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Gauge theories on a 2¿2 anisotropic lattice
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The implementation of gauge theories on a four-dimensional anisotropic lattice with two distinct lattice
spacings is discussed, with special attention to the case where two axes are finely and two axes are coarsely
discretized. Feynman rules for the Wilson gauge action are derived and the renormalizability of the theory and
the recovery of the continuum limit are analyzed. The calculation of the gluon propagator and the restoration
of Lorentz invariance in on-shell states is presented to one-loop order in lattice perturbation theory forSU(Nc)
on both 212 and 311 lattices.
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I. INTRODUCTION

The anisotropic lattice is a popular tool in numeric
simulations. The usual approach is to make the temporal
tice spacing fine while keeping the spatial directions re
tively coarse. The extra temporal resolution in this 311 dis-
cretization scheme is useful when measuring two- and th
point correlation functions of particles which decay rapid
This is particularly useful for heavy hadrons and glueb
states, for which the signal to noise ratio decreases rap
with time. The glueball spectrum@1,2# was an early succes
for this approach and, more recently, heavy quark syst
have been studied using anisotropic lattices@3–14#.

In this paper we consider a generalization of the ani
tropic approach to include lattices with a 212 discretization.
The temporal and one spatial direction are made fine, ke
ing the remaining two spatial directions coarse. The moti
tion for this choice is to explore the feasibility of calculatin
decays which produce high-momentum daughter partic
These include the phenomenologically interesting tran
tions B→p ln and B→K* g. Cabibbo-Kobayashi-Maskaw
~CKM! matrix elements are determined from such exclus
decay processes through a combination of experimen
measured branching fractions and theoretical calculation
form factors. The light daughter hadrons in these dec
have a nonzero momentum and so in a lattice calculatio
the nonperturbative form factors there are cutoff effects p
portional to this momentum in units of the lattice spacin
ThereforeB→p ln has discretization errors proportional
app wherea is the lattice spacing. However, the range
momenta reliably reached by current experimental and lat
data do not overlap. Lattice calculations work best withpp

<1 GeV but the bulk of experimental data for the exclus
decayB→p ln lie at pp>1.5 GeV. To avoid model depen
dence kinematic cuts can be applied, restricting the rang
lattice data to momenta where the calculation is reliable@15#,
awaiting improved experimental results. Alternatively, t
lattice data can be extrapolated to match experiment@16–18#
but this introduces model dependence and increases sub
tially the systematic error in lattice calculations and theref
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in uVubu. For B→K* g the situation is more acute since th
decay happens at the maximum recoil momentum of
daughter meson, far from the range accessible to current
tice calculations. Therefore it is necessary to extrapolate w
outside the range of reliable data@19,20#, once again intro-
ducing model dependence and increasing the systemati
rors. For this reason it has not been widely studied us
lattice methods and calculations to date have used isotr
lattices. In both cases the difficulty for lattice calculations
that errors proportional to the momentum of the orderap,
grow quickly. These must be controlled to make phenome
logically relevant lattice calculations. The advantages then
the 212 lattice are twofold. First, the fine temporal lattic
spacing serves the same purpose as in the 311 case: corre-
lation functions should be accurately determined while ke
ing computational costs modest. Secondly, making one s
tial direction fine and injecting all momentum along th
direction keeps discretization errors ofO(ap) small for high
momenta.

The transitionB→p ln has been calculated using a 311
discretization scheme and the improved resolution in
temporal direction led to higher-momentum (0<pp

<1.5 GeV) particles being reliably simulated@21#. Both this
calculation and the isotropic calculations which were
viewed in Ref.@22# find that one of the largest systemat
errors in the range of accessible momenta is due to the c
extrapolation. The 212 discretization does not address th
issue but it is hoped that it will further extend the range
momentum available to lattice calculations and that stati
cal precision will be enhanced.

The paper is organized as follows. In Sec. II a gene
anisotropic formulation forSU(Nc) Yang-Mills theory in
four dimensions is presented. The differences between 311
and 212 discretisations are discussed in terms of the lat
symmetries and the parameter tuning required. Section
contains the framework of the perturbative calculation,
ready outlined in Ref.@23#. Although the goal is a 212 dis-
cretization, the Feynman rules and the analytic proced
given are completely general and allow an exact treatmen
the calculations. In Sec. IV we present our results and
©2003 The American Physical Society02-1
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clude a comparison with other work. The challenging alg
braic manipulations were performed on a computer usin
symbolic code which handles the dependence on the an
ropy analytically. The core of the code is similar to that us
in Ref. @24#, while the treatment of the lattice integrals fo
lows from Ref. @25#. Section V contains our conclusion
while some technical details are given in Appendixes
and B.

II. YANG-MILLS THEORIES ON A 2 ¿2 ANISOTROPIC
LATTICE

In this section, formulations ofSU(Nc) Yang-Mills theory
on general orthogonal lattice types are considered. A ge
alization of the Wilson action forSU(Nc) Yang-Mills theory
on the lattice is given by

SW5b (
n,mn

cmnS 12
1

2Nc
Tr„Pmn~x!1Pmn

† ~x!…D , ~1!

whereb52Nc /g2 with g2, the lattice coupling constant an
Nc the number of colors.Pmn is the plaquette in the (m,n)
plane;

Pmn~x!5Um~x!Un~x1m̂ !Um
† ~x1 n̂ !Un

†~x!. ~2!

The six coefficientscmn in Eq. ~1! will describe the anisot-
ropy class.

If some sub-sets of these parameters are given iden
values, the lattice action may have symmetries under
interchange of axes. In particular, if the two identities

c125c235c31~5ccc!

~3!
c415c425c43~5cc f!

are imposed, the lattice action is symmetric under the cu
point group, and the 311 anisotropy class is realized. Sim
larly, if the identity

c135c145c235c24~5cc f! ~4!

is imposed, the lattice action transforms trivially under e
ments of the groupC4n ^ C4n , with the first constituent
group comprising the rotations and reflections in the~1,2!
plane and the second being those in the~3,4! plane. This
anisotropy class is denoted 212.

For phenomenologically motivated reasons, as discus
in Sec. I, consideration will be restricted to these cases wh
only two distinct lattice spacings are permitted. The coa
and fine lattice spacing will be denotedac and af respec-
tively. In this paper the overall scalea is chosen to beaf .
The implementation of a 311 anisotropy, in which the lattice
spacing in the temporal direction is made fine keeping
spatial lattice spacing coarse, has been widely discusse
the literature@26,27#.

In the continuum, the corresponding sub-groups ofO(4),
the rotations in Euclidean space that are generated by
manding the same symmetries in the coefficients of the c
tinuum dimension-four operators, areO(3) for the class de-
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scribed in Eq. ~3! and O(2)^ O(2) for Eq. ~4!. If the
operators which transform trivially under these symmetr
are enumerated there is one operator for the Euclidean gr
(Tr FmnFmn), two operators for theO(3) spatial rotation
group ~most conveniently denoted TrEiEi and TrBiBi for
chromoelectric and chromomagnetic! and three operators fo
the O(2)^ O(2) case (TrF f f 8F f f 8 , Tr F f cF f c and
Tr Fcc8Fcc8).

The recovery of Euclidean invariance in the low-ener
physics of an anisotropic lattice requires a parameter tun
in contrast to the isotropic case. Additional differences ar
between the 311 lattices, for which a one-parameter tunin
suffices and 212 lattices which necessitate a two-parame
tuning. The importance of parameter tuning, in particular
the 212 case is emphasized in Sec. II A.

Finally, it is interesting to note that taking the anisotro
j→` yields, up to a gauge transformation, the Hamiltoni
limit of the theory on a 311 lattice. For the 212 anisotropy
class, this limit cannot be taken naively; a theory in whi
only two of the four dimensions are discretized is not reg
larized.

A. 2¿2: the need for tuning

As the continuum limit is approached for the 311 lattice
theory, the physics of the Euclidean invariant Yang-Mi
theory is reproduced, provided care is taken to account
the different grid spacings,ac anda. This can be achieved by
tuning the relative weights of the two sets of coefficients
Eq. ~3! to ensure the ratio of scales,j5ac /a measured by a
physical probe takes its desired value or alternatively,
arbitrary choice of the two parametersccc and cc f can be
taken and the ratio of scales measuredpost hoc. The 311
anisotropic theory is certain to be in the same universa
class as the desired theory since the single free param
~the relative weight ofccc and cc f) determines the ratio o
scalesj.

For the 212 case, an important distinction arises; wh
there are only two distinct dimension-four continuum ope
tors in the 311 class, there are three for the 212 case. As a
result, the recovery of a Euclidean invariant continuu
theory is not guaranteed since there are two free parame
and only a single ratio of scales. As a result, the general 212
lattice theories can lie in a larger universality class than
continuum four-dimensional Yang-Mills theory.

For this reason, care must be taken to ensure the reco
of Euclidean invariance in the continuum limit for a 212
simulation. The relative weights of the three operators in
action must be determined to ensure Lorentz invariance
on-shell Green’s functions. This tuning can be achieved p
turbatively or by restoring symmetries in a nonperturbat
calculation of, for example the static inter-quark potential.
the remainder of this paper, perturbation theory is used
determine the parameters in the action. A paper describ
the nonperturbative tuning of the parameters is in prepara
@28#.

B. cµn from perturbation theory

At the tree level, it is straightforward to determine th
values of the coefficients in the action. For the 311 lattice
2-2
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action, they areccc51/j, cc f5j and for the 212 case, they
areccc51/j2, cc f51 andcf f5j2. The one-loop definitions
of cmn can then be parametrized as

cmn
(212)55

j2
„11h f f

(1)g21O~g4!…, m,nPf,

1 „11hc f
(1)g21O~g4!…, mPc~f!,nPf~c!,

1

j2
„11hcc

(1)g21O~g4!…, m,nPc,

~5!

and

cmn
(311)5H j „11hc f

(1)g21O~g4!…, mPc~f!,nPf~c!,

1

j
„11hcc

(1)g21O~g4!…, m,nPc.

~6!

In both cases, an overall multiplicative weight can be a
sorbed into a redefinition of the field integration variable
and this is redundant in the action-tuning procedure sinc
symmetry is being enforced in on-shell Green’s functio
This change of variables will become important once mat
element matching of gluon fields is being performed.

III. PERTURBATION THEORY

We can now proceed to discuss Feynman rules for a g
eral four-dimensional anisotropic Wilson-like action, alrea
outlined in Ref.@23#. We follow the notation given in Ref
@29# and the interpretation of the anisotropy as a difference
momentum cutoffs will be our guideline. The matching
the lattice gluon action in Eq.~1! with its continuum coun-
terpart is made clearer by expressing the link variab
Um(n)5eifm(n) in terms of dimensionless fields

fm~n!5fm
b ~n!Tb, ~7!

whereTb are theSU(Nc) generators in the fundamental re
resentation satisfying the relations@Ta,Tb#5 i f abcTc and
Tr(TaTb)5 1

2 dab. The dimensionful gluon fieldsAm(x) can
then be reintroduced in Eq.~7! using the relation

fm
b ~n!5gajmAm

b ~x!, ~8!

where

jm5H 1, mPf,

j, mPc
~9!

is the anisotropy index. By taking into account the Jacob

(
n

5
1

jda4 (
x

, ~10!

whered denotes the number of coarse directions, one ea
obtains Eqs.~5! and ~6!. The continuum limit of the Eq.~1!
is then written as
11450
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SW5(
n

1

4
cmnF̂mn

b ~n!F̂mn
b ~n!1O

5
1

4 (
x

Fmn
b ~x!Fmn

b ~x!1O~a2!, ~11!

whereO is an irrelevant operator in the continuum involvin
terms with three or more gluon fields from which the no
trivial contribution to the Feynman rules will arise, while

F̂mn
b ~n!5 ]̂m

Rfn
b~n!2 ]̂n

Rfm
b ~n!2g fbcdfm

c ~n!fn
d~n!,

~12!

and

]̂m
Rw~n!5w~n1m̂ !2w~n! ~13!

are the dimensionless field strength and lattice right der
tive, whereas

Fmn
b ~x!5]m

RAn
b~x!2]n

RAm
b ~x!2g fbcdAm

c ~x!An
d~x!,

~14!

and

]m
Rw~x!5

1

ajm
„w~x1ajmm̂!2w~x!… ~15!

are their dimensionful equivalents.
As is well known, the Wilson action hasO(a2) discreti-

zation errors in the evaluation of various physical quantiti
In addition, the lattice regularization gives rise to fini
renormalization coefficients when compared to other c
tinuum schemes. These effects can be reduced by ad
irrelevant operators in the action which reduce discretizat
artifacts, or by improving the convergence of renormaliz
tion coefficients to better match continuum quantiti
@30,31#. In any of these cases an exact and completely a
braic treatment of the Feynman rules is always viable, e
at orders higher than one@32–36#. As for the lattice integrals,
while a completely numerical evaluation presents no pr
lem at first order, any one-plaquette action will change
structure of theO(a2) ~irrelevant! terms in the four and
higher gluon vertices but will not change the propagators,
three-gluon vertex, the measure or the gauge-fixing ter
which are all fixed by the Haar measure and the naive ma
ing with the continuum limit@37#. This means that once th
first-order analytic technique for the Wilson action is dev
oped it can be applied to any other one-plaquette action.
gauge actions with Wilson loops which extend two grid sp
ings, the technique given in Ref.@25# ~for fermion propaga-
tors! can be adapted while for actions with even larger loo
suitable techniques can be developed in the same spirit.
ing coordinate-space methods, analytic results are also a
able for higher orders@32,38,39#. Finally, mean-link im-
provement schemes@40# are straightforward to implemen
once the corresponding Feynman diagram is written dow
2-3
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A. The gauge fixing and the gluon propagator

For perturbation theory it is necessary to choose a ga
fixing and proceed to define the other parts of the act
needed to write the Feynman rules. In analogy with the i
tropic case we choose the gauge-fixing term such that

Sg f5
1

a (
x

Tr~]m
L Am!2, ~16!

where ]m
L w(x)51/(ajm)(w(x)2w„x2ajmm̂)…. It is

straightforward to show that

Sg f5
1

ã
(

n
Tr F 2 for F5bm

( l )]̂m
L fm~n!, ~17!

where now]̂m
L w(n)5w(n)2w(n2m̂) and

bm
( l )5H j l 11, mPf,

j l 21, mPc,
~18!

gives the desired form oncea5j22l 1d22ã. The choicel
5(d22)/2 would be easiest but we shall see in the follo
ing it is not the most convenient. The gluon propagator c
now be calculated from the two field terms in Eq.~12! and
the definition of the gauge fixing in Eq.~17!. The functional
form is similar to the isotropic case; namely,

5
dab

k̂2 S dmn2~12a!
k̂mk̂n

k̂2 D , ~19!

where

k̂m5
2

ajm
sinS ajm

2
kmD ,

k̂25(
m

k̂m
2 , ~20!

kmPS 2
p

ajm
,

p

ajm
D ,

are the dimensionful lattice momenta spanning the an
tropic Brillouin zones. All the anisotropy is now encaps
lated in this form of the Brillouin zone. This will prove to b
a constant pattern: for any vertex or propagator which ha
continuum analogue, the form in terms of the~anisotropic!
dimensionful momenta will resemble the isotropic on
since the asymmetry now lies solely in the different m
menta cutoffs.

B. The Haar measure

On the lattice the functional integral is obtained by in
grating over the dimensionless gauge links, but to do per
bation theory it must be expressed in terms of the dimens
11450
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ful gauge fields. The Jacobian resulting from the express
of the Haar measure in terms of Eq.~7! is @29#

J5AdetS 1

2
MM†D ,

M „f̃m~n!…5
12e2 i f̃m(n)

i f̃m~n!
, ~21!

f̃m~n!5fm
a ~n!ta,

where thefm
a (n) are the same as in Eq.~7! and theta are the

adjoint generators ofSU(Nc). ReexpressingJ as e2Smeas

gives

Smeas52
1

2 (
n,m

Tr logS 2„12cosf̃m~n!…

f̃m
2 ~n!

D . ~22!

When expanded to lowest order in the fields~which is all that
is needed for one-loop two-point function calculations! this
reads

Smeas.
1

4! (
n,m

Ncd
abfm

a ~n!fm
b ~n!, ~23!

which putting back the dimensionful fields gives the verte

52~2p!4d4~k1k8!
g2

a2

Nc

12
dmndab

jm
2

jd
. ~24!

By convention all gluon momenta are incoming.

C. Fadeev-Popov ghost fields

The Faddeev-Popov determinant, which forces the in
gration only on a section of the gauge orbits, must also
included in the action. UsingF in Eq. ~17! to enforce the
gauge condition onfm and using the response of the gau
fields on the lattice to~infinitesimal! gauge transformations
@29#

D̂m~f!5M 21~f̃m!]̂m
R1 i f̃m , ~25!

where f̃m and the inverse adjoint-valued operator,M are
given in Eq.~21!, we obtain

Sgh52(
n,m

c̄̂a~n!bm
( l )]̂m

L D̂m
ab~f!ĉb~n!, ~26!

whereĉ and c̄̂ are the dimensionless lattice ghost fields,
troduced to make Eq.~26! local. From the expansion o
M 21,

M 21~f̃m!5Iadj1
i

2
f̃m2

1

12
f̃m

2 1••• ~27!
2-4
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and by reintroducing dimensions, Eq.~26! can be written as

Sgh.2j l 21(
x

c̄a~x!dab]m
L ]m

Rcb~x!1g fabcc̄a~x!]m
L

3FAm
c ~x!S 11

ajm

2
]m

RD Gcb~x!

1
1

2!

g2a2jm
2

12
dmn$t

c,td%ab]m
Rc̄a~x!]m

Rcb~x!Am
c ~x!An

d~x!,

~28!

by including only terms which are relevant for one-loop tw
point functions. The factorj l 21 at the front ofSgh gives rise
to spurious coefficients with no continuum analogue wh
however, cancel in any graph with no ghost outer legs.
ternatively the coefficients can be absorbed in a redefini
of the ghost fieldsj ( l 21)/2c→c or by settingl 51, thus res-
caling the lattice gauge-fixing parameterã5j42da. For
each of these alternatives the ghost propagator and the
ghost one- and two-gluon vertices are

5dab
1

k̂2
, ~29!

5 ig~2p!4d4~k1p2p8! f abcp̂m8 p̃m , ~30!

5
1

12
g2a2~2p!4d4~k1k81p2p8!$tc,td%abdmnjm

2 p̂mp̂n8 ,

~31!

with p̃m5cos1
2pmajm . As usual the vertex which has a co

tinuum analogue carries no explicit dependence on the
isotropy.

D. Gluon vertices

Taking into account the three-gluon terms arising fro
Eq. ~1!, one of which comes from the irrelevant operatorO
defined in Eq.~11! gives
11450
h
l-
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SW
(3)5g(

x
f abcdlnS Am

a ~x!1
ajm

2
]n

RAm
a ~x! D ]m

RAn
b~x!Al

c~x!,

~32!

which, after a Fourier transformation, leads to an express
equivalent to the isotropic case

5 ig~2p!4d4~k1k81k9! f abc
„dnl~k92k8 !̂mk̃n

1dml~k2k9 !̂nk8̃l1dmn~k82k!̂lk9̃m…. ~33!

Taking the four-gluon terms arising from Eq.~1!, mostly
coming fromO ~see Ref.@29# for details!, and rechecking
the cancellations which must occur due to Bose symme
one finds the four-gluon vertex whose expression is given
Appendix A.

E. One-loop correction vertex

The one-loop corrections to the action coming from E
~5! and ~6! give rise to an extra vertex which reads

52~2p!4d4~k1k8!g2dabS dmn(
r

hmr
(1)k̂r

22hmn
(1)k̂mk̂nD ,

~34!

where

hmn
(1)5H h f f

(1) , m,nPf,

hc f
(1) , mPc~f!,nPf~c!,

hcc
(1) , m,nPc.

~35!

In the 311 case one can either seth f f
(1) to zero or leave it

free, as by the traceless property of the vertex it will alwa
cancel.

F. The continuum limit and anisotropic renormalization

The calculation of the one-loop corrections to the glu
self-energy,Smn,ab(p), using the Wilson action involves five
Feynman diagrams@41# and Eq. ~34!. Each diagram is a
function of the external momentap and can be written as

G~p!5E d4k

~2p!4 F~k,p!, ~36!

wherek is the integration momenta. Since we are interes
in the continuum limit of Eq.~36!, if the integral is ultravio-
2-5
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let convergent we can simply substitute the functionF(k,p)
with its continuum equivalent. Otherwise, if Eq.~36! is di-
vergent and contains only massive propagators so
F(k,p) is finite for any set of momenta going to zero, o
can use the lattice version of the BPHZ technique@42–44#
by writing

G~p!5E d4k

~2p!4 FF~k,p!2 (
n50

nF 1

n!
pm1

. . . pmn

]

]pm1

3•••

]

]pmn

F~k,p!p50U
p50

G
1E d4k

~2p!4 (
n50

nF 1

n!
pm1

. . . pmn

]

]pm1

3 . . .
]

]pmn

F~k,p!U
p50

[Gc~p!1GL~p!, ~37!

where nF is the degree of divergence of the diagram. T
first term in Eq.~37! is ultraviolet finite@43,44# and therefore
its continuum limit can be taken, making it independent ofj.
All the effects of the lattice regularization remain in the se
ond term, which is simply a polynomial in the external m
menta with coefficients given by zero-momentum lattice
tegrals.

On the other hand, if a diagram contains massless pro
gators, as in our case, more care is needed: indeed an e
sion aroundp50 can give rise to infrared divergences.
simple recipe is to introduce an intermediate infrared re
larization. Given an anisotropic cutoff the introduction of
mass,m in the propagators is the most suitable soluti
@25,32,45#, while dimensional regularization is popular in th
literature for the isotropic case@33,41#. Gc(p) andGL(p) are
then divergent form→0 separately but the divergences ca
cel in the sum.

IV. RESULTS

In this section we present the results of the one-loop c
rection to the gluon propagator using the Wilson action in
Feynman gauge for a general anisotropic lattice in four
mensions. Applying the procedure explained in Sec. IV A
calculate the values of the coefficients which restore on-s
Lorentz invariance, where the definition and treatment of
lattice integralsBj is given in Appendix B.

A. On-shell Lorentz invariance

As explained in Sec. II, the one-loop propagator obtain
from the Feynman rules given in Sec. III will not in gener
satisfy Lorentz invariance. The free parameters in Eq.~35!
must be tuned to restore the symmetry@26,27,46#. From Eq.
11450
at

e

-

-

a-
an-

-

-

r-
e
i-
e
ll
e

d
l

~34! it is clear that not every Lorentz-breaking term can
cancelled, as expressions of the formdmn /a2 and dmnpm

2

arise from each diagram. The first nontrivial result of o
calculation is that, for any value ofd and j, such terms
cancel exactly when the diagrams are summed up, just a
the isotropic case, independently of the tuning procedure

The remaining Lorentz-breaking artifacts arising from t
mixing of longitudinal and transverse field components ha
the correct structure and can be cured by tuning. We cho
to fix the parameters in the action by demanding the recov
of Lorentz invariance for on-shell physical soft gluon mode
imposing that the two physical eigenvalues of the one-lo
propagator vanish forE25p2. Since this is a gauge-invarian
condition we restrict ourselves to a particular gauge.
have chosen the Feynman gauge for whicha51. By inject-
ing the gluon momentum in any possible direction and c
culating the eigenvalues and eigenvectors of the propag
we obtain a general condition forhcc

(1)2hc f
(1) and h f f

(1)

2hc f
(1) , independent of the direction ofpm . The value of

hc f
(1) remains unconstrained as it can be reabsorbed in a

loop b shift.
To identify the physical eigenmodes, the momenta dir

tions with residual symmetry are first identified. In the ca
of the 212 lattice, this corresponds to any momenta in t
coarse-coarse or fine-fine planes. Then for more general
menta, the axis of propagation was smoothly varied aw
from these symmetric cases, and the eigenmodes con
ously traced. This investigation lead to a generalization
the polarization condition,pmem50 for on-shell gluon polar-
ization vector em . The resulting 212 lattice polarization
condition is pmZmnen50, with Zmn is the diagonal matrix
Zmn5dmn(Zcdmc1Zfdm f) and Zc , Zf the coarse and fine
gluon field renormalization coefficients.dm f anddmc are one
~zero! if m is fine ~coarse!.

B. The one-loop coefficients for the restoration
of Lorentz invariance

For 212 anisotropic lattice the one-loop coefficients f
the restoration of Lorentz invariance are

hcc
(1)2hc f

(1)52
1

2Nc
FB j

c~1,1!2
1

4G
1NcF2

1

16
1

Bj~1!

6 S 7

2
1

1

j2D
1

B j
c~1,1!

4
2

B j
c~2,1!

3 S 21
5

2j4
1

11

2j2D
1

B j
f ~2,1,1!

6 S 1

2
1j2D G , ~38!

and
2-6
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TABLE I. Nc-polynomial coefficients ofhcc
(1)2hc f

(1) andh f f
(1)2hc f

(1) for j51, . . . ,10 on a 212 anisotropic
lattice.

j hcc
(1)2hc f

(1) h f f
(1)2hc f

(1)

1/Nc Nc 1/Nc Nc

1 0 0 0 0
2 20.1161042701 0.0958601237 0.0775690169 20.0741548219
3 20.1886258210 0.1529850132 0.1010941459 20.1044390683
4 20.2391230676 0.1920838712 0.1107973557 20.1217185361
5 20.2774799637 0.2215115752 0.1156439679 20.1335092263
6 20.3083219799 0.2450412380 0.1183899089 20.1424129673
7 20.3340937184 0.2646297423 0.1200891686 20.1495669092
8 20.3562244833 0.2814071688 0.1212112364 20.1555537098
9 20.3756169823 0.2960809268 0.1219898822 20.1607076435
10 20.3928761275 0.3091218866 0.1225517876 20.1652371442
h
te

i
e

he
ar
h f f
(1)2hc f

(1)5
1

2Nc
F1

4
2

1

2j2
1

B j
c~1,1!

j4 G2
Nc

2 F1

4 S 1

2
2

1

j2D
1Bj~1!S 1

2
1

1

3j2D 1
B j

c~1,1!

2j4

2B j
c~2,1!S 5

3j4
1

1

j2
1

1

6D 2
B j

f ~2,1,1!

3j2 G ,

~39!

which diverge logarithmically withj, while for 311 we
have

hcc
(1)2hc f

(1)5
Nc

j FBj~1!

6 S j2

3
1

19

6
1

7

2j2D
1

B j
c~1,1!

4 S 11
1

j2D 2B j
c~2,1!S 1

3
1

11

6j2

1
5

2j4D 2
1

8G2
1

2jNc
FB j

c~1,1!S 11
1

j2D 2
1

2G ,

~40!

which agrees with the general result of Ref.@27# and the
Nc53 result of Ref. @46#. The techniques used by bot
groups involve extrapolations in some suitable parame
absent in our treatment. The functionsBj are defined in Ap-
pendix B. Using the results given there the Hamiltonian lim
j→` can be treated analytically and agrees again with R
@27#. The difference in the parameters,hcc

(1)2hc f
(1) and h f f

(1)

2hc f
(1) appears as a polynomial inNc with terms proportional

to 1/Nc andNc only, as expected. Numerical values for t
coefficients in this polynomial for a range of anisotropies
given to ten decimal places in Tables I and II.
11450
r,

t
f.

e

C. The gluon self-energy in the Feynman gauge

Once the values in Eqs.~38!, ~39! and ~40! are inserted,
the one-loop correction to the gluon self-energy reads

Smn,ab
(1) ~p!5g2dab~dmnp22pmpn!

3$A2hc f
(1)2B~dmcdnc2dm fdn f !%. ~41!

For 212 we have

A52
1

8Nc
1NcF 1

16
1

Bj~1!

2 S 1

3
2

1

4j2D
1

B j
c~2,1!

4j2 S 7

3j2
21D 2

B j
f ~2,1,1!

12
1

5

3
X~j!G ~42!

B5NcFBj~1!

12 S 11
1

2j2D 2
B j

c~2,1!

4j2 S 11
1

j2D G , ~43!

while for 311

TABLE II. Nc-polynomial coefficients ofhcc
(1)2hc f

(1) for j
51, . . . ,10 on a 311 anisotropic lattice.

j hcc
(1)2hc f

(1)

1/Nc Nc

1 0 0
2 20.0853420430 0.0663515978
3 20.1202379609 0.0892976526
4 20.1389282597 0.1007025039
5 20.1504977336 0.1074686585
6 20.1583451793 0.1119335310
7 20.1640119208 0.1150960459
8 20.1682939409 0.1174518583
9 20.1716426764 0.1192740369
10 20.1743328788 0.1207251404
2-7
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TABLE III. Nc-polynomial coefficients ofhcc
(1)2hc f

(1) andh f f
(1)2hc f

(1) for j51, . . . ,10 on a 212 aniso-
tropic lattice using mean~coarse! plaquette improvement.

j hcc
(1)2hc f

(1) h f f
(1)2hc f

(1)

1/Nc Nc 1/Nc Nc

1 21/16 1/16 1/16 21/16

2 20.2366564052 0.2164122588 0.1981211519 20.1947069547

3 20.3454387314 0.3097979237 0.2579070564 20.2612519788

4 20.4211846015 0.3741454050 0.2928588896 20.3037800700

5 20.4787199456 0.4227515571 0.3168839498 20.3347492082

6 20.5249829699 0.4617022280 0.3350508989 20.3590739573

7 20.5636405777 0.4941766016 0.3496360278 20.3791137684

8 20.5968367250 0.5220194105 0.3618234781 20.3961659514

9 20.6259254734 0.5463894180 0.3722983733 20.4110161346

10 20.6518141912 0.5680599503 0.3814898513 20.4241752080
th

ic

r
e

ry

ed
A5
1

2Ncj
FB j

c~1,1!

j2
2

1

2G1
Nc

j F1

8
1

5j

3
X~j!2

B j
c~1,1!

4j2

1
B j

c~2,1!

4j2 S 7

j2
1

1

3D 1
Bj~1!

6 S 1

3
2

5

2j2D G , ~44!

B5
Nc

j FBj~1!

6 S 1

2
1

1

j2D 2
B j

c~2,1!

4j2 S 11
3

j2D G , ~45!

where

X~j!5
1

16p2 S 2 log~a2p2!1F0~j!2gE1
28

9 D . ~46!

We stress that the term proportional toB in Eq. ~41! does not
break Lorentz invariance but arises from the difference in
renormalizations of the fine and coarse fieldsAm . This dif-
ference must be taken into account when calculating phys
11450
e

al

quantities such as theL parameter or matrix elements. Afte
including the difference, the physical modes will still b
transverse.

Setting j51 we recover from Eq.~41! the well-known
value of the gluon self-energy@32,33,41#

Smn,ab~p!5dab~dmnp22pmpn!

3F12g2H Nc

16p2 S 2
5

3
log~p2a2!1

28

9 D
2

1

8Nc
1NcS 7

72
Z01

5

48p2
~F02gE!1

1

16D J G
1O~g4!, ~47!

whereZ0 andF0 are standard integrals in perturbation theo
on the isotropic lattice~see e.g. Ref.@45#!. In order to calcu-
late coefficients at the one-loop level in mean-link improv
TABLE IV. Nc-polynomial coefficients ofhcc
(1)2hc f

(1) and h f f
(1)2hc f

(1) for j51, . . . ,10 on a 212 aniso-
tropic lattice using mean~coarse! link improvement.Z0 is defined in Sec. IV B.

j hcc
(1)2hc f

(1) h f f
(1)2hc f

(1)

1/Nc Nc 1/Nc Nc

1 23Z0/8 3Z0/8 3Z0/8 23Z0/8
2 20.2304051667 0.2101610203 0.1918699134 20.1884557162
3 20.3391678963 0.3035270885 0.2516362213 20.2549811436
4 20.4150758989 0.3680367024 0.2867501870 20.2976713674
5 20.4727526305 0.4167842420 0.3109166347 20.3287818930
6 20.5191216331 0.4558408912 0.3291895621 20.3532126205
7 20.5578576084 0.4883936322 0.3438530585 20.3733307991
8 20.5911125215 0.5162952070 0.3560992746 20.3904417479
9 20.6202462174 0.5407101620 0.3666191173 20.4053368786
10 20.6461700016 0.5624157607 0.3758456617 20.4185310183
2-8
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perturbation theory, the evaluation of either the plaque
^Tr Pmn& or the link trace in Landau gauge,^Tr Um& is re-
quired. We find

1

Nc
^Tr Pcc&512

g2

2jd22 S Nc2
1

Nc
DB j

c~1,1!, ~48!

1

Nc
^Tr Pf c&512

g2

4jd S Nc2
1

Nc
D „j2B j

f ~1,1!

1B j
c~1,1!…, ~49!

1

Nc
^Tr Pf f&512

g2

2jd S Nc2
1

Nc
DB j

f ~1,1!, ~50!

and

1

Nc
^Tr Uc&512

g2

4jd S Nc2
1

Nc
D

3Fj2Bj~1!2B j
c~2,1!S 12

1

a D G , ~51!

1

Nc
^Tr U f&512

g2

4jd S Nc2
1

Nc
D

3FBj~1!2B j
f ~2,1!S 12

1

a D G , ~52!

whereB j
f (q,1) satisfies Eq.~B4!. Numerical values of the

Nc-polynomial coefficients,hcc
(1) , hc f

(1) and h f f
(1) for a range

of anisotropies and including these improvement terms
given in Tables III, IV, V, and VI.

TABLE V. Nc-polynomial coefficients ofhcc
(1)2hc f

(1) for j
51, . . . ,10 on a 311 anisotropic lattice using mean~coarse!
plaquette improvement.

j hcc
(1)2hc f

(1)

1/Nc Nc

1 21/16 1/16

2 20.1694788603 0.1504884150

3 20.2118450434 0.1809047350

4 20.2337180290 0.1954922732

5 20.2468908748 0.2038617997

6 20.2556482395 0.2092365912

7 20.2618777619 0.2129618870

8 20.2665309579 0.2156888753

9 20.2701369251 0.2177682856

10 20.2730125217 0.2194047833
11450
,

re

V. CONCLUSIONS

In this paper, a generalization of the Wilson discretizati
to an anisotropic lattice with two coarse and two fine dire
tions has been described. In particular, an important dist
tion between the 212 anisotropy and the well-establishe
311 case has been emphasized. The difference is tha
coefficients in the 212 action must be determined befo
simulation to ensure Lorentz invariance, while any 311 ac-
tion leads to a Lorentz-invariant theory once the ratio
scalesj is determined. We are currently investigating no
perturbative techniques for computing these coefficients
the 212 case@28#.

The main result of the paper was to compute these c
ficients to first order in perturbation theory. While the foc
of the calculation was on determining the Feynman rules
the 212 lattice Wilson gauge action, a more general p
scription was developed to allow the 311 case to be inves
tigated as well. This allowed us to check our results aga
previously published work. The results in a mean-link im
provement scheme were presented.

The usefulness of this scheme arises from the need
make accurate calculations of form factors and matrix e
ments at high momentum. This paper establishes the tool
perturbation theory calculations on the 212 anisotropic lat-
tice, which will be important later when computing th
matching factors to link calculations of weak-decay mat
elements to their continuum counterparts. As part of this p
gram, quark fields on 212 anisotropic lattices are under con
sideration.
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TABLE VI. Nc-polynomial coefficients ofhcc
(1)2hc f

(1) for j
51, . . . ,10 on a 311 anisotropic lattice using mean~coarse! link
improvement.Z0 is defined in Sec. IV B.

j hcc
(1)2hc f

(1)

1/Nc Nc

1 23Z0/8 3Z0/8

2 20.1643550433 0.1453645980

3 20.2068380749 0.1758977666

4 20.2288323401 0.1906065843

5 20.2420838939 0.1990548187

6 20.2508913882 0.2044797400

7 20.2571539394 0.2082380645

8 20.2618297768 0.2109876942

9 20.2654518384 0.2130831989

10 20.2683392407 0.2147315023
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APPENDIX A: THE FOUR GLUON VERTEX

52g2H(
e

f abef cdeH dmldnrF ~q2s!̃m~k2r !̃n2
a4

12
jm

2 jn
2k̂nq̂m r̂ nŝmG2dmrdnlF ~q2r !̃m~k2s!̃n2

a4

12
jm

2 jn
2k̂nq̂m r̂ mŝnG

1
a2

6
dnldnrjn

2~s2r !̂mk̂nq̃m2
a2

6
dmldmrjm

2 ~s2r !̂nq̂mk̃n1
a2

6
dmndmrjr

2~q2k!̂l r̂ rs̃l2
a2

6
dmndmljl

2~q2k!̂rŝl r̃ r

1
a2

12
dmndmldmrjm

2 (
s

~q2k!̂s~s2r !̂sJ 1~b↔c,n↔l,q↔r !1~b↔d,n↔r,q↔s!J 1
g2

12
a4H 2

Nc
~dabdcd1dacdbd

1daddbc!1(
e

~dabedcde1dacedbde1dadedbce!J H dmndmldmrjm
2 (

s
js

2 k̂sq̂s r̂ sŝs2dmndmljm
2 jr

2k̂rq̂r r̂ rŝm

2dmndmrjm
2 jl

2k̂lq̂lŝl r̂ m2dmldmrjm
2 jn

2k̂n r̂ nŝnq̂m2dnldnrjm
2 jn

2q̂m r̂ mŝmk̂n1dmndlrjm
2 jl

2k̂lq̂l r̂ mŝm

1dmldnrjm
2 jn

2k̂n r̂ nq̂mŝm1dmrdnljm
2 jn

2k̂nŝnq̂m r̂ mJ .
s
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APPENDIX B: BOSONIC INTEGRAL EVALUATION

Apart from the denominators in Eq.~19! and~29!, all the
j dependence in the evaluation of Feynman diagram
polynomial in j and 1/j. Having changed integration var
ables to the asymmetric Brillouin zone, only lattice zer
momentum integrals of the form

Bj~q,n1 ,n2 ,n3 ,n4!5E
2p

p d4k

~2p!4

k̂x
2n1k̂y

2n2k̂z
2n3k̂t

2n4

DB~k,m!q

~B1!

remain. In Eq. ~B1!, q and ni are positive integers,k̂m
52 sin(km/2) and thej dependence is in the inverse boson
propagator

DB~k,m!5 (
mP f

k̂m
2 1

1

j2 (
mPc

k̂m
2 1m2. ~B2!

alone. To evaluate these integrals, we adapt a techn
given in Refs.@25#, @45#. In the following, when one of theni
is zero it is omitted as an argument ofBj , while, where no
confusion can arise, the index innm is dropped andB j

f , B j
c

or B j
f c denotes integrals whose numerators have a fi

coarse or mixed momentum. In Refs.@25#, @45#, a set of
recursion relations was defined to reduce every relevan
tegral to a linear combination of three basic integrals.
though similar relations exist in the asymmetric case,
lack of a complete symmetry among the indices,ni makes
this reduction more difficult. The relations can still be us
to reduce the number of integrals which must be calcula
11450
is

-

ue

e,

n-
-
e

d

considerably and to prove the cancellations of Loren
breaking terms. A first set can be obtained by expanding
trivial identity

Bj~q2n,na , . . . ,nb!5E
2p

p d4k

~2p!4

k̂a
2na

••• k̂b
2nbDB~k,m!n

DB~k,m!q
,

~B3!

which gives relations of the type

~42d!B j
f ~q,1!1

d

j2
B j

c~q,1!5Bj~q21!2m2Bj~q!,

~B4!

~42d!B j
f ~q,2!1~42d!~32d!B j

f ~q,1,1!

1
2d~42d!

j2
B j

f c~q,1,1!1
d

j4
B j

c~q,2!

1
d~d21!

j4
B j

c~q,1,1!5Bj~q22!22m2Bj~q21!

1m4Bj~q! ~B5!

and so on. Furthermore, whenr .1, using the identity
2-10
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~ k̂m
2 !r

DB~k,m!q
54

~ k̂m
2 !r 21

DB~k,m!q
12jm

2
~ k̂m

2 !r 22

q21

3sinkm

]

]km

1

DB~k,m!q21
, ~B6!

and integrating by parts, we obtain the relation

Bj~q, . . . ,r m , . . . !5jm
2 r 21

q21
Bj~q21, . . . ,r m21, . . . !

2jm
2 4r 26

q21
Bj~q21, . . . ,r m22, . . . !

14Bj~q, . . . ,r m21, . . . !, ~B7!

which depends on the indexm5 f ,c. A final set of relations
is found by using the trivial fact that the numerator cann
have more than four different arguments, e.g.

Bj~q,1,1,1,1!5~d24!Bj~q11,2f ,1,1,1!

1
d

j2
Bj~q11,1,1,1,2c!

1m2Bj~q11,1,1,1,1!. ~B8!

The 212 case has the bonus relation, 1/jBj5jB1
j which is

relevant to the numerical evaluation of a range of integrals
similar relation would map 311 integrals to 113. With the

TABLE VII. Bj(1) for 212 and 311 as a function ofj to
10232 precision.

j 212

1 0.15493339023106021408483720810745
2 0.27309284159872576605248340464151
3 0.34489265148380372504682107682350
4 0.39476479072982726208009053119503
5 0.43269826887073920594692758485023
6 0.46325286965085016997908881189910
7 0.48882308585244885903279712081054
8 0.51080767194929084936132635888190
9 0.53009088018361126653278475943989
10 0.54726616387832592956739420406785

j 311

1 0.15493339023106021408483720810745
2 0.39746855267384293273601515359921
3 0.63909144650207181551150685543306
4 0.87599824804148552213829648851546
5 1.10989753717092264667311285543088
6 1.34197554748773397230022959566745
7 1.57290464634371239724254250061935
8 1.80307278894183022754245621178021
9 2.03271449270324135251760022607330
10 2.26197832054321458404301146488387
11450
t

A

help of these relations we can reduce the propagator ca
lation to four converging integrals,Bj(1), B j

c(1,1), B j
c(2,1)

andB j
f (2,1,1), the last of which vanishes for 311, and one

infrared diverging integral,Bj(2).
For numerical calculation, settingn5( ini and using the

well-known Schwinger representation@41#, the integrals are
rewritten as

Bj~q,n1 ,n2 ,n3 ,n4!5
~21!n

2q2nG~q!
E

0

`

dllq21e2m2l/2

3 )
m51

4 F dnm

dxnm
exp2x I 0~x!G

x5l/d
m
2

,

~B9!

with

dn

dxn
exp2x I 0~x!5

e2x

2n21 (
k50

n

~21!n2kM3
n,kI k~x!,

~B10!

whereM3
n,k are partition multinomial coefficients andI k(x)

are modified Bessel functions of the first kind@47,48#. Since
we want to focus attention on the massless case (m2→0)
and keeping only the nonvanishing terms either divergen
finite, power-counting shows that the integra
Bj(q,n1 ,n2 ,n3 ,n4) for q2n<1, are infrared finite. As a
result their value can be directly calculated from Eq.~B9! by

TABLE VIII. F0(j) for 212 and 311 as a function ofj to
10228 precision.

j 212

1 4.3692252338747587180021767477
2 3.1818862274504847285875097585
3 2.2336373613788360098511237787
4 1.5519382904759206782491885601
5 1.0353940883292892812839278453
6 0.6235592513202110800048370509
7 0.2823597812415587497126918746
8 20.0084789916018349072700020647
9 20.2617758427992475365501484308
10 20.4860763765593393395653061782

j 311

1 4.3692252338747587180021767478077
2 3.0013807239614706751354255882375
3 2.0763302182432342962706829473432
4 1.4343462876751234663331108882378
5 0.9504439561174006940006958674003
6 0.5632462682606760634612041417967
7 0.2405570583083765791881447111856
8 20.036178339243301342993891362519
9 20.278533198254716148526058151986
10 20.494190516782956896533394268235
2-11
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setting m250. Numerical evaluation to, say, 32 digits b
comes trivial with the use of a numerical integration packa
available with programs likeMATHEMATICA or MAPLE ~see
Table VII!. Furthermore, simple dimensional arguments g
Bj(q,nf ,nc)5O„(j logj)q2nf/j… for q.nf andBj(q,nf ,nc)
5O(jq2nf) for q<nf for the 212 case while for 311,
Bj(q,nf ,nc)5O(jq2nf). From this, the asymptotic behavio
of the one-loop corrections can be easily obtained, by no
limj→`B j

c(2,1)/„j2Bj(1)…51/6 for 311.
We can now describe the computation of the relevant p

of Bj(q,n1 ,n2 ,n3 ,n4), q2n>2, which is infrared diver-
gent. Using the asymptotic expansion for largex of I n(x)

I n~x!'
ex

A2px
(
k50

`
~21!kG~n1k11/2!

~2x!kk!G~n2k11/2!
, ~B11!

the leading and sub-leading behavior is easily determin
This can be reexpressed in terms ofG( i ,m2),i 50 . . .q2n
22 whose integral representation can be directly subtra
from the integrand, leaving anm2→0 converging integral.
For example, in the casen50, the constantsbi are defined
as the expansion ofI 0(x)4, which are rational numbers mu
tiplied by p22. The divergent part ofBj(q) is then given by

jd

G~q! (
i 52

q21
bi 22G~q2 i !

2i~m2!q2 i
2

jdbq22

2pG~q!
logm2. ~B12!

Following the literature, the finite contribution to

Bj~2!5
jd

16p2
„2 logm22gE1F0~j!…1O~m2!

~B13!

is calculated first and the finite part of the other integrals
defined up to it. Using

G~0,m2!52 logm22gE2 (
n51

`
~2m2!n

nn!
~B14!
an

11450
e

e

g

rt

d.

d

s

and taking the limm2→0 yields

F0~j!5
4p2

jd E
0

2

dll exp2(42d1d/j2)lI 0
42d~l!I 0

dS l

j2D
1E

2

`

dlS 4p2

jd
l exp2(42d1d/j2)lI 0

42d~l!

3I 0
dS l

j2D 2
1

l D .

For example

Bj~3!5
jd

32p2m2 1
jd

128p2 „logm21gE2F0~j!…1 fBj~3!,

~B15!

B j
f ~3,1!5

jd

64p2 „2 logm22gE1F0~j!…1 fB j
f ~3,1!

~B16!

B j
c~3,1!5

jd12

64p2
„2 logm22gE1F0~j!…1 fB j

c~3,1!

~B17!

which using Eq.~B5! and taking limm2→0m2Bj(3), must sat-
isfy

~42d! fB j
f ~3,1!1

d

j2
fB j

c~3,1!1
jd

32p2
50. ~B18!

Numerical values forBj(1) andF0 are presented for a rang
of anisotropies in Tables VII and VIII.
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