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The implementation of gauge theories on a four-dimensional anisotropic lattice with two distinct lattice
spacings is discussed, with special attention to the case where two axes are finely and two axes are coarsely
discretized. Feynman rules for the Wilson gauge action are derived and the renormalizability of the theory and
the recovery of the continuum limit are analyzed. The calculation of the gluon propagator and the restoration
of Lorentz invariance in on-shell states is presented to one-loop order in lattice perturbation the&idyN)
on both 2+2 and 3+1 lattices.
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I. INTRODUCTION in |Vyp|. ForB—K* y the situation is more acute since this
decay happens at the maximum recoil momentum of the
The anisotropic lattice is a popular tool in numerical daughter meson, far from the range accessible to current lat-
simulations. The usual approach is to make the temporal latice calculations. Therefore it is necessary to extrapolate well
tice spacing fine while keeping the spatial directions rela-outside the range of reliable ddth9,20, once again intro-
tively coarse. The extra temporal resolution in this13dis-  ducing model dependence and increasing the systematic er-
cretization scheme is useful when measuring two- and threeors. For this reason it has not been widely studied using
point correlation functions of particles which decay rapidly. lattice methods and calculations to date have used isotropic
This is particularly useful for heavy hadrons and glueballlattices. In both cases the difficulty for lattice calculations is
states, for which the signal to noise ratio decreases rapidlshat errors proportional to the momentum of the ordex
with time. The glueball spectruffl,2] was an early success grow quickly. These must be controlled to make phenomeno-
for this approach and, more recently, heavy quark systemiegically relevant lattice calculations. The advantages then of
have been studied using anisotropic lattitg@s14). the 2+2 lattice are twofold. First, the fine temporal lattice
In this paper we consider a generalization of the anisospacing serves the same purpose as in th& 8ase: corre-
tropic approach to include lattices with &2 discretization. lation functions should be accurately determined while keep-
The temporal and one spatial direction are made fine, keeprg computational costs modest. Secondly, making one spa-
ing the remaining two spatial directions coarse. The motivatial direction fine and injecting all momentum along that
tion for this choice is to explore the feasibility of calculating direction keeps discretization errors@{ap) small for high
decays which produce high-momentum daughter particlesnomenta.
These include the phenomenologically interesting transis- The transitionB— 77lv has been calculated using & 3
tions B— 7l v and B— K* . Cabibbo-Kobayashi-Maskawa discretization scheme and the improved resolution in the
(CKM) matrix elements are determined from such exclusivaemporal direction led to higher-momentum <@,
decay processes through a combination of experimentally=1.5 GeV) particles being reliably simulatg2il]. Both this
measured branching fractions and theoretical calculations afalculation and the isotropic calculations which were re-
form factors. The light daughter hadrons in these decaysiewed in Ref.[22] find that one of the largest systematic
have a nonzero momentum and so in a lattice calculation oérrors in the range of accessible momenta is due to the chiral
the nonperturbative form factors there are cutoff effects proextrapolation. The 22 discretization does not address this
portional to this momentum in units of the lattice spacing.issue but it is hoped that it will further extend the range of
ThereforeB— =l v has discretization errors proportional to momentum available to lattice calculations and that statisti-
ap, wherea is the lattice spacing. However, the range of cal precision will be enhanced.
momenta reliably reached by current experimental and lattice The paper is organized as follows. In Sec. Il a general
data do not overlap. Lattice calculations work best with  anisotropic formulation forSU(N;) Yang-Mills theory in
<1 GeV bhut the bulk of experimental data for the exclusivefour dimensions is presented. The differences betweeh 3
decayB— rlv lie at p,,=1.5 GeV. To avoid model depen- and 2+2 discretisations are discussed in terms of the lattice
dence kinematic cuts can be applied, restricting the range cfymmetries and the parameter tuning required. Section Il
lattice data to momenta where the calculation is reli@bt, contains the framework of the perturbative calculation, al-
awaiting improved experimental results. Alternatively, theready outlined in Ref{23]. Although the goal is a 22 dis-
lattice data can be extrapolated to match experifie®#-18  cretization, the Feynman rules and the analytic procedure
but this introduces model dependence and increases substayiven are completely general and allow an exact treatment of
tially the systematic error in lattice calculations and thereforehe calculations. In Sec. IV we present our results and in-
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clude a comparison with other work. The challenging algescribed in Eqg.(3) and O(2)®0(2) for Eq. (4). If the
braic manipulations were performed on a computer using aperators which transform trivially under these symmetries
symbolic code which handles the dependence on the aniso#re enumerated there is one operator for the Euclidean group,
ropy analytically. The core of the code is similar to that used(TrF,,F,,), two operators for theD(3) spatial rotation

in Ref.[24], while the treatment of the lattice integrals fol- group (most conveniently denoted EE; and TrB;B; for

lows from Ref.[25]. Section V contains our conclusions, chromoelectric and chromomagnetand three operators for
while some technical details are given in Appendixes Athe O(2)®0(2) case (TF/Fe, TrFeFg and

and B. Tchc’Fcc’)- . . . .
The recovery of Euclidean invariance in the low-energy

i physics of an anisotropic lattice requires a parameter tuning,

Il. YANG-MILLS THEOF:_'ETST%NEA 2 +2 ANISOTROPIC in contrast to the isotropic case. Additional differences arise
between the 31 lattices, for which a one-parameter tuning

In this section, formulations @U(N,) Yang-Mills theory ~ Suffices and 22 lattices which necessitate a two-parameter

on general orthogonal lattice types are considered. A geneftNing. The importance of parameter tuning, in particular for

alization of the Wilson action foB U(N,) Yang-Mills theory ~ the 22 case is emphasized in Sec. Il A. _
on the lattice is given by Finally, it is interesting to note that taking the anisotropy

&— o yields, up to a gauge transformation, the Hamiltonian
1 limit of the theory on a 3-1 lattice. For the 22 anisotropy

Sw=B2 Cu1- N P00+ PL0X) |, (1)  class, this limit cannot be taken naively; a theory in which

iy ¢ only two of the four dimensions are discretized is not regu-

where 8= 2N, /g? with g2, the lattice coupling constant and '21128d:

N. the number of colorsP,, is the plaguette in they, v) A. 2+2: the need for tuning

plane; . S .
As the continuum limit is approached for the- 3R lattice

P, (x)=U_,(x)U (x+,&)UT(x+ MUT(x). (2)  theory, the physics of the Euclidean invariant Yang-Mills
y7a% )23 v N v . . .
theory is reproduced, provided care is taken to account for
The six coefficients,,,, in Eq. (1) will describe the anisot- the different grid spacings,. anda. This can be achieved by
ropy class. tuning the relative weights of the two sets of coefficients in
If some sub-sets of these parameters are given identic&d. (3) to ensure the ratio of scale&=a./a measured by a
values, the lattice action may have symmetries under thghysical probe takes its desired value or alternatively, an

interchange of axes. In particular, if the two identities arbitrary choice of the two parametetg; and c;; can be
taken and the ratio of scales measupas$t hoc The 3+1
C12=Cp3=C31(=C¢c) anisotropic theory is certain to be in the same universality
(3) class as the desired theory since the single free parameter
C41= C42= C43( =Ccy) (the relative weight oft.. andc.;) determines the ratio of
scalesé¢.

are imposed, the lattice action is symmetric under the cubic For the 2+2 case, an important distinction arises; while
point group, and the 81 anisotropy class is realized. Simi- there are only two distinct dimension-four continuum opera-

larly, if the identity tors in the 31 class, there are three for the-2 case. As a
o 4 result, the recovery of a Euclidean invariant continuum
C13= C147 C23= Caa(=Cer) (4) theory is not guaranteed since there are two free parameters

and only a single ratio of scales. As a result, the genet& 2
lattice theories can lie in a larger universality class than the
continuum four-dimensional Yang-Mills theory.

For this reason, care must be taken to ensure the recovery

is imposed, the lattice action transforms trivially under ele-
ments of the groupC,,®C,,, with the first constituent
group comprising the rotations and reflections in the?)

plane and the second being those in Bg4 plane. This of Euclidean invariance in the continuum limit for a+2

anisotropy class is denoted2. esd'mulation. The relative weights of the three operators in the

For phenomenologically motivated reasons, as discuss ction must be determined to ensure Lorentz invariance in
in Sec. |, consideration will be restricted to these cases Whe%n—shell Green’s functions. This tuning can be achieved per-
only two distinct lattice spacings are permitted. The coars ' 9 P

! . . ) ?urbatlvely or by restoring symmetries in a nonperturbative
and fine lattice spacing will be denoted and a; respec- ; o :
. . : calculation of, for example the static inter-quark potential. In
tively. In this paper the overall scakeis chosen to be; .

The implementation of a-81 anisotropy, in which the lattice the remamder of this Paper, perturb_atlon theory is use_d_to
P A , : determine the parameters in the action. A paper describing
spacing in the temporal direction is made fine keeping th

spatial lattice spacing coarse, has been widely discussed %gg]nonperturbatwe tuning of the parameters is in preparation

the literature 26,27).

In the continuum, the corresponding sub-group©64),
the rotations in Euclidean space that are generated by de-
manding the same symmetries in the coefficients of the con- At the tree level, it is straightforward to determine the
tinuum dimension-four operators, a4 3) for the class de- values of the coefficients in the action. For the Blattice

B. ¢y, from perturbation theory
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action, they are .= 1/¢, c.s= ¢ and for the 2-2 case, they 1 ., .
arecg.=1/&2, ci=1 andcs;= £2. The one-loop definitions Sw=2> 2 CwrFun(MF L, (N+0
of c,, can then be parametrized as A

2 (1+ 7{Pg?+0(g* f 1
¢ e w0, pvel —2 S FL0F,0+0@), (@D
L) 1+ 7{g?+0(g%), wmech),vef(o), x
MV . . . . . .
14 »Wq2+ O(ag* , vec, whereQ is an irrelevant operator in the continuum involving
&2 L+ 7ec9 @), e terms with three or more gluon fields from which the non-
(5) trivial contribution to the Feynman rules will arise, while
and ) _ 2R 4by N 3R by ebed d
¢ 1+4P9%+0(g"), wmec),vef(),
(3+1)_
c,, =91 and
" : 1+ 7e?+0(gY), wm.vec.
(6) Jrp(n)=e(n+u)—e(n) (13)

In both cases, an overall multiplicative weight can be abgre the dimensionless field strength and lattice right deriva-
sorbed into a redefinition of the field integration variables,tive, whereas

and this is redundant in the action-tuning procedure since a

symmetry is being enforced in on-shell Green’s functions. Eb (x)=aRAb(x)—aRAb(x)—gbedAC(x)Ad(x),
This change of variables will become important once matrix- my e R ” v (14)
element matching of gluon fields is being performed.
and
Ill. PERTURBATION THEORY
We can now proceed to discuss Feynman rules for a gen- ,qu:(x) = i((P(XJragM;L)_ @(X)) (15)

eral four-dimensional anisotropic Wilson-like action, already ag,

outlined in Ref.[23]. We follow the notation given in Ref.

[29] and the interpretation of the anisotropy as a difference irdre their dimensionful equivalents.

momentum cutoffs will be our guideline. The matching of As is well known, the Wilson action ha®(a®) discreti-
the lattice gluon action in Eq(1) with its continuum coun- ~ Zation errors in the evaluation of various physical quantities.

terpart is made clearer by expressing the link variabledn addition, the lattice regularization gives rise to finite

Uﬂ(n)ze‘%(”) in terms of dimensionless fields renormalization coefficients when compared to other con-
tinuum schemes. These effects can be reduced by adding
b, (n)= ¢>z(n)Tb, (7) irrelevant operators in the action which reduce discretization

artifacts, or by improving the convergence of renormaliza-

whereTP are theSU(N,) generators in the fundamental rep- tion coefficients to better match continuum quantities

resentation satisfying the relatiofd?,T°]=if2*°T® and  [30,31. In any of these cases an exact and completely alge-
Tr(T2T®)=36%. The dimensionful gluon fieldé ,(x) can  braic treatment of the Feynman rules is always viable, even

then be reintroduced in Eq7) using the relation at orders higher than oi82—36. As for the lattice integrals,
while a completely numerical evaluation presents no prob-
¢2(n):ga§MAZ(x), (8) lem at first order, any one-plaquette action will change the

structure of theO(a?) (irrelevan) terms in the four and
where higher gluon vertices but will not change the propagators, the
three-gluon vertex, the measure or the gauge-fixing terms,
1, wef, which are all fixed by the Haar measure and the naive match-

§u= £ pec (9)  ing with the continuum limi{37]. This means that once the

first-order analytic technique for the Wilson action is devel-

ped it can be applied to any other one-plaquette action. For

auge actions with Wilson loops which extend two grid spac-

ings, the technique given in Rg25] (for fermion propaga-

1 : ; .

2 = , (10) tors) can be adapted while for actions with even larger loops,

n &lat X suitable techniques can be developed in the same spirit. Us-
ing coordinate-space methods, analytic results are also avail-

whered denotes the number of coarse directions, one easilgble for higher order§32,38,39. Finally, mean-link im-

obtains Eqgs(5) and (6). The continuum limit of the Eq(1) provement schemelglQ] are straightforward to implement

is then written as once the corresponding Feynman diagram is written down.

is the anisotropy index. By taking into account the Jacobiarg
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A. The gauge fixing and the gluon propagator ful gauge fields. The Jacobian resulting from the expression
For perturbation theory it is necessary to choose a gaugg the Haar measure in terms of Eq) is [29]
fixing and proceed to define the other parts of the action 1
needed to write the Feynman rules. In analogy with the iso- J= /de(—M M*),
tropic case we choose the gauge-fixing term such that 2
1 1—g idun)
_ La 2 ~
Set=7, g Tr(d,AL)% (16) M (s, (n))= W (21
y73

L _ - H ~

where  d,¢o(x)=1/(a,)(¢(X) —e(x—ag,u)). It is d)ﬂ(n):(ﬁi(n)ta,

straightforward to show that
where theqsi(n) are the same as in E(¥) and thet? are the

1 ~ i0i i ~Smeas
Syr== 2 Tr F2 for F= b2)5b¢ﬂ(”)- 17) ad10|nt generators oS5U(N;). Reexpressing] as e
a gives
where nowd: ¢(n)=¢(n)— ¢(n— ) and 1 2(1—cos¢,(n))
Le(N)=¢(n)—¢(n—wu) Smeas™ ~ 5 > TrIog(—~2 = - (22
§|+l /.LEf nu ¢’u(n)
(l): H il
by &1 puec, (18 When expanded to lowest order in the fie{ddich is all that
is needed for one-loop two-point function calculatiptiss
gives the desired form once=¢"2"9"2y. The choicel  reads
=(d—2)/2 would be easiest but we shall see in the follow- 1
ing it is not the most convenient. The gluon propagator can - N.52042 (&P (n 23
now be calculated from the two field terms in E42) and Smeas 4! % O PuM BN, 23
the definition of the gauge fixing in E¢17). The functional
form is similar to the isotropic case; namely, which putting back the dimensionful fields gives the vertex
k k K
H: @ Q000099 ¥, b 12 \QQOXQQQ v, b
520 kK, , 9% N &
:R—2<5M,,_(1—CY) EZ ), (19) :—(217)464(k+k )gﬁﬁﬁwb‘a g (24)
where By convention all gluon momenta are incoming.
K —isin a_guk C. Fadeev-Popov ghost fields
©oag, 2 The Faddeev-Popov determinant, which forces the inte-
gration only on a section of the gauge orbits, must also be
RZZE K2, (20) included in the action. Using in Eq. (17) to enforce the
© gauge condition or,, and using the response of the gauge
fields on the lattice tdinfinitesima) gauge transformations
T w [29]
kel ———,—
. ag,'ag,)’ . ~ ap o~
— -1 R

are the dimensionful lattice momenta spanning the aniso-

tropic Brillouin zones. All the anisotropy is now encapsu- where }5# and the inverse adjoint-valued operatM, are
lated in this form of the Brillouin zone. This will prove to be given in Eq.(21), we obtain

a constant pattern: for any vertex or propagator which has a

continuum analogue, the form in terms of ttanisotropi¢ = AL -
dimensionful momenta will resemble the isotropic ones, Sgh:_% ca(n)bﬂ)a;Dib(@cb(n),
since the asymmetry now lies solely in the different mo- ’

menta cutoffs.

(26)

wherec and?:_are the dimensionless lattice ghost fields, in-
troduced to make Eq(26) local. From the expansion of
B. The Haar measure M-
On the lattice the functional integral is obtained by inte- ) L
grating over the dimensionless gauge links, but to do pertur- RN T L At S
bation theory it must be expressed in terms of the dimension- M7 h) = lagi 2¢” 12¢f‘+ @7
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and by reintroducing dimensions, E@6) can be written as a
sW=92 12, Az<x>+%aﬁAz<x) RASOAS (),
Syr=— €712 €00 8%, 55c 00 +9 1% (x) 7, (32)
which, after a Fourier transformation, leads to an expression
a : : .
% AZ(X) 14 ?35) cP(x) equivalent to the isotropic case
k,p,a
1 g?a?é&? -
o115 Ottt apdct(X) FLc () ALOOAL(X), M
(28)
K, v b

by including only terms which are relevant for one-loop two-
point functions. The factof"1 at the front ofSy,, gives rise . 2 L sabc T T
to spurious coefficients with no continuum analogue which =ig(2m)**(k+k Tk oK'~k ks

however, cancel in any graph with no ghost outer legs. Al- P A =T o

ternatively the coefficients can be absorbed in a redefinition (K=K K 8, (K =K. 339

of the ghost fieldss! ~*?c—c or by settingl =1, thus res-  Taking the four-gluon terms arising from E€L), mostly
caling the lattice gauge-fixing parameter=£*~%a. For  coming fromO (see Ref[29] for detaild, and rechecking
each of these alternatives the ghost propagator and the twhe cancellations which must occur due to Bose symmetry,

ghost one- and two-gluon vertices are one finds the four-gluon vertex whose expression is given in
L Appendix A.
a - . b

E. One-loop correction vertex

The one-loop corrections to the action coming from Egs.

= yb%, (29 (5) and (6) give rise to an extra vertex which reads
k
k K
b e QoMY v:b
» k e
PACU R = —(2m) "84k +K)g26™| 6,,> nDI2— kK, ),
. p
D, a (34
. where
=ig(2m)*s*(k+p-p")f*p,p,,, (30)
; ' e, wmovef,
p’ : \ ( * p ’ ’Etlg: 7]((:]f-) ’ ME C(f),V € f(C)v (35)
.t 77(010), M, veEC.
ko, K oud In the 3+1 case one can either sef}) to zero or leave it

free, as by the traceless property of the vertex it will always
cancel.

1 A A
= 150°a%(2m)* 3 (k+ K +p—p ) {t°t%apd,. PP
(31)

F. The continuum limit and anisotropic renormalization

The calculation of the one-loop corrections to the gluon
o~ . self-energy?. ,, ap(p), using the Wilson action involves five

V_V'th P, = COS3P,aL, A,S usual thg \(ertex which has a con- Feynman dié{gramﬁl] and Eq.(34). Each diagram is a

tinuum analogue carries no explicit dependence on the an;ction of the external momentaand can be written as

isotropy.
d*k
D. Gluon vertices G(p)= j (ZT)“F(k’p)’ (36)

Taking into account the three-gluon terms arising from
Eq. (1), one of which comes from the irrelevant operatdr wherek is the integration momenta. Since we are interested
defined in Eq(11) gives in the continuum limit of Eq(36), if the integral is ultravio-
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let convergent we can simply substitute the functig(k, p) (34) it is clear that not every Lorentz-breaking term can be
with its continuum equivalent. Otherwise, if E6) is di-  cancelled, as expressions of the forcmyla2 and 5Wpi
vergent and contains only massive propagators so thairise from each diagram. The first nontrivial result of our
F(k,p) is finite for any set of momenta going to zero, onecalculation is that, for any value o and ¢, such terms
can use the lattice version of the BPHZ techni¢d2—44  cancel exactly when the diagrams are summed up, just as in
by writing the isotropic case, independently of the tuning procedure.
The remaining Lorentz-breaking artifacts arising from the

mixing of longitudinal and transverse field components have

d*k Fo1 d the correct structure and can be cured by tuning. We choose
G(p)= f (2m)° F(k’p)_nzo nt Pag Py to fix the parameters in the action by demanding the recovery
- of Lorentz invariance for on-shell physical soft gluon modes,
J imposing that the two physical eigenvalues of the one-loop
X - 5 F(K,p)p-o propagator vanish fdE?=p2. Since this is a gauge-invariant
P, p=0 condition we restrict ourselves to a particular gauge. We
a n have chosen the Feynman gauge for which1. By inject-
d’k F 1 d ing the gluon momentum in any possible direction and cal-
(277)4 o n! ar Pag -pMn(gle culating the eigenvalues and eigenvectors of the propagator
we obtain a general condition fop'Y— 7% and 7}
J (1)
< F(k,p) =G%p)+GL(p), (37) (n)cf , m_dependent of the dlrfectlon af,. The valu_e of
My, b0 nef remains unconstrained as it can be reabsorbed in a one-
loop B shift.

To identify the physical eigenmodes, the momenta direc-
whereng is the degree of divergence of the diagram. Thetions with residual symmetry are first identified. In the case
first term in Eq.(37) is ultraviolet finite[43,44 and therefore ~ Of the 2+2 lattice, this corresponds to any momenta in the
its continuum limit can be taken, making it independengof = coarse-coarse or fine-fine planes. Then for more general mo-
All the effects of the lattice regularization remain in the sec-menta, the axis of propagation was smoothly varied away
ond term, which is simply a polynomial in the external mo- from these symmetric cases, and the eigenmodes continu-
menta with coefficients given by zero-momentum lattice in-0usly traced. This investigation lead to a generalization of
tegrals. the polarization conditiom, €, =0 for on-shell gluon polar-

On the other hand, if a diagram contains massless propézation VECIOI’G . The resulting 22 lattice polarization
gators, as in our case, more care is needed: indeed an exp&@ndition isp,Z,,€,=0, with Z,,, is the diagonal matrix
sion aroundp=0 can give rise to infrared divergences. A Zuv= 0u,(ZcOuctZid,5) and Zc: Zf the coarse and fine
simple recipe is to introduce an intermediate infrared regugluon field renormalization coefficients,, and 5, are one
larization. Given an anisotropic cutoff the introduction of a (zero if u is fine (coarse.
mass, m in the propagators is the most suitable solution
[25,32,49, while dimensional regularization is popular in the
literature for the isotropic cag83,41]. G¢(p) andG-(p) are
then divergent fom— 0 separately but the divergences can-
cel in the sum.

B. The one-loop coefficients for the restoration
of Lorentz invariance

For 2+2 anisotropic lattice the one-loop coefficients for
the restoration of Lorentz invariance are

IV. RESULTS

1
In this section we present the results of the one-loop cor- 75— 0=~ m[ By1,0)— Z}

rection to the gluon propagator using the Wilson action in the

Feynman gauge for a general anisotropic lattice in four di- 1 Bg(l 7 1

mensions. Applying the procedure explained in Sec. IV Awe +N| — =+ —|z+—=
- . 16 2 I

calculate the values of the coefficients which restore on-shell

Lorentz invariance, where the definition and treatment of the (

lattice integralsB; is given in Appendix B. Byl 1) §(2 D
4

5 11)
2&4 252

A. On-shell Lorentz invariance L B2y (2 1 l) @8
As explained in Sec. Il, the one-loop propagator obtained

from the Feynman rules given in Sec. Il will not in general
satisfy Lorentz invariance. The free parameters in B8§)
must be tuned to restore the symmdi?$,27,44. From Eq. and
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TABLE I. N.-polynomial coefficients ofy)— 7} and (P — (¥ for £=1, . ..
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,10 on a 22 anisotropic

lattice.
3 70— 7y 7=y
1N, N, 1IN, N,
1 0 0 0 0
2 —0.1161042701 0.0958601237 0.0775690169 —0.0741548219
3 —0.1886258210 0.1529850132 0.1010941459 —0.1044390683
4 —0.2391230676 0.1920838712 0.1107973557 —0.1217185361
5 —0.2774799637 0.2215115752 0.1156439679 —0.1335092263
6 —0.3083219799 0.2450412380 0.1183899089 —0.1424129673
7 —0.3340937184 0.2646297423 0.1200891686 —0.1495669092
8 —0.3562244833 0.2814071688 0.1212112364 —0.1555537098
9 —0.3756169823 0.2960809268 0.1219898822 —0.1607076435
10 —0.3928761275 0.3091218866 0.1225517876 —0.1652371442
c C. The gluon self-energy in the Feynman gauge
m_,w_ |11 Balbhy & o . _
M~ ek 2N, |4 22 Iz 2 g Once the values in Eq$38), (39) and (40) are inserted,
the one-loop correction to the gluon self-energy reads
1 1 B41,1
+By(1) , BdLd 3 ab(P)=g26%%(5,,p°~ p,p.)
3 2 352 254 L
X A= 7= B(8,c80c— 8urur)}. (41)
5 1) Bu21D
By(2,1) 354 26 32 | For 2+2 we have
(39 N 1 B(D[1 1
= — — _—t | = —
8N, ¢l 16 2 |3 g4¢
which diverge logarithmically withé, while for 3+1 we ;
have B§(2,1) B«(2,1,1) 5
+ —1|—————+=X(&| (42
482 352 12 3
B(1)[ & 19 7
7 — nglg_ | S B(1) 1) B2 1
&1 6 |3 6 2¢ B=N¢ 5| 1+—|— 1+ ], 43
12 2¢ 4¢? &
B ‘g( 1,1 1 .
7 |1t 2] ~B«2] 3" 62 while for 3+1
5 1 1 1\ 1 TABLE Il. Ng-polynomial coefficients ofp{t)— 5} for &
4+ — |- = ¢ + —|—-= =1,...,10 on a 31 anisotropic lattice.
(40) 3 77(&:) ﬂglf)
1N, N,
which agrees with the general result of RE27] and the 1 0 0
N.=3 result of Ref.[46]. The techniques used by both 2 —0.0853420430 0.0663515978
groups involve extrapolations in some suitable parameteg —0.1202379609 0.0892976526

absent in our treatment. The functioBig are defined in Ap- 4
pendix B. Using the results given there the Hamiltonian limits
£—o0 can be treated analytically and agrees again with Refg
[27]. The difference in the parameterg{))— »(}) and 7} 7
- 7792 appears as a polynomial i, with terms proportional g
to 1IN, and N, only, as expected. Numerical values for the g
coefficients in this polynomial for a range of anisotropies are1o
given to ten decimal places in Tables | and Il

—0.1389282597
—0.1504977336
—0.1583451793
—0.1640119208
—0.1682939409
—0.1716426764
—0.1743328788

0.1007025039
0.1074686585
0.1119335310
0.1150960459
0.1174518583
0.1192740369
0.1207251404
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TABLE Ill. N¢-polynomial coefficients ofy{Y)— %} and 7{})— ¥ for ¢=1,...,10 on a 22 aniso-
tropic lattice using meafcoarse plaquette improvement.

£ 75— 0 =0l
1N, N, 1IN, N,
1 -1/16 1/16 1/16 —1/16
2 —0.2366564052 0.2164122588 0.1981211519 —0.1947069547
3 —0.3454387314 0.3097979237 0.2579070564 —0.2612519788
4 —0.4211846015 0.3741454050 0.2928588896 —0.3037800700
5 —0.4787199456 0.4227515571 0.3168839498 —0.3347492082
6 —0.5249829699 0.4617022280 0.3350508989 —0.3590739573
7 —0.5636405777 0.4941766016 0.3496360278 —0.3791137684
8 —0.5968367250 0.5220194105 0.3618234781 —0.3961659514
9 —0.6259254734 0.5463894180 0.3722983733 —0.4110161346
10 —0.6518141912 0.5680599503 0.3814898513 —0.4241752080
1 Bg(l,l) 1] NJ1 ¢ Bg(l,l) quanti_ties such as th&e parameter or matrix elements. After
= —=|+=z+= - including the difference, the physical modes will still be
2N.€ & 2 &8 3 4£2
¢ transverse.
Setting =1 we recover from Eq(41) the well-known
. B¥(2,1) (1+ }) N @(}_ i) , (449  value of ?hge gluon self-energi\82,33,q4]]
452 52 3 6 3 252

2;/,1/,E-lb( p) = 6ab( 5,(,va2_ p,upv)

_ Ne BdD) 1Jri)—gt‘g(z’l)(wi (45)
S E| 6 |2 g2 482 &2/ el el N (_§|0( 2a2)+§3)
g 1672 3 ap 9
where
1 7 5 1
X(€) ( log(a?p?) + Fo(&) +28) (46) _8_NC+NC 7_220+@(F0_YE)+1_6 ]
= —log(a - —I.
£ 1672 g(a“p o) — e 9 +0(g"), @

We stress that the term proportionalBon Eq. (41) does not
break Lorentz invariance but arises from the difference in thevhereZ, andF are standard integrals in perturbation theory

renormalizations of the fine and coarse fiemg,. This dif-

on the isotropic latticésee e.g. Ref.45]). In order to calcu-

ference must be taken into account when calculating physicdate coefficients at the one-loop level in mean-link improved

TABLE IV. N-polynomial coefficients ofy{Y)— (¥ and 7{P— 5} for £=1,...,10 on a 22 aniso-
tropic lattice using mearcoarse link improvement.Z, is defined in Sec. IV B.

¢ 75— n$Y 7= nsp
1N, N, 1N, N,

1 —37,/8 37,/8 37,/8 —37,/8

2 —0.2304051667 0.2101610203 0.1918699134 —0.1884557162
3 ~0.3391678963 0.3035270885 0.2516362213 —0.2549811436
4 —0.4150758989 0.3680367024 0.2867501870 —0.2976713674
5 —0.4727526305 0.4167842420 0.3109166347 —0.3287818930
6 ~0.5191216331 0.4558408912 0.3291895621 - 0.3532126205
7 —0.5578576084 0.4883936322 0.3438530585 —0.3733307991
8 ~0.5911125215 0.5162952070 0.3560992746 —0.3904417479
9 —0.6202462174 0.5407101620 0.3666191173 —0.4053368786
10 —0.6461700016 0.5624157607 0.3758456617 —0.4185310183
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TABLE V. Nc-polynomial coefficients ofy(H— 7% for ¢
=1,...,10 on a 31 anisotropic lattice using meafcoarse
plaguette improvement.

PHYSICAL REVIEW D67, 114502 (2003

TABLE VI. N¢-polynomial coefficients ofy()— 7% for &
=1,...,10 on a 31 anisotropic lattice using medioarse link
improvementZ, is defined in Sec. IV B.

¢ 7% — Y 3 7% — 1Y
1N, N, 1N, N,

1 ~1/16 1/16 1 —37,/8 37,/8

2 —0.1694788603 0.1504884150 2 ~0.1643550433 0.1453645980
3 —0.2118450434 0.1809047350 3 —0.2068380749 0.1758977666
4 —0.2337180290 0.1954922732 4 —0.2288323401 0.1906065843
5 —0.2468908748 0.2038617997 5 ~0.2420838939 0.1990548187
6 —0.2556482395 0.2092365912 6 ~0.2508913882 0.2044797400
7 —0.2618777619 0.2129618870 7 —0.2571539394 0.2082380645
8 ~0.2665309579 0.2156888753 8 ~0.2618297768 0.2109876942
9 ~0.2701369251 0.2177682856 9 —0.2654518384 0.2130831989
10 ~0.2730125217 0.2194047833 10 ~0.2683392407 0.2147315023

perturbation theory, the evaluation of either the plaquette,

(TrP,,) or the link trace in Landau gaugéJru,) is re-
quired. We find

gz

1 1
N—C(Tr PCC):l_F(NC_ N_C)Bg(l'l)' (48)

1 gz 1 21f

N—C<TrPfc>=1—E NC—N—C (£2BY(1,)
-I—Bg(l,l)), (49

1 9° 1\

N—C<Tr Pff)zl_z_gd NC_N_C Bg(l,l), (50)

and

! TrUy=1 9’ N !
N Ve = T2\ VTR,

X

5265(1)—63(2,1)(1—3”, (51)
o

. TrUg=1 g’ N !
N U= Tae TN,

X : (52

‘ 1
B{1)—B«(2,1)| 1- -

whererg(q,l) satisfies Eq(B4). Numerical values of the
N¢-polynomial coefficientsz{Y, 7} and 7{} for a range

V. CONCLUSIONS

In this paper, a generalization of the Wilson discretization
to an anisotropic lattice with two coarse and two fine direc-
tions has been described. In particular, an important distinc-
tion between the 22 anisotropy and the well-established
3+1 case has been emphasized. The difference is that the
coefficients in the 22 action must be determined before
simulation to ensure Lorentz invariance, while any13ac-
tion leads to a Lorentz-invariant theory once the ratio of
scales¢ is determined. We are currently investigating non-
perturbative techniques for computing these coefficients in
the 2+2 cas€ 28].

The main result of the paper was to compute these coef-
ficients to first order in perturbation theory. While the focus
of the calculation was on determining the Feynman rules for
the 2+2 lattice Wilson gauge action, a more general pre-
scription was developed to allow the+3 case to be inves-
tigated as well. This allowed us to check our results against
previously published work. The results in a mean-link im-
provement scheme were presented.

The usefulness of this scheme arises from the need to
make accurate calculations of form factors and matrix ele-
ments at high momentum. This paper establishes the tools for
perturbation theory calculations on the-2 anisotropic lat-
tice, which will be important later when computing the
matching factors to link calculations of weak-decay matrix
elements to their continuum counterparts. As part of this pro-
gram, quark fields on-22 anisotropic lattices are under con-
sideration.
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APPENDIX A: THE FOUR GLUON VERTEX
q’ Vﬂ b T? A’ c

kap‘,a 37pad

e

—_— At .
- 5,114)61/)\[((1_ r),u(k_s)v_ l_zgiglzzkvq,ur,usv

—_—at .
= _92{2 fabefcde{ 5}1,}\5Vp|:(q_s),u(k_r)1/_ Egifikyqﬂrvsﬂ

a2 .. a? .. a? .. a? .~
5 O OupEa(571) K0, = 5 .00, (518K 5 8,8, €0 (A= KT 8 = = 8,8 EX(A—K),8T,

2

a — g (2
+1_25,uv5m\5,up§i§ (q—=Kk),(s=r)s1 +(b—=c,voN,geor)+(beod,vep,qe—s) +1_2a4{N_c(5abécd+5ac5bd

+ s2dghey 4 g (dabegede gacegbde dadedbce)} [ 8uvdun 5#,,522 2K 00T Sy 8,4, 8,0 E2E2K,O,T S,
- EMVaﬂpgigilk)\a)\%)\?}L_ 5#)\ 5”4)%—2612}%1}? nga,u_ év)\évpgigiay’r\uéu’kv-i_ 5#V5)\p§i§)zxk)\a)\’r\ugp.

+ 5;1,)\ 5Vp§i§]%RVF Va,ug;x,+ 5,up£v)x§i§12/’kvéva,ui:u} .

APPENDIX B: BOSONIC INTEGRAL EVALUATION considerably and to prove the cancellations of Lorentz-

Apart from the denominators in E¢L9) and(29), all the Prir\(/aizlrlirgjgerfi;y& Afirst set can be obtained by expanding the
is

¢ dependence in the evaluation of Feynman diagrams i
polynomial in ¢ and 1£. Having changed integration vari-
ables to the asymmetric Brillouin zone, only lattice zero- con,

~2n
momentum integrals of the form (7 odk KTk ®Dg(k,m)"
Bg(q_n-na: e 1nb)_ B (277)4

q
Be(q,n1,Nz,N3 n4):fﬁ d4k4 ke ek et (B3)
e -=(2m)"  Dg(k,m)d
(B1) which gives relations of the type
remain. In Eg.(B1), q and n; are positive integersRH
=2 sink,/2) and the dependence is in the inverse bosonic
propagator (4_d)32(qa1)+%Bg(q11):Bg(q_1)_m23§(Q),

PO (B4)
DB(k,m):Ef kfﬁ?;ec k2+m2. (B2)

alone. To evaluate these integrals, we adapt a technique (4—d)B{(d,2)+(4—d)(3—d)BY(q,1,1)
given in Refs[25], [45]. In the following, when one of the;

is zero_ it is omittgd as an argu.me.nth, while, there rgo + 2d(4_d)32c(q,1’1)+ iBg(q,Z)

confusion can arise, the index im), is dropped and3;, B} & &

or Bgc denotes integrals whose numerators have a fine, dd—1)

coarse or mixed momentum. In Reff5], [45], a set of - c B 5

recursion relations was defined to reduce every relevant in- £ B0a.1.)=B{q=2)~2m"B(q—1)
tegral to a linear combination of three basic integrals. Al-

though similar relations exist in the asymmetric case, the +m*B4(q) (B5)

lack of a complete symmetry among the indicesmakes
this reduction more difficult. The relations can still be used
to reduce the number of integrals which must be calculatednd so on. Furthermore, whe1, using the identity
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TABLE VII.

Bg(1) for 2+2 and 3+1 as a function of¢ to
10" %2 precision.

PHYSICAL REVIEW D67, 114502 (2003

TABLE VIII.
10?8 precision.

Fo(é) for 2+2 and 3+1 as a function of¢ to

¢ 242 ¢ 242
1 0.15493339023106021408483720810745 1 4.3692252338747587180021767477

2 0.27309284159872576605248340464151 2 3.1818862274504847285875097585

3 0.34489265148380372504682107682350 3 2.2336373613788360098511237787

4 0.39476479072982726208009053119503 4 1.5519382904759206782491885601

5 0.43269826887073920594692758485023 5 1.0353940883292892812839278453

6 0.46325286965085016097908881189910 6 0.6235592513202110800048370509

7 0.48882308585244885903279712081054 7 0.2823597812415587497126918746

8 0.51080767194929084936132635888190 8 —0.0084789916018349072700020647
9 0.53009088018361126653278475943989 9 —0.2617758427992475365501484308
10 0.54726616387832592956739420406785 10 —0.4860763765593393395653061782
¢ 3+1 ¢ 3+1

1 0.15493339023106021408483720810745 1 4.3692252338747587180021767478077
2 0.39746855267384293273601515359921 2 3.0013807239614706751354255882375
3 0.63909144650207181551150685543306 3 2.0763302182432342962706829473432
4 0.87599824804148552213829648851546 4 1.4343462876751234663331108882378
5 1.10989753717092264667311285543088 5 0.9504439561174006940006958674003
6 1.34197554748773397230022959566745 6 0.5632462682606760634612041417967
7 1.57290464634371239724254250061935 7 0.2405570583083765791881447111856
8 1.80307278894183022754245621178021 8 —0.036178339243301342993891362519
9 2.03271449270324135251760022607330 9 —0.278533198254716148526058151986
10 2.26197832054321458404301146488387 10 —0.494190516782956896533394268235

(k2

Dg(k,m)®

(K3t

Dg(k,m)d

$2\r—2
, (k)

22 q_l

2¢

17 1

Xsink, —— 7K W,

(B6)
and integrating by parts, we obtain the relation

Be(q, ... ry, .. )= § Bg(q 1,...0r,-1,..)

§ Bg(q Lo f,=2,...)

+4By(q, ... 1~ 1,0, (B7)

which depends on the indgx=f,c. A final set of relations

help of these relations we can reduce the propagator calcu-
lation to four converging integraldj.(1), Bg(l 1), Bf(z 1)
andBf(Z 1,1), the last of which vanishes for-3, and one
infrared diverging integral3,(2).

For numerical calculation, setting=X;n; and using the
well-known Schwinger representati¢p4l], the integrals are
rewritten as

(_1)n « C—m2
B«(q,ny,np,N3,Ny) = fdm e M

297"T'(qg)Jo

<L 14

n

exp X1 (X)

x=\/d?
"

(B9)

is found by using the trivial fact that the numerator cannot

have more than four different arguments, e.g.
B:(q,1,1,1,)=(d—4)B(q+1,%,1,1,1

d
+ ?Bg(q+1,1,1,1,g)

+m?Bg(q+1,1,1,1,1. (B8)

The 2+2 case has the bonus relationgligng% which is

d" e *
—exp *lo(xX)= —— > (= 1)" *MFHI(x),

dx" 2"t k=0
(B10)

WhereMg’k are partition multinomial coefficients arg(x)

are modified Bessel functions of the first kifdl7,48. Since

we want to focus attention on the massless cas&—0)

and keeping only the nonvanishing terms either divergent or
finite, power-counting shows that the integrals,

relevant to the numerical evaluation of a range of integrals. A3,(q,n;,n,,n3,n,) for g—n<1, are infrared finite. As a

similar relation would map 31 integrals to ¥ 3. With the

result their value can be directly calculated from EP) by
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settingm?=0. Numerical evaluation to, say, 32 digits be- and taking the limz_, yields

comes trivial with the use of a numerical integration package

available with programs likeiATHEMATICA Or MAPLE (see A2 N
Table VII). Furthermore, simple dimensional arguments give  F (&)= — d)\)\ exp 4~ d+d/§2)>\|4 d()\)|d< )
Bg(q,n¢,nc) =O((&log §)7"/¢) for g>n; and B,(q,n;,Nnc) &

=0(&97 ") for g=<n; for the 2+2 case while for 31, 5
Be(q,ns,nc) =0(&1 nf),. From this, the asymptotic behawqr n J’wd)\(ﬂ)\ exp*(“*d*d’fz)xl“*d()\)
of the one-loop corrections can be easily obtained, by noting &l 0
lim_..B5(2,1)(£°B«(1))=1/6 for 3+1.

We can now describe the computation of the relevant part a N 1
of B¢(q,n1,nz,n3,ny), g—Nn=2, which is infrared diver- Xlo ?) - X) :
gent. Using the asymptotic expansion for lasgef | ,(X)

d d

(=D T (v+k+1/2 For example
(B11)
(2X)KI T (v—k+1/2)

o(X)= 2

\/_ =0
— 2 _

the leading and sub-leading behavior is easily determinedB¢(3)= 3522 T 12g,2 (09M™+ ve~Fo(£))+ B«(3),

This can be reexpressed in termsldfi,m?),i=0...q—n (B15)

—2 whose integral representation can be directly subtracted

from the integrand, leaving am?—0 converging integral. d

For example, in the case=0, the constantb; are defined 32(3 1)= §_2 (—logm?2— yg+ Fo(g))+f82(3,1)

as the expansion df,(x)*, which are rational numbers mul- 4

tiplied by 7~ 2. The divergent part 0B,(q) is then given by (B16)

¢ Qb @) 442
M@ & 2o 2°T(q) logm?. (B12) BY(3,1)= 5477 (—logm?— ye + Fo(£))+ fBY3,1)

Following the literature, the finite contribution to (B17)

& which using Eq(B5) and taking Iimnz_>0mzl’>’§(3), must sat-
B(2)= 1 —(~log m? = ye+Fo(€))+0(m?) isfy

(B13)

d
is calculated first and the finite part of the other integrals is (4—d)fB£(3'1)+ %fB§(3'1)+ g_zzo_ (B18)
defined up to it. Using I3 327

*© 2
I'(0,m?)= —logm?— yg— E (—m)" (B14) Numgrical v_alue_s foB,(1) andF, are presented for a range
nn! of anisotropies in Tables VII and VIII.
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