NT, T=(PT, Q=(Q",Q)". (2.7 (—L<x" <L), and impose periodic boundary conditions on
all physical fields. This leads to the following mode expan-
In terms of this decomposition the superalgebra has an exsions:
plicit (1,1) form

l o
{Q".Q"}=22P", {Q.Q }=2\2P", ASOX )= =2, ([a.wk)e el
{Q+,Q_}=0. (2.9 +a}rl(k)e|k77x /L] (2.15
The SDLCQ method exploits this superalgebra by construct-
ing P~ from a discrete approximation @~ [9], rather than -\ 1 —ikmx /L
) i a HISerete appl . . Nijf(0OX )= == Z [by(k)e
directly discretizingP ™, as is done in ordinary DLCQ7]. 214 2L &=
To begin to eliminate nondynamical fields, we impose the
light-cone gaugeA™=0). Then the supercharges are given +bji(k)elkm™ I, (2.16

by

i . i JR— —ikmx~/L
Q*=2f dx(AaA2+'§a§*¢—'§¢Tag_'§gad, &O0X)= 7= E [[C (ke

i +”éi*(k)eikWX”L], (217
+ an*f), (29
Vi(0X )= = J_ 2 [di(k)e™km /-
Q*z—zf dx(—)\ﬁA+i§TD2¢/x—iD21/ﬁ§ )
+d/ (k)ek™ 17, (2.18
+ i_(gi('IZTg_ 9. (2.10 We drop the zero modes of the fields; including them could
V2 lead to new and interesting effedtsee[16], for example,

but this is beyond the scope of this work.
Note that apart from a total derivative these expressions in- |n the light-cone formalism one treats as the time di-
volve only left-moving components of the fermions @nd  rection, thus the commutation relations between fields and
). In fact, in the light-cone formulation only these compo- their momenta are imposed on the surface=0. For the
nents are dynamical. To see this we consider the equations gf)stem under consideration this means that
motion that follow from the actiof2.1), in light-cone gauge.

Three of them serve as constraints rather than as dynamical , B ) 1 o
statements; they are [AZ(0X7),0_Ag(0y)]=i 81 8k~ 1y 9 O | 6(X”—y ),

(2.19

- :_T([AZ A+igy'=ipeh), (211 ) i 1
{Nij(0X7) N(0y )}:\/E( 5iI5kj_N5ij5kl)

~:——A2 —)\ , 21 X6(X"=y"), (2.20
a_y 2 Y+ 2 3 (2.12 |
[£i(0Xx7),0-&(0y ) ]=id;0(x" —=y), (2.21)
and
(OX7T), i (0y ) =+26,;6(x" —y7). 2.2
2 A-=ga, 213 {0i(0X7),g5(0y )} =288 —y") (222
_ These relations can be rewritten in terms of creation and
with annihilation operators as
: 1 . . 1
J=i[AZ,9_A?]+ E{)\,K}_lhﬁffg“&ﬁfhr V2. Y 1al|]=(5ilékj_ N % 5k|),
(2.19
Apart from the zero-mode problefil4], one can invert the {bjj :bl|}:(5n5kj— Naijakl)v (2.23

last constraint to write the auxiliary fiel&~ in terms of
physical degrees of freedom.

In order to solve the bound-state probler®2P~|M)
=M?2|M), we apply the methods of SDLCQ. Namely we N ~ ~t
compactify the two-dimensional theory on a light-like circle {di,dj}=¢; {di.dj}=5;. (2.24

[Ci vch]: 5Ij ' [CI ' ] 5” ’
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In this paper we will discuss numerical results obtained inWe have dropped from these expression the terms that con-

the largeN. limit, i.e. we neglect M. terms in the above nect the states that are closed loops of adjoint partons to the

expressions. Although I, corrections may have interesting string-like meson states. These interactions are of order

consequences, they are beyond the scope of this work.  1/{/N. and can be neglected in the larye-approximation.
Substituting the result into the expression for the super-

charge and omitting the boundary term, we get B. Meson structure

Q =Q.+Q; +Q, +Q;, (2.25 We will consider here only meson-like states. In the large-
N, approximation these are color-singlet states with exactly

whereQ; is the supercharge of pure adjoint mafi@}. The two partons in the fundamental representation. The boson

three supercharges that govern the behavior of the fundameRound states will have either two bosons or two fermions in
tal matter in these states are the fundamental representation. In general a boson bound

state will have a combination of these types of contributions.
g 1 Because this theory and the numerical formalism are exactly
Q =- —f dx (i ﬁga_gT—i\/Ea_ggT)—)\, supersymmetric, for each boson bound state there will be a
V2 - degenerate bound state that is a fermion. The fermion bound
(220 state will have one fermion in the fundamental representation
and one boson in the fundamental representation. In the
9 _ string interpretation of these theories, such states would cor-
Q2 =~ EJ dx (ZW’T)Z)" (2.27) respond to open strings with freely moving end points. In the
language of QCD, the model corresponds to a system of
interacting gluons and gluinos which bind dynamical
Q3_=—2gf dx (ETA%y+ YT AZE). (2.28  (s)quarks and antfs)quarks. In the largdd, limit we will
have to consider only a single)quark—anti¢s)quark pair.

After substituting the expansiorig.15—(2.18, one gets the Thus the Fock space is constructed from states of the follow-

mode decomposition of the supercharge, ing type:
2 Vg T fl(koal, (ko) ...l (kaog). . ] (ko)[O).
Q.= > di(kikokg),  (2.29 (2.33
™ kq,Kp,Kg=1
with HereTiJr andf| each create one of the fundamental partons,
and|0) is the vacuum annihilated by, bj, ¢, <, d;,
( >+ 3) T ~t anddi.
a: = ok \/W[ [ (ko) (ka)bji(ky) — € (ka)bf; (k1) Cj(ks) The other color-singlet bound states in this theory are
VR states that are composed of traces of only adjoint mesons.
+ bT (ky)c! (k2)cj(ks) These can be considered to be loops. At filNtethis theory
has interactions that break these loops and insert a pair of
— ¢ (ko) by (k1) €j(K3) 1k, ok, (230  fundamental partons, making an open-string state. This type
of interaction can, of course, also form loops from open
strings and break one open string into two open strings. In
O =i~ K, [d (k2)bf, (ky)d;(ka) +d] (ka)di(ky) by (ky) principle, a calculation of the spectrum of such a finte-
theory is within the reach of SDLCQ. The only significant
+df (kz)b (k1)d;(ks) change is to include states in the basis with more than one
color trace.
+df (k3)di(k2)bij (K1) 1k, k, +k,yr (2.3D
C. Supersymmetric Chern-Simons theory
- =t The CS term we use in this calculation is obtained by
Ga 2vkoks {[d (ko) (ks)a (ko) +c; (k3)a (kz)d(ke) starting with a CS term in21 dimensions and reducing it to
~ 1+1 dimensions. This term has the effect of adding a mass
+diT(k1)ai,-(k2)Cj(k3) for the adjoint partons. In this calculation we are including
. o~ fundamental matter because we are interested in QCD-like
+ayj(K2) ¢ (Ka) di(Ky) 16k, ky+k, meson bound states. Without a mass for the adjoint matter,
- _ this theory is known to produce very long light chains of
+[cf(ka)di(ky)ayj (ko) +d] (ky)af, (k)T (ka) adjoint partons. In a finité¥, calculation we would not have
" - these very long chains because they would break, but in the
+¢i(kg)aj (ko) dj(kq) largeN, approximation they do not. While SDLCQ can be
~ used to do finiteN, calculations, it is much easier to add a
+aiJri(k2)dJT(k1)Ci(k3)]5'<3J<1+'<2}' (232 mass to restrict the number of adjoint partons in our bound
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states. We choose the CS mechanism to give the adjoint panther allowed class of pure adjoint matter bound states and
tons a mass because we can do this without breaking thaultiparticle states. This theory also hag.asymmetry[21]

supersymmetry. which is very useful in labeling the states and reducing the

The Lagrangian of this theory is dimension of the Fock basis that one has to consider in any
one diagonalization step. For this theory the symmetry

(2.34 divides the basis into states with an even or odd number of

K
= + —
£=Lsqeot Les: gluons.

where Lsocp is the SQCD Lagrangian we discussed earlier,
« is the CS coupling, and A. Spectra
. We find that the spectra of meson bound states, for both
2i — L )
Los= €™M ALa,A + =gAAA, | +20W. (2.35  0ddand evei, symmetry, divides into two bands of states
K’ 3T as we increase, a light-mass band and a heavy-mass band,
as can be seen in Fig(a. As k grows, a gap develops in the
1épectrum. This mass gap reflects in part the number of mas-
sive adjoint partons in the bound states. At very lakgehe
low-mass band will comprise states with only fundamental
partons. We will look at the bound states in both bands and
consider various values of relative togyN./7. In Fig.

A trace of the color matrices is understood. The constrain
equation(2.12 gains a third term of the form- kN2 on
the right-hand side, and the definition of the current in Eq
(2.14 now has an additional termx,d_AZ?. The discrete ver-
sion of the CS part of the supercharge i Il dimensions is

2‘1/4\/f « 1(b) we see that ak=1 this gap grows with the coupling.
Qes=|—— > —[a;rj(n)bij(n)Jrb;rj(n)aij(n)]- The lowest mass state remains very light even for value_s of
\/; n \/ﬁ gVN./7 up to 2. As far as we can tell, this state remains

(2.3  very light even at very large couplings.
In Figs. 2a) and Zb) we show the spectrum in the
Z,-even sector, witlyN./7=1, as a function of resolution
at k=0 and 1, respectively. We see that at large resolution
with k=0 the two bands merge. It is unclear from this figure
whether the states in the lower band mix with the states in
2140 K f[he upper band in the region where their masses overlap. An
Q¢:i<—) > —l[a;{(n,nl)bij(n,m) inspection of the adjacent states seems to show that these
NCE E N states remain on smooth trajectories and do not repel, as one
t would expect if they were interacting. This seems to indicate
—bjj(n,n)ai;(n,ny)], (237 that a separate analysis of these two sets of states is possible.
For the most part, however, we will look at the situation
where k=1, as shown in Fig. ®). In this case the two
bands are well separated even at the highest accessible reso-
lution, and, therefore, there is not a problem considering the
two bands separately.

It is informative to compar®) g with the one term in the
supercharge foA/=1 SYM in 2+1 dimensiong20] which
has an explicit dependence on the transverse momektum
This k, -dependent term has the form

wherek, =27, /L, is the discrete transverse momentum.
Notice thatk, and x enter the supercharge in very similar
ways. Addition of a CS term has the effect of chandimgo

k, +ik. Because the light-cone energy is of the forhf(

2\ /1 + ;
+m)/k”, k. behaves like a mass, and thereforealso Let us first consider the bound states in the lower band. To

beharllves in many waﬁ/s Ifike a mass Ifor the adjoint partidis,understand the physics underlying these bound states we will
The partons in the fundamental representation in thigooy ot hoth the spectrum and the structure functions of in-
theory will remain massless. Of course, in a more physica

_ ividual states. In this theory we have four species of par-
theory the supersymmetry would be badly broken; the squar,s. 4 joint fermions and bosons, and fundamental fermions

WOl.JId acquire a large mass, and only the quarks would '®and bosons. Therefore, we will look at four structure func-
main nearly massless.

tions that give the probability of finding a particular variety
of parton at a particular value of longitudinal momentum
IIl. NUMERICAL RESULTS fraction in a particular bound state. We need all of this infor-
mation about each bound state to properly analyze this
This SYM-CS theory with fundamental matter has two theory.
dimensionful parameters with the dimension of a mass Although the procedure that we follow for identifying
squared, the YM coupling squargdN. /s, and the CS cou- bound states is the standard one in DLCQ, it is worthwhile to
pling squaredk?. The latter is also the mass squared of thegive a brief description of that procedure here because of the
partons in the adjoint representation. All of the masses in thisinusual nature of the lower band. To identify a bound state,
paper will be given in units o§+N. /7, which will usually  we start at the lowest value of the resolutikn usually K
be suppressed. Furthermore, we are only considering mesen3, and select a particular eigenvalue, usually the lowest
bound states. These are states of the form shown in Eaqonzero one. We then look at the properties of this state,
(2.33 with two fundamental partons linked by partons in the which we always calculate along with the mass. In principle,
adjoint representation. Since we are working in the la¥ge- we can look at the entire wave function, but for higher reso-
approximation, this class of states is disconnected from theution there is more data than we can efficiently handle. It is
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FIG. 1. The mass-squared spectrum, viiithodd, in units ofg?N. /7, at a resolution oK =6 as a function ofa) « atgN./7=1 and

(b) gyN /7 atk=1.

efficient to look at the average number of partons of thehave found a bound state. We then repeat the process to
various types and sometimes the average momentum abtain another bound state. For the oscillatory states pre-
some of these partons. We then move to the next highesented below, we actually started with the lightest state at the
resolution and try to identify an eigenstate that has the samleighest resolution and then followed the states down to low
or very similar properties to the state at lower resolution. Weresolution. We then repeated the process with the next high-
continue this through all the resolutions. This then gives ugst states at the highest resolution.

the mass squared of a particular bound state and the various The lower band of this model is unique relative to all
properties of the state as functions of the resolution. If thisother models we have studied in SDLCQ or DLCQ. We find
history of a state as a function of the resolution makes senséhat there are two different ways of carrying out the above
and can be extrapolated to infinite resolution, we say werocedure to find the states in the lower band. We can follow

M? M?

-1 L 1:l=|.| T T T T T T T T l.:i.|: |. LCHLENS SR R L
i =a'. s . : : :'!s; . H . . u
6 - .. 1 OF R -
SR SR B S -
4 :.e. . ) - 6:— i
: e o . : . i
i °. _ 4 , .
- . ] - . -
2 i . © | : l“ -
° . . 2 - 3 3 _—

| . e | ] ]
| . . . B | O. '. L} :
O - °°° . . .— 3 :3::' : . * ]
PRI T R T S S S N S SRR T 0 L |..I.|. l. |.n T 1 |.| | 181

0 0.1 0.2 0.3 0 0.1 0.2 0.3

1/K 1/K

(a) (b)

FIG. 2. The mass-squared spectrum, wi#h even, in units ofg?N./m, as a function of the resolution ag) g=0 and

(b) gyN /m=1.
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TABLE I. Properties of the lowest mass boson bound state innfinite mass. As a function of the resolution we see almost
the Z,-even sector, including the average numbers of adjoint bosongo variation in the properties of this state. We will refer to
aB, adjoint fermionsaF, fundamental bosoni8, and fundamental  these states as divergent states, and we will argue that they
fermions fF, for different values of the resolutiok. The mass gre divergent. This data and a fit to the data points are shown
squaredM? is given in units ofg®N¢/m. The CS coupling is« i Fig. 3(c), and there are no oscillations. In FigdBwe see

=gVNc/m. another state of this type. It appears that the divergent states
5 do extrapolate to an infinite mass &#s—o. The curves,

K M (N Mgy (g)  (Nap)  (Np) however, can be fit by a variety of functions. In fact the

3 0.178 2.30 0.30 1.03 0.01 0.97 functions a+b/\K+1/K and a+blogK+1/K produce

4 0.006 2.56 0.51 1.86 0.05 0.14 equally good fits. The fits shown are of the former form and

5 0049 2.69 0.63 1.29 0.06 071 have intercepts between 10 and 11. In Fig. 4 we put all four

6 0.016 283 0.75 1.71 0.08 0.30 blots from Fig. 3 on the same graph, so that one can clearly

7 0029 284 0.76 1.45 0.08 055 See that at low resolution both curves involve the same data.

8 0022 292 0.83 158 0.09 042 1IN the DLCQ procedure a state must extrapolate nicely to

9 0025 292 0.83 1.49 0.10 051 K=o, if it is a true bound state of the theory. It is unclear

from the data whether this is true for these states. Our preju-

10 0.024 2.96 0.86 1.52 0.10 0.48 o . .
dice is that this bound state divergeskas» .
11 0.025 297 0.87 1.49 0.11 0.51 . >
In Fig. 5 we show similar results for th®,-odd sector. In
12 0.0253.00 0.89 1.48 0.11 0.52 Fig. 6 we again show the oscillatory and divergent fits on the
13 0.026 3.01 0.90 1.47 0.11 0.53 '

same figure, but now we add a few more states to better
show the interlacing of these fits to the same data. There are,

the eigenvalues from resolution to resolution in two ways. AsOf course, degenerate fermion bound states for all these

aresult we end up with two sets of bound states, all of Whosgta'tl'is; c\l)\/sr::(ijllsz:}oeroggrr\t;?/?o\;vrenggent%tisssgl\gﬁIation articularl
properties are very smoothly behaved as functions of the y P Y

resolution. Two such states and their properties are shown icﬁhallenglng numerically. We were forced to go to very high

Tables | and II. The masses in Table | are very small. Weresolutlon,K=13, to be certain that the spectrum really con-

have discussed the lowest mass state in this spectrum in d erged. This was made even more difficult because we had

tail elsewhere[13]. The convergence as a function of the ou_lr_ospee(;lessor%fepﬁ]r;liclﬁts ilgtéhtehgrobgfgfior of the low-mass
resolution is oscillatory, but clearly as we move to large resoy . g \?ve recall the b%havior of the two-particle continuum in
lution the convergence is very good. In FigaBwe present ! P

the spectrum as a function ofkl/ and we see that the oscil- DLCQ. The ‘mass squared” of twa free partons of masat

lations lead to good convergence that extrapolates nicely tBeSOIUt'OnK IS

K==. These states have masses near zero. The lowest state

has on average one adjoint parton; therefore, the threshold is o
at k2. Thus this is a deeply bound state. In Figo)3ve show M7=m"K
the spectrum for the next highest mass bound state, and again

we see very good convergence to a very light state. In fact all -
Y9 g yhg where one free parton has longitudinal momentimn and

of the data' in the lower band describe a series of oscnlator){he other ham [22]. In DLCQ this formula produces a band
states at higher masses. Sk :
of states. It is interesting to compare the top and bottom of

Shown in Table Il is another way of organizing the same . .
set of data used to analyze the oscillatory states discusstgg's band with the top and bottom of the low-mass band of

above, and all these states also converge numerically, but pund ;tates th"’.‘t we have been studying. The top of the band
IS obtained by fixingn at one. If we then tak& large, we

find M?=m?(K+1+1/K+ ...). Not surprisingly, the di-

+1
K—n ' n

; (3.1

TABLE Il. Same as Table I, but for the lowest mass divergent

state. vergent curves in Figs.(8) and 3d) and Figs. &) and §d)
can be fit with a function of the forri2=a+bK+c/K. In
K M2 (n (Nae) (Nre) (Nap)  (Nge) essence, the form of the divergent state is comparable to the
shape of the top of the continuum band. Similarly the bottom
3 029 239 0.33 101 0.06 0.99  of the continuum band is obtained by taking K/2 for K
4 0.75 2.58 0.47 0.91 0.11 1.09 even andn=(K—1)/2 for K odd. The bottom of the con-
5 1.23 2.73 0.59 0.87 0.14 1.14  tinuum band oscillates as a function Kf For K even it is
6 167 2.82 0.66 0.85 0.17 1.15  4m?, and forK odd it is 4m?(1+1/K+ ...). It again ap-
7 2.06 2.88 0.70 0.84 0.18 1.16  pears that the lowest mass states resemble the bottom of the
8 2.41 2.92 0.72 0.84 0.20 1.16  continuum band. We would expect to see a connection be-
9 2.73 2.94 0.73 0.84 0.21 1.16 tween the weak-coupling bound states and the free spectrum,

10 3.02 2.96 0.74 0.84 0.22 1.16  but this connection appears to extendytdN./ 7= 2. Based
11 3.28 2.97 0.74 0.84 0.23 1.16 on this argument, the divergent states actually do diverge and
12 3.53 2908 0.74 0.84 0.23 1.16 are not true states of the theory.

The lowest mas&,-even state in the low-mass band has
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M? M?
0.1 1
0.08 0.8
0.06 0.6
0.04 0.4
0.02 0.2
1 1
0.05 0.1 0.15 0.2 0.25 0.3 I'( 0.05 0.1 0.15 0.2 0.25 0.3 K
(a) (b)
Al2 MZ
4 4
3.5 3.5
3 3
2.5 2.5
2 2
1.5 1.5
1 1
0.5 0.5
1 1
0.05 0.1 0.15 0.2 0.25 0.3 K 0.05 0.1 0.15 0.2 0.25 0.3 K
(c) (d)

FIG. 3. The mass squared in units giN. /7, as a function of K for k=g\N./7 in the Z,-even sector, ofa) the lowest mass
oscillatory state(b) the second lowest mass oscillatory stéte the first divergent state, and) the second divergent state. The solid curve
is a fit to the computed points.

on average one adjoint parton, which has mass 1.0, and the At yet stronger couplingg®N./7= 10«2, we find that
fundamental partons are massless. One would therefore egscillations are significantly stronger, as seen in Fig. 7, and at
pect the lowest bound state in the spectrum to have a mass Kf=12 the curve is not totally converged. The mass squared
order 1.0. InN=1 SYM-CS theory[2,3], we previously atK=12 is 0.068, but without complete convergence we are
found anomalously light states at strong coupling, but all ofnot able to say anything precise about the variation of the
these states were at or close to threshold. Here the lowebbund-state mass as a function of the coupling from
mass state is anomalously light, in fact nearly massless, angPN, /7= «? to g°N./ 7= 10x>.

therefore well below threshold.

B. Structure functions

~

The two largest structure functions for the lowest mass
state are shown in Fig. 8. Even though this is an exactly
supersymmetric theory, nearly all the adjoint partons are glu-
ons. About 2/3 of the wave function of this state is composed
of two fundamental bosons and an adjoint parton, and about
1/3 of the wave function is made of two fundamental fermi-
ons. Within the context of the standard model, this state is
primarily a bound state of two squarks and a gluon. We see
that both of these distributions are peaked at smalhis

1 reflects strong binding of the fundamental partons, allowing
0.05 0.1 0.15 0.2 0.25 0.3 - them to be widely separated in momentum, combined with

K only a small contribution to the momentum from the adjoint
FIG. 4. The mass squared in unitsgﬁ‘t\lc/w, as a function of boson.

1/K for k=g+/N. /7 in theZ,-even sector, of oscillatory and diver- ~ The average number of partons in the next lowest state is
gent mass fits. about 4.5. For this state, 90% is composed of gluons and

e n e b ey
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M? M?
1.6
1.4
1
1.2
1 0.8
0.8 0.6
0.6
0.4
0.4
0.2 0.2
1 1
0.05 0.1 0.15 0.2 0.25 0.3 ;( 0.05 0.1 0.15 0.2 0.25 0.3 ;
(a) (b)
Al2 M2
8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
1 1
0.05 0.1 0.15 0.2 0.25 0.3 ;( 0.05 0.1 0.15 0.2 0.25 0.3 ;(
(c) (d)

FIG. 5. Same as Fig. 3, but for tt#&-odd sector.

squarks, and the structure functions are shown in Fig. 9gluons per bound state. The structure functions for the gluon
The squarks have a significantly wider distribution than inand quarks are shown in Fig. 10. As we have seen in all the
the lowest state. The gluons remain very sharply peaked &tates that we have considered, the gluons are strongly
small x. peaked ak near zero. The quarks have a strong peak at small
For the lowest state in the low-mass band vidthodd, the X but have a significant distribution at other valuesof
average number of partons is slightly less that 4. Again the
partons in the adjoint representation are almost entirely  C. Spectra and structure functions in the upper band
b_osons. However, the_ partons in the fundgm_ental rep_resenta— While the lower mass band appears to have a very un-
tion are almost entirely quarks, so this is the lightest,s | behavior as a function of the resolution, the bound
standard-model meson. This is a deeply bound state since the
gluons have mass 1 and on average there are close to two M?

10
8
3.
6
2. 4
1. 2
1
o 0.05 0.1 0.15 0.2 0.25 0.3 -
. L K
0.05 0.1 0.15 0.2 0.25 0.3 ;( FIG. 7. The mass squared of the lowest mass oscillatory state in
units of g?N./# as a function of K for 10k’=g?N. /= in the
FIG. 6. Same as Fig. 4, but for ttd-odd sector. Z,-even sector.
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1 1
0.8 0.8
0.6 0.6
[+ m
o N4y
o o
0.4 0.4
0.2 0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
X X
(a) (b)

FIG. 8. Structure functions of the bound stdt¥=0.025 at resolutiorK =12, with Z, even, for(a) adjoint bosonsaB and (b)
fundamental bosonfB, with the CS coupling fixed ak=g+/N./7. The solid curve is a fit to the computed points.

states in the upper band behave very similarly to the bound In Fig. 14 we see that in th#,-odd sector we again have
states found in most SDLCQ calculations. The convergencean excellent linear fit. The two lowest states have masses of
is excellent, starting from the lowest resolution, and the data 2 =8.93 andM?2=9.60. The structure functions for this

are fit very well as a function of K/ by a line with a small  sector are similar to those for ti&-even states. The struc-
slope. In Fig. 11 we show that the lowest two bound st%tes iBure functions for the state witht2=8.93 are shown in Fig.
the upper band converge to massiéts, =8.31 andM:. 15 and are very similar to the structure functions for the state
=9.03 _at infinite resolution. We carry th(_a calculation out to\with M2=9.03 in theZ,-even sector.

resolutionK =13, but the structure functions are calculated
at K=12. From the structure functions of the stateMaf
=8.31, we find that this state is 85% quarks and gluons, so it
is very much like a standard-model meson. The average In this paper we studied/=1 SYM-CS theory with fun-
number of partons is 3.98, so for the most part the boundlamental matter in +1 dimensions. The CS term was in-
state contains two gluons. It is very interesting that thiscluded to give masses to the adjoint partons. The calculations
bound state is very much like a QCD meson and is the sowere performed at largdl; in the framework of SDLCQ;
lution of a supersymmetric field theory. The structure func-namely, we compactified the light-like coordinaté on a

tions are shown in Fig. 12. While the gluons are peaked d&finite circle and calculated the Hamiltonian as the square of a
small x, they have a much larger spread than we saw in thguperchargeQ ~, which we then diagonalized numerically.
lower band. The fundamental fermions are very sharplywe found that the spectrum of this theory has two bands, a
peaked at smalk. The structure functions of the state at lower mass band and an upper mass band. With a CS term
M2 =09.03 are interesting because the state has nearly equalesent, we found that these bands separategfdt./m
mixtures of all four constituents. The structure functions are= x?, and we can easily study them separately.

shown in Fig. 13. The shapes are different, particularly for For very massive adjoint partons, the lower mass band
the distribution of adjoint fermions, which are spread overbecomes a set of massless bound states composed of only

IV. DISCUSSION

the region of largex. fundamental partons. When the mass for the adjoint partons
1
1.75
1.5 0.8
1.25
L 0.6
] [+4]
& =
0.75 0.4
[ ]
0.5
0.2
0.25
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
X X
(a) (b)

FIG. 9. Same as Fig. 8, but fon?=0.29.
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1
1.2
1 0.8
0.8 0.6
m B
50.6 =
0.4
0.4
0.2 0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
X X
(a) (b)

FIG. 10. Structure functions of the bound st&#é=0.135 at resolutiolK =12, with Z, odd, for (a) fundamental bosonf8 and (b)
fundamental fermionfF, with the CS coupling fixed ak=gN. /7. The solid curve is a fit to the computed points.

is reduced, the massless states become the states of the lo@ur partons. We carry the calculation to resoluti§s- 13,

mass band. The states in the low-mass band are unusual $0 in principle these states could contain 13 partons. In ad-
that their convergence is oscillatory. We show that the uppedition, almost all of the partons in the adjoint representation
and lower bounds of the low-mass band have the same shapee gluons rather than gluinos. Also, the content of the par-
as the DLCQ approximation to the two-particle free spec+icles in the fundamental representation is rather pure, either
trum, which has an oscillatory behavior for its lower boundsquarks or quarks. Thus some of the boson bound states are
and a growing upper bound. We argue therefore that the osather pure combinations of quarks and glue, in spite of the
cillatory behavior is a numerical remnant of the free two-fact that they are bound states of an exactly supersymmetric
particle spectrum. In previous wofld 3] we found that at theory.

9°N./m=«? the lowest mass state of this theory was The bound states in the upper mass band are rather con-
anomalously low, and in fact close to zero, while the threshventional SDLCQ bound states. They converge very quickly
old for this state is aM?=1. On average this state has one and have the conventional linear behavior iK 18imilar to
massive gluon and two squarks. This is the fifth supersymthe lower mass band, most of the partons in the adjoint rep-
metric theory where we have found anomalously light statestesentation are gluons. In addition, the states are again rather
In SYM theory in 14+1[6] and 2+1 [23] dimensions, there pure quark or squark states. When we take the adjoint parton
are massless BPS states. In SYM-CS theory-ri dimen-  mass large, these are the states that have at least one adjoint
sions we saw that at strong coupling the lightest states arngarton.

approximately BPS states whose masses are independent of We calculate the structure functions of the states in both
the YM coupling[2]. In SYM-CS theories in 21 dimen-  bands for all four species of partons, and we find that most of
sions at strong coupling, there is again an anomalously lighthe distributions are strongly peakedxatear zero. This is an
bound stat¢3]. The next lightest state in this band has aboutindication that forg?N. /7= «? these are strongly coupled

M2 M?
10W 10
. 8W
6 6
4 4
2 2
1 1
0.05 0.1 0.15 0.2 0.25 0.3 ['( 0.05 0.1 0.15 0.2 0.25 0.3 :-<
(a) (b)

FIG. 11. The mass squared in unitsgdN. /7, as a function of M for k=g\/N. /7 in theZ,-even sector, ofa) the second lowest mass
state of the upper band, witli2=9.03, and(b) the lowest mass state of the upper band, With==8.31. The solid curve is a fit to the
computed points.

115005-11



HILLER, PINSKY, AND TRITTMANN PHYSICAL REVIEW D 67, 115005 (2003

1.4
0.8 1.2
1
0.6
2 & 0.8
o o
0.4 0.6
0.4
0.2
0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
X .

(a) (b)

FIG. 12. Structure functions of the bound st&té = 8.31, withZ, even, for(a) adjoint bosonsB and(b) fundamental fermion&, with
the CS coupling fixed ak=gyN./#. The solid curve is a fit to the computed points.

bound states. In a weakly coupled bound state one would, otne properties of these states and compare them with QCD.
average, expect the partons to share the momentum fraction There remains a considerable amount of work to be done
equally, and therefore the structure function would be peakedn SYM-CS theories with fundamental matter. The most
at 1/3 for a state with three partons, for example. Since sestraightforward extension of the present work is to consider
eral of the states we consider are almost pure quark-gluocalculations in 2-1 dimension$20,23,24. The N'=1 theory
bound states, they might not be affected by supersymmetriyn 2+1 dimensions is easily within our reach. Beyond that
breaking, which would give large mass to the squarks anthe A'=2 theory[25] in 24+1 dimensions, which is the di-
gluinos. It would be interesting to investigate in more detailmensional reduction of th&'=1 theory in 3+1 dimensions,

1 1

0.8 0.8

0.6 0.6
[} )
s E

0.4 0.4

0.2 0.2

- P . D
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
X X
(a) (b)

1 1

0.8 0.8

0.6 0.6
i E
o o

0.4 0.4

0.2 0.2

o —eo-
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
X X

(c) (d)

FIG. 13. Structure functions of the bound stité = 9.03 for (a) adjoint bosonsB, (b) fundamental boson8, (c) adjoint fermionsaF,
and(d) fundamental fermionfF, with the CS coupling fixed at=g+N./7 andZ, even. The solid curve is a fit to the computed points.
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M? M2
IOW 10W
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6 6
4 4
2 2
1 1
0.05 0.1 0.15 0.2 0.25 0.3 K 0.05 0.1 0.15 0.2 0.25 0.3 K

(a) (b)

FIG. 14. The mass squared in unitsgfN. /7, as a function of M for k=gyN./ in the Z,-odd sector, fofa) the lowest mass state
of the upper band, wittM2=28.93, and(b) the second lowest mass state of the upper band, Mitk9.6. The solid curve is a fit to the
computed points.

1
1.2
1 0.8
0.8 0.6
Jas] o
5 0.6 3
0.4
0.4
0.2 0.2
e & - . - o w o 5
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
X X
(a) (b)
1 1
0.8 0.8
0.6 0.6
[ 7]
5 b=
0.4 0.4
0.2 0.2
N £ & .
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
X X

() (d)

FIG. 15. Same as Fig. 13, but f2=8.93 andZ, odd.
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will be very interesting. For finitdN, we could also look at ACKNOWLEDGMENT

the mixing of closed-loop states and finite string-like meson
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