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Leptonic µ and t decays: Mass effects, polarization effects, andO„a… radiative corrections

M. Fischer, S. Groote, J. G. Ko¨rner, and M. C. Mauser
Institut für Physik, Johannes Gutenberg-Universita¨t, Staudinger Weg 7, D-55099 Mainz, Germany

~Received 13 February 2003; published 23 June 2003!

We calculate the radiative corrections to the unpolarized and the four polarized spectrum and rate functions
in the leptonic decay of a polarizedm into a polarized electron. The new feature of our calculation is that we
keep the mass of the final state electron finite which is mandatory if one wants to investigate the threshold
region of the decay. Analytical results are given for the energy spectrum and the polar angle distribution of the
final state electron whose longitudinal and transverse polarization is calculated. We also provide analytical
results on the integrated spectrum functions. We analyze theme→0 limit of our general results and investigate
the quality of theme→0 approximation. In theme→0 case we discuss in some detail the role of theO(a)
anomalous helicity flip contribution of the final electron which survives theme→0 limit. The results presented
in this paper also apply to the leptonic decays of polarizedt leptons for which we provide numerical results.

DOI: 10.1103/PhysRevD.67.113008 PACS number~s!: 13.40.Ks, 13.35.Bv, 13.35.Dx
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I. INTRODUCTION

While calculating the radiativeO(as) QCD corrections to
polarization effects in semileptonic decays of heavy qua
where the full quark mass dependence was retained@1,2#, we
came to realize that our results could also be gainfully e
ployed in the correspondingO(a) QED corrections to the
weak leptonic decays of them andt leptons@3#. In most of
the previous radiative correction calculations the mass of
charged lepton daughterl 8 has been neglected except f
anomalous contributions from the collinear region which s
vive the ml8→0 limit @4–6# and the logarithmic terms
;(ln ml8) which are needed to regularize the collinear div
gencies that appear in the loop and tree graph~‘‘internal
bremsstrahlung’’! contributions. These logarithmic term
partially cancel in the spectrum and completely cancel in
rate when the loop and tree graph contributions are add

From general considerations it follows that the unpol
ized and three of the polarized spectrum functions con
only even powers of the mass ratioml8/ml . Considering the
fact that (me /mm)252.3431025, (mm /mt)

253.5431023,
and (me /mt)

258.2731028 the zero mass approximatio
should be a good approximation for most of the energy sp
trum of the daughter leptons except for the region close~or
very close! to the soft end point of the spectrum~also re-
ferred to as the threshold region! where finite mass effect
have to be retained. Contrary to this the transverse polar
tion of the daughter lepton is proportional to the linear m
ratio ml8/ml . Also, when integrating the spectrum function
the linear mass ratio enters in all four polarized rate fu
tions. Finite mass corrections may thus play an import
role at least for (t→m) decays where the linear mass ra
mm /mt55.9531022 is not very small. An improved analy
sis of t decays is of quite some topical interest since la
samples oft leptons are currently being produced at t
existing twoB factories in Japan and in the USA, and a
expected to be produced at futuret-charm factories to be se
up in Ithaca and Beijing. As the data become more prec
the predictions of the SM including also radiative correcti
effects will be tested at an ever-rising level of precision. It
0556-2821/2003/67~11!/113008~17!/$20.00 67 1130
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then evident that the inclusion of final lepton mass effe
must play an important role in particular in the thresho
region.

We determine the radiative corrections to the daughte
lepton energy spectrum and its longitudinal and transve
polarization keeping the dependence on the polarization
the parent lepton. This generalizes the calculation of Ref.@7#
in which the zero mass approximation was used. Our ca
lation extends the calculation of Ref.@8#, which also includes
finite mass effects, in that we include the longitudinal a
transverse polarization of the daughter lepton.

The paper is structured as follows. In Sec. II we introdu
our notation and write down the general structure of the sp
dependent rate. Section III contains our Born term resu
W-propagator effects are taken into account in Sec. IV.
Sec. V we present our analytical and numerical results on
O(a) radiative corrections. In Sec. VI we consider theml8
→0 limit of the ml8Þ0 results presented in Sec. V and di
cuss in some detail the origin of the anomalous helicity fl
contribution. Section VII contains our summary and conc
sions. In two Appendixes we collect some technical mate
on trilog functions and Fierz identities relevant to our calc
lation.

II. GENERAL STRUCTURE OF SPIN-DEPENDENT RATE

To make life simple we shall in the following always refe
to the specific casem2→e21 n̄e1nm instead of referring to
the generic case involving also leptonict decays when writ-
ing down analytical results. Of course, when discussing
merical results, the two leptonict-decay channelst2→m2

1 n̄m1nt andt2→e21 n̄e1nt are also included.
Since the subject ofm2 decays is extensively covered i

the relevant textbooks~see, e.g., Refs.@9–11#! and review
articles ~see, e.g., Refs.@12–14#! we can afford to be very
brief in describing the formalism.

From helicity counting one knows that there are al
gether five spin-dependent structure functions and one s
independent structure function describing the leptonic de
of a polarized muon into a polarized electron. We thus defi
©2003 The American Physical Society08-1



n

c
re
a-
ro

e

d

r-

.
xis
ic

ow

he

s of

tor

za-

FISCHERet al. PHYSICAL REVIEW D 67, 113008 ~2003!
a spin-dependent differential rate in terms of six invaria
structure functionsAi . In the rest system of them2 the de-
cay distribution reads

dG

dxdcosuP
5bxG0S A11

1

mm
A2~pe•sm!1

1

mm
A3~pm•se!

1
1

mm
2

A4~pe•sm!~pm•se!1A5~sm•se!

1
1

mm
2

A6eabgdpm
ape

bsm
g se

dD . ~1!

As usualx52Ee /mm denotes the scaled energy of the ele
tron where the energy of the electron is defined in the
frame of them2. uP is the polar angle between the polariz
tion of the muon and the momentum direction of the elect
in the muon rest frame.

Equation~1! will be evaluated in the rest system of th
muon where pm5(mm ;0,0,0) and pe5(Ee ;0,0,upW eu)
5(mm/2)(x;0,0,xb). The velocity of the electron is denote
by b5A124y2/x2 wherey5me /mm . In the rest frame of
the m2 the polarization four vectors of them2 and e2 are
given by

sm
a5~0;zWm!, ~2!

se
a5S nW e•pW e

me
;nW e1

nW e•pW e

me~Ee1me!
pW eD , ~3!

where the polarization three-vectorzWm of the m2 and the
quantization axisnW e of the spin of thee2 in their respective
rest frames read~see Fig. 1!

zWm5~sinuP,0,cosuP! ~4!

and

nW e5~sinu cosx,sinu sinx,cosu!. ~5!

Equation~4! holds for 100% polarized muons. For pa
tially polarized muons with magnitude of polarizationP the
representation~4! has to be multiplied byP such thatPW m

5PzWm . The representation~5! needs a word of explanation
The vectornW e denotes the orientation of the quantization a
of the electron’s spin in the rest frame of the electron wh
can be freely chosen. The orientation ofnW e has no physical
meaning per se. In particularnW e is not the polarization vector
PW e of the electron whose Cartesian components can, h
ever, be obtained by projecting onto thex axis (u5p/2,x
50), they axis (u5p/2,x5p/2), and thez axis (u50).

One finally has@7,15#
11300
t

-
st

n

h

-

dG

dxdcosuP
5bxG0~G11G2P cosuP1G3cosu

1G4P cosuP cosu1G5P sinuPsinu cosx

1G6P sinuPsinu sinx!. ~6!

The relation between the invariant structure functionsAi
and the frame-dependent spectrum functionsGi is given by

G15A1 ,

G252
1

2
xbA2 ,

G35
1

2y
xbA3 ,

G452
1

4y
x2b2A42

1

2y
xA5 ,

G552A5 ,

G65
1

2
xbA6 . ~7!

G1 is the unpolarized spectrum function,G2 and G3 are
single spin polarized spectrum functions referring to t
spins of them2 and e2, respectively, andG4 , G5 and G6
describe spin-spin correlations between the spin vector
the muon and electron@16#. G6 represents a so-calledT-odd
observable. This is evident when rewriting the angular fac
multiplying G6 in Eq. ~6! in triple-product form, i.e.,

FIG. 1. Definition of the polar anglesu, uP and the azimuthal
anglex. We have taken the artistic freedom to orient the polari

tion vector of the electronPW e into the positivex direction contrary
to what is calculated in the main text.
8-2



lin
tri

r

-
tr
an

-
-

on

at
te

q
e

a-

ob-

de
f

the

e

the
an
sor

or

r
as

rn
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sinuPsinu sinx5upWeu21pWe•(zWm3nWe) @17#. G6 is identically
zero in the SM since, on the one hand, the weak coup
constantGF is real and, on the other hand, the loop con
butions do not generate imaginary parts.G6 will therefore
not be discussed any further in the following.

It is quite instructive to rewrite Eq.~6! in a factorized
form

dG

dxdcosuP
5bxG0~G11G2P cosuP!~11PW e•nW e!. ~8!

A comparison with Eq.~6! shows that the polarization vecto
PW e of the electron has the components

Pe
x
ªPe

'5
PG5sinuP

G11G2P cosuP
,

Pe
y
ªPe

N5
PG6sinuP

G11G2P cosuP
,

Pe
z
ªPe

l 5
G31G4P cosuP

G11G2P cosuP
. ~9!

We have as usual denoted the (x,y,z) components ofPW e by
(Pe

' ,Pe
N ,Pe

l ) where (',N,l ) stand for the polarization com
ponents transverse to the momentum direction of the elec
~in the plane spanned by the momentum of the electron
the polarization vector of the muon!, normal to this plane and
longitudinal, respectively. Equation~9! shows that the spec
trum functionsG3 andG4 determine the longitudinal polar
ization of the electron while its tranverse polarization~in the
plain spanned by the electron’s momentum and the mu
polarization! is determined byG5 @18#.

The limits on x52Ee /mm are given byxmin52y and
xmax511y2 where, as before,y5me /mm . G0, finally, is the
me50 Born term rate given byG05GF

2mm
5 /192p3. The dif-

ferential rate for the charge conjugated decaym1→e11ne

1 n̄m is obtained from Eq.~6! by the substitutionGi→Gi( i
51,4,5,6) andGi→2Gi( i 52,3) @19#.

It is convenient to split the unpolarized and polarized r
functions into a Born term part and a radiatively correc
part according to

Gi5Gi
Born1Gi

(a) , i 51,2,3,4,5. ~10!

The respective results on the Born term contributionsGi
Born

and theO(a) corrections to the rate functionsGi
(a) are given

in Secs. III and V. The sum of the two contributions in E
~10! will generally be referred to as the next-to-leading ord
~NLO! result.

III. BORN TERM RESULTS

We shall work with the charge retention form of the L
grangian for the decaym2→e21 n̄e1nm which reads
@20,21#
11300
g
-

on
d

’s

e
d

.
r

L~x!5
GF

A2
C̄e~x!ga~12g5!Cm~x!C̄nm

~x!ga~12g5!Cne
~x!

1H.c. ~11!

When squaring the corresponding matrix element one
tains the tensorCab from the charged lepton side (C for
charged! which has to be contracted with the neutrino-si
tensorNab (N for neutral!. For the Born term contribution o
the charge-side tensor one obtains

CBorn
ab 5

1

4
Tr$~p” e1me!~11g5s”e!g

a~12g5!~p” m1mm!

3~11g5s”m!gb~12g5!%, ~12!

where the dependence on the polarization four-vectors of
m2 ande2 has been retained.

Since only even-numberedg-matrix strings survive be-
tween the two (12g5) factors in Eq.~12! one can compactly
write the result of the trace evaluation as

CBorn
ab 52~ p̄m

b p̄e
a1 p̄m

a p̄e
b2gabp̄m• p̄e1 i eabgdp̄e,gp̄m,d!,

~13!

where

p̄m
a5pm

a2mmsm
a , ~14!

p̄e
a5pe

a2mese
a ~15!

and wheresm
a andse

a are the polarization four vectors of th
m2 ande2, respectively, defined in Eq.~2!.

The dependence on the momentum directions of then̄e
and nm neutrinos has been completely integrated out in
differential rate. Thus the neutrino side of the interaction c
only depend on the spatial piece of the second rank ten
build from the momentum transfer to the neutrinos~for the
present purpose the neutrinos are treated as massless! which
we denote byQa @22#. Thus the relevant neutral-side tens
is given by

Nab52gab1
QaQb

Q2
. ~16!

The Born spectrum functions can then be extracted from

Q2NabCab
Born52@~ p̄m• p̄e!Q

212~ p̄m•Q!~ p̄e•Q!#, ~17!

where the antisymmetric piece inCab
Born has dropped out afte

the symmetric contraction. At the Born term level one h
Q5pm2pe .

Including the correct normalization the differential Bo
term rate is given by

dGBorn

dxdcosuP
5G0bx

Q2NabCab
Born

mm
4

. ~18!
8-3
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The spectrum functions defined in Eq.~6! can then easily be
calculated from the Born term contributions~17! using the
relations Eq.~7!. They are given by

G1
Born5x~322x!2~423x!y2,

G2
Born5bx~122x13y2!,

G3
Born52bx~322x1y2!, ~19!

G4
Born52x~122x!2~41x!y2,

G5
Born522y~12x1y2!.

Note that the Born term spectrum functionsG1,2,3,4
Born and

G5
Born/y are quadratically dependent ony. This is in agree-

ment with the general arguments presented in Ref.@23#. For
y250(me50) one hasG1

Born52G3
Born and G2

Born52G4
Born

which reflects the fact that a mass zero left-chiral electro
purely lefthanded. The Born term results~19! reproduce the
y50 results of Ref.@7#. For y2Þ0(meÞ0) our Born term
results forG1

Born andG2
Born agree with those of Ref.@8#. Note

that the spectrum functionG5
Born is proportional toy and thus

vanishes for vanishing electron mass. The overall chiral f
tor y5me /mm in G5 originates from a lefthanded
righthanded interference contribution which is chirally su
pressed.

In Figs. 2~a! (m→e), 3~a! (t→m), and 4~a! (t→e) we
show plots of thex dependence of the four Born term spe
trum functionsbxG1,2,3,4

Born . They rise and fall from zero at th
soft end of the spectrum to (12y2)3( i 51,4) and 2(1
2y2)3( i 52,3) at the hard end of the spectrum, respective
The ml 850 patternG1

Born52G3
Born and G2

Born52G4
Born is

slightly distorted by final lepton mass effects except for
point xmax511y2 where the aboveml 850 relations are ex-
act. For the spectrum functionG5

Born one findsG5
Born(xmin

52y)522y(12y)2 and G5
Born(xmax511y2)50. The

chirally suppressed contribution ofbxG5
Born is negative over

the wholex range. At the scale of the plots it is only visib
for the caset→m @Fig. 3~a!#.

In addition to the polarization observables we also defi
a forward-backward asymmetry for the case that the spin
the electron is not observed. It reads

AFB5
GF2GB

GF1GB
5

1

2
P

G2

G1
, ~20!

whereGF andGB are the rates into the forward (cosuP>0)
and backward (cosuP<0) hemispheres.

One can also define a forward–backward asymmetry
the longitudinal polarization proportional toG4 /G1 accord-
ing to

Pl 8(FB)
l

5
GF

12GF
22GB

11GB
2

GF
11GF

21GB
11GB

2
5

1

2
P

G4

G1
, ~21!

where the indices1/2 denote the helicities of the electron
This asymmetry will be difficult to measure since it involv
11300
is

c-

-

.

e

e
of

f

a spin-spin correlation measurement. We shall therefore
discuss this asymmetry any further in this paper.

The longitudinal polarization and the forward-backwa
asymmetry take the valuesPe

l ,Born52 1
3 P cosuP and AFB

Born

50, respectively, at the lower limitxmin52y whereG1
Born

523G4
Born andG2

Born5G3
Born50. This has to be contraste

with the naive limitsPe
lBorn521 andAFB

Born5 1
6 P when na-

ively settingy50 in the corresponding ratios. At the upp
limit xmax5(11y2), where G1

Born52G2
Born52G3

Born

5G4
Born5(12y2)2, the longitudinal polarization decrease

to Pe
lBorn521 irrespective of the value ofP cosuP , and the

FIG. 2. The casem→e. Scaled energy dependence of~a! spec-
trum functionsbxGi , i 51, . . . ,5, ~b! the longitudinal polarization
of the electronPe

l for cosuP521,0,11, and ~c! the forward-
backward asymmetryAFB for cosu50. All curves with and without
radiative corrections. PolarizationP is set toP51.
8-4
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LEPTONIC m AND t DECAYS: MASS EFFECTS, . . . PHYSICAL REVIEW D 67, 113008 ~2003!
forward-backward asymmetry decreases toAFB
Born52 1

2 P as
in the naiveme50 case. At the soft end of the spectrum o
finds a substantial transverse polarizationPe

',Born

52 1
3 P sinuP which is independent ofy contrary to naive

expectations. Thus the total polarization of the electron
threshold is given byuPW e

Bornu5 1
3 P irrespective of the value

of cosuP . At the hard end of the spectrum one hasPe
',Born

50.
In Figs. 2~b! (m→e), 3~b! (t→m), and 4~b! (t→e) we

show thex dependence of the Born term prediction for t
longitudinal and transverse polarization of the daughter l
ton. We setP51 and take three values cosuP51, 0, and
21 for the longitudinal polarization and set cosuP50 for the
transverse polarization. The longitudinal polarization sta
close to21 over most of the~hard part! of the spectrum but

FIG. 3. The caset→m. Caption as in Fig. 2.
11300
t

-

s

deviates significantly from the naive value21 in the thresh-
old region with only a slight dependence on the value
cosuP . In order to highlight the deviations from the naiv
value Pl 8

l ,Born
521 in the threshold region we have chos

logarithmic scales for the energy variablex. The transverse
polarization is negative and stays very close to zero o
most of the~hard part! of the spectrum and decreases to
limiting value 21/3 at threshold. In fact all the Born term
curves can be seen to approach the limits discussed abo
the soft and hard end of the spectrum.

In Figs. 2~c!, 3~c!, and 4~c! we show the correspondin
curves for the forward-backward asymmetryAFB

Born for the
three decay cases. Again we setP51. The forward-
backward asymmetries rise from the limiting valueAFB

Born

50 at threshold and then fall toAFB
Born521/2 at the hard end

of the spectrum.
Next we integrate the differential Born term rates over t

full x spectrum. Let us define reduced Born rate functio
Ĝi

Born according to

Ĝi
Born5E

2y

11y2

dxbxGi
Born, i 51,2,3,4. ~22!

One obtains

Ĝ1
Born5

1

2
~12y4!~128y21y4!212y4ln y

5
1

2
24y21O~y4!,

Ĝ2
Born52

1

6
~12y!5~115y115y213y3!

52
1

6
1

16

3
y31O~y4!,

Ĝ3
Born52

1

6
~12y!5~3115y15y21y3!

52
1

2
1

20

3
y2216y31O~y4!, ~23!

Ĝ4
Born5

1

6
~12y4!~128y21y4!24y4ln y

5
1

6
2

4

3
y21O~y4!,

Ĝ5
Born52yF1

3
~12y2!~1110y21y4!14y2~11y2!ln yG

52yF1

3
1~314 lny!y21O~y4!G .

The occurrence of odd powers ofy in Ĝ2
Born andĜ3

Born can
be traced to the lower boundaryx52y of the x integration
which is linear iny. In view of this it is quite remarkable tha
8-5
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FISCHERet al. PHYSICAL REVIEW D 67, 113008 ~2003!
Ĝ1
Born, Ĝ4

Born, and Ĝ5
Born/y contain only even powers ofy.

Nevertheless, the leading mass correction toĜ3
Born sets in

only at O(y2) and, for Ĝ2
Born, only at O(y3). In this sense

the Born term rates are well protected against finite elec
mass effects or, in the case (t→m), reasonably well agains
muon mass effects. This is illustrated in Table I, where
list the values of the Born term percentage changes@Ĝi(m
Þ0)2Ĝi(m50)#/Ĝi(m50) when going fromml 850 to
ml 8Þ0 for all three cases.

The average longitudinal polarization of the electron^Pe
l &

and the average forward-backward asymmetry^AFB& is ob-
tained by the replacement (Gi→Ĝi) in Eqs.~9! and~20!. As
in the rate expressions~23! the final state lepton mass effec
on the Born term polarization̂Pe

l & and forward-backward

FIG. 4. The caset→e. Caption as in Fig. 2.
11300
n

e

asymmetry^AFB& are quite small. The deviation from th
ml 850 result^Pl 8

l &521 is of O(1024) in muon decay and
O(1026) in (t→e). For (t→m) the deviation from^Pm

l &
521 is of O(1022). The dependence on the value
P cosuP is very small. The average value of the forward
backward asymmetry^AFB& is quite close @O(1022

21023)# to they50 prediction^AFB&521/6. The average
transverse polarization̂Pm

'& is generally quite small due to
the overall chiral factory5ml 8 /ml . To be specific, foruP
5p/2 one finds an average transverse polarization
20.3, 23.7, and20.02 % for the three cases (m→e), (t
→m), and (t→e), respectively.

IV. W-BOSON PROPAGATOR EFFECTS

In order to incorporateW-boson propagator effects on
has to rewrite the charge retention form of the four-Fer
interaction~11! in terms of the charged currents of the sta
dard model including theW-boson propagator. This is easil
done using the Fierz transformation property written down
Eq. ~B1! in Appendix B.

For the present purposes it is only necessary to take
accountW-boson propagator effects in the Born term cont
butions. The momentum transfer is nowq5pm2pnm

5pe

1pne
. The qmqn piece of theW-boson propagator contrib

utes only atO(me
2mm

2 /mW
4 ) in the spectrum and rate func

tions and can therefore be dropped. In fact, using the F
identity ~B2!, it is not difficult to compute the contribution o
the qmqn piece exactly. TheW-boson propagator effect o
the spectrum can thus be taken into account by the repl
ment

1→S mW
2

q22mW
2 D 2

'11
mm

2

mW
2

x~22x!

322x
, i 51,3, ~24!

'12
mm

2

mW
2

x2

122x
, i 52,4, ~25!

where terms ofO(me
2/mW

2 ) have been neglected. Numer
cally the propagator corrections are quite small sin
mm

2 /mW
2 51.7331026 andmt

2/mW
2 54.8831024.

As is evident from Eq.~24! the W-boson propagator af
fects the two pairs of spectrum functions differently. Th
means that one cannot absorb theW-boson propagator effec
entirely into a redefinition of Fermi’s coupling constantGF ,
as advocated in Refs.@24,25#, when one considers polariza
tion effects.

In order to determine the propagator corrections to
rate functions one has to do the integrations

E
0

1

dxxG1,3
BornS 11

mm
2

mW
2

x~22x!

322x D 56
1

2 S 11
3

5

mm
2

mW
2 D ,

~26!
8-6
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TABLE I. Percentage mass corrections toml 850 ~Born! andml 8→0 @O(a)# rate functions for the three
cases (m→e), (t→m), and (t→e).

m→e t→m t→e
Born (a) Born (a) Born (a)

Ĝ1
20.019% 20.12% 22.82% 28.48% 26.6231025% 27.3931024%

Ĝ2
23.5731024% 20.67% 20.57% 211.23% 27.6031028% 20.039%

Ĝ3
20.031% 21.48% 24.25% 224.49% 21.1031024% 20.084%

Ĝ4
20.019% 21.43% 22.82% 222.15% 26.6231025% 20.083%
m
en
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en
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u
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E
0

1

dxxG2,4
BornS 12

mm
2

mW
2

x2

122xD 57
1

6 S 11
1

5

mm
2

mW
2 D ,

~27!

where terms ofO(y) have been dropped in the Born ter
factors and in the integration measure. Again it is evid
from Eqs.~26! and~27! that theW-boson propagator affect
the two pairs of rate functions differently. If theW-boson
propagator effect is absorbed into a redefinition ofGF using
a measurement of the total unpolarized rate then this mus
compensated for by multiplying the polarization depend
piecesĜ2,4 by @12 2

5 (mm
2 /mW

2 )# when calculating the aver
age of the longitudinal polarization of the electron^Pe

l & or
the forward-backward asymmetry^AFB&.

V. O„a… CORRECTIONS TO SPIN DEPENDENT
RATE FUNCTIONS

Many of the technical ingredients that go into the calc
lation of the O(a) corrections can be found in a detaile
account of theO(as) corrections to the decay of a polarize
top into a bottom quark and aW gauge bosont→b1W1

presented in Ref.@2# ~for the loop contribution see also Re
@26#!. Compared to Ref.@2# one needs to include the pola
d
th
u-
e
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be
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ization dependence of the final massive fermion in this
plication. For theO(a) tree-graph and one-loop contribu
tions this is easily done.

Let us briefly discuss the tree graph contribution. T
O(e) tree graph amplitude~‘‘internal bremsstrahlung’’! con-
sists of the two contributions where the photon is either
diated off the electron or off the muon. One thus has

M a5eūeS gd

p” e1k”1me

~pe1k!22me
2
ga~12g5!

1ga~12g5!
p” m2k”1mm

~pm2k!22mm
2

gdD ume* d, ~28!

wherek anded are the momentum and the polarization fo
vector of the photon. Four-momentum conservation n
reads pm5pe1Q1k, where Q is again the momentum
transferred to the neutrino pair. When squaring the tree gr
amplitude one only sums over the polarization states of
photon since the muon and the electron are taken as p
ized. Omitting again the antisymmetric contribution one o
tains in the Feynman gauge
C(a)ab5 (
g-spin

M aM b†5
e2

2 H 1

~k•pe!
S k• p̄e2me

2

~k•pe!
1

pm• p̄e

~k•pm!
D ~kap̄m

b1kbp̄m
a2k• p̄mgab!1

1

~k•pm!
S k• p̄m1mm

2

~k•pm!
2

pe• p̄m

~k•pe!
D

3~kap̄e
b1kbp̄e

a2k• p̄eg
ab!1

k• p̄e

~k•pe!
2
~pe

ap̄m
b1pe

bp̄m
a2pe• p̄mgab!2

k• p̄m

~k•pm!2
~pm

a p̄e
b1pm

b p̄e
a2pm• p̄eg

ab!

1
k• p̄m

~k•pe!~k•pm!
~pe

ap̄e
b1pe

bp̄e
a2me

2gab!2
k• p̄e

~k•pe!~k•pm!
~pm

a p̄m
b1pm

b p̄m
a2mm

2 gab!J
2

e2

2
~ p̄e

ap̄m
b1 p̄e

bp̄m
a2 p̄e• p̄mgab!S mm

2

~k•pm!2
1

me
2

~k•pe!
2

22
pe•pm

~k•pe!~k•pm!D . ~29!
ing
way
n-
op
In the last line of Eq.~29! we have isolated the infrare
singular piece of the charge-side tensor which is given by
usual soft photon factor multiplying the Born term contrib
tion. In the phase space integration over the photon mom
e

n-

tum the infrared singular piece is regularized by introduc
a ~small! photon mass which distorts the phase space a
from the singular point. The infrared singular piece is ca
celled by the corresponding singular piece in the one-lo
8-7
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contributions again calculated in Feynman gauge. In the o
loop amplitude the photon mass is included in the pole
nominators only@27,28#.

The remaining part of the charge-side tensor in Eq.~29! is
infrared finite and can easily be integrated without a regu
tor photon mass. Just as in the Born term case treated in
III the O(a) charge-side tensorCab

(a) is contracted with the
11300
e-
-

-
ec.

neutral-side tensorNab Eq. ~16! where now Q5pm2pe
2k. In the tree graph integration one first integrates over
photon’s energy and then over the cosine of the angle
tween the photon and the electron taking appropriate car
the infrared singular piece. Any azimuthally dependent ter
drop out after the azimuthal integration. One then fina
adds in the one–loop contributions. The final result is
G1
(a)5

a

p
G1

BornS1
a

p

1

12bx
$3bx@~324x!x2~829x!y2#l11@~5112x251x2128x3!23~19240x117x2!y2

23~1924x!y415y6#l224bx@~11210x15x2!22~115x!y2111y4#%, ~30!

G2
(a)5

a

p
G2

BornS1
a

p

1

12b2x2
$3b3x3~124x19y2!l128~12x1y2!3l32@x~1133x2228x3!

23x~33212x217x2!y213~32235x24x2!y425xy6#l222bx@~3210x213x218x3!1~59211x2!y2

2~35210x!y415y6#%, ~31!

G3
(a)5

a

p
G3

BornS1
a

p

1

12b2x2
$23b3x3~324x13y2!l128y2~12x1y2!3l32@x~5112x251x2128x3!

2~82129x160x2125x3!y223~40249x18x2!y42~24223x!y628y8#l212bx@~5110x211x218x3!

2~35113x2!y21~59210x!y413y6#%, ~32!

G4
(a)5

a

p
G4

BornS1
a

p

1

12b3x3
$23b3x3@~124x!x1~813x!y2#l118x~12y2!~12x1y2!3l3

14bx@x~125x25x213x3!2~4259x114x215x3!y22~104259x15x2!y42~42x!y6#

1@x2~1133x2228x3!1~418x2153x21104x3125x4!y223~28272x159x228x3!y4

2~84224x123x2!y614~112x!y8#l2%, ~33!

G5
(a)5

a

p
G5

BornS1
a

p

y

2 H 2~122x13y2!l11
2

bx
„3x22x22~423x!y2

…l2J . ~34!
nc-
en

n

sion

n
o-
We have used the abbreviations

l15 ln y2, l25 lnS 11b

12b D , l35 lnS 22~11b!x

22~12b!xD
~35!

and

S5
1

b H 2 Li2S 2bx

22~12b!xD22 Li2S 2bx

~11b!x22y2D
2b ln~12x1y2!1F lnS ~11b!

x

2D2
12y2

x G~l32l2!

1F lnS 12~11b!
x

2D2
12x

x Gl2J . ~36!
The radiative corrections to the unpolarized spectrum fu
tion G1 including the full mass dependence have first be
calculated in Ref.@29#. After correcting for an error in the
calculation of Ref.@29#, a correct result was published i
Ref. @30#. Our results forG1

(a) agree with those given in
Refs. @30# and @8#. Our results forG2

(a) agree with those of
Ref. @8#. The results onG3,4,5

(a) are new.
Note that the four spectrum functionsG1,2,3,4

(a) are logarith-
mically mass divergent. We have checked that the expan
of the spectrum functionsG1,2,3,4

(a) and G5
(a)/y in terms of

powers ofy contains only even powers ofy, in agreement
with the general reasoning given in Ref.@23#. The leading
term in they expansion of the spectrum functionsG1,2,3,4

(a) can
be reconstructed from theme→0 results to be presented i
Sec. VI. We do not write down any of the higher order c
8-8
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efficients in they–expansion, as was done in the Born te
case, since such an expansion is not particularly illuminat

The explicit evaluation of the five spectrum functions
numerically quite stable except for the region very close
threshold, i.e., forb values smaller thanb'0.05, or, when
expressed in terms of the scaled electron energyx, for x
values below (9.731023,1.231021,5.831024). The origin
of the instability are the inverse powers ofb appearing in
Eqs.~30!–~34!. If one wants to explore the region belowb
'0.05 one can make use of a smallb expansion of the
expressions Eqs.~30!–~36! which is not difficult to arrive at
using an algebraic program such as, e.g.,MATHEMATICA . We
do not write down explicit forms for the smallb expansion
because the expressions are not particularly illuminating.
it be said that in the smallb expansionG1,4,5

(a) andG2,3
(a) are

even and odd functions ofb, respectively. This shows tha
G2

(a) andG3
(a) are proportional tob just as in the Born term

case. We mention that approximate formulas for the thre
old region have been written down forG1 in Ref. @31#.

In Fig. 2~a! (m→e), 3~a! (t→m), and 4~a! (t→e) we
show plots of thex dependence of the four spectrum fun
tions bxGi( i 51,2,3,4), with and without radiative correc
tions. The radiative corrections show a markedy depen-
dence. They are smallest fort→m, become larger form
→e, and are largest fort→e. To a large part this can b
traced to the (lny)-dependent terms in the spectrum fun
tions as will be discussed in more detail in Sec. VI. On
absolutescale the radiative corrections are generally qu
small except for the hard end of the spectrum where the
fact ~logarithmically! diverge @32–34#. On a relative scale
the radiative corrections are quite large for (m→e) and for
(t→e), and smaller for (t→m) at the soft end of the spec
trum, where the spectrum functions are small. This will sh
up in the radiative corrections to the longitudinal polarizati
ue
y
e

o

e

ro

11300
g.

o

et

h-

n
e
in

of the daughter leptonPl 8
l and the forward–backward asym

metry AFB which are large in the threshold region form
→e andt→e and small fort→m. As discussed in Sec. II
the contribution ofbxG5 is barely discernible for the cas
t→m @Fig. 3~a!#. At the scale of the figure the differenc
between the Born and NLO curves is not visible.

It is interesting to note that the radiative corrections
through zeros close tox50.68 andx50.82 forG1,3 and for
G2,4, respectively, for all three cases discussed in this pa
The positions of the respective zeros are practically m
independent. Differences in the position of the zero show
only in the third digit. In fact, when discussing theml 8→0
case in Sec. VI we have checked that the positions of
zeroes remain practically unchanged even when lettiny
→0. The radiative corrections are negative and positive
low and above the zero forbxG1,4, respectively, and posi
tive and negative below and above the zero forbxG2,3.
Qualitatively the alternating sign pattern over the range
the spectrum can be understood from the dominance of
(ln y) terms and from the fact that the (lny)-dependent terms
have to cancel out when one integrates over the spectr
There is a tendency of the radiative corrections to cance
the sums (G11G3) and (G21G4) and to add up in the
differences (G12G3) and (G22G4), i.e., the radiative cor-
rections add destructively and constructively in the fin
electron’s density matrix elementsr11 and r22 , respec-
tively, to be discussed further in Sec. VI.

We next turn to the radiative corrections of the longitud
nal polarizationPe

l of the electron and the forward-backwa
asymmetryAFB calculated according to Eqs.~9! and ~20!.
We begin by discussing the limiting value of the longitudin
polarization at the soft end of the spectrum including t
radiative corrections. At NLO one has
lim
x→2y

Pe
l 52

1

3
P cosuPH 12

a

p

4~12y!2~11y2!

72y21
a

p
~5210y2278y2210y315y4!2108

a

p

11y

12y
y2ln yJ

'2
1

3
P cosuPH 12

a

p S 18y21
5

4

a

p D 21J . ~37!
t
is

to
t

For the casesm→e andt→e the term (18y2) in the second
line of Eq. ~37! can be neglected and thus the limiting val
of the longitudinal polarization of the electron is given b
Pe

l '2 1
15 P cosuP which is smaller than the Born term valu

by a factor of 5. This is evident in Figs. 2~b! and 4~b!, where
the radiative corrections to the longitudinal polarization
the electron are shown. For thet→m case the term (18y2)
dominates over (5/4)(a/p) and the limiting value of the
longitudinal polarization of them is Pe

l '2 1
3 P cosuP @1

2(a/p)(1/18y2)#, i.e., the correction to the Born term valu
is only '3.6%. This can be seen in Fig. 3~b!. The NLO
limiting value for the forward–backward asymmetry is ze
f

since, as discussed before, a smallb expansion shows tha
G2

(a)/G1
(a).(x2xmin)

1/2 just as in the Born term case. Th
can again be seen in Figs. 2~c!–4~c!. Finally, the behavior of
the transverse polarizationPe

' at xmin52y is quite similar to
that of the longitudinal polarization. In fact, one just has
replace cosuP→sinuP and 4→5 in the numerator of the firs
line of Eq.~37! in order to obtain the limiting valuePe

' . This
leads to

lim
x→2y

Pe
''2

1

3
P sinuPH 12

a

p S 72

5
y21

a

p D 21J . ~38!
8-9
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Just as forPe
l the O(a) corrections are small fort→m and

sizeable form→e andt→e at threshold, as can be seen
Figs. 2~b!–4~b!. Next we discuss the limiting behavior of th
spectrum functions at the hard end of the spectrum, wh
x→xmax511y2. As remarked on before the radiative co
rection contributions can be seen to logarithmically dive
in this limit ~see@32#!. Introducingxmax8 511y22« the lim-
iting behavior of the four spectrum functions is given by

lim
x→xmax

G152 lim
x→xmax

G252 lim
x→xmax

G35 lim
x→xmax

G45~12y2!2

1
a

p
2~12y2!3H ~11y2!F3

4
1 lnS «

12y2D G ln y

1~12y2!F11 lnS «

12y2D G J . ~39!

The limiting values of the four spectrum functions are, up
signs, all identical. This implies that the radiative correctio
to the longitudinal polarization of the daughter lepton do
not change the Born term valuePl 8

l
521 at the hard end o

the spectrum irrespective of the values ofP cosuP . Similarly
the radiative corrections to the forward-backward asymme
do not change the Born term value ofAFB52 1

2 P at the hard
end of the spectrum. Finally, the NLO transverse polarizat
is zero atx5xmax sinceG5

(a) is finite atxmax. In fact, one has
G5

(a)→2(a/p)y(12y2)ln y at xmax.
The fact that the relative corrections to the spectrum fu

tions in the threshold region arerelatively large for (m→e)
11300
re

e

s
s

y

n

-

and (t→e) shows up in Figs. 2~b! and 4~b!, and in Figs. 2~c!
and 4~c!, where the radiative corrections to the longitudin
polarization of the final state electrons and the forwa
backward asymmetry are visibly large in the threshold reg
@35#. Note, though, that we have enhanced the threshold
gion in our presentation ofPl 8

l andAFB by choosing a loga-
rithmic scale forx in Figs. 2~b!, 2~c!, 3~b!, 3~c!, 4~b!, and
4~c!. For the forward-backward asymmetry the radiative c
rections remain large over a larger part of the spectrum.
radiative corrections toPm

l andAFB for the (t→m) decays
are shown in Figs. 3~b! and 3~c!. As expected from the small
ness of the radiative corrections to the spectrum functi
shown in Fig. 3~a! the radiative corrections to both the lon
gitudinal polarization of the final state muon and t
forward-backward asymmetry are small. The same statem
holds true for the radiative corrections to the transverse
larization. Since the spectrum functions are small at the
end of the spectrum, the radiatively corrected average lo
tudinal polarization^Pl 8

l & of the daughter leptonl 8 is ex-
pected to remain very close to21 in all three cases. Using
the integrated rate functions presented at the end of this
tion we find the NLO result̂ Pl 8

l &520.999,20.986 and
20.999 for (m→e), (t→m) and (t→e), respectively, for
cosuP50 with very little dependence on cosuP . The corre-
sponding figures for̂AFB& are20.166,20.170,20.166. Fi-
nally, for the transverse polarization one finds^Pl 8

' &
520.0031,20.037,20.00018 for the three cases fo
cosuP50.

Next we integrate the five spectrum functionsbxGi
(a)

over the electron spectrum according to Eq.~22!. One ob-
tains
Ĝ1
(a)5

a

p H 1

48
~12y4!~752956y2175y4!2y4~361y4!ln2y2

p2

4
~1232y3116y4232y51y8!2

1

6
~601270y2

24y4117y6!y2ln y2
1

12
~12y4!~17264y2117y4!ln~12y2!12~12y!4~114y110y214y31y4!ln~12y!ln y

12~11y!4~124y110y224y31y4!ln~11y!ln y1~3132y3148y4132y513y8!Li2~2y!

1~3232y3148y4232y513y8!Li2~y!J , ~40!

Ĝ2
(a)5

a

p H 1

3
~12y2!~11y2113y423y6!@ ln~12y!12ln~11y!# ln y2

1

432
~12y!2~6172842y11929y221592y3

23415y4154y52567y6!2
1

36
~12y!y~12218y2238y2141y321003y4245y529y6!ln y

1
1

36
~12y!2~13126y187y22364y31535y42102y5251y6!ln~12y!1

1

2
y4~14132y223y4!ln2y

2
1

9
~12y2!~25113y2167y4115y6!ln~11y!28y4F1

6
ln3y1S 2 Li2~2y!1Li2~y!2

p2

3 D ln y26Li3~2y!

2Li3~y!2
7

2
z~3!G1

1

3
~7124y2148y428y619y8!S Li2~2y!1

p2

12D J , ~41!
8-10
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Ĝ3
(a)5

a

p H 1

3
~12y2!~3213y22y42y6!@ ln~12y!12 ln~11y!# ln y2

1

432
~12y!2~567254y13415y211592y3

21929y41842y52617y6!2
1

36
~12y!y~36198y1590y22265y3127y4299y5287y6!ln y

1
1

36
~12y!2~511102y2535y21364y3287y4226y5213y6!ln~12y!2

1

6
y2~8166y2224y42y6!ln2y

2
1

9
~12y2!~15167y2113y4125y6!ln~11y!18y4F1

6
ln3y1S 2 Li2~2y!1Li2~y!2

p2

3 D ln y26Li3~2y!

2Li3~y!2
7

2
z~3!G1

1

3
~928y2148y4124y617y8!S Li2~2y!1

p2

12D J , ~42!

Ĝ4
(a)5

a

p H 1

432
~12y4!~58116140y21581y4!2

p2

36
~726y128y21222y32164y41390y52140y6166y725y8!

2
1

36
~12y4!~132176y2113y4!ln~12y2!1

1

3
y2~2146y2138y41y6!ln2y1

2

3
y~12y!4~524y15y2!

3 ln~12y!ln y2
2

3
y~11y!4~514y15y2!ln~11y!ln y1

1

18
y2~2121930y21388y4213y6!ln y

1
1

3
~1210y256y22102y32164y42102y5256y6210y71y8!Li2~2y!

1
1

3
~1110y256y21102y32164y41102y5256y6110y71y8!Li2~y!J , ~43!

Ĝ5
(a)5

a

p
yH 2

7

18
~12y2!~5134y215y4!2

2

3
y2~9118y22y4!ln2y1

p2

6
~123y2132y323y41y6!

2
4

3
~12y!4~114y1y2!ln~12y!ln y2

4

3
~11y!4~124y1y2!ln~11y!ln y

2
1

18
~151249y21141y4229y6!ln y1

1

9
~12y2!~11138y2111y4!ln~12y2!

2
2

3
~329y2232y329y413y6!Li2~2y!2

2

3
~329y2132y329y413y6!Li2~y!J . ~44!
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Note thatĜ2
(a) andĜ3

(a) contain trilog functions, and assoc

ated with them, Euler’s zeta functionz(3), whereasĜ1
(a) ,

Ĝ4
(a) , and Ĝ5

(a) contain only dilog functions. In agreemen
with the Lee-Nauenberg theorem@4# the rate functions do
not contain any logarithmic mass singularities. Our result

Ĝ1
(a) agrees with the result in Ref.@36# where a different

route of phase space integrations was taken to arrive a
total rate. Our result forĜ2

(a) agrees with the result in Ref

@8#. The results onĜ3
(a) , Ĝ4

(a) and Ĝ5
(a) are new. As an

additional check we have checked that all five rate functi
Ĝi

(a) vanish fory→1.
In order to get a quantitative feeling about the size of

radiative corrections to the respective spectrum functions
11300
r

he

s

e
e

have listed in Table II the percentage changesdĜi induced
by the radiative corrections, where

dĜi5
~Ĝi

(a)1Ĝi
Born!2Ĝi

Born

Ĝi
Born

5
Ĝi

(a)

Ĝi
Born

. ~45!

The relative radiative correctionsdĜi can all be seen to be
close to the naive expectation ofO(a) where the relative
radiative corrections toĜ5 are largest. However, as was em
phasized earlier on, all radiative corrections discussed in
paper go through zeros. Integrating over the whole spect
therefore does not give an adequate representation of the
of the radiative corrections to the spectrum since there
8-11
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TABLE II. Numerical values of partially integrated (dĜi
, ,dĜi

.) and total rate functions (dĜi) divided
by their respective Born term values. The symbols ‘‘, ’’ and ‘‘ . ’’ stand for integrations from threshold to th
zero point of the respectiveO(a) contributions, and from the zero point to the endpoint of the spectrum

m→e t→m t→e
i dĜi

, dĜi
. dĜi dĜi

, dĜi
. dĜi dĜi

, dĜi
. dĜi

1 12.80% 22.69% 20.42% 10.76% 21.14% 20.40% 15.20% 24.44% 20.42%
2 18.22% 23.70% 20.68% 12.51% 21.59% 20.62% 114.70% 26.10% 20.68%
3 12.56% 22.68% 20.53% 10.66% 21.14% 20.45% 14.95% 24.43% 20.54%
4 17.82% 23.70% 20.79% 12.53% 21.59% 20.67% 114.28% 26.10% 20.80%
5 10.76% 23.68% 22.89% 10.09% 21.62% 21.49% 11.72% 26.03% 24.53%
m
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-
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sizable cancellation effects. This cancellation would beco
less effective if moments of the spectrum functions w
taken. The moments could be chosen such that they e
emphasize the threshold or the endpoint region. Alter
tively, one can consider partially integrated rates where
integrations either run from threshold to the point where
radiative corrections go to zero or from the zero point to
endpoint. The two partially integrated rate functions will
denoted byĜi

, ~lower part! and byĜi
. ~upper part!. The two

respective partially integrated relative rate functionsdĜi
,

.
m
fu

or

ra

no

o
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and dĜi
. are also listed in Table II. The relative radiativ

corrections for the partially integrated rate functions can
seen to be much larger than for the fully integrated rate fu
tions and can amount up toO(10%) which is much larger
than the naiveO(a) expectation. Note, though, that, in con
trast to the rate functions, neither the moments of the spec
functions nor the partially integrated rates are free of lo
rithmic mass singularities.

Since the complete rate expressions are rather unwield
is useful to consider the smally expansions of the rate ex
pressions. One has
Ĝ1
(a)5

a

p H 2524p2

16
2~17112 lny!y218p2y31O~y4!J , ~46!

Ĝ2
(a)5

a

p H 2
617284p2

432
2

2

3
y2

1

3
~2422p22 ln y!y21

2

27
~71184 lny!y31O~y4!J , ~47!

Ĝ3
(a)5

a

p H 2
2124p2

16
2

10

3
y2

1

27
~23216p2187 lny136 ln2y!y21

2

9
~121284 lny!y31O~y4!J , ~48!

Ĝ4
(a)5

a

p H 7~83212p2!

432
1

1

6
y1

1

27
~578221p21138 lny118 ln2y!y22

37

6
p2y31O~y4!J , ~49!

Ĝ5
(a)5

a

p
yH 2

3523p2115 lny

18
2

1

2
~271p2125 lny112 ln2y!y21

16

3
p2y31O~y4!J . ~50!
in
s in

in to
the
is

e

s

ng
It is well known that theO(a) small-y corrections to the

reduced rateĜ1
(a) start only at O(y2) ~see, e.g., Refs

@23,37#!. In contradistinction and contrary to the Born ter
case the mass corrections to the spin dependent rate

tions Ĝ2
(a) , Ĝ3

(a) , andĜ4
(a) all start atO(y).

In order to obtain a quantitative feeling about the imp
tance of mass effects in theO(a) radiative contributions we
have listed in Table I the percentage changes in the
functionsĜi when going fromml 8→0 to ml 8Þ0 using the
ml 8→0 results listed in Sec. VI. The mass effects are
small, in particular for the case (t→m). The percentage
changes for the radiative contributions are larger than th
nc-

-

te

t

se

in the Born term case which is partly due to the difference
the power pattern of the final state lepton mass correction
the two cases. The quality of theml 8→0 approximation for
the radiative corrections can be assessed by referring aga
Table I. The final state lepton mass effects tend to reduce
overall size of the radiative corrections. The reduction
largest @O(10%)# for the case (t→m) and smallest
@O(1021)# for the case (t→e). They are largest for the rat
functions Ĝ3 and Ĝ4 and smallest forĜ1. That the mass
effects are smallest forĜ1 is due to the fact that the mas
corrections toĜ1 set in only at O(y2) @see Eq. ~47!#.
Whether one is willing to tolerate the error incurred in usi
8-12
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the simplerml 8→0 radiative correction formulas depends
course on the accuracy required for the application at ha

We now turn to the discussion of the NLO average lon
tudinal and transverse polarization of the electron^Pe

l & and
^Pe

'&, and the NLO average forward-backward asymme
^AFB&. They take remarkably simple forms in they→0
limit. Including the Born term contribution and expandin
the inverse denominator in powers ofa/p one has at NLO

lim
y→0

^Pe
l &52S 12

a

2p D . ~51!

Note that^Pe
l & does not depend onP cosuP in this approxi-

mation.
For the forward-backward asymmetry one obtains

lim
y→0

^AFB&52
1

6
PS 12

a

p

6p2249

9 D . ~52!

Finally, for the transverse polarization one obtains in
same approximation (cosu50)

lim
y→0

^Pe
'&52

2

3
PyS 11

a

p

65160 lny

24 D . ~53!

The O(a) corrections tô Pe
l &, ^AFB&, and to^Pe

'& are thus
quite small. The actual numerical values for^Pe

l &, ^AFB&,
and for^Pe

'& listed earlier in this section lie very close to th
above estimates in all three cases.

VI. THE me\0 LIMIT AND THE ANOMALOUS
HELICITY FLIP CONTRIBUTION

The purpose of this section is twofold. First we discu
the me→0 limit of the meÞ0 O(a) results given in Sec. V
This allows us to make contact with theme→0 results de-
rived previously@7#. Second we discuss in some detail t
origin of the anomalous helicity flip contribution resultin
from collinear photon emission of the electron. Our resu
are presented in terms of the two diagonal components o
density matrix of the final state electron, which, in the lim
me→0, are nothing but the helicity no-flip and helicity fli
contributions of the final state electron. The naive predict
of massless QED is that the helicity flip contributions van
in all orders of perturbation theory. However, as first poin
out by Lee and Nauenberg@4#, there will be a nonzero he
licity flip contribution from collinear photon emission whic
survives theme→0 limit. This will be demonstrated in ou
O(a) me→0 expressions. Ourme→0 result for the helicity
flip contribution is found to be in agreement with expec
tions derived from the universal equivalent particle appro
of Falk and Sehgal@6#. For a discussion of the quality of th
ml 8→0 approximation for the three cases (m→e), (t→m)
and (t→e) we refer to the discussion at the end of Sec.

Since we want to discuss the helicity no-flip and flip co
tributions separately it is convenient to choose a slightly d
ferent representation for the differential rate Eq.~6!. We
11300
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write the differential rate in terms of the no-flip and fli
contributions

dG

dxdcosuP
5

dGn f

dxdcosuP
~12cosu!

1
dGh f

dxdcosuP
~11cosu!, ~54!

where the no-flip and flip contributions are given by

dGn f /h f

dxdcosuP
5

1

2
bxG0@~G17G3!1~G27G4!P cosuP#.

~55!

The terminology helicity no-flip~nf! and helicity flip ~hf! is
really only appropriate in theme→0 limit where the electron
emerging from the left-chiral weak interaction current
purely left-handed. After photon emission the electron c
then remain left-handed~nf! or can become right-hande
~hf!. For meÞ0 the respectivenf and hf contributions are
nothing but the~unnormalized! diagonal elements of the den
sity matrix of the electron, i.e.,Gn f;r22 andGh f;r11 .

As concerns the helicity flip contribution one notes th
there are no Born term helicity flip contributions in the lim
me50 since a massles electron emerging from the w
(V2A) vertex is left-handed. This is explicitly seen by in
serting the Born term rate functions Eq.~19! in Eq. ~55!.
Naively, one would expect no helicity flip contributions als
at O(a) because, in massless QED withme50, photon
emission from the electron is helicity conserving. Howev
taking the limit me→0 in Eqs.~30!–~33! one finds helicity
flip contributions which survive theme→0 limit. In fact, one
finds

dGh f

dxdcosuP
5

a

12p
G0$@~12x!2~522x!#

2@~12x!2~112x!#P cosuP%, ~56!

which agrees with the result presented in Ref.@7#. Because of
the naive expectation that the helicity flip contribution va
ishes in massless QED the presence of a helicity flip con
bution is sometimes referred to as the anomalous helicity
contribution. Moreover, the authors of Ref.@38# were able to
show that the well-known axial anomaly can be traced to
existence of an anomalous helicity flip contribution to t
absorptive part of theVVA triangle diagram in massles
QED. This gives further justification for the use of the te
minology ‘‘anomalous helicity flip contribution.’’ In order to
set the anomalous contributions apart we have highligh
them in Eq.~56! by enclosing them in square brackets.

The authors of Ref.@7# had already expressed surprise
the simplicity of the structure of theO(a) helicity flip con-
tributions without, however, attempting to identify the sour
of this structural simplicity. The simplicity of the helicity flip
contribution becomes manifest in the equivalent particle
scription of m-decay where, in the peaking approximatio
m-decay is described by the two-stage processm2→e2 fol-
lowed by the branching processe2→e21g characterized
8-13
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by universal splitting functionsDn f /h f(z) @6#. In the splitting
processz is the fractional energy of the emitted photon@6#.
The off-shell electron in the propagator is replaced by
equivalent on-shell electron in the intermediate state. Si
the helicity flip contribution arises entirely from the colline
configuration it can be calculated in its entirety using t
equivalent particle description.

The helicity flip splitting function is given byDh f(z)
5az/(2p), where z5k0 /E85(E82E)/E8512x/x8, and
wherek0 is the energy of the emitted photon@6#. E8 andE
denote the energies of the initial and final electron in
splitting process. The helicity flip splitting function has to b
folded with the appropriateme50 Born term contribution.
The lower limit of the folding integration is determined b
the soft photon point whereE85E. The upper limit is deter-
mined by the maximal energy of the initial electronE8
5mm/2. One obtains

dGh f

dxdcosuP
5

a

2pEx

1

dx8
1

x8

dGBorn;n f~x8!

dx8d cosuP
S 12

x

x8
D

5
a

2p
G0E

x

1

dx8~x82x!@~322x8!

1~122x8!P cosuP#
i
in

cu
n
-

p
n
s
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11300
n
e

e

5
a

12p
G0@~12x!2~522x!

2~12x!2~112x!P cosuP#, ~57!

which exactly reproduces the result of Eq.~56!. Note that the
flip spectrum function does not contain a logarithmic ma
factor. Integrating over the spectrum one obtains

d^Gh f&
d cosuP

5
a

p
G0S F1

8G2F 1

24GP cosuPD . ~58!

which can be checked to agree with the results in Sec
settingy50.

The helicity no-flip contribution is again obtained by ta
ing the me→0 limit in Eqs. ~30!–~33! but now for the dif-
ferences of the respective spectrum functions as specifie
Eq. ~55!. Including theO(y0) Born term contributions one
obtains
dGn f

dxdcosuP
5G0S x2~322x!1

a

12p H 2@~12x!2~522x!#24x~11210x15x2!26~62x!x ln~12x!

22~5112x215x214x3!lnS y

xD16~324x!x2lnS y

12xD112~322x!x2sJ
1S x2~122x!1

a

12p H @~12x!2~112x!#22~3210x213x218x3!2
2

x
~4212x118x2213x3!ln~12x!

12~1121x224x3!lnS y

xD16~124x!x2lnS y

12xD112~122x!x2sJ D P cosuPD , ~59!
ular
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r

r-
where

s52
p2

3
12 Li2~x!1 ln~x!ln~12x!12 lnS x

12xD lnS y

xD .

~60!

The no-flip contribution agrees with the result presented
Ref. @7#. We have highlighted the anamolous contributions
Eq. ~59! by enclosing them in square brackets. When cal
lating the total spectrum, i.e., when summing the flip a
no-flip contributions~56! and ~59!, the anomalous contribu
tions cancel.

TheO(a) no-flip contribution is much larger than the fli
contribution. This is illustrated in Fig. 5 for the electro
spectrum in them→e decay where the flip contribution ha
been multiplied by a factor of 20 in order to make it visib
n

-
d

at all. The vanishing of the flip contribution for cosu511 at
the hard end of the spectrum can be understood from ang
momentum conservation. In order to be able to discuss
residual mass dependence the no-flip contribution has b
split into its constant part and its logarithmic (lny) part
which come in with opposite signs over most of the sp
trum, i.e., they partially cancel in the spectrum. Consider
the numerical values of the ratios lny(t→m) /ln y(m→e)50.53
and lny(t→e) /ln y(m→e)51.53 it is clear from Fig. 5 that the
cancellation between the constant and the logarithmic pa
strongest fort→m and weakest fort→e. This observation
provides a qualitative explanation of the hierarchy of the s
of radiative corrections to the three decay cases as desc
in Sec. V, namely, the radiative corrections are largest fot
→e and smallest fort→m.

We now turn to the discussion of the longitudinal pola
ization of the daughter lepton in theme→0 limit. It takes a
8-14
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rather simple form when one expands out the inverse
nominator in terms of powers of (a/p) keeping only the
O(a) contribution. In terms of the flip and no-flip contribu
tions the longitudinal polarization of the electron reads

Pe
l 5

dGh f2dGn f

dGh f1dGn f
. ~61!

When expanding the inverse denominator in terms of pow
of (a/p) one sees that the ‘‘normal’’ contributions in th
numerator and denominator cancel exactly atO(a) and one
just remains with the anomalous contributions.~No such can-
cellations occur for the forward-backward asymmetryAFB .
We therefore refrain from presenting a closed formula
AFB in this approximation.! One obtains

Pe
l 52S 12

a

6p

~12x!2

x2

522x2~112x!P cosuP

322x1~122x!P cosuP
D .

~62!

It is clear that Eq.~62! does not apply very close to thres
old. Due to the factor (12x)2/x2 in Eq. ~62! the radiative
corrections to the longitudinal polarization of the daugh
lepton are largest close to threshold as is evidenced in
plots 2~b! and 4~b!. In the case of (t→m), mass effects
prevent the radiative corrections to become large in
threshold region.

Integrating the no-flip contribution over the spectrum o
obtains

d^Gn f&
d cosuP

5G0H 1

2
1

a

p S 2F1

8G1
25

16
2

1

4
p2D

1S 2
1

6
1

a

p S F 1

24G2
617284p2

432 D D P cosuPJ .

~63!

which agrees with the results in Sec. V. In particular o
reproduces the simple expression~51! for the average of the

FIG. 5. Scaled energy dependence of flip~hf! and no-flip ~nf!
spectrum functions in the limity→0. Latter contribution is sepa
rated into its nonlogarithmic part (n f ;non-lny) and its mass depen
dent logarithmic part (n f ; ln y) which is plotted for the case (m
→e).
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longitudinal polarization. We have again highlighted t
anomalous contributions by enclosing them in square bra
ets. The anomalous contributions can be seen to cancel in
spectrum and rate functions when adding up the spect
no-flip contribution~59! and flip contribution~56!, and the
respective rate contributions~63! and ~58!. Numerically the
O(a) no-flip contribution dominates over theO(a) ~anoma-
lous! flip contribution. For theO(a) contributions to the rate
functions, which do not depend ony in they→0 approxima-
tion, one obtains (20.168,20.121,20.107) for the rate ratio
dGh f(a)/dGn f(a), for cosuP51,0,21.

VII. SUMMARY AND CONCLUSIONS

We have computed theO(a) corrections to the leptonic
decays of them andt leptons including polarization effect
and the full mass dependence of the respective final-s
leptons. The radiative corrections to the spectrum functi
are sizable for (m→e) decays, large for (t→e) –decays, and
smaller for (t→m) decays. In large part this pattern is due
the (lny)-dependent contributions to the spectrum. The p
larization of the final-state lepton deviates substantially fr
the naiveml 850 valuesPl 8

l
521 and Pl 8

'
50 towards the

soft end of the spectrum. The radiative corrections to
longitudinal and transverse polarization of the daughter l
ton in the threshold region are substantial for (m→e) and
(t→e) decays and small for (t→m) decays. Similar state
ments hold for the forward-backward asymmetryAFB .

For the rate functions we have compared ourO(a) ml 8
Þ0 results withml 8→0 results derived previously in Ref
@7#. In particular in the (t→m) case the errors incurred i
using theO(a) ml 8→0 results are large@of O(10%) in the
O(a) rate functions#. A mass effect is already showing up i
the experimental values for the branching ratios of the t

decay modest2→m21 n̄m1nt and t2→e21 n̄e1nt .

They are BR(t2→m21 n̄m1nt)5(17.3760.06)% and

BR(t2→e21 n̄e1nt)5(17.8460.06)% @24#. The two
branching ratios are compatible with the mass dependenc
the Born term rates. In order to be sensitive to the m
dependence of the radiative corrections the error on
branching ratios would have to be improved by at leas
factor of 10.

Whether one is willing to tolerate the error brought abo
by using the simplerml 8→0 radiative correction formulas
depends of course on the accuracy required for the app
tion at hand. We nevertheless strongly recommend use o
complete results in numerical investigations instead of us
the ml 8→0 approximation. The analyticalml 8Þ0 formulas
written down in this paper are of sufficient simplicity to a
low for easy incorporation into numerical programs.

From what was being said in Sec. III it is clear that t
results of this paper can immediately be applied to the c
of semileptonic quark decays, where, e.g., in the case of

semileptonicb→c1 l 21 n̄ l decays the final statec-quark
mass can certainly not be neglected.
8-15



ck
A
.

f

en

the
e

FISCHERet al. PHYSICAL REVIEW D 67, 113008 ~2003!
ACKNOWLEDGMENTS

We acknowledge informative discussions with F. Sche
K. Schilcher and H. Spiesberger. We would like to thank
B. Arbuzov for clarifying remarks. M. C. Mauser and S
Groote are supported by the DFG~Germany! through the
Graduiertenkolleg ‘‘Eichtheorien’’ at the University o
Mainz.

APPENDIX A

When integrating the spectrum functions it is conveni
to transform to the integration variablej, where x5y(j2

11)/j, such thatb5(12j2)/(11j2). Trilog functions are
generated from the integrals

E
1

y1

j
ln~j!ln~j2y!dj5

p2

6
ln y1

1

3
ln3y2Li3~y!1z~3!,

~A1!

E
1

y1

j
ln~j!ln~12yj!dj52 ln~y!Li2~y2!2Li3~y!

1Li3~y2!, ~A2!

E
1

y1

j
Li2S y~12j2!

j~12yj! Ddj5
1

2
ln~y!Li2~y2!12Li3~y!

2Li3~y2!2z~3!, ~A3!

E
1

y1

j
Li2S 12j2

12yj Ddj5
p2

6
ln y2

1

2
ln~y!Li2~y2!

22Li3~y!1Li3~y2!1z~3!,

~A4!
.

.

n-

11300
,
.

t

where

Li2~x!ª2E
0

1ln~12y!

y
dy, Li3~x!ªE

0

1Li 2~y!

y
dy.

~A5!

Use has been made of the relation

Lin~x!1Lin~2x!5
1

2n21
Lin~x2!. ~A6!

Euler’s zeta function is defined by

z~s!5 (
k51

`

k2s, z~3!51.202057••• . ~A7!

APPENDIX B

The Fierz identity

@gm~12g5!#ab@gm~12g5!#gd

52@gm~12g5!#gb@gm~12g5!#ad ~B1!

is well known. Not so well known is the Fierz identity~see,
e.g., Ref.@11#!

@~16g5!#ab@~17g5!#gd

5
1

2
@gm~17g5!#gb@gm~16g5!#ad . ~B2!

The latter identity allows one to transform theqmqn piece of
the W-boson propagator discussed in Sec. IV back into
standard formNabCab used in the remaining part of th
paper.
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