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Estimating inelasticity with the information theory approach
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Using the information theory approach, in both its extensive and nonextensive versions, we estimate the
inelasticity parameterK of hadronic reactions together with its distribution and energy dependence frompp̄
andpp data. We find that the inelasticity remains essentially constant in energy except for a variation around
K;0.5, as was originally expected.
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I. INTRODUCTION

The inelasticityK(0,K,1) of a reaction has well estab
lished importance in working with data from cosmic ray ca
cades@1# ~cf. also @2–4# and references therein!. It tells us
what fraction of the energy of a projectile is used for produ
tion of secondaries and what fraction flows further along
cascade chain. In cosmic ray observables,K in fact appears
in some combination which also contains the mean free p
for the particle propagation in the atmosphere or, equi
lently, the total inelastic cross sections in . This makesK
difficult to estimate because of the freedom available to
tribute the observed effects either toK(s) or to s(s). It was
therefore proposed in@1# that in order to extractK(s) unam-
biguously from cosmic ray experiments one should anal
simultaneouslythe data from~at least! two different types of
experiments for which combinations ofK ands in are differ-
ent @5#.

Nowadays there is a strong tendency to replace inela
ity and simple energy flow models with more refined a
complicated models of multiparticle production~see @7–9#
and references therein!. In their present formulations suc
models differ substantially among themselves, concern
both their physical basis and the~usually very large! number
of parameters used, and lead to quite different, someti
even contradictory, predictions@8,9#. While developing mod-
els is necessary for the global understanding of cosmic
physics, for the purpose of studying energy flow it may
desirable to have a more economical description of high
ergy collisions, involving only a small number of paramete
This is one of the advantages of working with the concep
inelasticity @1,10#.

The inelasticity is also a very important quantity in ph
nomenological descriptions of hadronic and nuclear co
sions in terms of statistical models of multiparticle produ
tion processes@11,12#. In this case it enters either explicitly
as a single parameterK defining the initial energyM
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5K•As to be hadronized, or implicitly, when one finds th
out of numerous parameters of the model only the comb
tion leading to the given fraction of available energy to
converted into produced secondaries,K•As, is important;
see@13#. Attempts to estimate it are thus fully justifiable. I
@11,12# calculations of the inelasticity distribution,x(K)
~and its energy dependence!, based on the assumed dom
nance of high energy multiparticle processes by gluonic
teractions, were presented. In the other calculations the m
inelasticityK and its possible energy dependence were s
ply estimated either by using thermal-like model formul
applied to colliderp̄p data @14–18# ~like, for example, in
@19#! or by some other means@20#.

In this paper we address this problem again, this time
means of the information theory approach both in its ext
sive @21# and nonextensive@22,23# versions. The idea is to
describe the available data by using only atruly minimal
amount of information, avoiding therefore any unfounde
and unnecessary assumptions. This is done by attributin
the measured distributions~written in terms of the suitable
probability distributions! an information entropySand maxi-
mizing it subject to constraints which account for oura pri-
ori knowledge of the process under consideration. As a re
one gets themost probableand least biaseddistribution de-
scribing these data, which is not influenced by anything e
besides the available information. In such approach the
elasticity K emerges as the only real parameter, all oth
quantities being well defined functions of it. We attempt
clarify here the role of the inelasticity by using both th
extensive and nonextensive versions of information the
All necessary background on the information theory a
proach needed in the present context is given in the n
section. Section III contains our results for thepp̄ and pp
collisions. Our conclusions and summary are presented in
last section.

II. GENERAL IDEAS OF INFORMATION
THEORY APPROACH

As presented at length in@21# ~where further details and
references can be found! the information theory approac
provides us, by definition, with themost probable, least
biased estimation of a probability distribution$pi ,i
©2003 The American Physical Society02-1
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51, . . . ,n% using only knowledge of a finite number of ob
servables$Fk ,k51, . . . ,n% of some physical quantities ob
tained by means ofpi and defined as

Fk5^Fk&5(
i 51

n

piFk
( i ) . ~1!

One is looking for such$pi% which contain only information
provided by$Fk% and nothing more, i.e., which containmini-
mal information. The information connected with$pi% is
quantified by the Shannon information entropy defined a

S52S i pi ln pi . ~2!

Minimum information corresponds to maximum entropyS;
therefore, the$pi% we are looking for are obtained by max
mizing the information entropyS under conditions imposed
by the measured observables$Fk% as given by Eq.~1!. They
result in a set of Lagrange multipliers$lk ,k51, . . . ,r % and
the generic form of$pi% we are looking for is@21#

pi5
1

Z
expF2 (

k51

r

lk•Fk
( i )G , ~3!

where Z is obtained from the normalization conditio
( i 51

n pi51.
Such approach was applied long time ago to experime

data on multiparticle production with the aim at establish
the minimum amount of information needed to descr
them @13#. The rationale was to understand what makes
the apparently disparate~if not outright contradictory! mod-
els of that period fit~equally well! the data. The result wa
striking and very instructive@13#: the data considered~mul-
tiplicity and momentum distributions! contained only very
limited amount of information, which could be expressed
the form of the following two observations:~i! the available
phase space in which particles are produced is limited~i.e.,
there is some sort ofpT cutoff! and ~ii ! only a part K
P(0,1) of the available energyAs is used to produce the
observed secondaries, the rest being taken away by the
called leading particles~i.e., inelasticity emerges as one
the cornerstone characteristics of reaction!. All other assump-
tions, different for different models~based on different,
sometimes even contradictory, physical pictures of the co
sion process!, were therefore spurious and as such they co
be safely dropped out without spoiling the agreement w
experimental data. In fact, closer scrutiny of these mod
showed that they all contained, explicitly or implicitly, pre
cisely those two assumptions mentioned above and that
the true reason of their agreement with data.

In this paper we are therefore following the same line
approach with the aim at deducing from the available d
the inelasticity parameterK. Notice that the formula~3! re-
sembles the statistical model formulas based on
Boltzmann-Gibbs statistics as used in@19#. However, in Eq.
~3! no thermal equilibrium is assumed and alllk ~i.e., among
others also the ‘‘partition temperature’’T in @19#! are given
by the corresponding constraint equation~1! whereas nor-
malization fixesZ, which is a free parameter in@19#.
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This approach can be generalized to systems wh
cannot be described by Boltzmann-Gibbs~BG! statistics be-
cause of either the existence of some sort of long-range
relations ~or memory! effects or fractal structure of thei
phase space or because of the existence of some intr
fluctuations in the system under consideration. It turns
that such systems are nonextensive and therefore mus
described by a nonextensive generalization of BG statist
for example by the so-called Tsallis statistics@22# defined by
the following form of the entropy:

Sq52
1

12q
S i~12pi

q!. ~4!

It is characterized by the nonextensivity parameterq such
that, for two independent systemsA andB,

Sq(A1B)5SqA1SqB1~12q!SqASqB . ~5!

Notice that in the limitq→1 one recovers the previous form
of Boltzmann-Gibbs-Shannon entropy~2!. Maximizing Sq
under constraints, which are now given in the form@24#

Fk
(q)5^Fk&q5(

i 51

n

@pi #
qFk

(q,i ) , ~6!

results in the following power-like form of the~most prob-
able, least biased! probability distribution:

pi5pi
(q)5

1

Zq
expqF2 (

k51

r

lkFk
(q,i )G , ~7!

where Zq is obtained from the normalization conditio
( i 51

n pi
(q)51 and where

expqS 2
x

L D5
defF12~12q!S x

L D G1/(12q)

. ~8!

Of special interest to us here will be the fact that intrins
fluctuations in the system, represented by fluctuations in
parameter 1/L in the exponential distribution of the form
;exp(2x/L), result in its nonextensivity with parameterq
given by a normalized variation of fluctuation of the para
eter 1/L @23#:

q516

K S 1

L D 2L 2 K 1

L L 2

K 1

L L 2 . ~9!

So far this has been proved only for fluctuations of 1/L given
in the form of the gamma distribution,

f S 1

L D5
m

G~a! S m

L D a21

expS 2
m

L D , ~10!

but this conjecture seems to be valid also in general@27#.
2-2
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III. INELASTICITY OBTAINED FROM ANALYSIS OF THE
p̄p COLLIDER AND pp FIXED TARGET DATA

The available information in this case consists of the f
lowing:

~i! The mean multiplicity of charged secondaries,^nch&,
produced in nonsingle diffractive reactions at given ene
As, which can be parametrized as^nch&5A1B ln s1C ln2s
or as ^nch&5D1Esg ~see@28#!. In what follows we shall
assume, for simplicity, that they are pions with massm
50.14 GeV. Out of it, we shall construct and use the to
mean number of produced particles assuming it to beN
5 3

2 ^nch(s)&.
~ii ! The observation that the phase space filled by

produced secondaries is essentially one-dimensional
limited ~and only slowly growing with energy! transverse
momenta@29#: ^pT&50.310.044 ln(As/20) @30#.

~iii ! The rapidity distributions of charged secondarie
dN(s)/dy5*d2pT dN/d3p, provided either by collider ex-
periments@14–17# or by the fixed target experiment@31#.
They are available only in a limited range of the rapid
space, depending on the details of the experimental s
@29#.

Following the results obtained in@13# we expect~and
therefore assume in what follows! that only a partW5KAs
of the total energyAs is used to produce secondaries in t
central region of the investigated reaction. The inelastic
K5K(s) will therefore be the main quantity we shall inve
tigate.

We start with the information theory approach in its e
tensive version. In this case the relevant probability distri
tion defining information entropy~2! is given by

p~y!5p~y;N,W5KAs!5
1

N

dN

dy
~11!

whereas constraint~1! is just the energy conservation~here
mT5Am21^pT&2 and ^E& is the mean energy per produce
particle! @33#:

E
2Ym

Ym
dy@mTcoshy#p~y!5

W

N
5^E&5

KAs

N
. ~12!

The limits of the relevant longitudinal phase space are

Ym5 lnH W8

2mT
F11S 12

4mT
2

W82D 1/2G J ,

W85W2~N22!mT . ~13!

We would like to stress that throughout this paper the cen
region of the reaction, i.e., the region populated by produ
particles distributed according top(y) @or pq(y) later on#, is
always defined by Eq.~13!. ThereforeyP(2Ym ,Ym) in the
c.m. system~c.m.s.! and we do not choose arbitrary cuts
rapidity space~as, for example, in@13#!. Following now the
steps mentioned in Sec. II, i.e., maximizing the respec
information entropy~2! with the constraint given by Eq
~12!, we arrive at@21#
11400
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p~y!5
1

N

dN~y!

dy
5

1

Z
exp~2bmTcoshy! ~14!

with b5b(W,N,mT) given by solving Eq.~12! and

Z5Z~W,N,m t!5E
2Ym

Ym
dy exp~2bmTcoshy! ~15!

given by the normalization condition,*dyp(y)51. Notice
that in such an approach the ‘‘inverse temperature’’b and the
normalizationZ depend on our input information, i.e., onN
and mT , and on the assumed inelasticityK ~via W5KAs),
which is our free parameter. They are therefore maxima
correlated which means that the shape of distributionp(y)
~given byb) and its height~given byZ) are not independen
of each other. This is in sharp contrast to the approac
presented before in@19# wherebothb ~called ‘‘partition tem-
perature’’! and the normalization~our Z) were treated as two
independent parameters. Because of the symmetry of the
liding system, momentum conservation does not impose
additional constraint here and we are left withb being the
only Lagrange multiplier to be calculated from Eq.~12! for
each energyW and multiplicity N.

Notice that Eq.~14!, although formally resembling formu
las obtained in thermal models@32#, has a much wider range
of applicability as it is not connected with any assumption
thermal equilibrium. Actually it can be written in the scaling
like form

p~y!5
1

Z
expF2b̄

mTcoshy

^E& G , ~16!

where^E&5W/N is the mean energy per produced partic
andb̄5bW/N. Plottingb̄ as a function of̂ E& one observes
that for the minimal number of produced secondariesN

→2) b̄→2`, whereas for the maximal number (N

→Nmax5W/mT) b̄→1`. There is also an intermediate re
gion in which b̄ remains fairly constant, leading to an a
proximate ‘‘plateau’’ inp(y). In this region ‘‘partition tem-
perature’’ 1/b and inelasticityK are related in a very simple
way, namely

b.
N

KAs
. ~17!

Actually, b.0 only for N.N052 ln(Nmax) and the ‘‘pla-
teau’’ occurs only forN.N0. It clearly shows thatT51/b,
called sometimes ‘‘partition temperature’’@19#, is a measure
of energy available per produced particle~which therefore
depends also on inelasticity!.

In the case of the nonextensive version of informati
entropy the energy conservation constraint is given by

E
2Ym

Ym
dy@mTcoshy#@pq~y!#q5

Wq

N
5

kqAs

N
~18!

and maximization of the corresponding Tsallis entropy~4!
results in
2-3
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pq~y!5
1

N

dNq

dy
5

1

Zq
expq~2bqmTcoshy! ~19!

@where expq(•••) is defined by Eq.~8! andZq is given, as in
Eq. ~15!, by the normalization condition,*dypq(y)51].
The characteristic feature ofpq(y), as shown in Fig. 5, be
low, is that it enhances~depletes! the tails of the distribution
for q.1 (q,1), respectively~or, in other words, it en-
hances or depletes the more or, respectively, less prob
events!. Notice that in this case, differently than in Eq.~14!,
one has to be sure that 12(12q)bqmTcoshy>0, which im-
poses an additional condition on the allowed phase spac
q,1 andbq.0. In this case the strict correlation betwe
the shape of rapidity distribution and its height is relax
because both depend also on the new parameterq. This fact
will be important later on. The scaling-like formula~16! and
the approximate relation~17!, this time betweenbq andkq ,
are still valid, albeit this time only approximately, i.e., fo
small values ofuq21u. On the other handbq.0 for N
5(2 lnNmax)

q, i.e., for larger ~smaller! multiplicities, de-
pending whetherq.1 (q,1).

The results for fits using extensive formula~14! are dis-
played in Fig. 1 and those using its nonextensive vers
given by Eq.~19! are shown in Fig. 2. As one can see th
are almost identical, differences showing up only for 20 G
where data develop a tail which is most sensitive to the
rameterq. The result for the joint distributions of UA7 dat

FIG. 1. Rapidity spectra obtained by UA5@14# and Fermilab
Tevatron@15# fitted by formula~14!. For completeness results fo
pp data at 20 GeV@31# are also shown. The corresponding values
inelasticityK are listed in Table I.
11400
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from @17# and P238@16# data at 630 GeV are shown sep
rately in Fig. 3. Both sets of data are clearly incompatible
the sense that UA7 data~which are forp0’s and have been
taken here in the same way as in@34#! do not continue the
trend shown by P238 data~which are, as UA5 ones, fo
charged particles!. Instead they seem to continue the trend
the charged UA5 data, which is also clearly seen from
values of the obtained parameters displayed in Table I.
cause of this fact we have fitted them separately. The res
for the respective inelasticity parameterK and its
q-equivalentkq for different energies are shown in Table
The estimated errors~the same for both approaches! range
from DK50.02 for 20 GeV~where the fitted range in rapid
ity is biggest! to DK50.05 for 1800 GeV~where the lack of
measured tails prevents a better fit!. These errors should b
kept in mind when looking at Fig. 4, which summarizes t
obtained inelasticities of different types. These inelasticit
can be compared with inelasticitiesK uyu<4 defined by the
formula

K uyu<45
N

As
E

Ym524

Ym54

dyp~y!@mTcoshy#, ~20!

i.e., in the same way as in@19#, namely, by integrating ove
the same part of the phase space limited byuYmu54. Notice
that values ofK uyu<4 are systematically smaller than the co
responding values ofK and are in a visible way decreasin

f

FIG. 2. Rapidity spectra obtained by UA5@14# and Tevatron
@15# fitted by formula~19!. For completeness results forpp data at
20 GeV @31# are also shown. The corresponding values of theq
inelasticitykq and nonextensivity parameterq are listed in Table I.
2-4



as

ki

rt

t r

-

of

s

n
-
tu
by

sp
ia

ol

nd
nd

that

om-
mi-
se
-
the

d by
par-

e.,

ngly

f

a-

that
ing

t

in-

is of

pa-
n
vity
of

x-
de-
-

citly

fi
r.

ESTIMATING INELASTICITY WITH TH E . . . PHYSICAL REVIEW D 67, 114002 ~2003!
with energy. The reason for such behavior is thatK uyu<4
counts the fraction of energy in a fixed domain in the ph
space given by the condition thatuyu<4 whereas ourK gives
the energy used for production of particles in the whole
nematically allowed regionuyu<Ym as defined by Eq.~13!.
Table I contains also the corresponding values of the ‘‘pa
tion temperature’’T51/b obtained from Eq.~12!.

In what concerns the nonextensive approach one mus
alize that parameterkq occurring in Eq.~18! is not the in-
elasticity in the same sense asK from the extensive ap
proach; cf. Eq.~12!. The reason is simple~and shown in the
best way in@35# where the Hagedorn statistical model
multiparticle production@36# has been extended toq statis-
tics!. Namely, becauseq summarizes all kinds of correlation
and/or fluctuations present in the system~and makes it non-
extensive! the energies per particle present on the right-ha
side ~RHS! of Eqs.~12! and ~18! also contain in the nonex
tensive case contributions from these correlations or fluc
tions, i.e., a kind of effective interaction characterized
uq21u @35,23#. The enhanced~depleted! for q.1 (q,1)
tails of pq(y) observed in Fig. 5 say that more~less! particles
are sent there towards the end of the phase space, re
tively. This fact must then be compensated by the appropr
choice of the value of the ‘‘q-inelasticity’’ parameterkq in
Eq. ~18!, which fixes the energyWq in this case. It should be
also added at this point that when one allows the wh

FIG. 3. Comparison of data for rapidity distributions atAs
5630 GeV obtained by P238@16# ~open circles! and UA7 @17#
Collaborations~solid circles! with predictions of our model for it
extensive (q51) and nonextensive versions. Notice that one can
at the same time either P238 or UA7 data but not both togethe
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energyAs to be used for the production of secondaries a
uses the nonextensive version of information theory to fi
dN/dy then one findsq,1 @37#, not q.1 as here. This is,
however, expected because of the already mentioned fact
the q,1 case enhances frequent events whereasq.1 the
rare ones. When considering the whole phase space it c
prises all produced particles, which are located predo
nantly only in part of it. Therefore we have to enhance tho
frequent events by usingq,1. This choice, as was men
tioned above, limits also the allowed phase space. On
other hand, whenK is accounted for~as in the present case!,
the allowed phase space is essentially correctly describe
KAs and one has only to enhance the rare events when
ticles ~because of fluctuations! ‘‘leak out’’ of it, which results
in q.1.

In order to get a nonextensive version of inelasticity, i.
Kq , let us first observe that, according to Eq.~12!, inelastic-
ity K can be expressed by the mean energy per particle,^E&;
therefore, in the nonextensive case one can write accordi

Kq5
N

As
^E&q5

N

As
E

Ym

Ym
dypq~y!@mTcoshy#'

kq

322q
~21!

@with Ym provided by Eq.~13!#. The approximate relation o
Kq with the parameterskq and q in nonextensive formula
~19! arises when one estimates^E&q for uYmu→` and uses
the nonextensive version of relation~17!. As can be seen
from Table I, the nonextensive inelasticityKq defined this
way agrees reasonably well with the extensive inelasticityK.
Notice thatKq

(uyu<4) , defined as

Kq
(uyu<4)5

N

As
E

Ym524

Ym54

dypq~y!@mTcoshy#, ~22!

is essentially identical withK uyu<4 discussed above~and for
the same reason!. These results indicate that the true equiv
lent of the inelasticityK in the nonextensive approach isKq ,
at least in the sense used in cosmic ray research, namely
it defines the part of the initial energy taken away by lead
particles:Kelastic512K should be replaced byKelastic51
2Kq . They are displayed explicitly in Fig. 4. Notice tha
P238 data@16# at As5630 GeV clearly do not follow the
trend presented by the UA5, UA7 and Tevatron data@14,15#.
When neglecting this point the overall tendency is that
elasticity is essentially constant with energy and equal toK
.0.5, which agrees with first estimates made in@38,4,20#
and with first experimental estimates based on the analys
the leading particle effect provided in@39#.

A comment on the possible physical meaning of the
rameterq obtained from our fits and listed in Table I is i
order here. As we said before, in general, the nonextensi
parameterq summarizes the action of several factors, each
which leads to a deviation from the simple form of the e
tensive Boltzmann-Gibbs statistics, or Shannon entropy
fined by Eq.~2!. Among them are the possible intrinsic fluc
tuations existing in the hadronizing system@23#. Notice that
in the case considered here we have not accounted expli

t
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TABLE I. The results for extensive@Eqs.~14!# and nonextensive@Eq. ~19!# approaches applied topp @31#

and pp̄ data @14–17# on rapidity distributions. The first three columns summarize our input informat
energyAs, total charge multiplicitieŝnch& ~estimated as in@28#! and^pT& ~estimated as in@29#!. Presented
are extensive inelasticityK and parameterskq and q out of which the nonextensive inelasticityKq is
calculated by means Eq.~21!. For completeness the corresponding ‘‘partition temperatures’’T51/b andtq

51/bq are also listed as well as the corresponding inelasticities obtained for the limited portion of the
space:K uyu<4 as given by Eq.~20! and Kq

(uyu<4) as defined by Eq.~22!. For As5630 GeV we display
separately results from fitting~a! P238 data@16# and ~b! UA7 data@17#.

As ^pT& T tq

~GeV! ^nch& ~GeV! K ~GeV! K uyu<4 q kq ~GeV! Kq Kq
(uyu<4)

20 7.7 0.30 0.45 1.76 0.53 1.05 0.40 2.07 0.44 0.60

53 13.0 0.34 0.51 3.53 0.50 1.13 0.38 4.06 0.50 0.57

200 21.4 0.40 0.55 12.12 0.37 1.20 0.30 11.74 0.51 0.37

540 29.1 0.45 0.45 22.38 0.22 1.26 0.20 20.39 0.41 0.22

(a)630 31.0 0.45 0.60 36.29 0.22 1.27 0.26 35.51 0.56 0.22

(b)630 31.0 0.45 0.50 28.90 0.21 1.25 0.20 21.22 0.40 0.21

900 34.6 0.48 0.41 29.47 0.17 1.29 0.18 30.79 0.41 0.17

1800 46.4 0.50 0.50 55.69 0.13 1.33 0.19 62.57 0.51 0.13
t

and

ial
s:

as
n-

city
in
nian
x-
t

te

ot
FIG. 4. Energy dependences of inelasticities obtained in ex
sive @K; see Eq.~12!# and nonextensive@Kq ; see Eq.~21!# ap-
proaches~cf. also Table I!. Notice that results for P238 data do n
follow the overall trend~see text!.
11400
for the fact that each event has its own multiplicityN but we
have used only its mean value,^N&, as given by experimen
where^N&5(NP(N) with P(N) being the multiplicity dis-
tribution. Actually, we have used only its charged part,^nch&,
assuming thatN5 3

2 ^nch&, i.e., neglecting in addition also
possible fluctuations between the number of charged
neutral secondaries. Experimentally it is known thatP(nch)
is adequately described by the so-called negative binom
distribution ~NBD! @29#, which depends on two parameter
the mean multiplicity^nch& and the parameterk(k>1) af-
fecting its width,

1

k
5

s2~nch!

^nch&
2

2
1

^nch&
. ~23!

For k→1 NB approaches a geometrical distribution where
for k21→0 it approaches a Poissonian distribution. In ge
eral it is found@29# that

1

k
520.10410.058 lnAs. ~24!

Following the ideas expressed in@23# we would like to draw
attention to the fact that the value ofk21 may be also under-
stood as the measure of fluctuations of the mean multipli
~cf. also@40#!. When there are only statistical fluctuations
the hadronizing system one should expect the Poisso
form of the corresponding multiplicity distributions. The e
istence of intrinsic~dynamical! fluctuations would mean tha
one allows the mean multiplicityn̄ to fluctuate. In the case

n-
2-6
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when such fluctuations are given by a gamma distribut
with normalized varianceD(n̄) then, as a result, one obtain
the negative binomial multiplicity distribution with

1

k
5D~ n̄!5

s2~ n̄!

^n̄&2
. ~25!

That is because, in this case~see also@41#!,

P~n!5E
0

`

dn̄
e2n̄n̄n

n!

gkn̄k21e2gn̄

G~k!

5
G~k1n!

G~11n!G~k!

gk

~g11!k1n
~26!

whereg5k/^n̄&. Assuming now that these fluctuations co
tribute to nonextensivity defined by the parameterq, i.e., that
D(n̄)5q21 @23#, one should expect that@42#

q511
1

k
. ~27!

As can be seen in Fig. 6this is precisely the case. Namely,
fluctuations existing in experimental data for the rapidity d
tributions,dN/dy @14,15,31#, and disclosed by fits using th
nonextensive form~19! follow ~except for the lowest energ
point at 20 GeV! the pattern of fluctuations seen in data f
multiplicity distributions P(N) and summarized by the pa

FIG. 5. The examples ofpq(y) as given by Eq.~19! for q
50.7 andq51.3 compared withp(y) for q51 as given by Eq.
~14! for one-dimensional hadronization of massM5100 GeV into
N520 secondaries.
11400
n

-

rameterk of the NBD @29#. This means then that these da
contain no more information than used here, namely the
istence of limitedpT , inelasticityK and fluctuations as given
by q.1 or k21.0.

It is interesting to notice that whereas data on rapid
distributions@14–17# could be fittedboth by the extensive
~14! and nonextensive~19! distributions, similar data for ra-
pidity distributions measured in restricted intervals of t
multiplicity, DN @18#, can be fittedonly by means of the
nonextensivepq(y) as given by Eq.~19! @43#. The extensive
approach with maximally correlated shapes and heights
distributions, as discussed above, is clearly too restrict
Only relaxing this correlation by introducing parameterq
~i.e., by using the nonextensive version of the informati
theory approach! allows for adequate fits to be performe
see Fig. 7 and Table II. Notice that partial inelasticities of
kinds are clearly correlated with the multiplicity bins; th
higher the multiplicity, the bigger the corresponding inela
ticity. The same kind of correlations are observed at 200 G
between multiplicity andq, which increases with multiplic-
ity. However, at 900 GeV,q remains essentially constan
Following the discussion in the previous paragraph one
pects that it means an increase of the corresponding fluc
tions. The question, however, remains, in which variab
We argue that the fluctuating variable in this case is ine
ticity itself. The point is that particles filling a given interva
of multiplicity DN can be produced in events with differen
i.e., fluctuatingvalues ofK. As before, this fact would then
lead to the apparent nonextensivity visualized byq.1 and
measuring also the strength of such fluctuations represe
by the variance,

s2~K !5^K&2~q21!. ~28!

However, in this case we do not have any independent e
mation ofs(K); therefore, we could not exclude the actio
of some other, so far not yet disclosed, factors and prop
the equivalent of Eq.~27! for this case. On the other hand
Eq. ~28! could be used for estimation of the uncertainty inK
once its mean value and the nonextensivity parameter
known. For example, taking from Table I the correspond

FIG. 6. The values of the nonextensivity parameterq obtained in
fits shown in Fig. 2~and listed in Table I! compared with the values
of the parameterk of the negative binomial distribution fit to the
corresponding multiplicity distributions as given in@29#; see Eq.
~24!.
2-7
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FIG. 7. Fits todN/dy for different rapidity bins forAs5200 and 900 GeV~left and right panels, respectively! by means of Eq.~19!.
ts
in

ri-

us
on
ve
g
di

ve

n
ch
or
r p

ab
la

the

6

3

2

8

0

9

values of^K(s)& andq(s) one can estimate that^Kq(200)&
50.5060.23 and̂ Kq(900)&50.4160.22.

The results for partial inelasticities obtained from fi
shown in Fig. 7 allow us to calculate the corresponding
elasticitiesKq @by using Eq.~21!#; cf. Table II. These in turn,
with the help of experimentally measured multiplicity dist
butions P(nch) ~taken in this case from@44#! allow us to
obtain, for the first time, the ~normalized! inelasticity distri-
butionx(K5Kq) presented in Fig. 8@45#. This is one of the
most important results which could be obtained only by
ing information theory approach in its nonextensive versi
The Gaussian and Lorentzian fits shown here resemble
much the form ofx(K) obtained in the so-called interactin
gluon model of high energy processes developed and stu
in @11,12,10#.

IV. SUMMARY AND CONCLUSIONS

Using methods of information theory, both in its extensi
and nonextensive versions, we have analyzedpp̄ collider
data @14–18# and pp fixed target data@31# on multiparticle
production. Our investigation was aimed at the phenome
logical, maximally model independent description, whi
would eventually result in estimations of inelasticities f
these reactions, their energy dependence and, whenethe
sible, also in the inelasticity distributionsx(K). The infor-
mation theory approach used by us leads to a comfort
situation where the only fitted parameter is either the ine
11400
-

-
.
ry

ed

o-

os-

le
s-

TABLE II. Results for the same parameterq, kq , tq andKq as
shown and defined in Table I but now obtained for data taken in
restricted multiplicity binsDN @18# and shown in Fig. 7. HereN1

576 for As5200 and 60 for 900 GeV.

As5200 GeV As5900 GeV

DN q kq tq Kq q kq tq Kq

~GeV! ~GeV!

@2,10# 1.001 0.35 114.00 0.35 1.25 0.10 -34.20 0.1

@12,20# 1.10 0.41 20.99 0.54 1.26 0.17 316.55 0.3

@22,30# 1.14 0.44 11.00 0.64 1.27 0.20 62.63 0.4

@32,40# 1.17 0.45 7.31 0.72 1.27 0.22 34.98 0.4

@42,50# 1.18 0.46 5.10 0.75 1.23 0.25 22.74 0.5

@52,N1# 1.25 0.50 4.39 0.98 1.21 0.26 16.28 0.4

@62,70# 1.20 0.31 15.79 0.57

@72,80# 1.20 0.33 14.02 0.61

@82,136# 1.22 0.38 12.00 0.74
2-8
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ticity K ~when using extensive approach! or parametersq and
kq ~in its nonextensive counterpart! out of which one can
reconstruct the inelasticityKq or Kq

(uyu<4) . It turned out that
data for rapidity distributions obtained for the mean mul
plicities can be fitted using both approaches. In this case
nonextensivity parameterq obtained from fitting therapidity
distributionsdN/dy is practicallyidentical to the parameter

FIG. 8. Inelasticity distributionsx(K5Kq) ~normalized to
unity! obtained from @18# data for As5200 GeV and As
5900 GeV~see text for details!. Kq is estimated from theq andkq

parameters in Table II by using Eq.~21!. To guide the eyes obtained
results were fitted by simple Gaussian and Lorentzian formu
„x(K).exp@2(K2^K&)/(2a2)# and x(K).s/@4(K2^K&)21s2#,
respectively, withs obtained forKP(0,1)…. Errors are estimated
from the widths of the binsDN and the shapes and errors ofP(N)
used in obtainingx(K) @29#.
J.

e

nd

om

II

,

11400
he

q, according to@23#, responsible for dynamical fluctuation
existing in hadronizing systems and showing up in the ch
acteristic negative binomial form of the measuredmultiplic-
ity distributionsP(N). This means therefore that in collide

data for pp̄ collisions and fixed targetpp data analyzed in
this way, there is no additional information to that used he
On the other hand, rapidity distributions for fixed multiplic
ity intervalsDN @18# can be described only by nonextensi
approach and we argue that in this caseq reflects fluctuations
in the inelasticity itself. These data were therefore used
estimate, for the first time at these energies~200 and 900
GeV!, the inelasticity distributionsx(K); cf. Fig. 8.

It is particularly interesting and worth stressing here th
formulas obtained by means of information theory are app
ently identicalwith the corresponding equations of statistic
models used to describe multiparticle production proces
@32#. The point is, however, that—as was already stresse
appropriate cases before—the ‘‘partition temperature’’T and
the normalizationZ are in our casenot free parametersany-
more. The only freedom~in our case it was the choice o
inelasticity K) is in providing the corresponding constrai
equations, which should summarize our knowledge about
reaction under consideration. Once they are fixed, the o
quantities~in particularT) follow. This constrains seriously
such approach and therefore in cases where it fails one
either add new constraints or include some interactions
changing the very definition of how to measure the availa
information. The Tsallis entropy used here@22,23,27,26,35#
is but only one example of what is possible, other definitio
of information are also possible albeit not yet used in su
circumstances@22,46#.
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@12# F.O. Durães, F.S. Navarra, and G. Wilk, Phys. Rev. D50, 6804
~1994!.

@13# Y.-A. Chao, Nucl. Phys.B40, 475 ~1972!.
@14# R. Baltrusaitiset al., Phys. Rev. Lett.52, 1380~1984!.
@15# F. Abeet al., Phys. Rev. D41, 2330~1990!.
@16# P238 Collaboration, R. Harret al., Phys. Lett. B401, 176

~1997!.
@17# UA7 Collaboration, E. Pareet al., Phys. Lett. B242, 531

~1990!.
@18# UA5 Collaboration, G.J. Alneret al., Z. Phys. C33, 1 ~1986!.
@19# T.T. Chou and C.N. Yang, Phys. Rev. Lett.54, 510 ~1985!;

Phys. Rev. D32, 1692~1985!.
@20# J. Dias de Deus, Phys. Lett. B315, 188J~1993!; J. Bellandi

et al., J. Phys. G23, 125 ~1997! and references therein.
@21# G. Wilk and Z. Włodarczyk, Phys. Rev. D43, 794 ~1991!.
@22# C. Tsallis, inNonextensive Statistical Mechanics and its App

cations, edited by S. Abe and Y. Okamoto, Lecture Notes
Physics LPN560~Springer, Berlin, 2000!.
2-9



ic
-

m
c
f
is
ap
or

l
a

ch

it
e o

ma,

late

k,

s

tics
-
A

g

ed

NAVARRA et al. PHYSICAL REVIEW D 67, 114002 ~2003!
@23# G. Wilk and Z. Włodarczyk, Phys. Rev. Lett.84, 2770~2000!;
Chaos, Solitons Fractals13, 581 ~2002!; Physica A305, 227
~2002!.

@24# One should mention here that there exists a formalism, wh
expresses both the Tsallis entropy~4! and the expectation val
ues~6! using the so-called escort probability distributions@25#:
Pi5pi

q/( i pi
q . However, as was shown in@26#, such an ap-

proach is different from the normal nonextensive formalis
because the Tsallis entropy expressed in terms of the es
probability distributions has difficulty with the property o
concavity. From our limited point of view, it seems that there
no problem in what concerns practical, phenomenological
plications of nonextensivity as discussed in the present w
Namely, usingPi one gets distributions of the typec@12(1
2q)x/ l #q/(12q), which is, in fact,formally identicalwith that
in Eq. ~8!, c@12(12Q)x/L#1/(12Q), provided we identifyQ
511(q21)/q, L5 l /q and c5(22Q)/L51/l . The mean
value is now^x&5L/(322Q)5 l /(22q) and 0,Q,1.5 ~to
be compared with 0.5,q,2). Both distributions are identica
and the problem—which of them better describes data—is
tificial. Therefore in what follows we shall use the approa
leading to Eq.~8!.

@25# C. Tsallis, R.S. Mendes, and A.R. Plastino, Physica A261, 534
~1998!.

@26# S. Abe, Phys. Lett. A275, 250 ~2000!.
@27# C. Beck and E.G.D. Cohen, Physica A322, 267 ~2003!.
@28# G.J. Alneret al., Phys. Lett. B167, 486 ~1986!.
@29# C. Geich-Gimbel, Int. J. Mod. Phys. A4, 1527~1989!.
@30# It could be argued that by allowing the growth of^pT& with As

we also include, at least to some extent, the growing w
energy influence of hard collisions visualized as occurrenc
the so-called gluonic mini-jets; cf.@12#.

@31# C. De Marzoet al., Phys. Rev. D26, 1019 ~1982!; 29, 2476
~1984!.

@32# Cf., for example, F. Becattini, Nucl. Phys.A702, 336 ~2002!;
F. Becattini and G. Passaleva, Eur. Phys. J. C23, 551 ~2002!
11400
h

ort

-
k.

r-

h
f

and references therein.
@33# We shall not add here, as it is done in T. Osada, M. Maruya

and F. Takagi, Phys. Rev. D59, 014024~1999!, the charge
conservation as the second possible constraint, but calcu
our distribution for a given fixed total mean multiplicityN.

@34# A. Ohsawa, Prog. Theor. Phys.92, 1005~1994!.
@35# C. Beck, Physica A286, 164 ~2000!.
@36# R. Hagedorn, Riv. Nuovo Cimento Suppl.3, 147 ~1965!;

Nuovo Cimento A52, 64 ~1967!; Riv. Nuovo Cimento6, 1983
~1983!.

@37# F.S. Navarra, O.V. Utyuzh, G. Wilk, and Z. Włodarczy
Nuovo Cimento Soc. Ital. Fis., C24, 725 ~2001!.

@38# G. Cocconi, Phys. Rev.111, 1699~1958!.
@39# M. Basileet al., Phys. Lett.92B, 367~1980!; 95B, 311~1980!.
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