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Instanton corrections to the quark form factor at large momentum transfer
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Within the Wilson integral formalism, we discuss the structure of nonperturbative corrections to the quark
form factor at large momentum transfer analyzing the infrared renormalon and instanton effects. We show that
the nonperturbative effects determine the initial value for the perturbative evolution of the quark form factor
and attribute their general structure to the renormalon ambiguities of the perturbative series. It is demonstrated
that the instanton contributions result in the finite renormalization of the next-to-leading perturbative result and
numerically are characterized by a small factor reflecting the diluteness of the QCD vacuum within the
instanton liquid model.
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I. INTRODUCTION

The various aspects of the instanton induced effects
high energy QCD processes had been addressed at the
beginning of the instanton era~see, e.g., Ref.@1#!, and this
study has been continued in later decades@2#. Recently, the
interest in them has been revived@3–7#, and the hope of the
direct detection of the instanton induced effects has appe
@8#. One of the important questions in the description of h
ronic exclusive processes is the behavior of the form fac
in various energy domains. The present paper is devote
the analysis of the corrections to the elastic quark form fac
at large momentum transfer induced by the infrared~IR!
renormalon @9# and instanton effects, treating the latt
within the framework of the instanton liquid model of th
QCD vacuum@10#.

From the theoretical point of view, the form factor anal
sis requires a perturbative resummation procedure bey
the standard renormalization group techniques, since it
hibits a double-logarithmic behavior. In addition to this, t
resummation techniques developed for this particular c
can be applied to the study of many other processes w
possesses the logarithmic enhancements near the kine
boundaries. On the other hand, in addition to this obvio
theoretical use, the computation of the quark form factor
important phenomenological applications. A similar resu
mation approach is also used in study of the near-forw
quark-quark scattering and evaluation of the soft Pome
properties where the nonleading logarithmic contributio
are quite important@11#. The application of this formalism in
heavy quark effective theory can also be useful@12#. The
quark form factor itself enters into the various cross secti
of high-energy processes@13#. In particular, this quantity
finds the most straightforward phenomenological applicat
in the total cross section of the Drell-Yan process in the d
inelastic scattering~DIS! scheme, which is proportional t
the ratio of the timelike and spacelike form factors@14–16#.
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†Also at: Institute for Theoretical Problems of Microphysics, Mo

cow State University, 119899 Moscow, Russia; electronic addr
igorch@thsun1.jinr.ru
0556-2821/2003/67~11!/114017~7!/$20.00 67 1140
in
ery

ed
-
rs
to
r

nd
x-

se
ch
atic
s
s
-
d
n
s

s

n
p

In this case, the exponentiated quark form factor is expres
in terms of the evolution equation, and can be evaluated
principle, to any order in perturbation theory. The analy
shows that this is the high-energy asymptotic behavior tha
important, and all the logarithmic contributions must
taken into account equally, while the power corrections co
be neglected@16#. The investigation of the electomagnet
quark form factors in moderate and low energy domains
shed light on the problem of scaling violation in DIS and t
structure of constituent quarks@17#.

The color singlet quark form factor is determined via t
elastic scattering amplitude of a quark in electromagne
field

Mm5Fq@~p12p2!2#ū~p1!gmv~p2!, ~1!

whereu(p1),v(p2) are the spinors of outgoing and incomin
quarks. The kinematics of the process is described in te
of the scattering anglex:

coshx5
~p1p2!

m2 511
Q2

2m2 ,

Q252~p22p1!2.0,

p1
25p2

25m2. ~2!

It is known that the leading large-Q2 asymptotics of the
quark form factor is given by the exponentiation of the on
loop term@18#

Fq
(1)~Q2!5expS 2

as

4p
CFln2

Q2

l2 D1OS as
nln2n21

Q2

l2 D ,

~3!

wherel is an IR cutoff parameter. In general, for a corre
consideration of the nonleading asymptotic contributions o
has to resum all perturbative@such as O(as

nln2n21Q2),
O(as

nln2n22Q2), etc.# as well as nonperturbative terms. A
effective framework for resummation of perturbative a
nonperturbative contributions is provided by the Wilson
tegral approach@19#. Within this framework, the resumma
tion of all logarithmic terms coming from the soft gluo
s:
©2003 The American Physical Society17-1
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subprocesses allows us to express the quark form factor~3!,
in terms of the vacuum average of the gauge invariant p
ordered Wilson integral@20#

W~Cx!5
1

Nc
Tr^0uP expS igE

Cx

dxmÂm~x! D u0&. ~4!

In Eq. ~4! the integration path corresponding to consider
process goes along the closed contourCx : the angle~cusp!
with infinite sides. The gauge field

Âm~x!5TaAm
a ~x!, Ta5

la

2
, ~5!

belongs to the Lie algebra of the gauge groupSU(Nc), while
the Wilson loop operatorPeig*dxA(x) lies in its fundamental
representation.

In our recent paper@7#, we applied the Wilson integra
formalism to evaluation of the perturbative and nonpertur
tive contributions to the color singlet quark form factor at t
low normalization pointm of order of the inverse instanto
size within the instanton liquid model. In the present wo
considering the renormalization group~RG! evolution equa-
tion we extend the analysis to the limit of large momentu
transfers focusing on the asymptotic behavior. We show
the nonperturbative effects determine the initial value for
perturbative evolution, find their general structure by anal
ing the renormalon ambiguities of the perturbative ser
and establish the correspondence between them and th
stanton induced contribution.

The paper is organized as follows. In Sec. II we reprod
the known results of the perturbative one-loop calculati
and derive the evolution equations taking into account
nonperturbative contribution as the initial value for perturb
tive evolution. In Sec. III, we study the consequences of
IR renormalon ambiguities of the perturbative series a
show how the latter prescribes the form of the nonpertur
tive corrections to the asymptotic behavior of the form fac
at large Q2. In Sec. IV, these nonperturbative effects a
estimated in the weak-field approximation within the insta
ton model of the QCD vacuum. Finally, the large-Q2 behav-
ior of the form factor is analyzed taking into account t
leading perturbative, IR renormalon, and instanton indu
contributions. The latter are found to be determined by sm
factor expressed via the parameters of the instanton liq
model.

II. ANALYSIS OF THE PERTURBATIVE CONTRIBUTIONS
TO THE WILSON INTEGRAL

The Wilson integral~4! can be presented as a series

W~Cx!511
1

Nc
K 0U(

n52
~ ig !nE

Cx

E
Cx

•••E
Cx

dxmn

n

3dxmn21

n21
•••dxm1

1 u~xn,xn21, . . . ,x1!

3Tr@Âmn
~xn!Âmn21

~xn21!•••Âm1
~x1!#U0L ,

~6!
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where the functionu(x) orders the color matrices along th
integration contour. In the present work, we restrict oursel
with the study of the leading order~one loop—for the per-
turbative gauge field and weak-field limit for the instanto!
terms of the expansion~6! which are given by the expressio

W(1)~Cx!52
g2CF

2 E
Cx

dxmE
Cx

dynDmn~x2y!, ~7!

where the gauge field propagatorDmn(z) in n-dimensional
space-time (n5422«) can be presented in the form

Dmn~z!5gmn]z
2D1~«,z2,m2/l2!2]m]nD2~«,z2,m2/l2!.

~8!

The exponentiation theorem for non-Abelian path-orde
Wilson integrals@21,22# allows us to express~to one-loop
accuracy! the Wilson integral~4! as the exponentiated one
loop term of the series~6!:

W~Cx!5exp@W(1)~Cx!1O~as
2!#. ~9!

In general, the expression~7! contains ultraviolet~UV! and
IR divergences, that can be multiplicatively renormalized
a consistent way@23#. In contrast to the previous paper@7#,
we use the dimensional regularization in order to work w
UV singularities, and define the ‘‘gluon mass’’l2 as the IR
regulator and the parameterm2 as the UV normalization
point. The dimensionally regularized formula for the leadi
order ~LO! term ~7! can be written as@7#

W(1)~Cx ;«,m2/l2,as!

58pasCFh~x!~12«!D1~«,0,m2/l2!, ~10!

whereh(x) is the universal cusp factor,

h~x!5x cothx21, ~11!

and, in case of the perturbative field,

D1~«,0,m2/l2!52
1

16p2S 4p
m2

l2 D « G~«!

12«
. ~12!

The independence of the expression~10! of the functionD2
is a direct consequence of the gauge invariance. Then, in
one-loop approximation

W@Cx ;«,m2/l2,as~m!#

512
as~m!

2p
CFh~x!S 1

«
2gE1 ln 4p1 ln

m2

l2 D ,

~13!

and the cusp dependent renormalization constant@23#, within
the modified minimal subtraction scheme, reads

Zcusp@Cx ;«,as~m!#511
as~m!

2p
CFh~x!S 1

«
2gE1 ln 4p D .

~14!
7-2
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The detailed description of the renormalization proced
within the present approach has been made in Ref.@7# and
will be omitted here for brevity.

Using Eq.~10!, one finds the known one-loop result fo
the perturbative field, which contains the dependence on
UV normalization pointm2 and IR cutoffl2 ~e.g., Ref.@21#!:

Wpt
(1)~Cx!52

as~m!

2p
CFh~x!ln

m2

l2 . ~15!

Therefore, in the leading order the kinematic dependenc
the expression~7! is factorized into the functionh(x), which
at large-Q2 is approximated by

h~x!} ln
Q2

m2 . ~16!

In this regime, the dependence ofW on the UV normaliza-
tion scalem ~which can also be treated as an arbitrary fa
torization scale dividing the hard and soft subprocesses@24#!
is governed by the renormalization group~RG! equation

S m
]

]m
1b~g!

]

]gDd ln W~Q2!

d ln Q2 52Gcusp@as~m!#, ~17!

whereGcusp(as) is the universal cusp anomalous dimensi
evaluated in the perturbation theory. In Eq.~17!, we take the
logarithmic derivative inQ2 in order to avoid problems with
light-cone singularities atm250 @24#. The solution of the
RG equation leads to the evolution equation

d ln W~Q2!

d ln Q2 52E
l2

m2dj

2j
Gcusp@as~j!#1

dWnp~Q2!

d ln Q2
,

~18!

where the functionWnp gives the initial condition atm2

5l2 and has to be found by the nonperturbative meth
@25,26#. Solving Eq.~18!, we take the arbitrary upper boun
for the squared momenta of soft gluons equal to the h
scalem25Q2 and find

ln
W~Q2!

W~Q0
2!

52E
Q0

2

Q2dx

x F E
l2

x dj

2j
Gcusp@as~j!#2

dWnp~x!

d ln x G ,
~19!

which immediately leads to the conclusion that the lead
large-Q2 behavior of the quark form factorFq(Q2) including
all logarithmic corrections is controlled by the universal cu
anomalous dimension~17! and can be expressed in the fo
lowing form ~for comparison, see Ref.@24#!:

Fq~Q2!5W~Q2!

5expF2E
Q0

2

Q2dj

2j
ln

Q2

j
Gcusp@as~j!#2 ln

Q2

Q0
2

3E
l2

Q0
2dj

2j
Gcusp@as~j!#1Wnp~Q2!G W0 , ~20!
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whereW05W(Q0
2) contains both perturbative and nonpe

turbative contributions. From the one-loop result~15!, the
cusp anomalous dimension which satisfies the RG equa
~17! in one-loop order is given by

Gcusp
(1) @as~m!#5

as~m!

p
CF . ~21!

Substituting the anomalous dimension~21! in the one-loop
approximation for the strong coupling into the Eq.~20!, one
finds

Fq
(1)~Q2!5expH 2

2CF

b0
F ln

Q2

L2 ln
ln~Q2/L2!

ln~Q0
2/L2!

2 ln
Q2

Q0
2S 12 ln

ln~Q0
2/L2!

ln~l2/L2!
D G1Wnp~Q2!J

3F (1)~Q0
2!, ~22!

whereL is the QCD scale. The singularity in Eq.~22! origi-
nates from the region where the IR cutoff approachesL, i.e.,
where the coupling constantas increases, and then may hav
a nonperturbative nature.

III. EFFECTS OF THE IR RENORMALONS

In order to determine the structure of the nonperturbat
function Wnp in Eqs.~20!, ~22!, it is instructive to study the
corrections due to IR renormalons@9#. In the present situa-
tion, one can expect the corrections proportional to the po
ers of both scalesm2 andl2. However, taking into accoun
the evolution inm2 to the hard characteristic scale of th
processQ2 ~19!, we treat the powerm2 terms to be strongly
suppressed, and focus on the powerl2 corrections. To find
them, let us consider the perturbative functio
D1(«,0,m2/l2) in the Eq.~10!. The insertion of the fermion
bubble 1-chain to the one-loop order expression~7! is
equivalent to replacement of the frozen coupling constang2

by the running oneg2→g2(k2)54pas(k
2) @25#:

D̃1~«,0,m2/l2!524pm2«E dnk

~2p!n as~k2!
eikzd~z2!

k2~k21l2!
.

~23!

For the sake of convenience, we work here in Euclide
space. Using the integral representation for the one-loop
ning couplingas(k

2)5*0
`ds(L2/k2)sb, b5b0/4p, we find

D̃1~«,0,m2/l2!52
1

b0~12«!S 4p
m2

l2 D «

3E
0

`

dx
G~12x2«!G~11x1«!

~x1«!G~12«! S L2

l2 D x

.

~24!

To define properly the integral on the right-hand side of E
~24!, one needs to specify a prescription to go around
poles, which are at the pointsx̄n5n,nPN. Of course, the
7-3
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result of integration will depend on this prescription givin
an ambiguity proportional to (L2/l2)n for each pole. Then
the IR renormalons produce the power corrections to
one-loop perturbative result, which we assume to expone
ate with the latter@25,26#. Extracting from Eq.~24! the UV
singular part in vicinity of the originx50, we divide the
integration interval@0,̀ # in two parts @0,d# and @d,`#,
whered,1. This procedure allows us to evaluate the ult
violet and the renormalon-induced pieces separately. For
ultraviolet piece, we apply the expansion of the integrand
D1 in powers of smallx and replace the ratio ofG functions
by exp(2gE«):

D̃1
UV~«,0,m2/l2!52

1

b0~12«! (
k,n50

~2 !n

3

S ln 4p2gE1 ln
m2

l2 D k

k!«n2k11 E
0

d
dxxnS L2

l2 D x

,

~25!

which after subtraction of the poles in the scheme becom

D̃1
UV~0,m2/l2!5

1

b0~12«! (
n51

S ln
m2

l2 D n ~2 !n

n!

3E
0

d
dxxn21S L2

l2 D x

. ~26!

In analogy with results of Ref.@27#, this expression may be
rewritten in a closed form as

D̃1
UV~0,m2/l2!

5
1

b0~12«!
E

0

ddx

x
@e2xln(m2/L2)2e2xln(l2/L2)#.

~27!

Substituting

dW(1)~Q2!

d ln Q2
52CF~12«!D̃1

UV~0,m2/l2! ~28!

into Eq. ~17! one finds

S m
]

]m
1b~g!

]

]gDd ln W(1)~Q2!

d lnQ2

52Gcusp
(1) @as~m!#S 12expF2d

4p

b0as~m!G D .

~29!

The second exponent in the last equation yields the po
suppressed terms (L2/Q2)d in large-Q2 regime. In the lead-
ing logarithmic approximation~LLA ! Eq. ~28! is reduced to
11401
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dW(1)~Q2!

d ln Q2
52

2CF

b0
S ln

ln~m2/L2!

ln~l2/L2! D . ~30!

The last expression obviously satisfies the perturbative e
lution equation~17!.

The remaining integral in Eq.~24! over the interval@d,`#
is evaluated at«50 since there are no UV singularities. Th
resulting expression does not depend on the normaliza
point m, and thus it is determined by the IR region includin
nonperturbative effects. It contains the renormalon ambi
ities due to different prescriptions in going around the po
x̄n in the Borel plane which yields the power corrections
the quark form factor.

After the substitution m25Q2 and integration over
d(ln Q2), we find in LLA @for comparison, see Eq.~22!#:

Fq
ren~Q2!5expH 2

2CF

b0
F ln

Q2

L2ln
ln~Q2/L2!

ln~Q0
2/L2!

2 ln
Q2

Q0
2 S 12 ln

ln~Q0
2/L2!

ln~l2/L2!
D G2 ln

Q2

Q0
2 f ren~l2,L2!J

3F ren~Q0
2!, ~31!

where the functionf ren(l
2,L2)5(k50fk(L

2/l2)k accumu-
lates the effects of the IR renormalons, as well as the o
nonperturbative information. The coefficientsfk cannot be
calculated in perturbation theory and can be treated as
minimal set of nonperturbative parameters. It is worth not
that the logarithmicQ2 dependence of the renormalon in
duced corrections in the large-Q2 regime is factorized, and
thus the Eq.~31! reproduces exactly the structure of nonpe
turbative contributions found in the one-loop evolution equ
tion ~22! with respect to the large-Q2 asymptotic behavior.

IV. LARGE- Q2 BEHAVIOR OF THE INSTANTON
INDUCED CONTRIBUTION

Let us consider the instanton induced corrections to
perturbative result. The instanton field is given by

Âm~x;r!5Am
a ~x;r!

sa

2
5

1

g
Rabsah6

mn
b ~x2z0!nw~x2z0 ;r!,

~32!

where Rab is the color orientation matrix@a51, . . . ,(Nc
2

21),b51,2,3#, sa’s are the Pauli matrices, and (6) corre-
sponds to the instanton, or anti-instanton. The averaging
the Wilson operator over the nonperturbative vacuum is
duced to the integration over the coordinate of the instan
centerz0, the color orientation and the instanton sizer. The
measure for the averaging over the instanton ensemble r
dI5dRd4z0dn(r), wheredR refers to the averaging ove
color orientation anddn(r) depends on the choice of th
instanton size distribution. Taking into account Eq.~32!, we
write the Wilson integral~4!, which defines the instanton
induced contribution to the nonperturbative part in Eq.~20!,
in the single instanton approximation in the form

WI~Cx!5
1

Nc
^0uTr exp~ isafa!u0&, ~33!
7-4
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where

fa~z0 ,r!5Rabh6
mn
b E

Cg

dxm~x2z0!nw~x2z0 ;r!.

~34!

We omit the path ordering operatorP in Eq. ~33! because the
instanton field~32! is a hedgehog in color space, and so
locks the color orientation by space coordinates. Although
certain situations, the integrals of this type@Eq. ~34!# can be
evaluated explicitly@3#, the calculation of the total integra
~34! for a given contour requires an additional work, so w
must restrict ourselves with the weak-field approximation.
contrast to our previous paper@7#, here we use the cutoffl2

to regularize the IR divergences in the instanton case, w
the UV divergences do not appear at all due to the fin
instanton size. Then, in case of the instanton field, the
contribution reads

WI
(1)~Cx!52h~x!E dn~r!D1

I ~0,r2l2!, ~35!

where

D1
I ~0,r2l2!52E d4k

~2p!4 eikzd~z2!@2w̃8~k2;r!#2.

~36!

Here,w̃(k2;r) is the Fourier transform of the instanton pr
file function w(z2;r) and w̃8(k2;r) is it’s derivative with
respect tok2. Note, that for the instanton calculations, it
necessary to map the scattering anglex to the Euclidean
space by the analytical continuation@28# x→ ig, and per-
form the inverse transition to the Minkowski space-time
the final expressions in order to restore theQ2 dependence
In the singular gauge, when the profile function is

w~z2!5
r2

z2~z21r2!
, ~37!

one gets

D1
I ~0,r2l2!5

p2r4

4
@ ln~r2l2!F0~r2l2!1F1~r2l2!#,

~38!

where

F0~r2l2!5
1

r4l4E
0

1 dz

z~12z!
@11er2l2

22ez•r2l2
#,

lim
l2→0

F0~r2l2!51, ~39!

and
11401
t
n

n

le
e
O

F1~r2l2!5 (
n51

E
0

1

dxdydz
$2r2l2@xz1y~12z!#%n

n!n

3er2l2[xz1y(12z)] , lim
l2→0

F1~r2l2!50 ~40!

are the IR-finite expressions. At high energy the instan
induced contribution is reduced to the form

dwI~Q2!

d ln Q2 5
p2

2 E dn~r!r4@ ln~r2l2!F0~r2l2!1F1~r2l2!#

[2BI~l2!. ~41!

Here we used the exponentiation of the single-instanton
sult in a dilute instanton ensemble@7#:

WI5exp~wI !, ~42!

and took only the LO term of the weak-field expansion~7!:
W(1)→wI .

In order to estimate the magnitude of the instanton
duced effect we consider the standard distribution funct
@29# supplied with the exponential suppressing factor, wh
has been suggested in Ref.@30# ~and discussed in Ref.@31# in
the framework of constrained instanton model! in order to
describe the lattice data@32#

dn~r!5
dr

r5 CNcS 2p

as~m r !
D 2Nc

expS 2
2p

as~m r !
D ~rm r !

b

3exp~22psr2!, ~43!

where the constantCNc
is

CNc
5

0.466e21.679Nc

~Nc21!! ~Nc22!!
'0.0015, ~44!

s is the string tension,b5b01O@as(m r)#, and m r is the
normalization point@34#. Given the distribution~43! the
main parameters of the instanton liquid model—the me
instanton sizer̄ and the instanton densityn̄—will read:

r̄5
G~b/223/2!

G~b/222!

1

A2ps
, ~45!

n̄5
CNc

G~b/222!

2 S 2p

aS~ r̄21!
D 2NcS LQCD

A2ps
D b

~2ps!2.

~46!

In Eq. ~46! we choose, for convenience, the normalizati
scalem r of order of the instanton inverse mean sizer̄21.
Note, that these quantities correspond to the mean sizer0
and densityn0 of instantons used in the model@33#, where
the size distribution~43! is approximated by the delta func
tion. dn(r)5n0d(r2r0)dr.

Thus, we find the leading instanton contribution~41! in
the form
7-5
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BI5Kp2n̄r̄4ln
2ps

l2 F11OS l2

2ps D G , ~47!

where

K5
G~b0/2!@G~b0/222!#3

2@G~b0/223/2!#4 '0.74, ~48!

and we used the one loop expression for the running c
pling constant

as~ r̄21!52
2p

b0ln r̄L
, b05

11Nc22nf

3
. ~49!

The packing fractionp2n̄r̄4 characterizes diluteness of th
instanton liquid and within the conventional picture its val
is estimated to be 0.12, if one takes the model paramete
~see Ref.@10#!

n̄'1 fm24, r̄'1/3 fm, s'~0.44 GeV!2. ~50!

The leading contribution to the quark form factor at asym
totically largeQ2 is provided by the~perturbative! evolution
governed by the cusp anomalous dimension~21!. Thus, the
instantons yield subleading effects to the large-Q2 behavior
accompanied by a numerically small factor

BI'0.02, ~51!

as compared to the perturbative term 2CF /b0'0.24.
Therefore, from Eqs.~41! and~31!, we find the expression

for the quark form factor at largeQ2 with the one-loop per-
turbative contribution and the nonperturbative contributio
@the functionWnp in Eq. ~22!# which include both the IR
renormalon and the instanton induced terms

Fq~Q2!5expH 2
2CF

b0
F ln

Q2

L2ln
ln~Q2/L2!

ln~Q0
2/L2!

2 ln
Q2

Q0
2S 12 ln

ln~Q0
2/L2!

ln~l2/L2!
D G

2 ln
Q2

Q0
2 ~BI1f ren!J . ~52!

It is clear that while the asymptotic~double-logarithmic! be-
havior is controlled by the perturbative cusp anomalous
mension, the leading nonperturbative corrections results
finite renormalization of the next-to-leading~logarithmic!
perturbative term. From the formal point of view, the evo
tion equation ~20! describing the large-Q2 asymptotic is
valid even at the low scalesQ2;1 GeV2, since the only
condition of applicability of the Wilson integrals approach
Q2@l2,m2. However, in the low-energy domain the pertu
bative one-loop cusp anomalous dimensionGcusp(as) ~21!
should be supplemented by higher loop corrections, and
the explicit formula~52! would include additional logarith-
mic terms. The relevance of the instanton induced part~41!
in the low-energy domain calculated in the dilute gas
11401
u-

as

-

s

i-
a

us

-

proximation can be questioned, and the additional consi
ation within more proper framework may help one to ver
it. Indeed, the corrections to the single instanton approxim
tion may be large at sufficiently low momenta~see for recent
discussions, e.g., Ref.@35#, and references therein!. At the
moment, we can say confidently that the evolution equat
is valid atQ2>1 GeV2.

We have to comment that the weak field limit used in t
instanton calculations may deviate from the exact res
Nevertheless, we expect that using of the instanton solu
in the singular gauge, that concentrate the field at small
tances, leads to the reasonable numerical estimate of the
effect. Thus, the resulting diminishing of the instanton co
tributions with respect to the perturbative result appears to
reasonable output. It should be emphasized that in
present paper, all the calculations have been performed
lytically while the evaluation of the instanton contributio
beyond the weak field approximation requires a numer
analysis, which will be the subject of a separate work. Mo
over, the use of the singular gauge for the instanton solu
allows us to prove the exponentiation theorem for the Wils
loop in the instanton field@7# which permits are to expres
the full instanton contribution as the exponent of the a
order single instanton result~42!.

V. CONCLUSION

We analyzed the structure of the nonperturbative corr
tions to the quark form factor at large momentum transfer
order to model the nonperturbative effects, we studied
quark scattering process in the background of the instan
vacuum. The instanton induced contribution to the color s
glet quark form factor is calculated in the large momentu
transfer regime. It was shown that the instanton induced
rections correspond to the leading term proportional to lnQ2.
The magnitude of these corrections is determined by
small instanton liquid packing fraction parameter, and th
can be treated as finite renormalization of the sublead
perturbative part~52!. In addition to this, the minimal set o
the nonperturbative parameters is found considering infra
renormalon ambiguities of the perturbative series. With
this approach, it is shown that the leading large-Q2 behavior
of nonperturbative contributions should also be determin
by the logarithmic term; ln(Q2), what is consistent with the
instanton analysis.

Let us emphasize that our results are quite sensitive to
prescription how to make the integration over instanton si
finite. For example, if one used the sharp cutoff then
instanton would produce strongly suppressed power cor
tions such as}(L/Q)b0. However, we think that the distri
bution function~43! should be considered as more realist
since it reflects more properly the structure of the instan
ensemble modeling the QCD vacuum. Indeed, this shap
distribution was recently advocated in Refs.@30,31# and sup-
ported by the lattice calculations@32#.

Finally, we think that the instanton induced effects a
more interesting for theoretical investigation and more i
portant for phenomenology in the hadronic processes wh
possess two energy scales, such as the total center-of-
7-6
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energys ~hard characteristic scale!, and the squared momen
tum transfer2t which is small compared to the latter:2t
!s. One of the most interesting examples of such proces
is the parton-parton scattering and the soft Pomeron prob
@3,4,11#. Another important situations where the nonpert
bative ~including instanton induced! effects can emerge ar
the transverse momentum distribution of vector bosons in
Drell-Yan process~see, e.g., Refs.@25,26#!, and the phenom-
enon of saturation in deep-inelastic scattering~DIS! at small
x @36#. The explicit evaluation of the instanton effects
these processes will be the subject of our forthcoming stu
tt.
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