PHYSICAL REVIEW D 67, 113008 (2003

Leptonic p and 7 decays: Mass effects, polarization effects, an@(«) radiative corrections

M. Fischer, S. Groote, J. G. Kieer, and M. C. Mauser
Institut fir Physik, Johannes Gutenberg-Universit&taudinger Weg 7, D-55099 Mainz, Germany
(Received 13 February 2003; published 23 June 2003

We calculate the radiative corrections to the unpolarized and the four polarized spectrum and rate functions
in the leptonic decay of a polarized into a polarized electron. The new feature of our calculation is that we
keep the mass of the final state electron finite which is mandatory if one wants to investigate the threshold
region of the decay. Analytical results are given for the energy spectrum and the polar angle distribution of the
final state electron whose longitudinal and transverse polarization is calculated. We also provide analytical
results on the integrated spectrum functions. We analyzetheO limit of our general results and investigate
the quality of them,— 0 approximation. In then,—0 case we discuss in some detail the role of @e)
anomalous helicity flip contribution of the final electron which survivesrtie»0 limit. The results presented
in this paper also apply to the leptonic decays of polarizéeptons for which we provide numerical results.
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[. INTRODUCTION then evident that the inclusion of final lepton mass effects
must play an important role in particular in the threshold
While calculating the radiativ®(as) QCD corrections to  region.
polarization effects in semileptonic decays of heavy quarks, We determine the radiative corrections to the daughter’s
where the full quark mass dependence was retdib@j, we  lepton energy spectrum and its longitudinal and transverse
came to realize that our results could also be gainfully empolarization keeping the dependence on the polarization of
ployed in the correspondin@(«) QED corrections to the f[he pz:;\rent lepton. This generah_zes fche calculation of Ref.
weak leptonic decays of the and 7 leptons[3]. In most of I _vvh|ch the zero mass approximation was used: Our calcu-
the previous radiative correction calculations the mass of th t!on extends the cqlculatlon of.Réti], which alsq mclludes
charged lepton daughtéf has been neglected except for Inite mass effeqts, in that we include the longitudinal and
o . . . transverse polarization of the daughter lepton.

anomalous contributions from the collinear region which sur- . ,

. , L e The paper is structured as follows. In Sec. Il we introduce
vive the m{ —0 limit [4-6] and the logarithmic terms . ation and write down the general structure of the spin-
~ (Inny) which are needed to regularize the collinear diver-gependent rate. Section Il contains our Born term results.
gencies that appear in the loop and tree grephternal  \w.propagator effects are taken into account in Sec. IV. In
bremsstrahlungl’ contributions. These logarithmic terms Sec. V we present our analytical and numerical results on the
partially cancel in the spectrum and completely cancel in the(«) radiative corrections. In Sec. VI we consider thmg
rate when the loop and tree graph contributions are added._, g |imjt of the m/ #0 results presented in Sec. V and dis-

_ From general considerations it follows that the unpolar-css jn some detail the origin of the anomalous helicity flip
ized and three of the polarized spectrum functions contaiontribution. Section VII contains our summary and conclu-
only even powers of the mass ratigf/m;. Considering the  sjons. In two Appendixes we collect some technical material

fact that (ne/m,)?=2.34x10"°, (m,/m,)?=3.54x10"%,  on trilog functions and Fierz identities relevant to our calcu-
and (Mm./m,)2=8.27x10 8 the zero mass approximation |ation.

should be a good approximation for most of the energy spec-

trum of the daughter leptons except for the region cl@se

very close to the soft end point of the spectrufalso re- Il. GENERAL STRUCTURE OF SPIN-DEPENDENT RATE
ferred to as the threshold regjowhere finite mass effects o ) )

have to be retained. Contrary to this the transverse polariza- 10 Mmake life simple we shall in the following always refer
tion of the daughter lepton is proportional to the linear masgo the specific casp™ —e~ + v+ v, instead of referring to
ratio m//m;, . Also, when integrating the spectrum functions, the generic case involving also leptoniclecays when writ-
the linear mass ratio enters in all four polarized rate funcing down analytical results. Of course, when discussing nu-
tions. Finite mass corrections may thus play an importaninerical results, the two leptonic-decay channels™ —u ™

role at least for ¢— w) decays where the linear mass ratio +v,+ v, and7~ —e ™ + v+ v, are also included.

m,, /m_=5.95x 102 is not very small. An improved analy- Since the subject of~ decays is extensively covered in
sis of 7 decays is of quite some topical interest since largethe relevant textbookssee, e.g., Refd9—-11]) and review
samples ofr leptons are currently being produced at thearticles(see, e.g., Refd12—-14) we can afford to be very
existing two B factories in Japan and in the USA, and arebrief in describing the formalism.

expected to be produced at futureharm factories to be set From helicity counting one knows that there are alto-
up in Ithaca and Beijing. As the data become more precisggether five spin-dependent structure functions and one spin-
the predictions of the SM including also radiative correctionindependent structure function describing the leptonic decay
effects will be tested at an ever-rising level of precision. It isof a polarized muon into a polarized electron. We thus define
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a spin-dependent differential rate in terms of six invariant
structure functiong\; . In the rest system of the ™ the de-
cay distribution reads

dr

dxdcosfp =BxLo

1 1
Art m_MAz(pe' Su) +m—MA3(pM' Se)

1
+m_l2LA4( Pe- SM)(pM Se) +A5(S,u' Se)

)

A6 6aﬁ75py, pﬁs’}/
//.

As usualx=2E./m, denotes the scaled energy of the elec-
tron where the energy of the electron is defined in the rest
frame of thew ™. 6p is the polar angle between the polariza-
tion of the muon and the momentum direction of the electron
in the muon rest frame.

Equation(1) will be evaluated in the rest system of the
muon where p,=(m,;0,0,0) and p=(Ee;0, OJp D FIG. 1. Definition of the polar angle8, 6, and the azimuthal
— (m 12)(x:0,0X8). The velocny of the electron is denoted @nglex. We have taken the artistic freedom to orient the polariza-
by B=+1—4yZ/x% wherey = me/m,,. In the rest frame of tion vector of the electrof, into the positivex direction contrary
the u~ the polarization four vectors of the ™ ande™ are 0 Whatis calculated in the main text.
given by

X

dr
. ————— = BX[((G1+ G,P coshp+ Gzcosd
s2=(0:4,), ) dxdcosép
+G,4P cosép cosf+ GsP sinfpsin § cosy
a_|NePe - Ne'Pe - 3) +GgP sinfpsiné siny). (6)

+
e Tme T m(Eerme) e | .y |
The relation between the invariant structure functiéns

o - B and the frame-dependent spectrum functi@jss given by
where the polarization three-vectgy, of the = and the

guantization axis, of the spin of thee™ in their respective Gi=Aq,
rest frames reacsee Fig. 1

1
> i G2: - EXBAz,
{,=(sin#p,0,co80p) (4)
1
and Gsz= EX,BA?,:
Ne= (sin 6 cosy,sin 6 siny,cos). (5 1, 1
G4: - EX ﬁ A4_ EXAs,
Equation(4) holds for 100% polarized muons. For par-

tially polarized muons with magnitude of polarizatiénthe Gs=—As,
representatior(4) has to be multiplied byP such thatP,
= PZM. The representatiofb) needs a word of explanation. Ge= ExBAﬁ @)
The vectom, denotes the orientation of the quantization axis 2

of the electron’s spin in the rest frame of the electron which . _ .
1 is the unpolarized spectrum functio®, and G5 are

can be freely chosen. The orientationrgfhas no physical  gjngie spin polarized spectrum functions referring to the

meaning per se. In particulag is notthe polarization vector  spins of thex ™ ande™, respectively, ands,, Gs and Gg

P of the electron whose Cartesian components can, howdescribe spin-spin correlations between the spin vectors of

ever, be obtained by projecting onto tkeaxis (= =/2,y  the muon and electrofi6]. G4 represents a so-callédodd

=0), they axis (6= m/2,x=w/2), and thez axis (§=0). observable. This is evident when rewriting the angular factor
One finally haq7,15] multiplying Gg in Eg. (6) in triple-product form, i.e.,
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sin Bpsin 6sin y=|pd 'Pe: (£, XNe) [17]. Gg is identically Gg— —
zero in the SM since, on the one hand, the weak couplind(X) = E‘I’e(x) V(A= ye) V.0V, (X)7a(l= )W, (X)
constantG is real and, on the other hand, the loop contri-
butions do not generate imaginary pai@®; will therefore +H.c. (11
not be discussed any further in the following.
It is quite instructive to rewrite Eq(6) in a factorized When squaring the corresponding matrix element one ob-

form tains the tensoC®? from the charged lepton sideC(for
charged which has to be contracted with the neutrino-side
dr - - tensorN“? (N for neutra). For the Born term contribution of
dxdcosy ~ PTo(G1t G2P cosfp)(1+Pe-ne). (®  the charge-side tensor one obtains

, , N 1
A comparison with Eq(6) shows that the polarization vector ngrn:ZTr{(pe+ Me) (1+ ysbe) Y*(1— y5) (P, +M,,)
P. of the electron has the components

X (1+ ys8,) Y2 (1— ¥s)}, 12
) o P Gesin fp (I+ys ,L)Y (I=vs)} (12
Pei=Pe= G,+G,Pcosbp’ where the dependence on the polarization four-vectors of the
p~ ande” has been retained.
P Ggsin 0p Since only even-numberegl-matrix strings survive be-
PY:=PY ~ G .7 G.Pcosts’ tween the two {— ys) factors in Eq(12) one can compactly
12 P write the result of the trace evaluation as
G+ G,4P cosd a BRe L n¥nB_ B . i By
pg;p{;%. (9) Chhm=2(phps+pipE—9™p, pPetie®®"pe ,p, ),
1+ G,P cosép (13)

We have as usual denoted they(,z) components oP, by ~ Where
(P ,PE ,P'e) where (L,N,l) stand for the polarization com-

ponents transverse to the momentum direction of the electron PL=P,—M.S;, (14
(in the plane spanned by the momentum of the electron and .
the polarization vector of the mugmormal to this plane and Pe=Pa— MeSg (15

longitudinal, respectively. Equatiao®) shows that the spec-

trum functionsG; and G, determine the longitudinal polar- and wheres};, andsg are the polarization four vectors of the

ization of the electron while its tranverse polarizatiamthe w~ ande”, respectively, defined in Eq2).

plain'spa}nngd by the_electron’s momentum and the muon’s The dependence on the momentum directions ofEl_ne

polarization is determined byGs [18]. and v, neutrinos has been completely integrated out in the
The I|m|2ts onx=2Ec/m, are given byxmin=2y and  ifferential rate. Thus the neutrino side of the interaction can

Xmax=1+y” where, as b_eforgl,zme/rgﬂ -EFO’ finally, isthe oy depend on the spatial piece of the second rank tensor

me=0 Born term rate given by o=Ggm>/1927°. The dif-  pyild from the momentum transfer to the neutrir(ésr the

ferential rate for the charge conjugated degay—e"+v.  present purpose the neutrinos are treated as masalbih

+ v, is obtained from Eq(6) by the substitutiorG;— G;(i we denote byQ“ [22]. Thus the relevant neutral-side tensor

=1,4,5,6) andG;— —G;(i=2,3) [19]. is given by
It is convenient to split the unpolarized and polarized rate
functions into a Born term part and a radiatively corrected Q*Q~#
part according to NP=—g*f+ G (16)
Gi=GE"+G(® i=1,234,5. (10)

The Born spectrum functions can then be extracted from

The respective results on the Born term contributi@fs™ 2N@BEBOM_ or 1 T \O24 (. .

NePC3"=2 . +2(p,- -Q)], 1
and theO(«) corrections to the rate functio®&® are given Q P LPu-PeIQ (Pu Q)Pe- Q] (17
in Secs. Il and V. The sum of the two contributions in Eq. \ynere the antisymmetric piece mB%m has dropped out after

Ehcl)_)o"‘;“:egseurl‘tera"y be referred to as the next-to-leading orderne symmetric contraction. At the Born term level one has

Q: p,u_ pe .
Including the correct normalization the differential Born
Ill. BORN TERM RESULTS term rate is given by
We shall work with the charge r(iention form of the La- qrBom Q2NaBCBom
grangian for the decayu™ —e” +ve+v, which reads —=F0Bx—aﬁ. (18
[20,21] dxdcosfp mi
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The spectrum functions defined in E§) can then easily be 1f
calculated from the Born term contributio%7) using the % _____ (@)
relations Eq.(7). They are given by

GPo"=x(3—2x)—(4—3x)y?,

G5°"= Bx(1—2x+3y?),
G5°"=— BX(3—2x+Yy?), (19

GBOM= —x(1—-2x)— (4+Xx)y?,

Ggom=—2y(l—X+y2). 0 0.2 0.4 20.6 0.8 1
Note that the Born term spectrum functio@;33, and b) Born
GE°™y are quadratically dependent gn This is in agree- S Born + O(a)

ment with the general arguments presented in Zs]. For E'{ ol
y?=0(m=0) one hasGf"=—G5°" and G5°"= — G§°"

which reflects the fact that a mass zero left-chiral electron is -0-21 Felend=0)
purely lefthanded. The Born term resu{tk9) reproduce the

y=0 results of Ref[7]. For y>#+0(m,#0) our Born term e

results forGE°™ andG5°™ agree with those of Ref8]. Note 0.6}

that the spectrum functio®Z°" is proportional toy and thus

vanishes for vanishing electron mass. The overall chiral fac- °-*f

tor y=mg/m, in Gs originates from a lefthanded/ bl ) . ‘ , . ]
righthanded interference contribution which is chirally sup- 0.01  0.02 0.05 0.1 0.2 0.5 1

pressed.

In Figs. 4a) (u—e€), 3@ (7— ), and 4a) (7—e) we
show plots of thex dependence of the four Born term spec- 0.1}
trum functionsBxG;%% ,. They rise and fall from zero atthe g
soft end of the spectrum to @y?)3(i=1,4) and —(1  ~ °f
—y?)3(i=2,3) at the hard end of the spectrum, respectively. _, ;|
The m; =0 patternGF°"=—G5°" and G5°"=—G5™ is
slightly distorted by final lepton mass effects except for the -0-2¢
point Xma= 1+ y? where the aboven;, =0 relations are ex-
act. For the spectrum functioBE°™ one finds GE™(X i 3
=2y)=-2y(1-y)? and GE”""(Xma=1+y?)=0. The 0.}
chirally suppressed contribution g GE°" is negative over
the wholex range. At the scale of the plots it is only visible
for the caser— u [Fig. 3@)].

In addition to the polarization observables we also define

a forward-backward asymmetry for the case that the spin of FIG. 2. The casg.—e. Scaled energy dependence(a¥ spec-

-0.5}

the electron is not observed. It reads trum functionsBxG;, i=1, ... ,5,(b) the longitudinal polarization
of the eIectronP'e for cos6p=—1,0,+1, and (c) the forward-
'e-T's 1 _G, backward asymmetnjgg for cos6=0. All curves with and without
AFB:ﬁ =3 PG_’ (200 radiative corrections. Polarizatiddis set toP=1.
F B 1

wherel'r andI'g are the rates into the forward (c@s=0) a spin-spin correlation measurement. We shall therefore not
and backward (cog-<0) hemispheres. discuss this asymmetry any further in this paper.

One can also define a forward—backward asymmetry of The longitudinal polarization and the forward-backward
the longitudinal polarization proportional ®,/G, accord- asymmetry take the valueB.®*"=—%P cosfp and AZY"
ing to =0, respectively, at the lower limi.,=2y where G>°™
=—3G5™ and G5°"=G5°"=0. This has to be contrasted
with the naive limitsP.?°"=—1 and AE3"=1P when na-
ively settingy=0 in the corresponding ratios. At the upper

limit  Xpa=(1+y?), where GIo"=-G5om"=—gG5om

where the indices-/— denote the helicities of the electron. =G5°"=(1—y?)?, the longitudinal polarization decreases

This asymmetry will be difficult to measure since it involves to P.2°"= —1 irrespective of the value d? cosfp, and the

| =F;_FE_FE+‘+FB_=E G
VB T are+TE+T 2 Go

(21)
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deviates significantly from the naive valu€el in the thresh-
old region with only a slight dependence on the value of
cosép. In order to highlight the deviations from the naive
value P;;®*"=—1 in the threshold region we have chosen
logarithmic scales for the energy variableThe transverse
polarization is negative and stays very close to zero over
most of the(hard par} of the spectrum and decreases to its
limiting value — 1/3 at threshold. In fact all the Born term
curves can be seen to approach the limits discussed above at
the soft and hard end of the spectrum.

In Figs. 4c), 3(c), and 4c) we show the corresponding
curves for the forward-backward asymme#g3™ for the

a) ----- Born
Born + O(a)

o o %° o ' three decay cases. Again we sBt=1. The forward-
backward asymmetries rise from the limiting valdgs"
N L =0 at threshold and then fall #&23"= — 1/2 at the hard end
4= of the spectrum.
3 0f Next we integrate the differential Born term rates over the
o . .
o Pl(cos =0) full x spectrum. Let us define reduced Born rate functions
' GB°™ according to
-0.4
~Born 1+y2 Born
0.6 Giem= | dxBxGET, i=1,.2.34. (22)
y
B One obtains
al ‘ . :
0.15 0.2 0.3 0.5 0.7 1 G?Om=%(1—y4)(1—8y2+y4)—12y4lny
0.1F
1 2 4
o Of =§—4y +0(y"),
<
-0.1 1
G3*"=— 5 (1-y)*(1+5y+15/2+3y°)
-0.2
1 16
-0.3 :__+_y3+o(y4),
c) Born 6 3
-0.4F  ----- Born + O(a)
N 1
0.5 G3*"=— 5 (1-y)*(3+15y+5y*+y?)
0.15 0.2 0.3 - 0.5 0.7 1
1 20 2 3 4
FIG. 3. The case— u. Caption as in Fig. 2. =— §+ gy —16y°+O(y?), (23

forward-backward asymmetry decreasesAy"=—3P as ~gom_ L A - .
in the naivem,=0 case. At the soft end of the spectrum one  Ga —5(1=y")(1—=8y"+y")—4y’iny
finds a substantial transverse polarizatiofs 5"

= —3Psingp which is independent of contrary to naive _}_ f 24 O(v4

expectations. Thus the total polarization of the electron at 5 37 9,

threshold is given byP2°™ = 1P irrespective of the value

of cos#p. At the hard end of the spectrum one Hag®°" A 1

Zo. P s G§°’”=—y[§<1—y2)(1+10y2+y4)+4y2(1+y2)|ny

In Figs. 2b) (u—e), 3(b) (7—u), and 4b) (7—e) we
show thex dependence of the Born term prediction for the
longitudinal and transverse polarization of the daughter lep-
ton. We setP=1 and take three values cgs=1, 0, and R R
—1 for the longitudinal polarization and set ass=0 for the The occurrence of odd powers pfn G?O”‘ andG?orn can
transverse polarization. The longitudinal polarization stayse traced to the lower boundary=2y of the x integration
close to—1 over most of théhard part of the spectrum but  which is linear iny. In view of this it is quite remarkable that

1
=—y §+(3+4 Iny)y2+O(y%)
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asymmetry(AFB? are quite small. The deviation from the
m;, =0 result(P,,)=—1 is of O(10™*) in muon decay and
O(10°%) in (r—e). For (r—u) the deviation from(P.,)
=—1 is of O(10 2). The dependence on the value of
P cos6p is very small. The average value of the forward—
backward asymmetry(Agg) is quite close [O(10 2

—10 %] to they=0 prediction{Agg)=—1/6. The average
transverse poIarizatio(’Pt) is generally quite small due to
the overall chiral factoly=m;,/m,. To be specific, forfp
=m/2 one finds an average transverse polarization of
—0.3, —3.7, and—0.02% for the three casex(~e), (7

Born

0 0.2 0.4 0.6 0.8 1 —u), and (r—e), respectively.
b) Born IV. W-BOSON PROPAGATOR EFFECTS
o.2p\ .. Born + O(e)
& In order to incorporatéN-boson propagator effects one
2 O has to rewrite the charge retention form of the four-Fermi
02 Fi(cos§ = 0) interaction(11) in terms of the charged currents of the stan-
dard model including th&/-boson propagator. This is easily
-0.4 done using the Fierz transformation property written down in
Eg. (B1) in Appendix B.
0.6 For the present purposes it is only necessary to take into
o8 accountW-boson propagator effects in the Born term contri-
butions. The momentum transfer is naye Pu=Py,=Pe
1l ~AV i A ih-
e YT T S TPy, The g*#q Elezce 3f theW boson propagator contrib
* utes only atO(mgm;,/my,) in the spectrum and rate func-
tions and can therefore be dropped. In fact, using the Fierz
o1 identity (B2), it is not difficult to compute the contribution of
the g#q"” piece exactly. ThaA-boson propagator effect on
;ﬁ of the spectrum can thus be taken into account by the replace-
ment
-0.1
-0.2 2 2 2
m m —X)
1-| S XX i1 (s
03 q°— My mg 32X
-0.4
0 1 LTSI 24 25
~1— —— =
0.001 0.0050.01 10.05 0.1 0.5 1 m2 1_2X, )y ( )

FIG. 4. The case—e. Caption as in Fig. 2.

where terms ofO(mZ/mé,) have been neglected. Numeri-
GBom  GBom - and GB"”‘/y contain only even powers of  cally the propagator corrections are quite small since

2 2 _ — 2 2 _ —
Nevertheless, the leading mass correction3§f™ sets in ~ Mu/My=1.73x10"° andm?/mj,=4.88<10"*,
only atO(y?) and, forGBO”‘, only atO(y3). In this sense As is evident from Eq(24) the W-boson propagator af-

the Born term rates are well protected against finite electrofeCts the two pairs of spectrum functions differently. This
P 9 means that one cannot absorb Weboson propagator effect
mass effects or, in the case{ 1), reasonably well against

Sl . entirely into a redefinition of Fermi’s coupling constaa ,
muon mass effects. This is illustrated in Table I, where We_ < advocated in Ref§24,25, when one considers polariza-

list the values of the Born term percentage chari@&$m  tion effects.
#0)—G;j(m=0)]/G;(m=0) when going fromm;;=0 to In order to determine the propagator corrections to the
m;.#0 for all three cases. rate functions one has to do the integrations
The average longitudinal polarization of the elect(@f@
and the average forward-backward asymméty;) is ob-

~ 2
tained by the replacemen®&(— G,) in Egs.(9) and(20). As j dxx G 14 T  X(2—x) _ tf 1+ 3 my,
in the rate expression@3) the final state lepton mass effects 0 m\ZN 3—-2x 2 5m2)’
on the Born term polarizatiotPL) and forward-backward (26)
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TABLE |. Percentage mass correctionsnp =0 (Born) andm;,—0 [O(«)] rate functions for the three
cases fg—e), (7—u), and (r—e).

u—e T M T—€
Born (@) Born (@) Born ()

él —0.019% -0.12% —2.82% —8.48% —6.62<10 5% —7.39x 10 “%

éz —3.57x10 % -0.67% —057% —11.23% —7.60x10 %% —0.039%

(“.;.3 —0.031% —1.48% —4.25% —24.49% —1.10x10 *% —0.084%

é4 —0.019% —1.43% —2.82% —22.15% —6.62x10 % —0.083%
1 m2 X2 1 1 m2 ization dependence of the final massive fermion in this ap-

f dxxG?"jlm( 1- —5 1—2x) = Ig( 1+ 3 —2’“) , plication. For theO(a) tree-graph and one-loop contribu-
0 My My tions this is easily done.
(27 Let us briefly discuss the tree graph contribution. The

O(e) tree graph amplitud€internal bremsstrahlungy’ con-
fC.ists of the two contributions where the photon is either ra-
diated off the electron or off the muon. One thus has

where terms ofO(y) have been dropped in the Born term
factors and in the integration measure. Again it is eviden
from Eqgs.(26) and(27) that theW-boson propagator affects
the two pairs of rate functions differently. If thé&/-boson
propagator effect is absorbed into a redefinitiorGef using

X . — +k+
a measurement of the total unpolarized rate then this must be Y=eUy %Lmez (1= ys)
compensated for by multiplying the polarization dependent (Petk)?—mg
piecesG, 4 by [1-2(m’/m§)] when calculating the aver-
’ S R | p,—k+m
age of the longitudinal polarization of the electrOR,) or + 91— yg)—2 ks u,e 5 (28
the forward-backward asymmettArg). (pﬂ—k)z—mi

V. O(a) CORRECTIONS TO SPIN DEPENDENT

RATE EUNCTIONS wherek and e s are the momentum and the polarization four

vector of the photon. Four-momentum conservation now
Many of the technical ingredients that go into the calcu-reads p,=p.+Q+k, where Q is again the momentum
lation of the O(«) corrections can be found in a detailed transferred to the neutrino pair. When squaring the tree graph
account of theD(«a,) corrections to the decay of a polarized amplitude one only sums over the polarization states of the
top into a bottom quark and W gauge bosori—b+W* photon since the muon and the electron are taken as polar-
presented in Ref.2] (for the loop contribution see also Ref. ized. Omitting again the antisymmetric contribution one ob-
[26]). Compared to Ref.2] one needs to include the polar- tains in the Feynman gauge

e2[ 1 [kpe—m® p,pel — — 1 [k-p,+m2 p.p,
C(a)aﬁz MaMBT:_ ( e mo rMe Kk ﬁ+kﬁ a_ k. aB + M n_ Fe Mu
2 2| po | (kpe (kepy ) KPP P G T T (K pe)
a~B B " ~aB kae anp B~ N ~aB kaﬂ a B B " ~aB
X(k“pg +k”pg —k-peg®”) + 5 (PePy, T PP, —Pe PL9"") — 5 (PuPetPLPe—Pu Peg™”)
(K- pe) (k-py)

k-p,

Tk po(k-p,)

(pepB+ pfps—mig*?)—

2

2
My

e

2 m

K- Pe
(k-pe)(k-pL)

(peph+pfpe— mig“ﬁ)]

pe' p,u.

e . __  _ _
— 5 (PP, + PEP,—Per PLO*)

|

(k-pM)2+(kope)2_ (k-pe)(k-p,,)

(29

|

In the last line of Eq.(29) we have isolated the infrared tum the infrared singular piece is regularized by introducing
singular piece of the charge-side tensor which is given by tha (smal) photon mass which distorts the phase space away
usual soft photon factor multiplying the Born term contribu- from the singular point. The infrared singular piece is can-
tion. In the phase space integration over the photon momereelled by the corresponding singular piece in the one-loop
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contributions again calculated in Feynman gauge. In the oneseutral-side tensoN*? Eq. (16) where now Q= Pu— Pe

loop amplitude the photon mass is included in the pole de—k. In the tree graph integration one first integrates over the
photon’s energy and then over the cosine of the angle be-
tween the photon and the electron taking appropriate care of
infrared finite and can easily be integrated without a regulathe infrared singular piece. Any azimuthally dependent terms
tor photon mass. Just as in the Born term case treated in Sedrop out after the azimuthal integration. One then finally

nominators onlyf27,2§.
The remaining part of the charge-side tensor in 29) is

[l the O(«) charge-side tensdt%) is contracted with the adds in the one—loop contributions. The final result is

We have used the abbreviations

1
Ai=Iny?, )\2=In(

and

gL
B

1
G{" = %G?‘J”‘m% 1—23)({3,8x[(3—4x)x—(8—9x)y2])\1+[(5+ 12x—51x%+ 28x%) — 3(19— 40x + 17x?) y?

—3(19-4x)y*+5y°®IN ,— 4 Bx[ (11— 10x+ 5x2) — 2(1+ 5x)y?+ 11y*]}, (30)

o o
Gi=—G"S+— {38°%3(1— 4x+9y?)N 1 — 8(1—x+y?) N3 — [ x(1+ 332 — 28x%)

12B3°x?
—3x(33— 12x— 17x?)y?+ 3(32— 35x — 4x2)y* — 5xy® |\, — 28X[ (3— 10x— 13x?+ 8x3) + (59— 11x?)y?
— (35— 10x)y*+5y°]}, (3D
G{= %GE"”‘E +% 12ﬁzxz{—3/33x3(3—4x+ 3y?)N1— 8y (1—x+y?) N 3—[x(5+ 12x— 51x?+28x°)
—(8— 12K+ 60x?+ 25x3)y?— 3(40— 49 + 8x?) y* — (24— 23x) y® — 8y® ]\, + 2 Bx[ (5+ 10x— 11x?+ 8x3)
—(35+13x?)y?+ (59— 10x) y*+ 3y®]}, (32

o o
Gi=—GiS+—

— W{—3B3x3[(1—4x)x+(8+3x)y2])\1+ 8X(1—y?)(1—x+Yy?)3\g
X

+4BxX[X(1—5%x—5x2+3x3) — (4— 59K+ 14x%+ 5x3)y? — (104— 59+ 5x%) y*— (4— x)y®]
+[X?(1+33%%—28x3) + (44 8x— 153%%+ 104>+ 25x*)y2 — 3(28— 72x+ 59> — 8x3) y*

— (84— 24x+23x?)yS+4(1+2x)y8I\ 5}, (33
2
G = %GEO’”E +% %( —(1—2x+3y?)A+ 5(3x—2x2— (4—3X)yD\,|. (34

calculated in Ref[29]. After correcting for an error in the
calculation of Ref.[29], a correct result was published in

(35)  Ref. [30]. Our results forG{*) agree with those given in
Refs.[30] and[8]. Our results forG{*) agree with those of
Ref.[8]. The results oGS 5 are new.

+B) B (2—(1+B)x
=g M=INaTaTax

oL ( 23X )_2 Li 2px Note that the four spectrum functio@ , ,are logarith-
2l2—(1-B)x 2 (1+ B)x—2y? mically mass divergent. We have checked that the expansion

) of the spectrum function§{% ;, and G{/y in terms of

—BIn(1—x+y?)+ |n((1+,3) f) _1—y }()\3_)\2) powers ofy contains only even powers of in agreement

2 X with the general reasoning given in R¢R3]. The leading

+

L term in they expansion of the spectrum functiog§% ; ,can
1-(1+p) f) _1})\ ot (36)  be reconstructed from the.— 0 results to be presented in
2 X Sec. VI. We do not write down any of the higher order co-

In
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efficients in they—expansion, as was done in the Born termof the daughter leptoR,|, and the forward—backward asym-
case, since such an expansion is not particularly illuminatingmetry A-; which are large in the threshold region for
The explicit evaluation of the five spectrum functions is _, ¢ gndr—e and small forr— . As discussed in Sec. Il

numerically quite stable except for the region very Close tGne contribution 0f8xGs is barely discemible for the case

threshold, i..e., foiB values smaller thaB=~0.05, or, when 7— u [Fig. 3a)]. At the scale of the figure the difference
expressed in terms of the scaled electron enecgfor x between the Born and NLO curves is not visible.

values below (9.% 10 2,1.2x10 1,5.8xX10 #). The origin Itis | ) hat the radiafi .
of the instability are the inverse powers Gfappearing in t is interesting to note that the radiative corrections go
through zeros close to=0.68 andx=0.82 forG, ;3 and for

Egs. (30~(34). If one wants to explore the region belgi G, 4, respectively, for all three cases discussed in this paper.

~0.05 one can make use of a sm@llexpansion of the H " ¢ th . call
expressions Eq$30)—(36) which is not difficult to arrive at ' '€ positions of the respective zeros are practically mass
independent. Differences in the position of the zero show up

using an algebraic program such as, eVBTHEMATICA . We , . e X :
do not write down explicit forms for the small expansion NIy in the third digit. In fact, when discussing ting, —0
because the expressions are not particularly illuminating. Legase in Sec. VI we have checked that the positions of the
it be said that in the smaj8 expansionG{%); andG{) are ~ Z€roes remain .pract|cally. unchanged even when Ig_tyng
even and odd functions g8, respectively'. This shows that — 0. The radiative corrections are negative and positive be-
G{ andG{ are proportional tg8 just as in the Born term low and above the zero fg8xG, 4, respectively, and posi-
case. We mention that approximate formulas for the threshive and negative below and above the zero BxG, .
old region have been written down f&¥; in Ref.[31]. Qualitatively the alternating sign pattern over the range of
In Fig. 2@ (u—e), 3@ (7—u), and 4a) (r—e) we the spectrum can be understood from the dominance of the
show plots of thex dependence of the four spectrum func- (Iny) terms and from the fact that the (firdependent terms
tions BxG;(i=1,2,3,4), with and without radiative correc- have to cancel out when one integrates over the spectrum.
tions. The radiative corrections show a markgdlepen- There is a tendency of the radiative corrections to cancel in
dence. They are smallest far—u, become larger fou the sums G,+G3) and G,+G,) and to add up in the
—e, and are largest for—e. To a large part this can be differences G;—G3) and (G,—G,), i.e., the radiative cor-
traced to the (liy)-dependent terms in the spectrum func-rections add destructively and constructively in the final
tions as will be discussed in more detail in Sec. VI. On anelectron’s density matrix elemengs, . and p__, respec-
absolutescale the radiative corrections are generally quitetively, to be discussed further in Sec. VI.
small except for the hard end of the spectrum where they in  We next turn to the radiative corrections of the longitudi-
fact (logarithmically diverge[32—34. On arelative scale  nal polarizationP!, of the electron and the forward-backward
the radiative corrections are quite large far-t-e) and for asymmetryAgg calculated according to Eq$9) and (20).
(r—e), and smaller for £— w) at the soft end of the spec- We begin by discussing the limiting value of the longitudinal
trum, where the spectrum functions are small. This will showpolarization at the soft end of the spectrum including the
up in the radiative corrections to the longitudinal polarizationradiative corrections. At NLO one has

1 « 4(1—y)2(1+y?
lim PL=—-Pcosfp| 1—— L=y Ay

3 T a a 1+
2 72y%*+ —(5—10y— 278y~ 10y>+5y*) — 108~ —yyzln y
T ml-y
L costp|1- %1824+ 2% 3
~ogPooste| 1o L) 37

For the casep— e and r—e the term (182) in the second since, as discussed before, a sm@lexpansion shows that
line of Eq.(37) can be neglected and thus the limiting value G{*)/G{® = (x— xn) 2 just as in the Born term case. This
of the longitudinal polarization of the electron is given by can again be seen in Figsc2-4(c). Finally, the behavior of
P.~ — 5P cosép which is smaller than the Born term value the transverse polarizatid®. atxu,= 2y is quite similar to
by a factor of 5. This is evident in Figs(i2 and 4b), where  hat of the longitudinal polarization. In fact, one just has to
the radiative corrections to the longitudinal polarization Ofreplace co®p—sin 6 and 4—5 in the numerator of the first

the electron are shown. For the- u case the term (38) line of Eq.(37) in order to obtain the limiting valul~ . This
dominates over (5/4x/w) and the limiting value of the ! a.(37)1 ! Imiting vaiuEe . T

I o N 1 leads to
longitudinal polarization of thew is Po~—3P cosép [1
—(al 7)(1/18y?)], i.e., the correction to the Born term value 1 w72 o)1
is only ~3.6%. This can be seen in Fig(3. The NLO lim Pé%——Psinaptl——(—yva— } (38)
limiting value for the forward—backward asymmetry is zero X—2y 3 T\ 5 ™
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Just as forP'e the O(«) corrections are small for—u and  and (r—e€) shows up in Figs. ®) and 4b), and in Figs. &)
sizeable foru—e and r—e at threshold, as can be seen in and 4c), where the radiative corrections to the longitudinal
Figs. 2b)—4(b). Next we discuss the limiting behavior of the polarization of the final state electrons and the forward-
spectrum functions at the hard end of the spectrum, wherackward asymmetry are visibly large in the threshold region
X—Xmax=1+y2. As remarked on before the radiative cor- [35]- Note, though, that we have enhanced the threshold re-
rection contributions can be seen to logarithmically divergedion in our presentation d?,, andAgg by choosing a loga-
in this limit (see[32]). Introducingx,.,.=1+y?—& the lim-  rithmic scale forx in Figs. 2b), 2(c), 3(b), 3(c), 4(b), and
iting behavior of the four spectrum functions is given by ~ 4(C). For the forward-backward asymmetry the radiative cor-
rections remain large oYer a larger part of the spectrum. The
. . . . . o _ 22 radiative corrections t®, and Agg for the (— u) decays
X_“Ln G,= _Xl!in Go= _Xl';n G3_X_I'Ln Ga=(1-y9) are shown in Figs. ®) and 3c). As expected from the small-
max max max e ness of the radiative corrections to the spectrum functions
s shown in Fig. 8a) the radiative corrections to both the lon-
2) Iny gitudinal polarization of the final state muon and the
-y forward-backward asymmetry are small. The same statement
) ” holds true for the radiative corrections to the transverse po-

3+I
4 n]_

o
+;2(1—y2)><[(1+y2)

(39) larization. Since the spectrum functions are small at the soft
end of the spectrum, the radiatively corrected average longi-
tudinal polarization(P:,) of the daughter leptonh’ is ex-

The limiting values of the four spectrum functions are, up topected to remain very close tol in all three cases. Using
signs, all identical. This implies that the radiative correctionsthe integrated rate functions presented at the end of this sec-
to the longitudinal polarization of the daughter lepton doedion we find the NLO result(P:,>= —0.999,-0.986 and
not change the Born term valqul,= —1 at the hard end of —0.999 for (u—e), (r—u) and (r—e), respectively, for
the spectrum irrespective of the valuesfofosée . Similarly ~ c0os6=0 with very little dependence on cés. The corre-
the radiative corrections to the forward-backward asymmetrgponding figures fofAgg) are —0.166,-0.170,-0.166. Fi-
do not change the Born term valueAdfg=— 3P atthe hard nally, for the transverse polarization one finc{sPﬁ,)
end of the spectrum. Finally, the NLO transverse polarization= —0.0031~0.037~0.00018 for the three cases for
iS ZEro alX=Xpyay SinceGLY is finite atxnyay. In fact, one has  cosfp=0.
G — — (al m)y(1—y?)Iny at Xpay. Next we integrate the five spectrum functiopxG(®
The fact that the relative corrections to the spectrum funcever the electron spectrum according to E2R). One ob-
tions in the threshold region arelatively large for (u—e) tains

+(1-y?)

&
1+In
1—y?

71_2

. 1 1
Gga>=% 2817y (75-956/ 2+ 75y*) —y*(36+y*)In’y — - (1— 32>+ 16y* ~ 32y +y*) — - (60+270y°

1
—4y*+17y8)y2Iny — 1—2(1—y4)(17— 64y2+17yHIn(1—y?) +2(1—y)*(1+4y+10y?+ 4y +yHIn(1—y)Iny
+2(1+y)4(1—4y+10y2—4y3+yHIn(1+y)Iny+ (3+32y3+48y* + 32y5+ 3y®)Li,(—y)

+(3—32y3+48y*—32y5+3y®)Li,(y) {, (40)

all

7|3

1
(1=y?)(1+y?+13y*—3y®)[In(1—y)+ 2In(1+y)]Iny— —=(1—y)?(617— 842y + 19292 — 159>

Gla) =
G2 432

—3415/*+54y°— 56 oL 18y 2382 3_ 4 4e 5 oub
y °) — 35(1-y)y(12- 18y - 2382+ 41y°~ 1003/* - 45°—~ 9y)Iny

1 1
+ 3—6(1—y)2(13+ 26y -+ 87y?—364y3+535/*— 102y°— 51y®)In(1—-y) + Ey“( 14+ 32y%—3y*)In%y

2

1 2 2 4 6 4 1 3 . . ™ .
—5(1—y )(25+13y“+67y*+15y°)In(1+y)—8y gln y+ 2L|2(—y)+L|2(y)—? Iny—6Liz(—y)

- ! 1 2 4_gub4ovBy| I i
~Lis(y) = 54(3) |+ 5(7+24y"+48y"=8y>+9y") | Lio(—y)+ 75

] : (41)
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a

~ 1 1
GE=—13(1-y?)(3-13y*~y*~y")[In(1-y)+2In(1+y)lIny— ;=

2351~ ¥)?(567— 54y +3415/% + 15023

1
—1929*+842y°—617°) — 3—6(1—y)y(36+ 98y + 590y%— 265/3+ 27y*— 99y°— 87y6)Iny
1 1
+ %(1—y)2(51+ 102y —535y2+ 364y>— 87y*— 26y°— 13y®)In(1—y) — 5y2(8+ 66y>— 24y*—y®)In?y

7T2
2 Lip(~y) +Lia(y) - ?)my_ﬁ'-is(_)’)

1 2 2 4 6 4 1 3
—5 (1=y)(15+67y%+ 13y*+25/)In(1+y) +8y*| cIny+

2

1 T
+ §(9—8y2+48y4+ 24y6+7y8)( Li,(—y)+ -

7
Lisy)- 2 ] @2

~ al 1 a2
G = —la3(1- y*)(581+6140/%+581y*) — 3676y + 28y%+222y%— 164y*+ 390y°— 140y®+ 66y’ — 5y*®)
- 4 2 4 2 1 2 2 4 6 2 2 4 2
— 35(1-Y)(13- 176+ 13y%)In(1-y?) + 3y*(2+46y°+ 38y* +y°)In’y + 2y (1-y)*(5- 4y + By?)
2 1
XIn(1—y)ln —§y(1+y)4(5+4y+5y2)ln(1+y)lny+Ey2(212+93Q/2+38&/4—13y5)lny
1
+3(1-10y- 56y2—102y°— 164y*—102y°—56y°— 10y’ + y®)Li,(—y)
1 2 3 4 5 6 7 8\1 i
+ 3 (1+10y— 56y +10%y° ~ 164y*+ 102y° ~ 56y°+ 10y +y*)Liz(y) (43
Ale)_ & ’ 2 2 4 2., 2 Ayya2 m? 2 3 4,6
Gs”=_y) ~ 1g(17y)(5+34y"+5y") — 2y (9+ 18y —y")Iny+ == (1 3y"+ 32"~ 3y"+y)
4 4 2 4 4 2
—3(1=y) (A +4y+y)in(l-y)iny = z(1+y)*(1-4y+y9)in(1+y)iny

1 1
— 1515+ 2492+ 141y*—29°%)In y+§(1—y2)(1l+ 38y2+11y*)In(1—y?)

2 2
- 5(3—9y2—32y3—9y4+ 3y°)Liy(—y)— 5(3—9y2+ 32y°—9y*+3y°)Lia(y) . (44)

Note thatG{® andGS® contain trilog functions, and associ- have listed in Table Il the percentage chang& induced
ated with them, Euler’s zeta functiof(3), whereasG{®, Dy the radiative corrections, where

éff", and Gg‘“) contain only dilog functions. In agreement
with the Lee-Nauenberg theored] the rate functions do
not contain any logarithmic mass singularities. Our result for
é(l“) agrees with the result in Ref36] where a different

route of phase space irltegrations was taken to arive at thﬁwe relative radiative correctionsG; can all be seen to be
total rate. Our result fofs5") agrees with the result in Ref. close to the naive expectation Gi(e) where the relative

[8]. The results onG§”, G{ and G are new. As an radiative corrections t6s are largest. However, as was em-
additional check we have checked that all five rate functionghasized earlier on, all radiative corrections discussed in this
G{® vanish fory—1. paper go through zeros. Integrating over the whole spectrum
In order to get a quantitative feeling about the size of thetherefore does not give an adequate representation of the size
radiative corrections to the respective spectrum functions wef the radiative corrections to the spectrum since there are

(éi(a)+éiBorn)_éiBorn éi(a)

5éi:

é‘i Born - é‘i Born” (45)
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TABLE Il. Numerical values of partially integrated‘)‘éf ,5(3?) and total rate functionsé(éi) divided
by their respective Born term values. The symbofs™and “ >" stand for integrations from threshold to the
zero point of the respectiv®(«) contributions, and from the zero point to the endpoint of the spectrum.

M*’e T—MK T—e
[ 6G; 6G; 6G; oG oGy et 6G 6G. et

+2.80% —-2.69% —0.42% +0.76% -1.14% —-0.40% +5.20% —4.44% —0.42%
+8.22% —-3.70% —0.68% +2.51% —-159% —-0.62% +14.70% —6.10% —0.68%
+2.56% —-2.68% —0.53% +0.66% —1.14% —0.45% +4.95% —4.43% —0.54%
+7.82% —-3.70% —-0.79% +253% —159% -0.67% +14.28% —6.10% —0.80%
+0.76% —3.68% —2.89% +0.09% —1.62% —1.49% +1.72% —6.03% —4.53%

a b wN -

sizable cancellation effects. This cancellation would becom@nd 8G;” are also listed in Table Il. The relative radiative
less effective if moments of the spectrum functions werecorrections for the partially integrated rate functions can be
taken. The moments could be chosen such that they eithéeen to be much larger than for the fully integrated rate func-
emphasize the threshold or the endpoint region. Alternations and can amount up ©(10%) which is much larger
tively, one can consider partially integrated rates where th&han the naived(a) expectation. Note, though, that, in con-
integrations either run from threshold to the point where thd"@st o the rate functions, neither the moments of the spectral
radiative corrections go to zero or from the zero point to thgunctions nor the partially integrated rates are free of loga-

endpoint. The two partially integrated rate functions will be [1thmic mass singularities. . o
P P Y 9 Since the complete rate expressions are rather unwieldy it

~ < ~>
denoted byG;~ (lower part and byG;™ (upper part The two g ,seful to consider the small expansions of the rate ex-
respective partially integrated relative rate functioS; pressions. One has

Ao & [25—4m? 2o 23 4

GiV=—)—5— ~(17+12Iny)y*+8a%y*+O(y") |, (46)
aw="2 617-84m* 2 1 24— 22— Iny)yP+ = (71+ 84Iny)y®+ O(y* 4
= - 3¥ 35l 7 =Iny)y*+o-(71+84Iny)y"+O(y") (47)
G [ BT 10t a2 87 Iny+ 36Iy)y2+ 2 (121 84Iny)y®+ O(y* a8
()= |~ 3V~ 55(232+ 67+ 87 Iny + y)y*+ g(121-84Iny)y"+O(y") (, (48)
R 7(83-127%) 1 1 37

(a):z s = L= il 2 2_ Y 2,3 4

Gy W[ i3 + 6y+27(578—217-r +138Iny+18Irfy)y 5 ™Y +0(y") , (49
. a 35-372+15lny 1 16

G,(sa):;y(— & y—§(27+ 772+25Iny+12ln2y)y2+§w2y3+0(y4)). (50

It is well known that theD(«) smally corrections to the in the Born term case which is partly due to the difference in
reduced rateG{*) start only atO(y? (see, e.g., Refs. the power pattern of the final state lepton mass corrections in

[23,37). In contradistinction and contrary to the Born term the two cases. The quality of the;,— 0 approximation for

case the mass corrections to the spin dependent rate funéle radiative corrections can be assessed by referring again to
tions é(za)’ é(3&), andéf{’) all start atO(y). Table I. The final state lepton mass effects tend to reduce the

In order to obtain a quantitative feeling about the impor_overall size of the radiative corrections. The reduction is

tance of mass effects in th@(«) radiative contributions we Iargeszl[O(lo%)] for the case {—u) and smallest
have listed in Table | the percentage changes in the rate?(10 )] for the case t—e). They are largest for the rate

functions&; when going frommy,—0 o my, %0 using the ~functions G; and G, and smallest foiG,. That the mass
m;»—0 results listed in Sec. VI. The mass effects are no€ffects are smallest foG, is due to the fact that the mass

small, in particular for the caser{~u). The percentage corrections toél set in only atO(y?) [see Eq.(47)].
changes for the radiative contributions are larger than thos@/hether one is willing to tolerate the error incurred in using
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the simplem,;,— 0 radiative correction formulas depends of write the differential rate in terms of the no-flip and flip
course on the accuracy required for the application at handcontributions
We now turn to the discussion of the NLO average longi-

tudinal and transverse polarization of the elect(®h) and dr _ dr"’ (1—cosf)
(Ps), and the NLO average forward-backward asymmetry dxdcosfp dxdcosép
(Arg). They take remarkably simple forms in the—0 qrht
limit. Including the Born term contribution and expanding T (1+cosf), (54)
the inverse denominator in powers @f7 one has at NLO dxdcosép
o where the no-flip and flip contributions are given by
; I\ —
y“Ln0<Pe>__<l_Z). Y dror = Fo[(G1+G3)+(G,+G,)P cosh
m—iﬂx ol (G17+G3) +(G,+Gy) P cosbp].
Note that(P'e> does not depend oR cosé; in this approxi- (55
mation.

really only appropriate in then,— 0 limit where the electron
a 672 —49 emerging from the left-chiral weak interaction current is
lim(Agg)= —EP(l— _T>' (52)  purely left-handed. After photon emission the electron can
y—0 ™ then remain left-handednf) or can become right-handed
(hf). For m,#0 the respectivenf and hf contributions are
Finally, for the transverse polarization one obtains in thenothing but thunnormalizetidiagonal elements of the den-
same approximation (cas=0) sity matrix of the electron, i.e"'~p__ andT'M~p_ , .

As concerns the helicity flip contribution one notes that
there are no Born term helicity flip contributions in the limit
m.=0 since a massles electron emerging from the weak
(V—A) vertex is left-handed. This is explicitly seen by in-
serting the Born term rate functions E@.9) in Eq. (55).
Naively, one would expect no helicity flip contributions also
at O(a) because, in massless QED with,=0, photon
emission from the electron is helicity conserving. However,
taking the limitm,— 0 in Egs.(30)—(33) one finds helicity
flip contributions which survive then,— 0 limit. In fact, one
VI. THE m,—0 LIMIT AND THE ANOMALOUS finds

HELICITY FLIP CONTRIBUTION

a 65+ 60 Iny) 53

lim(Pg)= 2P 1+
im(Pe)=—3PY| 1t

The O(«) corrections taPL), (Agg), and to(PL) are thus
quite small. The actual numerical values fdy), (Arg),
and for(Py) listed earlier in this section lie very close to the
above estimates in all three cases.

drhf

m:mro{[(l—x)%—zx)]

The purpose of this section is twofold. First we discuss
them,— 0 limit of the m,#0 O(«) results given in Sec. V.
This allows us to make contact with time,— 0 results de- —[(1=x)%(1+2x)]P cosbp}, (56)
rived previously[7]. Second we discuss in some detail the
origin of the anomalous helicity flip contribution resulting which agrees with the result presented in Ré}. Because of
from collinear photon emission of the electron. Our resultsthe naive expectation that the helicity flip contribution van-
are presented in terms of the two diagonal components of thishes in massless QED the presence of a helicity flip contri-
density matrix of the final state electron, which, in the limit bution is sometimes referred to as the anomalous helicity flip
me— 0, are nothing but the helicity no-flip and helicity flip contribution. Moreover, the authors of Rg38] were able to
contributions of the final state electron. The naive predictiorshow that the well-known axial anomaly can be traced to the
of massless QED is that the helicity flip contributions vanishexistence of an anomalous helicity flip contribution to the
in all orders of perturbation theory. However, as first pointedabsorptive part of thé/VA triangle diagram in massless
out by Lee and Nauenbefd], there will be a nonzero he- QED. This gives further justification for the use of the ter-
licity flip contribution from collinear photon emission which minology “anomalous helicity flip contribution.” In order to
survives them,— 0 limit. This will be demonstrated in our set the anomalous contributions apart we have highlighted
O(a) m,—0 expressions. Oun,— 0 result for the helicity them in Eq.(56) by enclosing them in square brackets.
flip contribution is found to be in agreement with expecta- The authors of Ref7] had already expressed surprise at
tions derived from the universal equivalent particle approactihe simplicity of the structure of th®(«) helicity flip con-
of Falk and Sehgdl6]. For a discussion of the quality of the tributions without, however, attempting to identify the source
m,;»— 0 approximation for the three caseg-e), (7—u) of this structural simplicity. The simplicity of the helicity flip
and (r—e) we refer to the discussion at the end of Sec. V. contribution becomes manifest in the equivalent particle de-

Since we want to discuss the helicity no-flip and flip con-scription of u-decay where, in the peaking approximation,
tributions separately it is convenient to choose a slightly dif-w-decay is described by the two-stage progess—e~ fol-
ferent representation for the differential rate E). We  lowed by the branching process —e™ + y characterized
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by universal splitting function®,;/»:(z) [6]. In the splitting

o
proces is the fractional energy of the emitted photi#. = EFO[(l—x)Z(S—Zx)
The off-shell electron in the propagator is replaced by an
equivalent on-shell electron in the intermediate state. Since —(1—x)2(1+2x)P cosbp], (57)

the helicity flip contribution arises entirely from the collinear
configuration it can be calculated in its entirety using the
equivalent particle description.

The helicity flip splitting function is given byDyn¢(z)  which exactly reproduces the result of E§6). Note that the
=az/(27), wherez=ky,/E'=(E'—E)/E'=1—-x/x’, and flip spectrum function does not contain a logarithmic mass
wherek, is the energy of the emitted phot¢6]. E" andE  factor. Integrating over the spectrum one obtains
denote the energies of the initial and final electron in the
splitting process. The helicity flip splitting function has to be
folded with the appropriaten,=0 Born term contribution.

The lower limit of the folding integration is determined by adrMy  a 1] |1
the soft photon point wherg’ = E. The upper limit is deter- dcosdp = °\|8| |24 P cosop |. (58)
mined by the maximal energy of the initial electrdl
=m,/2. One obtains
dr™ :ﬂfldx,i dreemn(x’) 1_1 which can be checked to agree with the results in Sec. V
dxdcostp 2m)x  x' dx'dcos6p X' settingy=0.
The helicity no-flip contribution is again obtained by tak-
o o , ing them,— 0 limit in Egs. (30)—(33) but now for the dif-
B ﬂr"fx dx(x"=x)L(3=2x") ferences of the respective spectrum functions as specified in
Eq. (55). Including theO(y®) Born term contributions one
+(1—2x")P cosbp] obtains

drnf Y

. 2/ __ ) _v\2(E_ _ _ 2\ _ _ _

dxdcose, Fo(x (3 2x)+127_r[ [(1-X)7(5—2X)]—4x(11—10x+5%x°) = 6(6—x)x In(1—Xx)
—2(5+12x—15x*+4x%)In ™ +6(3—4x)x%In T —I—12(3—2x)x20]

a 2
+| x3(1—2x)+ E{[(1—x)2(1+2x)]—2(3—10x—13x2+8x3)—;(4—12x+18x2—13x3)ln(1—x)
2 3 y 2 y 2
+2(1+ 21 = 4 In| & | +6(1—4x)x°In| 7= | +12(1-2x)x*0 | | P cosbp |, (59
[
where at all. The vanishing of the flip contribution for cés +1 at

the hard end of the spectrum can be understood from angular
X y momentum conservation. In order to be able to discuss the
m)'n(;)- residual mass dependence the no-flip contribution has been
split into its constant part and its logarithmic ¢h part
(60)  which come in with opposite signs over most of the spec-

. N . . trum, i.e., they partially cancel in the spectrum. Considering
The no-flip contribution agrees with the result presented iy o umerical values of the ratios Wb,y /INY(, =0.53
— H—€ :

Ref.[7]. We have highlighted the anamolous contributions in, g Iny(,.e/INY(, .9=1.53 it is clear from Fig. 5 that the

Eq. (59 by enclosing them in square brackets. When calcusancellation between the constant and the logarithmic part is

lating the total spectrum, i.e., when summing the flip andsyrongest forr— u and weakest for—e. This observation

no-flip contributions(56) and (59), the anomalous contribu- provides a qualitative explanation of the hierarchy of the size

tions cancel. of radiative corrections to the three decay cases as described
The O(«) no-flip contribution is much larger than the flip in Sec. V, namely, the radiative corrections are largestrfor

contribution. This is illustrated in Fig. 5 for the electron — e and smallest forr— pu.

spectrum in theu— e decay where the flip contribution has ~ We now turn to the discussion of the longitudinal polar-

been multiplied by a factor of 20 in order to make it visible ization of the daughter lepton in the,—0 limit. It takes a

2

o=— %+2 Li,(x) + In(x)IN(1—x)+ 2 In
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longitudinal polarization. We have again highlighted the
anomalous contributions by enclosing them in square brack-
ets. The anomalous contributions can be seen to cancel in the
spectrum and rate functions when adding up the spectrum
no-flip contribution(59) and flip contribution(56), and the
respective rate contribution(3) and (58). Numerically the

dTM/% @ /(T dx dcos p)

-0.02 (nf;non-Iny) N 1 O(a) no-flip contribution dominates over ti@&(«) (anoma-
\ lous) flip contribution. For theéD(«a) contributions to the rate
\ . . _ .
-0.04 \\ ] functions, which do not depend grin they— 0 approxima-
hre \ \ tion, one obtains{ 0.168,—0.121,—0.107) for the rate ratio
-1y \o dr@dr@ | for cosfp=1,0—1.
0 0.2 0.4 0.6 0.8 1

FIG. 5. Scaled energy dependence of fliff) and no-flip (nf)
spectrum functions in the limig—0. Latter contribution is sepa-
rated into its nonlogarithmic parnf;non-iny) and its mass depen-  We have computed th@(a) corrections to the leptonic
dent logarithmic part iff;Iny) which is plotted for the casex{  gecays of thew and 7 leptons including polarization effects
—€). and the full mass dependence of the respective final-state

. . leptons. The radiative corrections to the spectrum functions
rather simple form when one expands out the inverse de-

nominator in terms of powers ofe{ ) keeping only the are sizable for 4—e) decays, large for{-e)—decays, and
O(a) contribution. In terms of the flip and no-flip contriby- SMaller for ¢— ) decays. In large part this pattern is due to

tions the longitudinal polarization of the electron reads thg (Ir)y)—dependgnt contributions to .the spectrum.i The po-
larization of the final-state lepton deviates substantially from

drhf—grnf the naivem;,=0 vaIuesP:,=—1 and P,l,=0 towards the
= (61 soft end of the spectrum. The radiative corrections to the
longitudinal and transverse polarization of the daughter lep-
When expanding the inverse denominator in terms of power%on in the threshold region are substantial fga_rfe) and
of (/) one sees that the “normal” contributions in the (7—€) decays and small forr(- ) decays. Similar state-
numerator and denominator cancel exactlpgtr) and one  Ments hold for the forward-backward asymmettyg .

VIl. SUMMARY AND CONCLUSIONS

I
e

dr"drn’

just remains with the anomalous contributiofi$o such can- For the rate functions we have compared Q@(a) m;/
cellations occur for the forward-backward asymmeAry . #0 results withm;»— 0 results derived previously in Ref.
We therefore refrain from presenting a closed formula for 7] In particular in the ¢— u) case the errors incurred in
Agg in this approximation.One obtains using theO(«) m;»— 0 results are largfof O(10%) in the
O(«) rate functiond A mass effect is already showing up in
| a (1—x)2 5—2x—(1+2x)P cosfp the experimental values for the branching ratios of the two
Pe=—| 17 67 2 3-2x+(1—2x)Pcosbp|’ decay modes7 —u +v,tv, and 7 —e +r.tv,.

62 They are BR(r —u~ +v,+v,)=(17.37£0.06)% and
. BR(7—e +wetv,)=(17.84:-0.06)% [24]. The two
Itis clear that Eq(62) does not apply very close to thresh- branching ratios are compatible with the mass dependence of

2742 i inti
old. Due to the factor (+X)*/x* in Eq. (62 the radiative the Born term rates. In order to be sensitive to the mass

corrections to the longitudinal polarization of the daughter L .
9 P g %ependence of the radiative corrections the error on the

lepton are largest close to threshold as is evidenced in th . . .
plots b) and 4b). In the case of £—u), mass effects ;ranchlr;g ratios would have to be improved by at least a
’ actor of 10.

prevent the radiative corrections to become large in th

threshold region. Whether one is willing to tolerate the error brought about
Integrating the no-flip contribution over the spectrum onePy using the simplem,, —0 radiative correction formulas
obtains depends of course on the accuracy required for the applica-
tion at hand. We nevertheless strongly recommend use of the
d(rnf 1 « 1] 25 1 , complete results in numerical investigations instead of using
dcostp 0{5 + ;( - H 16 2™ ) the m;,—0 approximation. The analyticah,,#0 formulas

written down in this paper are of sufficient simplicity to al-
1) el 84m? P cosd low for easy incorporation into numerical programs.
24 432 COSOp(- From what was being said in Sec. Il it is clear that the
results of this paper can immediately be applied to the case
of semileptonic quark decays, where, e.g., in the case of the
which agrees with the results in Sec. V. In particular onesemileptonicb—c+1~+ v, decays the final state-quark
reproduces the simple expressi@i) for the average of the mass can certainly not be neglected.

J’_

+_
6

63

(63)
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APPENDIX A Lln(x)_"Lln(_X):FL'n(Xz)- (A6)
When integrating the spectrum functions it is convenient ' o )
to transform to the integration variablg wherex=y(¢2 ~ Euler's zeta function is defined by
+1)/&, such thatB=(1— £2)/(1+ £?). Trilog functions are -
generated from the integrals {(s)= 2 k™S, ¢(3)=1.202057- - . (A7)
k=1
yl w? 1.,
| Znemce-yiae="Tomy+ Siny-Lisy) + 2(3),
1€ APPENDIX B
(A1) o
The Fierz identity
vyl . .
| @it yerde=-iny i) -Listy) (71 79)Tagl 70 (1= 7)o
=—[y*(1- 1- Bl
Ly, (A2) [Y“(1=vs) ]yl ¥u(1=¥5)]as  (BL)
) is well known. Not so well known is the Fierz identifgee,
vl - [y(1-£&9) 1 , : e.g., Ref[11
[t 2= o= izt 21ty 9. RetlL)
[(1Ey5)]apl(1F ¥5)],s
—Liz(y®)—¢(3), (A3) 1
=Z[yH(17 1% v6)],s. (B2
v (1-g2 2 1 - S (1% v9) el V(12 ¥5) las.  (B2)
[t = ae= Ty Syt - .
1§ yé The latter identity allows one to transform th&q” piece of
Cor Lo the W-boson propagator discussed in Sec. IV back into the
2Lis(y) +Lis(y?) +4(3), standard formN“AC,; used in the remaining part of the
(A4) paper.

[1] M. Fischer, S. Groote, J.G. Kier, and M.C. Mauser, Phys. [10] E.D. Commins and P.H. Bucksbaurdyeak Interactions of

Lett. B 480, 265(2000.

[2] M. Fischer, S. Groote, J.G. Kaer, and M.C. Mauser, Phys.

Rev. D65, 054036(2002.

[3] The three leptonig. and = decays are treated within the stan-

dard model, i.e., they are all governed by the saive A)
coupling structure and coupling strend® .

[4] T.D. Lee and M. Nauenberg, Phys. R&3&3B, 1549(1964).

[5] R. Kleiss, Z. Phys. @33, 433(1987); A.V. Smilga, Comments
Nucl. Part. Phys20, 69 (199)); J.G. Kaner, A. Pilaftsis, and
M.M. Tung, Z. Phys. 53, 575(1994; S. Groote, J.G. Kmer,
and M.M. Tung,ibid. 74, 615(1997; S. Groote, J.G. Kmer,
and J.A. Leyva, Phys. Lett. B18 192(1998; L. Trentadue
and M. Verbenijbid. 478 137 (2000; Nucl. Phys.B583 307
(2000; S. Dittmaier and A. Kaiser, Phys. Rev. &5, 113003
(2002.

[6] B. Falk and L.M. Sehgal, Phys. Lett. 85 509 (1994.

[7] W.E. Fischer and F. Scheck, Nucl. Ph{&83, 25 (1974).

[8] A.B. Arbuzov, Phys. Lett. B524, 99 (2002.

[9] G. Kdlén, Elementary Particle PhysicgAddison-Wesley,
Reading, MA, 1964

Leptons and QuarkeCambridge University Press, Cambridge,
U.K., 1983.

[11] F. Scheck]eptons, Hadrons and NucléNorth Holland, Am-
sterdam, 19883

[12] T.D. Lee and C.S. Wu, Annu. Rev. Nucl. S&b, 381 (1965;

16, 471(1966.

[13] G. Kalén, Vol. 46 of Springer Tracts in Modern Physics
(Springer, Berlin, 1968 p. 67.

[14] F. Scheck, Phys. Reg4, 187 (1978.

[15] M.T. Mehr and F. Scheck, Nucl. PhyB149 123(1979.

[16] The spectrum functioss describing the transverse polariza-
tion of the electron vanishes for vanishing electron mass and is
therefore not included in the corresponding decay distribution
in Ref.[7].

[17] A general discussion of the electron polarization in muon de-
cay can be found in Ref19], including a discussion of tests of
the TCP theorem.

[18] As noted before in the SM there is no transverse polarization
normal to that plane.

[19] T. Kinoshita and A. Sirlin, Phys. Re08 844 (1957).

113008-16



LEPTONIC u AND 7 DECAYS: MASS EFFECTS. .. PHYSICAL REVIEW D 67, 113008 (2003

[20] The charge retention form of the Lagrangian is obtained from[27] We specify our infrared regularization procedure since, histori-
the usual standard model charged current-current form through  cally, there has been a certain amount of controversy concern-
the Fierz transformatioriB1) written down in Appendix B. ing the use of a photon mass regulatsee, e.g., Ref.28]).

The minus sign from the Fierz identity is cancelled from hav-[28] T. Kinoshita, J. Phys. @9, 9 (2003.
ing to commute the Fermion fields an odd number of times in[29] R.E. Behrends, R.J. Finkelstein, and A. Sirlin, Phys. R
order to relate the two forms. Note that the Fierz identity is a 866 (1956.

four-dimensional identity. Since our calculations are done in[3q] T. Kinoshita and A. Sirlin, Phys. Ret13 1652 (1959.
four dimensions the Fierz identity can be safely applied. [31] H. Grotch, Phys. Rev168 1872(1968.

[21] When the Lagrar.wgla.m fop. decay is Yvrltte_n ln_charge reten- [32] The divergent terms at the endpoint of the electron spectrum
tion form the similarity of the decay.~ —e" + v+ v, to the can be resummed into an exponential func{i8a,34.
decayb—c+e™ + v, becomes quite apparent through the sub-[33] E. Kuraev and V.S. Fadin, Yad. Fiz. 41, 788985 [Sov. J.

stitutionsh—u~, c~e™, e = v, andve— ve. Nucl. Phys.41, 466 (1985].
[22] We denote the momentum transfer to the neutrino pair by §34] M. Cacciari, A. Deandrea, G. Montagna, and O. Nicrosini,
capitalQ in order to set it apart from the momentum transfer Europhys. Lett17, 123(1992.
to the (e’?e) pair used in Sec. IV. [35] In our numerical results for the longitudinal and transverse
[23] M. Roos and A. Sirlin, Nucl. Phy€329, 296 (1971). polarization of the daughter lepton and the forward-backward
[24] Particle Data Group, K. Hagiwarat al, Phys. Rev. D66, asymmetry we haveot expanded out the inverse of the de-
010001(2002. nominator function in terms of powers aof.

[25] W.J. Marciano and A. Sirlin, Phys. Rev. Leftl, 1815(1988. [36] Y. Nir, Phys. Lett. B221, 184 (1989.

[26] K. Schilcher, M.D. Tran, and N.F. Nasrallah, Nucl. Phys. [37] T. van Ritbergen and R.G. Stuart, Nucl. Phy564, 343
B181, 91(1981); B187, 594(E) (1981); G.J. Gounaris and J.E. (2000.
Paschalisjbid. B222, 473(1983. [38] A.D. Dolgov and V.. Zakharov, Nucl. Phy827, 525(1971).

113008-17



