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Transverse lattice calculation of the pion light-cone wave functions
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~Received 7 February 2003; published 24 June 2003!

We calculate the light-cone wave functions of mesons by solving their bound state problem in a coarse
transverse lattice gauge theory using discrete light cone quantization. A large-Nc approximation is made and
the light-cone Hamiltonian expanded in massive dynamical fields at fixed lattice spacing. In contrast with
earlier calculations, we include contributions from states containing many gluonic link fields between the
quarks. The Hamiltonian is renormalized by a combination of covariance conditions on bound states and fitting
the physical massesMr andMp , decay constantf p , and the string tensionAs. Good covariance is obtained
for the lightest 021 state, which we compare with the pion. Many observables can be deduced from its
light-cone wave functions. After perturbative evolution, the quark valence structure function is found to be
consistent with the experimental pion structure function deduced from Drell-Yan pi-nucleon data in the valence
region x.0.5. In addition, the distribution amplitude is consistent with the experimental pion distribution
deduced from thepg* g transition form factor and diffractive dissociation. A new observable we calculate is
the probability for quark helicity correlation. We predict a 45% probability that the valence-quark helicities are
aligned in the pion.
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I. INTRODUCTION

Light-cone wave functions encode all of the bound st
quark and gluonic properties of hadrons, including their m
mentum, spin and flavor correlations, in the form of univ
sal process- and frame-independent amplitudes~see, for ex-
ample, Ref.@1#!. Hadronic observables represented as ma
elements of currents are easily expressed in terms of ove
of light-cone wave functions. To compute the wave fun
tions, one must diagonalize the light-cone Hamiltonian
QCD in a Fock space of quark and gluonic degrees of fr
dom. A promising method to achieve this is the transve
lattice formulation of gauge theory@2,3#. In this approach,
the physical gluonic degrees of freedom are represente
gauge-covariant links of color flux on a lattice transverse
the null plane of quantization. In this paper, we set up
method and solve for the light-cone wave functions of lig
mesons using a physically realistic truncation of Fock sp
on a coarse lattice, spacing;2/3 fm. We obtain good cova
riance for the light-cone wave function of the lightest mes
which we identify with the pion. Results for the pion distr
bution amplitude~valence quark wave function at sma
transverse separation! and distribution function~valence
quark probability at any transverse separation! are consistent
with the most recent experimental results in the valence
gion of light-cone momenta. We find the distribution amp
tude to be

fp~x!56x~12x!$110.15~2!C2
3/2~122x!

10.04~1!C4
3/2~122x!%, ~1!

while the distribution function is
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Vp~x!5
~12x!0.33(2)

x0.7(1)
$0.33~3!21.1~2!Ax12.0~3!x%.

~2!

wherex is the quark light-cone momentum fraction carried
the pion. The transverse renormalization scale should be
GeV if the first moment ofVp is to agree with experiment
As a further application of the light-cone wave functions, w
also compute the probability for a valence quark of mom
tum fractionx to have its helicity correlated with that of th
anti-quark in the pion. We find surprisingly a large probab
ity ;45% for the quark and anti-quark helicities to b
aligned, even though the pion spin is 0. These represent
main results.

Attempts to solve transverse lattice QCD have been
newed in recent years for both the pure gauge theory@4–6#
and mesons@7–9#. The most succesful approaches have e
ployed the original idea@2# of a 1/Nc and color-dielectric
expansion in dynamical fields to approximate the light-co
QCD Hamiltonian on a coarse transverse lattice. For p
gauge theory, to lowest non-trivial order of the expansi
requirements of vacuum stability, Lorentz and gauge inva
ance alone were found to constrain the coarse lattice Ha
tonian sufficiently accurately for first-principles prediction
of the glueball states@5#. Extension of this work to light
mesons introduced quarks and imposed a~Tamm-Dancoff!
restriction on the number of link fields in Fock space@7#. In
previous calculations@8,9#, not more than one link field was
allowed in a meson. This effectively restricts the transve
size to,2/3 fm, which is unrealistic for light mesons. In th
case, the correct Hamiltonian could not be accurately ide
fied using Lorentz and gauge invariance alone. Some p
nomenology was also needed.
©2003 The American Physical Society07-1
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In this paper, we again use the lowest non-trivial order
the color-dielectric expansion of the Hamiltonian, but rel
the Tamm-Dancoff cutoff on the space of states. This allo
light mesons to expand to their physical transverse size
also means that one begins to take account of the full p
glue dynamics in the meson sector. While the results are
realistic, we find that it is still necessary to use some p
nomenological fitting of masses and decay constants, in
dition to optimizing Lorentz covariance, to obtain unambig
ous couplings in the coarse-lattice Hamiltonian. We belie
this is due to the absence, in the currently employed tra
verse lattice Hamiltonian, of operators needed to optim
chiral symmetry. We show that such operators would oc
at higher order of the color-dielectric expansion. In the n
section, we review and extend the previous work. Section
describes the procedure we employ for fixing the vario
couplings that appear in the Hamiltonian. Finally, our resu
for pion observables are discussed in Sec. IV. Chiral sym
try issues are discussed in the Appendix.

II. TRANSVERSE LATTICE MESONS

A. Hamiltonian

We introduce continuum light-cone coordinatesx65(x0

6x3)/A2 and discretize the transverse coordinatesx
5(x1,x2) on a square lattice of spacinga. Lorentz indices
m,n are split into light-cone indicesa,bP$1,2% and trans-
verse indicesr ,sP$1,2%. Subsequent analysis is done
leading order of the 1/Nc expansion of the gauge grou
SU(Nc). Quark fieldsC(x1,x2,x) in the fundamental rep
resentation and gauge potentialsAa(x1,x2,x) in the adjoint
representation ofSU(Nc) are associated to the sites of th
transverse lattice. Link fieldsMr(x

1,x2,x), which we
choose to be complexNc3Nc matrices, are associated wit
the directed link fromx to x1ar̂ . They carry flux from site
to site. This use of disordered link variables implies tha
coarse transverse lattice is being considered.

For finite spacinga, the Lagrangian can contain any o
erators that are local, invariant under transverse lattice ga
symmetries and under Poincare´ symmetries manifestly pre
served by the lattice cutoff, and renormalizable by dime
sional counting with respect to the continuum coordina
xa. The objective is to obtain an approximation to the ligh
cone Hamiltonian operatorP2 that may be diagonalized in
Fock state basis of the above fields. This may be achieve
first fixing to the light-cone gaugeA250, eliminating non-
dynamical fields, then expanding the resulting Hamilton
in powers of the remaining dynamical fields. Truncation
such a ‘‘color-dielectric’’ expansion is a valid approximatio
provided wave functions of interest~typically those of the
lightest eigenstates! are dominated by few-body Fock state
This is achieved by working in a region of coupling spa
with sufficiently heavy dynamical fields. This in turn will b
found to constrain the transverse lattice spacinga to be
coarse when symmetries and phenomenology are optimi

The Lagrangian density we consider contains terms u
ordersM4 andC̄MC for the large-Nc theory
11450
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x
E dx2 (

a,b51,2
(

r 51,2
2

1

2G2Tr$Fab~x!Fab~x!%

1Tr$D̄aMr~x!~D̄aMr~x!!†%2mb
2Tr$MrMr

†%

1 i C̄ga~]a1 iAa!C2m fC̄C

1 ika@C̄~x!g rM r~x!C~x1ar̂ !

2C̄~x!g rM r
†~x2ar̂ !C~x2ar̂ !#

1ks@C̄~x!Mr~x!C~x1ar̂ !

1C̄~x!Mr
†~x2ar̂ !C~x2ar̂ !#2Vx , ~3!

whereFab(x) is the continuum field strength in the (x0,x3)
planes at eachx,

D̄aMr~x!5@]a1 iAa~x!#Mr~x!2 iM r~x!Aa~x1ar̂ !,
~4!

and the link-field potential is

Vx52
b

Nca
2 (

rÞs
Tr$Mr~x!Ms~x1ar̂ !Mr

†~x1aŝ!Ms
†~x!%

1
l1

a2Nc
(

r
Tr$MrMr

†MrMr
†%

1
l2

a2Nc
(

r
Tr$Mr~x!Mr~x1ar̂ !Mr

†~x1ar̂ !Mr
†~x!%

1
l4

a2Nc
(

s562,s8561

Tr$Ms
†MsMs8

† Ms8%. ~5!

We have definedMr5M 2r
† and hold Ḡ→GANc finite as

Nc→`. To this action we could in principle add allowe
operators at order isM6, (C̄C)2, CM2C, and so on. It
should therefore be understood as the truncation of an ex
sion in powers of the fields. Strictly speaking, this expans
should be performed for the light-cone gauge-fixed Ham
tonian in terms of dynamical fields only.

In the chiral representation,C†5(u1* ,v1* ,v2* ,u2* )/21/4

decomposes into complex fermion fieldsv ~u! with a helicity
subscripth56 denoting the sign of the eigenvalue ofg5. In
light-cone gaugeA250, A1 andv6 are non-dynamical~in-
dependent of light-cone timex1) and are eliminated at the
classical level using the equations of motion

~]2!2A15
G2

2 S J12
1

N
TrJ1D , ~6!

i ]2vh5
m f

A2
F2h , ~7!

where we have defined
7-2
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Fh~x!52uh~x!1
ks

m f
(

r
@Mr~x!uh~x1ar̂ !1Mr

†~x

2ar̂ !uh~x2ar̂ !#1
hika

m f
$M1~x!u2h~x1a1̂!

2hiM2~x!u2h~x1a2̂!2M1
†~x2a1̂!u2h~x2a1̂!

1hiM2
†~x2a2̂!u2h~x2a2̂!%, ~8!

J1~x!5 i(
r

@Mr~x! ]
↔

2Mr
†~x!1Mr

†~x2ar̂ ! ]
↔

2Mr~x

2ar̂ !#1(
h

uh~x!uh
†~x!. ~9!

The lightcone Hamiltonian, expressed in terms of the
maining dynamical fieldsu6(x) and Mr(x), may be ob-
tained from the action~3! in the standard way@3#

P25E dx2(
x

G2

4 S TrH J1
1

~ i ]2!2
J1J

2
1

Nc
Tr$J1%

1

~ i ]2!2
Tr$J1% D 1

m f
2

2 (
h

S Fh
† 1

i ]2
FhD

1Vx@M #. ~10!

Under certain reasonable assumptions@8#, the Hamil-
tonian~10! is a truncation of the most general Hamiltonian
ordersM4 and uMu. It also contains some, but not all, a
lowed operators at ordersuM2u andu4. In particular, it con-
tains the combinationJ1]2

22J1, which is responsible for
confinement in the lattice theory of states singlet under
sidualx2-independent gauge transformation@2#. The various
parametersG,m f ,ka ,ks ,mb ,l1 ,l2 ,l4 ,b, as well as ones
that would appear at higher orders of the color-dielectric
pansion, are coupling constants that will run with the c
off~s! in the theory. In principle, this running could be dete
mined by performing renormalization group transformatio
from QCD at short distance scales. However, on a coa
lattice, weak-coupling perturbation theory is not availab
and such an approach become unworkable. One may
treat the problem as an effective field theory, fixing couplin
phenomenologically. Even in this case, one may const
the parameters from first principles by empirically tuni
them to minimize the violation of continuum symmetries.
the case of pure gauge theories, at lowest order of the co
dielectric expansion, this gave a quite accurate estimat
the running couplings, without the need to resort to ‘‘ph
nomenology’’@5#. For meson calculations with our choice
Hamiltonian ~10!, additional phenomenological constrain
must be used to obtain unambiguous values for the coup
constants, although symmetry requirements do strongly c
strain them.

Of the other generators of the Poincare´ algebra,Pn,Mmn,
the following can be derived canonically atx150:
11450
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P15E dx2 (
x,s,h

2Tr$]2Ms~x!]2Ms~x!†%1 iuh* ]2uh ,

~11!

M 215E dx2 (
x,s,h

x2H 2Tr$]2Ms~x!]2Ms~x!†%

1
i

2
uh* ]

↔
2uhJ , ~12!

M 1r52E dx2 (
x,s,h

2S xr1
a

2
d rsDTr$]2Ms~x!]2Ms~x!†%

1 ixruh* ]2uh . ~13!

Note that these are all kinematic operators, quadratic
fields.P1 andM 21 generate translations and boosts resp
tively in the x2 direction and are unaffected by the tran
verse lattice cutoff. The cutoff effects on the boost-rotati
operatorM 1r are discussed further in the next section.

B. Space of states

For the construction of a Fock space of the dynami
fields Mr and uh , it is convenient to Fourier transform th
fields in thex2 coordinate only. Thus, we introduce a Foc
space operatorar ,i j

† (k1,x) which creates a ‘‘link parton’’
with light-cone momentum k1, carrying color i

P$1, . . . ,Nc% at sitex to color j at sitex1ar̂ ; a2r ,i j
† creates

an oppositely oriented link parton. Likewise,bh,i* (k1,x) cre-
ates a ‘‘quark parton’’ of helicityh, color i, momentumk1 at
site x, while d* does the same for anti-quarks. We have

@al,i j ~k1,x!,ar,kl* ~ k̃1,y#5d ikd j l dlrdxyd~k12 k̃1!, ~14!

@al,i j ~k1,x!,ar,kl~ k̃1,y!#50, ~15!

$bh,i~k1,x!,bh8, j
* ~ k̃1,y!%5d i j dhh8dxy d~k12 k̃1!, ~16!

$bh,i~k1,x!,bh8, j~ k̃1,y!%50, ~17!

where l and rP$61,62% denote the orientations of link
variables in the (x1,x2) plane,al,i j* 5al, j i

† , and similar anti-
commutators exist ford. Fock space is already diagonal
the light-cone momentumP1 and serves as a basis for find
ing the eigenfunctionsP2, the light-cone wave functions. A
usual in light-cone quantization~without zero modes!, the
Fock vacuum stateu0& is an exact eigenstate ofP2.

Further cutoffs, apart from the transverse lattice, must
applied to Fock space to make it finite dimensional. We w
use discrete light cone quantization~DLCQ! @10,11# to dis-
cretize light-cone momentum, which amounts to compact
ing x2 on circle of circumferenceL52pK/P1, whereK is
a positive integer, with periodic~anti-periodic! boundary
conditions forM (u). Eventually, we will extrapolate observ
7-3
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FIG. 1. Planar diagram representation of the Fock space structure of a meson boundstate. Solid lines represent quarks/anti-qu
lines link fields.
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ables toK5`. The use of anti-periodic boundary condition
is desirable because it tends to improve convergence aK
→`. However, one cannot consistently have anti-perio
boundary conditions for both bosons and fermions in
theory with Yukawa-type interactions.

To reduce the size of Fock space still further, it will b
convenient to impose a separate Tamm-Dancoff cutoff on
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maximum number of partons in Fock space, studying
theory as this cutoff is raised. Since the largeNc limit auto-
matically restricts to a quark–anti-quark pair in the mes
sector, this effectively means a cut off on the number of li
partons. A general meson state of light-cone momentumP1,
which is translationally invariant in the transverse directio
takes the form
uc~P1!&5
2aAp

ANc
(

x
(
h,h8

E
0

P1

dk1
1dk2

1d~P12k1
12k2

1!$chh8~x1 ,x2!bh
†~k1

1 ,x!dh8
†

~k2
1 ,x!u0&%

1
2aAp

Nc
(

x
(

h,h8,r
E

0

P1 dk1
1dk2

1dk3
1

P1
d~P12k1

12k2
12k3

1!$ch(r )h8~x1 ,x2 ,x3!bh
†~k1

1 ,x!ar
†~k2

1 ,x!dh8
*

3~k3
1 ,x1ar̂ !u0&1ch(2r )h8~x1 ,x2 ,x3!bh

†~k1
1 ,x1ar̂ !a2r

† ~k2
1 ,x!dh8

* ~k3
1 ,x!u0&%

1
2aAp

ANc
3 (

x
(

h,h8,r ,s
E

0

P1 dk1
1dk2

1dk3
1dk4

1

~P1!2
d~P12k1

12k2
12k3

12k3
1!

3$ch(rs)h8~x1 ,x2 ,x3 ,x4!bh
†~k1

1 ,x!ar
†~k2

1 ,x!as
†~k3

1 ,x1ar̂ !dh8
* ~k4

1 ,x1ar̂1aŝ!u0&

1ch(r 2s)h8~x1 ,x2 ,x3 ,x4!bh
†~k1

1 ,x!ar
†~k2

1 ,x!a2s
† ~k3

1 ,x1ar̂2aŝ!dh8
* ~k4

1 ,x1ar̂2aŝ!u0&

1ch(2rs)h8~x1 ,x2 ,x3 ,x4!bh
†~k1

1 ,x1ar̂ !a2r
† ~k2

1 ,x!as
†~k3

1 ,x!dh8
* ~k4

1 ,x1aŝ!u0&

1ch(2r 2s)h8~x1 ,x2 ,x3 ,x4!bh
†~k1

1 ,x1ar̂ !a2r
† ~k2

1 ,x!a2s
† ~k3

1 ,x2aŝ!dh8
* ~k4

1 ,x2aŝ!u0&%1•••, ~18!
l
n.
ned
ns-
-

where states with up to two links have been explicitly d
played. In Eq. ~18!, † acts on gauge indices andx1

5k1
1/P1, etc., are light-cone momentum fractions. On

gauge singlet combinations under residual gauge transfo
tions inA250 gauge can contribute to states of finite ene
@2#. Because pair production of quarks and mixing with glu
balls is suppressed at largeNc , the states~18! provide a
description of the valence quark content of flavor non-sing
mesons. Thus, one should implicitly understand a dist
flavor label on the quark and anti-quark, which is redunda
The sequence of orientationsl,r, . . . of link variables and
the P1 momentum fractionsx1 ,x2 , . . . are sufficient to en-
code the internal transverse and longitudinal structure
spectively of Fock states contributing to the bound sta
-

a-
y
-

t
t
t.

e-
.

Thus, including quark helicitiesh,h8, a general Fock state
may be labeled

u~x1 ,h!,~x2 ,l!, . . . ,~xn21 ,r!,~xn ,h8!&. ~19!

The expansion~18! may be represented by a planar~large-
Nc) diagram notation shown in Fig. 1. This will be helpfu
when enumerating the matrix elements of the Hamiltonia

The transverse momentum operator is not directly defi
because of the lattice regulator, but one may introduce tra
verse momentumP by application of the boost-rotation op
eratorM 1r . Let u(x1 ,x1), . . . ,(xn ,xn)& denote ann-parton
Fock state.xp is the transverse position andxp the P1 mo-
7-4
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mentum fraction of thepth parton~conventionally we take
transverse position to be the midpoint of a link, for lin
fields!. Using ~13! we find

exp@2 iM 1r Pr /P1#u~x1 ,x1!, . . . ,~xn ,xn!&

5expF iP•(
p51

n

xpxpG u~x1 ,x1!, . . . ,~xn ,xn!&. ~20!

Therefore, the net effect is to add phase factors into ma
elements ofP2 between Fock states atP50. In a Poincare´
covariant or a free theory, the transformation~20! applied to
eigenstates ofP2 ~18! would be sufficient to generate eige
states ofP2 at non-zeroP. However, the lattice regulato
spoils Poincare´ covariance and in general one must rediag
nalize P2 after boosting Fock states by Eq.~20!. Thus, the
eigenfunctionsc in Eq. ~18! for P2 will become functions
of P also.

The state is normalized covariantly

^c~P1
1 ,P1!uc~P2

1 ,P2!&

52P1
1~2p!3d~P1

12P2
1!d~P12P2!, ~21!

if

15E
0

1

dx(
h,h8

uchh8~x,12x!u2

1E
0

1

dx1dx2 (
h,l,h8

uch(l)h8~x1 ,x2,12x12x2!u2

1E
0

1

dx1dx2dx3 (
h,l,r,h8

3uch(lr)h8~x1 ,x2 ,x3,12x12x22x3!u21••• ~22!

for anyP1 ,P2. This also ensures that the light-cone mome
tum sum rule is satisfied, even at finite DLCQ cutoffK, since
translation invariance in thex2 direction is preserved by
DLCQ.

Since there is 90° rotational symmetry aboutx3 for a state
with P50, it is possible to distinguish the angular mome
tum projectionsJ3 mod 4. There is also exact symmet
underG parity, charge conjugationC, and transverse reflec
tions in thex1 andx2 directions,P1 ,P2. Although the parity
P5P1P2P3 is dynamical and in general broken, one c
associate a parity to bound states from their behavior un
the free particle limit ofP3. Indeed, there is aZ2 kinematic
symmetry

Pfchh8~12x,x!→chh8~x,12x!, ~23!

which corresponds to the freeP3 operation in the zero-link
sector that is exact at any cut-offK. In this way, one has
enough information to identify theJ PC structure of light
states unambiguously.

In general, we will find that the lightest mesons are 021

and 122, with the former lying lower in mass. It is thu
natural to compare them with the physical pion and r
11450
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Because of violations of covariance, theJ350 component of
the 122 (r0) will also split from its J3561 components
(r6) which are always degenerate on the transverse lattic
P50. In view of the low-energy nature of the truncation
the color-dielectric expansion, we do not analyze heav
mesons, although their eigenfunctions are obtained as a
product of our calculations.

C. Renormalization

We have constructed a gauge theory with transverse
tice and Tamm-Dancoff cutoffs that we do not intend to e
trapolate and a DLCQ cutoff that we do. The first step in t
renormalization process is to ensure finiteness of phys
observables in the limitK→`. It turns out that divergence
exist but they require only infinite and finite self-energ
counterterms that renormalize existing parton mass term
the light-cone Hamiltonian. The remaining cutoffs that a
not extrapolated obviously violate Lorentz covariance. T
violation can however be minimized by appropriate fin
renormalization of all the couplings appearing inP2 ~10!. In
this section we describe our procedure for performing th
finite and infinite renormalizations.

It is convenient to use one of the parameters of the Ham
tonian to set the dimensionful scale of the theory and de
dimensionless versions of the others. Conventionally we w
useḠ to set the scale, which has the dimensions of mas
will later be related to the QCD mass scale by calculation
the heavy source potential@6#. The following dimensionless
parameters are then introduced:

mb

Ḡ
→mb ;

m f

Ḡ
→mf ; kaANc

G
→ka ; ksANc

G
→ks ;

l i

Ḡ2
→ l i ~ i 51,2,4!;

b

Ḡ2
→b. ~24!

Since we will need to study the meson eigenfunctions
P2 as a function ofP1 andP, let us write, for these eigen
functions,

2P1P25M 21R~P!, ~25!

such thatR(0)50. M 2 is the invariant mass~squared!. We
begin with P50, in which case the non-zero Fock spa
matrix elements of the dimensionless invariant mass oper

^~y1 ,h1!,~y2 ,s!, . . . ,~yn21 ,t!,~yn ,h2!u2P1P2/Ḡ2u

3~x1 ,h18!,~x2 ,l!, . . . ,~xn21 ,r!,~xn ,h28!& ~26!

are enumerated in Figs. 2~a!–~m! and Table I. A number of
comments are necessary to explain these amplitudes.
have defined

Rot@l,r#[e uluuruSgn@l#Sgn@r#. ~27!

In the planar diagram vertices of Fig. 2, light-cone mome
tum fraction (x,y,z), quark helicity (h,h8), and link-field
orientation (l,r,s,t) labels are given where necessa
7-5
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FIG. 2. Planar diagram representation of the elementary amplitudes contributing to Eq.~26!. Vertical barred lines arex1-instantaneous
interactions.
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Lines with a bar denote thex1-instantaneous propagato
]2

21 and]2
22 for v quarks andA1 gauge fields respectively

‘‘P’’ denotes that a principal value prescription is used wh
integrating light-cone continuum momentum fraction acro
singularities. For simplicity, we have not shown vertices
volving only anti-quarks, which are similar to those invol
ing only quarks. To these diagrams we add planar spect
lines which go to make up the full gauge singlet Fock sta

At finite transverse lattice spacinga, but before the light-
cone DLCQ cutoffK is imposed, the theory is behaving lik
a continuum (111)-dimensional gauge theory coupled to
set of fundamental fermion and adjoint scalar fields@12#.
Although super-renormalizable in the (111)-dimensional
sense, the light-cone quantization in light-cone gauge in
duces its own characterstic divergences due to the pres
of non-local instantaneous interations. Those originat
from the instantaneous gluon propagator 1/]2

2 are dealt with
by the principal value prescription in the manner establis
by ’t Hooft @13#. Those originating from the instantaneo
quark propagator 1/]2 have been studied by Burkardt@14#,
whose analysis we briefly recall.
11450
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A basic one-loop logarithmic divergence occurs in t
quark self-energy as represented in the light-cone pertu
tion theory diagram of Fig. 3~a! as the quark loop momentum
vanishes. The cubic vertices are of the same type, with c
pling eithermfka or mfks , once the orientations of the inte
mediate link fields have been summed over. The divergen
are cancelled, in these diagrams and any others obtaine
adding spectators, by an infinite quark ‘‘kinetic’’ mass cou
terterm in the Hamiltonian@Fig. 3~b!#

~ka
21ks

2!

p E
0

xdy

y
. ~28!

This is not sufficient for the divergences in the two-loo
diagrams of Figs. 4~a!–~c! to cancel. One may add a finit
kinetic mass countertermdm2, adjusted at order (ka

2 ,ks
2), to

produce finite results when Fig. 4~d! is included. Higher-loop
generalizations of the same diagrams are also rendered
by adjustingdm2 at higher orders inka and ks . Dressing
loop diagrams with instantaneous gluon lines~e.g. Fig. 5!
renders them individually finite. As in Ref.@14#, our own
7-6
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TABLE I. Matrix elements of the dimensionless invariant mass operator 2P1P2/Ḡ2 in Fock space.
Momentum conserving delta functions are omitted for clarity.

1

x Smf
21dmp

21
~ka

21ks
2!

p E
0

x dy

y D ~a!

1

2Apy
S 1

x1y
2

1

xD $mfks1mfkaSgn@l#~d ulu22 ihd ulu1!% ~b!

21

2p
PS 1

~x2y!2D ~c!

2~y2z!

4p~y1z!2Ayz
d2lr

~d!

1

4p~x1y!Ayz
$ks

2dhh81ka
2dhh8~dlr2d2lr2 ihRot@l,r#! ~e!

1kaksd2hh8@Sgn@l#~ ihd ulu12d ulu2!1Sgn@r#~ ihd uru12d uru2!#%

1

4p~x1y!Ayz
$ks

2dhh81ka
2dhh8~d2lr2dlr1 ihRot@l,r#! ~f!

1kaksd2hh8~Sgn@l#~ ihd ulu12d ulu2!2Sgn@r#~ ihd uru12d uru2!!%

mb
2

x
~g!

21

4p
PS y1z

Azy~z2y!2D ~h!

21

8p
PS ~y1z!~2x1y2z!

Axzy~x1y2z!~z2y!2D ~i!

1

4pAxyz~x1z2y!
$2l 1dsldrtd2rs1 l 2~dsldrtdrs1d2srd2ltd2sl! ~j!

1 l 4~dsldrtuRot@s,r#u1d2srd2ltuRot@s,l#u!2bdlrdstuRot@s,r#u%

1

4pAxyz~x1z1y!
$2l 1d2sldltdlr1 l 2dstd2lrd uluusu ~k!

1 l 4~d2lsdrtuRot@l,r#u1d2srdltuRot@s,l#u!2bd2lrdstuRot@s,l#u%

21

8p

~y2z!~2x1y1z!

Axzy~x1y1z!~z1y!2
d2lr ~l!

21

8p

~x2z!~2y2x2z!

Axzy~x2y1z!~z1x!2
d2srd2lt ~m!
eory
s-
ef.

rect
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FIG. 3. ~a! one-loop logarithmically divergent quark self-energ
~b! logarithmically divergent mass insertion counterterm rep
sented by open circle.
11450
checks of these statements for the transverse lattice th
have been done only in perturbation theory, but we will a
sume they are true to all orders. It was also shown in R
@14#, by means of simple cases, that choosing the cor
countertermdm2 was equivalent to restoring parity invar
ance, which is not manifest in light-cone coordinates.

By adjusting the finite countertermdm2, one ensures tha
theK→` limit can be taken when DLCQ is used. Howeve
it was pointed out by Burkardt that, while this ensures

-
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FIG. 4. ~a!,~c! two-loop logarithmically divergent quark self-energies,~b! one-loop diagram with infinite mass insertion,~d! one-loop
diagram with finite mass insertiondm2 represented by open box.
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finite answer for theK→` limit of the self-energy, the use o
a momentum-independent mass counterterm in DLCQ
not yield the same as the covariant answer for the same
plings. In effect DLCQ produces a finite violation of covar
ance. This is one of a number of sources covariance viola
in our calculation. Rather than analyzing how one mig
minimize the individual violations—it is not obvious whic
are the most significant—we will perform overall covarian
tests on the bound state wave functions that are the end p
uct.

A Tamm-Dancoff cutoff on the maximum number of lin
fields in a state also violates covariance. In principle, this
be compensated by introducing spectator-dependent cou
terms@15#. In practice that will lead to too many coupling
for viable calculation at a physically reasonable choice
Tamm-Dancoff cutoff. However, it is necessary for finitene
of the quark self-energy to use spectator-dependent fi
countertermsdm2. Therefore, we must introduce separa
countertermsdmp

2 for the Fock sector containingp links
~note that the sector withp maximum has no finite or infinite
quark self-energy counterterms!. These are adjusted to pro
duce finite quark self-energy in addition to optimization
covariance of hadron wave functions. Since we work at
level of hadrons, the quark self-energy is tested indirectly
tachyonic quark self-energy, whether divergent or not, wo
be signalled by tachyonic behavior in the lightest had
mass. Therefore, we test for absence of such a divergen
the ligthest mass asK→`. A positive divergent quark self
energy would artificially suppress the lowest Fock secto
that are subject to loop corrections and counterterms, in
hadron wave function asK→` ~the hadron mass may re

FIG. 5. Finite diagram with instantaneous interaction dressi
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main finite!. Therefore, we test for absence of this suppr
sion, in particular, by fittingf p which is a measure of the
p50 Fock component.

In summary, taking theK→` limit with a Tamm-Dancoff
cutoff on link fields in place, one must introduce infinite an
spectator-dependent finite self-energy counterterms. E
though the theory is now finite, Poincare´ covariance is still
violated by the finite transverse lattice spacinga, the Tamm-
Dancoff cutoff, and by the use of momentum-independ
finite-mass countertermsdmp

2 . We propose to minimize
these violations by finitely renormalizing all the coupling
available inP2.

For perfectly relativistic dispersion,R(P)5uPu2 for every
eigenfunction in Eq.~25!; this will receive corrections on the
coarse transverse lattice. To quantify the covariance viola
we will expand the dispersion relation for each bound sta

R~P!5c2uPu21O~P4!. ~29!

The transverse speed of lightc will in general differ from
one~the speed in thex3 direction!. A simple criterion, which
worked well in previous studies, is to minimize this diffe
ence in the low lying eigenstates ofP2, ignoring the anhar-
monic terms inR.

The same procedure may be carried out for glueb
bound states to constrain the pure-glue interactions in
Hamiltonian, independently of the meson sector~at large
Nc). In addition, the rotational invariance of the potent
between heavy sources may be optimized. These latter
have been described in detail in previous work@5#. We will
use the string tensionAs from the potential to set the QCD
scale from experiment.

The transverse lattice Lagrangian~3! contains terms tha
also violate chiral symmetry explicitly, via the couplingsmf
andks . Since we work at the level of hadrons, a measure
chiral current non-conservation is provided by the pion m
in a covariant stable theory, as a result of the PCAC~partial
conservation of axial vector current! theorem. This measure
loses accuracy if the theory also has significant explicit
variance violation, as in our case. The explicit violation
chiral symmetry could be minimized by tuning furthe
chiral-symmetry violating counterterms, which we discuss
the Appendix. However, these lie at higher order of the col.
7-8
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TABLE II. Optimum coupling constants ata52/3 fm for a three-link truncation. Note thatdm0
2 was

swept more coarsely than the other couplings.

mb b l1 l 2 l 4 ks ka mf dm0
2 dm1

2 dm2
2

0.276 0.768 20.169 20.186 0.024 0.420 0.652 0.236 1 20.127 20.035
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m a
dielectric expansion. In the present calculation, we finit
renormalize the Hamiltonian to fit the experimental pi
mass, since this is naively a measure of chiral current c
servation. Since the explicit violation of chiral symmetry
actually larger than that suggested byMp , we find that we
must also fit the experimental rho mass in order to main
a realistic pi-rho splitting.

Thus, in addition to optimizing covariance via bound sta
dispersion, we are proposing to fit four experimental nu
bersMp , Mr , f p , andAs in order to accurately determin
the couplings in our effective HamiltonianP2. Since QCD
with degenerate flavors contains only two fundamental
rameters, the transverse lattice Hamiltonian is not de
mined from first principles. However, as described abo
direct tests of parity and chiral symmetry might allow one
reduce the number of phenomenological parameters fur
We leave this for future work.

III. DETERMINATION OF HAMILTONIAN PARAMETERS

In order to reduce the number of coupling variables in
minimization process, this is done in two stages. First,
examine glueball eigenfunctions ofP2, that contain only
link fields, and the rotational invariance of the ground st
potential between two heavy sources of color. Here we
low, with one exception, exactly the same procedure use
Ref. @5# and so omit all details. The exception is that, inste
of using anti-periodic boundary conditions for link fields
x2, we re-did the calculations with periodic boundary co
ditions in order to be consistent with the conditions used
the meson sector later. Note that these ‘‘pure-glue’’ calcu
tions extrapolate bothK and the Tamm-Dancoff cutoff, con
straining very precisely the couplings inP2 relevant to that
sector (l 1 ,l 2 , l 3 ,b,mb) when covariance is optimized. It i
not necessary at this stage to use any phenomenologica
put.

We searched for a trajectory in coupling space that o
mized the Poincare´ covariance of glueball wave function
and the potential between heavy sources of color. A fa

TABLE III. Meson dispersion at the optimum couplings.p is
the lightest 021 state,r6,0 the lightest 12 states with projections
J3561,0.

State Mass~MeV! c

p 171 1.02

r0 828 0.99

r1 457 1.04

r2 457 0.76
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well-defined one-parameter trajectory is picked out. W
choose the best point on that trajectory, which in effect fix
a, corresponding to a value of the link field massmb

50.276. At this point, we findḠ'2.75As and aḠ'4,
where s is the string tension of the asymptotically line
potential found between two heavy sources. If one ta
As5440 MeV, then Ḡ'1200 MeV anda'2/3 fm. The
values of the other couplings determined by this point
shown in Table II.

Having fixed a subset of the couplings, we fix the rema
ing ones sensitive only to the meson sector. We investiga
the Tamm-Dancoff cutoff up to four links, but show resu
for a three-link cutoff, since a better sampling of couplings
achievable in this case. The transverse speed of lightc is
optimized in the dispersion of the 021 and each componen
of the 122, together with the difference between the calc
lated massMp of the 021 state and the physical pion value
As described in the previous section, we find we must
clude fits to the physical values ofMr and f p in the optimi-
zation procedure in order to accurately pin down the rema
ing undetermined couplings of the Hamiltonian, which a
shown in Table II.

Table III shows information on the states we identify wi
the pion and rho at these couplings. One notes that the
61 projections of the 122 still badly violate covariance,
splitting the Lorentz multiplet and having asymmetrical d
persion. Since it is not yet behavingly covariantly overall, w
do not attempt a detailed phenomenological analysis of
resulting wave functions. On the other hand, we are able
achieve a relatively symmetrical dispersion for the 021

state, with interceptMp5171 MeV and decay constantf p

5132 MeV, close to the experimental pion values.~The ex-
act values would be obtainable with a sufficiently fine swe
of couplings.!

We checked that no Fock sectors are being artificia
suppressed and that the truncation to no more than t
links is not causing severe ‘‘finite-volume’’ effects from th
maximum separation this imposes on anti-quark and qu
Table IV shows that the peak in the transverse spatial dis
bution of the 021 wave function is well-accomodated by th
three-link cutoff~results are similar for the 122). However,
the tail of the wave function at four and higher links ma
contain a significant total probability, which will affect ob

TABLE IV. Probability for finding a certain number of links in
the 021 state. The extrapolation errors in parentheses are fro
1/K extrapolation.

No Links 0 1 2 3

Probability 0.097~14! 0.661~10! 0.150~8! 0.087~2!
7-9
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S. DALLEY AND B. van de SANDE PHYSICAL REVIEW D67, 114507 ~2003!
servables sensitive to very small transverse momenta. Th
fore, in this paper we restrict our attention to observab
integrated over all available transverse momenta. Inde
when varying the Tamm-Dancoff cutoff above three link
we find very little change in the observables investiga
below.

IV. PION OBSERVABLES

A. Valence quark structure function

The valence quark distribution function is defined as

V~x!5 (
h,h8

uchh8~x,12x!u21(
l

(
h,h8

E
0

12x

dyuch(l)h8~x,y,1

2x2y!u21(
l,r

(
h,h8

E
0

12x

dyE
0

12x2y

dz

3uch(lr)h8~x,y,z,12x2y2z!u21•••. ~30!

It is the probability for a quark to carry light-cone mome
tum fractionx. The result we find forV(x) on the transverse
lattice in the three-link truncation is shown in Fig. 6. The ra
~discrete! DLCQ data forK510, 12, 15, 20 are displaye
together with an extrapolation toK→`. To produce this, at
eachK data is fit to the momentum distribution form

xV~x!5~12x!bxa~a1bAx1cx!. ~31!

We note that the simple formxa(12x)b, used to parameter
ize early experimental data, is not sufficient to fit our res
It is necessary to drop thex51/2K and x5121/2K points
from this analysis since they do not join smoothly to the r
of the distribution. This is because end point data are pr
to artifacts resulting from the vanishing of some of the int
actions in Table I. The smooth curves at eachK are then
extrapolated pointwise, by a~good! fit to a quadratic in 1/K,
for a large set of values in the interval 0.1,x,0.9. The gray
region represents the uncertainty from the extrapolation o

The extrapolated data fits the form~31! with b
50.33(2), a50.3(1), a50.33(3), b521.1(2), c

FIG. 6. Distribution function for DLCQ cutoffs
K510,12,15,20, darker data points meaning largerK. K→` ex-
trapolated curve lies in the shaded region.
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52.0(3). Theerrors are from the extrapolation only. Bearin
in mind that the extrapolation is based on fits to data that
not cover the end point regions, the true errors ona andb
are likely to be much larger. From the first moment^xVp&
5*0

1xVp(x)dx, we find that 32% of meson light-cone mo
mentum is carried by the quarks, with the same carried
the anti-quarks. In the range 0.1,x,0.9, over which there is
some measure of control, the result forVp is reminiscent of
the constantVp51 distribution resulting from the chira
limit of chiral quark models@16#. However, because of th
rapid rise at smallx, which is expected on general ground
from Regge-type behavior@17#, the flat part of the distribu-
tion is atV;0.7. Moreover, in the chiral quark models, a
the light-cone momentum is carried by quarks, while he
36% is carried by the link fields representing gluonic degr
of freedom.

In order to compare with experimental data, one m
address the transverse resolution scale. A well-defined tr
verse resolution scale is associated withV(x) above, namely,
the transverse lattice spacinga. If we were to repeat the
calculation at a differenta, one would expect to see an evo
lution of V as a result of the changing wave functions.
practice, the current transverse lattice method is only abl
explore a small window ina—small enough to suppress dis
cretization errors but large enough for the use of mass
disordered link fields—which is too small to reliably qua
tify such evolution. Perturbative evolution equations typ
cally use a different renormalization scheme, so there is
simple match between scales used in each scheme. In
ciple, there are wave function renormalisation constants
O(1) that relate lattice operators to continuum operators,
these are also usually evaluated perturbatively. For exam
in Euclidean lattice QCD@18#, this has been done for mo
ments of the operator expectation giving rise toV, since suf-
ficiently fine lattices can be used to employ schemes matc
to perturbation theory. Most low-energy effective theories
QCD, such as QCD sum rules@19,20#, chiral quark models
@16,21#, and truncated Dyson-Schwinger equations@22#,
must resort to another method when attempting to comp
with experimental data at higher resolution scales. The s
for input to perturbative evolution equations is fixed b
matching one experimental datum; for example, the first m
ment ofV. This is the procedure we will employ here for th
color-dielectric tranverse lattice also, i.e. bare lattice ope
tors are used, but with a resolution scale fixed once and
all by matching one experimental datum.

If we demand that̂ xVp&'0.21 at a scale of 2 GeV, a
suggested by the analysis of E615 and NA10 pion-nucl
Drell-Yan data by Suttonet al. @23# for the valence quark
distribution, then the scale associated to our result, if it w
used as input for leading order non-singlet evolution, ism
'500 MeV; this is reasonable given thata215300 MeV. In
Fig. 7 we show our result forxVp(x) evolved to 6.6 GeV
and compared with the raw data for the valence distribut
deduced by E615@24# by combining data over scales 4-8
GeV. For completeness, we also show fits toxV5xa(1
2x)b produced by earlier experiments NA10@25# and NA3
@26#. In the valence regionx.0.5, our result agrees with th
most recent experiment, which claims a more accurate
7-10



-
s
s
fa

ra
l
ht

th
on
ap

ht

n
n

are

8

gh

e

ing

0.5
2.4

uple
hly

ice

The

to

u
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resentation at largex. At smallerx there is not much agree
ment, either between experiments or with our result. Thi
hardly surprising given the sensitivity of this region to a
sumptions about the sea quarks or their measurement. In
our calculation contains no sea quarks since it is at largeNc .
The recently discovered enhancement of initial-state inte
tions @27# is also expected to be most significant at smalx,
throwing into doubt the simple connection between lig
cone probabilities and the Drell-Yan cross section@28#. It is
obviously desirable to have data onVp from sources other
than the Drell-Yan process. This is also important from
theoretical perspective, given that the current Dys
Schwinger approach predicts a completely different sh
for the pion distribution function@29#.

B. Distribution amplitude

The distribution amplitude~in A250 gauge! for the pion
is defined by

^0uC̄~z!gmg5C~0!ucp~Pm!&U
z250

5 f pPmE
0

1

eix(z•P)fp~x!dx, ~32!

with the normalization condition

E
0

1

fp~x!51. ~33!

If the quark field correlator is to be evaluated at equal lig
cone time,z150, thenz50 andz2 is arbitrary. This then
measures the amplitude for zero transverse separatio
quarks in the meson light-cone wave function. For the tra
verse lattice one finds

c12~x,12x!5
f p

2
Ap

Nc
fp~x! ~34!

FIG. 7. Valence distribution functions~times x) compared to
pion-nucleon Drell-Yan data. Solid line: transverse lattice res
evolved at 6.6 GeV. Data points: E615 experiment@24#. Short-
dashed line: NA10 experiment fit toxa(12x)b form @25#. Long-
dashed line: NA3 experiment fit toxa(12x)b form @26#.
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from the g1 component of Eq.~32!. Figure 8 shows our
results for the distribution amplitude at variousK and ex-
trapolated toK5` in a three-link truncation. The raw~dis-
crete! DLCQ data has been fit at eachK to the first few terms
of the conformal expansion@30,31#

fp~x!56x~12x!$11a2C2
3/2~122x!1a4C4

3/2~122x!%.
~35!

An extrapolation of the coefficients withA1B/K1C/K2

yieldsa250.15(2), a450.04(1), confirming that truncation
of the conformal expansion is justified. The same values
obtained if the fit curves at eachK are pointwise extrapolated
and then refit to Eq.~35!. Finally, the result is insensitive to
whether thex51/2K and x5121/2K end points are in-
cluded in the fit or not, so we have shown them in Fig.
also.

The distribution amplitude is indirectly accessible throu
the pion transition form factorFpg* g(Q2) measured at
CLEO @32#. A perturbative QCD analysis relates this to th
inverse moment, up to radiative correctionsD,

3Q2

4p
Fg* gp5E

0

1fp~x!

x
1D53~11a21a4!1D. ~36!

An analysis of the data in Ref.@33# extracteda21a450.05
60.07 at scale 2.4 GeV, taking into account next-to-lead
order correctionsO(as) in D. If we assume, following the
structure function analysis, a transverse resolution scale
GeV for the transverse lattice result, when evolved to
GeV by the 1-loop evolution equations we finda2
50.07(1), a450.01(1) including only DLCQ errors. Al-
though our result seems consistent with experiment, a co
of comments are necessary. The inverse moment is hig
sensitive to the end point regions offp , which are not well
covered by the extrapolation of the DLCQ transverse latt
result. Also, the leading radiative corrections inD are large
;20%, so one might ask about higher order corrections.
reader is referred to Refs.@16,34# for a more detailed review
of the various theoretical and experimental results relating
fp .

lt

FIG. 8. Distribution amplitude for DLCQ cutoffs
K510,12,15,20, darker data points meaning largerK. K→` ex-
trapolated curve lies in the shaded region.
7-11
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S. DALLEY AND B. van de SANDE PHYSICAL REVIEW D67, 114507 ~2003!
Diffractive dissociation on a nucleusp1A→A1 jets @35#
has been used to measure a cross section related tofp . A
number a theoretical analyses of that relation have rece
been performed@36#, which differ in their conclusions abou
the precise relationship. Our result, when evolved to
higher transverse momentum scale of the experiments
consistent with any one of the analyses, being close to
asymptotic form 6x(12x). We mention that our DLCQ
transverse lattice result forfp is close to one previously
obtained in a one-link truncation using very similar metho
@8#, althougha4 was not fit and the normalizationf p was
completely wrong in that case. The same one-link trunca
was investigated in Ref.@9# by using basis functions instea
of DLCQ and a similar~but not identical! criteria for fixing
the Hamiltonian couplings. That gave a distribution amp
tude a little closer to the asymptotic form, although a va
for a2 was not extracted and no error estimate was giv
Thus, we can say with some confidence that our resu
neither the ‘‘double-hump’’ first found by Chernyak an
Zhitnitsky @19# using ~local! sum rules nor the ‘‘narrow
hump’’ one would deduce from most of the Euclidean latt
measurements of the lowest moment offp @37# ~see how-
ever the very recent result@38#!.

C. Quark helicity correlation

Although the pion spin is 0, it nevertheless contains
complicated spin structure. One measure of this is the qu
helicity correlations

Cpara~x!5(
h

uchh~x,12x!u2

1(
l

(
h
E

0

12x

dyuch(l)h~x,y,12x2y!u2

1(
l,r

(
h
E

0

12x

dyE
0

12x2y

3dzuch(lr)h~x,y,z,12x2y2z!u21•••,

~37!

Canti~x!5(
h

uc2hh~x,12x!u2

1(
l

(
h
E

0

12x

dyuc2h(l)h~x,y,12x2y!u2

1(
l,r

(
h
E

0

12x

dyE
0

12x2y

3dzuc2h(lr)h~x,y,z,12x2y2z!u21•••.

~38!

Because the light-cone wave function essentially repres
particles in an infinite-momentum frame, even massive p
ticles have their spins aligned either parallel or anti-para
to the ‘‘fast’’ x3 direction in such a framework. The helicit
correlations measure the probability for a quark to ha
11450
tly

e
is
e

s

n

-
e
n.
is

a
rk

ts
r-
l

e

light-cone momentum fractionx and helicity either parallel
or anti-parallel to that of the anti-quark. Therefore, the sum
normalized to one~when integrated overx). These functions
are plotted in Fig. 9. We estimate that

E
0

1

Cp
paradx;0.45. ~39!

Therefore, one is almost equally likely to find quark helic
ties aligned as anti-aligned. This is not necessarily incon
tent with the quark model picture of anti-parallel quark sp
in a pion, since that model treats the glue as a non-relativi
potential. In a relativistic treatment, the gluonic degrees
freedom will carry some portion of the hadron momentu
and helicity.

V. CONCLUSIONS

We have extended coarse transverse lattice calculat
for mesons to physically realistic cutoffs on the anti-quark
quark separation. A general light-cone Hamiltonian in t
large Nc limit was expanded in powers of dynamical field
and we studied a truncation of that color-dielectric expa
sion. This included all possible cubic terms and most of
quartic terms. By optimizing Lorentz covariance of glueba
heavy-source and meson bound states, the remaining
dom in the couplings in the Hamiltonian was reduced.
studying other symmetries, such as parity and chirality
may be possible to constrain them further. In this paper,
performed a phenomenological calculation by fixing the
maining freedom in the couplings to best fitAs, Mp , Mr ,
and f p ~two of these are parameters of the first-princip
QCD!.

The lightest meson bound state has the quantum num
of the pion and exhibits a reasonably covariant lightco
wave function. Comparing the predictions of this wave fun
tion with various experimentally measured observables
the pion, we find consistency in the regions insensitive to
quarks. New observables, which in principle can be extrac
from a higher twist analysis of experiments, follow from th
multiparton correlations in the light-cone wave function. A

FIG. 9. Extrapolated quark helicity correlation function: bla
for anti-parallel helicitiesCp

anti ; gray for parallel helicitiesCp
para.
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TRANSVERSE LATTICE CALCULATION OF THE PION . . . PHYSICAL REVIEW D67, 114507 ~2003!
an example, we computed the anti-quark—quark helic
correlation, suggesting that correlation is almost equally
likely as anti-correlation in the pion. Because the tail of t
wave function in the transverse direction is still truncated
our calculation, we did not compute observables sensitiv
small transverse momentum. Nevertheless, it would be in
esting to look at the general features of the skewed pa
distributions for intermediate momentum transfers, sin
little hard information is available for these important o
servables. It should be straightforward to extend the calc
tions to strange mesons and heavy-light mesons.

There are still some shortcomings in the calculation. T
bound state most naturally identified with the rho is not
behaving covariantly. Our optimization of chiral symmet
could be considerably improved. Given the close connec
of Lorentz and chiral symmetry on the lattice, we belie
that these problems are related. In particular, higher-o
terms in the color-dielectric expansion can fulfill a dual ro
to improve both these symmetries.
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APPENDIX: CHIRAL SYMMETRY

The lattice Lagrangian~3! explicitly breaks chiral symme
try

C→e2 iug5C, ~A1!

through the bare mass-termm f and Wilson termks . The
standard test for this at the hadron level is PCAC

^0u]mAmucp&5 f pM p
2 , ~A2!

whereAm is the axial current. Without knowing the precis
form of Am , one can useMp to quantify the amount of
explicit chiral symmetry breaking relative to other scale
such as the pure-QCD mass gap or the spontaneous c
symmetry breaking scale given by the difference betw
Mp and masses of other light mesons. The result~A2! relies
on exact Lorentz covariance, which is not present on
transverse lattice. In fact, in the calculation performed in t
paper, the splitting of ther Lorentz multiplet is of compa-
rable strength to thep-r splitting. This suggests that explic
chiral symmetry breaking effects are larger thanMp would
suggest, perhaps of the same order as spontaneous
symmetry breaking effects.

Explicit chiral symmetry breaking could in principle b
tested more directly. There is a (111)-dimensional Noethe
‘‘vector’’ current

j a5(
x

C̄~x!gaC~x! ~A3!
11450
y
s

to
r-
n

e

a-

e
t

n
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/
d
a
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,
iral
n

e
s

iral

that is conserved under the equations of motion, i.e.,]a j a

50, and a corresponding chiral current

j 5
a5(

x
C̄~x!gag5C~x! ~A4!

for which we find

]a j 5
a52m f

2(
x,h

hFh
†~x!

1

]2
Fh~x!, ~A5!

whereFh is defined in Eq.~8!. One might then use a matri
element such as

^0u]a j 5
aucp& ~A6!

to quantify explicit chiral symmetry violation, minimizing i
by finite renormalizations of couplings, since the vanishi
of Eq. ~A6! is a necessary condition for conservation of t
four-dimensional axial current. There are a few difficulti
that must be overcome before this would be practical ho
ever. The expression~A5! has a normal-ordering ambiguit
similar to the Hamiltonian. Moreover, it is much more com
putationally expensive to perform symmetry tests with eig
functions rather than eigenvalues. On a coarse lattice,
chiral symmetry breaking couplings are also strongly co
strained away from zero by Lorentz covariance; for examp
ks is needed to avoid fermion doubling@7#. It would there-
fore be desirable to have further independent chiral sym
try breaking couplings in Hamiltonian to tune.

Natural candidates are the transverse lattice version
the Sheikholeslami-Wohlert~SW! terms @39#, C̄smnFmnC.
In Euclidean lattice gauge theory they can be tuned to
moveO(a) contributions to chiral current non-conservatio
@40#. On a transverse lattice they become

C̄~x!s rs@Mr~x!Ms~x1ar̂ !

2Ms~x!Mr~x1aŝ!#C~x1ar̂1aŝ!, ~A7!

C̄~x!s12F12C~x!. ~A8!

In the dimensional counting classification of Euclidean l
tice quark operators, SW terms occur along with Wils
terms at dimension five. On the coarse transverse lattice t
significance is not so obvious, since they enter at higher
ders of the color-dielectric expansion in powers of dynami
fields. Terms of the form~A7!, ~A8! in the Lagrangian give
rise to coupled constraint equations of motion for no
dynamical fields. If solved order by order in dynamic
fields, they give rise to new interactions in the gauge-fix
light-cone Hamiltonian starting at orders isu4, u2M2. Of
particular interest are interactions generated at orderu2M3

andu4M that flip the helicityh of quarks. Interactions of this
kind carry the spontaneous chiral symmetry breaking effe
in effective light-cone Hamiltonians@41#; themfka andkska
terms performed this function in Eq.~26!.
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