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Estimating inelasticity with the information theory approach
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Using the information theory approach, in both its extensive and nonextensive versions, we estimate the
inelasticity parameteK of hadronic reactions together with its distribution and energy dependencepfpom
andpp data. We find that the inelasticity remains essentially constant in energy except for a variation around
K~0.5, as was originally expected.
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I. INTRODUCTION =K-/s to be hadronized, or implicitly, when one finds that
out of numerous parameters of the model only the combina-
The inelasticityK (0<K < 1) of a reaction has well estab- tion leading to the given fraction of available energy to be
lished importance in working with data from cosmic ray cas-converted into produced secondari&s, /s, is important;
cadeg[1] (cf. also[2—4] and references therginit tells us  see[13]. Attempts to estimate it are thus fully justifiable. In
what fraction of the energy of a projectile is used for produc{11,12 calculations of the inelasticity distributiony(K)
tion of secondaries and what fraction flows further along theland its energy dependencéased on the assumed domi-
cascade chain. In cosmic ray observablésn fact appears nance of high energy multiparticle processes by gluonic in-
in some combination which also contains the mean free patperactions, were presented. In the other calculations the mean
for the particle propagation in the atmosphere or, equivalnelasticityK and its possible energy dependence were sim-
lently, the total inelastic cross sectian,. This makesk ply estimated either by using thermal-like model formulas

difficult to estimate because of the freedom available to atapplied to colliderpp data[14-1§ (like, for example, in
tribute the observed effects eitherkgs) or to o(s). Itwas ~ [19]) or by some other meari20].

therefore proposed if] that in order to extradk(s) unam- In this paper we address this problem again, this time by
biguously from cosmic ray experiments one should analyz&n€ans of the |nformat|on theory apprpach both in its exten-
simultaneouslyhe data fromat least two different types of ~ SIVe [21] and nonextensivg22,23 versions. The idea is to

experiments for which combinations Kfand o, are differ- describe th_e availaple data_by using onbjraly minimal
ent[5]. amount of information avoiding therefore any unfounded

: . . and unnecessary assumptions. This is done by attributing to
Nowadays there is a strong tendency to replace inelastic; A . . ;
. . . - he measured distribution(svritten in terms of the suitable
ity and simple energy flow models with more refined and

complicated models of multiparticle productigaee[7—9] probability distributiongan information entropy and maxi-

d ref herei hei ¢ lati h mizing it subject to constraints which account for @upri-
and references therginin their present formulations such . \howledge of the process under consideration. As a result

models differ substantially among themselves, concerning e gets thenost probableand least biaseddistribution de-
both their physical basis and tiesually very largenumber  gcriping these data, which is not influenced by anything else
of parameters used, and lead to quite different, sometimegesides the available information. In such approach the in-
even contradictory, predictior8,9]. While developing mod- ¢ |asticity K emerges as the only real parameter, all other
els is necessary for the global understanding of cosmic rayaniities being well defined functions of it. We attempt to
physics, for the purpose of studying energy flow it may becjarify here the role of the inelasticity by using both the
desirable to have a more economical description of high engyensive and nonextensive versions of information theory.
ergy collisions, involving only a small number of parameters. 5, necessary background on the information theory ap-
This is one of the advantages of working with the concept Otproach needed in the present context is given in the next

inelasticity [1,10). section. Section Il contains our results for th@ and pp

The inelasticity is also a very important guantity in phe- collisions. Our conclusions and summary are presented in the
nomenological descriptions of hadronic and nuclear coIIi-Iast sectic.m y P

sions in terms of statistical models of multiparticle produc-
tion processefll,12. In this case it enters either explicitly,

as a single parameteK defining the initial energyM Il. GENERAL IDEAS OF INFORMATION

THEORY APPROACH
*Email address: NAVARRA@IF.USP.BR As presented at length i21] (where further details and
TEmail address: utyuzh@fuw.edu.pl references can be foupdhe information theory approach
*Email address: wilk@fuw.edu.pl provides us, by definition, with thenost probable, least
SEmail address: wiod@pu.kielce.pl biased estimation of a probability distribution{p;,i
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=1,...n} using only knowledge of a finite number of ob-  This approach can be generalized to systems which
servables{F, ,k=1,... n} of some physical quantities ob- cannot be described by Boltzmann-Gil{g<5) statistics be-
tained by means gb; and defined as cause of either the existence of some sort of long-range cor-
relations (or memory effects or fractal structure of their
" 0 phase space or because of the existence of some intrinsic
Fk:<Fk>:i=21 PiFk”. (1) fluctuations in the system under consideration. It turns out
that such systems are nonextensive and therefore must be
One is looking for sucKp;} which contain only information ~described by a nonextensive gengralization of BG statistics,
provided by{F,} and nothing more, i.e., which containini-  for example by the so-called Tsallis statistie®] defined by
mal information. The information connected witfp;} is  the following form of the entropy:
quantified by the Shannon information entropy defined as

1
S=-Zipilnp;. ) qu_mzi(l_piq)' @

Minimum information corresponds to maximum entrofly |t js characterized by the nonextensivity paramejesuch

therefore, the[p;} we are looking for are obtained by maxi- that for two independent systemsand B,
mizing the information entropy under conditions imposed

by the'measured observablgs,} gs.given by Eq(1). They Sya+8)= Sqat Sqa+ (1—0)SyaSys- (5)
result in a set of Lagrange multipliefa, ,k=1,...r} and
the generic form ofp;} we are looking for if21] Notice that in the limitgy— 1 one recovers the previous form
] of Boltzmann-Gibbs-Shannon entrogg). Maximizing S,
1 _ . ; X .
pi=—exr{ _ 2 Ay F(k,)}, 3 under constraints, which are now given in the fdred]

z k=1 N
where Z is obtained from the normalization condition F(kq):<':k>q:i21 [pi]qF(kq’l)’ (6)
2Lpi=1.

Such approach was applied long time ago to experimentaksyits in the following power-like form of thémost prob-
data on multiparticle production with the aim at establishingaple, least biasedrobability distribution:

the minimum amount of information needed to describe

them[13]. The rationale was to understand what makes all 1

the apparently disparaté not outright contradictory mod- Pi= i(q)zz—exg1
els of that period fittequally wel) the data. The result was q
striking and very instructivg¢13]: the data considere@nul-
tiplicity and momentum distributionscontained only very @
limited amount of information, which could be expressed in>i-1Pi - =1 and where

the form of the following two observationg) the available

phase space in which particles are produced is lim{ied, de X
there is some sort opy cutoff) and (ii) only a partK expy| — x| =|1-(1-a) X)
€(0,1) of the available energy's is used to produce the

observed secondaries, the rest being taken away by the sOf special interest to us here will be the fact that intrinsic
called leading particlesi.e., inelasticity emerges as one of fluctuations in the system, represented by fluctuations in the
the cornerstone characteristics of reactiévl other assump-  parameter 1X in the exponential distribution of the form
tions, different for different modelgbased on different, ~exp(—x/A), result in its nonextensivity with parametgr
sometimes even contradictory, physical pictures of the colligiven by a normalized variation of fluctuation of the param-
sion process were therefore spurious and as such they coulagter 1A [23]:

be safely dropped out without spoiling the agreement with

r
—kZl NFED ] @)

where Zy is obtained from the normalization condition

1(1-q)

®

experimental data. In fact, closer scrutiny of these models 1\2 1\?2
showed that they all contained, explicitly or implicitly, pre- <(X) > _<X>
cisely those two assumptions mentioned above and that was qzliT. 9
the true reason of their agreement with data. <_>
In this paper we are therefore following the same line of A

approach with the aim at deducing from the available data

the inelasticity paramete£. Notice that the formuld3) re-  So far this has been proved only for fluctuations ot Biiven
sembles the statistical model formulas based on thé the form of the gamma distribution,
Boltzmann-Gibbs statistics as used[i8]. However, in Eq.

(3) no thermal equilibrium is assumed and|l(i.e., among f<£) _ M+ ﬁ)a lexp( _ ﬁ) (10)
others also the “partition temperaturd”in [19]) are given Al T(a)\A A’

by the corresponding constraint equati) whereas nor-

malization fixesZ, which is a free parameter [r19]. but this conjecture seems to be valid also in genfdd).
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Ill. INELASTICITY OBTAINED FROM ANALYSIS OF THE 1 dN(y)
pp COLLIDER AND pp FIXED TARGET DATA PY) =y ay 7 €Xp(— Burcoshy) (14

The available information in this case consists of the fol-
lowing:

(i) The mean multiplicity of charged secondariés,,),
produced in nonsingle diffractive reactions at given energy Z=Z(W,N,,ut)=f
Vs, which can be parametrized &és.,)=A+BIns+CIn%s

or as(ncy) =D +Es” (see[28)). In what follows we shall - iyen by the normalization conditiorf,dyp(y)=1. Notice
issume, for S|mpl|c!ty, that they are pions with mgss  hatin such an approach the “inverse temperat8eind the
=0.14 GeV. Out of it, we shall construct and use the total,ormajizationz depend on our input information, i.e., o

mesan number of produced particles assuming it toNoe and i1, and on the assumed inelasticky (via W=KJ§),
:5.<.n°h(s)>' . . which is our free parameter. They are therefore maximally

(ii) The observat_|on _that the phase space f|IIe_d by th orrelated which means that the shape of distribup¢n)
prqduced secondaries is ess.ent|all_y one-dimensional wit iven by 8) and its heightgiven byZ) are not independent
limited (and only slowly growing with energytransverse of each other. This is in sharp contrast to the approaches
moTenta{ZQ]: <PT.>=O'.3+_O '0‘_14 In/s/20) [30]. . presented before ii19] whereboth 3 (called “partition tem-

(iii) The razp|d|ty d|§trlbutlor_15 of pharged Sec_:onda”es'perature') and the normalizatiofour Z) were treated as two
dN(s)/dy=Jd“py dN/d"p, provided either by collider ex- j,yanendent parameters. Because of the symmetry of the col-
periments[14-17 or by the fixed target experimefi8l]. jiging system, momentum conservation does not impose any
They are available only in a limited range of the rapidity oqgitional constraint here and we are left wighbeing the
Fpa}ce, depending on the details of the experimental setu(pnly Lagrange multiplier to be calculated from Ha2) for
29]. o

. . . each energyV and multiplicity N.

Following the r_esults obtained ifl.3] we expect(and Notice that Eq(14), although formally resembling formu-
therefore assume in what folloyehat only a part=K J§ las obtained in thermal mod€l32], has a much wider range
of the total energy/s is used to produce secondaries in theof applicability as it is not connected with any assumption of

central region of the investigated reaction. The inelastiCityinhermal equilibrium. Actually it can be written in the scaling-
K=K(s) will therefore be the main quantity we shall inves- |ike form

with 8= B(W,N, wt) given by solving Eq(12) and

Y

: dyexp(— Burcoshy)  (15)

tigate.
We start with the information theory approach in its ex- —urcoshy
tensive version. In this case the relevant probability distribu- p(y)= 7 &X —BT , (16)

tion defining information entropy?) is given by
q wher_e(E>=W/N is the mean energy per produced particle
p(y)=p(y;N,W=K+/s)= 1dN (11) ~ andB=pBW/N. Plotting3 as a function of E) one observes
N d that for the minimal number of produced secondaris (

whereas constrairftl) is just the energy conservatighere ~—~2) A~ —, whereas for the maximal numberN(

wr=\ 2+ {pr)? and(E) is the mean energy per produced —Nmax=W/u1) B— +. There is also an intermediate re-

particle [33]: gion in which 8 remains fairly constant, leading to an ap-
proximate “plateau” inp(y). In this region “partition tem-

Ym w K\/s erature” 13 and inelasticityK are related in a very simple
J y dy[MTCOSW]p(y):N:<E> N (12) \F/)vay, nameg * Yo

The limits of the relevant longitudinal phase space are _ N (17
, 2\ 1/2 Kys
=In{ =—| 14| 1— i
Ym=In 2u W2 ' Actually, >0 only for N>Ny=2 In(N,o) and the “pla-
teau” occurs only folN=N,. It clearly shows thal =1/8,
W =W—(N=2)u7. (13)  called sometimes “partition temperaturgl9], is a measure

of energy available per produced partigiehich therefore
We would like to stress that throughout this paper the centratiepends also on inelasticjty
region of the reaction, i.e., the region populated by produced In the case of the nonextensive version of information
particles distributed according f(y) [or p4(y) later onl, is  entropy the energy conservation constraint is given by
always defined by Eq13). Thereforey e (—Y,,Y) in the
c.m. system(c.m.s) and we do not choose arbitrary cuts in Ym d q_%_ Kq_\/g 18
rapidity spaceas, for example, ifi13]). Following now the v YL urcoshyJLpq(y) = N N (18

steps mentioned in Sec. Il, i.e., maximizing the respective
information entropy(2) with the constraint given by Eq. and maximization of the corresponding Tsallis entragy
(12), we arrive aff21] results in
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FIG. 1. Rapidity spectra obtained by UA44]| and Fermilab FIG. 2. Rapidity spectra obtained by UA34]| and Tevatron
Tevatron[15] fitted by formula(14). For completeness results for [15] fitted by formula(19). For completeness results fpp data at
ppdata at 20 GeVY31] are also shown. The corresponding values of 20 GeV [31] are also shown. The corresponding values of ghe
inelasticityK are listed in Table I. inelasticity x4 and nonextensivity parametgrare listed in Table I.

1dN, 1 from [17] and P23g916] data at 630 GeV are shown sepa-
PaY) = gy — 7. &R~ Bqurcoshy) (190 rately in Fig. 3. Both sets of data are clearly incompatible in
y q the sense that UA7 datavhich are forz%'s and have been
taken here in the same way as[B4]) do not continue the
trend shown by P238 datavhich are, as UA5 ones, for
charged particlesInstead they seem to continue the trend of
the charged UA5 data, which is also clearly seen from the
values of the obtained parameters displayed in Table I. Be-
Quse of this fact we have fitted them separately. The results
or the respective inelasticity parametek and its
g-equivalentsx, for different energies are shown in Table I.

" e timated error&he same for both approachesnge
poses an additional condition on the allowed phase space f rhe es - : ) ;
<1 andB,>0. In this case the strict correlation between rom AK=0.02 for 20 GeV(where the fitted range in rapid-

the shape of rapidity distribution and its height is relaxed' S biggesl.toAK=0.05 for 1800 GeMwhere the lack of
because both depend also on the new parangetEhis fact meagureq tails preventg a bettg}.fﬁhesg errors ShO.UId be
will be important later on. The scaling-like formu(a6) and kept'ln m!nd wh'er'lllookmg.at Fig. 4, which summarizes 'the
the approximate relatio(l7), this time betweerB, and «,, obtained inelasticities of different types. These inelasticities
are still valid, albeit this time only approximately, i.e., for ¢an Pe compared with inelasticitigsy<, defined by the

small values of[q—1|. On the other hang3,>0 for N formula
=(2 NNy, i.e., for larger (smalle) multiplicities, de- N
pending whetheg>1 (q<1). :_J m

The results for fits using extensive formul®d) are dis- Kivi=a Js Ym:_4dyp(y)[,uTcoshy], (29
played in Fig. 1 and those using its nonextensive version
given by Eq.(19) are shown in Fig. 2. As one can see theyi.e., in the same way as {i19], namely, by integrating over
are almost identical, differences showing up only for 20 GeVthe same part of the phase space limited Yy =4. Notice
where data develop a tail which is most sensitive to the pathat values oK, -, are systematically smaller than the cor-
rameterg. The result for the joint distributions of UA7 data responding values dk and are in a visible way decreasing

[where exg(---) is defined by Eq(8) andZ, is given, as in
Eq. (19, by the normalization conditionfdyp,(y)=1].

The characteristic feature @f,(y), as shown in Fig. 5, be-
low, is that it enhance&lepletesthe tails of the distribution
for g>1 (g<1), respectively(or, in other words, it en-
hances or depletes the more or, respectively, less probab
events. Notice that in this case, differently than in E44),
one has to be sure that-(1—q) Bqurcoshy=0, which im-
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4.0 T T energy+/s to be used for the production of secondaries and
O P238 data uses the nonextensive version of information theory to find
. ® UA7 data dN/dy then one findgg<1 [37], notg>1 as here. This is,
35+ \ ——K=0.60,q=1.00 however, expected because of the already mentioned fact that
: SN ——K=050,q=1.00 the g<1 case enhances frequent events whergad the
N x =0.26,q=1.27 . . .
FEEE SN a_ . rare ones. When considering the whole phase space it com-
3.0+ L% =02.a=1.25 prises all produced particles, which are located predomi-
nantly only in part of it. Therefore we have to enhance those
frequent events by using<<l. This choice, as was men-
251 tioned above, limits also the allowed phase space. On the
other hand, whelK is accounted fofas in the present case
> the allowed phase space is essentially correctly described by
o 2.0+
= K /s and one has only to enhance the rare events when par-
% ticles (because of fluctuationsleak out” of it, which results
151 ing>1.
In order to get a nonextensive version of inelasticity, i.e.,
Kgq. let us first observe that, according to Efj2), inelastic-
1.0+ ity K can be expressed by the mean energy per par{iEle,
therefore, in the nonextensive case one can write accordingly
0.5+ k=N e Nmed Kq
q \/§< )q Gy, YPo(y)L urcoshyl~ 30
0.0 +——F—— @D
1 2 3

[with Y, provided by Eq(13)]. The approximate relation of
y Kq with the parameters, and g in nonextensive formula

(19) arises when one estimatég), for |Y,|—o and uses

FIG. 3. Comparison of data for rapidity distributions @  the nonextensive version of relatidi7). As can be seen
=630 GeV obtained by P23BL6] (open circles and UA7[17]  from Table I, the nonextensive inelasticiy, defined this
Collaborations(solid circles with predictions of our model for it way agrees reasonably well with the extensive inelastiity

extensive (=1) and nonextensive versions. Notice that one can fitNotice thatKgy‘é“), defined as
at the same time either P238 or UA7 data but not both together.
i L _ N [Ym=4
with energy. Th_e reason for_such_ behawor_ls_ thay <4 Kg\y\\4):_f ) dy py(y)[ wrcoshy], (22)
counts the fraction of energy in a fixed domain in the phase m=—4

space given by the condition thigt <4 whereas ouK gives
the energy used for production of particles in the whole ki-is essentially identical with, -, discussed aboveand for
nematically allowed regioty| <Y, as defined by Eq(13). the same reasonThese results indicate that the true equiva-
Table | contains also the corresponding values of the “partilent of the inelasticityK in the nonextensive approachis,,
tion temperature’T=1/8 obtained from Eq(12). at least in the sense used in cosmic ray research, namely that
In what concerns the nonextensive approach one must ré-defines the part of the initial energy taken away by leading
alize that parametex,, occurring in Eq.(18) is not the in-  particles:Kejasiic=1—K should be replaced bife|astic= 1
elasticity in the same sense #&sfrom the extensive ap- —Kg. They are displayed explicitly in Fig. 4. Notice that
proach; cf. Eq(12). The reason is simpleand shown in the P238 datd16] at Js=630 GeV clearly do not follow the
best way in[35] where the Hagedorn statistical model of trend presented by the UA5, UA7 and Tevatron da#15.
multiparticle productior{36] has been extended tpstatis- When neglecting this point the overall tendency is that in-
tics). Namely, because summarizes all kinds of correlations elasticity is essentially constant with energy and equé to
and/or fluctuations present in the systéand makes it non- =0.5, which agrees with first estimates made[38,4,20
extensive the energies per particle present on the right-handnd with first experimental estimates based on the analysis of
side (RHYS) of Egs.(12) and(18) also contain in the nonex- the leading particle effect provided |B9].
tensive case contributions from these correlations or fluctua- A comment on the possible physical meaning of the pa-
tions, i.e., a kind of effective interaction characterized byrameterq obtained from our fits and listed in Table | is in
|qg—1] [35,23. The enhanceddepleted for q>1 (q<1) order here. As we said before, in general, the nonextensivity
tails of p,(y) observed in Fig. 5 say that mofless particles ~ parameteq summarizes the action of several factors, each of
are sent there towards the end of the phase space, resp&dich leads to a deviation from the simple form of the ex-
tively. This fact must then be compensated by the appropriateensive Boltzmann-Gibbs statistics, or Shannon entropy de-
choice of the value of the d-inelasticity” parameterc, in  fined by Eq.(2). Among them are the possible intrinsic fluc-
Eqg. (18), which fixes the energ, in this case. It should be tuations existing in the hadronizing syst¢28]. Notice that
also added at this point that when one allows the wholén the case considered here we have not accounted explicitly
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1.0

TABLE I. The results for extensivigEgs.(14)] and nonextensiveEg. (19)] approaches applied fup [31]
and pp data[14—17 on rapidity distributions. The first three columns summarize our input information:
energy./s, total charge multiplicitiegn,,,) (estimated as ifi28]) and(p) (estimated as ifi29]). Presented
are extensive inelasticit and parameters, and g out of which the nonextensive inelasticity, is
calculated by means EQ1). For completeness the corresponding “partition temperatufes’l/3 and 7,
=1/B, are also listed as well as the corresponding inelasticities obtained for the limited portion of the phase
space:K|y =4 as given by Eq(20) and K{¥'=*) as defined by Eq(22). For \s=630 GeV we display
separately results from fittinge) P238 datd 16] and (b) UA7 data[17].

Vs (p7) T 7

(GeV) (nen)  (GeV) K GeV)  Kjyj=s q Kq (Geq\/) Kg K=o

20 7.7 030 045 176 053 1.05 040 207 044 0.60
53 130 034 051 353 050 1.13 038 4.06 0.50 0.57
200 214 040 055 1212 037 120 030 11.74 051 0.37
540 291 045 045 2238 022 126 020 2039 041 0.22

(@630 31.0 0.45 0.60  36.29 0.22 127 026 3551 0.56 0.22
(®)630 31.0 0.45 0.50 28.90 0.21 125 020 21.22 0.40 0.21
900 34.6 0.48 0.41  29.47 0.17 129 018 3079 041 0.17

1800 46.4 0.50 0.50 55.69 0.13 1.33 0.19 62.57 0.51 0.13

for the fact that each event has its own multiplidiybut we

0.8

0.6

0.4

0.2

18
ol

0.0

have used only its mean valug\), as given by experiment
where(N)=3=NP(N) with P(N) being the multiplicity dis-
tribution. Actually, we have used only its charged pénmt,,),
assuming thalN=3(n.,), i.e., neglecting in addition also

(OI *)
A AN

P238 possible fluctuations between the number of charged and

neutral secondaries. Experimentally it is known tR&nh.y)
distribution (NBD) [29], which depends on two parameters:

1
]
1
\
§ the mean multiplicity{n.,,) and the parametet(k=1) af-
fecting its width,

[* ]
O @)
1_0'2(nch)_ 1
5{3 o K~ oz (e 29

for k"1—0 it approaches a Poissonian distribution. In gen-

UA7 eral it is found[29] that

1
« ~ —0.104+0.058 Iny/s. (24)

FIG. 4. Energy dependences of inelasticities obtained in exten'Ehe hadronizing system one should expect the Poissonian

Following the ideas expressed|[i23] we would like to draw

0.0 50x10° 1.0x10° 1.5x10° 2.0x10° attention to the fact that the value kof * may be also under-

/s [GeV] stood as the measure of fluctuations of the mean multiplicity
(cf. also[40]). When there are only statistical fluctuations in

sive [K; see Eq.(12)] and nonextensivéK; see Eq.(21)] ap- form of the_ co_rre_sponding multiplicity distributions. The ex-
proaches(cf. also Table ). Notice that results for P238 data do not iStence of intrinsiddynamical fluctuations would mean that
follow the overall trendsee text one allows the mean multiplicity to fluctuate. In the case
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0,18

0,16
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1 1

1/N dN/dy
o
S

0,08 -

0,06 -

0,04

0,02

FIG. 5. The examples op4(y) as given by Eq.(19 for g

=0.7 andg= 1.3 compared witlp(y) for g=1 as given by Eq.

(14) for one-dimensional hadronization of mags=100 GeV into
N=20 secondaries.
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0.35

0.30 -

0.25 -

0.20 -

0.15

1/k or g-1

0.10
o g-1

0.05{ "o
-0.104+0.058In /s

0.00 : .
10’ 10° 10° 10*

B [GeV]

FIG. 6. The values of the nonextensivity parametebtained in
fits shown in Fig. 2and listed in Table)lcompared with the values
of the parametek of the negative binomial distribution fit to the
corresponding multiplicity distributions as given [29]; see Eq.
(24).

rameterk of the NBD[29]. This means then that these data
contain no more information than used here, namely the ex-
istence of limitedpt, inelasticityK and fluctuations as given
by g>1 ork™1>0.

It is interesting to notice that whereas data on rapidity
distributions[14—-17 could be fittedboth by the extensive
(14) and nonextensiv€l9) distributions, similar data for ra-
pidity distributions measured in restricted intervals of the
multiplicity, AN [18], can be fittedonly by means of the
nonextensive,(y) as given by Eq(19) [43]. The extensive
approach with maximally correlated shapes and heights of

when such fluctuations are given by a gamma distributionyjstriputions, as discussed above, is clearly too restrictive.
with normalized varianc®(n) then, as a result, one obtains Only relaxing this correlation by introducing parametgr

the negative binomial multiplicity distribution with

1~ oin)
E—D(n)— <F>2 . (25)

That is because, in this cagsee alsd41]),

w _e—Fﬁq ykW(—le— wn
P(n)=J’0 dn o K
I'(k+n) %

TTF TR (1 1)Fr 20

(i.e., by using the nonextensive version of the information
theory approachallows for adequate fits to be performed,;
see Fig. 7 and Table Il. Notice that partial inelasticities of all
kinds are clearly correlated with the multiplicity bins; the
higher the multiplicity, the bigger the corresponding inelas-
ticity. The same kind of correlations are observed at 200 GeV
between multiplicity andy, which increases with multiplic-
ity. However, at 900 GeVg remains essentially constant.
Following the discussion in the previous paragraph one ex-
pects that it means an increase of the corresponding fluctua-
tions. The question, however, remains, in which variable?
We argue that the fluctuating variable in this case is inelas-
ticity itself. The point is that particles filling a given interval
of multiplicity AN can be produced in events with different,

where y= k/<F>. Assuming now that these fluctuations con-i.e., fluctuatingvalues ofK. As before, this fact would then

tribﬂte to nonextensivity defined by the paramejeire., that
D(n)=qg—1 [23], one should expect tha#2]

=1 ! 2
q=1+1. (27)

As can be seen in Fig. this is precisely the cas®&amely,

lead to the apparent nonextensivity visualizeddoy1 and
measuring also the strength of such fluctuations represented
by the variance,

a?(K)=(K)*(q—1). (28)

However, in this case we do not have any independent esti-
mation of o(K); therefore, we could not exclude the action

fluctuations existing in experimental data for the rapidity dis-of some other, so far not yet disclosed, factors and propose
tributions,dN/dy [14,15,3], and disclosed by fits using the the equivalent of Eq(27) for this case. On the other hand,
nonextensive fornf19) follow (except for the lowest energy Eg. (28) could be used for estimation of the uncertaintyKin
point at 20 GeV the pattern of fluctuations seen in data for once its mean value and the nonextensivity parameter are
multiplicity distributions P(N) and summarized by the pa- known. For example, taking from Table | the corresponding
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12 15 =
i ® [2,10] | ] [ dN/d @ [2,10] |
11+ dN/dy e [12,20]| T 14 ) y ® [12,20]
F & & o [22,30]| 1 13- & * O [22,30] |-
10+ * [32,40] | T * [32,40] | ]
: % A [4250]| 1 12 % A [4250] |
9 O [52,76] | 1L % <& [52,60] ||
A % ] = = B [62,70]
8rx . 10F S O [72,80] |
-2 N * [82,136] | 1
7t A ¢ 1 m O ]
6l 4 _ 8r .0 ]
5 S ¢ TR % . X .
= % & a i
5L %% . - 6l . ]
: PR\
4+ x . 5 LA " o .
) S A A . 3 4 '_ X N A \'\ i
3+ a N & 5 I M = A\E
I a\ X 3F IR\ .
2 < i ===_-.x\
I '\\,‘\ 2+ e \/ 7
1 _ o —a | 1 M @ a g k 1
0 1 2 3 4 5 0 1 2 3 4 5 6 7
y y
FIG. 7. Fits todN/dy for different rapidity bins for/s=200 and 900 GeVleft and right panels, respectivelgy means of Eq(19).
values of(K(s)) andq(s) one can estimate thgK ,(200)) TABLE II. Results for the same parametgr «q, 74 andK, as
=0.50+0.23 and(K4(900))=0.41+0.22. shown and defined in Table | but now obtained for data taken in the

The results for partial inelasticities obtained from fits restricted multiplicity binsAN [18] and shown in Fig. 7. Herbl;
shown in Fig. 7 allow us to calculate the corresponding in-=76 for y's=200 and 60 for 900 GeV.
elasticitiesK [by using Eq(21)]; cf. Table Il. These in turn,
with the help of experimentally measured multiplicity distri- V/s=200 GeV s=900 GeV
butions P(n.,) (taken in this case fronp44]) allow us to
obtain, for the first time the (normalized inelasticity distri-
bution y(K=K,) presented in Fig. 845]. This is one of the (GeVv) (GeV)
most important results which could be obtained only by us-
ing information theory approach in its nonextensive version[2:19
The Gaussian and Lorentzian fits shown here resemble ver
much the form ofy(K) obtained in the so-called interacting 12,29

gluon model of high energy processes developed and studied
in [11,12,10. [22,30 114 0.44 11.00 0.64 127 020 62.63 042

q Kq Tq Ke q Kq Tq Kq

1.001 0.35 114.00 0.35 1.25 0.10 -34.20 0.16

1.10 0.41 2099 054 126 0.17 316.55 0.33

IV. SUMMARY AND CONCLUSIONS [32,40 117 045 7.31 0.72 1.27 0.22 3498 0.48

Using methods of information theory, both in its extensive[42,50 1.18 0.46 5.10 0.75 1.23 0.25 22.74 0.50

and nonextensive versions, we have analypep_ﬂcollider
data[14-18 and pp fixed target datd31] on multiparticle  [52N;] 1.25 050 4.39 098 121 0.26 16.28 0.49
production. Our investigation was aimed at the phenomeno-

logical, maximally model independent description, which[62,70 1.20 0.31 15.79 0.57
would eventually result in estimations of inelasticities for

these reactions, their energy dependence and, whenether pps2,80 1.20 0.33 14.02 061
sible, also in the inelasticity distributiong(K). The infor-

mation theory approach used by us leads to a comfortablgs2,13q 122 038 12.00 0.74

situation where the only fitted parameter is either the inelas
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4 g, according to[23], responsible for dynamical fluctuations
@ 200 GeV . g . - . . .

o 900Gev existing in hadronizing systems and showing up in the char-
—— Gauss(200) <K>=0.52 0=0.24

' ﬁL —— Gauss(800) <k>=0.38 =020 acteristic negative binomial form of the measureadltiplic-

- - Lorentz(200) <K>=0.52 6=0.25

- Lorentz(900) <k> = 0.39 5=0.17 ity distributionsP(N). This means therefore that in collider

data forpp collisions and fixed targepp data analyzed in
this way, there is no additional information to that used here.
On the other hand, rapidity distributions for fixed multiplic-
ity intervals AN [18] can be described only by nonextensive
approach and we argue that in this cggeflects fluctuations

. i in the inelasticity itself. These data were therefore used to

s g, estimate, for the first time at these energigd0 and 900
o : . . . LB GeV), the inelasticity distributiong(K); cf. Fig. 8.
0.0 0.2 0.4 0.6 0.8 1.0 It is particularly interesting and worth stressing here that
K formulas obtained by means of information theory are appar-
ently identicalwith the corresponding equations of statistical
FIG. 8. Inelasticity distributionsy(K=Kg) (normalized to  models used to describe multiparticle production processes
unity) obtained from [18] data for ys=200 GeV and s  [37] The point is, however, that—as was already stressed in

:9rO?n Gtey(?rfi tgft T:)Ldete}ir:s KEq isi)esTtimatizd irhom the a';ctj Klg 4 appropriate cases before—the “partition temperatiFeind
parameters in Table Il by using E(1). To guide the eyes obtaine the normalizatiorZ are in our cas@ot free parameterany-

results were fitted by simple Gaussian and Lorentzian formulas Th ly freedonti it the choi f
(X(K):ex;{—(K—(K))/(Zaz)] and X(K)ZU/[4(K—(K>)2+02], more. € only rreeaomin our case It was the choice o

respectively, witho obtained forK € (0,1)). Errors are estimated inelas_ticity K) _is in providing the_ corresponding constraint
from the widths of the bin&N and the shapes and errorsRN) equations, which should summarize our knowledge about the

used in obtaining(K) [29]. reaction under consideration. Once they are fixed, the other

quantities(in particularT) follow. This constrains seriously
ticity K (when using extensive approadr parameterg and  such approach and therefore in cases where it fails one can
Kq (in its nonextensive counterpardut of which one can either add new constraints or include some interactions by
reconstruct the inelasticiti(, or KYI=9 "1t turned out that changing the very definition of how to measure the available
data for rapidity distributions obtained for the mean multi-information. The Tsallis entropy used hd2,23,27,26,3b
plicities can be fitted using both approaches. In this case this but only one example of what is possible, other definitions
nonextensivity parameteyobtained from fitting theapidity ~ of information are also possible albeit not yet used in such
distributionsdN/dy is practicallyidenticalto the parameter circumstance$22,46.
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