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Color SU„3… symmetry, confinement, stability, and clustering in theq2q̄2 system

V. Dmitrašinović
Vinča Institute of Nuclear Sciences, P. O. Box 522, 11001 Beograd, Yugoslavia

~Received 30 December 2002; published 4 June 2003!

We examine the assumptions underlying the~model-dependent! predictions ofq2q̄2 or tetraquarkspectra.
The models implemented so far have used only two-body interactions proportional to the color charges; that
assumption is the source of many serious shortcomings. We extend the analysis to three- and four-body
interactions based on color SU~3! algebra, while including all relevant information one has about three-quark
forces from lattice QCD. Thus we find that~quasi!stable tetraquarks are not necessarily a consequence of color
SU~3! dynamics, let alone of QCD. We make this statement and the conditions under which it holds more
precise in the text. In the process we are led to a set of sufficient conditions for a mathematical description of

the hadronic world as we know it, i.e., of baryons andqq̄ mesons, without going into the question of tetraquark
existence. These conditions are as follows.~1! Stability: All the ~colorless and colored! states’ energies must be

bounded from below.~2! Confinement: A color singletqq̄ potential energy must~infinitely! rise with the
separation distance.~3! Color ordering: Colored states must be heavier than color-neutral ones.~4! Clustering:
Any multiquark color-singlet state Hamiltonian must turn into a sum of three-quark~baryons! and quark-
antiquark ~mesons! cluster Hamiltonians, in the limit of asymptotically large separations. We discuss the
consistency of these four requirements with color SU~3! symmetry and with each other.

DOI: 10.1103/PhysRevD.67.114007 PACS number~s!: 12.39.Jh, 11.30.Hv, 12.38.Aw
n

-

tw

le

nd

ob
n

t
th
lu
D

e

ai
er
p

u
i

lo

le
ice
e

di-

he

n

e-
ot
no

her
yet

e

ure
his
ne

at
I. INTRODUCTION

In few-quark systems with the number of constitue

quarks (nq) 1 the number of constituent antiquarks (n̄q)
larger than 3 (N5nq1n̄q.3) there are additional color sin
glets that have not been experimentally observed~as yet!.
The simplest such system is made of two quarks and
antiquarks: the tetraquark (q2q̄2). It can be in either of the
two linearly independent, mutually orthogonal color sing
states: one that is a mere product of two ordinary mesonqq̄
color singlets, which we term the ‘‘two-meson state,’’ a
another one that is a singlet combination of twoqq̄ color
octets, which we call the ‘‘true tetraquark state.’’

The color SU~3! Yang-Mills ~‘‘gauge’’! field dynamics,
also known as quantum chromodynamics~QCD!, has been
proposed as the solution to all of the quark dynamical pr
lems. The QCD equations of motion are nonlinear a
strongly coupled, so no exact solution has been found
date. In the following we shall use only QCD’s exact~‘‘un-
broken’’! color SU~3! symmetry, which is beyond doubt, bu
not its equations of motion, to constrain and/or predict
properties of the mathematically allowed dynamical so
tions. Thus all of our conclusions must also hold in QC
though we shall not attempt to derive them explictly.

A number of~model-dependent! calculations, Refs.@1–4#,
have predicted numerous tetraquark resonances and ev
few ~quasi!stable tetraquarks, and these states have been
perimentally sought for well over 20 years, but to no av
@5#. So it appears to be high time that one critically consid
the assumptions under which tetraquark states exist. This
per is a continuation of the research started in Ref.@6# and
extended to six-quark systems by Pepin and Stancu@7#.

In this paper we examine the dynamical assumptions
derlying various model calculations of tetraquark spectra
the literature and compare them with purely algebraic co
0556-2821/2003/67~11!/114007~12!/$20.00 67 1140
t

o

t

-
d
to

e
-
,

n a
ex-
l
s
a-

n-
n
r

SU~3! predictions or arguments, while including what litt
information one has about three-quark forces from latt
QCD @8–10#. Thus we find that~quasi!stable tetraquarks ar
not necessarily a consequence of color SU~3! dynamics, let
alone of QCD. We shall make this statement and the con
tions under which it holds, more precise in the text.

In the process we found certain generic difficulties in t
~realistic! models based on color SU~3!, and in QCD in par-
ticular, in meeting the four basic conditions ofrational color

quark dynamics. ~2! Confinement: A color singletqq̄ poten-
tial energy that~linearly! rises at least up to the two-meso
production threshold energy and probably also higher~to ex-
plain the Regge recurrences!.1 ~3! Color ordering: Colored
states must be heavier than color-neutral ones.~4!
~Asymptotic! clustering: Any multiquark~more than three-
quark! color singlet Hamiltonian must reduce to a sum ofq3

~baryon! and qq̄ ~meson! color singlet Hamiltonians in the
limit of large interquark separations. This property som
times goes by the name of ‘‘color saturation’’ and should n
be confused with the stronger demand that there be
‘‘strong van der Waals forces.’’ We add to these yet anot
demand that is so natural as to often be forgotten, and
one that is not always met by color SU~3! models:~1! Sta-
bility: All the ~colorless and colored! states’ energies must b
bounded from below.

We show that no color SU~3! symmetric interaction can
satisfy these four requirements in theq2q̄2 system. First we

1There is a school of thought that puts all the blame for the fail
of quark potential models on the very concept of potential. T
school would have us believe that all would be well if only o
used string dynamics~in spite of the great difficulties of four-
dimensional string theories!. There is no evidence supporting th
opinion, however.
©2003 The American Physical Society07-1
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show, under the assumption of color ordered stable two-
three-quark interactions, that at least some four-quark in
action is necessary to ensure clustering of theq2q̄2 system
into two qq̄ mesons. The resulting Hamiltonian leads
asymptotic anticonfinementof the two color singletqq̄
states, however. And vice versa: if we adjust the free c
pling parameters so as to avoid the anticonfinement prob
there can be no clustering. We compare this situation w
the one in perturbative and lattice QCD and theFi•F j
model, and find that the source of the problems lies eit
with the asymptotically rising confining potentials or wi
the color ordering.

We also find a correlation between colored state~dis!or-
dering and tetraquark binding: The lower theqq̄ octet’s en-
ergy is compared to that of the singlet, the more likely is
tetraquark to bind, at least in the~vector interaction! Fi•F j
model, whose stability is assured by Rosina’s conjecture.
also show how the strength of the three-body force can
adjusted so as to bind or unbind the tetraquark, with
changing the baryon energies.

This paper falls into five sections. After the Introductio
in Sec. II we give a reminder of the basic facts regarding
q2q̄2 system’s color SU~3! symmetry and clustering. Then i
Sec. III we examine the predictions of the~standard! Fi•F j
model of quark interactions for tetraquarks. In Sec. IV,
look at the general two-, three-, and four-quark forces
lowed by the color SU~3! symmetry. Then we show that a
least some four-quark interactions are necessary to en
clustering of theq2q̄2 system into twoqq̄ mesons, though
that also leads to a breakdown of confinement, and v
versa. There we compare our results with those of pertu
tive QCD. Finally, in Sec. V we draw our conclusions.

II. BASIC FACTS ABOUT THE q2q̄2 SYSTEM

A. Color singlet states and their mixing

In the q2q̄2 system, there are two linearly independe
and mutually orthogonal color singlets. One can design
them, for example, according to their symmetry propert
under interchange of the two quark or antiquark indices:
state (u6126̄34&) is symmetric, another (u3̄12334&) antisymmet-
ric; see, e.g., Ref.@11#. The asymptotic ‘‘two-meson’’ color
singlet state is a linear combination of the two:

u113124&5
1

A3
u3̄12334&1A2

3
u6126̄34&. ~1!

The indices 1,2 and 3,4 denote all other quantum numb
such as flavor and spin, of the two quarks and antiqua
respectively. Thus it ought to be clear that there is noth
special about the stateu113124&, one can equally well use th
state

u114123&52
1

A3
u3̄12334&1A2

3
u6126̄34& ~2!
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in all subsequent developments. Clearly there is another
early independent color singlet state, the

u813824&52A2

3
u3̄12334&1

1

A3
u6126̄34&, ~3!

that is orthogonal to the first one, and similarly in the~14!
basis

u814823&5A2

3
u3̄12334&1

1

A3
u6126̄34&. ~4!

The Pauli principle applies only to identical particles, i.e.,
antisymmetrizes either only quark or only antiquark pa
~‘‘diquarks’’ and ‘‘antidiquarks’’!, but not to theqq̄ pairs. For
this reason, the unphysical basis spanned byu3̄12334& and
u6126̄34& is better suited to the application of the Pauli pri
ciple than the~‘‘physical’’ ! asymptotic basis. The linear in
dependence and orthogonality of the two color singlet rep
sentations, however, provide an additional permutat
symmetry constraint, even on those pairs~such asqq̄) to
which the Pauli principle does not apply.

No signature other than the flavor structure is available
differentiate between ‘‘genuine tetraquark,’’ or hidden-col
states, Eq.~3! and ‘‘accidental’’ resonances in ordinary ‘‘two
meson’’ states, Eq.~1!. The mixing of these two classes o
states, if it exists, affects the observables’ expectation val
If the Hamiltonian does not connect~mix! these two flavor
subspaces of Hilbert space, then the ‘‘genuine tetraqua
class of states remains unobservable in experiments base
‘‘ordinary meson’’ states, such as elastic meson-meson s
tering. Such a ‘‘decoupling’’ of the hidden color state corr
sponds precisely to the~phenomenological! Freund-Waltz-
Rosner~duality! ‘‘rule’’ @12#. Therefore we must carefully
reconsider mixing of the two color singlets.

1. Color, spin, and flavor mixing

First, we remember that there is one mundane sourc
mixing: symmetry breaking. The color and angular mome
tum are good symmetries, of course, but flavor is not. Wh
a symmetry is broken, say SU(Nf), the physical states ar
generally mixtures of two or more submultiplets of the br
ken symmetry multiplets that are eigenstates of the g
residual symmetry, e.g., SU(Nf21). Thus, there will surely
be some mixing among the flavor multiplets belonging
either of the two color singlets, but not among the flav
states belonging to different color singlets, as the quark m
Hamiltonian that breaks the flavor symmetry in QCD do
not depend on color.2 This means that the physical~mixed!
states corresponding to two color singlets still belong to d
ferent permutation symmetry classes even after flavor s
metry breaking induced mixing.

2Of course, flavor symmetry might also be broken by second
effects such as the strong hyperfine interaction, which does dep
on color.
7-2
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The number of states and their quantum numbers do
change under the mixing, but their energies~masses! gener-
ally do. Moreover, the mixed states are orthogonal and m
be subject to special selection rules. Quantum mechan
mixing of the two color singlet states is allowed if~a! the
color-dependent interaction Hamiltonian~the potentialV)
connects the two states

^813824uVu113124&C5” 0,

and one of the following conditions holds: either~b! all other
quantum numbers~flavor, spin! of the two states are identi
cal, or ~c! the mixing potentialV5VCVFVS also depends on
flavor and/or spin, such that the corresponding flavor ma
element does not vanish either. The Pauli principle for qua
or antiquarks and the orthogonality of the two overall co
singlet wave functions demand that the flavor and/or s
wave functions of multiplets belonging to two color single
be orthogonal to each other, as well. This means that
mixing Hamiltonian has to depend on both the color and
flavor ~or spin! in such a way that it connects different pe
mutation symmetry wave functions,3 and yet preserves th
color ~and preferably also flavor! symmetry, if it is to yield
mixing. That is a powerful constraint that prevents the tw
color-singlet representation from mixing in the exact flav
symmetry limit and thus precludes the observability of ge
ine tetraquarks in elastic meson scattering phase shifts fo
most commonly used two-quark interactions, as these
either only color@1–3# or only flavor dependent@13#.

2. The color exchange or Fi "F j interaction

Now, the so-calledFi•F j color dependent two-quark in
teraction

Vi j 5Fi•F jVi j , ~5!

leads to mixing of the two color singlets without breaking
the color SU~3! symmetry. In applications of this model the
were basically two schools:~a! the MIT bag model@3#,
which dealt~mostly schematically! with consequences of th
Breit interaction, Eq.~8!, between relativistic quarks con
fined in a spherical bag; and~b! the nonrelativistic constitu-
ent quark model@1,2,4#, which assumes a confining two
body potentialV 12

conf, usually the harmonic oscillator, or th
linear one

2V 12
conf5H 1

2
mv2~r12r2!2,

lur12r2u
~6!

The ‘‘realistic’’ potential consists of the linear1 Coulomb1
constant1 Breit ~see below! terms@14#

2V 12
real52

aC

r 12
1lr 121L1V 12

Breit , ~7!

3One may say that it is a permutation symmetry changing or
‘‘exchange’’ Hamiltonian.
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whereaC is the strong fine structure constant. Note the ov
all minus sign that cancels the negative sign of the co
factor in the color singletqq̄, and the3̄ diquark state.4

The color singlet mixing is due to the fact that the col
factor Fi•F j is a part of thei↔ j two-quark colorexchange
operatorPi j

C .5 That does not mean that color SU~3! symme-
try is broken, however.

The color exchange nature of the confining interactio
however, is not enough: one must have simultaneous c
and flavor or spin dependence. Most of the two-quark pot
tials are assumed to be flavor and spin independent.
exception is the ‘‘strong hyperfine’’~Breit! interaction
~which does not confine, however!

V 12
Breit52

k

m1m2
~s1•s2!d~r12r2!, ~8!

which has explicit color and spin~heresi are the Pauli ma-
trices andk is a constant proportional toaC) exchange de-
pendence and implicit~by way of quark masses! flavor de-
pendence. The Breit interaction is a standard part of
~higher order inv/c) nonrelativistic reduction of the Lorent
vector two-body potential, i.e., of the one-gluon exchan
potential. Jaffe@3# has emphasized the Breit interaction as
important force in hadron spectroscopy@SU~6! symmetry
breaking# and as the source of the attraction that lowers
mass of a scalar tetraquark flavor nonet~under the tacit as-
sumption of a color independent confining potential, whic
however, makes the subsequent predictions unrealistic!. The
detailed calculations of Ref.@4# do not agree with the sche
matic results of Jaffe. Moreover, the calculations of the t
raquark energy in Ref.@4# were done in an unphysical colo
basis without considering color mixing, and no attempt h
been made to calculate the meson-meson scattering ma
Thus, it is not clear if the tetraquark states calculated th
are observable or not.

Proper asymptotic behavior of theq2q̄2 system imposes
an additional ‘‘clustering’’ condition on its Hamiltonian tha
has also gone largely unnoticed.

B. Clustering in the q2q̄2 system

Technically, in this case clustering6 means that the ‘‘two-
meson’’ color singlet state potential must be equal to the s
of two-body potentials in the two separate mesons in
limit of asymptotically large cluster center-of-mass~c.m.!
separationsDR5uDRu5 1

2 ur11r32r22r4u:

n

4The constant termL has an interesting role: it effectively
changes the total mass of the hadron~or the gravitational mass o
the constituent quark, but not its inertial mass! in different color

states. For example, a negativeL lowers the color singletqq̄ mass
and increases the color octet one; and similarly forq3 states.

5One can also construct three-body color exchange operators
SU~3! invariant products of three-quark color charge matrices@15#.

6This property also goes by the name of ‘‘color saturation,’’ f
historical reasons, named after similarities with the saturation of
nucleon interactions.
7-3
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lim
DR→`

~^V&11[^113124uVu113124&!

5^113uV13u113&1^124uV24u124& ~9!

where

V5V2b1V3b1V4b ~10!

V2b5(
i , j

4

Vi j , ~11!

V3b5 (
i , j ,k

4

Vi jk , ~12!

V4b5V1234. ~13!

In order to verify clustering Eq.~9! in QCD, one must know
the exact forms of the two-, three-, and four-body potentia
That is impossible at this stage, either empirically or the
retically. In Ref.@6# we made someAnsätzefor the two- and
three-quark potentials, and constrained them by the requ
ments of confinement, stability and proper color ordering
the qq̄ and q3 systems. That case will be discussed in S
IV, but first we look at theFi•F j model, which obeys clus
tering.

III. THE F i "F j MODEL IN THE q2q̄2 SYSTEM

Several simple models of the quark color SU~3! dynamics
have been used so far. They are all variations of theFi•F j
model, defined by Eq.~5!. Many light unstable resonan
states and several~almost! stable heavy tetraquarks hav
been predicted in the MIT and the constituent quark versi
of this model. Very few experimental candidates for the
leged tetraquarks have appeared to date, and they are all
@ f 0 ,a0(980)# and nonexotic. The experimental hunt for e
otic heavy tetraquarks began in the mid 1990s@16# at FER-
MILAB and will continue at CERN, but with no apparen
success thus far. So it appears that this model is in con
with the paucity of observed states, i.e., we may have to l
for an additional selection rule or a new dynamical princip
that forbids the tetraquark state.

A. Advantages and disadvantages of theF i "F j model

The two main advantages of theFi•F j model are the
following.

~1! It predicts stable, confined color singletqq̄ and q3

states. In other words, it satisfies condition~2! in Sec. I.
~2! It leads to clustering of all hadronic states into co

singletq3 andqq̄ states. In other words, it satisfies conditio
~4! in Sec. I, or Eq.~9!.

TheFi•F j model is also a sentimental favorite of many
quark modeller due to the validity of the ‘‘Vqq5 1

2 Vqq̄ rule.’’
This ‘‘rule’’ cannot be directly checked, of course,7 but can

7Potentials cannot be directly measured here.
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be related to the energy separations between the ground
excited states for mesons and baryons, under the assum
of ~only! two-body interactions. The experimental data c
be reproduced, however, with~a continuous infinity! of
three-body potentials, so this property need not be con
ered as an advantage.

As already pointed out in Refs.@6,2,1# the Fi•F j model
suffers from a number of weaknesses.

~1! It violates condition~1! in Sec. I, i.e., it predicts un-
stable colored q2 and qq̄ states ~this is the ‘‘color
dissolution/anticonfinement’’ problem of Ref.@2#!.

~2! It violates condition~3! in Sec. I, i.e., the colored
states are not properly ordered; the octets are somet
lighter than the singlet~s!.

~3! It does not take advantage of the full mathemati
range of the color symmetry: SUC(3) is a rank-2 Lie group,
which means that it has two invariants, or Casimir operato
The Fi•F j model uses only one invariant, however.

~4! It predicts hosts of new~as yet! unobserved states, th
tetraquarksq2q̄2 being just one example.

The standard ‘‘solution’’ to problem~2! in the literature,
the assumption that only color singlet states exist, is entir
ad hoc and thus unsatisfactory. That can be remedied
invoking a special initial condition~a color-neutral Universe!
and Rosina’s conjecture@17# which ensures the stability o
all the~color singlet! states that can be produced or otherw
reached from this initial state, which is valid for a certa
class of two-body potentials~to be specified below!. Problem
~3! has been solved in Ref.@6# by adding a color-independen
two-quark force and a three-quark force, i.e., by extend
the model. That procedure violates the clustering conditi
however, as will be shown in Sec. IV. It is important to no
here that adding a three-quark force cannot solve all
problems: color octetqq̄ states and color sextet diquarks a
‘‘anticonfined’’ in the Fi•F j model and will remain so irre-
spective of any three-body force. The Rosina scenario ha
own problems, too: it turns out to be in conflict with~1! the
observedLS meson splitting, i.e., with the mass splittin
between the scalar, axial-vector, and tensor mesons, and
~2! the existence of three-quark interactions.

B. Three-body potential

Lattice calculations@8–10# indicate the existence of a
three-quark potential in the color singlet state. The thr
quark potential can be factored into a color partC123 and a
spin-spatial partV123:

V1235C123V123. ~14!

As the lattice calculations have been done only in the~total!
color singlet state, one cannot determine its color struct
~except for the fact that it does not vanish in the said sta!.
We shall use only one~of several possible; see Sec. IV belo
and Ref.@6#! color factor for the three-body potential tha
ensures clustering and thus can naturally be viewed as a
of the Fi•F j model. It is

C1235cdabcF1
aF2

bF3
c , ~15!
7-4
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whereFa5 1
2 la is the quark color charge matrix, the lowe

index indicates the number of the quark,la are the Gell-
Mann matrices, andf abc,dabc are the SU~3! structure con-
stants, and an as yet undetermined strengthc. The color fac-
tor Eq.~15! is an SU~3! invariant, i.e., it can be expressed
terms of Casimir operators as follows:

dabcF1
aF2

bF3
c5

1

6 FC11213
(2) 2

5

2
C11213

(1) 1
20

3 G , ~16!

where 11213 stands for the~elastic! matrix element in the
three-quark color state and the two Casimir operators
SU~3! are

C(1)5FaFa[F•F[F2, ~17!

C(2)5dabcFaFbFc. ~18!

Note that the color factor Eq.~16!, depends on the cubi
Casimir operatorC(2). This leads to the results shown
Table I. For simplicity’s sake, and in accord with some latt
results@8,10#, we make the linearly additiveAnsatz, i.e., we
assume that the spatial part of the three-quark potential is
sum of the confining parts of the two-body potentials8 ~the
Coulomb, the constant, and the Breit parts do not appea
the perturbative QCD three-quark potential; see Sec. IV!:

Vi jk5(
i , j

k8

V i j
conf[V i j

conf1V jk
conf1V ik

conf. ~19!

This ~‘‘linear additivity’’ ! assumption is necessary only whe
the spatial part of the three-body potential is confining a
symmetric under permutations of the quark indices;9 more-
over, it is an insufficient condition for clustering without a
propriate spatial and color dependencies of the four-qu
potential~see Sec. IV C!.

Before we can write down the Hamiltonians for the te
raquark system and then solve for their spectra we must
at theC-conjugation properties of these interactions.

8This assumption corresponds, perhaps a bit loosely, to thD
Ansatzin the string picture of confinement. At present there is
consensus on the issue of theD versus theY Ansatzon the lattice.
The problem is made more difficult by similar functional depend
cies of the twoAnsätze in spatially symmetric configurations.

9There is no phenomenological reason to have aconfiningthree-
body potential at this time. Permutation symmetry of the three-b
potential is even more difficult to ascertain on the basis of had
data.

TABLE I. Diagonal matrix elements of the three-body col
operators for variously coloredq3 states. Of course, there are tw
distinct 8 states, but they are equivalent in this regard.

q3 state u1& u8& u10&
^( i , j

3 Fi•F j& 22 2
1
2 1

^dabcF1
aF2

bF3
c& 10

9 2
5

36
1
9
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C. C conjugation and the Lorentz scalar vs vector potentials

As both the Lorentz scalar and the Lorentz vector tw
body interactions reduce to the same form in the~lowest
order! nonrelativistic limit, the distinction between them ma
seem an academic point. That is indeed so for interacti
solely between quarks, or solely between antiquarks,
when it comes to quark-antiquark interactions, the vector
scalar interactions differ by an overall sign, i.e., if one
attractive, the other is repulsive. That is a consequence o
opposite C-conjugation properties of Lorentz scalars a
Lorentz vectors. This leads to opposite signs inqq̄ poten-
tials: For scalar vertices

C̄125H 2F1•F̄2 ,

F̄1•F̄2 ,
~20!

whereas, for the vector ones,

C̄125H F1•F̄2 ,

F̄1•F̄2 ,
~21!

where the antiquark color factor is defined by

F̄a52
1

2
laT52

1

2
la* . ~22!

Therefore, of course, the difference cannot be seen in
tems made up entirely of~constituent! quarks, such as bary
ons. Nor can it be seen in theqq̄ system alone, because th
sign of this interaction can be fixed to agree with experime
It is first in the tetraquark system that the distinction betwe
scalar and vector interactions leads to dramatic differenc

We have discussed the importance of the Lorentz-sca
like origin of the three-body interaction in Ref.@6#. There we
also showed the explicitC-conjugation properties of the
three-body force

C̄1235H 2dabcF1
aF2

bF̄3
c ,

dabcF1
aF̄2

bF̄3
c ,

~23!

Thus we see thatC conjugation is also important for th
two-body force, and that yet another tacit assumption w
made in previous tetraquark studies: that of Lorentz-vec
like behavior of the two-body force underC conjugation. We
shall show that Rosina’s conjecture does not hold for Lore
scalar two-body interactions, whereas it does for Lore
vector ones.

D. Stability and color ordering

A commonly neglected aspect of the colored quark mo
is the stability of the colored states. It was noticed in Ref.@2#
that the color nonsinglet states have lower energy than
color singlet ones, or even that the nonsinglets are unsta
At first this problem was simply ignored with words to th
effect that one assumes that only color singlets may ex
Rosina@17# made the first step toward a rational explanatio
in that he showed that, for certain classes of power-law~lin-
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V. DMITRAŠINOVIĆ PHYSICAL REVIEW D 67, 114007 ~2003!
ear and square! interactions, all color singlets ought to b
stable. For example, even though one color octetqq̄ pair is
unstable, two such pairs in the total color singlet state
stable due to their mutual interactions. If the initial state i
singlet then, by exact color SU~3! conservation all subse
quent states must also be color singlets and, accordin
Rosina’s conjecture, stable. Thus, in Rosina’s scenario
stability problem has been turned into an initial conditi
one: the basic question then becomes why was the Univ
created in a color-neutral state?

We shall show, however, that there are several tacit
sumptions underlying this conjecture that spoil its gene
validity: ~i! only two-body interactions are assumed;~ii !
these two-body interactions are assumed to be of the Lor
vector type;~iii ! no constituent gluons are allowed.

The color ordering and stability problems have not be
solved in the Rosina scenario, but only pushed under the
The nonzero color quark states may still be lighter than
singlets, or even unstable, although apparently inacces
from this Universe. There is one possible caveat to this
observability of colored quark states, however: if one allo
for the existence of constituent gluons, then the quarks
be in a color octet state and the ensuing instability may pr
fatal. Moreover, we shall show that the ‘‘saturating’’ thre
body force may violate Rosina’s conjecture.

1. The q2q̄2 Hamiltonian

Using Table II we find the following color singlet diago
nal and off-diagonal potentials in theq2q̄2 system with Lor-
entz vector two-body interactions and Eq.~15! three-body
potential color factor:

V3̄352
1

3
@V131V141V231V24#2

2

3
@V121V34#

2
5

9
c@V1231V1341V2341V124#, ~24!

V66̄52
5

6
@V131V141V231V24#1

1

3
@V121V34#

1
5

18
c@V1231V1341V2341V124#, ~25!

V3652
1

A2
@V131V242V232V14#. ~26!

For Lorentz scalar interactions flip the sign of theqq̄ terms,
i.e., of the@V136V146V231V24# terms. Now use Eq.~1! to
find

TABLE II. Diagonal matrix elements of the three-body col

operators for variously coloredq2q̄ states.

q2q̄ state u3a& u3s& u6̄& u15&

^( i , j
3 Fi•F j& 2

4
3 2

4
3 2

1
3

2
3

^dabcF1
aF2

bF3
c& 5

9 2
5

18 2
5

18
1

18
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^V&115^113124uVu113124&

5
1

3
~V3̄312V66̄12A2V36!

52
4

3
~V131V24!

5^113uV13u113&1^124uV24u124&, ~27!

which proves clustering in this model. The factor2 4
3 is just

the value of the color factorsFi•F̄ j , for (i 51,j 53) and (i
52,j 54) pairs, in their respective color singlet states. T
gether with the overall minus sign in the confining potent
Eq. ~6!; this yields positive confining two-body potentials fo
the twoqq̄ pairs in accord with Rosina’s conjecture.

Similarly, for the ‘‘hidden-color’’ state

^V&885^813824uVu813824&

5
1

3
~2V3̄31V66̄22A2V36!

5
1

6
~V131V24!2

7

6
~V141V23!2

1

3
~V121V34!

2
5

18
c@V1231V1341V2341V124#, ~28!

which is directly affected by the three-body force. The co
pling constantc is free, except for the stability requiremen
discussed below, but could be fixed on the lattice.10

Assuming stability of the two-body Hamiltonian~for a
critical discussion see Sec. III D 2! and the additiveAnsatz
Eq. ~19! for the three-body part, we may read off the nece
sary, though perhaps insufficient, conditions for stability
the two- plus three-body Hamiltonian as

c.2
3

5
, ~29!

c.2
21

10
, ~30!

c.
3

10
. ~31!

Note that these three inequalities are not in conflict, as w
the case in theq3 system@6#; they are all satisfied when
inequality ~31! is satisfied.

10Indeed, there are a couple of recent three-body potential la
calculations@9,10# but they were done only in the color single
state, however. This means that the color dependence of the for
undetermined as of now. This does not prevent one from assum
the color dependence of Eq.~15! as a first guess.
7-6
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2. Stability of the two-body Hamiltonian

Rosina @17# conjectured and showed that, under cert
restrictions already discussed above, for the first and sec
power-law interactions, all color singlet~confining! two-
body potentials ought to be positive semidefinite. We sh
check Rosina’s conjecture explicitly for quadratic~harmonic
oscillator! potentials in both color singlets (u6126̄34& and
u3̄12334&). It is best to go to the center-of-mass and relat
~Jacobi! coordinatess,s8,l ~Ref. @11#! defined by

r135l1
1

A2
~s2s8!, ~32!

r145l1
1

A2
~s1s8!, ~33!

r235l2
1

A2
~s1s8!, ~34!

r245l2
1

A2
~s2s8!, ~35!

r125A2s, ~36!

r345A2s8. ~37!

Thus we find the following~vector! potentials~remember
that Rosina’s conjecture holds only for two-body potentia!:

V3̄3
2b

5
1

3
mv2@3~s21s82!12l2#>0, ~38!

V66̄
2b

5
1

6
mv2@3~s21s82!110l2#>0, ~39!

V36
2b52A2mv2~s•s8!, ~40!

from which we can see that both color singlet potentials
positive semidefinite.~Rosina’s conjecture does not say an
thing about off-diagonal potentials.!

Let us now turn to the Lorentz scalar potentials, which
phenomenologically preferable to the vector ones due to
absence ofLS coupling terms: Flipping the signs as d
scribed above we find

V3̄3
2b

5
1

3
mv2@~s21s82!22l2#, ~41!

V66̄
2b

52
1

6
mv2@7~s21s82!110l2#<0, ~42!

V36
2b5A2mv2~s•s8!, ~43!

which clearly shows that scalar interactions do not obey
sina’s conjecture.
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E. Discussion

Thus we conclude that scalar confining potentials are
allowed in Rosina’s scenario in this model. Note that this
more than an academic point: the well-known problem
largeLS coupling with vector potentials demands a Loren
scalar confining two-body interaction@8#.

Both the Lorentz vector and scalarFi•F j interactions in-
duce a nonzero ‘‘permutation symmetry breaking parame
x ’’ introduced by Richard@18#, as a measure of the likeli
hood of tetraquark binding. Only the Lorentz scalar, col
independent interaction leads tox50, i.e., to no tetraquark
attraction. As this specific kind of interaction is ruled out b
the previous analysis, we are led to the conclusion t
~some! attraction in the tetraquark channel is necessaril
consequence of theFi•F j two-body interaction, both vecto
and scalar. This fact can also be understood in the follow
way: as there is no color ordering in theFi•F j model, e.g.,

the color octetqq̄ is lighter than the corresponding single
the second~tetraquark! color singlet that consists of two suc
light octets may have a mass that is comparable to or e
smaller than the ordinary ‘‘asymptotic state’’ color single
This is an intuitive explanation of the connection betwe
color ordering and~light! tetraquark binding.

It also ought to be clear from Eqs.~24!,~25! that the three-
body color singlet potentials can be of either sign, thus a
potentially undermining Rosina’s scenario for simultaneo
confinement, stability, and clustering in the~Lorentz vector!
Fi•F j model extended to include color staturating thre
quark forces. Thus we conclude that the class of two- a
three-body potentials that automatically, i.e., by way of th
color SU~3! structure, satisfy the clustering condition Eq.~9!
does not necessarily also obey the stability, color order
and confinement postulates. Hence we shall look at the m
general SU~3! symmetric case.

IV. THE GENERAL SU „3… SYMMETRIC INTERACTION IN
THE q2q̄2 SYSTEM

Hence we shall seek the most general quark dynamics
is consistent with the basic requirements~1–4! that lead to
the solution of the confinement problem~s!. We will have to
limit ourselves to dynamics with a definite number of~con-
stituent! quarks~in this case four!, i.e., we do not allow for
pair creation or annihilation, nor for constituent gluons. W
consider the displacement of colored states to~arbitrarily!
high energies or masses as a solution to the color confi
ment problem.

In a recent attempt to ensure correct color ordering a
confinement of quarks with SU~3! symmetric color dynam-
ics, we were forced to modify the usualFi•F j two-quark
interaction and introduce a new three-quark one@6#. This
new interaction ensures that the color singlets are the low
energy states in both theqq̄ and theq3 systems in addition to
confinement of these systems. In theq2q̄2 system this three-
quark force splits the energies of the two color singlet sta
as it does in theq6 system@7#. That is, however, not enoug
to make this dynamics viable: the dynamics has to allow
7-7
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V. DMITRAŠINOVIĆ PHYSICAL REVIEW D 67, 114007 ~2003!
the observed clustering of quarks and antiquarks into mes
~and baryons! at asymptotic center-of-mass~c.m.! separa-
tions.

We shall start here the study of clustering in the simpl
nontrivial system:q2q̄2 ought to cluster into twoqq̄ mesons.
Clustering is automatic with theFi•F j two-quark interaction,
but the new color-independent two-body interaction is ad
tive, i.e., it does not saturate, thus spoiling the clustering.
new three-quark interaction introduced in Ref.@6# does satu-
rate; indeed it vanishes entirely in the two-meson color s
glet state@7#. Thus, we must look for other ways to canc
the additive two-quark force in this channel. Several pos
bilities arise: ~1! a nonsaturating three-quark force, whic
however, spoils the good confinement properties of theq3

system, or~2! a nonsaturating four-quark force. We sha
focus here on the latter.

A. Clustering with general two- and three-body interactions

In Ref. @6# we made generalAnsätze for the two- and
three-quark potentials and constrained them by the requ
ments of stability, proper ordering, and confinement in
qq̄ andq3 systems.11 Thus we found

Vi j 5(
a

C i j
aVi j 5Fc11

4

3
1Fi•F j GVi j , ~44!

Vi jk5(
a

C i jk
a Vi jk5cdabcFi

aF j
bFk

cVi jk , ~45!

wherec1 andc are constants. Note thatVi j in Eq. ~44! have
the opposite sign to the ones in Eqs.~5!,~6!,~7!. With the
assumption Eq.~19! we find that theFi•F j model two-body
interaction leads to the same form of the effective poten
in the q3 system as the three-body force with the analog
color factor. ~This makes an unambiguous identification
the D three-quark force on the lattice particularly difficult!
Similar statements hold for the color-independent two- a
three-body potentials. For this reason there is no nee
introduce such two- and three-body potentials separately,
only one of a kind, i.e., only a two-body or only a three-bo
potential.

We have shown in Ref.@6# that a color-independent two
body potential is necessary for the absolute stabilization
both qq̄ and q3 spectra. For the above discussed reas
we shall not introduce a separate color-independent

( i , j
k8 Fi•F j three-body potentials. If we further assume t

harmonic oscillator potentialAnsatzfor Vi j , Eq.~6!, but with
opposite overall sign, the coupling constants become co

11We confine ourselves to statics, so we may neglect moment
and spin-dependent potentials. This does not represent a lo
generality as confinement is believed to be spin and momen
independent. The strong hyperfine~Breit! interaction cannot chang
our conclusions because~a! it is of short range, so it automaticall
clusters and does not confine; and~b! it is of the Fi•F j type which
~also! automatically clusters.
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strained toc1.0, usually taken asc151 or 4
3 , and 2

5 .c.
2 3

2 for c151. Straightforward evaluation of the two- an
three-quark potential matrix elements yields

^V&11
2b13b5^113124uVu113124&

5S c11
4

3D(
i , j

4

Vi j 2
4

3
~V131V24!. ~46!

This potential manifestly does not satisfy the clustering c
dition, Eq. ~9!, except whenc152 4

3 , which case is explic-
itly excluded by the requirement of confinement in theqq̄
sector. Thus we must conclude that either some modifica
of the three-quark potential, or a~new! four-quark potential
is necessary. The former would spoil the confinement of
q3 system ~see Ref.@6#! so the latter is left as our only
choice.

B. The four-quark potential

First we make a general SU~3! symmetricAnsatzfor the
four-quark potential. Then we will show that several kinds
four-quark force can lead to clustering ofq2q̄2, but always at
the price of unconfining the asymptotic meson states.

The four-quark potential can be factored into a color p
C1234 and a spin-spatial partV1234:

V12345(
a

C 1234
a V1234. ~47!

As we are primarily interested in the scalar channel grou
state, i.e., in the static case, we may neglect the spin
momentum dependencies of the potential. We shall take o
color factorsC 1234

a that are symmetric under the interchan
of any pair of indicesi↔ j . Then the corresponding spin
spatial potentialsV1234 must also be symmetric under th
same interchange.12 Then the following four-body SU~3!
symmetric color factors can be written down:

C12345

¦

a4(
i , j

4

Fi•F j ,

b4 (
i , j ,k

4

dabcFi
aF j

bFk
c ,

c4 (
i , j ,k, l

4

~Fi•F j !~Fk•Fl !,

d4 (
i , j ,k, l

4

dab fFi
aF j

bdcd fFk
cFl

d ,

~48!

-
of

m

12This choice is sufficient, but not strictly necessary: only t
complete potentialV1234 has to be symmetric under such partic
permutations. Thus, other types of ‘‘mixed symmetry’’ color facto
and spin-spatial potentials are mathematically allowed. Howe
for spin- and momentum-independent potentials such mixed s
metry spin-spatial potentials vanish identically.
7-8
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COLOR SU~3! SYMMETRY, CONFINEMENT, . . . PHYSICAL REVIEW D 67, 114007 ~2003!
whereFa5 1
2 la is the quark color charge, the lower inde

indicates the number of the quark,la are the Gell-Mann
matrices,dabc are the symmetric SU~3! structure constants
defined by the anticommutators of the Gell-Mann matric
and summation over repeated SU~3! indices is understood.

Only three of the four color factors in Eq.~48! are linearly
independent, however, as the following identity holds:

(
i , j ,k, l

4

dab fFi
aF j

bdcd fFk
cFl

d5
1

3 (
i , j ,k, l

4

~Fi•F j !~Fk•Fl !.

~49!

For this reason we may setd4[0 without loss of generality.
The remaining three color operators can be expresse
terms of the two Casimir operators as follows:

(
i , j

4

Fi•F j5
1

2
C1121314

(1) 2
8

3
, ~50!

(
i , j ,k

4

dabcF j
aF j

bFk
c5

1

6 FC1121314
(2) 2

5

2
C1121314

(1)

1
80

9 G , ~51!

(
i , j ,k, l

4

~Fi•F j !~Fk•Fl !5
1

8
~C1121314

(1) !22
19

24
C1121314

(1)

1
10

9
2

1

4
C1121314

(2) , ~52!

where 1121314 stands for the~total! color of the four-
quark state and the two Casimir operators as defined by
~17! and ~18!. As discussed in Sec. IV A, one may setb4
50 with impunity, because it essentially duplicates t
three-body force contribution.

C. Clustering with the four-quark potential

Taking into account theC conjugation, we must use Eq
~23!,~23! in the definition of the color factor

(
i , j ,k

4

C̄i jk5dabc~F1
a1F2

a!F̄3
bF̄4

c2dabc~ F̄3
a1F̄4

a!F1
bF2

c .

~53!

Once again, we can express the three independent S~3!
invariant color factors in Eq.~48! in terms of the two Ca-
simir operators. The first factor remains unchanged:

(
i , j

4

Fi•F j5
1

2
C1121314

(1) 2
8

3
, ~54!
11400
,

in

s.

whereas the second one can be evaluated using Eqs.~23! and
~25! in Ref. @6#, and the third one13 is

(
i , j ,k, l

4

C̄i jkl [ (
i , j ,k, l

4

~Fi•F j !~ F̄k•F̄l !

5
1

8 S C1121314
(1) 2

16

3 D 2

1
5

24
~C1121314

(1)

2C112
(1) 2C314

(1) !1
1

2 (
i , j ,k

4

C̄i jk

2
1

6 (
i , j

4

Fi•F j2
2

3
, ~55!

where 1121314 stands for the~total! color of the four-
quark state. This leads to the results shown in Table III, us
which we find

^V&115^113124uVu113124&

5S c11
4

3D(
i , j

4

Vi j 2
4

3
~V131V24!

1S 2
8

3
a41

20

9
c4DV1234. ~56!

Making the AnsatzV12345( i , j
4 Vi j , we find the saturation

condition

c11
4

3
2

8

3
a41

20

9
c450, ~57!

which is the principal result of this paper. Note, howev
that in that case we are left with

^V&1152
4

3
~V131V24!

52
4

3c1
@^113uV13u113&1^124uV24u124&#, ~58!

the right hand side of which has the physically wrong ne
tive sign, i.e., the two independentqq̄ states are anticonfined

13There is no difference between the Lorentz scalar and ve
couplings here due to the even number of antiquarks.

TABLE III. Diagonal matrix elements of the four-body colo

operators for the two distinct color singletq2q̄2 states.

q2q̄2 state ( i , j
4 Fi•F j ( i , j ,k

4 C̄i jk ( i , j ,k, l
4 (Fi•F j )(F̄k•F̄l)

u113124& 2
8
3 0 20

9

u813824& 2
8
3 2

10
9

35
18
7-9
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D. Consequences

Note the consequences of Eq.~57!.
~1! Some four-quark interaction is necessary to achi

clustering: one cannot satisfy Eq.~57! with a45c450, be-
causec1.0. Note that one may have exact cluster sepa
tion of the Hamiltonian, not only asymptotically, but at a
distances. That, however, would also imply absence of in

action between the twoqq̄ clusters~mesons!, except by way
of quark exchange. One may, however, modify theV1234

5( i , j
4 Vi j Ansatz at short distances to introduce som

meson-meson interaction without spoiling clustering.
~2! Of all the q2q̄2 states the ‘‘two-meson’’ color single

u113124& has the lowest energy. Unfortunately this state is a
deconfined@due to the minus sign in Eq.~58!#: each of the
two independentqq̄ pairs is unbound in an ‘‘upside-down
confining~concave! two-body potential. This problem canno
be avoided: if we change the overall sign of the col
dependent two-body interaction, the color octetqq̄ state be-
comes deconfined. Thus we have found a paradox: if b
color singlet and octetqq̄ pairs are to be confined by two
body forces, then two color singletqq̄ pairs are deconfined
due to the influence of the four-quark force. If we elimina
the four-quark force, then theq2q̄2 system, though confined
cannotcluster into two mesons. These constraints are on
consequence of the assumed SU~3! symmetry.

~3! Clearly, the clustering condition Eq.~56! is met by a
continuous infinity of a4 ,c4 coefficients/four-body poten
tials. In order to narrow down this~theoretical! uncertainty
one may play the same kind of game as with the three-qu
potential: constrain the free parameters by demanding pr
ordering of colored states. That procedure, however,cannot
solve the problem in point 2, as that depends only on
two-quark interaction.

~4! Even if one had clustering in theq2q̄2 system, that
would not necessarily ensure theq4q̄→(q3)1(qq̄) cluster-
ing, nor that ofq6→(q3)1(q3). Thus we may have to con
sider the latter two cases separately and introduce a five-
a six-quark interaction to ensure clustering.

Our results are general, as they depend only on the
sumption of exact color SU~3! symmetry and that quark
transform as the fundamental irreducible representation3)
of SU~3!. Thus, our results must hold in all SU~3! symmetric
theories,inter alia also in QCD, no matter what the spati
parts of the potentials may be.~The assumption of an add
tive spatial four-quark potential is necessary to achieve c
tering. A similarAnsatzfor the three-body potential is suffi
cient, though perhaps not necessary.! The conflict between
clustering and confinement/stability found here was not
pected, at least to the present author’s knowledge. For
reason we wish to know how things stand in perturbat
QCD ~PQCD!, in particular, if there is a similar conflict be
tween clustering and stability/confinement.

E. Comparison with perturbative QCD

Of course, the tree-level PQCD two-body potential is ju
the Coulombic one. But, at the one-loop level new col
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independent terms appear: after renormalization they lea
a ~Lorentz scalar! r 23 potential. That is all we need to know
for clustering purposes, as this term vanishes much m
quickly than the Coulomb one in ther→` limit. Thus, clus-
tering is maintained in one-loop PQCD.

As already announced, the Born approximation gluo
exchange graphs lead to themomentum-dependentthree-
body potential

Vi jk5aS
2(

i , j

k8 vj•vk

mir i j r ik
, ~59!

whereaS is the QCD fine coupling constant,14 with the color
factor Eq.~15!, which automatically leads to clustering, an
vi5pi /mi is the i th quark’s velocity; as well as to the three
body force

Vi jk5
2

3
aS

2(
i , j

k8

Fi•F j

vj•vk

mir i j r ik
, ~60!

which also leads to clustering in theq2q̄2 system, but not due
to the SU~3! algebraic properties of its color factor. Rathe
this term would cluster due to the~double! 1/r asymptotic
behavior~vanishing! of the spatial part of the potential, eve
if it were not momentum dependent. Such strongr behavior
of the potential is potentially dangerous, as it may le
to an instability of the Schro¨dinger equation, or ‘‘fall to the
center’’ classical-mechanically. Fortunately, this potent
vanishes altogether in static situations due to its velocity
pendence.

Because of ther 23 behavior of the color-independen
two-body potential and the momentum dependence of
three-body force, the PQCD two- and three-quark potent
lead to clustering~in the one-loop approximation!. Here we
can easily see that a straightforward extension to ‘‘con
ing’’ ~infinitely rising! potentials is not possible, as th
asymptotic behavior of the spatial part of the potential pla
a crucial role in clustering.

Classically, the string model may solve our problems b
cause the effective range of its interaction~‘‘potential’’ ! ex-
tends only up to the string-breaking point, i.e., a~short! finite
distance. Thus, theDR5uDRu5 1

2 ur11r32r22r4u→` limit
in the clustering condition Eq.~9! becomes trivial in the
string model. A similar spatial ‘‘cutoff’’ principle, however
may be adopted in potential models, as well.

The common thread to both the potential and the str
kinds of models is the SU~3! color symmetry: the quark po
tentials depend on functions of SU~3! generators, wherea
the string dynamics depend on the ‘‘Chan-Paton’’ facto
@19#. Thus, the energetics of multiquark states in both kin
of models depend crucially on the color SU~3! symmetry
factors. Of course, the stability and color ordering proble
may have been exacerbated in this way, for it is not phy
cally clear what negative string tension would mean in

14Note the violation of the linearly additiveAnsatzEq. ~19! and
the absence of the static three-body ‘‘Coulomb’’ potential.
7-10



ow,

COLOR SU~3! SYMMETRY, CONFINEMENT, . . . PHYSICAL REVIEW D 67, 114007 ~2003!
TABLE IV. Table of validity of the four basic requirements~‘‘axioms’’ ! in models with various color-
dependent forces. The asterisk on the3 mark and the OK in parentheses in the first column, second r
indicate~conditional! stability of color singlets with Lorentzvector interactions in theFi•F j model due to
Rosina’s theorem~see text!.

color dependence Stability (1) Color ordering (2) Confinement (3) Clustering (4)
constant OK 3 OK 3

Fi•F j 3* (OK) 3 OK OK
Fi•F j1const5two-body OK OK OK 3

Fi•F j1const two-1three-body OK OK OK 3

Fi•F j1const two-1three-1four-body 3 OK OK OK
PQCD OK OK 3 OK
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case when a Chan-Paton factor is negative. Another acc
panying problem is that one must have a fully Lorentz co
riant string theory to account for string breaking, i.e., f
meson production. Note further that this must be a consis
quantumstring theory, because the classical string break
the string breaking length with certitude, i.e., with unit pro
ability. That implies that no radially excited state with radi
larger than the string breaking length~or energy larger than
the two-meson threshold! can exist in classical string theory
This conflict with experiment can be removed only by
consistent~unitary! relativistic quantum string theory, o
quantum mechanics with confining potentials, for examp
neither of which exists at the moment.

V. CONCLUSIONS

We have considered the stability, confinement, cluster
and SU~3! color state ordering in the simplest and extend
color exchange (Fi•F j ) model, in PQCD and in the genera
color SU~3! symmetric case. Most of the results in Sec.
and all the results in Sec. IV are new, so far as we know.
shall not repeat here the~partial! summaries given in Secs
III E and IV D, but briefly conclude that we have invariab
found that at least one of these four simplest requiremen
not satisfied by any confining color SU~3! symmetric Hamil-
tonian with a fixed number of quark~see Table IV!. The
deeper source of the problem appears to be the assumpti
.

/

.
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d

e
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interminably rising confining potentials, as one can simul
neously satisfy the remaining three conditions w
Coulomb-like few-body potentials~see PQCD!.

We may view this paper as an attempt at establishin
rational color quarkdynamics, by which we mean construct
ing a ~classical! mechanical model based either on potenti
~which case includes the cavity/MIT bag models!, or on elas-
tic string ~later interpreted as ‘‘flux tube’’! dynamics with
exact color SU~3! symmetry. We say classical mechani
here, though, of course, we wish to do quantum mechan
because of the well known difficulties in quantizing strin
models; potential models should present few or no proble
in this regard. Unfortunately, we saw that even thestatics
present some serious difficulties. Extension to relativistic
namics appears to be necessary.

Clearly, new ideas and better input from lattice QCD a
needed here. In particular, a conclusive study of ‘‘Casim
scaling’’ in the three-body sector on the lattice would clar
the color structure of the three-quark interaction in QCD.
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@15# V. Dmitrašinović, J. Math. Phys.42, 991 ~2001!.
@16# M. A. Moinester, Z. Phys. A355, 349 ~1996!.
7-11



s S.
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