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Next-to-leading order QCD corrections toATT for prompt photon production
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We present a next-to-leading order QCD calculation of the cross section for isolated large-pT prompt photon
production in collisions of transversely polarized protons. We devise a simple method of dealing with the phase
space integrals in dimensional regularization in the presence of the cos(2F) azimuthal-angular dependence
occurring for transverse polarization. Our results allow us to calculate the double-spin asymmetryATT

g for this
process at next-to-leading order accuracy, which may be used at BNL RHIC to measure the transversity parton
distributions of the proton.
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I. INTRODUCTION

The partonic structure of spin-1/2 targets at the leadi
twist level is characterized entirely by the unpolarized, lo
gitudinally polarized, and transversely polarized distributi
functions f, D f , and d f , respectively@1#. By virtue of the
factorization theorem@2#, these nonperturbative parton de
sities can be probed universally in a multitude of inelas
scattering processes, for which it is possible to sepa
~‘‘factorize’’ ! the long-distance physics relating to nucle
structure from a partonic short-distance scattering tha
amenable to QCD perturbation theory. Combined experim
tal and theoretical efforts have led to an improved und
standing of the spin structure of longitudinally polariz
nucleons,D f , in the past years. In contrast, the ‘‘transve
sity’’ distributions d f , first introduced in@3#, remain the
quantities about which we have the least knowledge.

Current and future experiments are designed to furt
unravel the spin structure of both longitudinally and tran
versely polarized nucleons. Information will soon be ga
ered for the first time from polarized proton-proton collisio
at the BNL Relativistic Heavy Ion Collider~RHIC! @4#. Col-
lisions of transversely polarized protons will be studied, a
the potential of RHIC in accessing transversityd f in trans-
verse double-spin asymmetriesATT was recently examined
in @5# for high transverse momentumpT prompt photon and
jet production. Several other studies ofATT for these reac-
tions have been presented in the past@6–8#, as well as for the
Drell-Yan process@3,9–11#. With the exception of the latte
reaction@10,11#, all of these calculations were performed
the lowest order~LO! approximation only. As is well known
next-to-leading order~NLO! QCD corrections are generall
indispensable in order to arrive at a firmer theoretical pred
tion for hadronic cross sections and spin asymmetries. O
with their knowledge can one reliably confront theory wi
experimental data and achieve the goal of extracting in
mation on the partonic spin structure of nucleons.
0556-2821/2003/67~11!/114006~10!/$20.00 67 1140
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In this paper we extend the results of@5# for isolated high-
pT prompt photon production,pp→gX, to the NLO of
QCD. Apart from the motivation given above, also intere
ing new technical questions arise beyond the NLO in cas
transverse polarization. Unlike for longitudinally polarize
cross sections where the spin vectors are aligned with
mentum, transverse spin vectors specify extra spacial di
tions, giving rise to nontrivial dependence of the cross s
tion on the azimuthal angle of the observed photon. As
well known @3#, for ATT this dependence is always of th
form cos(2F), if the z axis is defined by the direction of th
initial protons in their center-of-mass system~c.m.s.!, and the
spin vectors are taken to point in the6x direction. Integra-
tion over the photon’s azimuthal angle is therefore not
propriate. On the other hand, standard techniques develo
in the literature for performing NLO phase-space integ
tions usually rely on the choice of particular reference fram
that are related in complicated ways to the one just specifi
This makes it difficult to fixF in the higher order phase
space integration. The problem actually becomes more
vere if dimensional regularization techniques are used
dealing with the collinear and infrared singularities, as
customary. Even for the kinematically rather simple Dre
Yan process the NLO calculation for the cross section w
transverse polarization is quite more complicated as for
unpolarized or longitudinally polarized cases@10#. In this
paper, we will present a new general technique which fac
tates NLO calculations with transverse polarization by co
veniently projecting on the azimuthal dependence of the m
trix elements in a covariant way. This method then allows
to carry out phase space integrals with standard tools kn
from unpolarized calculations.

After presenting our technique and verifying that it reco
ers the known result for the transversely polarized NL
Drell-Yan cross section, we apply it to high-pT prompt pho-
ton production. We also present some first numerical ca
lations of the cross sections and the transverse spin asym
©2003 The American Physical Society06-1
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try for this process at NLO. Here we of course have to r
on some model for the transversity densities, for which
make use of the Soffer inequality@12#. As in experiment, we
impose an isolation cut on the photon. We find a moder
size of the NLO corrections and the expected reduced s
dependence of the cross section at NLO.

II. CALCULATION OF THE NLO CORRECTIONS

A. Preliminaries

The transversity densityd f (x,m) is defined@1,3,7,13# as
the difference of probabilities for finding a parton of flavof
at scalem and light-cone momentum fractionx with its spin
aligned (↑↑) or anti-aligned (↓↑) to that of the transversely
polarized nucleon:

d f ~x,m![ f ↑↑~x,m!2 f ↓↑~x,m! ~1!

~an arrow always denotes transverse polarization in the
lowing!. The unpolarized densities are recovered by tak
the sum in Eq.~1!. When the transverse polarization is d
scribed as a superposition of helicity eigenstates,d f reveals
its helicity-flip, chirally odd, nature@1,7#. As a result, there is
no leading-twist transversity gluon density, since helic
changes by two units cannot be absorbed by a spin-1/2 ta
@1,7,14#.1 The property of helicity conservation in QCD ha
scattering processes implies that there have to be two
hadronic pieces in the process that each flip chirality, in or
to give sensitivity to transversity. One possibility, which w
are going to consider in the following, is to have two tran
versely polarized hadrons in the initial-state and to meas
double-spin asymmetries

ATT5

1

2
@ds~↑↑ !2ds~↑↓ !#

1

2
@ds~↑↑ !1ds~↑↓ !#

[
dds

ds
. ~2!

Here dds denotes the transversely polarized cross sect
ATT is expected to be rather small for most processes@6,8,5#,
since gluonic contributions are absent in the numerator w
in the denominator they often play a dominant role.2 Never-
theless, the LO study@5# suggests that the asymmetry f
prompt photon production should be measurable at RH
provided the transversity densities are not too small.

According to the factorization theorem@2# the fully dif-
ferential transversely polarized single-inclusive cross sec
A1B→g1X for the production of a prompt photon wit
transverse momentumpT , azimuthal angleF with respect to
the initial spin axis, and pseudorapidityh reads

1We note that a gluon density does contribute beyond lead
twist @14,15#, where it will lead to terms inATT strongly suppressed
by inverse powers of the photonpT . An estimate of such effects
could follow the lines in@15#.

2The only exception is the Drell-Yan process, which however s
fers from rather low rates.
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d3ds

dpTdhdF
5

pT

pS (
a,b

E
VW

V dv
v~12v !

E
VW/v

1 dw

w
d f a~xa ,mF!

3d f b~xb ,mF!Fddŝab→g
(0) ~v !

dvdF
d~12w!

1
as~mR!

p

ddŝab→g
(1) ~s,v,w,mR ,mF!

dvdwdF
G , ~3!

with hadron-level variables

V[11
T

S
, W[

2U

S1T
, S[~PA1PB!2,

T[~PA2Pg!2, U[~PB2Pg!2, ~4!

in obvious notation of the momenta, and corresponding p
tonic ones

v[11
t

s
, w[

2u

s1t
, s[~pa1pb!2,

t[~pa2pg!2, u[~pb2pg!2. ~5!

Neglecting all masses, one has the relations

s5xaxbS, t5xaT, u5xbU, xa5
VW

vw
, xb5

12V

12v
.

~6!

The ddŝab→g
( i ) are the LO (i 50) and NLO (i 51) contribu-

tions in the partonic cross sections for the reactionsab
→gX. mR andmF are the renormalization and factorizatio
scales.

B. Projection technique for azimuthal dependence

Let us consider the scattering in the hadronic c.m
frame, assuming both initial spin vectors to be in6x direc-
tion. Then, on general grounds, for a parity-conserv
theory with vector couplings, theF dependence of the cros
section is constrained to be of the form cos(2F):

d3ds

dpTdhdF
[cos~2F!K d2ds

dpTdh L . ~7!

We may obtain̂ d2ds/dpTdh& by integrating the cross sec
tion overF with a cos(2F) weight:

K d2ds

dpTdh L 5
1

pE0

2p

dF cos~2F!
d3ds

dpTdhdF
. ~8!

For the lowest order contribution to prompt-photon produ
tion in Eq. ~3! one has only the channelqq̄→gg. Polariza-
tion for, say, the initial quark may be projected out by

u~pa ,sa!ū~pa ,sa!5
1

2
p” a@11g5s”a#, ~9!

g

-
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wherepa and sa are the quark’s momentum and transve
spin vector, andu(pa ,sa) its Dirac spinor. One readily finds
for the LO process

K ddŝqq̄→gg
(0)

~v !

dv
L 5

2CF

NC

aas

s
eq

2 , ~10!

whereCF54/3, NC53 andeq is the fractional quark charge
As discussed in the Introduction, in the NLO calculati

one wants to make as much use as possible of calculati
techniques established for the unpolarized case. For a s
inclusive cross section such as prompt photon product
the appropriate methods were developed in@16#. They in-
volve integration over azimuthal angles. We therefore wo
like to follow a projection analogous to Eq.~8!; however, we
should formulate it in a covariant way. To this effect, we fi
note that the factor cos(2F)/p in the cross section actuall
results from the covariant expression

F~pg ,sa ,sb!5
s

ptu F2~pg•sa!~pg•sb!1
tu

s
~sa•sb!G ,

~11!

which reduces to cos(2F)/p in the hadronic c.m.s. frame. W
may, therefore, useF(pg ,sa ,sb) instead of the explicit
cos(2F)/p.

Even though employingF(pg ,sa ,sb) becomes a real ad
vantage only at NLO, let us illustrate its use in case of
LO cross section for the partonic reactionqq̄→gg. We there
have

dd2ŝqq̄→gg
(0)

dtdF
5

1

32p2s2
duM ~qq̄→gg!u2, ~12!

whereduM u2 is the squared invariant matrix element for t
reaction with transverse polarization and reads

duM ~qq̄→gg!u25~eeqg!2
4CF

NC

s

tu F2~pg•sa!~pg•sb!

1
tu

s
~sa•sb!G . ~13!

One recognizes the factorF(pg ,sa ,sb) emerging induM u2.
We now multiplyduM u2 by F(pg ,sa ,sb), equivalent to the
multiplication by cos(2F)/p in Eq. ~8!. The resulting expres
sion may then be integrated over the full azimuthal ph
space without producing a vanishing result, unlike the c
of duM u2 itself. This integration may again be performed in
covariant way by noting first that the dependence
F(pg ,sa ,sb)duM u2 on the spin vectors comes a
(pg•sa)2(pg•sb)2, (pg•sa)(pg•sb)(sa•sb), and (sa•sb)2.
The first two of these terms correspond to contractions w
the tensorspg

mpg
npg

rpg
s and pg

mpg
n , respectively. Expanding
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these tensors into all possible tensors made up of the m
tensor and the incoming partonic momenta, one fin
straightforwardly,

E dVg~pg•sa!2~pg•sb!2

5E dVg

t2u2

8s2
@2~sa•sb!21sa

2sb
2#

5E dVg

3t2u2

8s2
,

E dVg~pg•sa!~pg•sb!~sa•sb!

52E dVg

tu

2s
~sa•sb!2

52E dVg

tu

2s
, ~14!

where *dVg denotes integration over the photon pha
space, and where we have chosen both spin vectors to p
in the same direction. We also recall thatsi•pa5si•pb

50 (i 5a,b) andsa
25sb

2521. We emphasize that after th
replacements~14! the whole invariant phase space overpg
remains to be integrated, including the~now trivial! azi-
muthal part, as indicated by the*dVg on the right hand side
This is the virtue of our method that becomes particula
convenient at NLO. It is crucial here that the other observ
~‘‘fixed’’ ! quantities, transverse momentumpT and rapidity
h, are determined entirely by scalar products (pa•pg) and
(pb•pg). This allows the above tensor decomposition w
tensors only made up ofpa andpb and of course the metric
tensor.

Inserting all results, and including the azimuthal part
the dVg integration, we find

^duM ~qq̄→gg!u2&5~eeqg!2
4CF

NC
, ~15!

and hence, using Eq.~12!, we recover Eq.~10!.
In the NLO calculation, one has 2→3 reactionsab

→gcd. For an inclusive photon spectrum, one integra
over the full phase spacesdVc anddVd of particlesc andd,
respectively. The momentum of particled may be fixed by
momentum conservation, and the integration is trivial. O
then ends up with

E dVgE dVcF~pg ,sa ,sb!duM ~ab→gcd!u2. ~16!

Besides scalar products of thesi( i 5a,b) with pg , the inte-
grand may contain terms}(sa•pc)(sb•pc) and}(si•pc). As
6-3
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before, we may expand the ensuing tensor and vector i
grals in terms of the available tensors. As far as the integ
tion overdVc is concerned, such tensors may be made up
the metric tensor,pa , pb , and pg . It is also important to
keep in mind that in the NLO calculation we will need to u
dimensional regularization due to the presence of singu
ties in the phase space integrations. We find, ind5422«
dimensions,

E dVc~pc•sa!~pc•sb!5E dVcH tu

s F1

2
A2BG~sa•sb!

1@~12«!A2B#~pg•sa!

3~pg•sb!J ,

E dVc~pc•si !5E dVcC•~pg•si !, ~17!

where

A5
2

~122«!
C 2,

B5
1

~122«!

tcuc

tu
, ~18!

C52
ssgc2tuc2tcu

2tu
,

with

tc[~pa2pc!
2, uc[~pb2pc!

2, sgc[~pg1pc!
2.

~19!

After scalar products involvingpc with the si have been
eliminated in this way, only those with (pg•si) remain.
As in our LO example, when we apply the fact
F(pg ,sa ,sb), these terms enter as (pg•sa)2(pg•sb)2

and (pg•sa)(pg•sb). We then may use Eq.~14! after appro-
priate modification tod5422« dimensions:

E dVg~pg•sa!2~pg•sb!2

5E dVg

t2u2

4~12«!~22«!s2
@2~sa•sb!21sa

2sb
2#,

E dVg~pg•sa!~pg•sb!~sa•sb!

52E dVg

tu

2~12«!s
~sa•sb!2. ~20!

After this step, there are no scalar products involving thesi
left in the squared matrix element~except the trivialsa•sb
521). We may now integrate over all phase space, emp
ing techniques familiar from the corresponding calculatio
in the unpolarized and longitudinally polarized cases. A
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check, we have applied our method to the Drell-Yan tra
versity cross section and recovered the known NLO re
@11# in a straightforward manner. For the interested read
we list some details of this calculation in the Appendix.

C. Details of the NLO calculation for prompt
photon production

From here on, all steps in the calculation are fairly sta
dard, albeit still involved and lengthy. Since many of the
have been documented in previous papers@16–19#, we only
give a brief summary here. We emphasize that the gen
method we have employed is to perform the integratio
over the phase space of the unobserved particles in th
→3 contributions analytically. We have also simultaneou
calculated the unpolarized cross section and found agreem
with the expressions available in the literature@17,18#.

At NLO, there are two subprocesses that contribute
transverse polarization:

qq̄→gX,

qq→gX. ~21!

The first one of course was already present at LO, wherX
5g. At NLO, one has virtual corrections to the Born cro
section (X5g), but also 2→3 real emission diagrams, with
X5gg1qq̄1q8q̄8. For the second subprocess,X5qq. All
contributions are treated as discussed in the previous sub
tion, i.e., we project on their cos(2F) dependence by multi-
plying with the functionF(pg ,sa ,sb) in Eq. ~11! and inte-
grating over the azimuthal phase space using Eqs.~17! and
~20!.

Owing to the presence of ultraviolet, infrared, and colli
ear singularities at intermediate stages of the calculation,
necessary to introduce a regularization. Our choice is dim
sional regularization, that is, the calculation is performed
d5422« space-time dimensions. Subtractions of singula
ties are made in the modified minimal subtraction (MS)
scheme throughout.

Projection on a definite polarization state for the init
partons involves the Dirac matrixg5, as is evident from Eq.
~9!. It is well known that dimensional regularization becom
a somewhat subtle issue ifg5 enters the calculation, the rea
son being thatg5 is a genuinely four-dimensional object wit
no natural extension todÞ4 dimensions. Extending the re
lation $g5 ,gm%50 to d dimensions leads to algebraic inco
sistencies in Dirac traces with an odd number ofg5 @20#.
Owing to the chirally odd nature of transversity, in our ca
culation all Dirac traces contain twog5 matrices, and there
should be no problem using a naive, totally anticommut
g5 in d dimensions. Nevertheless, we also did the calculat
using the widely used ‘‘’t Hooft–Veltman–Breitenlohner
Maison~HVBM ! scheme’’@21# for g5, which is known to be
fully consistent. It is mainly characterized by splitting th
d-dimensional metric tensor into a four-dimensional and
(d24)-dimensional one. In the four-dimensional subspa
g5 continues to anti-commute with the other Dirac matric
however, it commutes with them in the (d24)-dimensional
6-4
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one. The HVBM scheme thus leads to a higher complexity
the algebra3 and of phase space integrals. We found the sa
final answers for bothg5 prescriptions in all our calculations

Ultraviolet poles in the virtual diagrams are removed
the renormalization of the strong coupling constant at a s
mR . Infrared singularities cancel in the sum between virt
and real-emission diagrams. After this cancellation, only c
linear poles are left. These result for example from a par
in the initial state splitting collinearly into a pair of parton
corresponding to a long-distance contribution in the parto
cross section. From the factorization theorem it follows t
such contributions need to be factored, at a factoriza
scalemF , into the parton distribution functions. A simila
situation occurs in the final state. The high-pT photon may
result from collinear radiation off a quark, which again
singular. This singularity is absorbed into a ‘‘quark-t
photon’’ fragmentation function@17,18# that describes pho
ton production in jet fragmentation and hence by itself co
tains long-distance information. The fragmentati
contribution has not been written down in Eq.~3!. It has a
structure similar to Eq.~3!, but with an extra integration ove
the fragmentation function. Its size also depends on the
perimental selection of prompt photon events, as we w
discuss below.

The subtraction of initial-state collinear singularities
particularly simple in case of transversity since there is
gluon transversity and onlyq→qg collinear splittings can
occur. Only the processqq̄→ggg has such poles. Their can
cellation is effected by adding a ‘‘counterterm’’ that has t
structure~for radiation off the initial quark!

2
as

p E
0

1

dxdHqq~x,mF!
ddŝqq̄→gg

(0)
~xs,xt,u,«!

dv

3d@x~s1t !1u#, ~22!

where, in theMS scheme,

dHqq~z,mF![S 2
1

«
1gE2 ln 4p D dPqq~z!S s

mF
2 D «

,

~23!

with the LO transversity splitting function@23#

dPqq~z!5CFF 2z

~12z!1
1

3

2
d~12z!G . ~24!

Here the ‘‘plus’’ distribution is defined in the usual way. A
indicated in Eq.~22!, the 2→2 cross section in the integran
needs to be evaluated ind dimensions. The result, whic
turns out to be the same in the anticommutingg5 and the
HVBM schemes, is given by

3We use the programTRACER @22# to perform Dirac traces ind
dimensions.
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K ddŝqq̄→gg
(0)

~s,t,u,«!

dt
L 5

2CF

NC

aas

s2
eq

2 m2«

G~12«! S 4pm2s

tu D «

3
2~12«1«2!

~12«!~22«! S 12«2
«2s2

2tu D .

~25!

Needless to say that we have applied also here our ‘‘pro
tor’’ F(pg ,sa ,sb) of Eq. ~11! and performed the integratio
over the scalar products involving spin vectors according
Eq. ~20!.

In the final-state collinear case, an expression very sim
to Eq. ~22! is to be used, involving now the unpolarize
quark-to-photon splitting function

Pgq~z!5
11~12z!2

z
~26!

and the 2→2 ‘‘pure-QCD’’ transversity cross sections ind
dimensions, given by

K ddŝqq̄→q8q̄8
(0)

~s,t,u,«!

dt
L 5

CF

2NC

as
2

s2

m2«

G~12«! S 4pm2s

tu D «

3~21«!
tu

s2
,

K ddŝqq̄→qq̄
(0)

~s,t,u,«!

dt
L 5

CF

2NC

as
2

s2

m2«

G~12«! S 4pm2s

tu D «

3F ~21«!
tu

s2
2

~22«!

NC

u

sG ,

~27!

K ddŝqq→qq
(0) ~s,t,u,«!

dt L 5
CF

2NC
2

as
2

s2

m2«

G~12«! S 4pm2s

tu D «

3~22«!.

In these expressions, we have neglected contributi
}O(«2), which do not contribute. Then, the results for
fully anticommutingg5 and for the HVBM prescription are
again the same.

Before coming to our final results, we would like to mak
two more comments on the use of our ‘‘projector’’ on th
azimuthal-angular dependence, Eq.~11!. In an NLO calcula-
tion, carried out ind dimensions, we could have a project
that by itself contains terms}«. Indeed, some of the Born
cross sections, when evaluated ind dimensions, suggest
projector of the form

F«~pg ,sa ,sb!5
s

ptu F2~pg•sa!~pg•sb!1~12a«!

3
tu

s
~sa•sb!G , ~28!
6-5
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with some constanta. Clearly, the final answer of the calcu
lation must not depend ona because our projection is
physical operation which could be done in experiment.
have used the above projector with an arbitrarya and
checked that indeed no answer depends ona. Also, we have
integrated all squared matrix elements over the spin vec
without using any projector at all. This amounts to integr
ing cos(2F) over all 0<F<2p, and, as expected, we ge
zero in the final answer. It should be stressed, however,
individual pieces in the calculation~the virtual, the 2→3,
es
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and the factorization part! do not by themselves integrate t
zero, but only their sum does. In this way, we have a v
powerful check on the correctness of our calculation.

D. Final results for inclusive and isolated photon
cross sections

For both subprocesses, the final results for the NLO c
rections can be cast into the following form:
K s
ddŝab→gX

(1) ~s,v,w,mR ,mF!

dvdw L 5
aas~mR!

p2
F S A0d~12w!1B0

1

~12w!1
1C0D ln

mF
2

s
1C1I final~12v1vw!

1A2d~12w!ln
mR

2

s
1Ad~12w!1B

1

~12w!1
1C1DS ln~12w!

12w D
1

1E ln w1F ln v

1G ln~12v !1H ln~12w!1I ln~12vw!1J ln~12v1vw!1K
ln w

12w
1L

ln
12v

12vw

12w

1M
ln~12v1vw!

12w
G , ~29!
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where all coefficients are functions ofv andw, except those
multiplying the distributionsd(12w), 1/(12w)1 , @ ln(1
2w)/(12w)#1 which may be written as functions just ofv.
Terms with distributions are present only for the subproc
qq̄→gX. The coefficients in Eq.~29! are too lengthy to be
given here but are available upon request.

Let us now specify the functionI final(z512v1vw). It
results from the configurations where the photon is collin
with a final-state quark or antiquark. As we discussed ear
these will lead to final-state collinear singularities that a
absorbed, at the factorization scale4 mF , into photon frag-
mentation functions. The actual form ofI final depends on the
kind of photon signal under consideration. Let us first co
sider the fully inclusive cross section. In this case, one
counts all photon candidates in the kinematical bin, with
imposing any constraint on additional particles in the eve
This is the simplest cross section and the one usually m
sured in fixed-target experiments. In the theoretical calcu
tion, final-state singularities arise and there is a need to
troduce a fragmentation contribution, as discussed earlie

At collider energies, the background from pions decay
into photon pairs is so severe that so-called isolation cuts
imposed on the photon. The basic idea is that photons

4We could also choose a final-state factorization scalemF8ÞmF

here.
s

r
r,
e

-
t
t
t.
a-
-

n-

g
re
at

have little hadronic energy around them are less likely
result fromp0 decay. The standard procedure is to defin
‘‘cone’’ around the photon byA(Dh)21(Df)2<R, where
typically R'0.4 . . .0.7, and to demand that the hadron
transverse energy in the cone be smaller thantpT , wheret
is a parameter of order 0.1. For the theoretical calculati
isolation implies a strong reduction of the size of the fra
mentation contribution because photons produced by fr
mentation are always accompanied by a certain amoun
hadronic energy. A slightly refined type of isolation has be
proposed in@24#. Again a cone is defined, centered on t
photon, within which the hadronic transverse energy m
not exceed the limittpT . However, one chooses a largert
;1 and then further restricts the hadronic energy by
manding that for anyr<R the hadronic energy inside a con
of openingr be smaller than roughlyt(r /R)2pT . In other
words, the closer hadronic energy is deposited to the pho
the smaller it has to be in order for the event to pass
isolation cut. This isolation method has not yet been use
any experiment, but it is possible that it will become t
choice for the PHENIX experiment at RHIC@25#. On the the-
oretical side, it has the advantage that it ‘‘eliminates’’ a
kind of fragmentation contribution@24# because fragmenta
tion is assumed to be a~mainly! collinear process, and no
hadronic activity is allowed exactly parallel to the photon

We recall from the previous section that we have p
formed an analytical integration over the full phase space
6-6
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the unobserved particles in the final state. This seems at
sight to preclude the implementation of an isolation cut ‘‘a
terwards.’’ However, as was shown in@26,27#, it is possible
to impose the isolation cut in an approximate, but accur
analytical way by introducing certain ‘‘subtraction cross se
tions.’’ The approximation is based on assuming the isolat
cone to be rather narrow. In this case, dependence on
cone opening can be shown to be of the forma ln(R)1b
1O(R2). a andb are straightforwardly determined and yie
ttin
s
a
t
c

en

o
th
e

io
a

f

c-

-
e

u

11400
rst

e,
-
n
he

a very accurate description of isolation even atR50.7. Ana-
lytical calculations@26,27# are therefore as capable to d
scribe the isolated prompt-photon cross section as NLO c
putations in which phase space integrals are perform
numerically employing Monte Carlo techniques@28,24,27#.

For the cases of the fully-inclusive~‘‘incl.’’ ! cross section,
the standard isolation~‘‘std.’’ !, and for the isolation propose
in @24# ~‘‘smooth’’ ! the functionI final(z512v1vw) takes
the following forms:
I final~z!55
Pgq~z!lnS mF

2

s D incl.,

Pgq~z!lnS mF
2

s D 1Q~12z@11t#!F Pgq~z!lnS ~12z!2pT
2R2

mF
2 D 1zG std.,

Pgq~z!lnS ~12z!3pT
2R2

stz D smooth.

~30!
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One can see the presence of the quark-to-photon spli
function Pgq of Eq. ~26!, as is expected for contribution
resulting from near-collinear photon emission in the fin
state. It also becomes clear that for the standard isolation
dependence on the final-state factorization scale is redu
and disappears altogether for the isolation of@24#. This is in
line with our remarks above about the size of the fragm
tation contribution in these cases.

III. NUMERICAL RESULTS

In this section, we present a first numerical application
our analytical results. We focus on the main features of
NLO corrections and describe their impact on the cross s
tion dds/dpT and the spin asymmetryATT

g . Our predictions
will apply for prompt photon measurements with the PHENIX

detector at RHIC. This implies that the pseudorapidity reg
uhu<0.35 is covered, and only half of the photon’s azimuth
angle. Using Eq.~7! we restore the cos(2F) dependence o
the cross section. We take the two quadrants inF covered by
the PHENIX detector to be2p/4,F,p/4 and 3p/4,F
,5p/4 and integrate over these. This gives (*2p/4

p/4

1*3p/4
5p/4)cos(2F)dF52. We consider photons isolated a

cording to the isolation of@24# discussed above, usingR
50.4 andt51.

Before we can perform numerical studies ofATT
g we have

to model thed f we will use. Nothing is known experimen
tally about transversity so far. The only guidance is provid
by the Soffer inequality@12#

2udq~x!u<q~x!1Dq~x! ~31!

which gives an upper bound for eachd f . As in @5# we utilize
this inequality by saturating the bound at some low inp
scale m0.0.6 GeV using the NLO~LO! GRV @29# and
g

l
he
ed

-

f
e
c-

n
l

d

t

GRSV ~‘‘standard scenario’’! @30# densitiesq(x,m0) and
Dq(x,m0), respectively. Form.m0 the transversity densitie
d f (x,m) are then obtained by solving the evolution equ
tions with the LO@7,23# or NLO @11,31# kernels. Obviously,
the sign to be used when saturating the inequality is at
disposal; we choose all signs to be positive. We refer
reader to@5# for more details on our model distributions. W
note that we will always perform the NLO~LO! calculations
using NLO ~LO! parton distribution functions and the two
loop ~one-loop! expression foras .

Figure 1 shows our results for the transversely polariz
prompt photon production cross sections at NLO and LO
two different c.m.s. energies. The lower part of the figu
displays the so-called ‘‘K factor’’

K5
ddsNLO

ddsLO
. ~32!

One can see that NLO corrections are somewhat smalle
AS5500 GeV and increase withpT . As we have mentioned
in the Introduction, one reason why it is generally importa
to know NLO corrections is that they should considerab
reduce the dependence of the cross sections on the unp
cal factorization and renormalization scales. In this sense,
K factor has actually limited significance since it is likely
be rather scale dependent through the presence of the
cross section in its denominator. The improvement in sc
dependence when going from LO to NLO is, therefore
better measure of the impact of the NLO corrections. T
shaded bands in the upper panel of Fig. 1 indicate the un
tainties from varying the scales in the rangepT/2<mR5mF
<2pT . The solid and dashed lines are always for the cho
where all scales are set topT , and so is theK factor under-
neath. One can see that the scale dependence indeed bec
much weaker at NLO.
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Figure 2 shows the spin asymmetryATT
g which is perhaps

the main quantity of interest here, calculated at LO5 ~dashed
lines! and NLO~solid lines!. We have again chosen all scal
to bepT . Due to a largerK factor for the unpolarized cros
section, the asymmetry is smaller at NLO than at LO. W
also display in Fig. 2 the statistical errors expected in exp
ment. They may be estimated by the formula@4#

dATT
g .

1

P2ALsbin

, ~33!

whereP is the transverse polarization of each beam,L the
integrated luminosity of the collisions, andsbin the unpolar-
ized cross section integrated over thepT bin for which the
error is to be determined. We have usedP50.7 and L
5320(800)/pb forAS5200(500) GeV.

IV. CONCLUSIONS

We have presented in this paper the complete NLO Q
corrections for the partonic hard-scattering cross sections

5We note that our LO asymmetries are larger than those repo
in @5#. This is due to an error in the numerical computation in@5#.
Our LO curves in Fig. 2 correct this mistake.

FIG. 1. Predictions for the transversely polarized prompt pho
production cross sections at LO and NLO, forAS5200 and 500
GeV. The LO results have been scaled by a factor of 0.01.
shaded bands represent the theoretical uncertainty ifmF(5mR) is
varied in the rangepT/2<mF<2pT . The lower panel shows the
ratios of the NLO and LO results for both c.m.s. energies.
11400
e
i-

D
l-

evant for the spin asymmetryATT
g for high-pT prompt photon

production in transversely polarized proton-proton collisio
This asymmetry could be a tool to determine the transver
content of the nucleon at RHIC.

Our calculation is based on a largely analytical evaluat
of the NLO partonic cross sections. We have presente
simple technique for treating, in an NLO calculation, t
azimuthal-angle dependence introduced by the transv
spin vectors. We will apply this technique to otherATT in the
future, such as for inclusive pion and jet production@32#.

We found that at RHIC energies the NLO corrections
the polarized cross section are somewhat smaller than t
in the unpolarized case. The transversely polarized cross
tion shows a significant reduction of scale dependence w
going from LO to NLO.
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APPENDIX: NLO TRANSVERSITY DRELL-YAN CROSS
SECTION WITH PROJECTION TECHNIQUE

In this appendix we briefly report the results we find f
the NLO corrections to the Drell-Yan ‘‘coefficient function
dCDY when using our projection method of Sec. II B. F
details on the kinematics for the process, see@10,11#. We use

ed

n

e

FIG. 2. Predictions for the transverse spin asymmetryATT
g for

isolated prompt photon production in LO and NLO forAS5200
and 500 GeV. The ‘‘error bars’’ indicate the expected statisti
accuracy for bins inpT ~see text!.
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a fully anticommutingg5 and choose the scalesmF5mR
5Q everywhere, withQ the dilepton mass. The LO cros
section and the virtual corrections at NLO rely on the und
lying 2→2 reactionqq̄→ l 1l 2. The real-emission NLO 2
→3 process isqq̄→ l 1l 2g. We apply our projector, Eq
~11!, to the squared matrix elements for each of these p
cesses and integrate over the appropriate phase space
the 2→3 process this gives

dC2→3
DY 5

as

2p

CF~4p!2«

G~122«! F S 2

«2
1

13

3«
2

p2

3
2

29

18D d~12z!

1S 2
4

«
2

26

3 D z

~12z!1
18zS ln~12z!

12z D
1

24z
ln z

12z
26z

ln2z

12z
14~12z!G , ~A1!

wherez5Q2/s. For the virtual contributions we get

dCvirt.
DY 5

as

2p

CF~4p!2«

G~122«! F2
2

«2
2

22

3«
1p22

116

9 Gd~12z!,

~A2!
.

.

e

tt

.

11400
r-

o-
For

and for theMS collinear-factorization term

dCfact.
DY 5

as

2p

CF~4p!2«

G~122«! F S 3

«
1

13

2 D d~12z!

1S 4

«
1

26

3 D z

~12z!1
G . ~A3!

Adding all terms, the poles cancel, and one obtains the N
MS coefficient function:

dCDY~z!5
as

2p
CFF S 2

3
p228D d~12z!18zS ln~12z!

12z D
1

24z
ln z

12z
26z

ln2z

12z
14~12z!G ~A4!

in agreement with@11#.
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