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We present a next-to-leading order QCD calculation of the cross section for isolateg{gpgempt photon
production in collisions of transversely polarized protons. We devise a simple method of dealing with the phase
space integrals in dimensional regularization in the presence of thedgoa@muthal-angular dependence
occurring for transverse polarization. Our results allow us to calculate the double-spin asyrifiefivy this
process at next-to-leading order accuracy, which may be used at BNL RHIC to measure the transversity parton
distributions of the proton.
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[. INTRODUCTION In this paper we extend the results[6] for isolated high-
pt prompt photon productionpp— yX, to the NLO of
The partonic structure of spin-1/2 targets at the leadingQCD. Apart from the motivation given above, also interest-
twist level is characterized entirely by the unpolarized, lon-ing new technical questions arise beyond the NLO in case of
gitudinally polarized, and transversely polarized distributiontransverse polarization. Unlike for longitudinally polarized
functionsf, Af, and &f, respectively{1]. By virtue of the cross sections where the spin vectors are aligned with mo-
factorization theorenji2], these nonperturbative parton den- mentum, transverse spin vectors specify extra spacial direc-
sities can be probed universally in a multitude of inelastictions, giving rise to nontrivial dependence of the cross sec-
scattering processes, for which it is possible to separatBon on the azimuthal angle of the observed photon. As is
(“factorize”) the long-distance physics relating to nucleonwell known [3], for A;t this dependence is always of the
structure from a partonic short-distance scattering that i$orm cos(2b), if the z axis is defined by the direction of the
amenable to QCD perturbation theory. Combined experimeninitial protons in their center-of-mass systéoom.s), and the
tal and theoretical efforts have led to an improved underspin vectors are taken to point in thex direction. Integra-
standing of the spin structure of longitudinally polarizedtion over the photon's azimuthal angle is therefore not ap-
nucleons,Af, in the past years. In contrast, the “transver- propriate. On the other hand, standard techniques developed
sity” distributions Sf, first introduced in[3], remain the in the literature for performing NLO phase-space integra-
guantities about which we have the least knowledge. tions usually rely on the choice of particular reference frames
Current and future experiments are designed to furthethat are related in complicated ways to the one just specified.
unravel the spin structure of both longitudinally and trans-This makes it difficult to fix® in the higher order phase
versely polarized nucleons. Information will soon be gath-space integration. The problem actually becomes more se-
ered for the first time from polarized proton-proton collisionsvere if dimensional regularization techniques are used for
at the BNL Relativistic Heavy lon CollidiRHIC) [4]. Col-  dealing with the collinear and infrared singularities, as is
lisions of transversely polarized protons will be studied, anccustomary. Even for the kinematically rather simple Drell-
the potential of RHIC in accessing transversify in trans-  Yan process the NLO calculation for the cross section with
verse double-spin asymmetridst was recently examined transverse polarization is quite more complicated as for the
in [5] for high transverse momentupy prompt photon and unpolarized or longitudinally polarized casgR0]. In this
jet production. Several other studies Af; for these reac- paper, we will present a new general technique which facili-
tions have been presented in the gést8|, as well as for the tates NLO calculations with transverse polarization by con-
Drell-Yan proces$3,9—11. With the exception of the latter veniently projecting on the azimuthal dependence of the ma-
reaction[10,11], all of these calculations were performed at trix elements in a covariant way. This method then allows us
the lowest ordefLO) approximation only. As is well known, to carry out phase space integrals with standard tools known
next-to-leading orde(NLO) QCD corrections are generally from unpolarized calculations.
indispensable in order to arrive at a firmer theoretical predic- After presenting our technique and verifying that it recov-
tion for hadronic cross sections and spin asymmetries. Onlgrs the known result for the transversely polarized NLO
with their knowledge can one reliably confront theory with Drell-Yan cross section, we apply it to higi- prompt pho-
experimental data and achieve the goal of extracting inforton production. We also present some first numerical calcu-
mation on the partonic spin structure of nucleons. lations of the cross sections and the transverse spin asymme-
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try for this process at NLO. Here we of course have to rely d3so pr vV do 1 dw
on some model for the transversity densities, for which we W_W_S < J' Wf?fa(xa,,up)

. ; . : 1- ’
make use of the Soffer inequalif2]. As in experiment, we vwo (1=0) Jyw

impose an isolation cut on the photon. We find a moderate d5e0) (v)

size of the NLO corrections and the expected reduced scale X 8f (X A=y s —w
X b( baIu'F) dod® ( )

dependence of the cross section at NLO. v

ag(pr) dSofy) . (s,0,W, up 1F)

Il. CALCULATION OF THE NLO CORRECTIONS + . dodwdd ) (3
A. Preliminaries ith had level variabl
with hadron-level variables
The transversity densityf(x,u) is defined[1,3,7,13 as
the difference of probabilities for finding a parton of flaor T .y
at scalew and light-cone momentum fractionwith its spin V=1+ 5 W= ST S=(Pa+Pg)?,
aligned (I T) or anti-aligned (T) to that of the transversely
olarized nucleon:
g T=(PA—P,)2 U=(Pg—P,?, 4
Sf(x,)="Fr (X, ) —F+(X, 1 . . . .
()= 00 p) =115 (X,p) @ in obvious notation of the momenta, and corresponding par-
T tonic ones

(an arrow always denotes transverse polarization in the fol-
lowing). The unpolarized densities are recovered by taking t —u
the sum in Eq(1). When the transverse polarization is de- v=1+ o w= ot s=(pa+tpp)?,

scribed as a superposition of helicity eigenstatdsreveals

its helicity-flip, chirally odd, natur¢l,7]. As a result, there is

no leadin i i i i ici IE(D —-p )2 uz(p -p )2- (5)
g-twist transversity gluon density, since helicity a~ My b~ My

changes by two units cannot be absorbed by a spin-1/2 targ

[1,7,14.1 The property of helicity conservation in QCD hard

scattering processes implies that there have to be two soft VW

t . .
ﬁleglectlng all masses, one has the relations

hadronic pie_c_es_ in the process that each fIip_ c_h_irality, _in orders=x_x,S, t=x,T, u=xpU, Xg=—0, Xp= 1=V )
to give sensitivity to transversity. One possibility, which we vwW 1-v
are going to consider in the following, is to have two trans- (6)
versely polarized hadrons in the initial-state and to measure ~ (i) )

tions in the partonic cross sections for the reactiais
—yX. pwr and ug are the renormalization and factorization

%[da(ﬁ)—do(m)]_déo o scales.

“[do(1T)+da(T])] do B. Projection technique for azimuthal dependence
2

Arr=

Let us consider the scattering in the hadronic c.m.s.
i . frame, assuming both initial spin vectors to betix direc-
Here déo denotes the transversely polarized cross sectionion. Then. on general grounds, for a parity-conserving

Arris expected to be rather small for most proce$6é&5,  theory with vector couplings, thé dependence of the cross
since gluonic contributions are absent in the numerator whilggction is constrained to be of the form cobj2

in the denominator they often play a dominant roleever-
theless, the LO study5] suggests that the asymmetry for d®so 250
prompt photon production should be measurable at RHIC, W50032¢)<dmd7]>- (7)
provided the transversity densities are not too small.

According to the factorization theoref@] the fully dif- e may obtaind?sa/dp;dn) by integrating the cross sec-
ferential transversely polarized single-inclusive cross sectiogon overd with a cos(®) weight:
A+B— v+ X for the production of a prompt photon with
transverse momentupy,, azimuthal angleb with respect to d?so 1
the initial spin axis, and pseudorapidity reads < >_ f

" 10 cog 20) =27
, AP cod2l)g e

8
dprd7 ®

o
For the lowest order contribution to prompt-photon produc-

Yion in Eq. (3) one has only the channglg— yg. Polariza-
tion for, say, the initial quark may be projected out by

We note that a gluon density does contribute beyond leadin
twist[14,15], where it will lead to terms i\ strongly suppressed
by inverse powers of the photgm;. An estimate of such effects
could follow the lines i 15]. 1

2 S . _

The only exception is the Drell-Yan process, which however suf- u s)u S)=—B.l1+ ved 9
fers from rather low rates. (Pa;Sa)U(Pa;Sa) 2¢a[ Vsbal, ©)
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wherep, ands, are the quark’s momentum and transversethese tensors into all possible tensors made up of the metric
spin vector, andi(p,,S,) its Dirac spinor. One readily finds tensor and the incoming partonic momenta, one finds,
for the LO process straightforwardly,

o dQ,(p,-Sa)?(Py-Sp)°
aq—79 f Y\ Py 2a vy b
dU B NC S eq, (10)

~ (0)
<d50— (v)>_2C,: aas ,

whereCg=4/3, Nc=3 ande, is the fractional quark charge. ~ [ 40 t?u? 2, 2.2

As discussed in the Introduction, in the NLO calculation _j 7 gez 12(SaS0) T SaSp]
' 8s

one wants to make as much use as possible of calculational

techniques established for the unpolarized case. For a single 3t2y?

inclusive cross section such as prompt photon production, =f de—z,

the appropriate methods were developed i6]. They in- 8s

volve integration over azimuthal angles. We therefore would

like to follow a projection analogous to E); however, we

should formulate it in a covariant way. To this effect, we first f dQ,(PySa)(PySp)(Sa- Sp)

note that the factor cos®/7 in the cross section actually

results from the covariant expression

tu )
=—J A0, 5= (5e°Sp)

S tu
F(Py:Sa:S) = —11 2(PySa) (Py Sp) + g(sa-sb)}, tu
(1) =—f da, 5, (14)

which reduces to cos@)/ in the hadronic c.m.s. frame. We where [d(), denotes integration over the photon phase

may, therefore, use(p,,s,,Sp) instead of the explicit space, and where we have chosen both spin vectors to point

cos(2b)/r. in the same direction. We also recall thgt p,=s;-pp

Even though employing(p, ,s,,S,) becomes a real ad- =0 (i=a,b) ands2=s2=—1. We emphasize that after the

vantage only at NLO, let us illustrate its use in case of thereplacements14) the whole invariant phase space oyey

LO cross section for the partonic reactiqq_, vg. We there remains to be integrated, inClUding tlieow trivial) azi-

have muthal part, as indicated by ttf@l()., on the right hand side.
This is the virtue of our method that becomes particularly
convenient at NLO. It is crucial here that the other observed

d(‘)‘z(}g%)ﬂyg _ (“fixed” ) quantities, transverse momentym and rapidity
dtdd 30,282 sIM(aq—y9)/?, (12 5, are determined entirely by scalar products(,) and

(Pp* p,)- This allows the above tensor decomposition with

) ) ) _ tensors only made up qf, andp, and of course the metric
where §|M|? is the squared invariant matrix element for the tensor.

reaction with transverse polarization and reads Inserting all results, and including the azimuthal part of
the dQ),, integration, we find

2(p'y'sa)(p'y'sb)

_ 4Cc s
5IM(qa—79)1*=(ee@)* 1~ _ ac;
¢ (6|M(qa—y9)|*)=(egQ) N (15)

tu
+;(Sa'sb)

' (13 and hence, using Eq12), we recover Eq(10).

In the NLO calculation, one has-23 reactionsab

One recognizes the factdf(p,,,s,,S,) emerging ins|M|2. —vycd. For an inclusive photon spectrum,- one integrates
We now multiply 5|M |2 by F(p,.Sa.Sp), equivalent to the over thg full phase spacef) andde_of parnclesc.andd,
multiplication by cos(®)/ in Eq. (8). The resulting expres- €sSpectively. The momentum of particemay be fixed by
sion may then be integrated over the full azimuthal phas&omentum conservation, and the integration is trivial. One
space without producing a vanishing result, unlike the caséen ends up with

of 8|M|? itself. This integration may again be performed in a

covariant way by noting first that the dependence of )
F(p,.S4,50)8|M|?> on the spin vectors comes as j dQJ dQcF(p, . Sa,Sp) 6| M(ab—yed)|*.  (16)
(PyS2)(Py-56), (Py-Sa)(PySu)(SaSp), and &5+ )2,

The first two of these terms correspond to contractions wittBesides scalar products of tegi=a,b) with p.,, the inte-
the tensorsp,p)pip3 and pip;, respectively. Expanding grand may contain terms(s,- pc)(Sp- Pc) and=(s;-pc). As
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before, we may expand the ensuing tensor and vector inteeheck, we have applied our method to the Drell-Yan trans-
grals in terms of the available tensors. As far as the integraversity cross section and recovered the known NLO result
tion overd() is concerned, such tensors may be made up of11] in a straightforward manner. For the interested reader,
the metric tensorp,, p,, andp,. It is also important to  we list some details of this calculation in the Appendix.
keep in mind that in the NLO calculation we will need to use

dimensional regularization due to the presence of singulari- C. Details of the NLO calculation for prompt
ties in the phase space integrations. We findd#4—2¢ photon production
dimensions,

From here on, all steps in the calculation are fairly stan-

tul1 dard, albeit still involved and lengthy. Since many of them
f dQc(pc'Sa)(pc'Sb):f dQe) | 5A=B|(Sa Sp) have been documented in previous papé6s-19, we only
give a brief summary here. We emphasize that the general
+[(1—&)A=Bl(p,Sa) method we have employed is to perform the integrations
over the phase space of the unobserved particles in the 2
X (P Sp) — 3 contributions analytically. We have also simultaneously
y R calculated the unpolarized cross section and found agreement
with the expressions available in the literat(it&,18].
At NLO, there are two subprocesses that contribute for
f dQC(pC'Si):j dQ2C-(pySi), A0 transverse polarization:
where qq— yX,
2
S ——— — yX. 21
A (1—2.9)6 , qq—vy (21)
The first one of course was already present at LO, wiere
B= 1 tCﬁ (18) =g. At NLO, one has virtual corrections to the Born cross
(1-2¢) tu’ section X=g), but also 2-3 real emission diagrams, with
T X=gg+qqg+q’'q’. For the second subproces&=qq. All
C=— SSyc— tUc LU contributions are treated as discussed in the previous subsec-
2tu tion, i.e., we project on their cos{f) dependence by multi-

plying with the functionF(p,,s,.Sp) in Eq. (11) and inte-
grating over the azimuthal phase space using ELg.and
(20).
(19) Owing to the presence of ultraviolet, infrared, and collin-
ear singularities at intermediate stages of the calculation, it is
After scalar products involvingp. with the s; have been necessary to introduce a regularization. Our choice is dimen-
eliminated in this way, only those withp(-s;) remain. sional regularization, that is, the calculation is performed in
As in our LO example, when we apply the factor d=4—2¢ space-time dimensions. Subtractions of singulari-
F(py,Sa:Sp), these terms enter asp}(~sa)2(py.sb)2 ties are made in the modified minimal subtractiodS)
and (p,-sa)(p,-Sp). We then may use Eq14) after appro- scheme throughout.

with

te=(Pa—Pc)®, Uc=(Pp—Pc)?, S,c=(P,+P)*

priate modification tad=4—2¢ dimensions: Projection on a definite polarization state for the initial
partons involves the Dirac matrixs, as is evident from Eg.
J dQ (P 52)A(p.- Sp)? (9). Itis well known that dimensional regularization becomes
yiFy =al Ay b a somewhat subtle issue £ enters the calculation, the rea-
- son being thatys is a genuinely four-dimensional object with
:f do t°u [2(s,-S )2+stz] no natural extension td#4 dimensions. Extending the re-
T4(1—&)(2—¢)s? a b a=b: lation {ys,y*}=0 tod dimensions leads to algebraic incon-

sistencies in Dirac traces with an odd numberygf[20].
Owing to the chirally odd nature of transversity, in our cal-
f dQ,(py-Sa)(PySp)(Sa Sp) culation all Dirac traces contain twgs matrices, and there
should be no problem using a naive, totally anticommuting
_ tu 2 vs in d dimensions. Nevertheless, we also did the calculation
__J dﬂym(sa'sb) : (20 (sing the widely used *t Hooft—Veltman—Breitenlohner—
Maison(HVBM) scheme™[21] for ys, which is known to be
After this step, there are no scalar products involvingghe fully consistent. It is mainly characterized by splitting the
left in the squared matrix elemefgxcept the trivials,-s,  d-dimensional metric tensor into a four-dimensional and a
=—1). We may now integrate over all phase space, employ¢d—4)-dimensional one. In the four-dimensional subspace,
ing techniques familiar from the corresponding calculationsys continues to anti-commute with the other Dirac matrices;
in the unpolarized and longitudinally polarized cases. As éowever, it commutes with them in the { 4)-dimensional
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dt

tu

(Sftiu!8)> _ 2CF g 2 ILLZS (477/1«25)8

f ~(0)
the algebrdand of phase space integrals. We found the sam Taa- g = e
Ne & “I(1-¢)

final answers for bothys prescriptions in all our calculations.
Ultraviolet poles in the virtual diagrams are removed by

_ 2 22
the renormalization of the strong coupling constant at a scale XM( e 2) _
ur. Infrared singularities cancel in the sum between virtual (1-¢)(2—¢) 2tu
and real-emission diagrams. After this cancellation, only col- (25)

linear poles are left. These result for example from a parton
in the initial state splitting collinearly into a pair of partons, Needless to say that we have applied also here our “projec-
corresponding to a long-distance contribution in the partonit¢or” F(p, ,S,,S,) of Eq. (11) and performed the integration
cross section. From the factorization theorem it follows thatover the scalar products involving spin vectors according to
such contributions need to be factored, at a factorizatioriEq. (20).
scale ug, into the parton distribution functions. A similar In the final-state collinear case, an expression very similar
situation occurs in the final state. The high-photon may to Eg. (22) is to be used, involving now the unpolarized
result from collinear radiation off a quark, which again is quark-to-photon splitting function
singular. This singularity is absorbed into a “quark-to-
photon” fragmentation functiof17,18 that describes pho-
ton production in jet fragmentation and hence by itself con-
tains long-distance information. The fragmentation
contribution has not been written down in E®). It has a a@nd the 2-2 “pure-QCD” transversity cross sections th
structure similar to Eq(3), but with an extra integration over dimensions, given by
the fragmentation function. Its size also depends on the ex- ~(0)

ddo =~ (S,t,u,s)>

1+(1—2)?

- (26)

Py(2)=

perimental selection of prompt photon events, as we will a9—9'q’

discuss below. dt
The subtraction of initial-state collinear singularities is

particularly simple in case of transversity since there is no

gluon transversity and onlg—qg collinear splittings can

occur. Only the processq— ygg has such poles. Their can-
cellation is effected by adding a “counterterm” that has the <

B CF a,g MZS 4ﬂTMZS e
2Ng g2 M(1—¢)| tu

tu
X(2+e)—,
S

~(0) 2 e B
structure(for radiation off the initial quark ddo g qq(SiLU.E) _Cr oo p>*  [Amu’s
dt 2Ng g2 I'(1—¢)\ tu
~(0)
asfl doo . ,q(XSXt,U,€) t 2-¢)
—— | dxéHqgq(X, ug) u (2—¢)u
aq —_ s
7)o do X (2+8)SZ Ne s|'
X 8 x(s+1t)+u], (22 (27)
where, in theMS scheme, dsol)) q(sit.u,e) _ Ce a_ﬁ w?  [Amp’s\®
dt 2NZ s2 '(1-¢)| tu
1 s |°
5qu(z,MF)E(—g+yE—ln4w) 5qu(z)(—2> , X(2—¢g).
HE
(23 In these expressions, we have neglected contributions
«O(&?), which do not contribute. Then, the results for a
with the LO transversity splitting functiof23] fully anticommutingys and for the HVBM prescription are
again the same.
27 3 Before coming to our final results, we would like to make
5qu(2)=CF[—+—5(1—Z) _ (24  two more comments on the use of our “projector” on the
(1-2), 2 azimuthal-angular dependence, Efl). In an NLO calcula-

tion, carried out ind dimensions, we could have a projector
Here the “plus” distribution is defined in the usual way. As that by itself contains termse. Indeed, some of the Born
indicated in Eq(22), the 2—2 cross section in the integrand cross sections, when evaluated dndimensions, suggest a
needs to be evaluated ith dimensions. The result, which projector of the form
turns out to be the same in the anticommutipgand the

HVBM schemes, is given by 2(p,-S2)(Py-Sy) + (1—ae)
Y Y

S
Fs(p‘yrsaysb): m

3We use the programRACER [22] to perform Dirac traces inl

dimensions. ' (28)

tu
X?(Sa' Sb)
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with some constard. Clearly, the final answer of the calcu- and the factorization pgrtdo not by themselves integrate to
lation must not depend om because our projection is a zero, but only their sum does. In this way, we have a very
physical operation which could be done in experiment. Wepowerful check on the correctness of our calculation.

have used the above projector with an arbitraryand

checked that indeed no answer depends.ohlso, we have

integrated all squared matrix elements over the spin vectors D. Final results for inclusive and isolated photon

without using any projector at all. This amounts to integrat- cross sections

ing cos(2P) over all 0<s®<27, and, as expected, we get

zero in the final answer. It should be stressed, however, that For both subprocesses, the final results for the NLO cor-
individual pieces in the calculatiofthe virtual, the 2-3, rections can be cast into the following form:

doaly) . x(S,0.W, g, )\ aa 1 nE ,
ab—yX REF ) = S(ZMR) <A05(1—W)+Bom+co)In?FJrClIf'”a'(l—u—Fvw)

dvdw T
i 1 In(1—w)
+A,8(1-w)iIn—+A8(1-w)+B—-———+C+D|———| +EInw+FlInv
S (1—w), 1-w
| 1-v
Inw r11—vw

+G (1) +HIN(L=w)+1 I(1—ow)+IIN(1-v+ow) + Ky +L—r—

In(1—v+ovw)

1-w ' (29

where all coefficients are functions ofandw, except those have little hadronic energy around them are less likely to
multiplying the distributionss(1—w), 1/(1-w),, [In(1  result from#° decay. The standard procedure is to define a
—w)/(1-w)], which may be written as functions just of “cone” around the photon by/(A %)%+ (A $)?’<R, where
Terms with distributions are present only for the subprocesgypically R~0.4...0.7, and to demand that the hadronic
qg— yX. The coefficients in Eq(29) are too lengthy to be transverse energy in the cone be smaller thpp, wherer
given here but are available upon request. is a parameter of order 0.1. For the theoretical calculation,
Let us now specify the functiof™3(z=1—v+ow). It isolation implies a strong reduction of the size of the frag-
results from the configurations where the photon is collineamentation contribution because photons produced by frag-
with a final-state quark or antiquark. As we discussed earliemmentation are always accompanied by a certain amount of
these will lead to final-state collinear singularities that arehadronic energy. A slightly refined type of isolation has been
absorbed, at the factorization sc¢ajer, into photon frag- proposed in24]. Again a cone is defined, centered on the
mentation functions. The actual form 5" depends on the photon, within which the hadronic transverse energy must
kind of photon signal under consideration. Let us first con-not exceed the limit-pr. However, one chooses a larger
sider the fully inclusive cross section. In this case, one just-1 and then further restricts the hadronic energy by de-
counts all photon candidates in the kinematical bin, withoutmanding that for any <R the hadronic energy inside a cone
imposing any constraint on additional particles in the eventof openingr be smaller than roughly(r/R)?ps. In other
This is the simplest cross section and the one usually meavords, the closer hadronic energy is deposited to the photon,
sured in fixed-target experiments. In the theoretical calculathe smaller it has to be in order for the event to pass the
tion, final-state singularities arise and there is a need to inisolation cut. This isolation method has not yet been used in
troduce a fragmentation contribution, as discussed earlier. any experiment, but it is possible that it will become the
At collider energies, the background from pions decayingchoice for the RENIX experiment at RHIG25]. On the the-
into photon pairs is so severe that so-called isolation cuts areretical side, it has the advantage that it “eliminates” any
imposed on the photon. The basic idea is that photons th&ind of fragmentation contributiofi24] because fragmenta-
tion is assumed to be @mainly) collinear process, and no
hadronic activity is allowed exactly parallel to the photon.
“We could also choose a final-state factorization sqale ug We recall from the previous section that we have per-
here. formed an analytical integration over the full phase space of
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the unobserved particles in the final state. This seems at first very accurate description of isolation everRat0.7. Ana-
sight to preclude the implementation of an isolation cut “af- lytical calculations[26,27] are therefore as capable to de-

terwards.” However, as was shown [i#6,27), it is possible

scribe the isolated prompt-photon cross section as NLO com-

to impose the isolation cut in an approximate, but accurateputations in which phase space integrals are performed

analytical way by introducing certain “subtraction cross sec-

numerically employing Monte Carlo techniquigs,24,21.

tions.” The approximation is based on assuming the isolation For the cases of the fully-inclusi&incl.” ) cross section,
cone to be rather narrow. In this case, dependence on thhe standard isolatioffstd.” ), and for the isolation proposed

cone opening can be shown to be of the foam(R)+b

in [24] (“smooth”) the functionZ™a!(z=1—v+vw) takes

+O(R?). aandb are straightforwardly determined and yield the following forms:

( ,U«Z

P.4(2)In ?F incl.,
, 2 1-2)%piR?
zMnal(z) = qu(z)ln<% +0(1-2[1+7]) qu(z)ln($ +z| std., (30
ME
1—7)3p2R2

qu(z)ln<¢> smooth.

\ S7Z

One can see the presence of the quark-to-photon splittinGRSV (“standard scenariof [30] densitiesq(x,uo) and

function P, of Eq. (26), as is expected for contributions

Aq(x,mo), respectively. Fop> u the transversity densities

resulting from near-collinear photon emission in the final 5f(x,u) are then obtained by solving the evolution equa-
state. It also becomes clear that for the standard isolation théons with the LO[7,23] or NLO [11,31] kernels. Obviously,
dependence on the final-state factorization scale is reducetle sign to be used when saturating the inequality is at our

and disappears altogether for the isolatiorf2f]. This is in

disposal; we choose all signs to be positive. We refer the

line with our remarks above about the size of the fragmenreader td 5] for more details on our model distributions. We

tation contribution in these cases.

Ill. NUMERICAL RESULTS

note that we will always perform the NLQ.O) calculations
using NLO (LO) parton distribution functions and the two-
loop (one-loop expression forg.

Figure 1 shows our results for the transversely polarized

In this section, we present a first numerical application ofprompt photon production cross sections at NLO and LO for
our analytical results. We focus on the main features of thewo different c.m.s. energies. The lower part of the figure
NLO corrections and describe their impact on the cross sedisplays the so-calledK factor”

tion dda/dpr and the spin asymmet?;. Our predictions
will apply for prompt photon measurements with theeRix

detector at RHIC. This implies that the pseudorapidity region
| 7|=<0.35 is covered, and only half of the photon’s azimuthal

angle. Using Eq(7) we restore the cos{®) dependence of
the cross section. We take the two quadrani® ioovered by
the PHENIX detector to be— m/4A<d<m/4 and 3m/4<D
<5m/4 and integrate over these. This gived ™,
+ [3™cos(2b)dd=2. We consider photons isolated ac-
cording to the isolation of24] discussed above, using
=0.4 andr=1.

Before we can perform numerical studiesAgf; we have

d 50,NLO

4550 (32

One can see that NLO corrections are somewhat smaller for
JS=500 GeV and increase withy; . As we have mentioned

in the Introduction, one reason why it is generally important
to know NLO corrections is that they should considerably
reduce the dependence of the cross sections on the unphysi-
cal factorization and renormalization scales. In this sense, the
K factor has actually limited significance since it is likely to
be rather scale dependent through the presence of the LO

to model thesf we will use. Nothing is known experimen- cross section in its denominator. The improvement in scale
tally about transversity so far. The only guidance is providedjependence when going from LO to NLO is, therefore, a

by the Soffer inequality12]
2|5g(x)[=q(x)+Aq(x) (31

which gives an upper bound for eadh. As in[5] we utilize

better measure of the impact of the NLO corrections. The
shaded bands in the upper panel of Fig. 1 indicate the uncer-
tainties from varying the scales in the rangg2< ugr= ug
=<2p+. The solid and dashed lines are always for the choice
where all scales are set p3, and so is th&< factor under-

this inequality by saturating the bound at some low inputneath. One can see that the scale dependence indeed becomes

scale up=0.6 GeV using the NLO(LO) GRV [29] and

much weaker at NLO.
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g7 * T ¢t * T T T T T [ ' 73 02 —mm 71—+
F\_ ddc /dp, [pb/GeV] 1 A i <0.35 .. :
0F N T 3 TT | V'S = 200 GeV -
1 F E 0.01 -
3 E I VS =500 GeV |
a1r E | ]
10 F E I -
10k 3 0 t
3 C ] 5 B ]
- - i V, NL J
10 3 ml <0.35 3 I 500 GeV, 800 pb_1 O
E 3 L ¢ 200GeV,320pb? ----- LO 1
A4r 1 L L L ' 1 1 ) 1 L 1 L ' L 1
T PR VS = 200 GeV LO(x0.01) 4 oot 0
P VS =500 GeV W, pr [GeV]
10 F 3
F+—+—F—+—+—+—+—F—+—+—+—+—F—+—+ FIG. 2. Predictions for the transverse spin asymméty for
C NLO LO 7 isolated prompt photon production in LO and NLO fg6=200
15 F déo [dd0™  _o---eC 3 and 500 GeV. The “error bars” indicate the expected statistical
[ s =TT ] accuracy for bins ipy (see text
1 : ................................................................. .E
- ] evant for the spin asymmetA? for high-pr prompt photon
pet——1—x 1t x 2 [ 3 1 1 x 1 11 production in transversely polarized proton-proton collisions.

This asymmetry could be a tool to determine the transversity
content of the nucleon at RHIC.

- . Our calculation is based on a largely analytical evaluation
FIG. 1. Predictions for the transversely polarized prompt photon gely y

production cross sections at LO and NLO, fg8—200 and 500 of the NLO partonic cross sections. We have presented a

GeV. The LO results have been scaled by a factor of 0.01. TheSlmple technique for treating, in an NLO calculation, the

shaded bands represent the theoretical uncertainiy(f= ug) is az!muthal-angle d_ependencg |ntrod.uced by the .transverse
varied in the rang@/2<ug<2py. The lower panel shows the spin vectors. We W'!l apply thls, teChmq,ue to otffeyy in the
ratios of the NLO and LO results for both c.m.s. energies. future, such as for inclusive plon_ and jet prOdUCt[ij
We found that at RHIC energies the NLO corrections to

Figure 2 shows the spin asymmetky; which is perhaps the polarized cross section are somewhat smaller than those
the main quantity of interest here, calculated atl(@ashed in the unpolarized case. The transversely polarized cross sec-
lines) and NLO(solid lines. We have again chosen all scales tion shows a significant reduction of scale dependence when
to bepy. Due to a largeK factor for the unpolarized cross going from LO to NLO.
section, the asymmetry is smaller at NLO than at LO. We
also display in Fig. 2 the statistical errors expected in experi-
ment. They may be estimated by the form[4a
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OATT= (33

1
PZ\/,CO'bin,
whereP is the transverse polarization of each beainthe
integrated luminosity of the collisions, anf;, the unpolar-
ized cross section integrated over the bin for which the
error is to be determined. We have usBd&=0.7 and L
=320(800)/pb for,/S=200(500) GeV.

IV. CONCLUSIONS

We have presented in this paper the complete NLO QCD appgNDIX: NLO TRANSVERSITY DRELL-YAN CROSS
corrections for the partonic hard-scattering cross sections rel- SECTION WITH PROJECTION TECHNIQUE

In this appendix we briefly report the results we find for

®We note that our LO asymmetries are larger than those reporteﬂWeDb('LO corrections to the Drell-Yan “coefficient function”
in [5]. This is due to an error in the numerical computation5h ~ 6C~" when using our projection method of Sec. IIB. For
Our LO curves in Fig. 2 correct this mistake. details on the kinematics for the process, [siB11]. We use
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a fully anticommutingys and choose the scalgsr=ur  and for theMS collinear-factorization term
=Q everywhere, withQ the dilepton mass. The LO cross
section and the virtual corrections at NLO rely on the under-

lying 2—2 reactionqa—ﬂ*lﬁ The real-emission NLO 2 as Ce(4m?[(3 13
— S
—3 process isqg—|*17g. We apply our projector, Eq. 5CfDaZt,:E m[(ng?) 0(1-2)
(12, to the squared matrix elements for each of these pro-
cesses and integrate over the appropriate phase spaces. For 4 26 7
the 2— 3 process this gives +(;+ 3 W . (A3)
+

ag Ce(4m)%®

5DV ( 2 18 o 29) 512
23" 5 T(1-2e)| | 2 3 3 18 —z
2w I'(1-2e)| g2 3¢ 3 18 Adding all terms, the poles cancel, and one obtains the NLO
4 26 7 In(1-2) MS coefficient function:
e 3/(1-2), 1-z |,
Inz n’z oy, . @s 2, In(1-2)
4z —6z7 - +4(1-2)|, (A1) 9CY(2)=5_C¢ |37~ 8|8(1-2)+82| —— )
wherez=Q?/s. For the virtual contributions we get Inz In?z
, 4Zl—z 621_Z+4(1 z) (A4)
Ce(4m)“® 2 22 116
py _ % YR |2 S8 o T7Oleq
= T(1-26)| o2 31" 9 ]5(1 2),

(A2)  in agreement with11].
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