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Transverse lattice calculation of the pion light-cone wave functions
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We calculate the light-cone wave functions of mesons by solving their bound state problem in a coarse
transverse lattice gauge theory using discrete light cone quantization. ANargpproximation is made and
the light-cone Hamiltonian expanded in massive dynamical fields at fixed lattice spacing. In contrast with
earlier calculations, we include contributions from states containing many gluonic link fields between the
quarks. The Hamiltonian is renormalized by a combination of covariance conditions on bound states and fitting
the physical masse$t, and M., decay constartt,, and the string tensiorlo. Good covariance is obtained
for the lightest 0 * state, which we compare with the pion. Many observables can be deduced from its
light-cone wave functions. After perturbative evolution, the quark valence structure function is found to be
consistent with the experimental pion structure function deduced from Drell-Yan pi-nucleon data in the valence
region x>0.5. In addition, the distribution amplitude is consistent with the experimental pion distribution
deduced from thery* y transition form factor and diffractive dissociation. A new observable we calculate is
the probability for quark helicity correlation. We predict a 45% probability that the valence-quark helicities are
aligned in the pion.
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I. INTRODUCTION (1—x)033(2)
VW(X)ZW{O.333)—1.1(2)\/§+ 2.003)x}.

Light-cone wave functions encode all of the bound state
quark and gluonic properties of hadrons, including their mo-
mentum, spin and flavor correlations, in the form of univer-
sal process- and frame-independent amplitudes, for ex-  wherex is the quark light-cone momentum fraction carried in
ample, Ref[1]). Hadronic observables represented as matrixhe pion. The transverse renormalization scale should be 0.5
elements of currents are easily expressed in terms of overlagseV if the first moment ol is to agree with experiment.
of light-cone wave functions. To compute the wave func-As a further application of the light-cone wave functions, we
tions, one must diagonalize the light-cone Hamiltonian ofalso compute the probability for a valence quark of momen-
QCD in a Fock space of quark and gluonic degrees of freetum fractionx to have its helicity correlated with that of the
dom. A promising method to achieve this is the transversenti-quark in the pion. We find surprisingly a large probabil-
lattice formulation of gauge theor§2,3]. In this approach, ity ~45% for the quark and anti-quark helicities to be
the physical gluonic degrees of freedom are represented kyligned, even though the pion spin is 0. These represent our
gauge-covariant links of color flux on a lattice transverse tOmain results.
the null plane of quantization. In this paper, we set up the Attempts to solve transverse lattice QCD have been re-
method and solve for the Iight-cone wave functions of |ightnewed in recent years for both the pure gauge thé@%]
mesons using a physically realistic truncation of Fock spacend meson§7—9]. The most succesful approaches have em-
on a coarse lattice, spacing2/3 fm. We obtain good cova- ployed the original ided2] of a 1N, and color-dielectric
riance for the light-cone wave function of the lightest mesonexpansion in dynamical fields to approximate the light-cone
which we identify with the pion. Results for the pion distri- QCD Hamiltonian on a coarse transverse lattice. For pure
bution amplitude(valence quark wave function at small gauge theory, to lowest non-trivial order of the expansion,
transverse separatiprand distribution function(valence  requirements of vacuum stability, Lorentz and gauge invari-
quark probability at any transverse separatiare consistent ance alone were found to constrain the coarse lattice Hamil-
with the most recent experimental results in the valence retonian sufficiently accurately for first-principles predictions
gion of light-cone momenta. We find the distribution ampli- of the glueball state§5]. Extension of this work to light
tude to be mesons introduced quarks and impose@amm-Dancoff

restriction on the number of link fields in Fock spd@eg. In
32 previous calculationf8,9], not more than one link field was
¢x(X)=6x(1-x){11+0.142)C3 (1~ 2x) allowed in a meson. This effectively restricts the transverse
+0.041)C¥A1-2x)}, (1)  Size to<2/3 fm, which is unrealistic for light mesons. In this
case, the correct Hamiltonian could not be accurately identi-
fied using Lorentz and gauge invariance alone. Some phe-
while the distribution function is nomenology was also needed.
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In this paper, we again use the lowest non-trivial order of - 1
the color-dielectric expansion of the Hamiltonian, but relax ng J' dx Z+ B rZIZ - ﬁTT{F“ﬁ(X)Fa/;(X)}
the Tamm-Dancoff cutoff on the space of states. This allows @pm oL
light mesons to expand to their physical transverse size. It +TH{D M, (x) (DM (X)) T} — w2Te{M M}
also means that one begins to take account of the full pure- . o
glue dynamics in the meson sector. While the results are now +iVy*(d,FiA )V —u YW
realistic, we find that it is still necessary to use some phe- - .
nomenological fitting of masses and decay constants, in ad-  +ika[V(X)y' M (X)W (x+ar)
dition to optimizing Lorentz covariance, to obtain unambigu- — - - -
ous couplings in the coarse-lattice Hamiltonian. We believe —Y )y My (x=an¥(x-ar)]

this is duc_a to the gbsgnce, in the currently employed Fraps— +Ks[@(x)Mr(x)\If(x+ ar)
verse lattice Hamiltonian, of operators needed to optimize
chiral symmetry. We show that such operators would occur +$(X)M;r(x— ar)¥(x—ar)]—V,, 3

at higher order of the color-dielectric expansion. In the next

section, we review and extend the previous work. Section llyhere F@5(x) is the continuum field strength in the¥,x%)
describes the procedure we employ for fixing the variousp|anes at each,

couplings that appear in the Hamiltonian. Finally, our results

for pion observables are discussed in Sec. IV. Chiral symme- — _ . . -

try issues are discussed in the Appendix. DaM(%) =[0aF1AL()IM(X) =IM(x)Ag(x+ar), 4

and the link-field potential is
Il. TRANSVERSE LATTICE MESONS

A. Hamiltonian B ~ ~
= W;s TH{M, (X)My(x+ar)Mf(x+as)MI(x)}

We introduce continuum light-cone coordinates= (x°
+x%)/y2 and discretize the transverse coordinates

=(x*,x?) on a square lattice of spacirg Lorentz indices + N S Te{M MM, M
w,v are split into light-cone indices,Be{+,—} and trans- a’N. 7 o
verse indicesr,se{1,2}. Subsequent analysis is done to

leading order of the N. expansion of the gauge group A

- 22 > TH{M, ()M, (x+ar)M[(x+ar)M[(x)}
a“N, r

C

SU(N.). Quark fields¥ (x*,x~,x) in the fundamental rep-
resentation and gauge potentidls(x*,x~,x) in the adjoint
representation oSU(N.) are associated to the sites of the W
transverse lattice. Link fieldsM,(x",x~,x), which we
choose to be compleM X N, matrices, are associated with

the directed link fromx to x+ar. They carry flux from site ) = -
to site. This use of disordered link \):ariab)lles implies that g/Ve have dEf',nECMf,:MT*r and hqldeG‘/N—C finite as
coarse transverse lattice is being considered. Ne—2. To this action We_COUId in principle add allowed
For finite spacinga, the Lagrangian can contain any op- operators at order i#°, (¥W¥)?, ¥M?¥, and so on. It
erators that are local, invariant under transverse lattice gaug#&ould therefore be understood as the truncation of an expan-
symmetries and under Poincasgmmetries manifestly pre- Sion in powers of the fields. Strictly speaking, this expansion
served by the lattice cutoff, and renormalizable by dimen-should be performed for the light-cone gauge-fixed Hamil-
sional counting with respect to the continuum coordinategonian in terms of dynamical fields only.
x“. The objective is to obtain an approximation to the light-  In the chiral representationf=(u% ,o*% ,o* ,u*)/2¥*
cone Hamiltonian operatd?~ that may be diagonalized in a decomposes into complex fermion fieldgu) with a helicity
Fock state basis of the above fields. This may be achieved bgubscripth= = denoting the sign of the eigenvalue gf. In
first fixing to the light-cone gaugd_=0, eliminating non- light-cone gaugé\_=0, A, andv .. are non-dynamica(in-
dynamical fields, then expanding the resulting Hamiltoniandependent of light-cone time™) and are eliminated at the
in powers of the remaining dynamical fields. Truncation ofclassical level using the equations of motion
such a “color-dielectric” expansion is a valid approximation

T T
. > TH{MIM M M.} (5)
a Nc o=*20'=+1

provided wave functions of interestypically those of the ) G2 L1
lightest eigenstatésare dominated by few-body Fock states. (9-) A+:7 7= NT” ' (6)
This is achieved by working in a region of coupling space
with sufficiently heavy dynamical fields. This in turn will be
found to constrain the transverse lattice spacango be P9 ve= Ladd = @
. L. —Yh —h»
coarse when symmetries and phenomenology are optimized. J2
The Lagrangian density we consider contains terms up to
ordersM* and WMV for the largeN, theory where we have defined
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Fh(x)=—uh(x)+§2 [M,(X)up(x+ar)+M/(x P+=J dx~ Zh 2T a_My(x)a_My(x) T} +iufa_up,
fr X,S,
. (11
- - hik, -
—ar)up(x—ar)]+ T{Ml(x)u,h(eral)
7+: — — T
—hiMz(x)u_h(x+a§)—MI(x—ai)u_h(x—ai) M fdx xghx [2Tr{ﬁMS(X)0MS(X) i
hiM(x—a2)u_,(x—a2 i
+hiMy(x—a2)u_p(x—a2)}, (8) +|§uﬁ&_uh], 12

I =i, [M,(x) _M(x)+ M (x—aF) _M,(x . ) Ca, .
M ——f dx xgh 2| x+ 58 )Tr{a_Ms(x)a_Ms(x) }
—an]+ 2, up()up(x). 9) +ixXTUEa_up,. (13)

The lightcone Hamiltonian, expressed in terms of the reNote that these are all kinematic operators, quadratic in
maining dynamical fieldsi. (x) and M,(x), may be ob- fields.P* andM ~ " generate translations and boosts respec-

tained from the actior3) in the standard waj3] tively in the x~ direction and are unaffected by the trans-
verse lattice cutoff. The cutoff effects on the boost-rotation
G2 operatorM ™" are discussed further in the next section.
P*:de*ET Tr{J+ — *]
X (id-) B. Space of states
1 1 . ,ufz ;1 For the construction of a Fock space of the dynamical
N }(m )ZTF{J Pt ; FrioFn fields M, anduy,, it is convenient to Fourier transform the
¢ - fields in thex™ coordinate only. Thus, we introduce a Fock
+V,[M]. (10 space operatoa;r’”(kﬁx) which creates a “link parton”
with  light-cone momentum k™, carrying color i
Under certain reasonable assumptid8s, the Hamil- e{1,... N} at sitex to colorj at sitex+ar; aJr_r’ij creates

tonian(10) is a truncation of the most general Hamiltonian to an oppositely oriented link parton. Likewide® .(k*,x) cre-
ordersM* anduMu. It also contains some, but not all, al- gtes g “quark parton” of helicity, colori, momentunk™ at
lowed operators at ordetsM?u andu®. In particular, it con-  gjte x, while d* does the same for anti-quarks. We have
tains the combination)™9-2J", which is responsible for

confinement in the lattice theory of states singlet under re- [a, ;;(k*,x),a% (k*,y]= 8,8} 6,8, 0(k" k™), (14
sidualx ™ -independent gauge transformati@). The various
parameterss, s, k5,Ks, Mp,N1,N2,A 4,8, @s well as ones ~

that would appear at higher orders of the color-dielectric ex- [ay,ij(k™,x),a, u(k",y)]=0,
pansion, are coupling constants that will run with the cut-

off(s) in the theory. In principle, this running could be deter-  {b,, ;(k*,x),b}, J.(T<+,y)}= 8ij Shiv Oxy O(K™ -k, (16
mined by performing renormalization group transformations '

from QCD at short distance scales. However, on a coarse N ~

lattice, weak-coupling perturbation theory is not available, {bn,i (K™, %), by j(k™,y)} =0, (17)

and such an approach become unworkable. One may also

treat the problem as an effective field theory, fixing couplingswhere X and pe{+1,+2} denote the orientations of link
phenomenologically. Even in this case, one may constrainariables in the x*,x?) plane,a’{,ij:ai,ji , and similar anti-
the parameters from first principles by empirically tuning commutators exist fod. Fock space is already diagonal in
them to minimize the violation of continuum symmetries. In the light-cone momentur®* and serves as a basis for find-
the case of pure gauge theories, at lowest order of the coloirg the eigenfunction®~, the light-cone wave functions. As
dielectric expansion, this gave a quite accurate estimate afsual in light-cone quantizatiofwithout zero modes the

the running couplings, without the need to resort to “phe-Fock vacuum statf)) is an exact eigenstate &f .
nomenology”[5]. For meson calculations with our choice of ~ Further cutoffs, apart from the transverse lattice, must be
Hamiltonian (10), additional phenomenological constraints applied to Fock space to make it finite dimensional. We will
must be used to obtain unambiguous values for the couplingse discrete light cone quantizatiobLCQ) [10,1]] to dis-
constants, although symmetry requirements do strongly coreretize light-cone momentum, which amounts to compactify-

(15

strain them. ing x~ on circle of circumferenc€=2=K/P*, whereK is
Of the other generators of the Poincalgebra,P”,M*?, a positive integer, with periodi¢anti-periodi¢ boundary
the following can be derived canonically xt =0: conditions forM (u). Eventually, we will extrapolate observ-
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FIG. 1. Planar diagram representation of the Fock space structure of a meson boundstate. Solid lines represent quarks/anti-quarks, chain
lines link fields.

ables toK =c0. The use of anti-periodic boundary conditions maximum number of partons in Fock space, studying the
is desirable because it tends to improve convergendé as theory as this cutoff is raised. Since the lafgelimit auto-
—o0, However, one cannot consistently have anti-periodiomatically restricts to a quark—anti-quark pair in the meson
boundary conditions for both bosons and fermions in asector, this effectively means a cut off on the number of link
theory with Yukawa-type interactions. partons. A general meson state of light-cone momerfim

To reduce the size of Fock space still further, it will be which is translationally invariant in the transverse direction,
convenient to impose a separate Tamm-Dancoff cutoff on théakes the form

2a\m
JN,

lp(PF))= 2 fp dk; dks S(P™— ki —ky )t (X1, %2)bli(K ,x)d], (k3 ,x)|0)}

p+ dki dk; dk3
J —————8(P" —k{ —k3 =k ) {#hn(ryns (X1, X2,X3)bl(ky )&l (ks ,x)dy,

0 [=hs

X (K3 ,x+ar)[0)+ iy (X1, X2, Xa)bl(KT x+ar)al  (ky ,x)d, (k3 ,x)[0)}

+ZaJEE s p+ dk; dk; dkg dk;

NG S hihs Jo (PH)?

X{Pnsynr (X1,X2,X3,%4)bi(kT X)al (ks ,x)al(ks ,x+ar)dk (k; ,x+ar +as)|0)

S(P"—ky —k; —k3 —k3)

+ - gnr (X1, X2, X3, Xa)bh(ky x)al (k3 x)al (k3 ,x+ar—as)dy, (k; ,x+ar—as)|0)
+ (- reynr (X1, X2, X3, Xa) bl(KT x+an)a’ (k3 ,x)al(ks ,x)df, (ki ,x+as)|0)

+ i r—ghr(X1,X2, X3, Xa) DK x+ar)a’ (k3 ,x)a’ (ki ,x—as)d}, (ki ,x—as)|0y}+ -, (18)

where states with up to two links have been explicitly dis-Thus, including quark helicitiel,h’, a general Fock state
played. In Eg.(18), T acts on gauge indices arnd; may be labeled

=k /P*, etc., are light-cone momentum fractions. Only
gauge singlet combinations under residual gauge transforma-
tions inA_=0 gauge can contribute to states of finite energy
[2]. Because pair production of quarks and mixing with glue-
balls is suppressed at larde,, the stateg18) provide a The expansior(18) may be represented by a plar{targe-
description of the valence quark content of flavor non-singlefN.) diagram notation shown in Fig. 1. This will be helpful
mesons. Thus, one should implicitly understand a distinctvhen enumerating the matrix elements of the Hamiltonian.
flavor label on the quark and anti-quark, which is redundant. The transverse momentum operator is not directly defined

|(X1,h),(X2,)\), e ,(anl,p),(Xn,h’)>- (19)

The sequence of orientationsp, ... of link variables and because of the lattice regulator, but one may introduce trans-
the P* momentum fractiong,,X,, ... are sufficient to en- verse momentun® by application of the boost-rotation op-
code the internal transverse and longitudinal structure reeratorM*". Let |(Xy,X3), - ..,(X,,X,)) denote am-parton

spectively of Fock states contributing to the bound stateFock statex, is the transverse position ang the P™ mo-
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mentum fraction of thepth parton(conventionally we take Because of violations of covariance, tfig=0 component of
transverse position to be the midpoint of a link, for link the 17~ (p,) will also split from its 7,=+1 components
fields). Using (13) we find (p-) which are always degenerate on the transverse lattice at
P=0. In view of the low-energy nature of the truncation of
the color-dielectric expansion, we do not analyze heavier
mesons, although their eigenfunctions are obtained as a by
|(X1,X1), « - - (Xn.Xy)). (200 Product of our calculations.

exd —iM TP /P F]|(X1,X1),s « -+« (Xn,Xn))

n
=exr{ iP- pzl XpXp

. . . C. Renormalization
Therefore, the net effect is to add phase factors into matrix

elements ofP~ between Fock states B=0. In a Poincare We have constructed a gauge theory with transverse lat-
covariant or a free theory, the transformati@®) applied to ~ tice and Tamm-Dancoff cutoffs that we do not intend to ex-
eigenstates oP ~ (18) would be sufficient to generate eigen- trapolate and a DLCQ cutoff that we do. The first step in the
states ofP~ at non-zeroP. However, the lattice regulator renormalization process is to ensure finiteness of physical
spoils Poincar@ovariance and in general one must rediago-0bservables in the limiK— . It turns out that divergences
nalize P~ after boosting Fock states by E@0). Thus, the exist but they require only infinite and finite self-energy
eigenfunctionaﬂ in Eq (18) for P~ will become functions counterterms that renormalize eXIStlng parton mass terms in

of P also. the light-cone Hamiltonian. The remaining cutoffs that are
The state is normalized covariantly not extrapolated obviously violate Lorentz covariance. This
violation can however be minimized by appropriate finite

(P(P] P (P, ,Py)) renormalization of all the couplings appearingAn (10). In

. st 4 this section we describe our procedure for performing these
=2P (2m)°6(P; —P3)8(P1=P2),  (21) finite and infinite renormalizations.
It is convenient to use one of the parameters of the Hamil-

if tonian to set the dimensionful scale of the theory and define
L dimensionless versions of the others. Conventionally we will
1=f dx> | (X,1—X)|? useG to set the scale, which has the dimensions of mass. It
0  hn will later be related to the QCD mass scale by calculation of
1 the heavy source potentig]. The following dimensionless
+f dx,dx, >, |1,//,1(A)h,(xl,x2,1—x1—x2)|2 parameters are then introduced:
0 h,A,h’
+fdx1dx2dx3 > G g 7 faNg T SN g
0 h,\,p,h’
X[ nopynr (X1, X2 X3, 1= X = Xo = Xg) [P+ -+ (22 )\
(p)h' (X1,X2,X3 17 X2 X3 :IZHH (=124 é%b. (24)

for any P;,P,. This also ensures that the light-cone momen-

tum sum rule is satisfied, even at finite DLCQ cutiffsince Since we will need to study the meson eigenfunctions of

gaLrésclgation invariance in the&™ direction is preserved by P~ as a function oP* andP, let us write, for these eigen-
Since there is 90° rotational symmetry abgtifor a state

with P=0, it is possible to distinguish the angular momen- 2PTP = M2+R(P), (25)

tum projections7; mod 4. There is also exact symmetry

underG parity, charge conjugatiod, and transverse reflec- such thatR(0)=0. M? is the invariant masésquared We

tions in thex! andx? directions,P; ,P,. Although the parity begin with P=0, in which case the non-zero Fock space

P="P,P,P; is dynamical and in general broken, one canmatrix elements of the dimensionless invariant mass operator

associate a parity to bound states from their behavior under —

the free particle limit ofP;. Indeed, there is @, kinematic ((y1,h1),(¥2,0), ... (Yn-1,7).(¥n,h2)|2PTP7/G?|

symmetr / /
y y X(lehl)!(x21h)7 LR =(anlrp)r(xn 1h2)> (26)
are enumerated in Figs(@2—(m) and Table I. A number of

comments are necessary to explain these amplitudes. We
have defined

functions,

Prthnn (1= X,X) = P (X, 1—X), (23

which corresponds to the frelg; operation in the zero-link
sector that is exact at any cut-dff. In this way, one has
enough information to identify thes™ structure of light Rof\,p]= €, ,/SrA]Sari p]. 27
states unambiguously.

In general, we will find that the lightest mesons are'0  In the planar diagram vertices of Fig. 2, light-cone momen-
and 1", with the former lying lower in mass. It is thus tum fraction &,y,z), quark helicity f,h"), and link-field
natural to compare them with the physical pion and rhoorientation {,p,o,7) labels are given where necessary.
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(a) (b) (©)
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y?\' \\, y}\' /, " h’ y}" ¢ / ha
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FIG. 2. Planar diagram representation of the elementary amplitudes contributing @6Ed/ertical barred lines arg* -instantaneous
interactions.

Lines with a bar denote theg*-instantaneous propagators A basic one-loop logarithmic divergence occurs in the
a~Yandg~? for v quarks andA, gauge fields respectively. quark self-energy as represented in the light-cone perturba-
“P” denotes that a principal value prescription is used whention theory diagram of Fig. (@) as the quark loop momentum
integrating light-cone continuum momentum fraction acrossvanishes. The cubic vertices are of the same type, with cou-
singularities. For simplicity, we have not shown vertices in-pling eitherm¢k, or m;ks, once the orientations of the inter-
volving only anti-quarks, which are similar to those involv- mediate link fields have been summed over. The divergences
ing only quarks. To these diagrams we add planar spectat@re cancelled, in these diagrams and any others obtained by
lines which go to make up the full gauge singlet Fock stateadding spectators, by an infinite quark “kinetic” mass coun-
At finite transverse lattice spacirag but before the light- terterm in the HamiltoniafiFig. 3(b)]
cone DLCQ cutoffK is imposed, the theory is behaving like s 5
a continuum (% 1)-dimensional gauge theory coupled to a (katks) [xdy
set of fundamental fermion and adjoint scalar fieldg]. T oy’
Although super-renormalizable in the {11)-dimensional
sense, the light-cone quantization in light-cone gauge introThis is not sufficient for the divergences in the two-loop
duces its own characterstic divergences due to the presendégrams of Figs. @)—(c) to cancel. One may add a finite
of non-local instantaneous interations. Those originatinginetic mass counterterdm?, adjusted at orderké ,k?), to
from the instantaneous gluon propagatai*lare dealt with  produce finite results when Fig(d) is included. Higher-loop
by the principal value prescription in the manner establishe@eneralizations of the same diagrams are also rendered finite
by 't Hooft [13]. Those originating from the instantaneous by adjustingém? at higher orders irk, and ks. Dressing
quark propagator Z/. have been studied by Burkardt4], loop diagrams with instantaneous gluon lin@sg. Fig. 5
whose analysis we briefly recall. renders them individually finite. As in Ref14], our own

(28)
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TABLE |. Matrix elements of the dimensionless invariant mass operaRﬁF’Z/g2 in Fock space.
Momentum conserving delta functions are omitted for clarity.

1 d
_( L6tk _V) @
X T o
1 1
ﬁ(x+y X){mfk +mik, Sgr[)\](éwz Ihtswl)} (b)
-1 1
ZP((x—wz) ©
—(y-2)
— 5 (d)
du(y+2)2yz M
W{k 2Shn + K3 (8),— -5 ,— ihRof X\, p]) (e
+KaKsS_nn [ SGAN](ih Sy 1= )xj2) + ST p](ih )= J)2) 1}
———————{KZ8n + KB (8-, ,— 8, ,+ihRof\,p]) ()
47T(X+y\/—
+KaKsO—nn (SGMN](1h 8y 1= 8|y 12) = S p1(ih 81— 6,12)) }
2
Mo ©
X
-1 ytz
_pl 2 (h)
4”P(\/5/(Z—y)2>
—1 ( (y+2)(2x+y—2) ) 0
VXZY(x+y—2)(z—Yy)?

1 .
m{2|160')\5/)75*;)0'_’_|2(6a')\5p75p0'+5*0’/)6*}\75*0'}\) (J)
+|4(5U)\5‘07|R0ﬂ:0',p]|+5_ap5_)\T|R01[0',)\]|)_b5)\p5‘,T|R0ﬂ:0',p:||}

L k

m{2|15—0)\§)\76)\p+|25076—)\p6\)\||0'\ (k)

+14(6-2\¢ pT|ROﬂ:)\ P]| +6_, 5)\T| ROl[O-r)\]D_ b&,)\p507| ROl[O-r)\“}

-1 (y-29(2x+ty+2z) s
87 xzy(x+y+2z)(z+y)? "
-1 (x=2)(2y—x—2)

a_ 57(7’
87 xzy(x—y+2z)(z+x)2 7

V)

(m)

checks of these statements for the transverse lattice theory
e S. have been done only in perturbation theory, but we will as-
4 ’ sume they are true to all orders. It was also shown in Ref.
! ' [14], by means of simple cases, that choosing the correct
) countertermém? was equivalent to restoring parity invari-
ance, which is not manifest in light-cone coordinates.
FIG. 3. (a) one-loop logarithmically divergent quark self-energy, ~ By adjusting the finite counterterdm?, one ensures that
(b) logarithmically divergent mass insertion counterterm repre-the K—o limit can be taken when DLCQ is used. However,
sented by open circle. it was pointed out by Burkardt that, while this ensures a

50
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-————-

FIG. 4. (a),(c) two-loop logarithmically divergent quark self-energigls) one-loop diagram with infinite mass insertidid) one-loop
diagram with finite mass insertiofm? represented by open box.

finite answer for th&k — oo limit of the self-energy, the use of main finite. Therefore, we test for absence of this suppres-
a momentum-independent mass counterterm in DLCQ wilkion, in particular, by fittingf . which is a measure of the
not yield the same as the covariant answer for the same cop=0 Fock component.
plings. In effect DLCQ produces a finite violation of covari-  In summary, taking th& —c limit with a Tamm-Dancoff
ance. This is one of a number of sources covariance violatiogutoff on link fields in place, one must introduce infinite and
in our calculation. Rather than analyzing how one mightspectator-dependent finite self-energy counterterms. Even
minimize the individual violations—it is not obvious which though the theory is now finite, Poincacevariance is still
are the most significant—we will perform overall covariance Violated by the finite transverse lattice spacyghe Tamm-
tests on the bound state wave functions that are the end proffncoff cutoff, and by the use of momentum-independent
uct. finite-mass countertermgmg. We propose to minimize

A Tamm-Dancoff cutoff on the maximum number of link these violations by finitely renormalizing all the couplings
fields in a state also violates covariance. In principle, this cafvailable inP-.

. . . . . _ 2
be compensated by introducing spectator-dependent counter- For perf_ectly relat|V|§t|c.d|sperS|orB(P) =[P .for every
terms[15]. In practice that will lead to too many couplings eigenfunction in Eq(25); this will receive corrections on the

. . . . rse transverse lattice. T ntify th variance violation
for viable calculation at a physically reasonable choice of-%2 se transverse lattice. To quantify the covariance violatio

Tamm-Dancoff cutoff. However, it is necessary for finiteness " © will expand the dispersion relation for each bound state

of the quark self-energy to use spectator-dependent finite R(P)=c?|P|2+O(P%). (29)
countertermsém?. Therefore, we must introduce separate

countertermssm;, for the Fock sector containing links ~ The transverse speed of lightwill in general differ from
(note that the sector with maximum has no finite or infinite one(the speed in th&* direction. A simple criterion, which
quark self-energy counterterindhese are adjusted to pro- Workgd well in previous studies, is tolmlnl_rmze this differ-
duce finite quark self-energy in addition to optimization of €Nce in the low lying eigenstates Bf', ignoring the anhar-
covariance of hadron wave functions. Since we work at thdnonic terms inRk. ,

level of hadrons, the quark self-energy is tested indirectly. A 1n€ same procedure may be carried out for glueball
tachyonic quark self-energy, whether divergent or not, woul oun_d states o constrain the pure-glue interactions in the
be signalled by tachyonic behavior in the lightest hadro amlltonlan_, '|ndependentI.y of t'he meson sectat Iarge.
mass. Therefore, we test for absence of such a divergence | ). In addition, the rotational invariance of the potential
the ligthest mass a—. A positive divergent quark self- between heavy sources may be optimized. These latter tests

iy have been described in detail in previous wisk We will
energy would artificially suppress the lowest Fock sectors the string tensiofo { th tential t t the OCD
that are subject to loop corrections and counterterms, in thgSe & string tensiofo from the potential to set the Q

: scale from experiment.
hadron wave function aKk—o (the hadron mass may re- . . .
— ( y The transverse lattice Lagrangi@B) contains terms that

also violate chiral symmetry explicitly, via the couplings
.- - andk,. Since we work at the level of hadrons, a measure of
, N chiral current non-conservation is provided by the pion mass
’ N in a covariant stable theory, as a result of the PQA@rtial
’ \ conservation of axial vector currgrtheorem. This measure
4 \ loses accuracy if the theory also has significant explicit co-
! 1 variance violation, as in our case. The explicit violation of
! chiral symmetry could be minimized by tuning further
chiral-symmetry violating counterterms, which we discuss in
FIG. 5. Finite diagram with instantaneous interaction dressing.the Appendix. However, these lie at higher order of the color-
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TABLE Il. Optimum coupling constants at=2/3 fm for a three-link truncation. Note th@m3 was
swept more coarsely than the other couplings.

m b Iy I l4 ke Ky my om3 om?2 &m3

0.276 0.768 —-0.169 -—0.186 0.024 0.420 0.652 0.236 1 -0.127 -0.035

dielectric expansion. In the present calculation, we finitelywell-defined one-parameter trajectory is picked out. We
renormalize the Hamiltonian to fit the experimental pionchoose the best point on that trajectory, which in effect fixes
mass, since this is naively a measure of chiral current cona, corresponding to a value of the link field mass,
servation. Since the explicit violation of chiral symmetry is =0.276. At this point, we findG~2.75/c and aG~4,
actually larger than that suggested by, we find that we  \here o is the string tension of the asymptotically linear
must also fit the experimental rho mass in order to maintaithotential found between two heavy sources. If one takes

a rﬁ]‘“s“‘? p"(;g?t.Sp'{“'”g-t - .  bound state /7 =440 MeV, thenG~1200 MeV anda~2/3 fm. The
_''hus, n addition to optimizing covariance via bound stat€, a5 of the other couplings determined by this point are
dispersion, we are proposing to fit four experimental num

: .~ "shown in Table II.
bersM.,, M,, f, and\o in order to accurately determine Having fixed a subset of the couplings, we fix the remain-
the couplings in our effective Hamiltonidd™. Since QCD

: i ing ones sensitive only to the meson sector. We investigated
with degenerate flavors contains only two fundamental pay,e Tamm-Dancoff cutoff up to four links, but show results

rameters, the transverse lattice Hamiltonian is not detergyr 4 three-link cutoff, since a better sampling of couplings is
mined from first principles. However, as described abovey hievable in this case. The transverse speed of ligist
direct tests of parity and chiral symmetry might allow one tooptimized in the dispersion of the 0 and each component
reduce the number of phenomenological parameters furthegs ha 1~ - together with the difference between the calcu-

We leave this for future work. lated mass\ . of the 0~ * state and the physical pion value.
As described in the previous section, we find we must in-

I1l. DETERMINATION OF HAMILTONIAN PARAMETERS clude fits to the physical values Mp andf . in the optimi-

zation procedure in order to accurately pin down the remain-

In order to reduce the number of coupling variables in them undetermined couplings of the Hamiltonian, which are
minimization process, this is done in two stages. First, we 9 piing '

. . : _ ; shown in Table II.
examine glueball elgenfunctlpnS ‘H  that contain only Table Il shows information on the states we identify with
link fields, and the rotational invariance of the ground state[h

potential between two heavy sources of color. Here we fol- +i p'?g.ei?% ézoo?ttaleie,cgﬁlflg]sj' %?;aqgtizcgﬁ;:;i spin
low, with one exception, exactly the same procedure used in . Proj : v ) '
plitting the Lorentz multiplet and having asymmetrical dis-

Ref.[5] and so omit all details. The exception is that, instead>P' ' . L ) ;
of using anti-periodic boundary conditions for link fields in persion. Since it is not yet behavingly covariantly overall, we

X~, we re-did the calculations with periodic boundary con-do no_t attempt a de.tailed phenomenological analysis of the
ditions in order to be consistent with the conditions used inresgltlng wave f_unct|ons. on the oth_er har_1d, we are_a}rble to
the meson sector later. Note that these “pure-glue” calcula—aCh'eve. a .relat|ve|y sy_mmetncal dispersion for the "o
tions extrapolate botK and the Tamm-Dancoff cutoff, con- s_tate, with intercepi ;=171 Mev and c_iecay constaf,

straining very precisely the couplings i~ relevant to that —132|MeV, clﬁgebto tge _ex%elrlmgﬂtal pl;)f_n .VaILIJé?“e ex

sector (4,l,, 15,b,my) when covariance is optimized. It is a?tc\éigl?r?ggou e obtainable with a sufficiently fine sweep
23: necessary at this stage to use any phenomenological i We checked that no Fock sectors are being artificially

We searched for a trajectory in coupling space that c)pti_suppressed and that the truncation to no more than three

. L. : . links is not causing severe “finite-volume” effects from the
mized the Poincareovariance of glueball wave functions )

: -~ maximum separation this imposes on anti-quark and quark.
and the potential between heavy sources of color. A falrl)}'ITjabIe IV shows that the peak in the transverse spatial distri-

TABLE Ill. Meson dispersion at the optimum couplings. is bution of the 0 * wave function is well-accomodated by the
the lightest 0" state,p. o the lightest T states with projections three-!lnk cutoff(results ar? similar for thel,)' Hoyvever,
Jo==+1,0. the tail of the wave function at four and higher links may
contain a significant total probability, which will affect ob-

State MasgMeV) c
TABLE V. Probability for finding a certain number of links in
m 171 1.02 the 0" state. The extrapolation errors in parentheses are from a
o 828 0.99 1/K extrapolation.
oL 457 1.04 No Links 0 1 2 3
p_ 457 0.76 Probability = 0.09714)  0.66110) 0.1508) 0.0872)
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=2.0(3). Theerrors are from the extrapolation only. Bearing
1 . in mind that the extrapolation is based on fits to data that do
not cover the end point regions, the true errorsaoand g8
are likely to be much larger. From the first moméry )
=féwi(x)dx, we find that 32% of meson light-cone mo-
mentum is carried by the quarks, with the same carried by
the anti-quarks. In the range 6:k< 0.9, over which there is
some measure of control, the result #y. is reminiscent of
the constantV_ =1 distribution resulting from the chiral
limit of chiral quark modeld16]. However, because of the
rapid rise at smalk, which is expected on general grounds
from Regge-type behavidd 7], the flat part of the distribu-
tion is atV~0.7. Moreover, in the chiral quark models, all
the light-cone momentum is carried by quarks, while here
FIG. 6. Distribution function for DLCQ cutoffs 36% is carried by the link fields representing gluonic degrees
K=10,12,15,20, darker data points meaning larigelk —» ex-  of freedom.
trapolated curve lies in the shaded region. In order to compare with experimental data, one must
address the transverse resolution scale. A well-defined trans-
servables sensitive to very small transverse momenta. Thergerse resolution scale is associated Wifx) above, namely,
fore, in this paper we restrict our attention to observableshe transverse lattice spaciry If we were to repeat the
integrated over all available transverse momenta. Indeedaalculation at a differend, one would expect to see an evo-
when varying the Tamm-Dancoff cutoff above three links,lution of V as a result of the changing wave functions. In
we find very little change in the observables investigatedpractice, the current transverse lattice method is only able to

\Z

T

below. explore a small window im—small enough to suppress dis-
cretization errors but large enough for the use of massive

IV. PION OBSERVABLES disordered link fields—which is too small to reliably quan-

tify such evolution. Perturbative evolution equations typi-
A. Valence quark structure function cally use a different renormalization scheme, so there is no

The valence quark distribution function is defined as ~ Simple match between scales used in each scheme. In prin-
ciple, there are wave function renormalisation constants of

1-x O(1) that relate lattice operators to continuum operators, but
o dY[¥noon (%Y1 these are also usually evaluated perturbatively. For example,
in Euclidean lattice QCO18], this has been done for mo-
1-x 1-x-y ments of the operator expectation giving risetesince suf-
—x=y)P+Y X 0 dyfo dz ficiently fine lattices can be used to employ schemes matched
to perturbation theory. Most low-energy effective theories for
X [¢nopynr (X,Y,2,1=X=y—=2) [P+ - - (300  QCD, such as QCD sum rul¢$9,20, chiral quark models
[16,21], and truncated Dyson-Schwinger equatior&2],
It is the probability for a quark to carry light-cone momen- must resort to another method when attempting to compare
tum fractionx. The result we find fol/(x) on the transverse with experimental data at higher resolution scales. The scale
lattice in the three-link truncation is shown in Fig. 6. The rawfor input to perturbative evolution equations is fixed by
(discret¢ DLCQ data forK=10, 12, 15, 20 are displayed matching one experimental datum; for example, the first mo-
together with an extrapolation #§—o. To produce this, at ment ofV. This is the procedure we will employ here for the

V)= 2 |t (X,1=X) 2+ 2
h,h’ N

h,h’

Apohh'

eachK data is fit to the momentum distribution form color-dielectric tranverse lattice also, i.e. bare lattice opera-
tors are used, but with a resolution scale fixed once and for
xV(x)=(1—x)Bx"‘(a+b\/§+ CX). (31 all by matching one experimental datum.

If we demand tha{xV,)~0.21 at a scale of 2 GeV, as

We note that the simple form®*(1—x)#, used to parameter- suggested by the analysis of E615 and NA10 pion-nucleon
ize early experimental data, is not sufficient to fit our result.Drell-Yan data by Suttoret al. [23] for the valence quark
It is necessary to drop the=1/2K andx=1-1/2K points  distribution, then the scale associated to our result, if it were
from this analysis since they do not join smoothly to the restused as input for leading order non-singlet evolutionuis
of the distribution. This is because end point data are prone-500 MeV; this is reasonable given that =300 MeV. In
to artifacts resulting from the vanishing of some of the inter-Fig. 7 we show our result foxV_(x) evolved to 6.6 GeV
actions in Table I. The smooth curves at edChare then and compared with the raw data for the valence distribution
extrapolated pointwise, by @ood fit to a quadratic in I, deduced by E61524] by combining data over scales 4-8.5
for a large set of values in the interval 8:x<<0.9. The gray GeV. For completeness, we also show fits Xo'=x“(1
region represents the uncertainty from the extrapolation only—x)# produced by earlier experiments NA25] and NA3

The extrapolated data fits the fornG31) with g [26]. In the valence regior>0.5, our result agrees with the
=0.332), «=0.3(1), a=0.333), b=-1.1(2), c most recent experiment, which claims a more accurate rep-
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b

FIG. 7. Valence distribution functionfiimes x) compared to FIG. 8. Distribution amplitude for DLCQ cutoffs
pion-nucleon Drell-Yan data. Solid line: transverse lattice resultk=10,12,15,20, darker data points meaning largeiK —o ex-
evolved at 6.6 GeV. Data points: E615 experimép4]. Short-  trapolated curve lies in the shaded region.
dashed line: NA10 experiment fit t#(1—x)# form [25]. Long-
dashed line: NA3 experiment fit to*(1—x)# form [26]. from the y* component of Eq(32). Figure 8 shows our

results for the distribution amplitude at variosand ex-
resentation at large. At smallerx there is not much agree- trapolated toK =< in a three-link truncation. The ravdis-
ment, either between experiments or with our result. This izretg DLCQ data has been fit at eahto the first few terms
hardly surprising given the sensitivity of this region to as-of the conformal expansiof80,31]
sumptions about the sea quarks or their measurement. In fact, a 2
our calculation contains no sea quarks since it is at large ¢ (X)=6X(1=x){1+a,C5(1~2x) +a,Cy(1—2x)}.
The recently discovered enhancement of initial-state interac- (39
tions[27] is also expected to be most significant at srwall
throwing into doubt the simple connection between light-

cone probabilities and the Drell-Yan cross secfi@8]. It is AT
obviously desirable to have data &, from sources other of the conformal expansion is justified. The same values are
obtained if the fit curves at eathare pointwise extrapolated

than the Drell-Yan process. This is also important from the . . T "
theoretical perspective, given that the current D Sorl_and then refit to Eq(35). Finally, the result is msensnwg to
persp J ¥ hether thex=1/2K and x=1-1/2K end points are in-

fSOc;ht\;]v(langieornad[)i;){:i);cj:trilorﬁ)r;(::g%gz%?mpletely different Shap%\:uded in the fit or not, so we have shown them in Fig. 8

also.
The distribution amplitude is indirectly accessible through
the pion transition form factor= y(QZ) measured at
The distribution amplitudéin A_=0 gaugg for the pion  CLEO [32]. A perturbative QCD analysis relates this to the
is defined by inverse moment, up to radiative correctiohs

3Q?

72=0 4

An extrapolation of the coefficients with-+B/K+C/K?
yieldsa,=0.152), a,=0.041), confirming that truncation

B. Distribution amplitude

(0] (2) Y y5W (0)] ¢ (PH))

(a0
Foom= | —x tA=3(1+a;ta)+A. (39

:fvpﬂfleiX(Z‘P)(ﬁw(x)dx, (32 An analysis of the data in Reff33] extracteda,+a,=0.05
0 +0.07 at scale 2.4 GeV, taking into account next-to-leading
order correction®(ag) in A. If we assume, following the
structure function analysis, a transverse resolution scale 0.5
1 GeV for the transverse lattice result, when evolved to 2.4
f dR(x)=1. (33 GeV by the 1-loop evolution equations we find,
0 =0.011), a,=0.01(1) including only DLCQ errors. Al-
i ) . though our result seems consistent with experiment, a couple
If the quark+f|eld correlator is to bfe gvalugted at equal I|ght-of comments are necessary. The inverse moment is highly
cone time,z" =0, thenz=0 andz" is arbitrary. This then  gensitive to the end point regions @f., which are not well
measures the amplitude for zero transverse separation @hyered by the extrapolation of the DLCQ transverse lattice
quarks in the meson light-cone wave function. For the transgeg i, Also, the leading radiative correctionsdnare large

with the normalization condition

verse lattice one finds ~20%, so one might ask about higher order corrections. The
¢ - reader is referred to Refl6,34] for a more detailed review
= T~ of the various theoretical and experimental results relating to
¢+*(X11 X) 2 Nc(b'ﬂ(x) (34)

T

114507-11



S. DALLEY AND B. van de SANDE PHYSICAL REVIEW D67, 114507 (2003

Diffractive dissociation on a nucleus+A— A+ jets[35]
has been used to measure a cross section related. 1A
number a theoretical analyses of that relation have recently
been performedi36], which differ in their conclusions about 0.3
the precise relationship. Our result, when evolved to the
higher transverse momentum scale of the experiments, i<
consistent with any one of the analyses, being close to the
asymptotic form &(1—x). We mention that our DLCQ
transverse lattice result fog,, is close to one previously 0.1
obtained in a one-link truncation using very similar methods
[8], althougha, was not fit and the normalizatiofh, was
completely wrong in that case. The same one-link truncation 0.2 0. 0.6 0.8 1
was investigated in Ref9] by using basis functions instead
of DLCQ and a similarbut not identical criteria for fixing
the Hamiltonian couplings. That gave a distribution ampli- FIG. 9. Extrapolated quark helicity correlation function: black
tude a little closer to the asymptotic form, although a valuefor anti-parallel helicitiesC3™; gray for parallel helicitie<Ch™.
for a, was not extracted and no error estimate was given.
Thus, we can say with some confidence that our result iight-cone momentum fractior and helicity either parallel
neither the “double-hump” first found by Chernyak and or anti-parallel to that of the anti-quark. Therefore, the sum is
Zhitnitsky [19] using (local) sum rules nor the “narrow normalized to onéwhen integrated over). These functions
hump” one would deduce from most of the Euclidean latticeare plotted in Fig. 9. We estimate that
measurements of the lowest momentdaf [37] (see how-
ever the very recent resyl8g]).

1
f CP¥%x~0.45. (39
C. Quark helicity correlation o

Although the pion spin is 0, it nevertheless contains arperefore, one is almost equally likely to find quark helici-
complicated spin structure. One measure of this is the quarfes zligned as anti-aligned. This is not necessarily inconsis-

helicity correlations tent with the quark model picture of anti-parallel quark spins
in a pion, since that model treats the glue as a non-relativistic
Cpara(x)zz [ fnn(X,1—Xx)|? potential. In a relativistic trea_tment, the gluonic degrees of
h freedom will carry some portion of the hadron momentum
1-x and helicity.
2
+; ; Jo dylnoyn(X,y,1=x—y)|
V. CONCLUSIONS
1-x 1-x—y
+E 2 J dy f We have extended coarse transverse lattice calculations
Moo B JO 0 for mesons to physically realistic cutoffs on the anti-quark—
X dZ lﬂh(xp)h(x,y,l,l—x—y—Z)|2+'", quark separation. A general light-cone Hamiltonian in the

large N limit was expanded in powers of dynamical fields
(37) and we studied a truncation of that color-dielectric expan-
sion. This included all possible cubic terms and most of the
Canti x) = (X, 1= %)|2 quartic terms. By optimizing Lorentz covariance of glgeball,
(x) Eh: [/ ) heavy-source and meson bound states, the remaining free-
L dom in the couplings in the Hamiltonian was reduced. By
Iy ; . . e
+ avle X,y 1—x—y)|2 studying othgr symmetries, such as parity and_ chirality, it
; ; fo YV hogn(xy v may be possible to constrain them further. In this paper, we
performed a phenomenological calculation by fixing the re-

NS flfxdyflfxfy maining freedom in the couplings to best i, M, M,,,
» h Jo 0 and f . (two of these are parameters of the first-principles
QCD).
2
XdZ i nopn(X,Y,21=X—y=2)[*+ - - The lightest meson bound state has the quantum numbers

(39 of the pion and exhibits a reasonably covariant lightcone
wave function. Comparing the predictions of this wave func-
Because the light-cone wave function essentially representfon with various experimentally measured observables for
particles in an infinite-momentum frame, even massive parthe pion, we find consistency in the regions insensitive to sea
ticles have their spins aligned either parallel or anti-parallequarks. New observables, which in principle can be extracted
to the “fast” x® direction in such a framework. The helicity from a higher twist analysis of experiments, follow from the
correlations measure the probability for a quark to havemultiparton correlations in the light-cone wave function. As
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an example, we computed the anti-quark—quark helicitythat is conserved under the equations of motion, &gj
correlation, suggesting that correlation is almost equally as=0, and a corresponding chiral current
likely as anti-correlation in the pion. Because the tail of the
wave function in the transverse direction is still truncated in ) _
our calculation, we did not compute observables sensitive to je=2 T(x)y*ys¥(x) (Ad)
small transverse momentum. Nevertheless, it would be inter- *
esting to look at the general features of the skewed partopOr which we find
distributions for intermediate momentum transfers, since
little hard information is available for these important ob- 1
servables. It should be straightforward to extend the calcula- Do E=2u2>, NFEL(X) —Fu(X), (A5)
tions to strange mesons and heavy-light mesons. %N d-

There are still some shortcomings in the calculation. The
bound state most naturally identified with the rho is not yetwhereF,, is defined in Eq(8). One might then use a matrix
behaving covariantly. Our optimization of chiral symmetry element such as
could be considerably improved. Given the close connection
of Lorentz and chiral symmetry on the lattice, we believe (0], &) (A6)
that these problems are related. In particular, higher-order

terms in the color-dielectric expansion can fuffill a dual role, quantify explicit chiral symmetry violation, minimizing it

to improve both these symmetries. by finite renormalizations of couplings, since the vanishing
of Eg. (A6) is a necessary condition for conservation of the
ACKNOWLEDGMENTS four-dimensional axial current. There are a few difficulties

hat must be overcome before this would be practical how-
ver. The expressiofA5) has a normal-ordering ambiguity
imilar to the Hamiltonian. Moreover, it is much more com-
utationally expensive to perform symmetry tests with eigen-
unctions rather than eigenvalues. On a coarse lattice, the
chiral symmetry breaking couplings are also strongly con-
strained away from zero by Lorentz covariance; for example,
APPENDIX: CHIRAL SYMMETRY ks is needed to avoid fermion doublifd@]. It would there-
fore be desirable to have further independent chiral symme-
try breaking couplings in Hamiltonian to tune.

Natural candidates are the transverse lattice versions of

Ve 105y, (A1)  the Sheikholeslami-WohletSW) terms[39], ¥ o*'F , W
In Euclidean lattice gauge theory they can be tuned to re-

through the bare mass-term; and Wilson termxs. The ~ MoveO(a) contributions to chiral current non-conservation

The work of S.D. was supported by PPARC grants GR/t
LO3965 and PPA/G/0O/2000/00448. B.v.d.S. was supporte
by the Research Corporation. We would like to thank Genev
College undergraduates E. M. Watson and J. Bratt for hel
with developing the numerical code.

The lattice LagrangiafB) explicitly breaks chiral symme-
try

standard test for this at the hadron level is PCAC [40]. On a transverse lattice they become
(013, A ¢y =1, M5, (A2) T (x)a"[M, (X)M(x+ar)
whereA,, is the axial current. Without knowing the precise ~My(X)M,(x+as)]¥(x+ar+as), (A7)
form of A,, one can useM, to quantify the amount of
explicit chiral symmetry breaking relative to other scales, ‘I_/(X)0'+_F+_‘I’(X). (A8)

such as the pure-QCD mass gap or the spontaneous chiral

symmetry breaking scale given by the difference betweef, e gimensional counting classification of Euclidean lat-
M, and masses of other light mesons. The reA®) relies  yjce quark operators, SW terms occur along with Wilson

on exact Lorentz covariance, which is not present on thgq g at dimension five. On the coarse transverse lattice their
transverse lattice. In fact, in the calculation performed in th'ssignificance is not so obvious, since they enter at higher or-
paper, the splitting of the Lorentz multiplet is of compa-  yers of the color-dielectric expansion in powers of dynamical
raple strength to the—p_ splitting. This suggests that explicit fig|ds. Terms of the forniA7), (A8) in the Lagrangian give
chiral symmetry breaking effects are larger thefi, would  yise o0 coupled constraint equations of motion for non-
suggest, perhaps of the same order as spontaneous Chigghamical fields. If solved order by order in dynamical
symmetry breaking effects. _ o fields, they give rise to new interactions in the gauge-fixed
Explicit chiral symmetry breaking could in principle be light-cone Hamiltonian starting at orders i, u?M2. Of
tested more directly. There is a {11)-dimensional Noether particular interest are interactions generated at oudét3
‘vector” current andu*M that flip the helicityh of quarks. Interactions of this
kind carry the spontaneous chiral symmetry breaking effects
j7=> W(x)y*¥(x) (A3) in effective Iight—cor_le Ham_iltor!ian[sill]; the m¢k, andkgky
X terms performed this function in E¢R6).
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