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Instanton corrections to the quark form factor at large momentum transfer
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Within the Wilson integral formalism, we discuss the structure of nonperturbative corrections to the quark
form factor at large momentum transfer analyzing the infrared renormalon and instanton effects. We show that
the nonperturbative effects determine the initial value for the perturbative evolution of the quark form factor
and attribute their general structure to the renormalon ambiguities of the perturbative series. It is demonstrated
that the instanton contributions result in the finite renormalization of the next-to-leading perturbative result and
numerically are characterized by a small factor reflecting the diluteness of the QCD vacuum within the
instanton liquid model.
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[. INTRODUCTION In this case, the exponentiated quark form factor is expressed
in terms of the evolution equation, and can be evaluated, in
The various aspects of the instanton induced effects ifprinciple, to any order in perturbation theory. The analysis
high energy QCD processes had been addressed at the veéfyows that this is the high-energy asymptotic behavior that is
beginning of the instanton e(&ee' e.g., Ref[l])’ and this important, and all the Iogarithmic contributions must be
study has been continued in later decads Recently, the taken into account equally, while the power corrections could
interest in them has been revivig-7], and the hope of the be neglected16]. The investigation of the electomagnetic
direct detection of the instanton induced effects has appeardttark form factors in moderate and low energy domains can
[8]. One of the important questions in the description of had-shed light on the problem of scaling violation in DIS and the
ronic exclusive processes is the behavior of the form factor§tructure of constituent quarks7].
in various energy domains. The present paper is devoted to The color singlet quark form factor is determined via the
the analysis of the corrections to the elastic quark form factoglastic scattering amplitude of a quark in electromagnetic
at large momentum transfer induced by the infraréi)  field
renormalon[9] and instanton effects, treating the latter _
within the framework of the instanton liquid model of the M, =Fq[(p1—P2)?1u(p1) ¥,0(P2), 1)
QCD vacuum10]. ) ) ) )
From the theoretical point of view, the form factor analy- Whereu(p,),v(p;) are the spinors of outgoing and incoming
sis requires a perturbative resummation procedure beyorﬁ“arks- The klnematlcs of the process is described in terms
the standard renormalization group techniques, since it exQf the scattering anglg:
hibits a double-logarithmic behavior. In addition to this, the 9
resummation techniques developed for this particular case (P1P2) =1+ Q

: ) coshy= > 5,
can be applied to the study of many other processes which m 2m
possesses the logarithmic enhancements near the kinematic
boundaries. On the other hand, in addition to this obvious Q%= —(p,—p1)*>0,
theoretical use, the computation of the quark form factor has
important phenomenological applications. A similar resum- pizp%zmz. 2

mation approach is also used in study of the near-forward
quark-quark scattering and evaluation of the soft Pomerofi is known that the leading larg®? asymptotics of the
properties where the nonleading logarithmic contributionsgquark form factor is given by the exponentiation of the one-
are quite importanft11]. The application of this formalism in loop term[18]
heavy quark effective theory can also be usé¢fif]. The ) 5
qguark form factor itself enters into the various cross sections FO(Q?)=ex —EC In2Q 40 ”Inz"‘lQ
of high-energy processdd3]. In particular, this quantity g (Q a7 F N2 %s A2
finds the most straightforward phenomenological application (©)]
in the total cross section of the Drell-Yan process in the deep
inelastic scatterindDIS) scheme, which is proportional to Where\ is an IR cutoff parameter. In general, for a correct
the ratio of the timelike and spacelike form factfig—16. consideration of the nonleading asymptotic contributions one
has to resum all perturbativsuch asO(agln®1Q?),
O(ain™~2Q?), etc] as well as nonperturbative terms. An
*Electronic address: dorokhov@thsun1.jinr.ru effective framework for resummation of perturbative and
TAlso at: Institute for Theoretical Problems of Microphysics, Mos- nonperturbative contributions is provided by the Wilson in-
cow State University, 119899 Moscow, Russia; electronic addresdegral approachil9]. Within this framework, the resumma-
igorch@thsunZ.jinr.ru tion of all logarithmic terms coming from the soft gluon
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subprocesses allows us to express the quark form f&8xor where the functiond(x) orders the color matrices along the

in terms of the vacuum average of the gauge invariant patintegration contour. In the present work, we restrict ourselves

ordered Wilson integrdl20] with the study of the leading ordéone loop—for the per-
turbative gauge field and weak-field limit for the instanton

W(C,)= NiTr(0|7>exp( igf dx,LA,L(x)) 0). (4 terms of the expansiof®) which are given by the expression
c Cy 2
9°Cr
In Eq. (4) the integration path corresponding to considering wih(c, )=~ 5 fc dxﬂfc dy,D,.(x=y), (7)
process goes along the closed contGyr. the angle(cusp X X
with infinite sides. The gauge field

where the gauge field propagatdr,,(z) in n-dimensional

R ! space-time if=4—2¢) can be presented in the form
A (x)=T3A%(X), Ta=?, (5) ,
D,(2)=0,,0:A1(g,2%, u?IN}) = 9,3,A5(e,2%, u?IN?).
belongs to the Lie algebra of the gauge gr&Ig(N,), while (8)
the Wilson loop operatoPe9/*A lies in its fundamental

representation The exponentiation theorem for non-Abelian path-ordered
P ' Wilson integrals[21,22 allows us to expres§to one-loop

n our recent pap_e[?], we applied the Wilson integral accuracy the Wilson integral4) as the exponentiated one-
formalism to evaluation of the perturbative and nonperturba;

tive contributions to the color singlet quark form factor at theIOOp term of the serie).
low normalization pointw of order of the inverse instanton
size within the instanton liquid model. In the present work,

considering the renormalization grodG) evolution equa- | general, the expressiai@) contains ultraviole{UV) and
tion we extend the analysis to the limit of large momentump iyergences, that can be multiplicatively renormalized in
transfers focusing on the asymptotic behavior. We show thal .qnsistent way23]. In contrast to the previous papif],

the nonperturbative effects determine the initial value for thg, o | se the dimensional regularization in order to work with
perturbative evolution, find their general structure by analyz-UV singularities, and define the “gluon masa?® as the IR

ing the renormalon ambiguities of the perturbative Seriesregulator and the parameter® as the UV normalization

and establish the correspondence between them and the 'Bc')int. The dimensionally regularized formula for the leading

stanton induced contribution. .
) . order(LO) term (7) can be written a$7
The paper is organized as follows. In Sec. Il we reproduce o) @ ¥7]

W(C,)=exd W)(C,)+0(ad)]. ©)

the known results of the perturbative one-loop calculation, WA(C, ;e u2IN2, )
and derive the evolution equations taking into account the
nonperturbative contribution as the initial value for perturba- =8masCeh(x)(1—e)Aq(e,02/N?), (10)

tive evolution. In Sec. Ill, we study the consequences of the

IR renormalon ambiguities of the perturbative series andvhereh(y) is the universal cusp factor,
show how the latter prescribes the form of the nonperturba-

tive corrections to the asymptotic behavior of the form factor h(x)= x cothx—1, 1D
at large Q2. In Sec. IV, these nonperturbative effects are
estimated in the weak-field approximation within the instan-
ton model of the QCD vacuum. Finally, the lar@é-behav- 1 2
ior o_f the form fgctor is analyzed taking _into account the Aq(e,0u?N?)=— —2(477%)
leading perturbative, IR renormalon, and instanton induced 16w A

contributions. The latter are found to be determined by small

factor expressed via the parameters of the instanton liquid "€ independence of the expressia®) of the functionA,
model. is a direct consequence of the gauge invariance. Then, in the

one-loop approximation

and, in case of the perturbative field,

°I'(e)

1. (12

II. ANALYSIS OF THE PERTURBATIVE CONTRIBUTIONS

TO THE WILSON INTEGRAL WIC,;e,u?\? ag(p)]
. . . o 1 2
The Wilson integral4) can be presented as a series —1_ ;(:) CFh(X)(E_ yE+In4Tr+In%),
1
W(C,)=1+—(0 i ”fff dx"
(Cy NC< 2, (ig) Y AL (13
xdxn L. dxt g(x" X" x1) and the cusp dependent renormalization con$28jt within
Mn-1 #1 ' T the modified minimal subtraction scheme, reads
XTIA, (XA x"H. LA (xB1l0), o 1
PO O 0] ZekCie (w1~ 1+ "5 Con(y)| -~ yeinar .

(6) (14
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The detailed description of the renormalization proceduravhere Wo=W(Q3) contains both perturbative and nonper-

within the present approach has been made in Réfand turbative contributions. From the one-loop res(il), the

will be omitted here for brevity. cusp anomalous dimension which satisfies the RG equation
Using Eq.(10), one finds the known one-loop result for (17) in one-loop order is given by

the perturbative field, which contains the dependence on the

UV normalization poiniw? and IR cutoffA? (e.g., Ref[21]): as(p)
poiniu (e.g [21]) F((;Bs;{a's(#)]: sTr C:. 21)
ag( ) u?
wWi(Cy =~ 5, Crh(0In. (159  substituting the anomalous dimensié2t) in the one-loop

approximation for the strong coupling into the E80), one

Therefore, in the leading order the kinematic dependence dfnds
the expressioK7) is factorized into the functioh(x), which

2 2 2
at largeQ? is approximated by (1) 2\ — _ & Q“ In(Q7A%)
. Fq(Q%) expr B Inp nm
h(x)=In—. (16) Q? In(Q3/A?)
m? — |nQ—(2)( 1— Inm) +Wnp(Q2)

In this regime, the dependence \&f on the UV normaliza-
i | i XF(Q)) (22)
tion scalex (which can also be treated as an arbitrary fac- 0/

torization scale dividing the hard and soft subprocef24p

is governed by the renormalization gro(RG) equation whereA is the QCD scale. The singularity in E®2) origi-

nates from the region where the IR cutoff approachese.,
9 9\ dInW(Q?) where the coupling constant, increases, and then may have
(ﬂ% +8(g E) Ao =-—Tasfas(n)], (170 anonperturbative nature.

wherel'¢,s{ as) is the universal cusp anomalous dimension lll. EFFECTS OF THE IR RENORMALONS

evaluated in the perturbation theory. In Bfj7), we take the In order to determine the structure of the nonperturbative
logarithmic derivative irQ in order to avoid problems with - function W,, in Egs.(20), (22), it is instructive to study the
light-cone singularities am“=0 [24]. The solution of the  corrections due to IR renormalof8]. In the present situa-

RG equation leads to the evolution equation tion, one can expect the corrections proportional to the pow-
ers of both scaleg.? and\?. However, taking into account
dinW(Q?  [,2dé dW,(Q?) the evolution inu? to the hard characteristic scale of the
dinQ? - f)\z 2_§rcusp[as(§):|+ dinQ? '’ processQ? (19), we treat the power? terms to be strongly

(18) suppressed, and focus on the powdércorrections. To find
them, let us consider the perturbative function
where the functionW,, gives the initial condition au? A4(g,0,4%/\?) in the EqQ.(10). The insertion of the fermion
=\2 and has to be found by the nonperturbative method$ubble 1-chain to the one-loop order expressiah is
[25,26]. Solving Eq.(18), we take the arbitrary upper bound equivalent to replacement of the frozen coupling consgant
for the squared momenta of soft gluons equal to the hardby the running ong’—g?(k?) =4may(k? [25]:
scaleu®=Q? and find _
R (5.002N2) = —4 zaf d"k K2 &?5(z%)

dW,p(X) e, T (Zw)nas K2(K2+02)

dinx (23

19

= For the sake of convenience, we work here in Euclidean
which immediately leads to the conclusion that the leadingspace. Using the integral representation for the one-loop run-
largeQ? behavior of the quark form factdi,(Q?) including  ning couplinga(k?) = [5do(A%/k?)°°, b= Bo/4m, we find
all logarithmic corrections is controlled by the universal cusp

W(Q?) Q2dx
Q) [

__ xd¢ _
WQp e J czg st

K . . 2\ e
anomalous dimensiofil7) and can be expressed in the fol- ~ 282 1 M
lowing form (for comparison, see Reff24]): Aa(e, 0= Bo(l—¢) am A2
2)= 2 = T(1-x—g)l(1+x+e) [ A%\*
Fa(Q%)=W(Q?) dex( x—&)I'( Xs)_z)
2 2 0 (x+e)'(1—¢) A
Q2dé Q Q
=exp — ng—gln?rcusias(f)]—lnag (24)

2d¢ To define properly the integral on the right-hand side of Eq.
fioz—rcusp[as@)]JFWnp(Qz) Wy, (200  (24), one needs to specify a prescription to go around the
a2 2¢ poles, which are at the pointg,=n,neN. Of course, the
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result of integration will depend on this prescription giving dWD(Q?) 2C In( w2/ A2)
an ambiguity proportional toA?/\?)" for each pole. Then, =" F( MeOZTA2 ) (30
the IR renormalons produce the power corrections to the dinQ Bo n( )

one-loop perturbative result, which we assume to exponenti ; ; o fi ; ;
ate with the lattef25,26. Extracting from Eq(24) the UV ET%A?;S;&?&S%_” obviously satisfies the perturbative evo
singular part in vicinity of the origik=0, we divide the The remaining integral in Eq24) over the interval 8,
integration interval[0,] in two parts[0,6] and [6,], s evaluated at =0 since there are no UV singularities. The
where5<1. This procedure allows us to evaluate the ultra-resulting expression does not depend on the normalization
violet and the renormalon-induced pieces separately. For theoint 1, and thus it is determined by the IR region including
ultraviolet piece, we apply the expansion of the integrand imonperturbative effects. It contains the renormalon ambigu-
A; in powers of smalk and replace the ratio df functions ities due to different prescriptions in going around the poles

by exp(-yee): X, in the Borel plane which yields the power corrections to
the quark form factor. .
~ After the substitution u=Q“ and integration over
uv 2/\ 2y — __ _
Ar (8.0 N = Bo(1—¢) MZO (=)" d(In Q?), we find in LLA [for comparison, see Eq22)]:
2\ k 2C:| Q% In(Q¥A?)
M renr M2y — T
In4m— 7E+InF) J‘sd Xn(A2>x Fq (Q9) eXp‘ o Inplnm
X xX' =,
klgh k+1 0 \? Q2 IN(Q2/A2) Q2
—InZ5| 1-Ini—— - | | = In=5 ¢re \*, A %)
(25 Qo In(A“/A%) 0
2
which after subtraction of the poles in the scheme becomes XF™(Qp), (31)
pon where the functionp (A2, A%) =2, _odk(A%/N2)* accumu-
RW(0,42/\2) = 1 D i (—) lates the effects of the IR renormalons, as well as the other
LA " Bo(1—e) = TN nonperturbative information. The coefficienfg cannot be

calculated in perturbation theory and can be treated as the
s . AZ\X minimal set of nonperturbative parameters. It is worth noting
X Jo dxx’ N (26)  that the logarithmicQ? dependence of the renormalon in-
duced corrections in the larg@? regime is factorized, and
thus the Eq(31) reproduces exactly the structure of nonper-
turbative contributions found in the one-loop evolution equa-
tion (22) with respect to the larg®? asymptotic behavior.

In analogy with results of Ref27], this expression may be
rewritten in a closed form as

APV(0,u?IN?) IV. LARGE- Q? BEHAVIOR OF THE INSTANTON
5d INDUCED CONTRIBUTION
X[e—xln(ﬂzmz) _ e—xm(xz//\?)].

1
:ﬂo(l—S)j07 Let us consider the instanton induced corrections to the
perturbative result. The instanton field is given by

(27)
A ._a.Ua_laba:b .
Substituting AM(X,P)—AM(X,p)f—aR a0 ) (X—20),@(X—Zg:p),
(32
1 2
M=ZCF(1—8)Z§N(O,M2M2) (28)  Where R2® is the color orientation matrifa=1, . .. ,(N§
dinQ? —1),b=1,2,3], o¥s are the Pauli matrices, and-( corre-
sponds to the instanton, or anti-instanton. The averaging of
into Eq. (17) one finds the Wilson operator over the nonperturbative vacuum is re-
duced to the integration over the coordinate of the instanton
9 a \dInw®(Q?) centerz,, the color orientation and the instanton sizeThe
(Ma +B(9) @>TQ2 measure for the averaging over the instanton ensemble reads

dl=dRd*z,dn(p), wheredR refers to the averaging over
4 color orientation anddn(p) depends on the choice of the

=T as(,u)]( 1—exp{ - 5—} ) instanton size distribution. Taking into account E8R), we
Boas(1) write the Wilson integral(4), which defines the instanton

(29 induced contribution to the nonperturbative part in E2§),

in the single instanton approximation in the form

The second exponent in the last equation yields the power

suppressed terms\f/Q?)? in largeQ? regime. In the lead- W,(C.)= i(O|Tr exp(i o2¢)|0) (33)

ing logarithmic approximatioLLA ) Eq. (28) is reduced to BTN ’
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where 1 —p’Nxz+y(l—-2)]}"
®1(p?\?)= 2, fdxdydz{ P Ixzry(1-2)]}
n=1J0 n'n
— +b .
¢a(Zpr)_Rab7l MVJC dX;L(X_ZO)V‘ID(X_ZO’p)' Xepz)\z[xz+y(1—z)], lim (1)1([)2)\2):0 (40)

’ (34) A2
are the IR-finite expressions. At high energy the instanton

We omit the path ordering operat®rin Eg. (33) because the induced contribution is reduced to the form

instanton field(32) is a hedgehog in color space, and so it

locks the color orientation by space coordinates. Although indw,(Qz)
certain situations, the integrals of this tyfeqg. (34)] can be ———
evaluated explicitly{ 3], the calculation of the total integral dinQ
(34) for a given contour requires an additional work, so we =-B,(\2). (41)
must restrict ourselves with the weak-field approximation. In

contrast to our previous papEf], here we use the cutok*  Here we used the exponentiation of the single-instanton re-
to regularize the IR divergences in the instanton case, whilgult in a dilute instanton ensemHl@]:

the UV divergences do not appear at all due to the finite

instanton size. Then, in case of the instanton field, the LO W, =expw,), (42
contribution reads

7T2
= 7| dnp Tine o022+ B (p227)]

and took only the LO term of the weak-field expansi@n
W(l)—>W| .

Wl(l)(CX):2h(X)f dn(p)AL(0,0°\?), (35) In order to estimate the magnitude of the instanton in-
duced effect we consider the standard distribution function
[29] supplied with the exponential suppressing factor, which

where has been suggested in REF0] (and discussed in Ref31] in
, the framework of constrained instanton modiel order to

d*k . ~ describe the lattice da{&2

AL (02N =~ J a1 € A28 (). @2

(36)

2w )ZNC F{ 2w ) 5
ag(mr) ex _as(l"'r) (pte)

Here, o(k?;p) is the Fourier transform of the instanton pro- X exp( — 2w ap?) (43)
file function (2% p) and ¢’(k%p) is it's derivative with

respect tok?. Note, that for the instanton calculations, it is where the constary_is

necessary to map the scattering angléo the Euclidean

dp
dn(p)= FCNC

space by the analytical continuati¢8] y—ivy, and per- 0.466€ 167N
form the inverse transition to the Minkowski space-time in Cn.= (Ne—1)I(N—2)1 ~0.0015, (44)
the final expressions in order to restore & dependence. ¢ ¢
In the singular gauge, when the profile function is o is the string tensiong= 8o+ O[ as(x,)], and u, is the
normalization point[34]. Given the distribution(43) the
o p? 3 main parameters of the instanton liquid model—the mean
o(2)= Z2(Z2+ p?)’ @7 instanton size and the instanton density—will read:
one gets — I'(pr2—-3/2 1 45
PTTBR-2) 2me
m°p* 2y 2 2y 2 2y 2
| 2y 2\
A3(0p2A) = = IN(p?\?) Do pPA?) + D1(p?N?)], B chrw/z—z)( . )ZNC( ol
= — 2
38 2 as(p™h) 27 | )
(46)
where

In Eq. (46) we choose, for convenience, the normalization
scaleu, of order of the instanton inverse mean sjzel.

1 (1 dz
Do(p2\2) = f—[1+eﬂzk2—2ez'f’2x2],

p\*)oz(1-2) Note, that these quantities correspond to the mean gjze
and densityn, of instantons used in the mode3], where
lim ®o(p*\?)=1, (39  the size distributior(43) is approximated by the delta func-
A0 tion. dn(p)=nyd(p—po)dp.
Thus, we find the leading instanton contributigtl) in
and the form
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—a 2000 A2 proximation can be questioned, and the additional consider-
Bi=K7np’in—>-1+0 2770) : (47)  ation within more proper framework may help one to verify
it. Indeed, the corrections to the single instanton approxima-
where tion may be large at sufficiently low momeritsee for recent
discussions, e.g., Ref35], and references therginAt the
L'(Bo/2)[T(Byl2—2)]3 moment, we can say confidently that the evolution equation
= 2[T(Bo/2—312)]° ~0.74, (48) is valid atQ?=1 Ge\~.

We have to comment that the weak field limit used in the
and we used the one loop expression for the running counstanton calculations may deviate from the exact result.

pling constant Nevertheless, we expect that using of the instanton solution
in the singular gauge, that concentrate the field at small dis-
— 2w 1IN.—2n; tances, leads to the reasonable numerical estimate of the full

as(p )=— == Bo=——3 - (49  effect. Thus, the resulting diminishing of the instanton con-
BolnpA tributions with respect to the perturbative result appears to be

reasonable output. It should be emphasized that in the
present paper, all the calculations have been performed ana-
lytically while the evaluation of the instanton contribution
%yond the weak field approximation requires a numerical
analysis, which will be the subject of a separate work. More-
over, the use of the singular gauge for the instanton solution
allows us to prove the exponentiation theorem for the Wilson
The leading contribution to the quark form factor at asymp-|00p In t_he Instanton f'efkﬂ?J which permits are to express
totically largeQ? is provided by theperturbativé evolution the fuII' mstanton contribution as the exponent of the all-
governed by the cusp anomalous dimensiah). Thus, the order single instanton resui42).

instantons yield subleading effects to the la@ebehavior

The packing fractionm?np* characterizes diluteness of the
instanton liquid and within the conventional picture its value
is estimated to be 0.12, if one takes the model parameters
(see Ref[10])

n~1fm % p~1/3fm, o~(0.44 Ge2. (50

accompanied by a numerically small factor V. CONCLUSION
B,~0.02, (51 We analyzed the structure of the nonperturbative correc-
. tions to the quark form factor at large momentum transfer. In
as compared to the perturbative ter@g2 8,~0.24. order to model the nonperturbative effects, we studied the

Therefore, from Eqg(41) and(31), we find the expression quark scattering process in the background of the instanton
for the quark form factor at larg@” with the one-loop per-  yacuum. The instanton induced contribution to the color sin-
turbative contribution and the nonperturbative contributionsglet quark form factor is calculated in the large momentum
[the functionW,, in Eq. (22)] which include both the IR  transfer regime. It was shown that the instanton induced cor-
renormalon and the instanton induced terms rections correspond to the leading term proportional ©4n
The magnitude of these corrections is determined by the

2Ce[ Q% In(Q*/A?) . . . :
F (Q)=exp — In—in small instanton liquid packing fraction parameter, and they
q ,BOL A? In(QS/AZ) can be treated as finite renormalization of the subleading
perturbative part52). In addition to this, the minimal set of
2 | 2/A2 . . . . .
_ an 1—1n n(Qg/A”) the nonperturbative parameters is found considering infrared
_g IN(AZ/A?) renormalon ambiguities of the perturbative series. Within
) this approach, it is shown that the leading la@@behavior
—InQ—(B ) (52 of nonperturbative contributions should also be determined
Qg L Yren by the logarithmic term~In(Q?), what is consistent with the

instanton analysis.
It is clear that while the asymptoticlouble-logarithmig be- Let us emphasize that our results are quite sensitive to the
havior is controlled by the perturbative cusp anomalous diprescription how to make the integration over instanton sizes
mension, the leading nonperturbative corrections results in finite. For example, if one used the sharp cutoff then the
finite renormalization of the next-to-leadin@ogarithmig  instanton would produce strongly suppressed power correc-
perturbative term. From the formal point of view, the evolu- tions such as<(A/Q)”°. However, we think that the distri-
tion equation(20) describing the larg€? asymptotic is  bution function(43) should be considered as more realistic,
valid even at the low scale®?~1 Ge\?, since the only since it reflects more properly the structure of the instanton
condition of applicability of the Wilson integrals approach is ensemble modeling the QCD vacuum. Indeed, this shape of
Q?>\2,m?. However, in the low-energy domain the pertur- distribution was recently advocated in R€f30,31] and sup-
bative one-loop cusp anomalous dimensiog,s{as) (21) ported by the lattice calculatio82].
should be supplemented by higher loop corrections, and thus Finally, we think that the instanton induced effects are
the explicit formula(52) would include additional logarith- more interesting for theoretical investigation and more im-
mic terms. The relevance of the instanton induced @&kt  portant for phenomenology in the hadronic processes which
in the low-energy domain calculated in the dilute gas apfpossess two energy scales, such as the total center-of-mass
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energys (hard characteristic scaleand the squared momen-
tum transfer—t which is small compared to the latter:t

PHYSICAL REVIEW B7, 114017 (2003
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