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Fermionic next-to-next-to leading logarithmic corrections tob\sg
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In this paper we take the first step towards a complete next-to-next-to-leading logarithmic~NNLL ! calcula-
tion of the inclusive decay rate forB→Xsg. We consider the virtual corrections of the order ofas

2nf to the
matrix elements of the operatorsO1 , O2 andO8 and evaluate the real and virtual contributions toO7. These
corrections are expected to be numerically important. We observe a strong cancellation between the contribu-
tions from the current-current operators andO7 and obtain, after applying naive non-Abelianization, a reduc-
tion of the branching ratio of 3.9%~for m53.0 GeV) and an increase of 3.4%~for m59.6 GeV).
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I. INTRODUCTION

Currently, measurements of the inclusive branching ra
BR(B→Xsg) are provided by CLEO@1# ~Cornell!, by theB
factory Belle@2# ~KEK!, by ALEPH @3# ~CERN!, and by the
preliminary BABAR @4,5# ~SLAC! results, leading to a
world average of@6#

BR~B→Xsg!exp5~3.3460.38!31024. ~1!

This experimental average is in good agreement with
theoretical prediction based on the standard model~SM! in-
cluding next-to-leading logarithmic~NLL ! QCD corrections
supplemented by certain classes of leading order electrow
terms@7–10#. For a recent status report on inclusive rareB
decays and a complete list of references on NLL calculati
of BR(B→ Xsg ) the reader is referred to Ref.@11#. In earlier
analyses@8,12–15#, the ratiomc /mb , which enters the cal-
culation of the decay widthG(B→Xsg) for the first time at
the NLL level, was tacitly interpreted to be the ratio of th
pole quark masses. Usingmc /mb50.2960.02, one obtains
BR(B→Xsg)SM5(3.3560.30)31024, where the errors due
to the uncertainties in the various input parameters and
estimated uncertainties due to the left-over renormaliza
scale dependence were added in quadrature. More rece
Gambino and Misiak@16# pointed out that the branchin
ratio rises to BR(B→Xsg)SM5(3.7360.30)31024 @16#
~see also Ref.@17#!, if one interprets mc /mb to be
m̄c(m)/mb50.2260.04, wherem̄c(m) is the charm quark
mass in the modified minimal subtraction (MS) scheme,
evaluated at a scalem in the rangemc,m,mb , andmb is
the bottom quark 1S mass.

Despite the current theoretical dispersion on the bran
ing ratio, the agreement between the present experime
results and the SM is quite impressive and this has been
to derive model independent bounds on the Wilson coe
cientsC7(mW) andC8(mW) ~see, for example, Ref.@18#!.

*Electronic address: bierik@itp.unibe.ch
†Electronic address: greub@itp.unibe.ch
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Formally, the approximately 11% discrepancy in t
branching ratio, stemming from the two different schem
for mc /mb , is a NNLL effect. As the measurements
BR(B→Xsg) will become much more precise in the ne
future, it will become mandatory to systematically extend t
theoretical predictions to NNLL precision, in order to full
exploit this process in the search for new physics.

To illustrate the complexity of such a calculation, w
briefly explain the theoretical framework. Usually, one wor
in the effective field theory formalism of the SM, where th
W boson and heavier degrees of freedom are integrated
This results in an effective Hamiltonian in which operato
up to dimension six are retained. Adopting the operator d
nition of Ref. @12#, the relevant Hamiltonian to describe th
processesb→sg, b→sg, andb→sgg reads

Heff52
4GF

A2
l t(

i 51

8

Ci~m!Oi~m!, ~2!

whereGF is the Fermi coupling constant,l t5Vts
!Vtb ~with

Vi j being elements of the Cabibbo-Kobayashi-Maskawa m
trix!, andCi(m) are the Wilson coefficient functions evalu
ated at the scalem. For practical reasons it is more conv
nient to use instead of the original functionsCi(m) certain
linear combinations, the so-called ‘‘effective Wilson coef
cients’’ Ci

eff(m) introduced in Refs.@12,19#:

Ci
eff~m!5Ci~m! ~ i 51, . . . ,6!,

C7
eff~m!5C7~m!1(

i 51

6

yiCi~m!,

C8
eff~m!5C8~m!1(

i 51

6

ziCi~m!, ~3!

whereyi and zi are defined in such a way that the leadi
order matrix elements ^sguOi ub& and ^sguOi ub& ( i
51, . . . ,6) are absorbed in the leading order terms
C7

eff(m) and C8
eff(m). The explicit values of$yi% and $zi%,

y5(0,0,2 1
3 ,2 4

9 ,2 20
3 ,2 80

9 ), z5(0,0,1,2 1
6 ,20,2 10

3 ) were
©2003 The American Physical Society19-1
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obtained in Ref.@12# in theMS scheme using fully anticom
muting g5 which is also adopted in the present paper.

The operators relevant for our calculation read

O15~ s̄LgmTacL!~ c̄LgmTabL!,

O25~ s̄LgmcL!~ c̄LgmbL!,

O45~ s̄LgmTabL!(
q

~ q̄gmTaq!,

O75
e

16p2
m̄b~m!~ s̄LsmnbR!Fmn ,

O85
gs

16p2
m̄b~m!~ s̄LsmnTabR!Gmn

a . ~4!

Here e5A4paem and gs5A4pas denote the electromag
netic and strong coupling constants, respectively. Furth
more,Fmn andGmn

a are the corresponding field strength te
sors andL5(12g5)/2 andR5(11g5)/2 stand for left- and
right-handed projection operators. The factorm̄b(m) in the
definition of O7 andO8 denotes the bottom mass in theMS
scheme.

For a complete NNLL calculation in this framework, th
evaluation of three parts is necessary.~1! The computation of
the matching coefficients to orderas

2 which requires a three
loop calculation.~2! The evaluation of the anomalous dime
sion matrix to orderas

3 where four-loop diagrams are in
volved. ~3! The calculation of the orderas

2 QCD corrections
to the matrix elementŝsguOi(m)ub& (m is of order mb)
which, depending on the operator, is either a two- or thr
loop calculation.

The relatively large dependence of the NLL prediction
BR(B→Xsg)SM on the scheme formc /mb illustrates that
NNLL effects, in particular those related to step~3!, can be
rather large. At this point we should stress that the is
related to the definition ofmc /mb serves us as a motivatio
to initiate a NNLL calculation for BR(B→Xsg). In the
present paper we are working out a class of NNLL corr
tions ~to be specified below! to step~3!, which is not related
to themc /mb issue. However, in many other processes it
known that the kind of terms considered in this paper are
source of very important higher order corrections.

In this paper we consider those corrections of orderas
2 to

the matrix elements forB→Xsg associated with the opera
tors O1 , O2 , O7, and O8 which involve a closed fermion
loop. It is needless to say, that at the same time also
matching coefficients and the anomalous dimension ma
should be improved accordingly. Motivated by the fact th
the NLL corrections to the matrix elements were numerica
more important than the improvements in the Wilson coe
cients, we assume for the time being that this could also
the case at the NNLL level. Therefore, we only concentr
11401
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on NNLL corrections to the matrix elements. In princip
also the contributions from the operatorsOi ( i 53, . . . ,6)
should be considered. However, as the corresponding Wi
coefficients are small, we neglect these contributions. F
thermore, we also neglect the NNLL bremsstrahlung corr
tions to the interferences (O1 ,O1), (O1 ,O2), (O2 ,O2),
(O1 ,O7), (O1 ,O8), (O2 ,O7), (O2 ,O8), (O7 ,O8), and
(O8 ,O8), since these terms are infrared finite for vanishi
gluon energy and numerically relatively small at the NL
level @20#.

The fermionic corrections we are interested in are ess
tially generated by inserting a one-loop fermion bubble in
the gluon propagator of the lower order Feynman diagra
For the numerical evaluation we will assume thatnf55
massless fermions are present in the fermion loop.

Once the corrections ofO(as
2nf) are available, it is sug-

gestive to use the hypothesis of naive non-Abelianizat
~NNA! @21# in order to estimate the complete corrections
order as

2 . This is based on the observation that the low
coefficient of the QCDb function b051122nf /3 is quite
large and thus it is expected that the replacement ofnf by
23b0/2 may lead to a good approximation of the full ord
as

2 corrections. There are many physical observables, wh
NNA provides an excellent approximation to the full two
loop corrections@22,23# such as the inclusive cross sectio
e1e2→hadrons, the hadronict decay, or the two-loop rela
tion between theMS and pole quark mass. In particular, w
want to mention the semileptonic decayG(b→cln l) where
the deviation of theas

2b0 terms from the completeas
2 result

@24# is less than 20%. We also note that theO(as
2b0) cor-

rections to the photon energy spectrum inB→Xsg ~away
from the endpoint! were calculated in Ref.@25#.

Our presentation is organized as follows. In Sec. II
discuss the virtual corrections associated withO1,2 and com-
pute in Sec. III both the real and virtual corrections toO7.
The virtual corrections toO8 are considered in Sec. IV. In
Sec. V we combine our findings with the existing NLL re
sults and perform a numerical analysis showing the imp
tance of our new terms. Finally, Sec. VI contains our conc
sions. In the appendixes supplementary material is provid
Appendix A contains the building blocks which are useful f
the practical calculations and in Appendix B detailed analy
cal results are presented for the corrections to the ma
element̂ sguO2ub&. For completeness the results of the ord
as corrections are listed in Appendix C and intermedia
results needed for the matrix element^sguO7ub& are given in
Appendix D. In Appendix E the results are provided whi
are necessary to discuss the branching ratio BRb
→Xsg)Eg>Ecut

whereEcut represents a cutoff on the photo
energy.

II. VIRTUAL CORRECTIONS TO b\sg ASSOCIATED
WITH O1 AND O2

In this section we derive the~renormalized! orderas
2 cor-

rections to the matrix elements^sguO1ub& and ^sguO2ub&.
Thereby only the contributions proportional to the number
fermion flavorsnf are taken into account. We show at th
9-2
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FIG. 1. Diagrams~1a!–~1c! and~2a!–~2c! associated with the operatorO2. The photon is represented by a wavy line and is emitted fr
a down-type quark in all the diagrams. The virtual gluons are represented by curly lines. The sum of the first three graphs is den
M2,bare

(2) (1), whereas the sum of the second three diagrams is calledM2,bare
(2) (2).
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end of this section that the result for^sguO1ub& can easily be
obtained from the one for̂sguO2ub&. Therefore, we concen
trate in the following on the calculation of the renormaliz
matrix elementM2

M25^sguO2ub&, ~5!

which is conveniently written in the form

M25M2
(0)1M2

(1)1M2
(2) . ~6!

The superscript counts the factors ofas . The leading term
vanishes, i.e.,M2

(0)50 and theO(as) calculation has been
performed in Ref.@20#. In the following, we discuss the
O(as

2nf) term M2
(2) . In Sec. II A we present the calculatio

and results of the dimensionally regularized three-loop d
grams, while Sec. II B is devoted to the calculation of t
counterterms. In Sec. II C we combine the results of
three-loop results with the counterterms and derive the re
malized expressionM2

(2) .

A. Regularized three-loop corrections toŠsgzO2zb‹

The three-loop diagrams contributing toM2
(2) can be di-

vided into four nonvanishing classes as shown in Figs
and 2.1 The sum of the diagrams in each class is gau
invariant. The contributions to the matrix elementM2

(2)

of the individual classes are denoted
M2,bare

(2) (1), M2,bare
(2) (2), M2,bare

(2) (3) and M2,bare
(2) (4), where,

e.g.,M2,bare
(2) (1) is

1In principle there are also diagrams in which the photon is em
ted from the quark-loop insertion in the gluon propagator. Howe
these contributions vanish due to Furry’s theorem.
11401
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M2,bare
(2) ~1!5M2,bare

(2) ~1a!1M2,bare
(2) ~1b!1M2,bare

(2) ~1c!. ~7!

For the practical calculation we essentially follow th
techniques developed in Ref.@20#. To make the paper self
contained, we nevertheless present as an example the c
lation of the diagram~2c! in some detail.

The amplitudeM2,bare
(2) (2c) is constructed with the help o

the building blocksI b andKbb8
f , shown in Fig. 9 in Appen-

dix A. The analytic expression forI b is given in Eq.~A1!,
while Kbb8

f is given in Eq.~A2! for an arbitrary massmf of
the quark in the loop. This mass is retained inKbb8

f , because

it will be used as a regulator of infrared singularities in t
calculation of^sguO7ub&. As ^sguO2ub& is free of infrared
singularities, we can put in this sectionmf50. Thus the
parameter integral in Eq.~A2! can be expressed in terms o
EulerG functions. Furthermore, only thegbb8 term has to be
kept as the other building blockI b is transversal. The dia
gram ~2c! can be written as

t-
r,

FIG. 2. Diagrams~3a!–~3b! and ~4a!–~4b! associated with the
operatorO2. The photon is represented by a wavy line and is em
ted from an up-type quark in all the diagrams. The virtual gluo
are represented by curly lines. The sum of the first two graph
denoted with M2,bare

(2) (3), whereas the sum of the second tw
diagrams is calledM2,bare

(2) (4).
9-3
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M2,bare
(2) ~2c!52

2i

~4p!e S as

p D 2

eQdCFTnf

3
G2~e!G2~22e!~12e!

G~422e!
e2ipe13gEem6e

3E ddr

~2p!d
ū~p8!~r br”2r 2gb!

3L
p” 81r”1mb

~p81r !22mb
21 id

«”
p”1r”1mb

~p1r !22mb
21 id

3gbu~p!
1

~r 21 id!11eE0

1

dxx12e~12x!12e

3S r 22
mc

2

x~12x!
1 id D 2e

, ~8!

whereu(p) andu(p8) are the Dirac spinors of theb ands
quark, respectively, while« denotes the polarization vecto
of the photon.CF andT are the eigenvalue of the quadrat
Casimir operator and the index of the fundamental repres
tation of the color gauge group, respectively, with the n
merical valuesCF54/3 andT51/2. The Euler constantgE
appears in Eq.~8!, because we write the square of the ren
malization scale in the formm2exp(gE)/(4p). The parameter
d ~with d.0) in the denominators of the various propagat
symbolizes the ‘‘e prescription.’’

In a next step we denote the four different denominat
with

D15~p81r !22mb
21 id,

D25~p1r !22mb
21 id,

D35r 22
mc

2

x~12x!
1 id,

D45r 21 id,

and introduce a Feynman parametrization as follows:

1

D1D2D3
eD4

11e
5

G~312e!

G~e!G~11e!

3E dudvdyweye21

~D1u1D2v1D3y1D4w!312e
,

~9!

with w512u2v2y. The integration variables~u, v andy!
run in the simplexS defined throughu,v,y>0 and u1v
1y<1. After the integration overr one simplifies the re-
maining integrals with the help of the substitutions

u→~12u8!S 12
12v8

u8
D , v→ 12u8

u8
~12v8!, y→u8y8.

~10!
11401
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The integration variablev8 varies in the interval@12u8,1#
whereas the other three variablesx, y8, andu8 all vary in the
interval @0,1#. We tighten the notation by omitting th
primes and arrive at

M2,bare
(2) ~2c!5

1

8p2 S as

p D 2

eQdCFTnf

G~e!G2~22e!~12e!

G~422e!

3e3gEem6eE
0

1

dxE
0

1

dyE
0

1

du

3E
12u

1

dvx12e~12x!12eye21~12y!e

3u2e21ū~p8!S P1

Ĉ113e
1

P2

Ĉ3e
1

P3Ĉ

Ĉ3e D u~p!,

~11!

where the Dirac matricesP1 , P2, and P3 are polynoms in
the Feynman parameters and the expressionĈ is given by

Ĉ5mb
2~12u!v1

uy

x~12x!
mc

22 id. ~12!

We should mention at this point that the expression in E
~11! is infrared finite and is therefore regularized fore.0.

We use the same approach as in Refs.@20,26,27# and in-
troduce Mellin-Barnes representations for the denomina
Ĉ113e andĈ3e. In general the Mellin-Barnes representatio
of an expression of the form (K22M2)2l ~with l.0) reads

1

~K22M2!l
5

1

~K2!l

1

G~l!

1

2p i Eg
ds

3S 2
M2

K2 D s

G~2s!G~l1s!, ~13!

where the integration pathg runs parallel to the imaginary
axis. It intersects the real axis somewhere between2l and
0. The Mellin-Barnes representation forĈl, (lP$3e,1
13e%) is implemented by identifyingK2 andM2 as

K2↔mb
2~12u!v,

M2↔2
uy

x~12x!
mc

21 id. ~14!

The integration pathg has to be chosen such that the para
eter integrals exist for all values ofsPg. This means in our
case thatg has to intersect the reals-axis between23e and
0. After interchanging the order of integration, the four Fey
man parameter integrals can easily be expressed in term
products of EulerG functions. What remains to be done
the integration overg in the complexs plane. We close the
integration path in the right half-plane and use the resid
theorem to perform this integral. The residues are locate
the following positions:
9-4
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s50,1,2, . . . ,

s512e,22e,32e, . . . ,

s5122e,222e,322e, . . . ,

s5123e,223e,323e, . . . ,

s5
1

2
23e,

3

2
23e,

5

2
23e, . . . . ~15!

The sum over the residues naturally leads to an expansio
the small parameterz5mc

2/mb
2 through the factor (mc

2/mb
2)s

in Eq. ~13! @see also Eq.~14!#. This expansion, however, i
not a Taylor series because it also involves logarithms oz,
which are generated by the expansion ine. The final result
for M2,bare

(2) (2c) can thus be written as

M2,bare
(2) ~2c!5(

k,l
f k,lz

klnl~z!, ~16!

where the coefficientsf k,l are independent ofz. The powerk
is an ~non-negative! integer multiple of 1

2 and l
P$0,1,2,3,4%. For a detailed explanation of the range ofl we
refer to Ref.@20#.

In a similar way all other diagrams can be treated. T
final result for the sum of the three-loop diagrams is given

M2,bare
(2) 5M2,bare

(2) ~1!1M2,bare
(2) ~2!1M2,bare

(2) ~3!1M2,bare
(2) ~4!,

~17!

where the analytical results for the individual terms of t
right-hand side are listed in Appendix B. We decided to
clude corrections up toO(z3) as the higher order terms lea
to a negligible contribution for the physical valuez'0.1.

B. Counterterm contributions to ŠsgzO2zb‹

In this section we work out the various counterterms
order as

2nf which are needed to derive the renormaliz

result M2
(2) . There are counterterm contributions due to t

renormalization of the strong coupling constant and due
the mixing ofO2 into other operators.

We first discuss the counterterms related to the renorm
ization of as . As the leading termM2,bare

(0) is zero, only the
renormalization ofgs in the two-loop resultM2,bare

(1) generates
a counterterm which can be written as

M2,gs

(2) 52dZgs

(1),nfM2,bare
(1) ,

dZgs

(1),nf5
as

p

nfT

6e
. ~18!

M2,bare
(1) is the sum of the two-loop diagrams which has to

known including terms ofO(e). For this reason we extende
the calculation of Ref.@20# to ordere1.

We now turn to the counterterms induced through
mixing of O2 with other operators. First, we consider th
counterterms connected with the mixing ofO2 into four-
fermion operators. At orderas there are nonvanishing mix
11401
in
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ings intoO1 , O4 and into the evanescent operatorP11, de-
fined in Appendix A of Ref. @12#. As only O4 has a
nonvanishing matrix element forb→sg proportional to
asnf , the only counterterm of this type is

M24,a
(2) 5dZ24

(1)M4
(1) ,

dZ24
(1)5

as

p

1

6e
,

M4
(1)5

1

81F2
72

e
1781288 lnS mb

m D136ip11159e

2150p2e2312 lnS mb

m D e2576 ln2S mb

m D e

1258ipe2144ip lnS mb

m D e1O~e2!G as

4p
CFTnf

3Qd^sguO7ub& tree, ~19!

wheredZ24
(1) can be found in Ref.@12#. The Feynman dia-

grams contributing toM4
(1) , i.e., to the corrections o

O(asnf) to ^sguO4ub& tree, are depicted in Fig. 3. They wer
computed following the strategy outlined in Sec. II A.

At orderas
2nf , there are mixings ofO2 into O1 , O4, and

P11 and again onlyO4 has a matrix element ofO(as
0). Thus

the only counterterm of this type reads

M24,b
(2) 5dZ24

(2),nfM4
(0) ,

dZ24
(2),nf5S as

p D 2 nfT

18e2
,

M4
(0)5F122 lnS mb

m D e1
p2e2

12
12 ln2S mb

m D e21O~e3!G
3CFQd^sguO7ub& tree. ~20!

In a second step we consider the counterterms conne
with the mixing ofO2 into the dipole operatorsO7 andO8.
One can easily see that only one counterterm of this t
generates a contribution ofO(as

2nf): O2 mixes at three-loop
order intoO7; in turn, fromO7 the tree-level matrix elemen
for b→sg is taken. The resulting counterterm therefore rea
@12,28#

FIG. 3. Counterterm diagrams toO2 involving the operatorO4.
The crosses denote the possible places for photon emission.
that the diagrams where the photon is emitted from the fermi
loop are zero due to Furry’s theorem.
9-5
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M27
(2)5dZ27

(2),nf^sguO7ub& tree,

dZ27
(2),nf5S as

p D 2

CFTnfF 1

e2 S Qu

24
2

Qd

81D2
1

e S Qu

144
1

2Qd

243D G ,

~21!

whereQu52/3 andQd521/3 are the charge factors of up
and down-type quarks, respectively.

C. Renormalized result for ŠsgzO2zb‹

Combining the three-loop resultM2,bare
(2) , calculated in

Sec. II A, with the various counterterm contributions d
cussed in Sec. II B@see Eqs.~18!, ~19!, ~20!, and ~21!#, we
ol

11401
get an ultraviolet finite result. As mentioned earlier, the res
is also free of infrared singularities. Inserting the numeri
values for the color factors (CF54/3, T51/2) and the elec-
tric charge factors (Qu52/3, Qd521/3), we get the follow-
ing renormalized result:

M2
(2)5M2,bare

(2) 1M2,gs

(2) 1M24,a
(2) 1M24,b

(2) 1M27
(2)

5S as

4p D 2

nf^sguO7ub& treeF t2
(2)ln2S mb

m D
1 l 2

(2)lnS mb

m D1r 2
(2)G , ~22!

with
t2
(2)5

800

243
, ~23!

Re~ l 2
(2)!5

16

243
@21451~288230p22216z~3!1216L254p2L118L216L3!z124p2z3/2

16~1812p2112L26p2L1L3!z22~9114p22182L1126L2!z3#1O~z4!, ~24!

Im~ l 2
(2)!5

16p

243
@2221~180212p2136L136L2!z2~12p2236L2!z21~112248L !z3#1O~z4!, ~25!

Re~r 2
(2)!5

67454

6561
2

124p2

729
2

4

1215
~1128021520p22171p425760z~3!16840L21440p2L22520z~3!L1120L2

1100L3230L4!z2
64p2

243
@43212 ln~2!23L#z3/22

2

1215
@114752380p2196p417200z~3!21110L

21560p2L11440z~3!L1990L21260L3260L4#z21
2240p2

243
z5/22

2

2187
@6247122424p2233264z~3!

219494L2504p2L25184L212160L3#z31O~z7/2!, ~26!

Im~r 2
(2)!5

4p

729
$495212@375219p2136z~3!184L148L226L3#z16@207138p2272z~3!2126L278L2112L3#z2

18~67212p2248L !z3%1O~z4!, ~27!
whereL5 ln z. We note that in the derivation of thisO(as
2nf)

result, there was no need to renormalize the parametermb in
the correspondingO(as

1) expression. Therefore, the symb
^sguO7ub& tree can be interpreted to be~in M2

(1) andM2
(2))

^sguO7ub& tree5mb

e

8p2
ū~p8!«”q”u~p!, ~28!

wheremb denotes the pole mass of theb quark. Concerning
this point, the reader is also referred to Sec. III.

We now turn to the renormalized matrix elementM1
(2) ,

associated with the operatorO1 . O1, defined in Eq.~4!, can
be written as
O15
1

2
Õ12

1

6
O2 , ~29!

with

Õ15~ s̄L
agmcL

b!~ c̄L
bgmbL

a!, ~30!

wherea andb are color indices. It is easy to see thatÕ1 has
a vanishing matrix element forb→sg. Therefore, one ob-
tains

M1
(2)52

1

6
M2

(2) . ~31!
9-6
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III. REAL AND VIRTUAL CORRECTIONS TO ŠsgzO7zb‹

In this section we describe in some detail the steps nee
for the calculation of theO(as

2nf) corrections to the matrix
element^sguO7ub&. Due to the presence of infrared sing
larities, the practical calculation proceeds in a slightly diff
ent way than forO2. As these singularities only get cancele
at the level of the decay width when combining the virtu
corrections shown in Fig. 4~a! with the gluon bremsstrahlun
@Fig. 4~b!# and the quark-pair emission process@Fig. 4~c!#,
we first derive expressions for theO(as

2nf) corrections to
these three contributions to the decay width. The correspo
ing expressions necessary to evaluate BR(B→Xsg)Eg>Ecut

are discussed in Appendix E.
To fix the notation, we write the contribution fromO7 to

the decay widthG(b→Xsg) as

G775G77
0 @11Ĝ77

(1)1Ĝ77
(2),nf#, G77

0 5
mb

5aem

32p4
uGFl tC7

effu2.

~32!

The O(as) correctionĜ77
(1) can be extracted from Ref.@20#,

reading

Ĝ77
(1)5

as

4p F2
32

9
2

16p2

9
1

64

3
lnS mb

m D G . ~33!

We further splitĜ77
(2),nf in Eq. ~32! as

Ĝ77
(2),nf5Ĝ77

(2),(a)1Ĝ77
(2),(b)1Ĝ77

(2),(c) , ~34!

with obvious notation~Fig. 4!.
For the calculation of the three parts contributing

Ĝ77
(2),nf we could in principle putmf5ms50 at the beginning

of the calculation and use dimensional regularization
both infrared and ultraviolet singularities. We found it eas
however, to use the strange quark massms and the mass o
the quark in the fermion bubblemf as infrared regulators
For formulating the results, it is convenient to introduce t
dimensionless quantities

r 5
ms

2

mb
2

, f 5
mf

2

mb
2

. ~35!

We now turn to the calculations ofĜ77
(2),(c) , Ĝ77

(2),(b) , and

Ĝ77
(2),(a) ~in this order!.
Inspecting the explicit expressions for the quark-pair

diation process@cf. Fig. 4~c!#, one finds that it can be worke

FIG. 4. Virtual ~a!, gluon-bremsstrahlung~b!, and quark-pair
radiation~c! graphs to the operatorO7. In ~b! and~c!, the diagrams
where the gluon is emitted from thes quark are not shown.
11401
ed

-

l

d-

r
,

e

-

out in our ‘‘massive’’ regularization scheme ind54 dimen-
sions. Furthermore, one realizes that one can also putms
50, providedmf is kept at a~small! fixed value. As a con-
sequence, the quark-pair radiation process is comple
regularized by the massmf . The evaluation of this process i
quite standard: in a first step the subprocessb→sgg! is
considered whereg! represents a virtual gluon. Subsequen
the other subprocess, describing the decay ofg! into two
fermions, is added. It is straightforward to perform the o
curring phase space integrations where only the one ove
gluon virtuality is nontrivial. However, in the limitmf→0
also this one can be performed analytically. One arrives
the following result for the quark-pair emission process:

Ĝ77
(2),(c)5S as

4p D 2 nf

243
@212662124p212592z~3!

1~144p225916!ln~ f !2900 ln2~ f !272 ln3~ f !#.

~36!

Due to the Kinoshita-Lee-Nauenberg theorem, it follows th
the sum of the virtual and the gluon bremsstrahlung corr
tions also must be finite ford→4 andms→0 for fixed mf .

We now turn to the gluon bremsstrahlung process. T
diagram in Fig. 4~b! ~combined with the one where the gluo
is emitted from thes quark! can be written as

M7,bare
(2),(b)5

dZ3
(1),nf

2
M7

(1),(b) , ~37!

whereM7
(1),(b) denotes the lowest order matrix element f

b→sgg anddZ3
(1),nf reads

dZ3
(1),nf52

as

p

nfT

36 F12

e
224 lnS mf

m D1p2e124 ln2S mf

m D e

1O~e2!G . ~38!

Note that the 1/e pole is of ultraviolet origin; the infrared
singularity is regulated bymf in this expression. In addition
there is a counterterm contribution due to theMS renormal-
ization of the strong coupling constant of the form

M7,ct
(2),(b)5dZgs

(1),nfM7
(1),(b) , ~39!

with

dZgs

(1),nf5
as

p

nfT

6e
. ~40!

CombiningM7,bare
(2),(b) with M7,ct

(2),(b) , one obtains the renormal
ized matrix elementM7

(2),(b)

M7
(2),(b)5S dZgs

(1),nf1
dZ3

(1),nf

2
D M7

(1),(b) , ~41!

from which theO(as
2nf) contribution to the decay width is

obtained in a straightforward way. One gets
9-7
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Ĝ77
(2),(b)52S dZgs

(1),nf1
dZ3

(1),nf

2
D Ĝ77

(1),(b)

5S as

4p D 2 CFTnf

18 H 48

e F2 ln~ f !14 lnS mb

m D1 ln~ f !ln~r !12 lnS mb

m D ln~r !G28p21416 ln~ f !232p2ln~ f !248 ln2~ f !

1832 lnS mb

m D264p2lnS mb

m D2960 ln2S mb

m D2576 ln~ f !lnS mb

m D24 ln~r !Fp2218 ln~ f !16 ln2~ f !236 lnS mb

m D
1120 ln2S mb

m D172 ln~ f !lnS mb

m D G224 ln2~r !F ln~ f !12 lnS mb

m D G J , ~42!

whereĜ77
(1),(b) is the corresponding~normalized! decay width forb→sgg in theO(as) approximation. As in our regularization

scheme the sumdZgs

(1),nf1dZ3
(1),nf /2 is finite ~in e), Ĝ77

(1),(b) is only needed up to terms of ordere0, which simplified the

calculation.
We now turn to the evaluation of the virtual corrections shown in Fig. 4~a! and also discuss the various counterte

contributions. For the diagram shown in this figure, we obtain

M7,bare
(2),(a)5

1

81H 54

e2
~2 ln~r !21!1

18

e F2112 ln~r !26 ln~r !ln~ f !224 ln~r !lnS mb

m D23 ln2~r !16 ln~ f !112 lnS mb

m D G11718

1123p21840 ln~ f !136p2ln~ f !190 ln2~ f !118 ln3~ f !2144 lnS mb

m D2432 ln2S mb

m D2432 ln~ f !lnS mb

m D
118 ln~r !F241p2212 ln~ f !13 ln2~ f !248 lnS mb

m D148 ln2S mb

m D124 ln~ f !lnS mb

m D G
254 ln2~r !F22 ln~ f !24 lnS mb

m D G118 ln3~r !J S as

4p D 2

CFTnf^sguO7ub& tree. ~43!
th

it

on
-

ol
e-
y
ri-
We stress that this expression is derived in such a way
ms is understood to be sent to zero prior tomf . This proce-
dure is justified by the fact that for fixedmf the sum of the
virtual and gluon bremsstrahlung contributions must be fin
in the limit ms→0, as discussed above.

The counterterm contributionM7,ct
(2),(a) at O(as

2nf) has
various sources. There is a contributionM7,ct1

(2),(a) due to the

renormalization ofgs in theO(as) vertex diagram@i.e., simi-
lar to the one in Fig. 4~a!, but without the fermion bubble#,
yielding

M7,ct1
(2),(a)5

1

9 H 2
12

e2
ln~r !2

6

e
ln~r !F42 ln~r !24 lnS mb

m D G
1122 ln~r !F481p2248 lnS mb

m D124 ln2S mb

m D G
112 ln2~r !F12 lnS mb

m D G22 ln3~r !J
3S as

4p D 2

CFTnf^sguO7ub& tree. ~44!
11401
at

e

Then, there is a counterterm contributionM7,ct2
(2),(a) of the form

M7,ct2
(2),(a)5S dZ2,b

(2),nf

2
1

dZ2,s
(2),nf

2
1dZ77

(2),nf1dZmb

on,(2),nf D
3^sguO7ub& tree. ~45!

Here, dZ2,b
(2),nf and dZ2,s

(2),nf are theO(as
2nf) pieces of the

on-shell wave function renormalization constants for theb
ands quark, respectively, while the operator renormalizati
factor dZ77

(2),nf refers to theMS scheme. Note that the pres

ence of theon-shellrenormalization factordZmb

on,(2),nf in Eq.

~45! implies that in the lower order contributions the symb
^sguO7ub& tree is understood to be the tree-level matrix el
ment ofO7 in which the runningb-quark mass is replaced b
the corresponding pole mass. The explicit form of the va
ousdZ factors occurring in Eq.~45! can be seen in Appendix
D.

After combining Eqs.~43!, ~44!, and~45! into the renor-

malized matrix element, the calculation ofĜ77
(2),(a) is straight-

forward. We obtain
9-8
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Ĝ77
(2),(a)5S as

4p D 2 CFTnf

81 H 2216

e F2 ln~ f !14 lnS mb

m D1 ln~ f !ln~r !12 lnS mb

m D ln~r !G174951624p211086 ln~ f !

172p2ln~ f !1666 ln2~ f !136 ln3~ f !26336 lnS mb

m D16048 ln2S mb

m D12592 ln~ f !lnS mb

m D118 ln~r !Fp2218 ln~ f !

16 ln2~ f !236 lnS mb

m D1120 ln2S mb

m D172 ln~ f !lnS mb

m D G1108 ln2~r !F ln~ f !12 lnS mb

m D G J . ~46!
ec

te

on

e

d
E

. 5

the
e

l-
ibed

he
We now combine virtual and gluon bremsstrahlung corr
tions given in Eqs.~46! and ~42!, respectively. We obtain
~after puttingT51/2 andCF54/3)

Ĝ77
(2),(a)1(b)5S as

4p D 2 nf

243F1499011176p21~59162144p2!

3 ln~ f !1900 ln2~ f !172 ln3~ f !2576~91p2!

3 lnS mb

m D13456 ln2S mb

m D G , ~47!

where the 1/e poles and the mass singularities associa
with ms are canceled.

When combining this result with the quark-pair emissi
process in Eq.~36!, we obtain the final result

Ĝ77
(2),nf5F as

4pG2

nfF2t7
(2)ln2S mb

m D12l 7
(2)lnS mb

m D12r 7
(2)G ,

~48!

with

t7
(2)5

64

9
,

l 7
(2)52

32

27
~91p2!,

r 7
(2)5

4

81
@97150p21108z~3!#. ~49!

The cancellation of the ln(f) terms is a strong check for th
correctness of the individual pieces of the calculation.

For later convenience we formally introduce an amplitu
M7 in such a way that its square reproduces the result of
~48!. Adopting the notation of Eq.~6! one gets

M7
(2)5S as

4p D 2

nf^sguO7ub& treeF t7
(2)ln2S mb

m D
1 l 7

(2)lnS mb

m D1r 7
(2)G . ~50!

IV. VIRTUAL CORRECTIONS TO ŠsgzO8zb‹

We first discuss the two-loop diagrams depicted in Fig
which contain the building blockKbb8

f @see Eq.~A2!#. As
11401
-

d

e
q.

,

these diagrams are free of infrared singularities, we put
massesmf of the quarks in the fermion loop as well as th
strange quark massms to zero from the beginning. The ca
culation can be performed along the same lines as descr
in Sec. II A. However, due to the absence ofmc , the actual
evaluation of the diagrams turns out to be much simpler. T
result can be cast into the form

M8,bare
(2) 5S as

4p D 2

CFTnfQd^sguO7ub& tree

4

27

3F S 18

e2
1

1

e
~12026p2118ip!D S mb

m D 24e

1530228p22180z~3!193ipG . ~51!

The counterterm contribution ofO(as
2nf), denoted byM8,ct

(2) ,
stems from the renormalization ofgs and from the mixing of
O8 into the operatorO7. We obtain

M8,ct
(2)5dZ87

(2),nf^sguO7ub& tree12dZgs

(1),nfM8
(1) , ~52!

with

dZ87
(2),nf5S as

p D 2

CFTnf

Qd

36e S 6

e
27D ,

dZgs

(1),nf5
as

p

nfT

6e
,

M8
(1)52

as

4p

1

3
QdCF^sguO7ub& treeH 12

e
13322p2

224 lnS mb

m D16ip1eF7224p2236z~3!

266 lnS mb

m D14p2lnS mb

m D124 ln2S mb

m D
112ip212ip lnS mb

m D G1O~e2!J . ~53!

dZ87
(2),nf is obtained from Refs.@12,28#. The sum ofM8,bare

(2)

and M8,ct
(2) leads to the renormalized result~using T51/2,

CF54/3 andQd521/3)
9-9
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M8
(2)5S as

4p D 2

nf^sguO7ub& treeF t8
(2)ln2S mb

m D
1 l 8

(2)lnS mb

m D1r 8
(2)G , ~54!

with

t8
(2)52

64

27
,

l 8
(2)5

16

81
~4722p216ip!,

r 8
(2)5

8

243
@2314116p2172z~3!257ip#. ~55!

V. NUMERICAL IMPACT OF THE O„aS
2nf…

CORRECTIONS

It is well known that the inclusive decay rate forB
→Xsg is given by the correspondingb-quark decay rate
G(b→Xsg), up to power corrections of the form
(LQCD/mb)2 @29# and (LQCD/mc)

2 @30# which numerically
are well below 10%. As our new results are only a part of
complete NNLL contributions, we do not present a new p
diction of the branching ratio in this paper. Instead, we o
illustrate how theO(as

2nf) corrections to the matrix ele
ments of the operatorsO1 , O2 , O7, andO8 modify the NLL
branching ratio for a given set of input parameters. For t
purpose, we neglect power corrections and also electrow
terms.

In a NLL calculation the inclusive quark-level transitio
b→Xsg involves the subprocessesb→sg ~including virtual
corrections! andb→sgg, i.e., the gluon bremsstrahlung pro
cess. We write the amplitude for the first subprocess a
Ref. @14#:

A NLL~b→sg!52
4GF

A2
Vts

!VtbDNLL^sguO7ub& tree,

~56!

where the reduced amplitudeDNLL reads

DNLL5C7
eff~m!1

as~m!

4p
V(1)~m!. ~57!

The symbolV(1)(m), defined as

FIG. 5. Graphs associated with virtual corrections to the ope
tor O8. The crosses denote the possible places where the photo
be emitted.
11401
e
-
y

is
ak

in

V(1)~m!5(
i 51

8

Ci
eff~m!F S r i

(1)2
16

3
d i7D

1~ l i
(1)18d i7!lnS mb

m D G , ~58!

incorporates the NLL correctionsr i
(1) and l i

(1) to the matrix
elements. In Eq.~57!, the first term on the right-hand side
understood to be the Wilson coefficientC7

eff(m) at NLL or-
der, while the Wilson coefficients appearing inV(1)(m) are
understood to be taken at LL order. As in Ref.@14#, we
convert the running mass factorm̄b(m), which appears in the
definition of the operatorO7 in Eq. ~4!, into the pole mass
mb . This conversion is absorbed into the functionV(1)(m)
and consequently the symbol^sguO7ub& tree in Eq. ~56! is the
tree-level matrix element of the operatorO7, where the run-
ning mass factorm̄b(m) is understood to be replaced by th
pole massmb . The NLL virtual correction functionsr i

(1) and
l i
(1) in Eq. ~58!, taken from Ref.@20#, are repeated for com

pleteness in Appendix C. Note, that the quantityr 7
(1) not only

contains virtual corrections to the matrix element ofO7,
which would be infrared singular.r 7

(1) is constructed in such
a way, that the (O7 ,O7) interference term generates the su
of virtual and bremsstrahlung corrections when formally c
culating the branching ratio fromA NLL(b→sg). For the de-
tails of this construction, we refer to Ref.@20#. Numerically,
the square of this amplitude encodes the bulk of the de
width. The additional bremsstrahlung corrections, which
infrared finite forEgluon→0, are relatively small. Therefore
when considering terms of orderO(as

2nf), we omit purely
finite bremsstrahlung contributions.

When improving the amplitude for the subprocessb
→sg by including the terms ofO(as

2nf), the result can be
written as

A~b→sg!52
4GF

A2
Vts

!VtbD^sguO7ub& tree, ~59!

where the reduced amplitudeD is

D5C7
eff~m!1

as~m!

4p
V(1)~m!1S as~m!

4p D 2

nfV
(2)~m!.

~60!

V(2)(m), defined as

V(2)~m!5(
i 51

8

Ci
eff~m!F r i

(2)1 l i
(2)lnS mb

m D1t i
(2)ln2S mb

m D G ,
~61!

incorporates theO(as
2nf) corrections to the matrix element

calculated in the previous sections of this paper. The exp
C7

eff(m) term in Eq. ~60! in principle stands for the NLL
Wilson coefficient, supplemented by thenf dependent NNLL
contributions. As the latter are not known yet, we take t
Wilson coefficient at NLL precision in the numerical eval
ations. The Wilson coefficients enteringV(1)(m) are in prin-

-
an
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FIG. 6. The reduced amplitudeD as a function of the renormalization scalem where the plot on the right is an enlargement of the o
on the left. The dash-dotted curve represents the NLL approximation and the solid curve includes the corrections ofO(as

2nf). For
comparison we also show the result where the Wilson coefficients inV(1) @cf. Eq. ~58!# are inserted to LL precision only~dashed curve!.
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ciple the LL coefficients, supplemented by thenf dependent
NLL contributions. In practice, we decide to replace the
Wilson coefficients by the respective complete NLL versio
Finally, the Wilson coefficients enteringV(2)(m) are the LL
versions. Note, that the gluon bremsstrahlung and the qu
antiquark emission processes associated withO7 are effec-
tively transferred intor 7

(2) , l 7
(2) , and t7

(2) , as described in
Sec. III. As already mentioned above, the square of the
defined amplitude incorporates the major part of the bran
ing ratio. We therefore consider the additional finite brem
strahlung corrections to the decay width only at the N
level, i.e., we do not calculate theO(as

2nf) corrections to
these contributions.

As the square of the amplitude forb→sg ~in the sense
defined above! encodes the dominant part of the dec
width, it is reasonable to compare the NLL resultDNLL in
Eq. ~57! with the correspondingO(as

2nf)-improved resultD
in Eq. ~60!. In Fig. 6, the functionD is plotted as a function
of the renormalization scalem. We note, as already discusse
in the Introduction, that we use in the numerical evaluatio
the hypothesis of naive non-Abelianization, which amou
to replacingnf by 23b0/2. Nevertheless, in the following
we still write O(as

2nf). The dash-dotted line shows the NL
approximation as defined in Eq.~57!, while the solid curve
shows the result after including theO(as

2nf) terms as dis-
cussed above. The dashed line shows the result
O(as

2nf) improvements, in which, however, the Wilson c
efficients in V(1)(m) are taken in LL approximation. The
three curves illustrate that the changes between theO(as

2nf)
improved version~solid line! and the NLL prediction~dash-
dotted line! are mainly due to the newO(as

2nf) corrections
of the matrix elements calculated in the previous section

FromA(b→sg) in Eq. ~59! the decay widthG(b→sg) is
easily obtained to be

G~b→sg!5
GF

2

32p4
uVts

!Vtbu2aemmb
5uDu2. ~62!

When giving numerical results for the NLL predictions, w
only retain terms inuDu2 up to orderas , while for the im-
11401
e
.

k-

o-
h-
-

s
s

th

proved version we retain terms up toO(as
2nf) in uDu2 and

systematically dismiss higher order contributions. For co
pleteness we should mention thatas(m) is evaluated using
two-loop accuracy in theb function. We checked that the
contribution of the three-loop termb2 is numerically small.

To obtain the inclusive decay rate forb→Xsg, we have to
take into account those terms which have not yet been
sorbed into the virtual corrections. At NLL precision, the
contributions consist of those gluon bremsstrahlung corr
tions which are finite when the gluon energy goes to ze
they have been calculated in Refs.@31,32#. As the (O8 ,O8)
contribution to G(b→sgg) becomes infrared singular fo
soft photon energies, we introduce a photon energy cuto
Ecut as in Ref.@12# and define the kinematical decay width

G~b→Xsg!Eg>Ecut
. ~63!

At NLL the gluon bremsstrahlung contribution to this qua
tity can be written as

G~b→sgg!Eg>Ecut
5

GF
2

32p4
uVts

!Vtbu2aemmb
5A, ~64!

whereA is of the form@12#

A5~e2as(m)ln(d)[712 ln(d)]/(3p)21!

1
as~m!

p (
i , j 51;i< j

8

Re@Ci
eff~m!Cj

eff~m! f i j ~d!#. ~65!

The quantityd is defined through

Ecut5
mb

2
~12d!5Emax~12d!. ~66!

In Eq. ~65! we putCi
eff50 for i 53, . . . ,6, as in thevirtual

contributions. We list the explicit expressions for the quan
ties f i j (d) in Appendix C.

We should repeat that theO(as
2nf) corrections are incor-

porated in the quantityD, defined in Eqs.~59! and~60!. We
9-11
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FIG. 7. The branching ratio as a function of the renormalization scalem where the plot on the right is an enlargement of the one on
left. The dash-dotted curve represents the NLL approximation and the solid curve includes the corrections ofO(as

2nf). For illustration in the
left plot the latter are also shown for the case whereM1/2

(2) (M7
(2)) is set to zero which corresponds to short-dashed~long-dashed! curve. A

photon energy cut ofEcut5mb/20 is used, which corresponds tod50.9.
t
ve
de
n
a

e

tio ne

e

e

atio
f

re
.

stress that the absorbed gluon bremsstrahlung- and
quark-pair emission terms were obtained by integrating o
the full range of the photon energy. Thus, since we deci
to implement a photon energy cut as just described, the fi
expression for the kinematical decay width can be written

G~b→Xsg!Eg>Ecut
5

GF
2

32p4
uVts

!Vtbu2aemmb
5~ uDu21A!

2G77
(2),nf~b→Xsg!Eg<Ecut

, ~67!

where the expression forG77
(2),nf(b→Xsg)Eg<Ecut

is derived
in Appendix E.

In a last step, the kinematical branching ratio is obtain
as

BR~b→Xsg!Eg>Ecut
5

G~b→Xsg!Eg>Ecut

GSL
BRSL, ~68!

where BRSL is the measured semileptonic branching ra
and the semileptonic decay widthGSL @supplemented by the
O(as

2nf) terms@23## is given by (z5mc
2/mb

2)

GSL5
GF

2 uVcbu2mb
5

192p3
g~z!H 12

2as~m!

3p

h~z!

g~z!

2S as~m!

p D 2

b0FxbS mc

mb
D2

1

3

h~z!

g~z!
lnS mb

m D G J ,

~69!

where the phase space functiong(z) and theO(as) radiation
function h(z) @33# read

g~z!5128z18z32z4212z2ln~z!,
11401
he
r
d
al
s

d

h~z!52~12z2!S 25

4
2

239

3
z1

25

4
z2D

1z ln~z!S 20190z2
4

3
z21

17

3
z3D1z2ln2~z!~361z2!

1~12z2!S 17

3
2

64

3
z1

17

3
z2D ln~12z!

24~1130z21z4!ln~z!ln~12z!2~1116z21z4!

3@6 Li2~z!2p2#232z3/2~11z!Fp224 Li2~Az!

14 Li2~2Az!22 ln~z!lnS 12Az

11Az
D G . ~70!

The function xb(mc /mb), which encodes theO(as
2nf)

terms2 is given in the form of a plot in Ref.@23#. For
mc /mb50.29, which is the default value in our paper, o
finds xb(0.29)'1.68.

In Fig. 7 the kinematical branching ratio is shown for th
choiceEcut5mb/20 or, equivalently,d50.9 @8# as a function
of the renormalization scalem. The input parameters wer
chosen to be mb54.8 GeV, mc /mb50.29, mt
5173.8 GeV,mW580.41 GeV,mZ591.187 GeV,as(mZ)
50.119, aem51/137.036,uVts

!Vtb /Vcbu250.95, and BRSL
510.49%. The dash-dotted line shows the branching r
BR(b→Xsg) in NLL precision. In this case the terms o
O(as

2b0) are consistently omitted in the expression forGSL

in Eq. ~69!. The solid line shows the branching ratio whe
the O(as

2nf) @or theO(as
2b0)] improvements are included

2Note, thatnf is replaced by23b0/2.
9-12
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One observes that form'5.5 GeV theO(as
2nf) correc-

tions vanish and that they are negative~positive! for smaller
~larger! values ofm. In this context it is instructive to look a
the decomposition of the result. For this reason we show
the left plot of Fig. 7 theO(as

2nf) corrections where eithe
M1

(2) andM2
(2) or M7

(2) is artificially set to zero which corre
sponds to the short-dashed and long-dashed curve, res
tively. This illustrates that there is a large cancellation b
tween the negative contribution fromO7 and the one from
O1 andO2 which is, of course, also present in the amplitu
D. The effect of theas

2nf corrections from the operatorO8 is
significantly smaller and at most of the order of 2% in t
considered interval form.

Figure 7 furthermore illustrates that them dependence o
the O(as

2nf) improved prediction for the branching ratio
somewhat flatter than in the NLL case if we restrict oursel
to m>4 GeV. This is a welcome feature of our result, ho
ever, in general we cannot expect to reduce them depen-
dence as the solid curve only represents a part of theO(as

2)
result. Indeed, we obtain a strongerm dependence in the
region below 4 GeV.

In Fig. 8 we show the dependence of the kinemati
branching ratio on the photon energy cut. The dash-do
line shows the NLL result, while the solid curve includes t
order as

2nf improvements. We should mention at this po
that we did not include any nonperturbative effects in

FIG. 9. The building blocksI b andKbb8
f which are used in the

calculation of the Feynman diagrams. The curly lines represent
tual gluons, whereas the lettersb, c ands stand for the correspond
ing quark (f stands for a generic quark of massmf). Note that the
external gluons are not amputated in the case ofKbb8

f .

FIG. 8. Dependence of the branching ratio on the photon ene
cut Ecut5(mb/2)(12d). The dash-dotted curve shows the NLL r
sult, while the solid curve includes theO(as

2nf) improvements. The
renormalization scale ism54.8 GeV.
11401
in

ec-
-

s

l
d

t
e

photon energy spectrum. The main purpose of this figur
to illustrate how the orderas

2nf contributions modify the
NLL result.

VI. CONCLUSIONS

In this paper a first step towards a complete NNLL calc
lation is undertaken and radiative corrections to the ma
elements of the operatorsO1 , O2 , O7, and O8 are com-
puted. More precisely, we consider the contributions of or
as

2nf which are induced by a massless quark loop. It is
pected that these corrections, after replacingnf by
23b0/2, may give an important contribution to the full o
der as

2 corrections. Furthermore, motivated by the NL
analysis, we expect that theO(as

2nf) corrections to the ma-
trix elements numerically dominate the ones of the sa
order to the Wilson coefficient functions and to the anom
lous dimension matrix.

In practice our calculation requires the evaluation of tw
and three-loop diagrams in the case ofO7 , O8 andO1 , O2,
respectively. Furthermore, in order to obtain an infrared fin
result in the case ofO7, also the contributions from the
gluon bremsstrahlung and from the quark-pair emission p
cess are taken into account which requires the evaluatio
three- and four-particle phase space integrals, respectiv
All calculations are performed analytically where an expa
sion in mc /mb is applied to the three-loop diagrams. F
practical purposes this expansion is equivalent to the e
result.

As far as the numerical impact of our result is concern
we observe a striking cancellation among the individual c
tributions at orderas

2nf . When using a photon energy cut o

Ecut5mb/20, theO(as
2nf) terms reduce~after replacingnf

by 23b0/2) the branching ratio by20.98% for m5mb
54.8 GeV and lead to corrections of23.9% and13.4% for
m53.0 GeV andm59.6 GeV, respectively.
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APPENDIX A: BUILDING BLOCKS

The three-loop diagrams involvingO1 andO2 as well as
the two-loop graphs involvingO7 andO8 can be calculated
by using one or more of the building blocksI b , Jab , and
Kbb8

f to be discussed in this appendix. The correspond
diagrams are shown in Figs. 9 and 10 where the color ind
are suppressed.

The calculation ofI b is straightforward and yields

I b52
gs

4p2
G~e!m2eegEe~12e!eipe~r br”2r 2gb!L

l

2

3E
0

1

dx@x~12x!#12eF r 22
mc

2

x~12x!
1 idG2e

, ~A1!

wherer is the momentum of the virtual gluon emitted fro
thec-quark loop. In the three-loop diagrams shown in Fig
~cf. Sec. II A!, the free indexb will be contracted with the
corresponding index of the dressed gluon propagatorKbb8

f .
It is also quite simple to obtain the building blockKbb8

f

~i.e., the dressed gluon propagator! which can be cast into the
form

Kbb8
f

52
gs

2

2p2
TG~e!egEeeipem2e

1

i

gbb82
r br b8

r 2

r 21 id

3E
0

1

dxx~12x!@x~12x!r 22mf
21 id#2e,

~A2!

wheremf denotes the mass of the quarks andT5 1
2 . Note

that this expression is independent of the gauge paramej
which enters the free gluon propagators in the construc
of Kbb8

f , when working in an arbitraryRj gauge.
The building block Jab is somewhat more involved

Adopting the notation of Ref.@34#, it reads~for an on-shell
photon! @20#

Jab5
egsQu

16p2 FE~a,b,r !D i 51E~a,b,q!D i 6

2E~b,r ,q!
r a

q•r
D i 232E~a,r ,q!

r b

q•r
D i 25

2E~a,r ,q!
qb

q•r
D i 26GL l

2
, ~A3!
11401
-

g
es

r
n

whereq and r denote the momenta of the on-shell phot
and the off-shell gluon, respectively. When inserted into
full diagrams in Fig. 2, the indicesa and b will be con-
tracted with the polarization vector« of the photon and with
the dressed gluon propagatorKbb8

f , respectively. The matrix
E(a,b,r ) is defined as

E~a,b,r !5
1

2
~gagbr”2r”gbga!, ~A4!

and the dimensionally regularized quantitiesD i k occurring in
Eq. ~A3! read

D i 554B1E
S
dxdy@4~q•r !xy~12x!e

1r 2x~12x!~122x!e1~123x!C#C212e,

D i 654B1E
S
dxdy@24~q•r !xy~12y!e

2r 2x~222x12xy2y!e2~123y!C#C212e,

D i 2352D i 2658B1~q•r !E
S
dxdyxyeC212e,

D i 25528B1~q•r !E
S
dxdyx~12x!eC212e,

~A5!

whereB15(11e)G(e)egEem2e andC is given by

C5mc
222xy~q•r !2r 2x~12x!2 id.

The integration over the Feynman parametersx andy is re-
stricted to the simplexS, i.e., yP@0,12x#, xP@0,1#. Be-
cause of the Ward identities, the quantitiesD i k are not inde-
pendent of one another. Namely,

qaJab50 and r bJab50

imply that D i 5 andD i 6 can be expressed as

D i 55D i 23, D i 65
r 2

q•r
D i 251D i 26. ~A6!

APPENDIX B: REGULARIZED THREE-LOOP RESULTS
FOR ŠsgzO2zb‹

In Sec. II A we explained in some detail the calculation
the virtual three-loop corrections tôsguO2ub&. Here we
give the results for the four gauge-invariant sets of gra
depicted in Figs. 1 and 2. The results read, usingz
5mc

2/mb
2 andL5 ln(z),
9-14
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M2,bare
(2) ~1!5H 1

e F2
1

81e
2

29

243
1

1

6
~512L !z1

1

6
~522L12L222p2!z21

1

81
~17130L218L2118p2!z3

2
ip

27
~129z19z2218Lz2210z3112Lz3!G S mb

m D 26e

1F2
1063

1458
1

19p2

324
1

1

18
~6114L29L2210p2!z

1
1

18
@79222L128L228L329p2214Lp2212z~3!#z21

1

81
~63227L236L2124L3259p2142Lp2

136z~3!!z32
ip

162
@582441z29~23138L26L2212p2!z2212~413L13L216p2!z3#G1O~z4!J

3S as

p D 2

CFTnfQd^sguO7ub& tree, ~B1!

M2,bare
(2) ~2!5H 1

e F 7

162e
1

5

486
1

1

18
~32p2!z1

2p2

9
z3/22

1

6
~626L1L2!z21

1

324
~15726L2144L2260p2!z3G

3S mb

m D 26e

1F2
1387

1458
1

11p2

72
1

1

54
@96217p22126z~3!#z1

p2

27
@40218L272 ln~2!#z3/2

1
1

36
@2131102L240L218L3134p2196z~3!#z22

20p2

9
z5/21

1

324
@27992995L2198L21192L3

210p2260Lp22936z~3!#z3G1O~z7/2!J S as

p D 2

CFTnfQd^sguO7ub& tree, ~B2!

M2,bare
(2) ~3!5H 1

e F 1

36e
1

137

432
2

1

36
@18124L13L212L323p226Lp2224z~3!#z2

1

36
@1516L26L212L316p2

26Lp2224z~3!#z21
1

36
~17212L !z31

ip

36
~3224z26Lz26L2z12p2z26z2112Lz226L2z212p2z2

212z3!G S mb

m D 26e

1F6029

2592
2

17p2

144
2

1

1080
@720016240L2120L21220L32105L422040p221200Lp2

190L2p21111p424440z~3!11440Lz~3!#z2
1

2160
@1513525790L21050L21980L32210L4230p2

2780Lp21180L2p21222p424560z~3!12880Lz~3!#z21
1

72
~322L172p2!z3

1
ip

432
$41124@7861192L193L2224L3249p2212Lp2272z~3!#z12@3091102L2186L2148L3

210p2124Lp21144z~3!#z218~75254L !z3%G1O~z4!J S as

p D 2

CFTnfQu^sguO7ub& tree, ~B3!

M2,bare
(2) ~4!5H 1

e F 1

18e
1

127

432
2

1

36
@1216L2L32p223Lp2212z~3!#z2

1

36
@626L13L22L312p2124z~3!#z2

2
1

324
~271108L281L2227p2!z3G S mb

m D 26e

1F2839

2592
1

13p2

144
2

1

2160
@948012040L1180L22340L3

1105L41260p22720Lp2130L2p22439p423360z~3!28640Lz~3!#z2
8p2

3
z3/2

1
1

4320
@2989526270L21410L21740L32210L41920p22480Lp21120L2p2252p4216320z~3!
114019-15
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14320Lz~3!#z21
40p2

27
z5/22

1

216
@13582477L299L2190L3163p2218Lp22432z~3!#z3G1O~z7/2!J

3S as

p D 2

CFTnfQu^sguO7ub& tree. ~B4!

In these expressions,z denotes the Riemannz function with the valuez(3)'1.2020569.Qu52/3 andQd521/3 are the
electric charge factors of the up- and down-type quarks, respectively, whileCF54/3 andT51/2 are color factors.

APPENDIX C: CORRECTION FUNCTIONS NEEDED FOR THE NLL RESULT

The renormalization scale independent parts of the virtual corrections in NLL order precision, encoded in the functior i
(1) ,

appearing in Eq.~58!, read

r 1
(1)52

1

6
r 2

(1) ,

r 2
(1)5

2

243
$28331144p2z3/21@17282180p221296z~3!1~12962324p2!L1108L2136L3#z

1@648172p21~4322216p2!L136L3#z21@254284p211092L2756L2#z3%

1
16p i

81
$251@4523p219L19L2#z1@23p219L2#z21@28212L#z3%1O~z7/2!,

r 7
(1)5

32

9
2

8

9
p2,

r 8
(1)52

4

27
~23312p226ip!, ~C1!

wherez is defined asz5mc
2/mb

2 and the symbolL denotesL5 ln(z). The quantitiesl i
(1) , appearing in Eq.~58!, read

l 1
(1)52

1

6
l 2
(1) , l 2

(1)5
416

81
, l 7

(1)5
8

3
, l 8

(1)52
32

9
. ~C2!

Notice thatr 3
(1) , r 4

(1) , r 5
(1) , andr 6

(1) , as well asl 3
(1) , l 4

(1) , l 5
(1) , and l 6

(1) are not needed in the approximationCi
eff(m)50 (i

53,4,5,6).
The functionsf i j needed for Eq.~65! are taken from Ref.@12# and are listed here for completeness. Note thatf 77(d) differs

from the one given in Ref.@12# in order to be compatible with ourr 7 given in Eq.~C1!.3

f 11~d!5
1

36
f 22~d!, f 12~d!52

1

3
f 22~d!, f 17~d!52

1

6
f 27~d!, f 18~d!52

1

6
f 28~d!,

f 22~d!5
16z

27 FdE
0

(12d)/z

dt~12zt!UG~ t !

t
1

1

2U
2

1E
(12d)/z

1/z

dt~12zt!2UG~ t !

t
1

1

2U
2G ,

f 27~d!52
8z2

9 FdE
0

(12d)/z

dt ReS G~ t !1
t

2D1E
(12d)/z

1/z

dt~12zt!ReS G~ t !1
t

2D G ,
f 28~d!52

1

3
f 27~d!,

3The additional,d-independent addend appearing in ourf 77(d) is such thatf 77(1) vanishes: the contribution off 77(d) at d51 is already
absorbed into ourr 7.
114019-16
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f 77~d!5
10

3
d1

1

3
d22

2

9
d31

1

3
d~d24!ln~d!2

31

9
,

f 78~d!5
8

9 FLi2~12d!2
p2

6
2d ln~d!1

9

4
d2

1

4
d21

1

12
d3G ,

f 88~d!5
1

27H 22 lnS mb

ms
D @d212d14 ln~12d!#14 Li2~12d!2

2p2

3
2d~21d!ln~d!18 ln~12d!17d13d22

2

3
d3J ,

~C3!

where the functionG(t) is defined through

G~ t !5H 22 arctan2SA t

42t D for t,4,

2
p2

2
12 ln2F1

2
~At1At24!G22ip lnF1

2
~At1At24!G for t>4.

~C4!

The functionsf i j associated with the operatorsO32O6 are not needed in our approximation. Note that in the numerics we
ms equal to zero in all terms exceptf 88(d), where a value ofmb /ms550 is chosen.

APPENDIX D: O„as
2nf… CONTRIBUTIONS TO VARIOUS Z FACTORS

In this appendix we give the results for theO(as
2nf) contributions for variousZ factors entering the calculation of th

countertermM7,ct2
(2),(a) in Eq. ~45! in Sec. III. For the meaning of the various terms, see the text after Eq.~45!. The O(as

2nf)

contributions to the relevantZ factors read

dZ2,b
(2),nf5S as

p D 2CFTnf

288 H 18

e F124 ln~ f !28 lnS mb

m D G1443130p2196 ln~ f !172 ln2~ f !2264 lnS mb

m D1288 ln~ f !lnS mb

m D
1432 ln2S mb

m D J , ~D1!

dZ2,s
(2),nf5S as

p D 2 CFTnf

96 H 6

e F124 ln~ f !28 lnS mb

m D G2512p2244 ln~ f !112 ln2~ f !124 ln~ f !ln~r !288 lnS mb

m D
196 ln~ f !lnS mb

m D148 ln~r !lnS mb

m D1144 ln2S mb

m D J , ~D2!

dZmb

on,(2),nf5S as

p D 2CFTnf

96 F7118p22104 lnS mb

m D148 ln2S mb

m D1
10

e
2

12

e2G , ~D3!

dZ77
(2),nf5S as

p D 2CFnfT

36e S 6

e
27D , ~D4!
re
l

ru

rk-

u-
with r 5ms
2/mb

2 and f 5mf
2/mb

2 .

APPENDIX E: IMPLEMENTING THE PHOTON ENERGY
CUT-OFF IN THE O„as

2nf… TERMS

In this appendix we provide the formulas which a
needed to calculate theO(as

2nf) piece of the kinematica
branching ratio BR(b→Xsg)Eg>Ecut

, whereEcut represents a
cutoff on the photon energy. As can be seen from the st
ture of Eq. ~67!, this amounts to calculateG77

(2),nf(b
11401
c-

→Xsg)Eg<Ecut
, which is contained in the quantityD of Eq.

~67!.
Note that only the gluon bremsstrahlung- and the qua

pair emission processes enter the calculation forG77
(2),nf(b

→Xsg)Eg<Ecut
as the photon energy in the virtual contrib

tions is concentrated at mb/2. The O(as
2nf)

contribution toG77
(2),nf(b→Xsg)Eg<Ecut

can be written in the

form
9-17
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G77
(2),nf~b→Xsg!Eg<Ecut

5G77
0 @Ĝ77

(2),(b)~Eg<Ecut!

1Ĝ77
(2),(c)~Eg<Ecut!#, ~E1!

where ~b! and ~c! denote the gluon bremsstrahlung- a
the quark-pair emission process, respectively, andG77

0 is
given in Eq.~32!. As in Sec. III we use a regulator massmf
for the secondary quark-antiquark pair which means that
~E1! can be calculated ind54 dimensions and withms
50.

The calculation for the gluon bremsstrahlung pie

Ĝ77
(2),(b)(Eg<Ecut) is straightforward. Adopting the notation

Ecut5
mb

2
~12d!5Emax~12d!, ~E2!

the result reads

Ĝ77
(2),(b)~Eg<Ecut!5S as

4p D 2 4CFTnf

9
@31230d23d212d3

121 ln~d!112d ln~d!23d2ln~d!16 ln2~d!#

3F ln~ f !12 lnS mb

m D G , ~E3!

with f 5mf
2/mb

2 .

The calculation forĜ77
(2),(c)(Eg<Ecut) is somewhat more

involved but still can be performed analytically, yielding
cl

ys

11401
q.

Ĝ77
(2),(c)~Eg<Ecut!5S as

4p D 2 2CFTnf

9
$214729p2148z~3!

248 Li3~d!154 Li2~d!2 ln~d!@8524p2

254 ln~12d!224 Li2~d!#113 ln2~d!

112 ln3~d!1d@16014p2224 Li2~d!

224 ln~12d!ln~d!294 ln~d!136 ln2~d!#

1d2@12p216 Li2~d!16 ln~12d!ln~d!

119 ln~d!29 ln2~d!#2d3@1424 ln~d!#

22 ln~ f !@31230d23d212d3121 ln~d!

112d ln~d!23d2ln~d!16 ln2~d!#%. ~E4!

Note that the sum ofĜ77
(2),(b)(Eg<Ecut) and Ĝ77

(2),(c)(Eg

<Ecut) is finite in the limit mf→0. This completes the cal
culation ofG77

(2),nf(b→Xsg)Eg<Ecut
, defined in Eq.~E1!.

We note that differentiatingG77
(2),nf(b→Xsg)Eg<Ecut

with

respect to the photon energy cutEcut generates the corre
sponding term of orderas

2nf to the photon energy spectrum
The result we obtain is in complete agreement with Eq.~9!
of Ref. @25#, whereO(as

2nf) corrections to the photon en
ergy spectrum were calculated.
.
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