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Perturbative study of anisotropic lattice actions for heavy quarks
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Anisotropic lattice fermion actions are investigated with one-loop perturbative calculations aiming at con-
structing a formulation for a heavy quark with controlled systematic uncertainties. For heavy-light systems at
rest an anisotropic lattice with small temporal lattice spaeinguppresses the discretization error by a power
of aimq for a heavy quark of mass,. We discuss the issue of large discretization errors, which scale as
agmg with ag the spatial lattice spacing. By performing one-loop calculations of the speed-of-light renormal-
ization for several possible lattice actions in the limitaf-0, we show that one can eliminate the large
systematic error on the anisotropic lattice.
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[. INTRODUCTION theory, which limits the accuracy of the lattice calculation.
Besides the HQET-based approach, a possible way to con-
In heavy quark physics, the lattice simulation of quantumtrol heavy quark discretization effects is to consider an an-
chromodynamic$QCD) is an indispensable tool to compute isotropic lattice, where the temporal lattice spacimgis
hadron masses and matrix elements nonperturbatively witinuch smaller than the spatial oag[5,6]. Since for a heavy
out introducing model dependence. One of the most impormeson(or a heavy baryonat rest the large energy scale of
tant hadron matrix elements iB physics is theB meson ordermg appears only in the temporal component in mo-
decay constarftz , for which a number of lattice calculations mentum space, one can expect that the systematic error in-
have been performed so far, and the systematic uncertainti€seases asamg)" and is therefore suppressed as faaais
are under control at the level of 15% accurddy. In the  small enough. The computational cost is not prohibitive if
future, further precise calculations, say better than 5%, aréne keeps the spatial lattice spacing relatively large. The
necessary to constrain the Cabibbo-Kobayashi-Maskawgroblem of the matching of many operators in the effective
(CKM) matrix elements more strictly and to search for thetheory does not appear, as the theory is relativistic.
signature of new physics. There is, however, a subtle issue discussefi7in for a
One of the dominant uncertainties in the lattice simulationcertain choice of the Wilson term in the spatial direction the
of heavy quarks is the systematic error associated with thdystematic error may arise in the combinatiaymg rather
large heavy quark mass, since the lattice cutadfdvailable  than the expecte@mg and the virtue of the anisotropic
with current computer power is not much larger than thelattice is spoiled. With an alternative choice the error of order
heavy quark massng. A conventional approach to avoid (asmg)" may be avoided but the unwanted doublers become
this problem is to restrict ourselves to the region where thdighter and disturb the simulation of physical states. The au-
systematic error is under contrang<1/a) and to extrapo- thors of [8] even denied the advantage of the anisotropic
late to theb quark mass using the heavy quark scaling lawlattice used for heavy quarks based on their observation of
predicted by heavy quark effective thedQET). This is  asmMq-like behavior through radiative corrections. In this pa-
unsatisfactory for achieving 5% accuracy, since the possiblger we discuss this issue further by considering a larger set
error scales asafmg)"[n=2 for theO(a)-improved actioh  of O(a)-improved lattice fermion actions and by performing
and thus grows very quickly toward heavier quark massesone-loop calculations in the limé— 0 where naa;mq error
Extrapolation to theb quark mass could even amplify the remains.
systematic uncertainty. The appearance of large systematic errors scaliregrag
Another method is the HQET-based approach which indis naively unexpected for the following reasons. In te
cludes lattice nonrelativistic QCIINRQCD) [2,3] and the —0 limit the only source of the discretization error is the
Fermilab method4]. In this method one considers the lattice spatial derivative in the lattice action. In momentum space,
action for the heavy quark as an effective theory valid fortherefore, discretization errors scaleap with p a typical
large heavy quark masses. The advantage of the HQET-baséspatia) momentum scale in the system, which is of order
approach is the absence of the large systematic error whichqcp for the heavy-light mesons or baryons at rest, and the
scales asdmg)". The price one has to pay, on the other combinationagmg may not appear as momentum of order
hand, is the introduction of a number of terms in the actionmg flows only in the temporal direction. This intuitive pic-
Their associated coefficients have to be determined byure should be correct even after radiative corrections, be-
matching the effective theory to the full continuum theory.cause large momentum of ordety does not flow in the
The matching is usually carried out using perturbationspatial direction in momentum space, and therefore a dis-

0556-2821/2003/611)/11450315)/$20.00 67 114503-1 ©2003 The American Physical Society



S. HASHIMOTO AND M. OKAMOTO PHYSICAL REVIEW D67, 114503 (2003

cretization error in the spatial lattice derivative cannot ac-some special cases of the D234 actih We find the latter
company the heavy quark masg,. This becomes clearer if to be useful for applications to heavy quark systems.
one considers the limit &, <mgy<1/a;, because the spatial This paper is organized as follows. In Sec. Il, we define
momentum integral runs up t@/a, and thus cannot pick up the anisotropic fermion actions we consider in this paper and
the larger scaleng, . discuss their tree-level properties. The static limit of those
Here, in order to understand the reason why the unexactions is considered in Sec. Ill. The one-loop calculation is
pectedagmq-type error may have appeared|[ing], let us then given in Sec. IV, and its results are presented in Sec. V.
consider the energy-momentum dispersion relation at the tre®ection VI is devoted to our conclusions. Some technical
level. We consider the,—0 limit, and the spatial lattice details are deferred to the Appendixes.
spacing is also kept small enough such that we can neglect
errors ofO(aﬁ) and higher. For Wilson-type fermions the II. ANISOTROPIC LATTICE EERMION ACTION
inverse quark propagator is given by . ) . ]
We start with the D234 quark action on the anisotropic
_ _ re ) ) lattice [5] given by
f'f"<3+|7’oF)o+|Ei 7ipi+2—§asZ pi+0(ay), (1.1

S o Spez= a3 PX)QY(x), (2.9)
wherer g denotes the coefficient in front of the spatial Wilson x
term as defined in Eg2.2) in the next section. The term
including the anisotrop¥ =ag/a; is maintained even in the _ 2
a,— 0 limit, because that term could remain whenscales Q—mﬁ% Vu¥uVu(1=b,a,A,)
asé. To push up the spatial doubler mass in the cutoff scale,
r</& must be kept finite. 1 u
The energy-momentum dispersion relation becomes XZ & 2 AWL/;V Csw0 Py [ BT
-~ where ag=4a; and a;=a (i=1,2,3) are the temporal and
—mQ (l+ £ < asMq E D| +O(as) (1.2 spatial lattice spacings, respectively, and
and thus an error of ordeasmg appears unlesss/¢ van- (vo,v)=(Lp), (bg,bj)=(by,bs), (ro,ri)=(re,ry),
ishes, for which the doublers become light. Since the term 2.3
(rs/§)asmg comes from the cross term of the mass and the _
Wilson terms, the origin of the combinati@mg has noth- (C3mCsw) = (Csw,Caw),  (dg,di)=(dy,ds). (2.9

ing to do with the large momentum flow in the spatial direc-

tion. At the tree level we may consider a set of lattice actiondNote that the lattice spacing in front of the Wilson and clover
in which there is no spatial Wilson term by introducing terms isa;, nota, . This notation is similar to the one [8],
higher derivative operators to decouple the unwanted dousut different from those ifi6,7]. The anisotropy parameter is
blers. This class of action does not have the problem of theefined by

O(asmg) error at the tree level and may be used for heavy

quarks even forasmg>1. There are higher order terms é=agla;. (2.5
whose coefficient behaves likemg, but we neglect them
as their contribution |©(as) or higher. The lattice covariant derivative§,, A,, V,A,, and Ai

The problem is, then, whether the nice property of theseepresemD D2 D3 , and D4, respectwely, in the con-
actions is maintained even with radiative corrections. In thiginuum theory, and thelr detalled definitions are given in Ap-
paper we perform a one-loop perturbative calculation forpendix A.
these lattice actions and investigate the mass dependence ofin this paper we always set
the rest massM;=E(0) and the kinetic massM,
=(9°Eldp3), 2o, Where E(p) is the energy of the heavy re=1, b,=d,=0. (2.6
guark on shell. We examine the functional dependence of the
speed-of-light renormalization parameierwhich is defined Thus, the operato® is nothing but the Wilson-Dirac opera-
such that the relatiod =M, is satisfied. If the one-loop tor as far as the temporal derivatives are concerned. With this
coefficient behaves asafmg)"”, the action suffers from an condition, the energy-momentum relation for the fermion has
unwanted heavy quark mass dependent error. Because we aehysical solution only, and the unphysical temporal dou-
interested in only tth((aSmQ)") errors, we carry out the blers do not apped5].
one-loop calculation in the;—0 limit, where O((a;mg)") SolvingQ(p)Q(p) '=0 in the momentum space and then
errors vanish. The fermion actions we consider are the anissettingpy,=iE, we obtain the energy-momentum relation for
tropic SW (Sheikholeslami and Wohlegrtaction [7,9] and  the D234 action as
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vzafZ piZ(1+bga?p?)?+ u(p)?

1+ u(p) ’(2 )

. a.E
4 s,lnr12<—2 ) =
where

1 “ N
M(p):atmo+§rsat2§i: pi2+Vdsat§i: a’p!, (2.9

andﬁu and E),L are defined in Appendix A.
From Eq.(2.7), we obtain the tree-level rest mabs;
=E(0) and the kinetic masl,=(5°E/dp7),2, as
a;M=log(1+a;mp), (2.9

1 212 ls
= + .
aM, amg(2+a;img) 1+amg

(2.10

On the anisotropic lattice with;my<<1, the tree-level mass

ratio M, /M, can be expanded in terms afm, as
M1/Mp=1+(rs—)amg+O((amg)?), (2.1

where we sei=1. The deviation oM /M, from unity is a
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. m(p)?
E2(a,—0)= VZZ P?(1+ba’p?)2+ 7 (2.15

t

=mi+ v’p’+

2
14
-3 2v%bg+ 2asmovds)

><a§2i pi'+O(a*p®). (2.16
From a smalp expansion we obtain a nonrelativistic expres-
sion for E(a;—0):

2

V2 4 1 v
212 _ 7 2
(p)+2m0( 3+2v b

2 14

= —+ —
E(at_>0) Mo ZmOp 8mg

+2agmyrds aiZi p*+0(a°p?). (2.17

Taking the static limitmy— o subsequently, one obtains

mgp— o

E(a—0) —— m0+vdsa§§i: pt+0(a%p%. (2.18

Note that the2, pi4 term survives even in the static limit. This
will be discussed later.

We are now ready to define our anisotropic actions more
explicitly. We study two actions: one is the SW actioh9],
and the other is a variant of the D234 actidj, which we
call the sD34 action. We give these actions and discuss their

lattice discretization error arising from the fermion Mass.rae_level properties in the following.

Unlessrg &, such an error is a function ad;m, alone,
which is small on the anisotropic lattice witgmy<<1 [7].
When r <&, a discretization error of ordeasmy= &a;my
arises, which is still large on the anisotropic lattice.

From Eq. (2.7), we can also calculate the “spatial-
doubler” massEY, i.e., the energy at the edge of the Bril-

louin zone p;=m/ay):

p 2rg 16vdg
a;E“=log 1+atmo+?nd+—nd (2.12

3

=log[1+amd],

(2.13

whereny (=1,2,3) is the number of spatial direction with

p;=mlag, and the bare spatial-doubler maﬂg is given by

2rg

3

a;mi=amy+ ——ng+ 16vdyng

(2.19

in units of the spatial lattice spacisg. We note that one has
to taker & or ds>0 in order to decouple the spatial dou-
bler with energyE® from the physical state for large values

of &.

It is interesting to consider the energy-momentum relation

in the Hamiltonian limita;—0 (§—), wherea;m, errors

vanish. In this limit the left-hand side of E(.7) is replaced

A. SW action
The Sheikholeslami-Wohlert actidi7,9] is defined by

(2.19

An O(a;) error arising from the Wilson terms is removed by
csyw=1. Since the Wilson terms af@(a,), this action goes
over to the “naive” quark action in the;—0 (§— ) limit.
The energy splitting between the physical state and spatial
doublersEY— E vanishes in this limit, as one can find explic-
itly from Eq. (2.14). The energy-momentum relation for the
SW action is shown in Fig. 1. The energy at the edge of the
Brillouin zone decreases &s increases, which shows the
reappearance of the spatial-doubler.

Sincer =1, the tree-level mass rathd ; /M, [Eq. (2.11)]

contains no O((asmo)") error: M;/M,=1+0((a;mg)?)
a;—0

——— 1. The anisotropic SW action has been applied to
the simulation of charmoniunpl0] and charmed hadrons
[11,12 on é=4 anisotropic lattices.

v=rg=cf=1, bs=ds=0.

B. sD34 action
We define the sD34 action as

(2.20

Although the spatial Wilson term is absemt£0), this ac-
tion is doubler-free becausk>0. The energy splittindge?

r«=cgy=0, bg>0, ds>0.

by a?E2, and the energy-momentum relation is simplified to — E remains even in tha,—0 limit as long as; is a con-
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FIG. 1. Energy-momentum relation at different valueg ér the SW action. The left panel shows the casadf(0) =0, while the right
showsaE(0)=1. The spatial momentum is along the (1,1,0) direction. For comparison we also plot the energy-momentum relation in

the continuum.

stant independent of. Settingd,=1/8 for this action gives The first choice sD34, where,=1/6, eliminates arO(ai)
the same spatial-doubler maﬂg as for theé=1 SW action

whenv=1. The name “sD34” is a reminder that the spatial +O(a;‘). The second choice sD@4, whereb,=1/8, elimi-
y;D? and D? terms survive in thea,—0 limit. The sD34

action is similar to the one proposed |[ib3,14], except that

error arising from thevy,V; term: yiVi(l—%aiAi)=yiDi

nates anO(ag) error in the one-gluon vertexAl3):
Vj"i(q,q’ K)=—igty, +O(a§). The difference between the

those papers considered the case of the isotropic laftice gne-loop results for sD34 and sDO@%is numerically small,
=1. Since the sD34 action has next-nearest neighbor integs shown in the next section. With the third choice s(pg4
actions such ag/V,A ¢ and ¢Aiw, this action is more the hopping terms in the action are proportional to the pro-
costly to simulate than the SW action, which consists of thgection matrix 1+ y,: using the Wilson projection operator

nearest neighbor interactions only.

The sD34 action does not gener&@¢a,) discretization
errors becauses=cg,,=0. In order to remove a®(a,)
error arising from the temporal Wilson term with=1, we

take

N| -

1
=1+ Sram, Csw=

This condition is obtairEd by performing a field redefinition

(2.21

Y=oty =9 Qc, Qe=0c=1-}ra(Do—m) to the
continuum quark actiony.(x)(D+m.) #(x) [5]. Sincerg

=0 the tree-level mass ratiM,/M, again contains no

a;—0

O((asmp)™ errors:M;/M,=1+0((aymp)?) —— 1.

In the rest of the paper we consider the following three

choices of thebg anddg parameters:

1 1
sD34: bszg, dszg,
1 1
sD34\v): bs=§, d3=§,
1 1
sD34p): bszi, dS:Z'

(2.22

(2.23

(2.249

w,=a,v,V, —%aiAM, the space component of the action
is given byw;+ %Wiz (i=1,2,3). Therefore the third choice
can reduce simulation costs compared to the other two
choiceg5]. At the tree level the sD34 actid@.22) is O(a?)
improved, while the others contain son@(aﬁ) errors.
Within the current set of operatof&.2), therefore, the best
available choice to suppress discretization effects is the sD34
action.

The energy-momentum relations for the sD34 and
sD34p) actions are shown in Figs. 2 and 3, respectively. For
both choices the energy at the edge of the Brillouin zone
increases ag increases, in contrast to the case of the SW
action. In the smalbgp region, the energy-momentum rela-
tion for the sD34 action in Fig. 2 is quite close to the con-
tinuum one because it has m;(ang) errors. Moreover, in
the largeagp region near the edge of the Brillouin zone, it is
close to the continuum one too, for large valueg.oFrom a
comparison of Figs. 2 and 3, we expect that the sD34 action
can reach the continuum limit faster than the s(p34ction.

We also note that the energy-momentum relation for the
sD34v) action is very similar to that for the sD34 action.

To summarize, neither the SW action nor the sD34 action
generateD((asmg)") (n=1,2,...)errors at the tree level
in the mass ratid/l; /M,. While the SW action suffers from
the spatial doubler for large values éf the sD34 action is
doubler-free foranyvalue of£. Both actions can be used for
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FIG. 2. Energy-momentum relation for the sD34 action.

AP 1.1,

T T ey 77 T

sD34(p), a,E(0)=1

0 1 ] ]
0 1 2 3 4

aslp(1 ,1,0)|

FIG. 3. Energy-momentum relation for the sB@action.

simulations of the charm quark, §&2—-4 anda;m.<1. But
simulations of the bottom quark keepiagm,<1 requireé
=5-10, for which the anisotropic SW action may be con-4g
taminated by the spatial doublers.

In addition to the above actions, two other anisotropic
actions have been proposed and applied to heavy quark sys-
tems: one is the action with=1 andr.= ¢ [6,15-17, and
the other is that withr,=r,=¢ [18—-20. However, these
actions have the spatial Wilson term scalingras ¢ and
therefore generatéd((agmg)™) errors in the mass ratio
M1/M, even at the tree level whemn=1, as discussed be-
fore and in[7]. For this reason, we do not consider these
actions further in this paper.

lIl. STATIC LIMIT  mg—2 AND THE HAMILTONIAN
LIMIT a—0

In this section we discuss the static limity— o of an-
isotropic fermion actions. At finite,, the action always ap-

114503-5

P(x)=

—aMq-t

VaiMg

and then takingmgy—c°.

On the other hand, the action in the limitiog,— c while
keeping the conditioraimg<1 can be different. In they
—0 limit, the lattice Dirac operatof2.2) becomes

+ Vdsa§Z AZ,

h(x)

proaches the usual static action in the limit afmg—oe.
This is shown, e.g., by rescaling the fermion field in Eqjl)

(3.2

Q(a—0)=mg+ Do + in yVi(1-bga?A;)

(3.2
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unlessr &, Subsequently taking the static limit, the fer- wherep is the external momentum. The inverse full quark
mion field splits as usual into large and small components ipropagator is then given by

the Dirac representation of the Dirac matrix, and the off-

diagonal terms drop out. The action becomes G Yp)=Gy'(p)—2(p). (4.3

mg—e Solving G" G Y)T=0 with p,=iE, we obtain the all-
Q(a;—0) — mg+yDot+rdad, A2, (3.3  orders dispersion relation
I

1+ u(p)—cosia,E)—C
We note that th@3A? term, proportional tardg, remains in
the static limit. The SW action witldls=0 approaches the
usual static action, but the sD34 action witfrx>0 does not.
This observation is consistent with the static energy evalu-
ated in thea,— 0 limit (2.18. Formally, the static limi{3.3 (4.4
can be derived by applying the Foldy-Wouthuysen-Tan
transformation

= \/(1_A0)25inhz(atE)_2 [aK;—A sin(asp;)1?,

iWhere,u(p) is given in Eq.(2.9).
Settingp=0 in Eq. (4.4), we obtain the rest maddl;
=E(0) as

— S L V(1-b.a?A,
¢(X)_>exr{ 2mg 2 YWD P00 BA iy AM L, 0)sinaM ) — (M .0)

to Eq. (3.2 and then takingny— . =1+amy—iBo(iM1,0)—C(iM,0). (4.9
The results of the one-loop calculation @at=0 in the
next section should be consistent with the fof@B) in the

mg— o0 limit. Suppose that the static action is renormalized
as

In order to have massless quarks remain massless at the
quantum level, we need a mass subtraction. Defining the
critical bare mass;my,.=C(0,0), we can write

edMi=1+a,My,—iBg(iM1,0)— CqfiM;,0), (4.6

1
_ = , 3 2.
(Mo + Om) +70Do 25ra52i: A'+(Vds+5d)a52i: ok where Mg=mg—my, and Cg{iM,,00=C(iM,0)

(3.5 —a;mg.. WhenMy=0, the rest masM, vanishes by con-
struction. Usually the mass subtraction is done nonperturba-
then the mass shifé,,, the kinetic term renormalizatiod, ,  tively in the numerical simulation by defining the critical
and &4 do not depend omg, but may depend omds be-  hopping parameter.
cause the static propagator and vertices congdinthrough In perturbation theory the rest mass is expanded as
Eq. (3.3. %
— 2 |
IV. ONE-LOOP CALCULATION IN THE HAMILTONIAN Ml_zo 9 M[ll’ .7

LIMIT

. . ) in which the tree-level rest mass is
In this section we present the one-loop calculations for the

anisotropic actions defined in Sec. Il. We calculate one-loop (0] a—0
corrections to the rest mass and the kinetic mass renormal- asMi ' =¢log(1+aMy) —— aMy, (4.9
ization factors in the Hamiltonian limi;— 0. From the lat-

ter we obtain the one-loop correction to theparameter. while the one-loop coefficient is given by

. . . _ [0]
A. Formalism aM= (=i ¢Bf(iMy,0)— £CltiM,0)e M1

—0
In the one-loop calculation we basically follow the nota- * —iBiM . 0)— cll(iM. 0
tion of [21] and add some extensions to the case of the an- 1€Bo"(IM1,0) = £C5 M1, 0).
isotropic lattice. (4.9

We write the inverse free quark propagator as ) ) ) ) )
Note thatM 4 is now normalized by the spatial lattice spacing

aGy M(p)=iaK(p)+alL(p) (4.1  as. Before the subtraction the one-loop coefficient is given
by
and the self-energy as a0
l*)
aM oy ——  —1€BI(IM4,0)—clM(iM,,0).
aZ(p)=12 y,Au(p)sin@,p,)+C(p) (4.10
Y23
Differentiating Eq.(4.4) in terms of p; twice and then
—i B +C(p), 4.2 setting p=0, we obtain the kinetic massM,
2 7uBu(p)+C(p) 42 T e, as
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e®M1— A (iM;,0)cosiaM ;)

£aM,
_Ts [v/E=A(iM1,0)]?
“2 PO A M, oJsinamy) T 4
where
d2
D(0)=———[A,(E(p),p)sinh(a;M
(0) d(aspl)z[ o(iE(p),p)sinh(a;M,)
—C(>E(p),p)Jp=0
B i i Bo(iM 1,0)
=Du(0+ aM, D1 (0)+ aM, ¢£tanhaM;)
(4.12
with
(92
DlS(O)z—z[.—BO—C} . (413
d(agpy)L! p=(iM,,0)
. d .
|D1t(0):a(a—SpO)[BO_|C]p:(iMl,0)-
(4.19

2veAN(iM 1,0)— v2Al (iM;,00— DI (0) £2 sinh(a,M )

PHYSICAL REVIEW D 67, 114503 (2003

The kinetic mass is expanded as

Mz=|§0 g?mLl, (4.15
and the tree-level relation becomes
ety 2
=r (4.19
agmy sinh(a,M}")

whereM P! =m,(M[P}).
From Egs.(4.11) and (4.16, we can obtain the kinetic
mass renormalization factor defined by

M, . 21
— - [
Zy, T 1+;g Zjjl .

(4.17

Here the argument af, is theall-ordersrest mas ;. The
one-loop coefficient is given by

zl —All(iM,0)cost{a,M)e 2M1, (4.18
M2 v2+rgsinhaM;) 0 ! i
|
In the a,— 0 limit, the tree-level kinetic mass goes to a—0 L 0
Zy, —— vP+R@aM; =1+ (2 +RMa M) g?

1 a;—0 V2 2

m, —— M, "Rss, (4.19 +0(g% (4.22)
where we define®=r/¢, and henc&y,, goes to with the one-loop coefficient

a0 zil =2+ RMa M P, (4.22

Zy (4.20

2
, —— M—1V2+ RsaM,.

Therefore, in this limit, the renormalized parameter and
R, which giveM;=M,, can be determined fromMz:

k
k
p p-k p
(a) (b)

Here we use®® —a, .0 0.
On the other hand, from E¢4.18 we obtain in this limit

a;—0

2 2 €B4(iM,,0)
SEAN(IM,0)— ¢ —aM;

zy ——
—aym,£D1(0), 4.23

where Al (iM 1,0)=[ B/ d(asp1)lp=(im, .0 -

B. One-loop diagrams

FIG. 4. Feynman graphs relevant for the one-loop quark self- Here we compute the one-loop contributions relevant to
energy. The left(a) is the regular graph, and the rigth) is the  the rest mass and the kinetic mass renormalization. At the
tadpole graph. one-loop level, the self-energy is written as

1145083-7
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sM(p)=3"9p)+3*Yp)+3T(p),  (4.29
where the contribution from the regular graph Figa)dis
denoted by Y p), while the tadpole graph Fig.(d) gives
>%d |n order to remove the bulk &£ we apply the tad-
pole improvemenft22], which amounts t& ™. The Feynman

rules relevant to our calculations are summarized in Appen-
dix A. We use the anisotropic Wilson gluon action given by

1
7 > [1-P;(0)1|,

X,i>]
(4.295
where Pg;(x) and Pj(x) are the temporal and spatial

plaguettes, respectively. In the calculationsS6t9 and 3.9
we adopt the Feynman gauge=1 for the gluon propagator.

6
sg? fg [1—Pgi(x)]+

C. Regular graph
The contribution from the regular graph is

aszfe%p)=i§ 7,EBI¥p)+ £C"™Yp)

j dk 1
"on(2m)t SRR

K

i% ¥uFeu(p.K)+Fc(p,k)
X y
> K, (p—K)Z2+L(p—k)?

y

(4.2

whereK ,=a,K,, L=aL, the gluon momenta are rescaled
k,—k,, and

asaMk”HkM and aMkM

Fe,=aFp,=2K,X2—K,> (X2+Y2)+2LX,Y,
p

EC: atFC: 22 prpvp_g (2_7;2))
P P

with K,=aK, (p—k), L=alL(p—k), X,=X,(2p—k,
*k), andY,=Y ,(2p—k,=K) given in Appendix A. Since
the vertices from the clover ternr,,F,, in the fermion
actions aréD(a;) and vanishing in the,—0 limit, we omit
their contributions.

In the a,— 0 limit, where

a;—0
Fao —— (po—ko>[1—; (Yfﬁﬁ], (4.29
a;—0 _
Fgi —— 2KiY5—Ki{1+2 (XP+Y2) L +2LXY;,
J
(4.30

PHYSICAL REVIEW D67, 114503 (2003

a—0 o
Fo —— 2>, K,-ijj—L{1+Z (Yf—?ﬁ)], (4.31
J ]
we obtain
re a0 = dko 1
B.Ap) — fkfm??agkgﬂzz
e, O [ 1
EC™¥Yp) —— fkf_xzﬂ 22+ 2
XFc(p,k)Sy(p—k). (4.33
Here we defined
= d3
jk=cF J o (4.34
and
1
S(p—k)= .
(Po—ko)*+ 2 Ki(p=K)*+L(p—k)?
(4.35

Differentiating Eqs(4.32 and(4.33) in terms of the external
momentgp and then setting=(iM ,,0), we obtain the con-

tributions to M1 and {3} according to Egs(4.9 and

(4.23. For the evaluation of the loop integrals, we first inte-
grate overk, analytically as described in Appendix B. The
remaining integration ovek is evaluated numerically using

the adaptive integration routineeGAs [23].

Since the rest mass and the kinetic mass are physical
quantities, the one-loop corrections to them are infrared fi-
nite. Although there are infrared divergences in the partial
derivativesD ;4(0) andD4,(0) in the kinetic mass renormal-
ization, they cancel in the total derivatiiag 0). In numerical
integrations ovek, we evaluate the total derivative directly,
rather than evaluating each partial derivative with subtraction
of the infrared divergences.

D. Tadpole graph

Although the calculation oE®%is much simpler than that
of X9 it is worthwhile to show the dependence of the re-
sults on the mass and on the parameters. The contribution
from the tadpole graph at finit, is given by

a>®(p)=i> v,EB2p)+£C™p)
M

d*k 1
:CFJ —TAZ
-7 (2m)* £2k§+k

a
X K
Eﬂ:at

w

i yM{ a,X,sin(a,p,)
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. K,
+4a,Z,sin(2a,p,)cos >

- [ a,Y,coga,p,)+4a,W,cod2a,p,)

)

from which we immediately obtain

k
K
xcos’-( >

: (4.36

a
éB24p)=C¢ a—:{Ja#XM+ 8T,a,Z, coga,p,)}

Xsin(a,p,), (4.37
a
£C%p)= —cF§ 2. JauY,cosa,p,)
+4T,a,W,cod2a,p,)}, (4.38
where
_ f k1 4.39
) £2k3+k?’ '
T,= fﬂ a1 cos’-(&)
w=t —7 (2m)* K2+ K2 2)
(4.40

In the a;—0 limit, J=T;=0.2277 andl;=0.1282.

The tadpole contributions th{! and Zjj) in the a,—0
limit are easily calculated from Eq$4.37) and (4.38). The
contribution to the rest mass before the subtracttO is
given by

g a;—0
ta
asM 1,nosub

CeY, {JaY;+4Ta W},
(4.4

which depends om.Y; anda,W,, i.e., vdg, but not on the
mass. It contributes to the critical masgsmy. only, so
a,M =0 after the subtraction.

The contribution to the kinetic mass renormalization is

given by

a;—0

2
7 (JagX +8TiasZy) +asmy(JasY,

tad
ZM2 —_— CF

+ 16T1aswl)}. (4.42

We find that a term proportional ta;m, appears, which
depends omnd again. This manifesasmg dependence origi-

nates from the&D ;5 term in Eq.(4.23. ThereforeZ}\",l"‘i di-

verges a(asmg) toward the static limit for the sD34 ac-
tion with ds>0, while it is mass independent for the SW

PHYSICAL REVIEW D 67, 114503 (2003

action with ds=0. Similar mass dependences are also ob-
served inzﬁg. We discuss th©(asmg) divergence oZy,

in Sec. V.

E. Tadpole improvement

Tadpole improvemen{22] is achieved by replacing the
link variableU , by U, /u,,, whereu,=<U ,> is the mean
link variable. In perturbation theory the contribution from the
tadpole improvement is obtained from the difference be-
tween the inverse free propagatﬁg1 and the tadpole-

improved inverse free propagatoﬁ's&l)TI [18]. In momen-
tum space the latter is given by the former with the
replacements

sin(na,p,)—sin(na,p,)/uy,

coinaupu)ecos(naﬂpﬂ)/uz , (4.43
wheren=1,2, ... . Theone-loop contribution is then given
by

a2 "'(p)=[asGg '(p) —as(Gy H) ™ (p)1/g?
=3 B iy 128 x
- 2 a,uuﬂ [iy.2a,X,
+8a,Z,coda,p,)}sin(a,p,)
—{2a,Y,coga,p,)+4a,W, cog2a,p,)}],
(4.44
where we expanded
u,=1+g2ull+0(g* (ul'<0). (4.45

We adopt the mean link in the Landau gauge for the defini-
tion of u,, which is given by

2

a
M__ - %%e qa=0
Uy == > 22 CeJg, (4.46
with

7 d%k 1 a2/a?)k?

Jz=§f i 5 1—(l—a(s,\2—'u),\'u

-7 (2m)* E2kG+k? £2kg+k?
(4.47
=J-(1-a)d),. (4.48

In the a,—0 limit, =3_,5J;=6Jo=3J. We then obtain

éBM(p)=-C @Jazo{a X,+4a,Z, coda,p,)}
wP Fas M (7" nep uPu

(4.49

Xsin(a,p,),

114503-9



S. HASHIMOTO AND M. OKAMOTO PHYSICAL REVIEW D67, 114503 (2003

a .
£CT(p)=Ce X 2=3;7%a,Y, coda,p,) 02| — ]
u 9s -
-~ [
+2a,W, cog2a,p,)}. (4.50 . . SW
Comparing Egs.(4.49 and (4.50 with Egs. (4.37) and . = sD34
(4.38, we find that¢B]' and £C; are also obtained from = . . Sgg:(V)
tad tad |, ; = | . i g |
B and £C2° with the replacements = 0.1 (P)
«

1
a=0 a=0
JH—JM , T#H—EJ# .

(4.51) * . “""'\
The contributions tvIl,q,,and Z{7! from the tadpole im- e

provement are given by Eq$4.41) and (4.42 with the 01
above replacements. Sindé~°=2J, the tadpole contribu-
tions are largely canceled by the tadpole improvement.

0 02 04 06 08
aM . (1+aM )

alpt o

V- ONE-LOOP RESULTS FIG. 5. a;M{! versusaqMP'/(1+aM ) for the SW action

and the sD34 actions. The values in the static limit are denoted by
nopen symbols.

A. Rest mass

Now we present the results of our one-loop calculations i
the a;—0 limit. The one-loop correction to the rest mass
a;M is plotted as a function oML/ (1+aMP) in (1]
Fig. 5, and the numerical values afM!* andasm are MiT~—Ce 1672
given in Table I. As shown in the figuragME!! for all the
actions increase from the massless limit and reach their
maximum values arounadsM %) =1-3; then decrease to the  The results fomM ! in the static limitagM[?— = de-
static values represented by open symbols. By fitting oupend on the action, since the reduced static ac{®8) in-
results in the small mass regioaM'<1), we confirmed cludes thea3A? term proportional tards. This situation is in
that the one-loop corrections are consistent with the massontrast to the case of finitg calculations if18,21], where
singularity aM [11] goes to a universal value. In the findecase asM [11]

MI%log(agM )2, (5.1)

TABLE I. Numerical values oM for various values oaM[®!, andasmi! for the SW action and
the sD34 actions.

aMM
aM] SwW sD34 sD3&) sD34p)
0.0 0.000000(00) 0.000000(00) 0.000000(00) 0.000000(00)
0.1 0.033586(11) 0.018299(19) 0.018360(21) 0.015615(23)
0.2 0.059382(20) 0.029235(21) 0.029306(21) 0.024206(23)
0.3 0.081252(22) 0.037292(24) 0.037354(23) 0.030177(41)
0.4 0.100023(23) 0.043466(28) 0.043405(21) 0.034594(25)
0.5 0.116008(27) 0.048228(29) 0.048196(25) 0.037909(25)
0.6 0.129786(19) 0.051966(24) 0.051762(25) 0.040428(32)
0.7 0.141467(36) 0.054948(34) 0.054572(31) 0.042396(31)
0.8 0.151341(22) 0.057183(24) 0.056763(22) 0.043836(33)
0.9 0.159679(29) 0.059029(36) 0.058465(29) 0.044916(49)
1.0 0.166758(21) 0.060338(33) 0.059687(24) 0.045724(34)
2.0 0.196227(24) 0.062578(35) 0.060997(28) 0.045709(32)
3.0 0.199166(39) 0.058705(39) 0.056713(28) 0.041241(34)
4.0 0.197161(26) 0.054263(23) 0.052280(29) 0.036472(30)
5.0 0.194441(44) 0.050519(28) 0.048617(55) 0.032255(53)
10.0 0.184712(29) 0.038993(46) 0.037121(28) 0.018373(37)
% 0.168490(26) 0.019045(21) 0.018249(29) —0.009803(27)
asmpe
— 0.000000(00) —0.060828(02) —0.061672(02) 0.001431(03)
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0.1 e
Zyo —Zyzjin e N
0 ____________ ‘mn‘ﬁ:.....,,..",’,?‘,”z,:g“

« sD34 \:'*-.“
*y
—0.3 | *SD34v) SN e, ]
+ sD34(p) TN,
\\\ 1
_0.4 1 1 i 1 \\
0 1 2 4 5
0
asM1[ ]

FIG. 6. The lower figure show&[j! versusa;M?! for the SW
action and the sD34 actions. The value in the static limit for the S

action is denoted by open circles. Lines are the linear approxima--

tions to the results for the sD34 actiorﬂk]z',m) as explained in the
text. The upper figure shows the differenzf! —z[) ;, versus
a;MP! for the sD34 actions.

does not depend ond, in the a;mg— < limit, because the
static action always gives the Wilson line.

B. Kinetic mass renormalization

PHYSICAL REVIEW D 67, 114503 (2003

according to Eq(4.22. The study of thea;m, dependence
of v at the one-loop level is a main purpose of this paper.
The results foiZj;) are shown in Fig. 6, and their numerical

values are given in Table II.

First, we focus on the result for the SW action, which
becomes the naive quark action in tag—0 limit as the
Wilson term and the clover term vanish. From Figl@wver
pane), we find that the mass dependence Zjf! (filled

circles is very weak, andZl}! stays constant in the infinite
2

mass limit. The difference between the value in the static
limit and that in the massless limit EH]Z(OO)—ZH]Z(O)z
—0.006. This is only 6% of the same difference for the iso-
tropic SW action,—0.10[21]. The result implies that mass
dependent discretization errors of ora@g(asmg)" for Zjj!

are small on the anisotropic lattice. The same conclusion
holds for any action that becomes the naive quark action in
the a;—0 limit. For instance, the action with,=0 andd
=d/¢, whered is a constant independent éf belongs to
this class. However, we remark that such actions suffer from

Wspatial doublers for large values §f as mentioned in Sec.

Next, we consider the results for the sD34 actions, which
are doubler-free even in ttlg— 0 limit. As shown in Fig. 6
(lower pane), Z[,\}]Z for the sD34 actions decreases monotoni-
cally as the mass increases and diverge®@mg) toward

the static limit.

The O(agmg) divergence 01‘Z[,\}]2 is due to the finiteness
of {D(44) in the static limit multiplied byasm, in Eq. (4.23.
The appearance of this manifesim, dependence, which is
proportional tovdg, can be explained as follows. Using

The one-loop correction to the kinetic mass renormalizaZir, » the kinetic term renormalizatiod, for the static action

tion Zy, is related to the speed-of-light renormalization

(3.5 is given by

TABLE II. Numerical values ofZ{j for the SW action and the sD34 actions.

zi
aML sw sD34 sD34) sD34p)
0.0 0.01810(35) 0.02061(30) 0.02369(49) 0.00549(59)
0.1 0.01812(19) 0.016066(63) 0.020152(61) ~0.00313(11)
0.2 0.018236(53) 0.012019(46) 0.016416(46)  —0.012140(85)
0.3 0.017991(51) 0.007856(48) 0.012592(45)  —0.021208(59)
0.4 0.017941(49) 0.003750(39) 0.009003(38)  —0.030040(78)
0.5 0.017801(43) —0.000349(34) 0.005406(47) —0.039223(56)
06 0.016708(38) ~0.004308(39) 0.001676(33) — 0.047996(50)
07 0.017507(32) ~0.008387(32) ~0.001963(32) — 0.056888(53)
0.8 0.017326(64) ~0.012299(84) — 0.005543(28) — 0.065500(50)
0.9 0.017142(47) —0.016238(28) —0.009117(28) —0.074070(46)
1.0 0.016862(36) —0.020149(28) —0.012661(31) — 0.082456(55)
2.0 0.015176(35) —0.056742(34) —0.046665(28) ~0.160259(59)
3.0 0.014246(21) —0.090607(29) —0.078766(30) —0.229675(78)
4.0 0.013677(17) —0.122890(42) —0.109982(40) —0.293550(90)
5.0 0.013371(18) —0.154177(45) —0.140336(48) —0.35409(12)
10.0 0.012716(15) ~0.304675(91) — 0.288888(86) ~0.63276(22)
% 0.012316(07) —o —o —o
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b ¢ ¢ s s .""“. ' ' for the sD34p) action. Since thgrenormalized coupling
OF * « w.,, ' .-\m-= constant isg?=4mas~2 in current simulations, the differ-
Fhaag ence from the Iinearitxgz(Z[MHZ—Z[,\}]sz) is small compared
oal to the tree-level valuezf!=1. This indicates that
O(gz(aSmQ)“) (n=2) errors are suppressed on the aniso-
3 tropic lattice, andZ[,\}]2 for the sD34 actions can be well ap-
Z. 027 sw 1 proximated by a linear ansatzg\jlzwzg\,%]2 lin -
= . '
N = sD34 If one would like to avoid the appearance of the renormal-
« sD34(v) ization scaling asagmg, it is possible to tune the spatial
—03 [ | sD34(p) ] Wilson term asRlM = — 611 such that the second term in Eq.
(5.3 vanishes, and then the one-loop coefficient of the
04 . . . . speed-of-light renormalization is given b=z} (/2.
e 0 0.2 0.4 0.6 0.8 1 Since the remainin@((asmg)") correction forv!!! is small
aM [01/(1 +aM [0]) and does not diverge as a functionaafng as shown in Fi_g._
s s 7, it essentially solves the problem of the large radiative
FIG. 7. ZH]Z w for the sD34 actions together witﬁ[@ n correction in the anisotropic lattice actions for the heavy

quark. It also suggests that if one can nonperturbatively tune
the Wilson term in the static limit, e.g. by adjusting until
the O(asmg) divergence oTZM2 for mesons disappears, the

above cancellation of thasmg error can be implemented
nonperturbatively.

=Zj;) for the SW action. The values in the static limit are denoted
by open symbols.

7I[1]
—— lim g?—2 +0(g")
mQ_mc asz .

1
asM 2 asm;

6,= lim
mQ—mc
(5.2
VI. CONCLUSIONS

Becauses, is a constant independent of the mazg, di- . . . . .
' P %2 In this paper we discuss on the issue whether the discreti-

verges a)(asm) in the large mass limit. _ zation error scales ag{mp)" when the heavy quark action

_ However, we note that this kind @(asmq) divergence g giscretized on an anisotropic lattice for which the temporal
is nothing to do with the discretization error increasing aSatiice spacing, is very small in order to keep the condition
agMmg but a renormalization of the reduced static acti@rb). amo<1, while the spatial lattice spacing is relatively

. 2 .
In order to isolate such ad(g*a;m) effect, we consider a  |arge andagmy, can be of order 1. Our naive expectation is

l .
subtractedZ{j) defined through that the discretization error does not behaveags, for
heavy-light meson&or baryons at rest, since the momentum
Ziy) su= 2+ o agm, (5.3 scale flowing in the spatial direction is of order of the QCD

scale Aqcp rather than the heavy quark mass scalg.
as a measure of the remainiﬁ?g(gz(ast)”) (n=2) errors. Even at the quantum level the maximywirtual) momentum

After the subtraction of the manifestymy dependence flowing into the spatial direction is/ag, and the discretiza-
Z[I\%]z,subfor the sD34 actions converges to a finite value in thetion error coming from the spatial derivative cannot pick up

L A . the large heavy quark mass.
static limit as shown in Fig. 7. We also find that the mass Through one-loop calculations of the kinetic mass renor-

dependence cit[,\}]zysubforthe sD34 and sD3¢) actionsis as  mjjization for a class of lattice fermion actions, we found
small as that for the SW action. Note tH{f .,=Z{) for  that our expectation is indeed met. For the sD34 actions there
the SW action because &f=0. is a piece that behaves agng in the one-loop coefficient of
Another way to discuss the remaini@(g?(asmo)") (n the kinetic mass renormalization, but it originates from the
=2) errors for the sD34 actions is to assess their linearity ifénormalization of the spatial Wilson term, which remains
the mass parameter. Singg! for the sD34 actions seems to €Ven i the static limit, and thus does not come from the
. . : [0] - discretization of the spatial derivative. This implies that if
be effectively a linear function &M}~ as shownin Fig. 6 oo o nonperturbatively tune the spatial Wilson tétne
(Iow%r] panel, we attempt a linear [ffﬁ usmg[l;[he dat["’l‘] for parameterr,) such that it vanishes in the static limit, the
asMi"<0.5. The fitting lines Zy, j,=Zy,(0)+¢; unwanted behavicsmg can be removed from the speed-of-
x a;M[®! shown by dashed or dotted lines approxir’nE!dé2 light renormalization. Although there is the possibility that
very well from the small mass regiaM %<1 to the rela-  the unwanted discretization error scaling&@sng exists in
tively large mass regim@.M [10]~1_ The diﬁerenceZ[Ml]z some other quantities, it is unlikely from our considerations.

- . , ) The anisotropic lattice thus remains a promising approach
~Zir,in i plotted in the upper panel of Fig. 6. We find that (, treat heavy quarks on the lattice. As in the usual relativis-

the difference is less than or about 0.0@01) at a;M [101 tic approach, the theory is renormalizable and the number of
=1 (3) for the sD34 and sD3¥%) actions, and slightly larger necessary terms in the action is limited. It also opens the
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possibility of tuning the parameters in the action nonperturwhere

batively for heavy quarks.
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APPENDIX A: DEFINITIONS AND FEYNMAN RULES

The lattice covariant derivatives are defined by

1
Y (0=5—[U, 000+ ) ~U () (x= )],
0

1 ~ ~
L(p)=mo+ 522 r,pj+vde aip! (AL
M

a;—0

- m0+uo|52i a’p? (A12)

for our quark actions with Eq2.6).
The one-gluon vertex with incoming quark momentgm

(A1) outgoing quark momentum’, and incoming gluon momen-
tumk=q’'—q is given by
1 _ _
App(X) =z [UL ) (X F p) U, (X) h(X = ) Vi (0,0’ k)= —igt y,X,(a+q" k) —iY (a+q’ k)],
u (A13)
—2¢(x)], (A2)
where
VA L (X) 1[U()U(Jr)(Jr2) a,d,+a,d,
X)= X X X _
AR’ @; © pXF ) M XM(q—i—q’,k)=2a#XMCOS<—Mq#2 o
—U_ (U (X=p) p(Xx—2p) ak
! Ll
—2U () (X + ) +2U _ () (x— w)]1, +4auzucoiaﬂ%+aﬂqﬂ)co< 2 )
(A3) (A14)
A2 g(x)= = [U, (U (x4 ) (X +210) v 2,0, a,d,
nP(X)= ot UL P(xX+2u Y.(q+a’ k)=2a,Y,, sin -
+U_ (U - (X= ) h(X=2p) W s e s(a“k")
a sin(a a co ,
—4U, (0 d(x )~ AU (X)X ) i S8, G, 8,9,)009 75
+64(X)]. (A4) (A15)
We also define the lattice momenta and
a,p,=sin(a,p,), (AS) a,X,= EVM—I— v,b,, (A16)
a,p,=2sina,p,/2). (AB) L a
0
The Feynman rules for our anisotropic actions can be de- a,Y,= SMug +av,d,, (A17)
rived in the usual way. The gluon propagator in the Feynman ”
gauge is given by 1
sabs a,Z,=— Evf‘b“’ (A18)
DLk = —=". (A7)
K a,W,=—v,d,. (A19)
The quark propagator is The t? are generators of color $8). We ignore the one-
1 gluon vertex arising from the clover terms because this ver-
Go(p)= , (A8) tex becomes irrelevant in treg—0 limit.

i> 7,K,.(p)+L(p)
M

Finally, the two-gluon vertex with incoming gluon mo-
mentak andk’ (k+k’=q’—q) is given by
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V3R (a0’ kK )=2a,g%(t%t") | F et clie—x) 14,
= X ===,
a,q,+a,q * ) T arh® (g2ie—x)2 122 2f of
X|iy,a,X,sin f’b (B5)
+4a,Z,sin(a,q, | fw | 1 c 14,
’ = X :———’
end ki) 2K, )b (g¥ie—x)2+ 1) 4f o
+a#qﬂ)co< 5|08 —5 (B6)
a,q,+a,q’
—{aﬂY#cos(W) I J'w ; 1 c(ie—x) 1 dls
= X =——
T Tat b (gRie—x)2+ 122 4t of
+4a,W, coga,q, (B7)

+ /) %aﬂkﬂ> {al‘kl;)]
a co co .
R 2 2 where e<f/g is assumed. These integrations are calcu-
(A20) lated by hand using the residue theorem and checked by
MATHEMATICA .

i i . In the calculation of the regular graph, we assign
Here we omit terms that vanish by symmetrizing between

two gluons and that arise from the clover terms, which are R )
unnecessary in the calculation of the tadpole graph. x—ko, a—lk|?, b—aZ, g—1, e—Mg,

f—E(k), (B8)
APPENDIX B: kg INTEGRATIONS

In this appendix we summarize some formulas for khe
integrations, which are needed for the calculation of theVhere
regular graph. We use the following results for one-
dimensional integrations:

E(k)= \/ V22 K(1+bgalk?)?+

2
Mo+ vds, afkf) :
I

S PP S >
S - Xa+ bx? g?(ie—x)%+f2 The overall factorsc depend on the spatial momentum
Using the integrations; —I ; with the above assignments, the
1 1 1 1 relevant contributions from the regular graph are given by
=mC + —1,
Jab —g?%(e—+a/b)2+f2 a—b(e+f/g)? fg
. 1
(B1) §BBeg(|M1'O):ka|z—Bo, (B10)
| fx q 1 c(ie—x) 1
= X regc i .
2 )2 T atbx® g2ie—x)2+ f2 ¢§C™(iIM4,0) szwll‘c’ (B1D)
) [ 1 e—+alb 1 1]
=lmC - -, 1
Vab —g%(e—\a/b)?+f? a-b(e+f/g)? g2 gAffg(il\/ll,O)zJkﬁ(u,mﬂg,m), (B12)
(B2)
o 11
oc 1 c 141, ¢DTX0)= 2 i_(|27D3+|57Ds+|77Ds)
I EJ dx =—— —
S ) T arbx (g¥ie—x)2+ 192 2f of
(B3) —(l1-pstls-pstls-ps) |, (B13)
| _fw g 1 clie=x)> 1 4l . 1 .
S Xa+bx2 (gz(ie—x)2+f2)2__55’ |§D1tg(0):J‘kz(llth"_uth_”Sth)-
(B4) (B14)
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