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Perturbative study of anisotropic lattice actions for heavy quarks
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Anisotropic lattice fermion actions are investigated with one-loop perturbative calculations aiming at con-
structing a formulation for a heavy quark with controlled systematic uncertainties. For heavy-light systems at
rest an anisotropic lattice with small temporal lattice spacingat suppresses the discretization error by a power
of atmQ for a heavy quark of massmQ . We discuss the issue of large discretization errors, which scale as
asmQ with as the spatial lattice spacing. By performing one-loop calculations of the speed-of-light renormal-
ization for several possible lattice actions in the limit ofat→0, we show that one can eliminate the large
systematic error on the anisotropic lattice.
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I. INTRODUCTION

In heavy quark physics, the lattice simulation of quantu
chromodynamics~QCD! is an indispensable tool to compu
hadron masses and matrix elements nonperturbatively w
out introducing model dependence. One of the most imp
tant hadron matrix elements inB physics is theB meson
decay constantf B , for which a number of lattice calculation
have been performed so far, and the systematic uncertai
are under control at the level of 15% accuracy@1#. In the
future, further precise calculations, say better than 5%,
necessary to constrain the Cabibbo-Kobayashi-Mask
~CKM! matrix elements more strictly and to search for t
signature of new physics.

One of the dominant uncertainties in the lattice simulat
of heavy quarks is the systematic error associated with
large heavy quark mass, since the lattice cutoff 1/a available
with current computer power is not much larger than
heavy quark massmQ . A conventional approach to avoi
this problem is to restrict ourselves to the region where
systematic error is under control (mQ!1/a) and to extrapo-
late to theb quark mass using the heavy quark scaling l
predicted by heavy quark effective theory~HQET!. This is
unsatisfactory for achieving 5% accuracy, since the poss
error scales as (amQ)n@n52 for theO(a)-improved action#
and thus grows very quickly toward heavier quark mass
Extrapolation to theb quark mass could even amplify th
systematic uncertainty.

Another method is the HQET-based approach which
cludes lattice nonrelativistic QCD~NRQCD! @2,3# and the
Fermilab method@4#. In this method one considers the lattic
action for the heavy quark as an effective theory valid
large heavy quark masses. The advantage of the HQET-b
approach is the absence of the large systematic error w
scales as (amQ)n. The price one has to pay, on the oth
hand, is the introduction of a number of terms in the acti
Their associated coefficients have to be determined
matching the effective theory to the full continuum theo
The matching is usually carried out using perturbat
0556-2821/2003/67~11!/114503~15!/$20.00 67 1145
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theory, which limits the accuracy of the lattice calculation
Besides the HQET-based approach, a possible way to

trol heavy quark discretization effects is to consider an
isotropic lattice, where the temporal lattice spacingat is
much smaller than the spatial oneas @5,6#. Since for a heavy
meson~or a heavy baryon! at rest the large energy scale
order mQ appears only in the temporal component in m
mentum space, one can expect that the systematic erro
creases as (atmQ)n and is therefore suppressed as far asat is
small enough. The computational cost is not prohibitive
one keeps the spatial lattice spacing relatively large. T
problem of the matching of many operators in the effect
theory does not appear, as the theory is relativistic.

There is, however, a subtle issue discussed in@7#; for a
certain choice of the Wilson term in the spatial direction t
systematic error may arise in the combinationasmQ rather
than the expectedatmQ and the virtue of the anisotropi
lattice is spoiled. With an alternative choice the error of ord
(asmQ)n may be avoided but the unwanted doublers beco
lighter and disturb the simulation of physical states. The
thors of @8# even denied the advantage of the anisotro
lattice used for heavy quarks based on their observation
asmQ-like behavior through radiative corrections. In this p
per we discuss this issue further by considering a larger
of O(a)-improved lattice fermion actions and by performin
one-loop calculations in the limitat→0 where noatmQ error
remains.

The appearance of large systematic errors scaling asasmQ
is naively unexpected for the following reasons. In theat
→0 limit the only source of the discretization error is th
spatial derivative in the lattice action. In momentum spa
therefore, discretization errors scale asasp with p a typical
~spatial! momentum scale in the system, which is of ord
LQCD for the heavy-light mesons or baryons at rest, and
combinationasmQ may not appear as momentum of ord
mQ flows only in the temporal direction. This intuitive pic
ture should be correct even after radiative corrections,
cause large momentum of ordermQ does not flow in the
spatial direction in momentum space, and therefore a
©2003 The American Physical Society03-1
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cretization error in the spatial lattice derivative cannot
company the heavy quark massmQ . This becomes clearer i
one considers the limit 1/as!mQ!1/at , because the spatia
momentum integral runs up top/as and thus cannot pick up
the larger scalemQ .

Here, in order to understand the reason why the un
pectedasmQ-type error may have appeared in@7,8#, let us
consider the energy-momentum dispersion relation at the
level. We consider theat→0 limit, and the spatial lattice
spacing is also kept small enough such that we can neg
errors of O(as

2) and higher. For Wilson-type fermions th
inverse quark propagator is given by

mQ1 ig0p01 i(
i

g i pi1
r s

2j
as(

i
pi

21O~as
2!, ~1.1!

wherer s denotes the coefficient in front of the spatial Wilso
term as defined in Eq.~2.2! in the next section. The term
including the anisotropyj5as /at is maintained even in the
at→0 limit, because that term could remain whenr s scales
asj. To push up the spatial doubler mass in the cutoff sc
r s /j must be kept finite.

The energy-momentum dispersion relation becomes

2p0
25S mQ1

r s

2j
as(

i
pi

2D 2

1(
i

pi
21O~as

2!

5mQ
2 1S 11

r s

j
asmQD(

i
pi

21O~as
2!, ~1.2!

and thus an error of orderasmQ appears unlessr s /j van-
ishes, for which the doublers become light. Since the te
(r s /j)asmQ comes from the cross term of the mass and
Wilson terms, the origin of the combinationasmQ has noth-
ing to do with the large momentum flow in the spatial dire
tion. At the tree level we may consider a set of lattice actio
in which there is no spatial Wilson term by introducin
higher derivative operators to decouple the unwanted d
blers. This class of action does not have the problem of
O(asmQ) error at the tree level and may be used for hea
quarks even forasmQ.1. There are higher order term
whose coefficient behaves likeasmQ , but we neglect them
as their contribution isO(as

2) or higher.
The problem is, then, whether the nice property of th

actions is maintained even with radiative corrections. In t
paper we perform a one-loop perturbative calculation
these lattice actions and investigate the mass dependen
the rest massM15E(0) and the kinetic massM2

5(]2E/]p1
2)p50

21 , where E(p) is the energy of the heav
quark on shell. We examine the functional dependence of
speed-of-light renormalization parametern, which is defined
such that the relationM15M2 is satisfied. If the one-loop
coefficient behaves as (asmQ)n, the action suffers from an
unwanted heavy quark mass dependent error. Because w
interested in only theO„(asmQ)n

… errors, we carry out the
one-loop calculation in theat→0 limit, whereO„(atmQ)n

…

errors vanish. The fermion actions we consider are the an
tropic SW ~Sheikholeslami and Wohlert! action @7,9# and
11450
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some special cases of the D234 action@5#. We find the latter
to be useful for applications to heavy quark systems.

This paper is organized as follows. In Sec. II, we defi
the anisotropic fermion actions we consider in this paper
discuss their tree-level properties. The static limit of tho
actions is considered in Sec. III. The one-loop calculation
then given in Sec. IV, and its results are presented in Sec
Section VI is devoted to our conclusions. Some techni
details are deferred to the Appendixes.

II. ANISOTROPIC LATTICE FERMION ACTION

We start with the D234 quark action on the anisotrop
lattice @5# given by

SD2345atas
3(

x
c̄~x!Qc~x!, ~2.1!

Q5m01(
m

nmgm¹m~12bmam
2 Dm!

3
1

2
atS (

m
r mDm1 (

m,n
cSW

m smnFmnDb f

1(
m

nmdmam
3 Dm

2 ~2.2!

where a05at and ai5as ( i 51,2,3) are the temporal an
spatial lattice spacings, respectively, and

~n0 ,n i !5~1,n!, ~b0 ,bi !5~bt ,bs!, ~r 0 ,r i !5~r t ,r s!,

~2.3!

~cSW
0 ,cSW

i !5~cSW
t ,cSW

s !, ~d0 ,di !5~dt ,ds!. ~2.4!

Note that the lattice spacing in front of the Wilson and clov
terms isat , notam . This notation is similar to the one in@5#,
but different from those in@6,7#. The anisotropy parameter i
defined by

j[as /at . ~2.5!

The lattice covariant derivatives¹m , Dm , ¹mDm , and Dm
2

representDm , Dm
2 , Dm

3 , andDm
4 , respectively, in the con-

tinuum theory, and their detailed definitions are given in A
pendix A.

In this paper we always set

r t51, bt5dt50. ~2.6!

Thus, the operatorQ is nothing but the Wilson-Dirac opera
tor as far as the temporal derivatives are concerned. With
condition, the energy-momentum relation for the fermion h
a physical solution only, and the unphysical temporal do
blers do not appear@5#.

SolvingQ(p)Q(p)†50 in the momentum space and the
settingp05 iE, we obtain the energy-momentum relation f
the D234 action as
3-2
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4 sinh2S atE

2 D5

n2at
2(

i
p̄i

2~11bsai
2p̂i

2!21m~p!2

11m~p!
,

~2.7!

where

m~p!5atm01
1

2
r sat

2(
i

p̂i
21ndsat(

i
ai

3p̂i
4 , ~2.8!

and p̄m and p̂m are defined in Appendix A.
From Eq. ~2.7!, we obtain the tree-level rest massM1

5E(0) and the kinetic massM25(]2E/]p1
2)p50

21 as

atM15 log~11atm0!, ~2.9!

1

atM2
5

2n2

atm0~21atm0!
1

r s

11atm0
. ~2.10!

On the anisotropic lattice withatm0!1, the tree-level mass
ratio M1 /M2 can be expanded in terms ofatm0 as

M1 /M2511~r s21!atm01O„~atm0!2
…, ~2.11!

where we setn51. The deviation ofM1 /M2 from unity is a
lattice discretization error arising from the fermion ma
Unless r s}j, such an error is a function ofatm0 alone,
which is small on the anisotropic lattice withatm0!1 @7#.
When r s}j, a discretization error of orderasm05jatm0
arises, which is still large on the anisotropic lattice.

From Eq. ~2.7!, we can also calculate the ‘‘spatia
doubler’’ massEd, i.e., the energy at the edge of the Br
louin zone (pi5p/as):

atE
d5 logF11atm01

2r s

j2
nd1

16nds

j
ndG ~2.12!

[ log@11atm0
d#, ~2.13!

wherend (51,2,3) is the number of spatial direction wit
pi5p/as , and the bare spatial-doubler massm0

d is given by

asm0
d5asm01

2r s

j
nd116ndsnd ~2.14!

in units of the spatial lattice spacingas . We note that one ha
to taker s}j or ds.0 in order to decouple the spatial do
bler with energyEd from the physical state for large value
of j.

It is interesting to consider the energy-momentum relat
in the Hamiltonian limitat→0 (j→`), whereatm0 errors
vanish. In this limit the left-hand side of Eq.~2.7! is replaced
by at

2E2, and the energy-momentum relation is simplified
11450
.

n

E2~at→0!5n2(
i

p̄i
2~11bsai

2p̂i
2!21

m~p!2

at
2

~2.15!

5m0
21n2p21S 2

n2

3
12n2bs12asm0ndsD

3as
2(

i
pi

41O~a4p6!. ~2.16!

From a smallp expansion we obtain a nonrelativistic expre
sion for E(at→0):

E~at→0!5m01
n2

2m0
p22

n4

8m0
3 ~p2!21

1

2m0
S 2

n2

3
12n2bs

12asm0ndsDas
2(

i
pi

41O~a5p6!. ~2.17!

Taking the static limitm0→` subsequently, one obtains

E~at→0! ——→
m0→`

m01ndsas
3(

i
pi

41O~a5p6!. ~2.18!

Note that the( i pi
4 term survives even in the static limit. Thi

will be discussed later.
We are now ready to define our anisotropic actions m

explicitly. We study two actions: one is the SW action@7,9#,
and the other is a variant of the D234 action@5#, which we
call the sD34 action. We give these actions and discuss t
tree-level properties in the following.

A. SW action

The Sheikholeslami-Wohlert action@7,9# is defined by

n5r s5cSW
m 51, bs5ds50. ~2.19!

An O(at) error arising from the Wilson terms is removed b
cSW

m 51. Since the Wilson terms areO(at), this action goes
over to the ‘‘naive’’ quark action in theat→0 (j→`) limit.
The energy splitting between the physical state and spa
doublersEd2E vanishes in this limit, as one can find explic
itly from Eq. ~2.14!. The energy-momentum relation for th
SW action is shown in Fig. 1. The energy at the edge of
Brillouin zone decreases asj increases, which shows th
reappearance of the spatial-doubler.

Sincer s51, the tree-level mass ratioM1 /M2 @Eq. ~2.11!#
contains no O„(asm0)n

… error: M1 /M2511O„(atm0)2
…

——→
at→0

1. The anisotropic SW action has been applied
the simulation of charmonium@10# and charmed hadron
@11,12# on j.4 anisotropic lattices.

B. sD34 action

We define the sD34 action as

r s5cSW
s 50, bs.0, ds.0. ~2.20!

Although the spatial Wilson term is absent (r s50), this ac-
tion is doubler-free becauseds.0. The energy splittingEd

2E remains even in theat→0 limit as long asds is a con-
3-3
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FIG. 1. Energy-momentum relation at different values ofj for the SW action. The left panel shows the case ofasE(0)50, while the right
showsasE(0)51. The spatial momentump is along the (1,1,0) direction. For comparison we also plot the energy-momentum relat
the continuum.
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stant independent ofj. Settingds51/8 for this action gives
the same spatial-doubler massm0

d as for thej51 SW action
whenn51. The name ‘‘sD34’’ is a reminder that the spati
g iDi

3 and Di
4 terms survive in theat→0 limit. The sD34

action is similar to the one proposed in@13,14#, except that
those papers considered the case of the isotropic latticj
51. Since the sD34 action has next-nearest neighbor in
actions such asc̄¹mDmc and c̄Dm

2 c, this action is more
costly to simulate than the SW action, which consists of
nearest neighbor interactions only.

The sD34 action does not generateO(as) discretization
errors becauser s5cSW

s 50. In order to remove anO(at)
error arising from the temporal Wilson term withr t51, we
take

n511
1

2
r tatm0 , cSW

t 5
1

2
. ~2.21!

This condition is obtained by performing a field redefinitio
cc5Vcc, c̄c5c̄V̄c , V̄c5Vc512 1

4 r tat(D” 02mc) to the
continuum quark actionc̄c(x)(D” 1mc)cc(x) @5#. Since r s
50 the tree-level mass ratioM1 /M2 again contains no

O„(asm0)n
… errors:M1 /M2511O„(atm0)2

… ——→
at→0

1.
In the rest of the paper we consider the following thr

choices of thebs andds parameters:

sD34: bs5
1

6
, ds5

1

8
, ~2.22!

sD34~v!: bs5
1

8
, ds5

1

8
, ~2.23!

sD34~p!: bs5
1

2
, ds5

1

4
. ~2.24!
11450
r-

e

The first choice sD34, wherebs51/6, eliminates anO(as
2)

error arising from theg i¹i term: g i¹i(12 1
6 as

2D i)5g iDi

1O(as
4). The second choice sD34~v!, wherebs51/8, elimi-

nates an O(as
2) error in the one-gluon vertex~A13!:

V1,i
a (q,q8,k)52 igtag i1O(as

3). The difference between th
one-loop results for sD34 and sD34~v! is numerically small,
as shown in the next section. With the third choice sD34~p!,
the hopping terms in the action are proportional to the p
jection matrix 16gm : using the Wilson projection operato

wm[amgm¹m2 1
2 am

2 Dm , the space component of the actio

is given bywi1
1
2 wi

2 ( i 51,2,3). Therefore the third choic
can reduce simulation costs compared to the other
choices@5#. At the tree level the sD34 action~2.22! is O(as

2)
improved, while the others contain someO(as

2) errors.
Within the current set of operators~2.2!, therefore, the bes
available choice to suppress discretization effects is the s
action.

The energy-momentum relations for the sD34 a
sD34~p! actions are shown in Figs. 2 and 3, respectively. F
both choices the energy at the edge of the Brillouin zo
increases asj increases, in contrast to the case of the S
action. In the smallasp region, the energy-momentum rela
tion for the sD34 action in Fig. 2 is quite close to the co
tinuum one because it has noO(as

2p2) errors. Moreover, in
the largeasp region near the edge of the Brillouin zone, it
close to the continuum one too, for large values ofj. From a
comparison of Figs. 2 and 3, we expect that the sD34 ac
can reach the continuum limit faster than the sD34~p! action.
We also note that the energy-momentum relation for
sD34~v! action is very similar to that for the sD34 action.

To summarize, neither the SW action nor the sD34 act
generatesO„(asmQ)n

… (n51,2, . . . ) errors at the tree leve
in the mass ratioM1 /M2. While the SW action suffers from
the spatial doubler for large values ofj, the sD34 action is
doubler-free foranyvalue ofj. Both actions can be used fo
3-4
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simulations of the charm quark, ifj.2 –4 andatmc!1. But
simulations of the bottom quark keepingatmb!1 requirej
.5 –10, for which the anisotropic SW action may be co
taminated by the spatial doublers.

In addition to the above actions, two other anisotro
actions have been proposed and applied to heavy quark
tems: one is the action withr t51 andr s5j @6,15–17#, and
the other is that withr t5r s5j @18–20#. However, these
actions have the spatial Wilson term scaling asr s5j and
therefore generateO„(asm0)n

… errors in the mass ratio
M1 /M2 even at the tree level whenn51, as discussed be
fore and in@7#. For this reason, we do not consider the
actions further in this paper.

III. STATIC LIMIT mQ\` AND THE HAMILTONIAN
LIMIT at\0

In this section we discuss the static limitmQ→` of an-
isotropic fermion actions. At finiteat , the action always ap

FIG. 2. Energy-momentum relation for the sD34 action.
11450
-

c
ys-

proaches the usual static action in the limit ofatmQ→`.
This is shown, e.g., by rescaling the fermion field in Eq.~2.1!
as

c~x!5
e2atM1•t

Aatm0

h~x! ~3.1!

and then takingatm0→`.
On the other hand, the action in the limit ofmQ→` while

keeping the conditionatmQ!1 can be different. In theat
→0 limit, the lattice Dirac operator~2.2! becomes

Q~at→0!5m01g0D0 1 n(
i

g i¹i~12bsai
2D i !

1ndsas
3(

i
D i

2 , ~3.2!

FIG. 3. Energy-momentum relation for the sD34~p! action.
3-5
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unlessr s}j. Subsequently taking the static limit, the fe
mion field splits as usual into large and small component
the Dirac representation of the Dirac matrix, and the o
diagonal terms drop out. The action becomes

Q~at→0! →
mQ→`

m01g0D01ndsas
3(

i
D i

2 . ~3.3!

We note that theas
3D i

2 term, proportional tonds , remains in
the static limit. The SW action withds50 approaches the
usual static action, but the sD34 action withds.0 does not.
This observation is consistent with the static energy eva
ated in theat→0 limit ~2.18!. Formally, the static limit~3.3!
can be derived by applying the Foldy-Wouthuysen-T
transformation

c~x!→expF2
n

2m0
(

i
g i¹i~12bsai

2D i !Gc~x! ~3.4!

to Eq. ~3.2! and then takingm0→`.
The results of the one-loop calculation atat50 in the

next section should be consistent with the form~3.3! in the
mQ→` limit. Suppose that the static action is renormaliz
as

~m01dm!1g0D02
1

2
d ras(

i
D i1~nds1dd!as

3(
i

D i
2 ;

~3.5!

then the mass shiftdm , the kinetic term renormalizationd r ,
and dd do not depend onm0, but may depend onnds be-
cause the static propagator and vertices containnds through
Eq. ~3.3!.

IV. ONE-LOOP CALCULATION IN THE HAMILTONIAN
LIMIT

In this section we present the one-loop calculations for
anisotropic actions defined in Sec. II. We calculate one-lo
corrections to the rest mass and the kinetic mass renor
ization factors in the Hamiltonian limitat→0. From the lat-
ter we obtain the one-loop correction to then parameter.

A. Formalism

In the one-loop calculation we basically follow the not
tion of @21# and add some extensions to the case of the
isotropic lattice.

We write the inverse free quark propagator as

atG0
21~p!5 iatK” ~p!1atL~p! ~4.1!

and the self-energy as

atS~p!5 i(
m

gmAm~p!sin~ampm!1C~p!

[ i(
m

gmBm~p!1C~p!, ~4.2!
11450
in
-

-

i

e
p
al-

n-

wherep is the external momentum. The inverse full qua
propagator is then given by

G21~p!5G0
21~p!2S~p!. ~4.3!

Solving G21(G21)†50 with p05 iE, we obtain the all-
orders dispersion relation

11m~p!2cosh~atE!2C

5A~12A0!2 sinh2~atE!2(
i

@atKi2Ai sin~aspi !#
2,

~4.4!

wherem(p) is given in Eq.~2.8!.
Setting p50 in Eq. ~4.4!, we obtain the rest massM1

5E(0) as

eatM1511atm01A0~ iM 1 ,0!sinh~atM1!2C~ iM 1 ,0!

511atm02 iB0~ iM 1 ,0!2C~ iM 1 ,0!. ~4.5!

In order to have massless quarks remain massless a
quantum level, we need a mass subtraction. Defining
critical bare massatm0c[C(0,0), we can write

eatM1511atM02 iB0~ iM 1 ,0!2Csub~ iM 1 ,0!, ~4.6!

where M05m02m0c and Csub( iM 1 ,0)5C( iM 1 ,0)
2atm0c . WhenM050, the rest massM1 vanishes by con-
struction. Usually the mass subtraction is done nonpertu
tively in the numerical simulation by defining the critica
hopping parameter.

In perturbation theory the rest mass is expanded as

M15(
l 50

`

g2lM1
[ l ] , ~4.7!

in which the tree-level rest mass is

asM1
[0]5j log~11atM0! ——→

at→0

asM0 , ~4.8!

while the one-loop coefficient is given by

asM1
[1]5„2 i jB0

[1]~ iM 1 ,0!2jCsub
[1]~ iM 1 ,0!…e2atM1

[0]

——→
at→0

2 i jB0
[1]~ iM 1 ,0!2jCsub

[1]~ iM 1 ,0!.

~4.9!

Note thatM1 is now normalized by the spatial lattice spacin
as . Before the subtraction the one-loop coefficient is giv
by

asM1,nosub
[1] ——→

at→0

2 i jB0
[1]~ iM 1 ,0!2jC[1]~ iM 1 ,0!.

~4.10!

Differentiating Eq.~4.4! in terms of p1 twice and then
setting p50, we obtain the kinetic mass M2

5(]2E/]p1
2)p50

21 as
3-6
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eatM12A0~ iM 1 ,0!cosh~atM1!

j2atM2

5
r s

j2
1D~0!1

@n/j2A1~ iM 1 ,0!#2

@12A0~ iM 1 ,0!#sinh~atM1!
, ~4.11!

where

D~0!5
d2

d~asp1!2
@A0„iE~p!,p…sinh~atM1!

2C~ iE~p!,p!#p50

5D1s~0!1
i

asM2
D1t~0!1

i

asM2
•

B0~ iM 1 ,0!

j tanh~atM1!

~4.12!

with

D1s~0!5
]2

]~asp1!2 F1

i
B02CG

p5( iM 1 ,0)

, ~4.13!

iD 1t~0!5
]

]~asp0!
@B02 iC#p5( iM 1 ,0) .

~4.14!
el

11450
The kinetic mass is expanded as

M25(
l 50

`

g2lM2
[ l ] , ~4.15!

and the tree-level relation becomes

eatM1
[0]

atm2
5r s1

n2

sinh~atM1
[0] !

~4.16!

whereM2
[0]5m2(M1

[0] ).
From Eqs.~4.11! and ~4.16!, we can obtain the kinetic

mass renormalization factor defined by

ZM2
[

M2

m2~M1!
511(

l 51

`

g2lZM2

[ l ] . ~4.17!

Here the argument ofm2 is theall-orders rest massM1. The
one-loop coefficient is given by
ZM2

[1] 5
2njA1

[1]~ iM 1 ,0!2n2A0
[1]~ iM 1 ,0!2D [1]~0!j2 sinh~atM1!

n21r s sinh~atM1!
2A0

[1]~ iM 1 ,0!cosh~atM1!e2atM1. ~4.18!
to
the
In the at→0 limit, the tree-level kinetic mass goes to

1
m2

——→
at→0 n2

M1
1Rsas , ~4.19!

where we definedRs[r s /j, and henceZM2
goes to

ZM2
——→

at→0 M2

M1
n21RsasM2 . ~4.20!

Therefore, in this limit, the renormalizedn parameter and
Rs , which giveM15M2, can be determined fromZM2

:

FIG. 4. Feynman graphs relevant for the one-loop quark s
energy. The left~a! is the regular graph, and the right~b! is the
tadpole graph.
ZM2
——→

at→0

n21RsasM1511~2n [1]1Rs
[1]asM1

[0] !g2

1O~g4! ~4.21!

with the one-loop coefficient

ZM2

[1] 52n [1]1Rs
[1]asM1

[0] . ~4.22!

Here we usedRs
[0] →at→0 0.

On the other hand, from Eq.~4.18! we obtain in this limit

ZM2

[1] ——→
at→0 2

n jA1
@1#~ iM 1 ,0!2

2
i

jB0
[1]~ iM 1 ,0!

asM1

2asm2jD [1]~0!, ~4.23!

whereA1
[1] ( iM 1 ,0)5@]B1

[1] /](asp1)#up5( iM 1 ,0) .

B. One-loop diagrams

Here we compute the one-loop contributions relevant
the rest mass and the kinetic mass renormalization. At
one-loop level, the self-energy is written as

f-
3-7
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S [1]~p!5S reg~p!1S tad~p!1STI~p!, ~4.24!

where the contribution from the regular graph Fig. 4~a! is
denoted byS reg(p), while the tadpole graph Fig. 4~b! gives
S tad. In order to remove the bulk ofS tad, we apply the tad-
pole improvement@22#, which amounts toSTI. The Feynman
rules relevant to our calculations are summarized in App
dix A. We use the anisotropic Wilson gluon action given

Sg5
6

g2 F j(
x,i

@12P0i~x!#1
1

j (
x,i . j

@12Pi j ~x!#G ,
~4.25!

where P0i(x) and Pi j (x) are the temporal and spatia
plaquettes, respectively. In the calculations ofS reg andS tad,
we adopt the Feynman gaugea51 for the gluon propagator

C. Regular graph

The contribution from the regular graph is

asS
reg~p!5 i(

m
gmjBm

reg~p!1jCreg~p!

5CFE
2p

p d4k

~2p!4

1

j2k̂0
21 k̂2

3

i(
m

gmF̄Bm~p,k!1F̄C~p,k!

(
m

K̄m~p2k!21L̄~p2k!2

, ~4.26!

whereK̄m5atKm , L̄5atL, the gluon momenta are rescale
asamkm→km andamk̂m→ k̂m , and

F̄Bm5atFBm52K̄mX̄m
2 2K̄m(

r
~X̄r

21Ȳr
2!12L̄X̄mȲm ,

~4.27!

F̄C5atFC52(
r

K̄rX̄rȲr2L̄(
r

~X̄r
22Ȳr

2! ~4.28!

with K̄m5atKm(p2k), L̄5atL(p2k), X̄m5X̄m(2p2k,
6k), andȲm5Ȳm(2p2k,6k) given in Appendix A. Since
the vertices from the clover termsmnFmn in the fermion
actions areO(at) and vanishing in theat→0 limit, we omit
their contributions.

In the at→0 limit, where

FB0 ——→
at→0

~p02k0!H 12(
j

~X̄j
21Ȳj

2!J , ~4.29!

FBi ——→
at→0

2KiX̄i
22Ki H 11(

j
~X̄j

21Ȳj
2!J 12LX̄iȲi ,

~4.30!
11450
-

FC ——→
at→0

2(
j

K j X̄j Ȳj2L H 11(
j

~X̄j
22Ȳj

2!J , ~4.31!

we obtain

jBm
reg~p! ——→

at→0 E
k
E

2`

` dk0

2p
1

as
2k0

21 k̂2

3FBm~p,k!S2~p2k!, ~4.32!

jCreg~p! ——→
at→0 E

k
E

2`

` dk0

2p
1

as
2k0

21 k̂2

3FC~p,k!S2~p2k!. ~4.33!

Here we defined

E
k
[CFE

2p

p d3k

~2p!3
~4.34!

and

S2~p2k![
1

~p02k0!21(
i

Ki~p2k!21L~p2k!2

.

~4.35!

Differentiating Eqs.~4.32! and~4.33! in terms of the externa
momentap and then settingp5( iM 1 ,0), we obtain the con-

tributions to M1
[1] and ZM2

[1] according to Eqs.~4.9! and

~4.23!. For the evaluation of the loop integrals, we first int
grate overk0 analytically as described in Appendix B. Th
remaining integration overk is evaluated numerically using
the adaptive integration routineVEGAS @23#.

Since the rest mass and the kinetic mass are phys
quantities, the one-loop corrections to them are infrared
nite. Although there are infrared divergences in the par
derivativesD1s(0) andD1t(0) in the kinetic mass renormal
ization, they cancel in the total derivativeD(0). In numerical
integrations overk, we evaluate the total derivative directl
rather than evaluating each partial derivative with subtract
of the infrared divergences.

D. Tadpole graph

Although the calculation ofS tad is much simpler than tha
of S reg, it is worthwhile to show the dependence of the r
sults on the mass and on the parameters. The contribu
from the tadpole graph at finiteat is given by

asS
tad~p!5 i(

m
gmjBm

tad~p!1jCtad~p!

5CFE
2p

p d4k

~2p!4

1

j2k̂0
21 k̂2

3(
m

am

at
F igmH amXm sin~ampm!
3-8
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14amZmsin~2ampm!cos2S km

2 D J
2H amYm cos~ampm!14amWm cos~2ampm!

3cos2S km

2 D J G , ~4.36!

from which we immediately obtain

jBm
tad~p!5CF

am

as
$JamXm18TmamZm cos~ampm!%

3sin~ampm!, ~4.37!

jCtad~p!52CF(
m

am

as
$JamYm cos~ampm!

14TmamWm cos~2ampm!%, ~4.38!

where

J[jE
2p

p d4k

~2p!4

1

j2k̂0
21 k̂2

, ~4.39!

Tm[jE
2p

p d4k

~2p!4

1

j2k̂0
21 k̂2

cos2S km

2 D .

~4.40!

In the at→0 limit, J5T050.2277 andTi50.1282.
The tadpole contributions toM1

[1] and ZM2

[1] in the at→0

limit are easily calculated from Eqs.~4.37! and ~4.38!. The
contribution to the rest mass before the subtraction~4.10! is
given by

asM1,nosub
tad ——→

at→0

CF(
i

$JasYi14TiasWi%,

~4.41!

which depends onasYi andasWi , i.e., nds , but not on the
mass. It contributes to the critical massasm0c only, so
asM1

tad50 after the subtraction.
The contribution to the kinetic mass renormalization

given by

ZM2

tad ——→
at→0

CFF2n ~JasX118T1asZ1!1asm2~JasY1

116T1asW1!G . ~4.42!

We find that a term proportional toasm2 appears, which
depends onnds again. This manifestasmQ dependence origi-
nates from thejD (1s) term in Eq.~4.23!. ThereforeZM2

tad di-

verges asO(asmQ) toward the static limit for the sD34 ac
tion with ds.0, while it is mass independent for the S
11450
action with ds50. Similar mass dependences are also
served inZM2

reg . We discuss theO(asmQ) divergence ofZM2

in Sec. V.

E. Tadpole improvement

Tadpole improvement@22# is achieved by replacing the
link variableUm by Um /um , whereum5,Um. is the mean
link variable. In perturbation theory the contribution from th
tadpole improvement is obtained from the difference b
tween the inverse free propagatorG0

21 and the tadpole-

improved inverse free propagator (G0
21)TI @18#. In momen-

tum space the latter is given by the former with t
replacements

sin~nampm!→sin~nampm!/um
n ,

cos~nampm!→cos~nampm!/um
n , ~4.43!

wheren51,2, . . . . Theone-loop contribution is then given
by

asS
TI~p!5@asG0

21~p!2as~G0
21!T.I.~p!#/g2

5(
m

as

am
um

[1]@ igm$2amXm

18amZm cos~ampm!%sin~ampm!

2$2amYm cos~ampm!14amWm cos~2ampm!%#,

~4.44!

where we expanded

um511g2um
[1]1O~g4! ~um

[1],0!. ~4.45!

We adopt the mean link in the Landau gauge for the defi
tion of um , which is given by

um
[1]52

1

2

am
2

as
2

CFJm
a50 ~4.46!

with

Jm
a5jE

2p

p d4k

~2p!4

1

j2k̂0
21 k̂2 H 12~12a!

~as
2/am

2 !k̂m
2

j2k̂0
21 k̂2 J

~4.47!

[J2~12a!dJm . ~4.48!

In the at→0 limit, ( i 51
3 dJi5dJ05 1

2 J. We then obtain

jBm
TI~p!52CF

am

as
Jm

a50$amXm14amZm cos~ampm!%

3sin~ampm!, ~4.49!
3-9
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jCTI~p!5CF(
m

am

as
Jm

a50$amYm cos~ampm!

12amWm cos~2ampm!%. ~4.50!

Comparing Eqs.~4.49! and ~4.50! with Eqs. ~4.37! and
~4.38!, we find thatjBm

TI and jCm
TI are also obtained from

jBm
tad andjCm

tad with the replacements

J→2Jm
a50 , Tm→2

1

2
Jm

a50 . ~4.51!

The contributions toM1,nosub
[1] andZM2

[1] from the tadpole im-

provement are given by Eqs.~4.41! and ~4.42! with the
above replacements. SinceJi

a505 5
6 J, the tadpole contribu-

tions are largely canceled by the tadpole improvement.

V. ONE-LOOP RESULTS

A. Rest mass

Now we present the results of our one-loop calculations
the at→0 limit. The one-loop correction to the rest ma

asM1
[1] is plotted as a function ofasM1

[0] /(11asM1
[0] ) in

Fig. 5, and the numerical values ofasM1
[1] and asm0c

[1] are
given in Table I. As shown in the figure,asM1

[1] for all the
actions increase from the massless limit and reach t
maximum values aroundasM1

[0]51 –3; then decrease to th
static values represented by open symbols. By fitting
results in the small mass region (asM1

[1]!1), we confirmed
that the one-loop corrections are consistent with the m

singularity

11450
n

ir

r

ss

M1
[1];2CF

3

16p2
M1

[0] log~asM1
[0] !2. ~5.1!

The results forasM1
[1] in the static limitasM1

[0]→` de-
pend on the action, since the reduced static action~3.3! in-
cludes theas

3D i
2 term proportional tonds . This situation is in

contrast to the case of finiteat calculations in@18,21#, where
asM1

[1] goes to a universal value. In the finiteat case,asM1
[1]

FIG. 5. asM1
[1] versusasM1

[0] /(11asM1
[0] ) for the SW action

and the sD34 actions. The values in the static limit are denoted
open symbols.
TABLE I. Numerical values ofasM1
[1] for various values ofasM1

[0] , andasm0c
[1] for the SW action and

the sD34 actions.

asM1
[1]

asM1
[0] SW sD34 sD34~v! sD34~p!

0.0 0.000000(00) 0.000000(00) 0.000000(00) 0.000000(00)
0.1 0.033586(11) 0.018299(19) 0.018360(21) 0.015615(23)
0.2 0.059382(20) 0.029235(21) 0.029306(21) 0.024206(23)
0.3 0.081252(22) 0.037292(24) 0.037354(23) 0.030177(41)
0.4 0.100023(23) 0.043466(28) 0.043405(21) 0.034594(25)
0.5 0.116008(27) 0.048228(29) 0.048196(25) 0.037909(25)
0.6 0.129786(19) 0.051966(24) 0.051762(25) 0.040428(32)
0.7 0.141467(36) 0.054948(34) 0.054572(31) 0.042396(31)
0.8 0.151341(22) 0.057183(24) 0.056763(22) 0.043836(33)
0.9 0.159679(29) 0.059029(36) 0.058465(29) 0.044916(49)
1.0 0.166758(21) 0.060338(33) 0.059687(24) 0.045724(34)
2.0 0.196227(24) 0.062578(35) 0.060997(28) 0.045709(32)
3.0 0.199166(39) 0.058705(39) 0.056713(28) 0.041241(34)
4.0 0.197161(26) 0.054263(23) 0.052280(29) 0.036472(30)
5.0 0.194441(44) 0.050519(28) 0.048617(55) 0.032255(53)
10.0 0.184712(29) 0.038993(46) 0.037121(28) 0.018373(37)
` 0.168490(26) 0.019045(21) 0.018249(29) 20.009803(27)

asm0c
[1]

— 0.000000(00) 20.060828(02) 20.061672(02) 0.001431(03)
3-10
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does not depend onnds in the atmQ→` limit, because the
static action always gives the Wilson line.

B. Kinetic mass renormalization

The one-loop correction to the kinetic mass renormali
tion ZM2

is related to the speed-of-light renormalizationn

FIG. 6. The lower figure showsZM2

[1] versusasM1
[0] for the SW

action and the sD34 actions. The value in the static limit for the
action is denoted by open circles. Lines are the linear approxi
tions to the results for the sD34 actions (ZM2 ,lin

[1] ) as explained in the

text. The upper figure shows the differenceZM2

[1] 2ZM2 ,lin
[1] versus

asM1
[0] for the sD34 actions.
11450
-

according to Eq.~4.22!. The study of theasmQ dependence
of n at the one-loop level is a main purpose of this pap
The results forZM2

[1] are shown in Fig. 6, and their numeric

values are given in Table II.
First, we focus on the result for the SW action, whi

becomes the naive quark action in theat→0 limit as the
Wilson term and the clover term vanish. From Fig. 6~lower
panel!, we find that the mass dependence ofZM2

[1] ~filled

circles! is very weak, andZM2

[1] stays constant in the infinite

mass limit. The difference between the value in the sta
limit and that in the massless limit isZM2

[1] (`)2ZM2

[1] (0)5

20.006. This is only 6% of the same difference for the is
tropic SW action,20.10 @21#. The result implies that mas
dependent discretization errors of orderg2(asmQ)n for ZM2

[1]

are small on the anisotropic lattice. The same conclus
holds for any action that becomes the naive quark action
the at→0 limit. For instance, the action withr s50 andds
5d/j, whered is a constant independent ofj, belongs to
this class. However, we remark that such actions suffer fr
spatial doublers for large values ofj, as mentioned in Sec
II.

Next, we consider the results for the sD34 actions, wh
are doubler-free even in theat→0 limit. As shown in Fig. 6
~lower panel!, ZM2

[1] for the sD34 actions decreases monoto

cally as the mass increases and diverges asO(asmQ) toward
the static limit.

The O(asmQ) divergence ofZM2

[1] is due to the finiteness

of jD (1s) in the static limit multiplied byasm2 in Eq. ~4.23!.
The appearance of this manifestasmQ dependence, which is
proportional tonds , can be explained as follows. Usin
ZM2

[1] , the kinetic term renormalizationd r for the static action

~3.5! is given by

a-
TABLE II. Numerical values ofZM2

[1] for the SW action and the sD34 actions.

ZM2

[1]

asM1
[0] SW sD34 sD34~v! sD34~p!

0.0 0.01810(35) 0.02061(30) 0.02369(49) 0.00549(59)
0.1 0.01812(19) 0.016066(63) 0.020152(61) 20.00313(11)
0.2 0.018236(53) 0.012019(46) 0.016416(46) 20.012140(85)
0.3 0.017991(51) 0.007856(48) 0.012592(45) 20.021208(59)
0.4 0.017941(49) 0.003750(39) 0.009003(38) 20.030040(78)
0.5 0.017801(43) 20.000349(34) 0.005406(47) 20.039223(56)
0.6 0.016708(38) 20.004308(39) 0.001676(33) 20.047996(50)
0.7 0.017507(32) 20.008387(32) 20.001963(32) 20.056888(53)
0.8 0.017326(64) 20.012299(84) 20.005543(28) 20.065500(50)
0.9 0.017142(47) 20.016238(28) 20.009117(28) 20.074070(46)
1.0 0.016862(36) 20.020149(28) 20.012661(31) 20.082456(55)
2.0 0.015176(35) 20.056742(34) 20.046665(28) 20.160259(59)
3.0 0.014246(21) 20.090607(29) 20.078766(30) 20.229675(78)
4.0 0.013677(17) 20.122890(42) 20.109982(40) 20.293550(90)
5.0 0.013371(18) 20.154177(45) 20.140336(48) 20.35409(12)
10.0 0.012716(15) 20.304675(91) 20.288888(86) 20.63276(22)
` 0.012316(07) 2` 2` 2`
3-11
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d r5 lim
mQ→`

S 1

asM2
2

1

asm2
D52 lim

mQ→`

g2
ZM2

[1]

asm2
1O~g4!.

~5.2!

Becaused r is a constant independent of the mass,ZM2

[1] di-

verges asO(asmQ) in the large mass limit.
However, we note that this kind ofO(asmQ) divergence

is nothing to do with the discretization error increasing
asmQ but a renormalization of the reduced static action~3.5!.
In order to isolate such anO(g2asmQ) effect, we consider a
subtractedZM2

[1] defined through

ZM2 ,sub
[1] 5ZM2

[1] 1d r
[1]asm2 ~5.3!

as a measure of the remainingO„g2(asmQ)n
… (n>2) errors.

After the subtraction of the manifestasmQ dependence
ZM2 ,sub

[1] for the sD34 actions converges to a finite value in

static limit as shown in Fig. 7. We also find that the ma
dependence ofZM2 ,sub

[1] for the sD34 and sD34~v! actions is as

small as that for the SW action. Note thatZM2 ,sub
[1] 5ZM2

[1] for

the SW action because ofd r50.
Another way to discuss the remainingO„g2(asmQ)n

… (n
>2) errors for the sD34 actions is to assess their linearit
the mass parameter. SinceZM2

[1] for the sD34 actions seems t

be effectively a linear function ofasM1
[0] as shown in Fig. 6

~lower panel!, we attempt a linear fit using the data fo
asM1

[0]<0.5. The fitting lines ZM2 ,lin
[1] 5ZM2

[1] (0)1cr
[1]

3asM1
[0] shown by dashed or dotted lines approximateZM2

[1]

very well from the small mass regionasM1
[0]!1 to the rela-

tively large mass regimeasM1
[0];1. The differenceZM2

[1]

2ZM2 ,lin
[1] is plotted in the upper panel of Fig. 6. We find th

the difference is less than or about 0.005~0.01! at asM1
[0]

51 ~3! for the sD34 and sD34~v! actions, and slightly large

FIG. 7. ZM2 ,sub
[1] for the sD34 actions together withZM2 ,sub

[1]

5ZM2

[1] for the SW action. The values in the static limit are deno
by open symbols.
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for the sD34~p! action. Since the~renormalized! coupling
constant isg254pas;2 in current simulations, the differ
ence from the linearityg2(ZM2

[1] 2ZM2 ,lin
[1] ) is small compared

to the tree-level valueZM2

[0] 51. This indicates that

O„g2(asmQ)n
… (n>2) errors are suppressed on the anis

tropic lattice, andZM2

[1] for the sD34 actions can be well ap

proximated by a linear ansatz:ZM2

[1] 'ZM2 ,lin
[1] .

If one would like to avoid the appearance of the renorm
ization scaling asasmQ , it is possible to tune the spatia
Wilson term asRs

[1]52d r
[1] such that the second term in Eq

~5.3! vanishes, and then the one-loop coefficient of t
speed-of-light renormalization is given byn [1]5ZM2 ,sub

[1] /2.

Since the remainingO„(asmQ)n
… correction forn [1] is small

and does not diverge as a function ofasmQ as shown in Fig.
7, it essentially solves the problem of the large radiat
correction in the anisotropic lattice actions for the hea
quark. It also suggests that if one can nonperturbatively t
the Wilson term in the static limit, e.g. by adjustingr s until
the O(asmQ) divergence ofZM2

for mesons disappears, th

above cancellation of theasmQ error can be implemented
nonperturbatively.

VI. CONCLUSIONS

In this paper we discuss on the issue whether the disc
zation error scales as (asmQ)n when the heavy quark actio
is discretized on an anisotropic lattice for which the tempo
lattice spacingat is very small in order to keep the conditio
atmQ!1, while the spatial lattice spacingas is relatively
large andasmQ can be of order 1. Our naive expectation
that the discretization error does not behave asasmQ for
heavy-light mesons~or baryons! at rest, since the momentum
scale flowing in the spatial direction is of order of the QC
scale LQCD rather than the heavy quark mass scalemQ .
Even at the quantum level the maximum~virtual! momentum
flowing into the spatial direction isp/as , and the discretiza-
tion error coming from the spatial derivative cannot pick
the large heavy quark mass.

Through one-loop calculations of the kinetic mass ren
malization for a class of lattice fermion actions, we fou
that our expectation is indeed met. For the sD34 actions th
is a piece that behaves asasmQ in the one-loop coefficient of
the kinetic mass renormalization, but it originates from t
renormalization of the spatial Wilson term, which remai
even in the static limit, and thus does not come from
discretization of the spatial derivative. This implies that
one can nonperturbatively tune the spatial Wilson term~the
parameterr s) such that it vanishes in the static limit, th
unwanted behaviorasmQ can be removed from the speed-o
light renormalization. Although there is the possibility th
the unwanted discretization error scaling asasmQ exists in
some other quantities, it is unlikely from our consideratio

The anisotropic lattice thus remains a promising appro
to treat heavy quarks on the lattice. As in the usual relativ
tic approach, the theory is renormalizable and the numbe
necessary terms in the action is limited. It also opens
3-12
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possibility of tuning the parameters in the action nonpert
batively for heavy quarks.
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APPENDIX A: DEFINITIONS AND FEYNMAN RULES

The lattice covariant derivatives are defined by

¹mc~x![
1

2am
@Um~x!c~x1m!2U2m~x!c~x2m!#,

~A1!

Dmc~x![
1

am
2 @Um~x!c~x1m!1U2m~x!c~x2m!

22c~x!#, ~A2!

¹mDmc~x![
1

2am
3 @Um~x!Um~x1m!c~x12m!

2U2m~x!U2m~x2m!c~x22m!

22Um~x!c~x1m!12U2m~x!c~x2m!#,

~A3!

Dm
2 c~x![

1

am
4 @Um~x!Um~x1m!c~x12m!

1U2m~x!U2m~x2m!c~x22m!

24Um~x!c~x1m!24U2m~x!c~x2m!

16c~x!#. ~A4!

We also define the lattice momenta

amp̄m[sin~ampm!, ~A5!

amp̂m[2 sin~ampm/2!. ~A6!

The Feynman rules for our anisotropic actions can be
rived in the usual way. The gluon propagator in the Feynm
gauge is given by

Dmn
ab~k!5

dabdmn

k̂2
. ~A7!

The quark propagator is

G0~p!5
1

i(
m

gmKm~p!1L~p!

, ~A8!
11450
r-

-

-

e-
n

where

K0~p!5 p̄0 ——→
at→0

p0 , ~A9!

Ki~p!5n p̄i~11bsai
2p̂i

2!, ~A10!

and

L~p!5m01
1

2
at(

m
r mp̂m

2 1nds(
i

ai
3p̂i

4 ~A11!

——→
at→0

m01nds(
i

ai
3p̂i

4 ~A12!

for our quark actions with Eq.~2.6!.
The one-gluon vertex with incoming quark momentumq,

outgoing quark momentumq8, and incoming gluon momen
tum k5q82q is given by

V1,m
a ~q,q8,k!52 igta@gmX̄m~q1q8,k!2 iȲm~q1q8,k!#,

~A13!

where

X̄m~q1q8,k!52amXm cosS amqm1amqm8

2 D
14amZm cos~amqm1amqm8 !cosS amkm

2 D ,

~A14!

Ȳm~q1q8,k!52amYm sinS amqm1amqm8

2 D
14amWm sin~amqm1amqm8 !cosS amkm

2 D ,

~A15!

and

amXm5
1

2
nm1nmbm , ~A16!

amYm5
1

2
r m

a0

am
14nmdm , ~A17!

amZm52
1

2
nmbm , ~A18!

amWm52nmdm . ~A19!

The ta are generators of color SU~3!. We ignore the one-
gluon vertex arising from the clover terms because this v
tex becomes irrelevant in theat→0 limit.

Finally, the two-gluon vertex with incoming gluon mo
mentak andk8 (k1k85q82q) is given by
3-13
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V2,mm
ab ~q,q8,k,k8!52amg2~ tatb!

3F igmH amXm sinS amqm1amqm8

2 D
14amZm sin~amqm

1amqm8 !cosS amkm

2 D cosS amkm8

2 D J
2H amYm cosS amqm1amqm8

2 D
14amWm cos~amqm

1amqm8 !cosS amkm

2 D cosS amkm8

2 D J G .
~A20!

Here we omit terms that vanish by symmetrizing betwe
two gluons and that arise from the clover terms, which
unnecessary in the calculation of the tadpole graph.

APPENDIX B: k0 INTEGRATIONS

In this appendix we summarize some formulas for thek0
integrations, which are needed for the calculation of
regular graph. We use the following results for on
dimensional integrations:

I 1[E
2`

`

dx
1

a1bx2

c

g2~ ie2x!21 f 2

5pcH 1

Aab

1

2g2~e2Aa/b!21 f 2
1

1

a2b~e1 f /g!2

1

f gJ ,

~B1!

I 2[E
2`

`

dx
1

a1bx2

c~ ie2x!

g2~ ie2x!21 f 2

5 ipcH 1

Aab

e2Aa/b

2g2~e2Aa/b!21 f 2
2

1

a2b~e1 f /g!2

1

g2J ,

~B2!

I 3[E
2`

`

dx
1

a1bx2

c

~g2~ ie2x!21 f 2!2
52

1

2 f

]I 1

] f
,

~B3!

I 4[E
2`

`

dx
1

a1bx2

c~ ie2x!2

„g2~ ie2x!21 f 2
…

2
52

1

2g

]I 1

]g
,

~B4!
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n
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e
-

I 5[E
2`

`

dx
1

a1bx2

c~ ie2x!

„g2~ ie2x!21 f 2
…

2
52

1

2 f

]I 2

] f
,

~B5!

I 6[E
2`

`

dx
1

a1bx2

c

„g2~ ie2x!21 f 2
…

3
52

1

4 f

]I 3

] f
,

~B6!

I 7[E
2`

`

dx
1

a1bx2

c~ ie2x!

„g2~ ie2x!21 f 2
…

3
52

1

4 f

]I 5

] f
,

~B7!

where e, f /g is assumed. These integrations are cal
lated by hand using the residue theorem and checked
MATHEMATICA .

In the calculation of the regular graph, we assign

x→k0 , a→uk̂u2, b→as
2 , g→1, e→M1 ,

f→E~k!, ~B8!

where

E~k![An2(
i

k̄i
2~11bsai

2k̂i
2!21S m01nds(

i
ai

3k̂i
4D 2

.

~B9!

The overall factorsc depend on the spatial momentumk.
Using the integrationsI 1–I 7 with the above assignments, th
relevant contributions from the regular graph are given b

jB0
reg~ iM 1 ,0!5E

k

1

2p
I 22B0 , ~B10!

jCreg~ iM 1 ,0!5E
k

1

2p
I 12C , ~B11!

jA1
reg~ iM 1 ,0!5E

k

1

2p
~ I 12A11I 32A1!, ~B12!

jD1s
reg~0!5E

k

1

2p F1

i
~ I 22Ds1I 52Ds1I 72Ds!

2~ I 12Ds1I 32Ds1I 62Ds!G , ~B13!

i jD1t
reg~0!5E

k

1

2p
~ I 12Dt1I 42Dt2 i I 52Dt!.

~B14!
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