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In this paper we take the first step towards a complete next-to-next-to-leading logaribhiit ) calcula-
tion of the inclusive decay rate f@— X.y. We consider the virtual corrections of the orderagfn; to the
matrix elements of the operato®;, O, andOg and evaluate the real and virtual contributionsXt@ These
corrections are expected to be numerically important. We observe a strong cancellation between the contribu-
tions from the current-current operators &g and obtain, after applying naive non-Abelianization, a reduc-
tion of the branching ratio of 3.9%or «=3.0 GeV) and an increase of 3.4¢6r ©=9.6 GeV).
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[. INTRODUCTION Formally, the approximately 11% discrepancy in the
branching ratio, stemming from the two different schemes

Currently, measurements of the inclusive branching ratidor m./m,, is a NNLL effect. As the measurements of
BR(B— Xyy) are provided by CLEQ1] (Cornel), by theB  BR(B— Xsy) will become much more precise in the near
factory Belle[2] (KEK), by ALEPH[3] (CERN), and by the future, it will become mandatory to systematically extend the
preliminary BABAR [4,5] (SLAC) results, leading to a theoretical predictions to NNLL precision, in order to fully

world average of6] exploit this process in the search for new physics.
» To illustrate the complexity of such a calculation, we
BR(B—Xs7y)exp=(3.34+0.38 X 10" (1) briefly explain the theoretical framework. Usually, one works

in the effective field theory formalism of the SM, where the

This e>'<perimen.tal. average is in good agreement vyith th&v boson and heavier degrees of freedom are integrated out.
theoretical prediction based on the standard mé8B) in-  Tphjs results in an effective Hamiltonian in which operators
cluding next-to-leading logarithmitNLL ) QCD corrections 5 1o dimension six are retained. Adopting the operator defi-

supplemented by certain classes of leading order electroweafiion of Ref.[12], the relevant Hamiltonian to describe the
terms[7-10]. For a recent status report on inclusive r&e processed— sy, b—sg, andb—syg reads

decays and a complete list of references on NLL calculations

of BR(B— Xgy) the reader is referred to RéiL1]. In earlier . 8

analyseqd8,12-15, the ratiom./m,, which enters the cal- Heg=— —)\tz Ci(uw)Oi(), 2
culation of the decay widtl'(B— Xs7y) for the first time at V2 =

the NLL level, was tacitly interpreted to be the ratio of the

Ec;{lc(an_u}zi(rk ;n as_s(e; '3l5JiS'gg3°(§)T<b1=O9 ‘.‘ng:/_rh%?ezihgn:rrg?;atljzse V;; being elements of the Cabibbo-Kobayashi-Maskawa ma-
sV)sm=\>. ' ’ trix), andC;(u) are the Wilson coefficient functions evalu-

to the uncertainties in the various input parameters and the . .
. - .__.. dted at the scalg.. For practical reasons it is more conve-
estimated uncertainties due to the left-over renormalization . . - . .
jent to use instead of the original functio@s(u«) certain

scale dependence were added in quadrature. More recently. . or combinations. the so-called “effective Wilson coeffi-
Gambino and Misiaf16] pointed out that the branching . s et int d d in Refs[12,19;
ratio rises to BRB— Xsy)su=(3.73:0.30)x 10 * [16]  CI€MS” Ci(x) introduced in Refs}12,19:

whereGg is the Fermi coupling constant,=V,s*Vyp (with

(see also Ref.[17]), if one_mterp.rets m./m, to be C(w)=Ci(n) (i=1,....6,
me(u)/my=0.22=0.04, wheremc(u) is the charm quark

mass in the modified minimal subtractioM$) scheme, " 6
evaluated at a scale in the rangem.<u<m,, andm, is c? (M)=C7(M)+i21 yiCi(w),

the bottom quark $ mass.
Despite the current theoretical dispersion on the branch- 6
ing ratio, the agreement between the present experimental Cgﬁ(,u)=Cg(,u)+E zCi(w), 3)
results and the SM is quite impressive and this has been used i=1
to derive model independent bounds on the Wilson coeffi-

cientsC,(my,) andCg(my,) (see, for example, Ref18]). wherey; andz; are defined in such a way that the leading
order matrix elements (sy|O;|b) and (sgO;|b) (i

=1,...,6) areabsorbed in the leading order terms of
*Electronic address: bierik@itp.unibe.ch Cgﬁ(ﬂ) and Cgﬁ(ﬂ)- The explicit values ofly;} and{z},
"Electronic address: greub@itp.unibe.ch y=(0,0—3%,—-5,-2,-8) z=(0,0,1-%,20—%) were
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obtained in Ref[12] in the MS scheme using fully anticom- ©n NNLL corrections to the matrix elements. In principle

muting ys which is also adopted in the present paper. also the contributions from the operatd@s (i=3,...,6)
The Operators relevant for our calculation read should be considered. HOWeVer, as the COI’I’espondlng Wilson

coefficients are small, we neglect these contributions. Fur-
T A o outa thermore, we also neglect the NNLL bremsstrahlung correc-
O1=(sLy, Tel) (e y T hy), tions to the interferencesQ),0;), (0;,0,), (0,,0,),
- - (01,07), (04,0g), (0,,07), (0,,0g), (07,0g), and
O,=(sLy,c.)(cLyby), (0Og,0g), since these terms are infrared finite for vanishing
gluon energy and numerically relatively small at the NLL
level [20].
0 4=(§_7ﬂTabL)2 (qy*Taq), ~ The fermionic corrections we are interested in are essen-
q tially generated by inserting a one-loop fermion bubble into
the gluon propagator of the lower order Feynman diagrams.
For the numerical evaluation we will assume thgt=5

0,= € Eb(#)(gLU“”bR)FW, massless fermions are present in the fermion loop.
162 Once the corrections (I’r)(agnf) are available, it is sug-
gestive to use the hypothesis of naive non-Abelianization
(NNA) [21] in order to estimate the complete corrections of
Og= 9 My (1) (S 0* T2R)G3, . (4)  ordera?. This is based on the observation that the lowest
16 coefficient of the QCDB function By=11—2n/3 is quite

large and thus it is expected that the replacement;aby

Here e= Amae, and gs= V4ma, denote the electromag- —3B0/2 may lead to a good approximation of the full order
netic and strong coupling constants, respectively. Furthere corrections. There are many physical observables, where
more,F,,, andG$,, are the corresponding field strength ten- NNA provides an excellent approximation to the full two-
sors and_ = (1— ys)/2 andR=(1+ ys)/2 stand for left- and Io+op correctiongd22,23 such_as the inclusive cross section
right-handed projection operators. The factog(x) in the € & —hadrons, the hadroniedecay, or the two-loop rela-
definition of O, andOg denotes the bottom mass in NS tion between 'theMS and pole qqark mass. In particular, we
scheme. want to mention the semileptonic dechyb—clv|) where

For a complete NNLL calculation in this framework, the the deviation of thex B, terms from the complete? result
evaluation of three parts is necessaty.The computation of [24] is less than 20%. We also note that 0¢a’p,) cor-
the matching coefficients to orde which requires a three- ections to the photon energy spectrumBn-Xyy (away
loop calculation(2) The evaluation of the anomalous dimen- from the endpointwere calculated in Ref25].
sion matrix to orderag where four-loop diagrams are in- Our prese_ntatlon is organlzed as follows. In Sec. Il we
volved. (3) The calculation of the orde? QCD corrections discuss the virtual corrections associated vy, and com-

; ; te in Sec. Il both the real and virtual correctionsQe.
to the matrix elementgsy|O;(u)|b) (u is of orderm,)  PUt€ Il ; . .
which, depending on the operator, is either a two- or three:rhe virtual corrections td?g are cor_1$|dered n _Sec. IV.-In
loop calculation. Sec. V we combine our findings with the existing NLL re-

The relatively large dependence of the NLL prediction forSUItS and perform a num(_erlcal analysis shovylng the impor-
BR(B—X.y)<y ON the scheme fom,/m, illustrates that tance of our new terms. Finally, Sec. VI contains our conclu-

NNLL effects, in particular those related to st€}), can be sions. n the appe_ndixes su_pplementary m?‘te”a' is provided.
rather large. At this point we should stress that the issué'PPendix A contains the building blocks which are useful for
related to the definition ofn./m, serves us as a motivation the practical calculations and in Appendix B detailed analytl_—
to initiate a NNLL calculaition for BRB—X,y). In the cal results are presented for the corrections to the matrix
present paper we are working out a class osf NNLL Correc_elemenl<5y|02|b). For completeness the results of the order

tions (to be specified beloyto step(3), which is not related ~ %s corrections are listed n Appendix C and |nt<_arme_d|ate
to them./m, issue. However, in many other processes it jsresulis needed for the matrix elemesy|O,|b) are given in

known that the kind of terms considered in this paper are th@ppendix D.In Apper;cjix E the i‘:‘eSUSIS artra].provide.d thi;h
source of very important higher order corrections. are necessary to discuss the branching ratio (

In this paper we consider those corrections of orgeto —XsV)e, €, WhereEq, represents a cutoff on the photon

the matrix elements foB— X,y associated with the opera- €Nergy:

tors 01, O,, O7, andOg which involve a closed fermion

loop. It is needless to say, that at the same time also the || \RTUAL CORRECTIONS TO b—ssy ASSOCIATED
matching coefficients and the anomalous dimension matrix WITH O, AND O,

should be improved accordingly. Motivated by the fact that

the NLL corrections to the matrix elements were numerically ~ In this section we derive th@enormalizegl order 2 cor-
more important than the improvements in the Wilson coeffi-rections to the matrix elementsy|O,|b) and(sy|O,|b).
cients, we assume for the time being that this could also b&hereby only the contributions proportional to the number of
the case at the NNLL level. Therefore, we only concentratdermion flavorsns are taken into account. We show at the
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FIG. 1. Diagramg1a—(1c) and(2a—(2c) associated with the operator,. The photon is represented by a wavy line and is emitted from
a down-type quark in all the diagrams. The virtual gluons are represented by curly lines. The sum of the first three graphs is denoted with
MZ.{1), whereas the sum of the second three diagrams is cIgg (2).

end of this section that the result ftsy|O4|b) can easily be M (Z?garél) =M (fk;aréla) +M (Z?tgarélb) +M %ﬁ%arélC)- (7)
obtained from the one fdisy|O,|b). Therefore, we concen-
trate in the following on the calculation of the renormalized

matrix element For the practical calculation we essentially follow the

technigues developed in R¢R0]. To make the paper self-

M,=(sy|0,|b), (5)  contained, we nevertheless present as an example the calcu-
lation of the diagram{2c) in some detail.
which is conveniently written in the form The amplitudeM 'y, {2¢) is constructed with the help of

the building blockd ; and K;B, , shown in Fig. 9 in Appen-

dix A. The analytic expression fdr, is given in Eq.(Al),
while Kfﬁﬁ, is given in Eq.(A2) for an arbitrary mass; of

_ _ the quark in the loop. This mass is retained(i}gﬁ, , because
The super.scrlpt(otgounts the factors @f. The leading term i || be used as a regulator of infrared singularities in the
vanishes, i.e.M3”=0 and theO(as) calculation has been cajcylation of(sy|O4|b). As (sy|0,|b) is free of infrared
performed in Rgf).[ZO]. In the following, we discuss the gjngularities, we can put in this sectian;=0. Thus the
O(ashy) termM3™. In Sec. Il A we present the calculation parameter integral in E{A2) can be expressed in terms of
and results of the dimensionally regularized three-loop diagylerT functions. Furthermore, only thgs term has to be

grams, while Sec. IIB is devoted to the calculation of th6kept as the other bu||d|ng bIOCI% is transversal. The dia-
counterterms. In Sec. 1IC we combine the results of thegram (20) can be written as

Mo=MP+MP+MP). (6)

eS|

Q’"mﬁ‘

99722,
& 4
§

three-loop results with the counterterms and derive the renor-

malized expressioM ).

A. Regularized three-loop corrections to{sy|O,|b) Q 'Lj”
The three-loop diagrams contributing k> can be di- 3 o

vided into four nonvanishing classes as shown in Figs. 1 r

and 2! The sum of the diagrams in each class is gauge §

invariant. The contributions to the matrix elemekt!?

of the individual classes are denoted by

MEard1), MED(2), MERd3) and MEJ,{4), where, *

e.g., M, (1) is FIG. 2. Diagrams(3a—(3b) and (4a—(4b) associated with the
operatorO,. The photon is represented by a wavy line and is emit-
ted from an up-type quark in all the diagrams. The virtual gluons

n principle there are also diagrams in which the photon is emit-are represented by curly lines. The sum of the first two graphs is
ted from the quark-loop insertion in the gluon propagator. Howeverdenoted with M$?, (3), whereas the sum of the second two
these contributions vanish due to Furry’s theorem. diagrams is calledM (ft),ar;4).
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2 The integration variable’ varies in the interva]1—u’,1]
M$Rad 20) = — (—) eQyCe Ty whereas the other three variableg/’, andu’ all vary in the
interval [0,1]. We tighten the notation by omitting the
(4m)¢ i 170,1]. We tigh h ion b itting th
T2(e)[12(2— €)(1—e) e o primes and arrive at
I(4-2¢) # W oot [5]7 o o TETH2- (1 ¢)
ddr B 2bare£ C) ? eQd F nf F(4—26)
X u(p’)(rgf —r?
| P =) g
Xe ey €| dx| dy[ du
L B, p+7/+m, o o e
’ H . 1
(p +r)2—m§+|5 (p+r)2—mk2,+|5 Xf UXl—E(l_X)l—eye—l(l_y)s
1_
. S LS “
XYPu(p)——————| dxx ¢(1—x)~" ¢ ¢
4 (p)(r2+i5)l+e 0 ( ) 26 lu(p ) ’|\32 P (p)
m2 . Cl+35 CSE C3e
2__
x| r (1= X)+|5 , (8) (13)

whereu(p) andu(p’) are the Dirac spinors of thie ands where the Dirac matriceBy, Pz, andPs a[te.pollynoms n
quark, respectively, while denotes the polarization vector ("€ Feynman parameters and the expres€ias given by
of the photonCg andT are the eigenvalue of the quadratic R uy
Casimir operator and the index of the fundamental represen- C=m§(1—u)v+ (1= x) —|5 (12
tation of the color gauge group, respectively, with the nu-
merical valuexCr=4/3 andT=1/2. The Euler constanjg
appears in Eq(8), because we write the square of the renor-
malization scale in the formu?exp(y)/(4m). The parameter . g
S (with 6>0) in the denominators of the various propagators, We use the same approach as in RE29,26,27 and in-
troduce Mellin-Barnes representations for the denominators
symbolizes the € prescription.”

+3 3
In a next step we denote the four different denominator<" %€ andC¥. In general the Mellin-Barnes representation

We should mention at this point that the expression in Eq.
(11) is infrared finite and is therefore regularized for 0.

with of an expression of the formk€—M?)~* (with A>0) reads
Dy=(p' +r)?>—mj+is, 1 1 1 1 f
(KZ_MZ)}\ - (KZ))\ I'(N) 27 y

D,=(p+r)2—mi+is4,

2\ S
2
m . X ——) I'(=s)'(A+5) (13
—_— 2 c i)
=re— + 2
Ds=r X(1—x) i 6, K
D,=r2+i5, where the integration patly runs parallel to the imaginary
axis. It intersects the real axis somewhere betweanand
and introduce a Feynman parametrization as follows: 0. The Mellin-Barnes representation f&*, (A e{3e,1
1 I'(3+2¢) +3€}) is implemented by identifyindg<?> andM? as
€
D,D,D5D3"¢ “T(al(1+e) K2omi(1—u)v,
-1 u
xf dudvdywy? M2es — (1X JmiHio (14)
(D1U+D20+D3y+D4W)3+26 X X

(9)  The integration path has to be chosen such that the param-
eter integrals exist for all values sf y. This means in our
case thaty has to intersect the realaxis between-3e and
0. After interchanging the order of integration, the four Feyn-
man parameter integrals can easily be expressed in terms of
products of Euled” functions. What remains to be done is
, , the integration ovety in the complexs plane. We close the

)’ v 1-u (1-v"), y—u'y’. integration path in the right half-plane and use the residue

u’ theorem to perform this integral. The residues are located at
(100  the following positions:

with w=1—u—v —y. The integration variable@s, v andy)
run in the simplexS defined throughu,v,y=0 andu+v
+y=1. After the integration over one simplifies the re-
maining integrals with the help of the substitutions

1-v

!

uﬂ(l—u’)(l—
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s=0,12..., * —n » " O, ”

2229099

s=1—¢€2—¢€¢3—¢,...,

(Gasac]
é,@

‘)
290 99‘)

s=1-2¢,2—2€¢,3—2€, ...,

FIG. 3. Counterterm diagrams €@, involving the operato©,.

§=1-3€62-3€3-3¢,..., The crosses denote the possible places for photon emission. Note
1 3 5 that the diagrams where the photon is emitted from the fermion-

s= 3 —3e, 5—36, 5—36, o (15 loop are zero due to Furry's theorem.

gs intoO4, O, and into the evanescent operai®y;, de-

ined in Appendix A of Ref.[12]. As only O, has a

nonvanishing matrix element fob—sy proportional to

aghs, the only counterterm of this type is

The sum over the residues naturally leads to an expansion f
the small parameter=m?2/mZ through the factor fi2/mg)s

in Eq. (13) [see also Eq(14)]. This expansion, however, is
not a Taylor series because it also involves logarithmsg, of
which are generated by the expansioneinThe final result @ (ar(1)
for M$2,.{2¢) can thus be written as M24a=6Z34M4,

M$ad20)= E f.12In'(2), (16) W_ s
0234

where the coefficient§, | are independent of The powerk

is an (non-negative integer multiple of 3 and | w_ L] 72
€{0,1,2,3,4. For a detailed explanation of the rangd afe 481 € 78+ 288l “w | +36im+ 1150
refer to Ref.[20].
In a similar way all other diagrams can be treated. The 150m2¢— 3121 6 576Ir12
final result for the sum of the three-loop diagrams is given by
M 2, bare (22t))ar<£ 1) + M (Zzgaréz) + M (Z%kgaré‘?’) + M (Z?garé‘l()i + 258 TE— 144| T In( m 6+ O( 62) _CFTnf
o
where the analytical results for the individual terms of the X Qg(sY|O7|b)rees (19

right-hand side are listed in Appendix B. We decided to in-
clude corrections up té)(z3) as the higher order terms lead \yhere 57§ can be found in Ref[12]. The Feynman dia-
to a negligible contribution for the physical valae-0.1. grams contributing toM{?, i.e., to the corrections of
o O(aghy) to (sy|O4lb)yee, are depicted in Fig. 3. They were
B. Counterterm contributions to (s/O,|b) computed following the strategy outlined in Sec. Il A.
In this section we work out the various counterterms of At order a2n;, there are mixings oD, into Oy, O,, and
order a?n; which are needed to derive the renormalizedP1; and again onlyO, has a matrix element ad(a?). Thus

resultM). There are counterterm contributions due to thetN® Only counterterm of this type reads
renormalization of the strong coupling constant and due to
the mixing of O, into other operators. M(gi)b= 52(2?’nf|\/|(0),

We first discuss the counterterms related to the renormal-
ization of ag. As the leading ternMZbarels zero, only the

2
as\ < n¢gT
renormalization ofjs in the two-loop resulM ', .generates s7M=| = ;2
a counterterm which can be written as ™/ 18e
2) _ (1).n 1
M ) =267 "M e . my| €2 my
MO=1-2In —|e+ +21n? —=| 2+ 0O(€%)
M 12 M
57— Gl (18)
T 66 ><CFQd<S')’|O7|b)tree- (20)

M(z%gareis the sum of the two-loop diagrams which has to be In a second step we consider the counterterms connected

known including terms o0®(e€). For this reason we extended with the mixing ofO, into the dipole operator®; and Og.

the calculation of Ref[20] to ordere?. One can easily see that only one counterterm of this type
We now turn to the counterterms induced through thegenerates a contribution (ﬂ(aﬁnf): O, mixes at three-loop

mixing of O, with other operators. First, we consider the order intoO-; in turn, fromO- the tree-level matrix element

counterterms connected with the mixing ©f into four-  for b— sy is taken. The resulting counterterm therefore reads

fermion operators. At ordedg there are nonvanishing mix- [12,2§
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Qu 2Qd

144" 243

2),
M= 67 "(57| 07| b) ree.
52(2)vnf: ) ,

[ e 2l5i- 51
(21)

whereQ,=2/3 andQ4= —1/3 are the charge factors of up-
and down-type quarks, respectively.

C. Renormalized result for (sy{O,|b)

PHYSICAL REVIEW D57, 114019 (2003

get an ultraviolet finite result. As mentioned earlier, the result
is also free of infrared singularities. Inserting the numerical
values for the color factorsQr=4/3, T=1/2) and the elec-
tric charge factors@,=2/3, Q4= — 1/3), we get the follow-
ing renormalized result:

2) _ 2 2
MO =Mt M)+

(a

2
ﬁ) nf<s')’| O7| b)tree{t(ZZ)lnz

(2)
24a

(2)

2
MZ+MEL+ M

mb)
)

my,
Combining the three-loop resuM$), ., calculated in I(Z’In( m V(Z)} (22)
Sec. Il A, with the various counterterm contributions dis-
cussed in Sec. |l Bsee Eqs(18), (19), (20), and(21)], we  with
|
800
() ——~
ty 223’ (23
Re(1$2)) —%[ 145+ (288— 3072 — 216((3) + 216L — 54m2L + 18L2+ 6L 3)z+ 2472232
+6(18+27%+12L —67°L + L3) 22— (9+ 147%— 182 + 126.%) 23]+ O(Z%), (24)
Im(1$2)) = 243[ 22+ (180 1272+ 36L + 36L.2)z— (122 — 36L2)Z2+ (112— 48L) 23]+ O(Z%), (25)
Re(r$? _ 67454 124m° 11280~ 152072 — 1717*— 576Q(3) + 6840 — 1440m2L — 252Q¢(3)L + 1202
) =561 729 1215 d &) @E)
642
+100.3—-30L%)z— 543 [43—12In(2)—3L]z%*- 1215[1147&} 38072+ 967+ 7200 (3) — 1110
2240m%
—15607%L + 144Q/(3)L + 9902+ 2603 — 60L 4] 2%+ 25— 7[62471 242472 — 33264(3)
243 218
—19494 —5047°L — 5184 2+ 2160.3]23+ O(z"?), (26)
(2) il 2 2 3 2 2 37,2
Im(r =m{495— 12[375-197°+36/(3)+84L +48L“—6L°]z+6[ 207+ 387~ —72/(3) — 126 — 78L“+ 12L.°]z
+8(67—127%—48L) 2%} + O(z%), (27
|
whereL =In z. We note that in the derivation of th@(aﬁnf) 1. 1
result, there was no need to renormalize the parannején 0:1=501= 502, (29)
the correspondin@)(ai) expression. Therefore, the symbol
(s7/07|b)yee can be interpreted to bgn M$Y andM{?) with
_ 0. = (% cBY(cByrhe
U(p’)éﬂu(p), Ol (SLyﬂCL)(CLy bL)i (30)

e
<S'y|o7|b>tree: mbﬁ (28)

wherem, denotes the pole mass of thequark. Concerning
this point, the reader is also referred to Sec. lll.

We now turn to the renormalized matrix elemévif?),
associated with the operat@;. O4, defined in Eq(4), can
be written as

wherea and g are color indices. It is easy to see tk&t has
a vanishing matrix element fds—svy. Therefore, one ob-
tains

M{P=— (31)
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%aa"’%"C)‘(‘éé‘° : O 07

(2) (® (c}

FIG. 4. Virtual (a), gluon-bremsstrahlungb), and quark-pair
radiation(c) graphs to the operat@-. In (b) and(c), the diagrams
where the gluon is emitted from theequark are not shown.

Ill. REAL AND VIRTUAL CORRECTIONS TO  {sY{O-|b)

PHYSICAL REVIEW D67, 114019 (2003

out in our “massive” regularization scheme @=4 dimen-
sions. Furthermore, one realizes that one can alsonput
=0, providedm; is kept at a(smal) fixed value. As a con-
sequence, the quark-pair radiation process is completely
regularized by the mass; . The evaluation of this process is
quite standard: in a first step the subprocbsssyg* is
considered wherg* represents a virtual gluon. Subsequently
the other subprocess, describing the decay™finto two
fermions, is added. It is straightforward to perform the oc-
curring phase space integrations where only the one over the
gluon virtuality is nontrivial. However, in the limitm;—0

In this section we describe in some detail the steps needed|so this one can be performed analytically. One arrives at
for the calculation of th@)(a?n;) corrections to the matrix  the following result for the quark-pair emission process:

element(sy|O,|b). Due to the presence of infrared singu- _
larities, the practical calculation proceeds in a slightly differ- I'{2©)=
ent way than folO,. As these singularities only get canceled

at the level of the decay width when combining the virtual
corrections shown in Fig.(4) with the gluon bremsstrahlung

[Fig. 4b)] and the quark-pair emission procd$sg. 4(c)],
we first derive expressions for tr@(agnf) corrections to

as)z N 2
7| 223l 12662 24m%+2592(3)
+ (1447%—5916In(f)— 900 Irf(f) — 72 In?(f)].

(36)

Due to the Kinoshita-Lee-Nauenberg theorem, it follows that

these three contributions to the decay width. The corresponqre sum of the virtual and the gluon bremsstrahlung correc-

ing expressions necessary to evaluate B%(st)eyzn:
are discussed in Appendix E.

To fix the notation, we write the contribution fro@ to
the decay widtH (b— Xsy) as

cut

5
My&em

Ty=T9 1+ T®+T@M) 1= ot |GenCEM2,

(32

The O(a) correction]'$Y) can be extracted from Ref20],
reading

P 32 16772+ 64 My a3

7 am "9 9 3w 33

We further splitf(f;)‘"f in Eq. (32) as
POM_F@ @ 4 RO PR (34

with obvious notationFig. 4).

tions also must be finite fod—4 andm¢—0 for fixed m;.

We now turn to the gluon bremsstrahlung process. The
diagram in Fig. 4b) (combined with the one where the gluon
is emitted from thes quark can be written as

(1)n¢
2),(b)_ 3 1),(b
M()()_TMg)()’

7,bare

(37)

whereM{:®) denotes the lowest order matrix element for
b—syg and 622)1)’"f reads

a. n:T[12 m m
sz Es Tt __24|n(—f + et 241 — | e
3 36 n
+0O(€?)]. (39

Note that the 1d pole is of ultraviolet origin; the infrared
singularity is regulated byn; in this expression. In addition,
there is a counterterm contribution due to & renormal-

For the calculation of the three parts contributing toization of the strong coupling constant of the form

f(727)’”f we could in principle puim;=mgs=0 at the beginning

M @O = 57D .0 (39)
of the calculation and use dimensional regularization for © 9s
both infrared and ultraviolet singularities. We found it easier, .

with
however, to use the strange quark magsand the mass of
the quark in the fermion bubble; as infrared regulators. aen:T
. ot . . (1).ng s _f

For formulating the results, it is convenient to introduce the 0Zy = e (40

dimensionless quantities
CombiningM &2.® with M{2,®  one obtains the renormal-

mg mf2 ) A 7,bare 2) (bY’
P 3 fo (35)  ized matrix elemeni (?)®)
2 2 !
Mp My

(1).n¢

. A S J(b) _ 1), 3
We now turn to the calculations df$?©, 1(3)® = and M )—( 52;: n“FT (41)

I'®@ (in this ordey.
Inspecting the explicit expressions for the quark-pair rafrom which the©O(«2n;) contribution to the decay width is
diation proces$cf. Fig. 4(c)], one finds that it can be worked obtained in a straightforward way. One gets

1),(b
)Mgn)'
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~(2),(b) _
I‘(77)()_2

(1).n¢
(1).n¢ 3 (1), (b)
82y "M+ — )FW

—8m2+416In(f)—327?In(f) — 48 InP(f)

as\2CeTng 482| L
2] “18 | 2422

+In(f)In(r)+2 In( )In(r)

my
+832Ir( ) 64772In< ) 960|r?( ) 576Ir(f)|n< ) 41n(r)
M M M M

)

wherel' Y- ® is the correspondin(normalized decay width fob— syg in the O(as) approximation. As in our regularization
7 .
scheme the SUrﬂZ;l)’nf-i- sz5™12 is finite (in €), T%"® is only needed up to terms of ordef, which simplified the
S

calculation.

We now turn to the evaluation of the virtual corrections shown in Fig) 4nd also discuss the various counterterm
contributions. For the diagram shown in this figure, we obtain

m?—181In(f)+6 In?(f)— 36In( m )

+120Ir12( +72In(f)|n( ”—24|n2(r)
M M

In(f)+21In

M%?gé(rae)—gil[S—(ZIn(r) 1)+£3 2+12In(r)—6 In(r)In(f)— 24In(r)|n(lu) 3In2(r)+6ln(f)+12ln(lu +1718
+ 12372+ 840 In(f) + 3672In(f) + 90 Ir?(f) + 18 In’(f) — 144Ir<,u) 432Ir\2(ﬂ> 432Ir(f)|n<%)
Sz pl

+18In(r)| 24+ 72— 121In(f)+ 3 In?(f) — 48In(M +48In2(lu +24In(f)|n(lu
2
—54In2(r)[ —In(f)— 4'”(,u +18In3(r)]( )CFTnf<Sy|O7|b>tree. (43

We stress that this expression is derived in such a way thathen, there is a counterterm contributibt{’;® of the form
mg is understood to be sent to zero priornw. This proce-

dure is justified by the fact that for fixem; the sum of the
virtual and gluon bremsstrahlung contributions must be finite
in the limit ms— 0, as discussed above.

The counterterm Contnbutlom/l(z) @ at O(a n¢) has
various sources. There is a contnbuan, ), (a) due to the X(sY]07|b)yee- (45)
renormalization ofys in the O(«) vertex dlagranﬁl.e., simi-

lar to the one in Fig. @), but without the fermion bubble
yielding

@0 g2
SZE™ sz

2),(a) —
MR, @=

(2005 s0n.(2)n
S Sz sz AN

Here, 52" and 62{)™ are theO(a?n;) pieces of the
on-shell wave function renormalization constants for the
ands quark, respectively, while the operator renormalization
m factor 52 ()1 refers to theMS scheme. Note that the pres-
In(r)—4 In( ” ence of theon shellrenormalization factoﬁzzl(z)nf in Eq.
(45) implies that in the lower order contributions the symbol
+24|n2( ” (sy|O7|b)yee is understood to be the tree-level matrix ele-

ment of O in which the running>-quark mass is replaced by
the corresponding pole mass. The explicit form of the vari-

1 12 6
gy - -

+12—-1In(r)

A8+ 72— 48 In(
M

m ous 8Z factors occurring in Eq45) can be seen in Appendix
+12|n2(r)[1—|n(—b”—2|n3(r)] > gin Ed43) PP
After combining Eqs(43), (44), and(45) into the renor-
2 ~
%s malized matrix element, the calculationo$? @ is straight-
) CrTni(s7|07/b) ree @4 forward. We obtain
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CeTng [ —216
+ 7495+ 624w+ 1086 In(f)

[(2).@ =
I (477) 81

+7272In(f) + 666 Irf(f) +36 In’(f) — 6336Ir( .

+In(f)|n(r)+2 In( )In(r)

2In(f)+4|n
o

+6048 |r?(
o

my
+2592Ir(f)|n<
)7

all

We now combine virtual and gluon bremsstrahlung correcthese diagrams are free of infrared singularities, we put the
tions given in Eqgs.(46) and (42), respectively. We obtain massesn; of the quarks in the fermion loop as well as the
(after puttingT=1/2 andCg=4/3) strange quark mags, to zero from the beginning. The cal-
) culation can be performed along the same lines as described
2 in Sec. Il A. However, due to the absencengf, the actual
) 243[ 14990+ 11767°+ (5916~ 144r°) evaluation of the diagrams turns out to be much simpler. The
result can be cast into the form

+18|n(r)[w —18In(f)

+6In’(f)—36 In( ) +120Inz(
M M

+72|n(f)|n( M

+108Irf(r)

In(f)+21In

(46)

1"(2) (@+(b)—

X In(f)+ 900 Ir(f)+72In*(f)— 5769+ 72)

al

where the 1¢ poles and the mass singularities associated %
with mg are canceled.

When combining this result with the quark-pair emission
process in Eq(36), we obtain the final result

b 1 345611

ag\? 4
wIn| T (47) M Fare (ﬁ) CFTand<57|07|b>tree2_7

18 1 mp e
(120—677 +18i)
€ M

+530-2872—180¢(3) + 93 7| . (51)

2
A o
ng;)‘”fz[—s ng| 26?2 — +2I(2)In( +2r(2)}
am M The counterterm contribution cﬁ’(a n¢), denoted b)Mgct,
stems from the renormalization gf and from the mixing of
with Og into the operato,. We obtain
L, 64 M= 6247 "(9]07|b)eet 262" MEY,  (52)
tP=—,
9 .
with
32 2
|(72)=——(9+772), @)ne_ [ %s Qu (6
27 0Zg, "= - CFTnf366 p 71,
4
rP= —[97+50m2+108/(3)]. (49) ()n,_ @s NT
81 sz\N= =
9s 7 b€

The cancellation of the Ifif terms is a strong check for the

correctness of the individual pieces of the calculation. 1y_ Y 12
For later convenience we formally introduce an amplitude Me"=~ 717 §QdCF<SY|O7lb>‘ree PR
M- in such a way that its square reproduces the result of Eq.
(48). Adopting the notation of Eq6) one gets —24In( my +6imt e 72— 42— 36((3)
2 m M
a b
M= —S) ni(sy|O7|b) {t(z)mz(_) m
YT T —66In( +4772|n( b +24In2<—b)
m, M M M
I(Z)In< ) . (50
M + 12 7— 12|77In m +0O(€%)}. (53

IV. VIRTUAL CORRECTIONS TO  (sy{O¢lb) 522" is obtained from Refsi12,28. The sum ofM @),

We first discuss the two-loop diagrams depicted in Fig. 5and M{%, leads to the renormalized resulising T=1/2,
which contain the building bIocIKﬁﬂ, [see EQ.(A2)]. As  Cg=4/3 andQ4= —1/3)

114019-9



BIERI, GREUB, AND STEINHAUSER PHYSICAL REVIEW D67, 114019 (2003

16
1
%\ 2 (rl( )_§5i7)
2 2
2 2,

§
& &
@O@é %Oe@“ + (Ii(1)+85i7)ln(%) } (58)

FIG. 5. Graphs associated with \{lrtual corrections to the Operaincorporates the NLL correctionél) andli(l) to the matrix
tor Og. The crosses denote the possible places where the photon ¢

be emitted Hements. In Eq(57), the first term on the right-hand side is
' understood to be the Wilson coefficie@ﬁ”(,u) at NLL or-
) der, while the Wilson coefficients appearing\t"(u) are

$
o«

8
S V(=2 Cf(w)
é‘; i=1

%ﬁ‘ﬁn Q

2
ﬁ) nf<Sy|O7|b>tre{t§,2)ln2(% understood to be taken at LL order. As in Rgi4], we
4 M convert the running mass factoy,(«), which appears in the
definition of the operato®, in Eq. (4), into the pole mass
, (54  m,. This conversion is absorbed into the functigf)(u)
and consequently the symb@y|O|b)eein Eq. (56) is the
with tree-level matrix element of the operator, where the run-
ning mass factom,(u) is understood to be replaced by the
(2. 64 pole massn, . The NLL virtual correction functions{*) and
g’ ="%7 11 in Eq. (58), taken from Ref[20], are repeated for com-
pleteness in Appendix C. Note, that the quam%) not only
contains virtual corrections to the matrix element @f,
which would be infrared singular{") is constructed in such
a way, that the ©,,0-) interference term generates the sum
8 of virtual and bremsstrahlung corrections when formally cal-
r= oaal —314+ 16m°+724(3)—57i 7). (55 culating the branching ratio fromd N*“(b—sy). For the de-
tails of this construction, we refer to R¢20]. Numerically,
the square of this amplitude encodes the bulk of the decay
V. NUMERICAL IMPACT OF THE ~ O(agny) width. The additional bremsstrahlung corrections, which are
CORRECTIONS infrared finite forEg,.— 0, are relatively small. Therefore,
It is well known that the inclusive decay rate f@ When considering terms of Ofd@(ainf), we omit purely
—Xsy is given by the corresponding-quark decay rate finite bremsstrahlung contributions.
I'(b—Xgy), up to power corrections of the form When' improving the amplltudg for the subprocdss
(AQCD/mb)Z [29] and (AQCD/mc)Z [30] which numerically ~—SY by including the terms o®O(agny), the result can be
are well below 10%. As our new results are only a part of thevritten as
complete NNLL contributions, we do not present a new pre-
diction of the branching ratio in this paper. Instead, we only ﬁ
illustrate how theO(aﬁnf) corrections to the matrix ele- J2
ments of the operato®,, O,, O;, andOg modify the NLL
branching ratio for a given set of input parameters. For thisvhere the reduced amplitud® is
purpose, we neglect power corrections and also electroweak

2
Mg):

m
+ Igz)ln<—b) +rd
“

16
I§)= g1 (47— 27+ 6im),

A(b—sy)=— Vts*vth<S'Y|O7|b>tree’ (59

2
terms. et as(K) ) as(p) @)
In a NLL calculation the inclusive quark-level transition D=C7(pn)+ 2.V (p)+ 2. | Y (m).
b— X,y involves the subprocessbs-svy (including virtual (60

correctiony andb—svyg, i.e., the gluon bremsstrahlung pro- .
cess. We write the amplitude for the first subprocess as iV?)(u), defined as
Ref. [14]:

m m
r@+] i(z)ln<—b) +ti(2)ln2( —b> }
M ©

(61)

8
V@ ()=, Cf(p)
NLL 4Ge * NLL =1
A (b—sy)=— fvts VD <S'y|o7| D) trees
(56 . 2 : .
incorporates the(agn;) corrections to the matrix elements
where the reduced amplitud@"'" reads calculated in the previous sections of this paper. The explicit
C$ﬁ(,u) term in Eq. (60) in principle stands for the NLL

NLL _ ~eff as(pm) 1) Wilson coefficient, supplemented by thedependent NNLL
DT =Cr () + 7~ Viiw). (57 contributions. As the latter are not known yet, we take this
Wilson coefficient at NLL precision in the numerical evalu-
The symbolv)(u), defined as ations. The Wilson coefficients enterivg')(w) are in prin-
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<025

-0.3

035

FIG. 6. The reduced amplitud® as a function of the renormalization scalewhere the plot on the right is an enlargement of the one
on the left. The dash-dotted curve represents the NLL approximation and the solid curve includes the correaﬁ(ménp)‘. For
comparison we also show the result where the Wilson coefficien&%h[cf. Eq. (58)] are inserted to LL precision onkidashed curve

ciple the LL coefficients, supplemented by thedependent proved version we retain terms up @(«2n;) in |D|? and

NLL contributions. In practice, we decide to replace thesesystematically dismiss higher order contributions. For com-

Wilson coefficients by the respective complete NLL version.p|eteness we should mention tha(x) is evaluated using

Finally, the Wilson coefficients entering®(u) are the LL  two-loop accuracy in thes function. We checked that the

versions. Note, that the gluon bremsstrahlung and the quarkontribution of the three-loop terr, is numerically small.

antiquark emission processes associated Wihare effec- To obtain the inclusive decay rate for-X.y, we have to

tively transferred intor?, 18, andt%”, as described in take into account those terms which have not yet been ab-

Sec. lll. As already mentioned above, the square of the sosorbed into the virtual corrections. At NLL precision, these

defined amplitude incorporates the major part of the branchecontributions consist of those gluon bremsstrahlung correc-

ing ratio. We therefore consider the additional finite brems+jons which are finite when the gluon energy goes to zero;

strahlung corrections to the decay width only at the NLLthey have been calculated in Ref81,37. As the ©g,0g)

level, i.e., we do not calculate th@(azn;) corrections to  contribution toI'(b—syg) becomes infrared singular for

these contributions. soft photon energigeave introduce a photon energy cutoff
As the square of the amplitude for—svy (in the sense E_, as in Ref[12] and define the kinematical decay width

defined above encodes the dominant part of the decay

width, it is reasonable to compare the NLL resDIt" in F(b—=XsV)E =€ (63

Eq. (57) with the corresponding(«2n;)-improved resulD

in Eq. (60). In Fig. 6, the functiorD is plotted as a function At NLL the gluon bremsstrahlung contribution to this quan-

of the renormalization scaje. We note, as already discussed tity can be written as

in the Introduction, that we use in the numerical evaluations

the hypothesis of naive non-Abelianization, which amounts = w12 s

to replacingn; by —3,/2. Nevertheless, in the following F(bﬂsm)EFEcut:@Nts Viol “aenMpA, - (64)

we still write O(ainf). The dash-dotted line shows the NLL

approximation as defined in E¢57), while the solid curve  \hereA is of the form[12]

shows the result after including tr(@(agnf) terms as dis-

cussed above. The dashed line shows the result with  A=(e” asWINA7+2In(a)lI(Em _7)

2

O(agnf) improvements, in which, however, the Wilson co- () 3
efficients in V(®(u) are taken in LL approximation. The s\ 4 eff eff

+—— Re C; Cj fii(8)]. (65
three curves illustrate that the changes betweer@l(rteﬁnf) ™ i,jgisj dCTrCT W (9)]. (69

improved versior(solid line) and the NLL predictior(dash- o _
dotted ling are mainly due to the new(a?2n;) corrections The quantitys is defined through
of the matrix elements calculated in the previous sections. m
From A(b—svy) in Eq.(59) the decay widtH'(b—svy) is E. = L2(1—8=E. (1—6 66
easily obtained to be = (170 =Emal1-9). (66)

z In Eqg. (65 we putC$ﬁ=0 fori=3,...,6, as in theirtual

I'(b—sy)= 32—F4|Vts*th|26¥enmg| D|?. (62)  contributions. We list the explicit expressions for the quanti-
& ties f;;(5) in Appendix C.
When giving numerical results for the NLL predictions, we  We should repeat that th@(a?n;) corrections are incor-
only retain terms ifD|? up to orderasg, while for the im-  porated in the quantitp, defined in Eqs(59) and(60). We
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FIG. 7. The branching ratio as a function of the renormalization scalhere the plot on the right is an enlargement of the one on the
left. The dash-dotted curve represents the NLL approximation and the solid curve includes the corre(‘]?i@r@p)‘. For illustration in the
left plot the latter are also shown for the case WHH@ (M(72)) is set to zero which corresponds to short-dasthedg-dasheficurve. A
photon energy cut oE = m,/20 is used, which corresponds &&0.9.

stress that the absorbed gluon bremsstrahlung- and the , (25 239 25,
quark-pair emission terms were obtained by integrating oveh(2) = —(1-2°)| - ——z+ —zZ
. - 4 3 4
the full range of the photon energy. Thus, since we decided
to implement a photon energy cut as just described, the final 4., 17, - 5
expression for the kinematical decay width can be written as +2In(2)| 20+902— 52°+ 52 | +2°In%(2)(36+ 2
% 5 17 64 17 5
F(b—Xspe =e0,= 5, I Vis Viol *aenttis(IDI*+A) t1-2)| 3 -3zt 37|In(1-2)
—4(1+3022+ z%In(2)In(1—2) — (1+ 162%+ Z*
_F(727)'nf(b_)X37)E7éEcut1 (67) ( ) ( ) ( ) ( )
H 27 3/2 2_ H
where the expression fd?(727)"‘f(b—>xsy)EygECut is derived X[6 Liy(2)— 7] = 322%4(1+2)| m°~4 Lio(V2)
in Appendix E.
In a last step, the kinematical branching ratio is obtained i 1-z
as +4 Li(—vz)—21In(z)In . (70)
1+z
) I(b—XsY)e -,
BRb=Xv)e 26, = Tst BRs.: 68 1he function xs(me/my), which encodes theO(aZny)

termg is given in the form of a plot in Ref[23]. For
where BR, is the measured semileptonic branching ratiom./m,=0.29, which is the default value in our paper, one
and the semileptonic decay widthy [supplemented by the finds y;(0.29)~1.68.

O(a?n¢) terms[23]] is given by g=mZ/m?) In Fig. 7 the kinematical branching ratio is shown for the
choiceE,=my/20 or, equivalentlys=0.9[8] as a function
G2|Vp|2md 2ay(w) h(z) of the renormalization scalg. The input parameters were
Sl - — chosen to be my,=4.8 GeV, m./m,=0.29, m,
1927° 37 9(2)

=173.8 GeV,my=280.41 GeV,m,=91.187 GeV,a (Mmy)
— — * 2_
(as(,u))z [X (mc) 1 h(z) (mb)” =0.119, agm=1/137.036,|Vis* Vi, /Vep| °=0.95, and BR,
— ol X5 ,

39"

=10.49%. The dash-dotted line shows the branching ratio

BR(b—Xsy) in NLL precision. In this case the terms of
(69)  O(a?Bo) are consistently omitted in the expression Fay

in Eq. (69). The solid line shows the branching ratio where
where the phase space functigfz) and theO(a) radiation  the O(a2n;) [or the O(a2B,)] improvements are included.
function h(z) [33] read

™ My 2

g(z)=1-8z+82°—7z*—127°In(z), Note, thatn; is replaced by—3,/2.
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- 3.4 - 4 : s X 5
o r ]
= 32 . c c
3O ] > %
“ sE 3 ol N i, %N
N ] 9 v gl 9" %
28 - s o a B
Eé L ]
26 7 FIG. 10. The building blocK,; used in the calculation of the
PP IR I IR R Feynman diagrams involvin@, andO,. The curly and wavy lines
0.2 0.4 0.6 0.8 represent off-shell gluons and on-shell photons, respectively.
é

FIG. 8. Dependence of the branching ratio on the photon energphoton energy spectrum. The main purpose of this figure is
cut E = (my/2)(1— 8). The dash-dotted curve shows the NLL re- to illustrate how the ordengnf contributions modify the
sult, while the solid curve includes tt@(aﬁnf) improvements. The NLL result.
renormalization scale ig=4.8 GeV.

One observes that fge~5.5 GeV the(’)(agnf) correc- V1. CONCLUSIONS

tions vanish and that they are negat{pesitive) for smaller In this paper a first step towards a complete NNLL calcu-
(largep values ofu. In this context it is instructive to look at |ation is undertaken and radiative corrections to the matrix
the decomposition of the result. For this reason we show iglements of the operato®;, O,, O, and Og are com-
the left plot of Fig. 7 theO(a2ny) corrections where either puted. More precisely, we consider the contributions of order
M andM ) or M{? is artificially set to zero which corre-  o2n; which are induced by a massless quark loop. It is ex-
sponds to the short-dashed and long-dashed curve, respgfected that these corrections, after replacing by
tively. This illustrates that there is a large cancellation be-—33,/2, may give an important contribution to the full or-
tween the negative contribution fro@; and the one from der o2 corrections. Furthermore, motivated by the NLL
0, andO, which is, of course, also present in the amplitudeanawsis, we expect that tr(@(agnf) corrections to the ma-

D. The effect of thevZn; corrections from the operat@s is  trix elements numerically dominate the ones of the same
significantly smaller and at most of the order of 2% in thegrder to the Wilson coefficient functions and to the anoma-
considered interval fop. lous dimension matrix.

Figure 7 furthermore illustrates that thedependence of | practice our calculation requires the evaluation of two-
the O(agnf) improved prediction for the branching ratio is and three-loop diagrams in the case(f, Og andO;, O,
somewhat flatter than in the NLL case if we restrict ourselvesespectively. Furthermore, in order to obtain an infrared finite
to u=4 GeV. This is a welcome feature of our result, how-result in the case oD, also the contributions from the
ever, in general we cannot expect to reduce ghelepen-  gluon bremsstrahlung and from the quark-pair emission pro-
dence as the solid curve only represents a part ofﬁtheﬁ) cess are taken into account which requires the evaluation of
result. Indeed, we obtain a stronggr dependence in the three- and four-particle phase space integrals, respectively.
region below 4 GeV. All calculations are performed analytically where an expan-

In Fig. 8 we show the dependence of the kinematicakion in m./my, is applied to the three-loop diagrams. For
branching ratio on the photon energy cut. The dash-dottegractical purposes this expansion is equivalent to the exact
line shows the NLL result, while the solid curve includes theresult.
order a2n; improvements. We should mention at this point ~ As far as the numerical impact of our result is concerned,
that we did not include any nonperturbative effects in thewe observe a striking cancellation among the individual con-

tributions at ordeuﬁnf . When using a photon energy cut of

E..= my/20, theO(aﬁnf) terms reducdafter replacingng

b 02 8
by —3pB,/2) the branching ratio by-0.98% for w=m,
c 3 g =4.8 GeV and lead to corrections 6f3.9% and+3.4% for
W@m@ n=23.0 GeV andu=9.6 GeV, respectively.
9 9
g3l
Is
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BBW-Contract No. 01.0357 and EC-Contract No. HPRN-whereq andr denote the momenta of the on-shell photon

CT-2002-00311EURIDICE). and the off-shell gluon, respectively. When inserted into the
full diagrams in Fig. 2, the indicea and g will be con-
APPENDIX A: BUILDING BLOCKS tracted with the polarization vecter of the photon and with

the dressed gluon propagaiofm, , respectively. The matrix

The three-loop diagrams involving, andO, as well as E(a.8.r) is defined as

the two-loop graphs involvin®, andOg can be calculated

by using one or more of the building blockg, J,;z, and 1
K;ﬁ, to be discussed in this appendix. The corresponding E(a,B,r)= E(Vﬂﬁf—wﬁn), (A4)

diagrams are shown in Figs. 9 and 10 where the color indices

are suppressed. _ _ _ and the dimensionally regularized quantitieig occurring in
The calculation of 4 is straightforward and yields Eq. (A3) read

2e

|B—_

) A
'“(Fﬁf—fzm)LE Ai5=4B*dedy[4(q~r)xy(1—x)e
2 —€

+r2x(1—x)(1—2x)e+(1—3x)C]C 1€,
, (AD)

1
xf dx[x(l—x)]lf[r2 +i6
0

X(1—X)
Ai6=4B*J'dxdy[—4(q-r)xy(1—y)e

wherer is the momentum of the virtual gluon emitted from S

the c-quark loop. In the three-loop diagrams shown in Fig. 1

(cf. Sec. Il A), the free indexB will be contracted with the

corresponding index of the dressed gluon propagal;g;,

—r2x(2—2x+2xy—y)e—(1—3y)C]C 1 ¢,

It is also quite simple to obtain the building bIo&{Bﬂ, Aigg= —Ai26=88*(q~r)dedyxysC*“f,
(i.e., the dressed gluon propagatahich can be cast into the
form Ai25:—8B+(q-r)dedyxl—x)ec—l-f,
f 95 1 gﬁﬁ'_rﬁrrzﬁr (A9
Kggr =~ Z—#TF(G)GYEEG'“,MZEI TS whereB" =(1+ €)I'(e)e”Eu?€ andC is given by

1 C=mZ-2xy(q-r)—r?x(1-x)—ié.
xf dxx(1—x)[x(1—x)r2—m?+is] "¢,
0 The integration over the Feynman parameteendy is re-
(A2) stricted to the simple)§ i.e., ye[0,1-x], xe[0,1]. Be-
cause of the Ward identities, the quantitiel, are not inde-
where m; denotes the mass of the quarks ahe 3. Note pendent of one another. Namely,
that this expression is independent of the gauge pararfieter

: , _ “J,5=0 and rfJ, ;=0
which enters the free gluon propagators in the construction A" ap i

of wa , when working in an arbitrarf?; gauge. imply that Ais andAig can be expressed as
The building blockJ,; is somewhat more involved. )
Adopting the notation of Ref.34], it reads(for an on-shell S L .
phOtOI’) [20] A|5—A|23, A|6—q_rA|25+A|26 (A6)
egQu ,
JaB YTy E(a,B,r)Ais+E(a,8,9)Alg APPENDIX B: REGULARIZED THREE-LOOP RESULTS
167

FOR (sy|0O,|b)

In Sec. Il Awe explained in some detail the calculation of
the virtual three-loop corrections t6sy|O,|b). Here we
give the results for the four gauge-invariant sets of graphs
_ g | . A depicted in Figs. 1 and 2. The results read, using

E(a’r’q)q‘rAlze}LZ’ (A3) =mZ/mZ andL=In(2),

_E(ﬂ,r:Q) A'zs E(a,r,q) A'25
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! 29+1 5+ 2L +1 5-2L+2L2-27%)Z2%+ ! 17+30L—18L2+1872)Z°
T8l 243750 2HT (57 T2m)z g - )z

1
M (Z?gare(]-) = [Z

o
——=(1-9z+922-18.7°— 102+ 12L.7%)

27 1458 324 ' 18

mp) % [ 1063 1977 ) X
- =(61+4L— 9L~ 107%)z

1 1
+1—8[79— 221 +28L.2—8L3- 97— 14L w2 — 12((3)]2%+ a(63—27L—36L2+24Ls—5971-2+42|_772

+36((3))2>— 162[58 441z—9(23+38L—6L2—127%) 22— 12(4+ 3L+ 3L+ 672)Z°] |+ O(z 4)}
2
—_ CFTand<S')’|O7|b>treer (Bl)
M2 (2 ol > 1 3— 72 +27T2 ! 6—6L+L2)z2+ 157— 6L — 1442 — 6072
ek 2= ¢\ Toze tam T BT 9 6 )z 324( B )z
—6e 2 2
x| T 1387+117T +1 96— 1772 126£(3) ]2+ ——[40— 18 — 72In(2)]2%2
“ 1258 72 54l m 12632+ 5l n(2)]z
1 20m%
+ 3—6[213+ 102L — 40L2+ 8L 3+ 3472+ 96¢(3)]2%— Tz52+ 324[279%993_ 198.2+192 8
—107?—60L 72— 936/(3)]2° +(’)(z7’2)}( ) CeTNnQu(sy|07|b)rees (B2)
M. (3)= ! i+137 —[18+24L +3L%+2L3— 372 —6L7m*—24¢(3)]z— = [15+6L—6L2+2L3+6772
M2 bar €|36e 432 36 36

1 i
—6Lm?—24¢(3)]2%+ 3—6(17— 12L)23+ 3—6(3— 24z—6Lz—6L%z+2mw°z— 622+ 12L7°— 6L22°+ 27?72

s |[Mo ~6e 6029 1772 1 ) - . ,
—127°%) p + 559~ 124 1080[7200+624c1_ 120L2+ 2203~ 1054~ 204072 — 1200 72

+90L272+ 1117%— 444Q¢(3) + 1440 {(3) ]z— 0[1513&5790_ 1050.2+980L°—210L4— 3072

216
—780L 7%+ 180L2 72+ 2227* — 456 (3) + 2880.{(3)]22+i(3—2L+ 72728
72

432{411—4[786+ 192 +93L%2— 241 32— 4972 — 121 w°—72¢(3)]z+ 2[ 309+ 102 — 186L2+ 483

—10m2+ 24L w%+ 144;(3)]2%+ 8(75— 54L) 2%}

2
+o<z4>](“§) CETQu(sYOrlb)iee: B3)

M (4 10 1 127
20ad =121 T8e T 232 36

[12+6L L3—72—3L#%—12/(3)]z— 6[6—6L+3L2—L3+2w2+24{(3)]22

1
—=——(27+108. —81L.%2—277?)Z3 9480+ 2040+ 180L2—340.°3

324

m, ~6¢ 12839 13x?
+ + - [
2592 144 2160

2

8
+109.%+ 26072 — 720L w2+ 30L27r?— 4397% — 336Q(3) — 8640.£(3)]z— sz

+ 135 0[ 29895- 6270 — 14102+ 740L3— 210L 4+ 9207% — 480L 7w+ 120L% % — 527* — 1632Q(3)

114019-15



BIERI, GREUB, AND STEINHAUSER PHYSICAL REVIEW D67, 114019 (2003

2

40
+4320L{(3)]2%+ > zo2— 216[1358—477L 99L.2+90L3+ 6372 — 18L 72— 432/(3)]2° +O(z7/2)]
2
X|— CFTanu<S'}’|O7|b>tree- (B4)

In these expressiong, denotes the Riemané function with the valueZ(3)~1.2020569.Q,=2/3 andQ4= —1/3 are the
electric charge factors of the up- and down-type quarks, respectively, @pite4/3 andT=1/2 are color factors.

APPENDIX C: CORRECTION FUNCTIONS NEEDED FOR THE NLL RESULT

The renormalization scale independent parts of the virtual corrections in NLL order precision, encoded in the fq‘ﬁ?ztions
appearing in Eq(58), read

1
(W= Zr ),

6
(1) 2 3/2 2_ 2 3
=5 43{ 833+ 1447°7%2+[1728- 18072 — 1296/(3) + (1296— 324m?) L +108.2+ 36L%]z
+[648+ 7272+ (432— 2167%)L + 36L3]z%+ [ — 54— 8472+ 1094 — 756.2]2%}

i
W{_ 5+[45— 372+ 9L +9L2]z+[ — 372+ 9L2]Z2+[ 28— 12L ]2} + O(z"?),

32 8

m_4_°% >

r 9 977,

a__ 4 2 i

r=— 5o(~33+2m°~6im), (C1)

wherez is defined a§=m§/m§ and the symboL denoted=In(2). The quantitiesi(l), appearing in Eq(58), read

|(1):_E|(1) |(1)_416 |(1)_§ | D= 32
1 2

6 2 g1 173 8 =g (C2)

Notice thatr{?, r?, r) andrl?, as well ad{’, 1V, 1, andI{") are not needed in the approximati®i(u)=0 (i
=3,4,5,6).

The func‘uonsf,, needed for Eq(65) are taken from Ref.12] and are listed here for completeness Note th4ts) differs
from the one given in Ref12] in order to be compatible with our; given in Eq.(C1).3

16z
27

1 1 1 1
f11(5)=§5f22(5), f12(5)=_§f22(5)1 f17(5)=_€f27(5)) f18(5)=_5f28(5),
Gmy 1

(1-6)/z 2 1z 2
5f dt(1—zt) +f dt(1—zt)?|— :
0 t 2 (

1-96)Iz
82 [(-d)z t 11 t
fol 8)=— — 6f dtRe(G(t)+— +f dt(l—zt)Re(G(t)+—) ,
9 0 2 (1-8)/z 2

G(t) 1

2

fou( )=

1
fog(0)=— §f27(5),

3The additional s-independent addend appearing in ég(5) is such thatf;-(1) vanishes: the contribution df-(8) at 6=1 is already
absorbed into our;.
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foA8)= —5+;52——a\°’+ 5(86— 4)In(5)—3—1
2

8 T 9
f15(8)= = [le(l 8) =5 —oIn(d)+ 7 5——52

1
3
=

2m? 2
[82+26+41In(1—8)]+4 Liy(1— 8)= —3~— 82+ 9)In(8)+8In(1- 5)+75+352——a\°>],

1
fgg( )= 27[ 2In(

3
(C3
where the functiorG(t) is defined through
t
—2arctaﬁ( \/m for t<4,
G(t)= 2 L 1 (C4
-5 +2 In? E(ﬁ+ \/t—4)}—2i7-rln E(ﬁ+ Jt—4)| for t=4.

The functionsf;; associated with the operatdds— Og are not needed in our approximation. Note that in the numerics we set
mg equal to zero in all terms excepig(5), where a value ofm,/ms=50 is chosen.

APPENDIX D: O(agnf) CONTRIBUTIONS TO VARIOUS Z FACTORS

In this appendix we give the results for tki&(«2n;) contributions for varioug factors entering the calculation of the
countertermM (7?3{2(6‘) in Eq. (45) in Sec. IIl. For the meaning of the various terms, see the text aftet45}. The O(a?2ny)

contributions to the relevarz factors read

@[ @s\?CeTn; [18 , M
82 = 1-4In(f)— 8|n + 443+ 3072+ 96 In(f) + 72 IrP(f) — 264 | +288|r(f)|n
2b m| 288 | € “ " Tl
m
+432 |nZ<—b) ] , (D1)
M
2CeTne (6 m m
57 nf:(“_S) Pl 1—4In(f)—8In| —| | —5+2m2—44In(f)+ 12 IM(f)+ 24 In()In(r) — 88 In| —
28 T 96 |e€ ) M
+96|n(f)|n( +48In(r)|n( +1441r7 )] (D2)
iz iz Iz
2CeT 10 12
sz M= F 711 82— 10410 2| + 81| 2|+ = =2, (D3)
T 96 ,u, M € ¢
CensT (6
(2) ng_ L I
87, ( W) 36 (E 7), (D4)
|
with r=m?/m2 andf=m#/m3. —XsY)e <&, Which is contained in the quantiy of Eq.
(67).
APPENDIX E: IMPLEMENTING THE PHOTON ENERGY Note that only the gluon bremsstrahlung- and the quark-
CUT-OFF IN THE O(agny) TERMS pair emission processes enter the calculationﬁ&f})’”f(b

In this appendix we prowde the formulas which are —Xgy)g [ <Eoy 85 the photon energy in the virtual contribu-
Eeedehd to Ca|Clé|ate ﬂ;(@(af nf) pIeChe OfEthe k|nemat|cal t|0ns iS Concentrated at mb/2 The O(ainf)
ranching ratio BRE—Xsy)e =g, WhereEqy represents a - .qnpiption tol“(727)'”f(b—>xsy)E —e_ can be written in the
cutoff on the photon energy. As can be seen from the StruG, v
ture of Eg. (67), this amounts to calculatd“(z) "(b
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@0, — o120 . 22C¢Tn
r7 (b Xs?’)EysEcut DA77 (Ey<Eew F(727)’(c)(E7$Ecut):(Z_; '; f{—147—971'2+48§(3)
L@ <
177 (Ey<Ea], (ED — 48 Liy(8) + 54 Liy(8)— In(5)[85— 42
where (b) and (c) denote the gluon bremsstrahlung- and _54IN(1— 8)— 24 Liy(8)]+13 IX(5)
the quark-pair emission process, respectively, m?q is 2
given in Eq.(32). As in Sec. Ill we use a regulator mass +121n3(8) + 8 160+ 4 7% — 24 Liy( 5)
for the secondary quark-antiquark pair which means that Eq.
(ED can be calculated inl=4 dimensions and withm —24In(1—8)In(8)—941In(5)+ 36 Ir°(5)]
. . + — o+ + -
The calculation for the gluon bremsstrahlung piece OTL=m+6Lia(9)+61n(1=9)In(4)
@ ®)(E,<E,) is straightforward. Adopting the notation +191In(8)—91n*(8)]— (14— 41n(4)]
m, —21In(f)[31-306—36%+25%+211n( )
Ecut:7(1_ 6)=Ema{1-9), (E2)

+1251In(8)—368%n(8) +6 IN?(5)]}. (E4)

the result reads

24ac ~(2),(b ~(2),(c
- 4CeTn Note that the sum off @ ®(E <E.) and T ©(E
(2).(b) _|%s Fllfraq — 3524253 77 y=Ecu 77 y
I57"(E,<Egqw (477 9 [31-306—35"+2 <Ey is finite in the limitm;—0. This completes the cal-

. (2),nf _ . .
+2110(8)+1261n(8) - 362In(8)+ 6 In(5)] culation of I">2""(b Xsy)EygEcut, defined in Eq(EJ).

We note that diﬁerentiating“(f?)’”f(b—>Xsy)EYSEM with

m
X|In(f)+21n —b” (E3) respect to the photon energy cht, generates the corre-
K sponding term of ordeagnf to the photon energy spectrum.
with f=mZ/m?. The result we obtain is in complete agreement with €.

of Ref. [25], whereO(a?n;) corrections to the photon en-

The calculation fori @ ©(E_<E_,) is somewhat more
77" (Ey=Eau) ergy spectrum were calculated.

involved but still can be performed analytically, yielding
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