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We examine the assumptions underlying theodel-dependeitpredictions ofqza2 or tetraquarkspectra.
The models implemented so far have used only two-body interactions proportional to the color charges; that
assumption is the source of many serious shortcomings. We extend the analysis to three- and four-body
interactions based on color &) algebra, while including all relevant information one has about three-quark
forces from lattice QCD. Thus we find th@juasjstable tetraquarks are not necessarily a consequence of color
SU(3) dynamics, let alone of QCD. We make this statement and the conditions under which it holds more
precise in the text. In the process we are led to a set of sufficient conditions for a mathematical description of
the hadronic world as we know it, i.e., of baryons am_ﬂmesons, without going into the question of tetraquark
existence. These conditions are as follo(s.Stability: All the (colorless and colorgdtates’ energies must be
bounded from below(2) Confinement: A color singleqa potential energy mustinfinitely) rise with the
separation distanc€3) Color ordering: Colored states must be heavier than color-neutral @)e3lustering:
Any multiquark color-singlet state Hamiltonian must turn into a sum of three-q(zakyons and quark-
antiquark (mesong cluster Hamiltonians, in the limit of asymptotically large separations. We discuss the
consistency of these four requirements with colof®symmetry and with each other.
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I. INTRODUCTION SU(3) predictions or arguments, while including what little
information one has about three-quark forces from lattice
In few-quark systems with the number of constituentQCD [8-10]. Thus we find thatquasjstable tetraquarks are

quarks f) + the number of constituent antiquarks,f ~ not necessarily a consequence of color(Blilynamics, let
larger than 3 Nznq+Hq>3) there are additional color sin- alone of QCD. We shall make this statement and the condi-

glets that have not been experimentally obsertesiyej.  tONS under which it holds, more precise in the text.
The simplest such system is made of two quarks and two In the process we found certain generic difficulties in the
antiquarks: the tetraquarquaz). It can be in either of the (realistig models based on color $8), and in QCD in par-

two linearly independent, mutually orthogonal color singlet!icular. in meeting the four basic conditionsrattional color
states: one that is a mere product of two ordinary megpn  duark dynamics(2) Confinement: A color singleqq poten-
color singlets, which we term the “two-meson state,” ang tial energy thatlinearly) rises at least up to the two-meson
another one that is a singlet combination of teyq color pro_ductlon threshold energy and probably a'?’o higt@ex-
octets, which we call the “true tetraquark state.” plain the Regge recurrendés(3) Color ordering: Colored

The color SU3) Yang-Mills (“gauge”) field dynamics, states mgst be _heawer than_ color-neutral oné4)
also known as quantum chromodynami€CD), has been (Asymptotig (_:Iusterlng: Any.multhuark(more than three-
proposed as the solution to all of the quark dynamical probduark color singlet Hamiltonian must reduce to a sumggf
lems. The QCD equations of motion are nonlinear andbaryon andqq (meson color singlet Hamiltonians in the
strongly coupled, so no exact solution has been found tdéimit of large interquark separations. This property some-
date. In the following we shall use only QCD’s exatin- times goes by the name of “color saturation” and should not
broken”) color SU3) symmetry, which is beyond doubt, but be confused with the stronger demand that there be no
not its equations of motion, to constrain and/or predict the'strong van der Waals forces.” We add to these yet another
properties of the mathematically allowed dynamical solu-demand that is so natural as to often be forgotten, and yet
tions. Thus all of our conclusions must also hold in QCD,one that is not always met by color 8) models:(1) Sta-
though we shall not attempt to derive them explictly. bility: All the (colorless and colorgdstates’ energies must be

A number of(model-dependeptalculations, Refd.1—4], bounded from below.
have predicted numerous tetraquark resonances and even aWe show that no color S(3) symmetric interaction can
few (quasjstable tetraquarks, and these states have been exatisfy these four requirements in tqéaZ system. First we
perimentally sought for well over 20 years, but to no avalil
[5]. So it appears to be high time that one critically considers———
the assumptions under which tetraquark states exist. This paithere is a school of thought that puts all the blame for the failure
per is a continuation of the research started in R&f.and  of quark potential models on the very concept of potential. This
extended to six-quark systems by Pepin and Std#tu school would have us believe that all would be well if only one

In this paper we examine the dynamical assumptions unused string dynamicsin spite of the great difficulties of four-
derlying various model calculations of tetraquark spectra irdimensional string theorigsThere is no evidence supporting that
the literature and compare them with purely algebraic coloopinion, however.
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show, under the assumption of color ordered stable two- anih all subsequent developments. Clearly there is another lin-
three-quark interactions, that at least some four-quark interearly independent color singlet state, the

action is necessary to ensure clustering of ghg® system 5
|815824) = \[§|§12334>+

into two qa mesons. The resulting Hamiltonian leads to 1

asymptotic anticonfinementof the two color singletqq \/5 16126834 ®
states, however. And vice versa: if we adjust the free cou-
pling parameters so as to avoid the anticonfinement problenthat is orthogonal to the first one, and similarly in ttief)
there can be no clustering. We compare this situation wittbasis
the one in perturbative and lattice QCD and thRe F;
model, and find that the source of the problems lies either 2_ 1 _
with the asymptotically rising confining potentials or with |814823) = \[§| 312334) + —=61634). 4
the color ordering. \/5

We also find a correlation between colored statisjor- The Pauli principle applies only to identical particles, i.e., it

dering and tetraquark binding: The lower thq octet's en-  4niisymmetrizes either only quark or only antiquark pairs
ergy is compared to that of the singlet, the more likely is the(“diquarks" and “antidiquarks”), but not to theqapairs For
tetraquark to bind, at least in thgector interactionF;- F; ' '

model, whose stability is assured by Rosina’s conjecture. WS _reason, the unphysical basis spanned 3y3;4) and
also show how the strength of the three-body force can bé61634) is better suited to the application of the Pauli prin-
adjusted so as to bind or unbind the tetraquark, withoutiple than the(*physical”) asymptotic basis. The linear in-
changing the baryon energies. dependence and orthogonality of the two color singlet repre-
This paper falls into five sections. After the Introduction, sentations, however, provide an additional permutation

in Sec. Il we give a reminder of the basic facts regarding thesymmetry constraint, even on those paissich asqq) to
q%qg® system’s color S(B) symmetry and clustering. Then in which the Pauli principle does not apply.

Sec. Il we examine the predictions of thetandard F;-F; No signature other than the flavor structure is available to
model of quark interactions for tetraquarks. In Sec. 1V, wedifferentiate between “genuine tetraquark,” or hidden-color
look at the general two-, three-, and four-quark forces alstates, Eq(3) and “accidental” resonances in ordinary “two-
lowed by the color S(B) symmetry. Then we show that at meson” states, Eq(1). The mixing of these two classes of
least some four-quark interactions are necessary to ensugéates, if it exists, affects the observables’ expectation values:
clustering of theq?q? system into twogqq mesons, though !f the Hamiltonian does not conne@hix) these two flavor
that also leads to a breakdown of confinement, and vicuPspaces of Hilbert space, then the “genuine tetraquark”

versa. There we compare our results with those of perturbéilasfc’ of states remains unobservable iq experiments based on
tive QCD. Finally, in Sec. VV we draw our conclusions. “ordinary meson” states, such as elastic meson-meson scat-
tering. Such a “decoupling” of the hidden color state corre-
_ sponds precisely to thgphenomenological Freund-Waltz-
Il. BASIC FACTS ABOUT THE ¢°g” SYSTEM Rosner(duality) “rule” [12]. Therefore we must carefully
A. Color singlet states and their mixing reconsider mixing of the two color singlets.

In the g°q° system, there are two linearly independent 1. Color, spin, and flavor mixing
and mutually orthogonal color singlets. One can designate First, we remember that there is one mundane source of
them, for example, according to their symmetry propertiesyixing: symmetry breaking. The color and angular momen-
under interchange of the two quark or antiquark indices: ong,m are good symmetries, of course, but flavor is not. When
state (6,,634)) is symmetric, another|8,,339)) antisymmet- a symmetry is broken, say SN(), the physical states are
ric; see, e.g., Refl11]. The asymptotic “two-meson” color generally mixtures of two or more submultiplets of the bro-
singlet state is a linear combination of the two: ken symmetry multiplets that are eigenstates of the good
residual symmetry, e.g., SN¢—1). Thus, there will surely
1 _ 2 be some mixing among the flavor multiplets belonging to
|113124>:7|312334>Jr \/;|612634>- @ either of the two color singlets, but not among the flavor
3 states belonging to different color singlets, as the quark mass
Hamiltonian that breaks the flavor symmetry in QCD does
The indices 1,2 and 3,4 denote all other quantum numberg,ot depend on coldrThis means that the physicahixed)
such as flavor and spin, of the two quarks and antiquarksstates corresponding to two color singlets still belong to dif-

respectively. Thus it ought to be clear that there is nothingerent permutation symmetry classes even after flavor sym-
special about the stafé;31,,), one can equally well use the metry breaking induced mixing.

state
1 2 20f course, flavor symmetry might also be broken by secondary
1114109 = — 7 |312334) + §| 615634 (2 effects such as the strong hyperfine interaction, which does depend
3 on color.
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The number of states and their quantum numbers do natvhereac is the strong fine structure constant. Note the over-
change under the mixing, but their energigsassesgener-  all minus sign that cancels the negative sign of the color
ally do. Moreover, the mixed states are orthogonal and mayactor in the color singletjq, and the3 diquark staté.
be subject to special selection rules. Quantum mechanical The color singlet mixing is due to the fact that the color
mixing of the two color singlet states is allowed(d the  factorF;- F; is a part of thei ] two-quark colorexchange
color-dependent interaction Hamiltonigthe potentialV) operatorP; .5 That does not mean that color &) symme-
connects the two states try is broken, however.

(8,58 V| L1zlog)c# 0 The color exchange nature of the confining interaction,
G however, is not enough: one must have simultaneous color

and one of the following conditions holds: eith@y all other ~ @nd flavor or spin dependence. Most of the two-quark poten-
quantum numberéflavor, spin of the two states are identi- talS are assumed }0 be flavor and spin independent. One
cal, or(c) the mixing potentialV/= V<V Vs also depends on exc_ept|on is the s_trong hyperfine”(Breit) interaction
flavor and/or spin, such that the corresponding flavor matri¥Which does not confine, howevyer

element does not vanish either. The Pauli principle for quarks

or antiquarks and 'Fhe orthogonality of the two overall colo_r V?Eeit: __K (oy-0,)8(r1— 1), @)
singlet wave functions demand that the flavor and/or spin m;m;

wave functions of multiplets belonging to two color singlets

be orthogonal to each other, as well. This means that th&hich has explicit color and spithere o; are the Pauli ma-
mixing Hamiltonian has to depend on both the color and thdrices andx is a constant proportional tac) exchange de-
flavor (or spin in such a way that it connects different per- pendence and implicitoy way of quark massgdlavor de-
mutation symmetry wave functiorisand yet preserves the pendence. The Breit interaction is a standard part of the
color (and preferably also flavpisymmetry, if it is to yield (higher order irv/c) nonrelativistic reduction of the Lorentz
mixing. That is a powerful constraint that prevents the two-vector two-body potential, i.e., of the one-gluon exchange
color-singlet representation from mixing in the exact flavorpotential. Jaff¢3] has emphasized the Breit interaction as an
symmetry limit and thus precludes the observability of genuimportant force in hadron spectroscop$U(6) symmetry

ine tetraquarks in elastic meson scattering phase shifts for tHeaking and as the source of the attraction that lowers the
most commonly used two-quark interactions, as these ar@ass of a scalar tetraquark flavor nofgtder the tacit as-

either only colof1-3] or only flavor dependertL3]. sumption of a color independent confining potential, which,
however, makes the subsequent predictions unrealigie
2. The color exchange or FF; interaction detailed calculations of Ref4] do not agree with the sche-

matic results of Jaffe. Moreover, the calculations of the tet-
raquark energy in Ref4] were done in an unphysical color
basis without considering color mixing, and no attempt had
Vi =Fi-FVj, (55  been made to calculate the meson-meson scattering matrix.
Thus, it is not clear if the tetraquark states calculated there
leads to mixing of the two color singlets without breaking of are observable or not.
the color SU3) symmetry. In applications of this model there Proper asymptotic behavior of t[‘[éqz system imposes
were basically two schoolsia) the MIT bag model[3],  an additional “clustering” condition on its Hamiltonian that
which dealt(mostly schematicallywith consequences of the has also gone largely unnoticed.
Breit interaction, Eq.(8), between relativistic quarks con-
fined in a spherical bag; an®) the nonrelativistic constitu-
ent quark model1,2,4], which assumes a confining two-
body potential’$3™, usually the harmonic oscillator, or the ~ Technically, in this case clusterihgieans that the “two-
linear one meson” color singlet state potential must be equal to the sum
of two-body potentials in the two separate mesons in the
limit of asymptotically large cluster center-of-mag&sm.)

2 2
—peonie 5 Mo (ry—rp)%, ©) separationAR=|AR| = 1[ry+r5—r,—ry|:

Now, the so-called~;-F; color dependent two-quark in-
teraction

B. Clustering in the qzaz system

Mri—ry

“The constant termA has an interesting role: it effectively
changes the total mass of the hadfon the gravitational mass of
the constituent quark, but not its inertial mpas different color
ac ) states. For example, a negatidelowers the color singlejqg mass

— V= — = At A+ VERY (7)  and increases the color octet one; and similarlygfdistates.
12 50One can also construct three-body color exchange operators from
SU(3) invariant products of three-quark color charge matridés.
®This property also goes by the name of “color saturation,” for
30ne may say that it is a permutation symmetry changing or arhistorical reasons, named after similarities with the saturation of the
“exchange” Hamiltonian. nucleon interactions.

The “realistic” potential consists of the linear Coulomb+
constant+ Breit (see belowterms[14]
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lim ((V)11=(113154 V|115154)) be related to the energy separations between the ground and
AR—o0 excited states for mesons and baryons, under the assumption
of (only) two-body interactions. The experimental data can
= (119 Vg L1g) + (124 V2d| 124) ©  pe reproduced, however, witta continuous infinity of

three-body potentials, so this property need not be consid-

where
ered as an advantage.
V= \/2b 4+ \/3b 4 \/4b (10) As already pointed out in Ref§6,2,1] the F;-F; model
suffers from a number of weaknesses.
4 (2) It violates condition(1) in Sec. I, i.e., it predicts un-
V=3 vy, (1)  stable coloredg® and qq states (this is the “color
=) dissolution/anticonfinement” problem of Ré2]).
4 (2) It violates condition(3) in Sec. |, i.e., the colored
V3b:l 2 Vi, (12) states are not p_roperly ordered; the octets are sometimes
i<j<k lighter than the singlés).
(3) It does not take advantage of the full mathematical
VA=V 5. (13)  range of the color symmetry: S3) is a rank-2 Lie group,

which means that it has two invariants, or Casimir operators.
In order to verify clustering Eq(9) in QCD, one must know  TheF;-F; model uses only one invariant, however.
the exact forms of the two-, three-, and four-body potentials. (4) |t predicts hosts of newas ye} unobserved states, the
Th_at is impossible at this stage, either empirically or theo'tetraquarksqzaz being just one example.
retically. In Ref.[6] we made somé\n_sazefor the two- and . The standard “solution” to problent2) in the literature,
three-quark p(_)tentlals, and _qonstramed them by the requirgne assumption that only color singlet states exist, is entirely
ments of confinement, stability and proper color ordering in,y hoc and thus unsatisfactory. That can be remedied by
the qq andg® systems. That case will be discussed in Secinvoking a special initial conditiofa color-neutral Univerde
IV, but first we look at theF;- F; model, which obeys clus- and Rosina’s conjecturfl7] which ensures the stability of
tering. all the (color singlej states that can be produced or otherwise
reached from this initial state, which is valid for a certain
ll. THE F;-F; MODEL IN THE ¢°g? SYSTEM class of two-body potentialgo be specified below Problem
. ) (3) has been solved in Rd6] by adding a color-independent
Several simple models of the quark color @Udynamics  yyo-quark force and a three-quark force, i.e., by extending
have been used so far. They are all variations offiF;  the model. That procedure violates the clustering condition,
model, defined by Eq(5). Many light unstable resonant powever, as will be shown in Sec. IV, It is important to note
states and severdhlmos) stable heavy tetraquarks have pere that adding a three-quark force cannot solve all the

beeq predicted in the MIT and' the constitugnt quark VerSionBroblemS' color octeqastates and color sextet diquarks are
of this model. Very few experimental candidates for the al"‘a*nticonfiﬁed" in the E.- F- model and will remain so irre-
h e

I[(:,cge;j E%tgg%ugalgs :gxgxigize?rrﬁ: te(;(d::ﬁﬁzgg Ithheuyn?;irag)l('_gspective of any three-body force. The Rosina scenario has its
OtiOC, hoeav tetraquarks be én in thepmid 10008] at FER- own problems, too: it turns out to be in conflict with) the
y q 9 observedLS meson splitting, i.e., with the mass splitting

MILAB and will continue at CERN, but with no apparent etween the scalar, axial-vector, and tensor mesons, and with

success thus far. So it appears that this model is in conflic ) the existence 01" three-quark’ interactions '

with the paucity of observed states, i.e., we may have to loo '

for an additional selection rule or a new dynamical principle )

that forbids the tetraquark state. B. Three-body potential

Lattice calculationg8—10Q] indicate the existence of a

A. Advantages and disadvantages of thé& -F; model three-quark potential in the color singlet state. The three-

quark potential can be factored into a color péyf; and a

The two main advantages of tife-F; model are the spin-spatial parV;s:

following.

(1) It predicts stable, confined color singlgfy and g V125= C123V123- (14
states. In other words, it satisfies conditi@ in Sec. I.

(2) It leads to clustering of all hadronic states into color As the lattice calculations have been done only in(tb&l)
singletq® andqq states. In other words, it satisfies condition €olor singlet state, one cannot determine its color structure
(4) in Sec. I, or Eq(9). (except for the fact that it does not \{anlsh in the said state

TheF;-F; model is also a sentimental favorite of many a We shall use only onéof several possible; see Sec. IV below
quark modeller due to the validity of thev,,=1Vq rule.” and Ref.[6]) color factor for the three-body potential that
This “rule” cannot be directly checked, of courédgut can ~ €nsures clustering and thus can naturally be viewed as a part

of the F;-F; model. It is

— bc-apEbpEc
"Potentials cannot be directly measured here. Cra3= CA*F{FF3, (15
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TABLE I. Diagonal matrix elements of the three-body color C. C conjugation and the Lorentz scalar vs vector potentials
operators for variously coloreg® states. Of course, there are two

distinct 8 states, but they are equivalent in this regard. As both the Lorentz scalar and the Lorentz vector two-

body interactions reduce to the same form in flmvest

o state 1) 18) 110 orden nonrelativistic limit, the distinction between them may
(S F-F)) 5 1 1 seem an academic point. That is indeed so for interactions

Aba_a_bic 10 z 1 solely between quarks, or solely between antiquarks, but
<d FIF2F3) 9 36 9

when it comes to quark-antiquark interactions, the vector and
scalar interactions differ by an overall sign, i.e., if one is
whereFa=1)\2 is the quark color charge matrix, the lower attract_ive, the o_ther _is repulsive_. That is a consequence of the
index indicates the number of the quaié are the Gell- opposite C-conjugation properties of Lorentz scalars and

Mann matrices, and°¢ dab¢ are the SWB) structure con- Lorentz vectors. This leads to opposite signsqﬁ poten-
stants, and an as yet undetermined stresg@he color fac-  tials: For scalar vertices

tor Eq.(15) is an SU3) invariant, i.e., it can be expressed in —
terms of Casimir operators as follows: - —F1F,
Co={ — — (20
Fl' F21
gvopaptpetl @, Sew 20 (16)
172837 g| w1+2+3 o ™i+2+37 g whereas, for the vector ones,
where 1+ 2+ 3 stands for théelastig matrix element in the - Fl'EZ! 5
three-quark color state and the two Casimir operators of Cro= E.-E (22)
12,
SU(3) are
where the antiquark color factor is defined by
CW=F3Fa=F.F=F2 (17
— 1
C(2) = gabcpapbge, (18) Fa=— EAaT= - Eha* . (22

Note that the color factor Eq(16), depends on the cubic Therefore, of course, the difference cannot be seen in sys-
Casimir operatoiC(®). This leads to the results shown in tems made up entirely dtonstituent quarks, such as bary-
Table I. For simplicity’s sake_, and in acqqrd with some latticegns. Nor can it be seen in ﬂszystem alone, because the
results[8,10], we make the linearly additivansatzi.e., We  gjgn of this interaction can be fixed to agree with experiment.
assume that the spatial part of the three-quark potential is thejs first in the tetraquark system that the distinction between
sum of the confining parts of the two-body potentialthe 'scalar and vector interactions leads to dramatic differences.
Coulomb, the constant, and the Breit parts do not appear in e have discussed the importance of the Lorentz-scalar-
the perturbative QCD three-quark potential; see Sec.)IVE jike origin of the three-body interaction in Ré6]. There we
also showed the expliciC-conjugation properties of the

K three-body force

Vijk:E VicjonfEVicjonf_l_ Vﬁ?nf‘l' Vicl?nf' (19)
i<j E - _ dachellezJEg, (23)
P i m PR 123~ —F=c
This (“linear additivity” ) assumption is necessary only when dabCFi‘Fng,

the spatial part of the three-body potential is confining and

symmetric under permutations of the quark inditespre-  Thus we see tha€ conjugation is also important for the

over, it is an insufficient condition for clustering without ap- two-body force, and that yet another tacit assumption was

propriate spatial and color dependencies of the four-quarknade in previous tetraquark studies: that of Lorentz-vector-

potential(see Sec. IV ¢ like behavior of the two-body force und€rconjugation. We
Before we can write down the Hamiltonians for the tet- shall show that Rosina’s conjecture does not hold for Lorentz

raquark system and then solve for their spectra we must lookcalar two-body interactions, whereas it does for Lorentz
at theC-conjugation properties of these interactions. vector ones.

D. Stability and color ordering
8This assumption corresponds, perhaps a bit loosely, toAthe
Ansatzin the string picture of confinement. At present there is no, A commonly neglected aspect of the colored quark model

consensus on the issue of theversus theY Ansatzon the lattice. 1S the stability of the colored states. It was noticed in iR2f.

The problem is made more difficult by similar functional dependen-that the color nonsinglet states have lower energy than the
cies of the twoAnsdzein spatially symmetric configurations. color singlet ones, or even that the nonsinglets are unstable.
There is no phenomenological reason to hawafiningthree- At first this problem was simply ignored with words to the
body potential at this time. Permutation symmetry of the three-bodyeffect that one assumes that only color singlets may exist.
potential is even more difficult to ascertain on the basis of hadrorRosina[17] made the first step toward a rational explanation,

data. in that he showed that, for certain classes of power{law
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TABLE II. Diagonal matrix elements of the three-body color (VY11= (113154 V| L15150)
operators for variously coloregfq states. 1
— — = =(Vgzt2Vget2V2V
o?q state |32) 35) 6) |15) 3( 8 s+ 2\2Vs9
CLEE 5 b .
(d°FIFFS) 3 T5 —18 18 == 3 Vit V)
ear and squajeinteractions, all color singlets ought to be =(L1dV1g Lag) + (124 V2d Loa), @7

stable. For example, even though one color ogegtpair is . S .
unstable, two such pairs in the total color singlet state aréth'Ch proves clustering in this model. The fgcteé IS Just
stable due to their mutual interactions. If the initial state is athe value of the color factor;-F;, for (i=1j=3) and
singlet then, by exact color SB) conservation all subse- =2, =4) pairs, in their respective color singlet states. To-
quent states must also be color singlets and, according @ether with the overall minus sign in the confining potential
Rosina’s conjecture, stable. Thus, in Rosina’s scenario thEd- (6); this yields positive confining two-body potentials for
stability problem has been turned into an initial conditionthe twoqq pairs in accord with Rosina’s conjecture.

one: the basic question then becomes why was the Universe Similarly, for the “hidden-color” state

created in a color-neutral state?

We.shaII show, .howe\./er, th_at there are se\{er_al tacit as- (V)gg= (815854 V|8:58,4)
sumptions underlying this conjecture that spoil its general .
validity: (i) only two-body interactions are assume(;) _ _ _
these two-body interactions are assumed to be of the Lorentz N §(2V33+V56_ 212V39
vector type;(iii) no constituent gluons are allowed.

The color ordering and stability problems have not been
solved in the Rosina scenario, but only pushed under the rug.
The nonzero color quark states may still be lighter than the
singlets, or even unstable, although apparently inaccessible
from this Universe. There is one possible caveat to this un-
observability of colored quark states, however: if one allows

for the existence of constituent gluons, then the quarks cafhich is directly affected by the three-body force. The cou-

be in a color octet state and the ensuing instability may proveling constant is free, except for the stability requirements
fatal. Moreover, we shall show that the “saturating” three- discussed below, but could be fixed on the latiite.

1 7 1
=5 (Viz+Vos) — 6 (V1gtVa3) — 3 (V121 V34)

5
- 1—80[V123+ Vizat Vozat Vioal, (29)

body force may violate Rosina’s conjecture. Assuming stability of the two-body Hamiltoniafior a
_ o critical discussion see Sec. Il D 2nd the additiveAnsatz
1. The ¢fg® Hamiltonian Eqg. (19 for the three-body part, we may read off the neces-

Using Table Il we find the following color singlet diago- S&ry. though perhaps insufficient, conditions for stability of

nal and off-diagonal potentials in thgg? system with Lor- the two- plus three-body Hamiltonian as
entz vector two-body interactions and EG5) three-body

potential color factor: c>— § (29)
5 L
1 2
V= = 5[ Vist Viat Vos+ Vos] = 5[ Vio+ Vil
3 3 21
5 c>— E, (30
) C[Vi2at+ Vizat Vazat Vioal, (24
5 1 L3 31
c>—.
Vee= — E[Vl3+ Vigt Vot Vau] + §[Vlz+ Vaa) 10
5 Note that these three inequalities are not in conflict, as was
+ 1_8(3[1}12@L Viat Vasat Vizal, 29 the case in they® system[6]; they are all satisfied when
inequality (31) is satisfied.
1
V= = —=[Vizt Vog— Vaz— Vi4]. (26)

‘/E 9ndeed, there are a couple of recent three-body potential lattice

_ calculations[9,10] but they were done only in the color singlet
For Lorentz scalar interactions flip the sign of thg terms,  state, however. This means that the color dependence of the force is
i.e., of the[ Vi3® Viyt+ Vos+ Voy] terms. Now use Eq(l) to  undetermined as of now. This does not prevent one from assuming
find the color dependence of E(L5) as a first guess.
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2. Stability of the two-body Hamiltonian E. Discussion

Rosina[17] conjectured and showed that, under certain Thus we conclude that scalar confining potentials are not
restrictions already discussed above, for the first and secorgllowed in Rosina’s scenario in this model. Note that this is
power-law interactions, all color singlgtonfining two-  more than an academic point: the well-known problem of
body potentials ought to be positive semidefinite. We shallarge LS coupling with vector potentials demands a Lorentz
check Rosina’s conjecture explicitly for quadraimrmonic  scalar confining two-body interactid].

oscillatop potentials in both color singlets| 6,65, and Both the Lorentz vector and scalBy- F; interactions in-
|312334)). It is best to go to the center-of-mass and relativeduce a nonzero “permutation symmetry breaking parameter
(Jacobj coordinatess, o’ ,\ (Ref.[11]) defined by x" introduced by Richard 18], as a measure of the likeli-
hood of tetraquark binding. Only the Lorentz scalar, color-
Fm A+ 1 (o—0o), (32) independent interaction leads {6=0, i.e., to no tetraquark

attraction. As this specific kind of interaction is ruled out by
the previous analysis, we are led to the conclusion that

1 (some attraction in the tetraquark channel is necessarily a
r,=A+—(o+0d), (33 consequence of the;- F; two-body interaction, both vector
\/5 and scalar. This fact can also be understood in the following
way: as there is no color ordering in tike- F; model, e.g.,
1 —. . . .
fy=A— — (ot o), (34) the color octetgq is lighter than the corresponding singlet,

the secondtetraquark color singlet that consists of two such
light octets may have a mass that is comparable to or even
1 smaller than the ordinary “asymptotic state” color singlet.
—(o—0"), (35) This is an intuitive explanation of the connection between
\/E color ordering andlight) tetraquark binding.
It also ought to be clear from Eq&4),(25) that the three-
rip,= 20, (36) body color singlet potentials can be of either sign, thus also
potentially undermining Rosina’s scenario for simultaneous
r3=120'. (37)  confinement, stability, and clustering in ttieorentz vector
Fi-F; model extended to include color staturating three-
Thus we find the following(vectop potentials(remember quark forces. Thus we conclude that the class of two- and
that Rosina’s conjecture holds only for two-body potentials three-body potentials that automatically, i.e., by way of their
color SU3) structure, satisfy the clustering condition E§)

1 does not necessarily also obey the stability, color orderin
2b_ = 2 2 2 y y Y, g,
V33_3 mo’[3(0”+0'%) +2)°]=0, (39) and confinement postulates. Hence we shall look at the most

general SW§3) symmetric case.
v29=1mw2[3(o2+ o' +10N%]=0 (39
66 6 =U, IV. THE GENERAL SU (3) SYMMETRIC INTERACTION IN
THE g°q® SYSTEM
V%lé: — \/Emwz(tr- g'), (40

Hence we shall seek the most general quark dynamics that
from which we can see that both color singlet potentials ardés consistent with the basic requiremelits-4) that lead to
positive semidefinite(Rosina’s conjecture does not say any-the solution of the confinement problésn We will have to
thing about off-diagonal potentials. limit ourselves to dynamics with a definite number(obn-

Let us now turn to the Lorentz scalar potentials, which arestituen) quarks(in this case four, i.e., we do not allow for
phenomenologically preferable to the vector ones due to thpair creation or annihilation, nor for constituent gluons. We
absence ofLS coupling terms: Flipping the signs as de- consider the displacement of colored stateqeibitrarily)
scribed above we find high energies or masses as a solution to the color confine-
ment problem.

In a recent attempt to ensure correct color ordering and
confinement of quarks with SB8) symmetric color dynam-
ics, we were forced to modify the usugl-F; two-quark

ob 1, s ) interaction and introduce a new three—_quark ®6& This
Vee= — gMe [7(0”+ 0'%)+100*]=<0, (42)  new interaction ensures that the color singlets are the lowest
energy states in both thggy and theg® systems in addition to
V8= 2me?(o- d’'), (43)  confinement of these systems. In tf&? system this three-
quark force splits the energies of the two color singlet states,
which clearly shows that scalar interactions do not obey Roas it does in thg® system[7]. That is, however, not enough
sina’s conjecture. to make this dynamics viable: the dynamics has to allow for

V%J=%mw2[(o'2+ o'?)—2\?], (42)
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the observed clustering of quarks and antiquarks into mesorstrained toc;>0, usually taken as,;=1 or %, and2>c>

(and baryons at asymptotic center-of-madg.m) separa- —3 for ¢;=1. Straightforward evaluation of the two- and
tions. three-quark potential matrix elements yields

We shall start here the study of clustering in the simplest
nontrivial systemp?qg? ought to cluster into twa@ g mesons. (V)22+30= (1,1, V| 113150)

Clustering is automatic with th; - F; two-quark interaction,
but the new color-independent two-body interaction is addi-
tive, i.e., it does not saturate, thus spoiling the clustering. The
new three-quark interaction introduced in R does satu-

rate; indeed it vanishes entirely in the two-meson color sinp;g potential manifestly does not satisfy the clustering con-
glet state[7]. Thus, we must look for other ways to cancel dition, Eq. (9), except wherc,=— %, which case is explic-
the additive two-quark force in this channel. Several possi:tI luded by th . t of p tin e
bilities arise:(1) a nonsaturating three-quark force, which,I y exc uhe y he reqwr?rgenho c_ohn Inemen mdt.t?_q .
however, spoils the good confinement properties ofqhe sector. Thus we must conclude that either some modification

system, or(2) a nonsaturating four-quark force. We shall .Of the three-quark potential, or(aevv)_ four-quar_k potential
focus here on the latter is necessary. The former would spoil the confinement of the
' q° system(see Ref.[6]) so the latter is left as our only
choice.

LA
Cq §

4

4
2 V= 3(VigtVe). (46)
i<j

A. Clustering with general two- and three-body interactions

In Ref. [6] we made generalnsaze for the two- and B. The four-quark potential
three-quark potentials and constrained them by the require-
ments of stability, proper ordering, and confinement in thefo

qq andg?® systems? Thus we found

First we make a general $8) symmetricAnsatzfor the
ur-quark potential. Then we will show that several kinds of

four-quark force can lead to clusteringqﬁaz, but always at

4 the price of unconfining the asymptotic meson states.
Vij 22 Ci‘}Vij =|Cq+ §+Fi . F,-}Vij , (44) The four-quark potential can be factored into a color part
“« C1234and a spin-spatial pabt;»s,:
Vijk= >c ik Vijk = Cdach?F})FEVijk : (45) Vigai= 2 Chsdioma (47)

wherec; andc are constants. Note tha; in Eq. (44) have ~ As we are primarily interested in the scalar channel ground
the opposite sign to the ones in EdS),(6),(7). With the state, i.e., in the static case, we may neglect the spin and
assumption Eq(19) we find that theF;- F; model two-body ~momentum dependencies of the potential. We shall take only
interaction leads to the same form of the effective potentiatolor factorsC 7,5, that are symmetric under the interchange
in the g® system as the three-body force with the analogousf any pair of indices < j. Then the corresponding spin-
color factor.(This makes an unambiguous identification of spatial potentials);»34 must also be symmetric under the
the A three-quark force on the lattice particularly difficult. same interchange. Then the following four-body S(8)
Similar statements hold for the color-independent two- andsymmetric color factors can be written down:

three-body potentials. For this reason there is no need to

introduce such two- and three-body potentials separately, but 4
only one of a kind, i.e., only a two-body or only a three-body a42 Fi-Fj,
potential. 1<

We have shown in Ref6] that a color-independent two- 4
body potential is necessary for the absolute stabilization of by 2 dabCFf‘FijC.
both qq and g3 spectra. For the above discussed reasons Ciosi= '4<J =« (48)
we shall not introduce a separate color-independent and 2 EE(FL.F
Zik;jFer three-body potentials. If we further assume the C4i<j<k<| (Fi-F)(FicFy),
harmonic oscillator potenti@nsatzfor V; , Eq.(6), but with 4
opposite overall signthe coupling constants become con- d, 2 dabeiaF]bdcdfFEFld,

i<j<k<l

e confine ourselves to statics, so we may neglect momentum-
and spin-dependent potentials. This does not represent a loss of?This choice is sufficient, but not strictly necessary: only the
generality as confinement is believed to be spin and momenturnomplete potentiaV,,3, has to be symmetric under such particle
independent. The strong hyperfi(@reit) interaction cannot change permutations. Thus, other types of “mixed symmetry” color factors
our conclusions because) it is of short range, so it automatically and spin-spatial potentials are mathematically allowed. However,
clusters and does not confine; afiwl it is of the F;-F; type which  for spin- and momentum-independent potentials such mixed sym-
(also automatically clusters. metry spin-spatial potentials vanish identically.
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where Fa:%)\a is the quark color charge, the lower index  TABLE IIl. Diagonal matrix elements of the four-body color
indicates the number of the quark? are the Gell-Mann operators for the two distinct color singlgfq? states.

matrices,d®° are the symmetric S@@) structure constants
defined by the anticommutators of the Gell-Mann matricesg?q? state  =i<;Fi-F; St oGk ik (Fi F(Fe )

and summation over repeated @Yindices is understood.  [1,51,,) -2 0 2
Only three of the four color factors in E18) are linearly 18158,4) -8 —10 3

independent, however, as the following identity holds:

4 1 A whereas the second one can be evaluated using Ejsand
> dabeandcdfF Fi== > (F-F)(Fe-F). (25) in Ref.[6], and the third on€ is
i<j<k<l 3I<J<k | I J
(49 4

4
2 Gu= 2 (FiF)(FcF)

< Ehe
For this reason we may sdf=0 without loss of generality. e
The remaining three color operators can be expressed in 1/ 2 5 (1)
terms of the two Casimir operators as follows: ) Ciiorasa™ 3 +54(Clv2a44
4
1 8 —cl,—c )+— E G
2 Fi- FJ 11+)2+3+4 §, (50) 1r2 3+4 Ik
i<j
4
1 2
4 5 —5; FirFi= 3, (55)

i<12<k dach?FJbFE:g C12+)2+3+4_§C(11+)2+3+4
where 142+ 3+4 stands for thetotal) color of the four-

(51) quark state. This leads to the results shown in Table I, using
which we find

—+

o &

4

2_ 19 (1) (V)11= (113154 V| 113159
2 (FiF)(FeF)= (C1+2+3+4) ~52Ci72+344

i<j<k<l 4\ 2 4
=|C+ 5 i — = (Vist
10 1 1t 3 ;] Vi 3( 13+ V24)
+5 9 4C1+2+3+4l (52) 8 20
+| — §a4+ §C4) V1234 (56)
where 142+ 3+4 stands for thetotal) color of the four-

guark state and the two Casimir operators as defined by Egs.
(17) and (18). As discussed in Sec. IVA, one may d&t  Making the Ansatzvlzgﬂ,—EKJV,J , we find the saturation
=0 with impunity, because it essentially duplicates thecondition
three-body force contribution.
4 8 20
+§—§a4+ §C4:O, (57)
C. Clustering with the four-quark potential

Taking into account th€ conjugation, we must use Egs. which is the principal result of this paper. Note, however,

(23),(23) in the definition of the color factor that in that case we are left with
4 V)i11= 4 Vis+V
2 Cpe=d(Fi+F) R — P+ F) FoFS. V=50t vad
i<j<k
(53

4
- 3_01[< 114 Vi1d L1 + (124 V2d 124)],  (58)

Once again, we can express the three independei(8)SU
invariant color factors in Eq48) in terms of the two Ca- the right hand side of which has the physically wrong nega-

simir operators. The first factor remains unchanged: tive sign, i.e., the two independent states are anticonfined.

- § 3There is no difference between the Lorentz scalar and vector
Fi-Fj= Cl+2+3+4 : (54 ~ i
1< 2 3 couplings here due to the even number of antiquarks.
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D. Consequences independent terms appear: after renormalization they lead to
a(Lorentz scalarr —2 potential. That is all we need to know

(1) Some four-quark interaction is necessary to achievéor. clustering purposes, as th.'s term V?‘”'.Shes much more
quickly than the Coulomb one in the—« limit. Thus, clus-

Causeci0. Note that one may nave exac: custer separaid S maintained in one-loop POCD.
1= Y P As already announced, the Born approximation gluon-

tlpn of the Hamiltonian, not only asymptotlcally, but at. all exchange graphs lead to tmomentum-dependettibree-
distances. That, however, would also imply absence of 'nterbody potential

action between the twqq clusters(mesong, except by way

of quark exchange. One may, however, modify g, K’ Vi Vg

==,V Ansatzat short distances to introduce some Vik=ad> L (59
meson-meson interaction without spoiling clustering. R

(2) Of all the g°g” states the “two-meson” color singlet whereas is the QCD fine coupling constattwith the color
|113154) has the lowest energy. Unfortunately this state is als@actor Eq.(15), which automatically leads to clustering, and
deconfineddue to the minus sign in Eq58)]: each of the v, =p,/m; is theith quark’s velocity; as well as to the three-
two independengg pairs is unbound in an “upside-down” body force
confining(concaveé two-body potential. This problem cannot
be avoided: if we change the overall sign of the color- 2 Zk' ViV
dependent two-body interaction, the color oaietstate be- Vuk=§as_§l Fi-F Miror.’ (60)
comes deconfined. Thus we have found a paradox: if both =) Tk

color singlet and octeq pairs are to be confined by two- e also leads to clustering in tigdg? system, but not due
body forces, then two color singlefq pairs are deconfined to the SU3) algebraic properties of its color factor. Rather,
due to the influence of the fou_r-quark force. If we eliminatethis term would cluster due to thelouble 1/r asymptotic
the four-quark force, then thg?q? system, though confined, behavior(vanishing of the spatial part of the potential, even
cannotcluster into two mesons. These constraints are only & it were not momentum dependent. Such strergehavior
consequence of the assumed(S)Usymmetry. of the potential is potentially dangerous, as it may lead

(3) Clearly, the clustering condition E@56) is met by a  to an instability of the Schidinger equation, or “fall to the
continuous infinity ofa,,c, coefficients/four-body poten- center” classical-mechanically. Fortunately, this potential
tials. In order to narrow down thigheoretical uncertainty  vanishes altogether in static situations due to its velocity de-
one may play the same kind of game as with the three-quargendence.
potential: constrain the free parameters by demanding proper Because of the ~2 behavior of the color-independent
ordering of colored states. That procedure, howesannot two-body potential and the momentum dependence of the
solve the problem in point 2, as that depends only on théhree-body force, the PQCD two- and three-quark potentials
two-quark interaction. lead to clusterindin the one-loop approximatignHere we

(4) Even if one had clustering in the?q? system, that C€an easily see that a straightforward extension to “confin-
ing” (infinitely rising) potentials is not possible, as the
asymptotic behavior of the spatial part of the potential plays
ﬁ'adcrucial role in clustering.

Classically, the string model may solve our problems be-
ause the effective range of its interactigpotential”) ex-
ends only up to the string-breaking point, i.e(shor finite
distance. Thus, thAR=|AR|=3|r+r3—r,—r,/—c limit
in the clustering condition Eq(9) becomes trivial in the
string model. A similar spatial “cutoff” principle, however,
may be adopted in potential models, as well.

The common thread to both the potential and the string

Note the consequences of H§7).

would not necessarily ensure thég— (q°)+(qq) cluster-
ing, nor that ofq®— (g% +(g®). Thus we may have to con-
sider the latter two cases separately and introduce a five- al
a six-quark interaction to ensure clustering.

Our results are general, as they depend only on the a
sumption of exact color S@3) symmetry and that quarks
transform as the fundamental irreducible representat®)n (
of SU(3). Thus, our results must hold in all $8 symmetric
theories,inter alia also in QCD, no matter what the spatial
parts of the potentials may béThe assumption of an addi-

tive spatial four-quark potential is necessary to achieve clus-. . )
tering. A similar Ansatzfor the three-body potential is suffi- Sklnd_s of models is the S@) color symmetry: the quark po-
tentials depend on functions of &) generators, whereas

cient, though perhaps not necessafjhe conflict between : . ) .
clustering and confinement/stability found here was not ex:[he string dynamics depend on the “Chan-Paton” factors

pected, at least to the present author's knowledge. For thE.Q]. Thus, the energetics of multiquark states in both kinds

reason we wish to know how things stand in perturbativeOf models depend crucially on the color &) symmetry

QCD (PQCD), in particular, if there is a similar conflict be- factors. Of course, the stability and color ordering problems
tween cluster,ing and stabillity/confinement may have been exacerbated in this way, for it is not physi-

cally clear what negative string tension would mean in the

E. Comparison with perturbative QCD

Of course, the tree-level PQCD two-body potential is just “Note the violation of the linearly additivensatzEq. (19) and
the Coulombic one. But, at the one-loop level new color-the absence of the static three-body “Coulomb” potential.
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TABLE IV. Table of validity of the four basic requirement$axioms”) in models with various color-
dependent forces. The asterisk on tkemark and the OK in parentheses in the first column, second row,
indicate (conditiona) stability of color singlets with Lorentwectorinteractions in ther;- F; model due to
Rosina’s theorentsee text

color dependence StabilitylY Color ordering ) Confinement 8) Clustering @)
constant OK X OK X
Fi-F X* (OK) X OK OK
Fi-F;+const=two-body OK OK OK X
Fi-F;+const two-+three-body OK OK OK X
Fi-F;+const two-t+three-+four-body X OK OK OK
PQCD OK OK X OK

case when a Chan-Paton factor is negative. Another acconmterminably rising confining potentials, as one can simulta-
panying problem is that one must have a fully Lorentz covaneously satisfy the remaining three conditions with
riant string theory to account for string breaking, i.e., for Coulomb-like few-body potentialsee PQCR

meson production. Note further that this must be a consistent We may view this paper as an attempt at establishing a
quantumstring theory, because the classical string breaks di@tional color quarldynamics by which we mean construct-
the string breaking length with certitude, i.e., with unit prob-ing a(classical mechanical model based either on potentials
ability. That implies that no radially excited state with radius (Which case includes the cavity/MIT bag modetsr on elas-
larger than the string breaking lengtbr energy larger than tic string (later interpreted as “flux tubg” dy_nam|cs Wlth_
the two-meson thresholdtan exist in classical string theory, €Xact color SWB) symmetry. We say classical mechanics
This conflict with experiment can be removed only by afNeré: though, of course, we wish to do quantum mechanics,
consistent(unitary) relativistic quantum string theory, or because of the well known difficulties in quantizing string

guantum mechanics with confining potentials, for examplemOd.eIS; potential models should present few or no pr_oblems
neither of which exists at the moment ' in this regard. Unfortunately, we saw that even #iatics

present some serious difficulties. Extension to relativistic dy-
namics appears to be necessary.
V. CONCLUSIONS Clearly, new ideas and better input from lattice QCD are

We have considered the stability, confinement, clustering'?ee(_jeo!, here. In particular, a conclusive s_tudy of Casimir
caling” in the three-body sector on the lattice would clarify

and SU3) color state ordering in the simplest and extended® : -
color exchangeR; - F;) model, in PQCD and in the general the color structure of the three-quark interaction in QCD.
color SU3) symmetric case. Most of the results in Sec. lll
and all the results in Sec. IV are new, so far as we know. We
shall not repeat here thgartia) summaries given in Secs. | wish to thank Damijan Janc and Mitja Rosina for dis-
[I1E and IV D, but briefly conclude that we have invariably cussions and comments on an early draft of this paper, as
found that at least one of these four simplest requirements iwell as for their hospitality at the Bled Mini-workshop and
not satisfied by any confining color $8) symmetric Hamil-  the J. Stefan Institute, Ljubljana. Last but not least | wish to
tonian with a fixed number of quarksee Table IV. The thank Dr. H. Matsufuru for illuminating conversations and
deeper source of the problem appears to be the assumption@rrespondence about the three-quark force on the lattice.
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