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Transition form factors between pseudoscalar and vector mesons in light-front dynamics
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We study the transition form factors between pseudoscalar and vector mesons using a covariant fermion field
theory model in 311 dimensions. Performing the light-front calculation in theq150 frame in parallel with
the manifestly covariant calculation, we note that the suspected nonvanishing zero-mode contribution to the
light-front currentJ1 does not exist in our analysis of transition form factors. We also perform the light-front
calculation in a purely longitudinalq1.0 frame and confirm that the form factors obtained directly from the
timelike region are identical to the ones obtained by the analytic continuation from the spacelike region. Our
results for theB→D* ln l decay process satisfy the constraints on the heavy-to-heavy semileptonic decays
imposed by the flavor independence in the heavy quark limit.
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I. INTRODUCTION

In a recent analysis of spin-1 form factors in light-fro
dynamics~LFD!, we @1# have shown that the zero-mode@2#
complication can exist even in the matrix elements of
plus currentJ1. Using a simple but exactly solvable mod
of the spin-1 system with the polarization vectors obtain
from the light-front gauge (eh561

1 50), we found that the
zero-mode contribution does not vanish in the helicity ze
to-zero amplitude. Neglecting the zero-mode contribution
sults in the violation of angular conditions@3#. A more ex-
tensive list of previous papers concerning the discussion
the role played by the zero modes as a source of m
troubles may be consulted in the references cited in R
@1–5#. There have been several recipes@6–8# in spin-1 sys-
tems to extract the invariant form factors from the mat
elements of the currents. Without taking into account
zero-mode contribution, however, these different recipes
not generate identical results in the physical form fact
even if J1 is used.

This indicates that the off-diagonal elements in the Fo
state expansion of the current matrix cannot be neglected
the helicity zero-to-zero amplitude even in reference fram
where the plus component of the momentum transfer,q1,
vanishes. Since the factorization theorem in perturba
QCD ~PQCD! relies essentially on the helicity zero-to-ze
matrix element diagonal in the Fock-state expansion,
zero-mode contribution would complicate in principle t
PQCD analysis of the spin-1~and higher spin! systems. For-
tunately, our numerical computation indicates that the ze
mode contribution diminishes significantly in the high m
mentum transfer region where the PQCD analysis
applicable. Although the quantitative results that we fou
from our model calculation may differ in other models d
pending on the details of the dynamics in each model,
0556-2821/2003/67~11!/113007~22!/$20.00 67 1130
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basic structure of our calculation is common to any oth
model calculations including the more phenomenologi
and realistic ones. Thus, we may expect the essential find
from our model calculation to be supported further by othe
However, it does not preclude the possibility that the ze
mode contribution may behave differently in different pr
cesses. Thus, it appears important to analyze a different
cess involving a spin-1 system within the same model.

In this work, we analyze the transition form factors b
tween pseudoscalar and vector mesons@4,5,10–15#. These
form factors can be measured in semileptonic meson de
processes such asB→D* ln l andB→r ln l produced fromB
factories @9#. The physical region of momentum transf
squared,q2, for these processes~or form factors! is given by
4ml

2<q2<(M12M2)2, whereM1 andM2 are the masses o
the initial and final state mesons, respectively. This belo
to the timelike region, while the elastic spin-1 meson fo
factors~i.e.,GE ,GM ,GQ) of for example the deuteron in th
electron deuteron elastic scattering experiment can only
measured in the spacelike region,q2<0. Not long ago, the
same transition form factors were analyzed by Jaus@4# using
a lightlike four-vector calledv (v250) and the admixture
of a spuriousv-dependent contribution was reported in t
axial-vector form factorA1(q2) in the conventional light-
front formulas~seeNote addedat the end of Sec. V!. The
removal of thev dependence in the physical form fact
amounts to the inclusion of the zero-mode contribution t
we present in this work. However, the covariant formulati
presented in our work should be intrinsically distinguish
from the formulation involvingv, since our formulation in-
volves neitherv nor any unphysical form factor.

This paper is organized as follows. In Sec. II, we pres
the manifestly covariant calculation of the transition for
factors between pseudoscalar and vector mesons usin
exactly solvable Bethe-Salpeter ~BS! model of
(311)-dimensional fermion field theory. In Sec. III, we ap
©2003 The American Physical Society07-1
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BAKKER, CHOI, AND JI PHYSICAL REVIEW D 67, 113007 ~2003!
ply the light-front dynamics to calculate the same physi
form factors. We separate the full amplitudes into the vale
and nonvalence contributions and compare the results in
q150 frame and the purely longitudinalq1.0 frame. In
the q150 frame, we check whether the suspected ze
mode contribution exists or not within our analysis. In S
IV, we present the numerical results for the transition fo
factors, making taxonomical decompositions of the full
sults into valence and nonvalence contributions. Conclus
follow in Sec. V. In Appendix A, we summarize the kinema
ics of the typical reference frames such as Drell-Yan-W
~DWY!, Breit ~BRT!, and target-rest frame~TRF! in the tran-
sition form factor analysis. In Appendix B, we present t
manifestly covariant results of the electromagnetic form f
tors and decay constants of the pseudoscalar and vector
sons that are made of two unequal-mass constituents. T
results are used in fixing the model parameters of our
merical analysis. In Appendixes C and D, we present
more detailed formulas used in the discussion of Secs. I
and III E, respectively.

II. MANIFESTLY COVARIANT COMPUTATION

The Lorentz-invariant transition form factorsg, f, a1 ,
anda2 between a pseudoscalar meson with four-momen
P1 and a vector meson with four-momentumP2 and helicity
h are defined@16# by the matrix elements of the electrowea
currentJV2A

m 5Vm2Am from the initial stateuP1 ;00& to the
final stateuP2 ;1h&:

^P2 ;1huJV2A
m uP1 ;00&

5 ig~q2!«mnaben* Paqb2 f ~q2!e* m

2a1~q2!~e* •P!Pm2a2~q2!~e* •P!qm, ~1!

where the momentum transferqm is given by qm5P1
m

2P2
m , P5P11P2, and the polarization vectore*

5e* (P2 ,h) of the final state vector meson satisfies the L
entz condition e* (P2 ,h)•P250. While the form factor
g(q2) is associated with the vector currentVm, the rest of the
form factors f (q2), a1(q2), and a2(q2) are coming from
the axial-vector currentAm. Thus, these transition form fac
tors defined in Eq.~1! are often given by the following con
vention @17#:

V~q2!5~M11M2!g~q2!,

A1~q2!5
f ~q2!

M11M2
,

A2~q2!52~M11M2!a1~q2!,

A0~q2!5
1

2M2
@ f ~q2!1~M1

22M2
2!a1~q2!1q2a2~q2!#,

~2!

where M1 and M2 are the initial and final meson masse
respectively.
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The solvable model, based on the covariant BS mode
(311)-dimensional fermion field theory, enables us to d
rive the transition form factors between pseudoscalar
vector mesons explicitly. The matrix eleme
^P2 ;1huJV2A

m uP1 ;00& in this model is given by

^P2 ;1huJV2A
m uP1 ;00&

5 ig1g2L1
2L2

2E d4k

~2p!4

Smnen* ~P2 ,h!

DL1
Dm1

DmDm2
DL2

,

~3!

whereg1 andg2 are the normalization factors which can b
fixed by requiring both charge form factors of pseudosca
and vector mesons to be unity at zero momentum trans
respectively. To regularize the covariant fermion triang
loop in 311 dimensions, we replace the point gauge-bos
vertex gm(12g5) by a non-local~smeared! gauge-boson
vertex (L1

2/DL1
)gm(12g5)L2

2/DL2
, whereDL1

5(P12k)2

2L1
21 i« andDL2

5(P22k)22L2
21 i«, and thus the factor

(L1L2)2 appears in the normalization factor.L1 and L2
play the role of momentum cutoffs similar to the Pau
Villars regularization@18#. The rest of the denominators i
Eq. ~3!, i.e., Dm1

DmDm2
, are coming from the intermediat

fermion propagators in the triangle loop diagram and
given by

Dm1
5~P12k!22m1

21 i«,

Dm5k22m21 i«,

Dm2
5~P22k!22m2

21 i«. ~4!

Furthermore, the trace term in Eq.~3!, Smn, is given by

Smn5Tr@~p” 21m2!gm~12g5!~p” 11m1!g5~2k”1m!Gn#,
~5!

where m1 , m, and m2 are the masses of the constituen
carrying the intermediate four-momentap15P12k, k, and
p25P22k, respectively. For the vector meson vertex, w
shall useGm5gm in this section. While some modification o
this simple vertex will be considered in Sec. III E, our esse
tial findings are not altered by that modification.

Using the familiar trace theorems, we find, forSmn,

Smn54i«mnab@kaP1b~m2m2!1kaP2b~m12m!

1P1aP2bm#14gmn@m1k•~k2P2!1m2k•~k2P1!

2m~k2P1!•~k2P2!2m1m2m#14@2kmkn~m2m1!

1kmP1
n~m22m!1kmP2

n~m12m!2knP1
m~m21m!

1knP2
m~m12m!1~P1

mP2
n1P1

nP2
m!m#, ~6!

where one should note that theP2
n terms will drop out once

the polarization vectoren* (P2 ,h) is multiplied intoSmn. We
7-2
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TRANSITION FORM FACTORS BETWEEN . . . PHYSICAL REVIEW D67, 113007 ~2003!
have checked our result with the one obtained by Jaus@see
Eq. ~4.10! of Ref. @4## and found full agreement between th
two results.

We then decompose the product of five denominat
given in Eq.~3! into a sum of terms with three denominato
only: i.e.,

1

DL1
Dm1

DmDm2
DL2

5
1

~L1
22m1

2!~L2
22m2

2!

1

Dm

3S 1

DL1

2
1

Dm1
D S 1

DL2

2
1

Dm2
D . ~7!

Our treatment of the non-local smeared gauge-boson ve
remedies@18# the conceptual difficulty associated with th
asymmetry appearing if the fermion-loop were regulated
smearing theqq̄ bound-state vertex. As discussed in our p
vious work @1,18#, the two methods lead to different resul
for the calculation of the decay constants although they g
the same result for the form factors. For example, our re
11300
s

ex

y
-
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@1# does not yield a zero-mode contribution to the vec
meson decay constant while the asymmetric smearing of
hadronic vertex leads to the contamination from the z
mode@4#.

Once we reduce the five propagators into a sum of te
containing three propagators using Eq.~7!, we use the Feyn-
man parametrization for the three propagators, e.g.,

1

Dm1
DmDm2

5E
0

1

dxE
0

12x

dy

3
2

@Dm1~Dm1
2Dm!x1~Dm2

2Dm!y#3
. ~8!

We then make a Wick rotation of Eq.~3! in D dimensions to
regularize the integral, since otherwise one loses the loga
mically divergent terms in Eq.~3!. Following the above pro-
cedure, we finally obtain the Lorentz-invariant transitio
form factors as follows:
ective
element
g~q2!52
N

8p2E0

1

dxE
0

12x

dy@m1x1m2y1m~12x2y!#C,

f ~q2!5
N

8p2E0

1

dxE
0

12x

dyH 2~m12m12m2!lnS CL1m2
Cm1L2

CL1L2
Cm1m2

D 1@2~m11m22m!$~x1y!~xM1
21yM2

2!2xyq2%

2m1$2yM2
21x~M1

21M2
22q2!%2m2$2xM1

21y~M1
21M2

22q2!%1m$2xM1
212yM2

21~x1y21!

3~M1
21M2

22q2!%22m1m2m#CJ ,

a1~q2!5
N

8p2E0

1

dxE
0

12x

dy@~x1y!$2x~m2m1!1m22m%1x~m12m222m!1m#C,

a2~q2!5
N

8p2E0

1

dxE
0

12x

dy@~x2y!$2x~m2m1!1m22m%2x~m11m2!2m#C, ~9!

whereN5g1g2L1
2L2

2/(L1
22m1

2)(L2
22m2

2) andC5(1/CL1L2
21/CL1m2

21/Cm1L2
11/Cm1m2

) with

CL1L2
5~12x2y!~xM1

21yM2
2!1xyq22~xL1

21yL2
2!2~12x2y!m2,

CL1m2
5~12x2y!~xM1

21yM2
2!1xyq22~xL1

21ym2
2!2~12x2y!m2,

Cm1L2
5~12x2y!~xM1

21yM2
2!1xyq22~xm1

21yL2
2!2~12x2y!m2,

Cm1m2
5~12x2y!~xM1

21yM2
2!1xyq22~xm1

21ym2
2!2~12x2y!m2. ~10!

Note that the logarithmic term inf (q2) is obtained from dimensional regularization with the Wick rotation.

III. LIGHT-FRONT CALCULATION

It is native to the light-front analysis that a judicious choice of the current component is important for an eff
computation of matrix elements. For the present work, we shall use only the plus component of the current matrix
7-3
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^P2 ;1huJV2A
m uP1 ;00& in the calculation of the transition form factors.

As we did in Ref.@1#, the LF calculation for the trace term in Eq.~5! with plus current (m51) can be separated into th
on-shell propagating partSon

1 and the instantaneous partSinst
1 via

p”1m5~p” on1m!1
1

2
g1~p22pon

2 ! ~11!

as

Sh
15S1nen* ~P2 ,h!5Son

1(h)1Sinst
1(h) , ~12!

where

Son V2A
1(h) 524i«1mna@m1~p2on!m~kon!n2m2~p1on!m~kon!n2m~p1on!m~p2on!n#ea* 14m1@~kon•e* !p2on

1 1~p2on•e* !kon
1

2~p2on•kon!e* 1#24m2@~kon•e* !p1on
1 2~p1on•e* !kon

1 1~p1on•kon!e* 1#14m@~p2on•e* !p1on
1 1~p1on•e* !p2on

1

2~p1on•p2on!e* 1#24m1m2me* 1 ~13!
ia
ib
.,

b

and

Sinst V2A
1(h) 524~k22kon

2 !m2p1on
1 e* 1, ~14!

with p15P12k, p25P22k. The subscript~on! denotes the
on-mass shell (p25m2) quark momentum, i.e.,p25pon

2

5(m21p'
2 )/p1. Note that the first term ofSon

1 corresponds
to the vector current matrix element and the rest to the ax
vector current matrix element. The instantaneous contr
tion Sinst

1 comes only from the axial-vector current, i.e
Sinst V2A

1(h) 52Sinst A
1(h) .

The polarization vectors used in this analysis are given

em~61!5@e1,e2,e'#5F0,
2

P2
1

e'~6 !•P2',e'~61!G ,

e'~61!57
~1,6 i !

A2
,

em~0!5
1

M2
F P2

1 ,
P2'

2 2M2
2

P2
1

,P2'G . ~15!

The traces in Eqs.~13! and ~14! are then obtained as

Son V
1(h51)5

2P1
1

A2
«12xy$qLAP1kL@~m2m2!~12x!

1~m12m!~a2x!1~m12m2!x#%,

Son A
1(h51)52

4P1
1

A2
H ~a22x!

a
qLAP1kL@~a22x!

3~m12m!2~m21m!#J ,

Sinst V
1(h51)5Sinst A

1(h51)50, ~16!
11300
l-
u-

y

for the transverse polarization vector (h51), and

Son A
1(h50)5

4P1
1

x8M2

$AP@x8~12x8!M2
21m2m1x82q'

2 #

1k'
2 ~xm11m22xm!

1x8k'•q'@2x~m12m!1m21m#%,

Sinst A
1(h50)5

4a~P1
1!2

M2
~12x!m2~k22kon

2 !, ~17!

for the longitudinal one (h50), where

a5P2
1/P1

1512q1/P1
1 , x5k1/P1

1 , x85x/a,

qL5qx2 iqy , kL5kx2 iky ,

AP5xm11~12x!m. ~18!

Here, we used theP1'50 frame. The~timelike! momentum
transferq25(P12P2)2 is in general given by

q25q1q22q'
2 5~12a!S M1

22
M2

2

a D 2
q'

2

a
. ~19!

Defining the matrix element ^P2 ;1huJV2A
1 uP1 ;00&

[^JV2A
1 &h of the plus component of theV2A current in Eq.

~3! as

^JV2A
1 &h5 ig1g2L1

2L2
2E d4k

~2p!4

~Son
1(h)1Sinst

1(h)!V2A

DL1
Dm1

DmDm2
DL2

,

~20!
7-4
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TRANSITION FORM FACTORS BETWEEN . . . PHYSICAL REVIEW D67, 113007 ~2003!
one obtains the relations between the current matrix elem
and the weak form factors as follows:

^JV
1&h5152

P1
1

A2
«12xyqLg~q2!,

^JV
1&h5050, ~21!

for the vector current, and

^JA
1&h515

P1
1qL

aA2
@~11a!a1~q2!1~12a!a2~q2!#,

^JA
1&h505

aP1
1

M2
f ~q2!1

aP1
1

2M2
S M1

22
M2

2

a2
1

q'
2

a2D
3@~11a!a1~q2!1~12a!a2~q2!#, ~22!

for the axial-vector current.

A. Methods of extracting weak form factors

The extraction of weak form factors can be done in va
ous ways. Among them, there are two popular ways of
tracting the form factors, i.e.,~1! the form factors are ob
tained in the spacelike region using theq150 frame and
then analytically continued to the timelike region by chan
ing q' to iq' , and ~2! the form factors are obtained by
direct timelike analysis using aq1.0 frame. In this work,
we shall analyze the form factors in both ways.

In the q150 frame ~i.e., a51) with the transverse po
larization modes, one could extract the form factorsg(q2)
and a1(q2) without including the zero-mode contribution
as one can see from Eqs.~21! and ~22!. One could in prin-
ciple obtain the form factorf (q2) in the q150 frame and
the longitudinal polarization mode. In this case, it is impo
tant to check whether the zero-mode contribution exists
not by investigating the instantaneous part of the trace gi
by Eq. ~17!. In particular, as we discussed in Sec. I, t
admixture of spuriousv-dependent contributions was re
ported @4#, indicating a possible zero-mode contribution
the axial form factorA1(q2) which is essentially identical to
f (q2) modulo some constant factor@see Eq.~2!#. As we shall
show in Secs. III D and III E, however, we find that the zer
mode contribution to the form factorf (q2) does not exist in
our analysis.

Using only the plus currentJV2A
1 in theq150 frame, it is

not possible to extract the form factora2(q2). On the other
hand, if one chooses aq1.0 frame, specifically a purely
longitudinal momentum frame where the momentum trans
is given by

q25q1q25~12a!S M1
22

M2
2

a D , ~23!

one can extract all four form factors by using only the p
current. We compute them all in this purely longitudinal m
mentum frame including the nonvalence contributions for
11300
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matrix elements. This frame corresponds to the caseu50 or
p in the TRF and BRT frames summarized in Appendix A

For this particular choice of the purely longitudinal fram
there are two solutions ofa for a givenq2: i.e.,

a65
M2

M1
FM1

21M2
22q2

2M1M2
6AS M1

21M2
22q2

2M1M2
D 2

21G ,

~24!

where the1 (2) sign in Eq.~24! corresponds to the daugh
ter meson recoiling in the positive~negative! z direction rela-
tive to the parent meson. At zero recoil (q25qmax

2 ) and maxi-
mum recoil (q250), a6 are given by

a1~qmax
2 !5a2~qmax

2 !5
M2

M1
,

a1~0!51, a2~0!5S M2

M1
D 2

. ~25!

The form factors are of course independent of the recoil
rections (a6) if the nonvalence contributions are added
the valence ones. As one can see from Eqs.~21! and ~22!,
however, one should be careful in settingq'50 to get the
results in this frame. One cannot simply setq'50 from the
start, but may set it to zero only after the form factors a
extracted.

While the form factorg(q2) in the q1.0 frame can be
obtained directly from Eq.~21!, the form factorf (q2) can be
obtained only aftera6(q2) are calculated.

To illustrate this, we define

^JA
1&h51ua5a6

[
P1

1qL

A2
I A

1~a6! ~26!

and obtain, from Eq.~22!,

a1~q2!5
a1~12a2!I A

1~a1!2a2~12a1!I A
1~a2!

2~a12a2!
,

a2~q2!52
a1~11a2!I A

1~a1!2a2~11a1!I A
1~a2!

2~a12a2!
,

~27!

and

f ~q2!5
M2

aP1
1

^JA
1&h502

1

2 S M1
22

M2
2

a2 D @~11a!a1~q2!

1~12a!a2~q2!#. ~28!

B. Valence contribution to ŠJVÀA
¿

‹

h

In the valence region 0,k1,P2
1 , the pole k25kon

2

5(m21k'
2 2 i«)/k1 ~i.e., the spectator quark! is located in

the lower half of the complexk2 plane. Thus, the Cauch
integration formula for thek2 integral in Eq.~20! gives
7-5
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BAKKER, CHOI, AND JI PHYSICAL REVIEW D 67, 113007 ~2003!
^JV2A
1 &val

h 5
g1g2L1

2L2
2

2~2p!3 E
0

a dx

x~12x!2~12x8!2E d2k'

Son V2A
1(h)

~M1
22M0

2!~M1
22ML1

2 !~M2
22M08

2!~M2
22ML2

82 !
, ~29!

where

M0
25

k'
2 1m1

2

12x
1

k'
2 1m2

x
, M08

25
k8'

2 1m2
2

12x8
1

k8'
2 1m2

x8
, ~30!

andML1

2 5M0
2(m1→L1), ML2

825M08
2(m2→L2) with k8'5k'1x8q' . Note that there is no instantaneous contribution in

valence region. From Eqs.~16! and ~21!, we obtain the valence contribution tog(q2) as follows:

g~q2!val52
g1g2L1

2L2
2

a~2p!3 E
0

a dx

x~12x!2~12x8!2E d2k'

1

~M1
22M0

2!~M1
22ML1

2 !~M2
22M08

2!~M2
22ML2

82 !

3H AP1
k'•q'

q'
2 @~m2m2!~12x!1~m12m!~a2x!1~m12m2!x#J . ~31!

While Eq. ~31! accounts only for the valence contribution in theq1.0 frame, it is the exact solution in theq150 ~i.e., a
51) frame due to the absence of the zero-mode contribution. Here, we should note the discrepancy between Ref.@10# and
Refs. @14,15# for the calculation of theg(q2) form factor. For the simple vector meson vertex ofGm5gm, our result is the
same as Ref.@10# but different from Refs.@14,15#. The authors of Refs.@14,15# claimed to compute the ‘‘1’’ component of the
vector current@see for instance Eq.~2.75! in @15##. However, they indeed used the ‘‘2 ’’ component of the current instead o
the ‘‘1’’ one. In their computation they used the coefficient ofe12xy which corresponds tog2 for the electroweak curren
vertex rather than the coefficient ofe21xy ~or equivalentlye12xy) that corresponds to the plus current. This difference
choosing the component of the current caused the discrepancy between the results of Ref.@10# and Refs.@14,15#. It is well
known @18# that the minus current contains zero-mode contributions.

In the q150 frame, the valence contribution toa1(q2) is the exact solution, again due to the absence of the zero-m
contribution. The result is obtained from Eqs.~16! and ~22! as

a1~q2!uq15052
g1g2L1

2L2
2

~2p!3 E
0

1 dx

x~12x!4E d2k'

1

~M1
22M0

2!~M1
22ML1

2 !~M2
22M08

2!~M2
22ML2

82 !

3H ~122x!AP1
k'•q'

q'
2 @~122x!m12m222~12x!m#J . ~32!
I B

s
to
s

tri

th

the

n

As we have shown in the present subsection, Sec. II
the two form factorsg(q2) anda1(q2) can be computed in
the q150 frame. The form factorf (q2) can also be com-
puted in the same frame, as we discussed in the last sub
tion, Sec. III A. The lack of a zero-mode contribution
f (q2) is discussed in Secs. III D and III E. Before we discu
this point, we first complete the presentation of the ma
element, i.e.,

^JV2A
1 &h5^JV2A

1 &val
h 1^JV2A

1 &nv
h , ~33!

by computing the nonvalence contribution^JV2A
1 &nv

h in the
next subsection, Sec. III C, for an arbitraryq1 ~or a) value.
The nonvalence contribution is necessary to compute
form factors in the purely longitudinalq1.0 frame. It is
confirmed in our numerical results~Sec. IV! that the values
of the calculated form factors in theq150 frame are iden-
tical to those in the purely longitudinalq1.0 frame, as they
11300
,

ec-

s
x

e

should be when the nonvalence contribution is added to
valence one. In the purely longitudinalq1.0 frame, we
shall use Eqs.~27! and ~28! to obtain the form factors
a6(q2) and f (q2), while the form factorg(q2) can be ob-
tained directly from Eq.~21!.

C. Nonvalence contribution to ŠJVÀA
¿

‹

h

In the nonvalence regionP2
1,k1,P1

1 , the poles are at
k25km1

2 [P1
21@m1

21(k'2P1')22 i«#/(k12P1
1) ~from

the struck quark propagator! and k25kL1

2 [P1
21@L1

21(k'

2P1')22 i«#/(k12P1
1) ~from the smeared quark-photo

vertex!, and are located in the upper half of the complexk2

plane.
When we do the Cauchy integration overk2 to obtain the

LF time-ordered diagrams, we use Eq.~7! to avoid the com-
plexity of treating doublek2 poles and obtain
7-6



1 h N 1 dx
2

Son
1(h)1Sinst

1(h)~k25kL1

2 ! Son
1(h)1Sinst

1(h)~k25kL1

2 !
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^JV2A&nv5
2~2p!3Ea xx9~x2a!

E d k'H
~M1

22ML1

2 !~q22ML1L2

2 !
2

~M1
22ML1

2 !~q22ML1m2

2 !

1
Son

1(h)1Sinst
1(h)~k25km1

2 !

~M1
22M0

2!~q22Mm1m2

2 !
2

Son
1(h)1Sinst

1(h)~k25km1

2 !

~M1
22M0

2!~q22Mm1L2

2 !J , ~34!
se
by

by

-

whereML1

2 is defined just below Eq.~30! and

ML1L2

2 5
k9'

2 1L1
2

x9
1

k9'
2 1L2

2

12x9
,

ML1m2

2 5
k9'

2 1L1
2

x9
1

k9'
2 1m2

2

12x9
,

Mm1m2

2 5
k9'

2 1m1
2

x9
1

k9'
2 1m2

2

12x9
,

Mm1L2

2 5
k9'

2 1m1
2

x9
1

k9'
2 1L2

2

12x9
, ~35!

with the variables defined by

x95
12x

12a
, k9'5k'1x9q' . ~36!
e

rig

ly
le

11300
Note that the instantaneous contributionSinst
1(h)(k2) in Eq.

~34! exists only for the longitudinal polarization vector ca
(h50). The total current matrix element is then given
Eq. ~33!.

D. Is the form factor f „q2
… immune to the zero mode in the

q¿Ä0 frame?

Using the plus component of the axial current given
Eq. ~22!, the form factorf (q2) is obtained from the mixture
of the longitudinal polarization vector~i.e., ^JA

1&h50) and the
transverse one~i.e., ^JA

1&h51).
Especially, in theq150 frame~i.e., thea→1 limit!, the

form factor f (q2) is given by

f ~q2!52~M1
22M2

21q'
2 !a1~q2!1

M2

P1
1

^JA
1&h50, ~37!

wherea1(q2) is given by Eq.~32! and the valence contri
bution to ^JA

1&h50 in the q150 frame is given by
^JA
1&val

h505
2P1

1g1g2L1L2

~2p!3M2
E

0

1 dx

x~12x!4E d2k'

1

~M1
22M0

2!~M1
22ML1

2 !~M2
22M08

2!~M2
22ML2

82 !

3HApF ~12x!M2
21

m2m

x
1xq'

2 G1k'
2 S m11

m2

x
2mD1k'•q'@2x~m12m!1m21m#J . ~38!
s in

rs
The zero-mode contribution is obtained from thea→1 limit
of ^JA

1&nv
h in Eq. ~34!. As the only possible source for th

zero mode is the factork22kon
2 appearing in Eq.~14!, only

the instantaneous parts of the trace terms could be the o
of a zero-mode contribution. SinceSinst A

1(h51)50, the form
factor a1(q2) is immune to the zero mode. Thus, we on
need to check the zero-mode contribution to the matrix e
ment of ^JA

1&h50 using Eq.~34!.
The zero-mode contribution~if it exists! to ^JA

1&h50 in
Eq. ~34! is proportional to

I A
zm; lim

a→1
E

a

1 dxd2k'

xx9~x2a!

Sinst
1(h50)~k25kL1

2 !

~M1
22ML1

2 !~q22ML1L2

2 !
1•••,

~39!
in

-

where (•••) represents the other three instantaneous term
Eq. ~34! andSinst

1(h50)(k2) is given by Eq.~17!.
Showing only the longitudinal momentum fraction facto

relevant to the zero mode, one can easily find that Eq.~39!
becomes

I A
zm; lim

a→1
E

a

1

dx
~12x!

~12a! S 1

xD @•••#

5 lim
a→1

E
0

1

dz
~12a!~12z!

a1~12a!z
@•••#,

~40!

where the variable changex5a1(12a)z was made and
the terms in@•••# are regular in thea→1 limit. Thus, I A

zm
7-7
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vanishes in thea→1 limit. Note that the factor 1/x in Eq.
~40! comes fromSinst

1(h50) and (12x)/(12a) from the en-
ergy denominator combined with the prefactor in Eq.~39!.

Therefore, we conclude that the form factorf (q2) is im-
mune to the zero mode contrary to the discussion made
Jaus@4,5#, where a zero-mode contamination in the for
factor f (q2) was claimed~seeNote addedat the end of Sec
V!. As we discussed in Sec. I, our manifestly covariant f
mulation should be distinguished from the formulation
volving a lightlike four-vectorv(v250). This is one of the
main observations in our present work.

For readers who are interested in checking our numer
results for the form factors in theq150 frame, we present in
Appendix C the exact LF valence expressions~equivalent to
the covariant result! for the form factor f (q2) as well as
g(q2) anda1(q2), which are obtained by the Feynman p
rametrization in theq150 frame.

In the following subsection, Sec. III E, we check if th
absence of the zero mode inf (q2) is still valid in the case of
the vector meson vertex used frequently in the light-fro
quark model~LFQM! calculations.

E. Vector meson vertex in the LFQM

A vector meson vertex frequently used in LFQM calcu
tions @4,5,10,11,15,19# is given by

Gm5gm2
~p22k!m

M081m21m
. ~41!

This vertex is denoted byGLFQM
m in the remainder of this

paper. We check in this subsection whether substitution
this form of Gm in Eq. ~5! instead of the simple vertexGm

5gm would affect our finding in the previous subsectio
i.e., the absence of a zero mode inf (q2).

Denoting the trace for the second term in Eq.~41! by Th
1

@seeSh
1 in Eq. ~12! for the first term#, we obtain

Th
15TV

1(h)2TA
1(h)

524
~p22k!•e* ~h!

M081m21m
@ i e1mns~p1on!m~p2on!n~kon!s

1~p2on•kon2m2m!p1
11~p1on•kon1m1m!p2

1

2~p1on•p2on1m1m2!k11~k22kon
2 !p1on

1 p2on
1 #

~42!

for the plus current matrix element. Note that the first te
~i.e., the term includinge1mns) in Eq. ~42! corresponds to
the vector current and the rest to the axial-vector curr
contribution. We use Eq.~11! to obtain the last term, (k2

2kon
2 )p1on

1 p2on
1 , which vanishes in the valence diagram. W

do not separate the on-shell propagating part from the ins
taneous one inTh

1 as we did inSh
1 due to the complication o

the form arising from the (p22k) term in Eq.~42!.
The total trace (T h

1)LFQM for the vertexGLFQM
1 is then

given by
11300
by

-

al

t

-

of

,

t

n-

~T h
1!LFQM5Sh

12Th
1 . ~43!

The complete expressions for the form factors with the v
tex GLFQM

m are presented in Appendix D.
Because the only suspected term for the zero-mode c

tribution isTA
1(h50) in Eq. ~42!, we shall discuss whether thi

term gives a nonvanishing zero-mode contribution to
weak form factorf (q2) in the q150 limit.

To investigate the zero-mode contribution fromTA
1(h50) ,

we use the same argument discussed in the previous su
tion, but replacing Sinst

1(h50)(k25kL1

2 or km1

2 ) with

TA
1(h50)(k25kL1

2 or km1

2 )[@TA
1(h50)#zm. The explicit form

of @TA
1(h50)#zm is given by Eq.~D7! in Appendix D.

Showing again only the longitudinal momentum fractio
factors relevant to the zero mode from Eq.~D7! in Appendix
D, we find the nonvanishing term in the limit ofa→1 ~or
equivalentlyx→1) as

@TA
1(h50)#zm;A 1

12x
@•••#, ~44!

where the factor@•••# corresponds to the regular part. Equ
tion ~44! holds both for thek25km1

2 and kL1

2 cases. How-

ever, it is very interesting to note that even thou
@TA

1(h50)#zm in Eq. ~44! itself shows singular behavior asx
→1, the net result of the zero-mode contribution is given

I A
zm; lim

a→1
E

a

1

dx
~12x!

~12a!
A 1

12x
@•••#

5 lim
a→1

E
0

1

dz
~12a!~12z!

A~12a!~12z!
@•••#, ~45!

where the factor@•••# again corresponds to the regular pa
Thus,I A

zm vanishes asa→1 and our conclusion for the van
ishing zero-mode contribution to the form factorf (q2) in the
q150 frame holds even for the vector meson LF vert
GLFQM

m , which is frequently used for the more realist
LFQM analysis.

IV. NUMERICAL RESULTS

In this section, we present the numerical results for
transition form factors and verify that all of the four form
factors @g(q2),a6(q2), f (q2)# obtained in the LF formula-
tion are in complete agreement with the manifestly covari
results presented in Sec. II. We also confirm that the num
cal results ofg(q2), a1(q2), and f (q2) obtained in theq1

50 frame are identical to those obtained in the purely lo
gitudinal q1.0 frame, as they should be. We do not aim
finding the best-fit parameters to describe the experime
data in this work. As we mentioned earlier, however, o
model calculations have a generic structure and the esse
findings from our calculations are expected to apply to
more realistic models, although the quantitative resu
would differ from each other depending on the details of
dynamics in each model.
7-8
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FIG. 1. Weak form factors for theB→r transition obtained from the purely longitudinal frame. The solid, dotted, and dot-dashed
represent the full~val1nv! solution, the valence contribution witha1 dependence, and the valence contribution witha2 dependence,
respectively. The full solution is exactly identical to the covariant one.
nd

fac-
m
Ap-
The used model parameters forB, D* , andr mesons are
MB55.28 GeV, MD* 52.01 GeV, M r50.771 GeV, mb
54.9 GeV, mc51.6 GeV, Lb510 GeV, Lc55 GeV, gB

55.20, andgD* 53.23, as well asmu5md50.43 GeV, Lu

51.5 GeV, andgr55.13.
These parameters are fixed from the normalization co
11300
i-

tions of the pseudoscalar and vector meson elastic form
tors atq250. The manifestly covariant results for these for
factors and also the decay constants are summarized in
pendix B. The decay constants@see Eqs.~B6! and~B13!# of
B and D* obtained from the above fixed parameters aref r

5274 MeV, f D* 5216 MeV andf B5150 MeV, which are
7-9
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BAKKER, CHOI, AND JI PHYSICAL REVIEW D 67, 113007 ~2003!
FIG. 2. Weak form factors for theB→D* transition obtained from the purely longitudinal frame. The solid, dotted, and dot-dashed
represent the full~val1nv! solution, the valence contribution witha1 dependence, and the valence contribution witha2 dependence,
respectively. The full solution is exactly the same as the covariant one.
q

d

f the

and
the
ns
within the range used in Refs.@4,15,20–22#.
In Fig. 1, we present the weak form factors defined in E

~2! for the B→r ~heavy-to-light! transition. Since the weak
form factorsV, A1, andA2 do not involvea2 , we computed
these form factors both in theq150 DYW frame and in the
purely longitudinalq1.0 frame. The full results depicte
11300
.
by the solid lines are in complete agreement regardless o
choice of frames, as they should be. In theq1.0 frame, we
can separate the full result into the valence contribution
the nonvalence contribution. To show this, we present
valence contribution computed in the two recoil directio
given by Eqs.~24! and ~25!, i.e., a1 ~dotted line! and a2
7-10
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~dot-dashed line!. Note thata1 and a2 are obtained using
both a1 and a2 solutions as shown in Eq.~27! and thus
A2(q2) in Fig. 1 does not have any distinction in the valen
contributions betweenA2val(a1) andA2val(a2). Of course,
the nonvalence contributions are obtained by subtracting
valence contributions from the full results. We have also c
firmed the agreement of the full results~solid lines! and the
manifestly covariant results presented in Sec. II.

In Fig. 2, we present the same for theB→D* ~heavy-to-
heavy! transition. The general features are similar to the c
of the heavy-to-light meson decay shown in Fig. 1. Howev
one can see that the nonvalence contributions are sig
cantly reduced in the heavy-to-heavy case. Experiment
two form-factor ratios forB→D* decays, defined by@25,26#

R1~q2!5F12
q2

~MB1MD* !2G V~q2!

A1~q2!
,

R2~q2!5F12
q2

~MB1MD* !2GA2~q2!

A1~q2!
, ~46!

have been measured by CLEO@26# as R1(qmax
2 )51.24

60.2660.12 andR2(qmax
2 )50.7260.1860.07. We obtain

R1(qmax
2 )51.05 andR2(qmax

2 )50.76, which are compatible
with the these data and other theoretical predictio
R1(qmax

2 )51.35 andR2(qmax
2 )50.79 in Ref.@25#, R1(qmax

2 )
51.27 and R2(qmax

2 )51.01 in Ref. @27#, and R1(qmax
2 )

51.24 andR2(qmax
2 )50.91 in Ref.@16#.

TABLE I. The calculatedB→r transition form factors atq2

50.

Ref. V A0 A1 A2

This work 0.45 0.69 0.39 0.30
LCSR @24# 0.6~2! – 0.5~1! 0.4~2!

LAT @23# 0.3520.05
10.06 0.3020.04

10.06 0.2720.04
10.05 0.2620.03

10.05

QM @11# 0.35 – 0.26 0.24
11300
e
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e
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The form factora2(q2) was also constrained by the fla
vor independence in Ref.@16# as

a1~qmax
2 !2a2~qmax

2 !52
1

AMD* MB

. ~47!

Our value,a12a2;20.36 atqmax
2 , is consistent with Eq.

~47! which yieldsa12a2;20.31. The form factora1(q2)
was further constrained by the flavor independence in
heavy quark limit@16# and is given by

a1~qmax
2 !52

1

A4MD* MB
F11

MD*
MB

S 12
MD*
mc

D G .
~48!

This yields the valuea1(qmax
2 );20.14, which is very close

to our valuea1;20.15.
Our results for theB→r andB→D* transition form fac-

tors atq250 are also compared with other theoretical resu
in Tables I and II, respectively.

In the following subsection, we present the frame dep
dence of the individual valence and nonvalence contributi
using the typical frames summarized in Appendix A.

Frame dependence

We show the frame dependence of the form factorsg and
f for B→D* . In Figs. 3 and 4 we plotted these form facto
in the Breit frame for three different orientations of the m
mentum transfer. The general trend we see is that the co

TABLE II. The calculatedB→D* transition form factors at
q250.

Ref. V A0 A1 A2

This work 0.89 1.07 0.87 0.62
QM @11# 0.81 – 0.69 0.64
QM @12# 0.76 0.69 0.66 0.62
FIG. 3. Breit frame g form factor for B
→D* .
7-11
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FIG. 4. Breit frame f form factor for B
→D* .
e
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o

-to

is
be-
th

e-
ani-

or
he
l
e.

ce-
bution to the form factor from the nonvalence diagram b
comes smaller as the angleu increases. Foru5p, note that
q150 at q250. Thus, the suppression of the nonvalen
contribution for larger angles, close tou5p, is natural es-
pecially in the region nearq250. We found little difference
between the results calculated in the Breit frame with
ones calculated in the target-rest frame, so we do not plot
latter ones.

We show the form factorsa6 in the Breit frame forB
→D* in Fig. 5. As explained before, we can only extra
these form factors if we combine the calculations for tw
values of the polar angleu, i.e., two values fora. Therefore,
we do not plot the results for different values ofu. In Fig. 5,
the used values of the polar angle areu5p/10 and 9p/10.

The results for the heavy-to-light decayB→r are given in
Figs. 6–8. The qualitative difference between the heavy
11300
-

e

e
he

t

-

heavy and the heavy-to-light decay mentioned before
clearly seen in these figures too. The nonvalence parts
come more prominent for the heavy-to-light case. In bo
cases the nonvalence contributions tog and f are suppressed
for increasing polar angleu.

V. CONCLUSION

In this work, we analyzed the transition form factors b
tween pseudoscalar and vector mesons using both the m
festly covariant calculation and the light-front calculation f
^JV2A

1 &. In LFD, we presented three results: one from t
DYW (q150) frame, the other from the purely longitudina
q1.0 frame, and finally results obtained in the Breit fram
In the DYW (q150) frame, the transition form factorsf, g,
anda1 are obtained by analytic continuation from the spa
FIG. 5. Breit framea6 form
factors forB→D* .
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FIG. 6. Breit frameg form fac-
tor for B→r.
s

tio
or
tly

a

u

on
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cay

e
the
like region. The form factora2 cannot be obtained in thi
frame unless other components of the current besides^JV2A

1 &
are calculated. In the purely longitudinalq1.0 frame, all
four form factors (f , g, anda6) are found from̂ JV2A

1 & but
the nonvalence contributions should be computed in addi
to the valence ones. We confirmed that all four form fact
obtained in LFD are identical to the result of the manifes
covariant calculation and the DYW results forf, g, anda1

are identical to those obtained in the purely longitudin
q1.0 frame.

In our analysis, we do not find any zero-mode contrib
11300
n
s

l

-

tion to the transition form factorf (q2) @or equivalently the
axial-vector form factorA1(q2)]. The absence of a zero
mode is not affected by the modification of the vector mes
vertex fromGm5gm to GLFQM

m .
For the numerical computation, we fixed the model p

rameters using the normalization constraints in the ela
form factors and the available experimental data of de
constants of the pseudoscalar~B! and vector (D* ,r) mesons.
Comparing the results of heavy-to-light (B→r) and heavy-
to-heavy (B→D* ) transition form factors, we find that th
nonvalence contributions are significantly reduced in
FIG. 7. Breit framef form fac-
tor for B→r.
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FIG. 8. Breit framea6 form
factors forB→r.
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heavy-to-heavy results. Our results for theB→D* ln l decay
process satisfy the constraints imposed by the flavor in
pendence on the heavy-to-heavy semileptonic decays@16#.

Note added. After the completion of this work, the autho
of Ref. @4# informed us in a private communication that h
completely agrees with our results presented in this work
to the identity Eq.~3.32! of Ref. @4#. This communication
confirmed that his results of the form factors in the casev
5(1,0,0,21) must be identical to those of our LFD calcul
tions.
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APPENDIX A: KINEMATICS

In this appendix we discuss in some detail the differ
reference systems we used. In our previous publication@1#,
we used the target rest frame~TRF!, the Breit frame~BRT!,
and the Drell-Yan-West~DYW! frame. In the present case
where the momentum transfer is time like, the TRF is s
straightforward to define, but the other frames are not. T
is why we give the detailed formulas here. We write t
momenta in the LFD form:P5(P1,Px ,Py ,P2) with P2

5P1P22PW'
2 .
11300
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1. Target-rest frame

The momentum of the initial pseudoscalar meson w
massM1 is

P15~M1,0,0,M1!. ~A1!

If M2 is the mass of the vector meson,ml
2 is the invariant

mass square of the lepton pair in the final state, andq is the
four-momentum transfer, the kinematical range ofq2 is

ml
2<q2<~M12M2!2. ~A2!

Four-momentum conservation allows us to determine
kinematical range of the three-momentum transfer.

We write, forq,

q5~q1,qW' ,q2! ~A3!

and write

qW'5Q sinun̂5Q~sinu cosf,sinu sinf!. ~A4!

We define the quantityMq
2 as

Mq
25M1

22M2
21q2 ~A5!

and find, for the square of the length of the three-moment
transfer,

Q25
Mq

424M1
2q2

4M1
2

. ~A6!

The complete expression forq is
7-14
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q5S Mq
212M1Q cosu

2M1
,Q sinun̂,

Mq
222M1Q cosu

2M1
D .

~A7!

The behavior of bothq1 anda is smooth as can be see
in Figs. 9 and 10.

2. Breit frame

The Breit frame is usually defined by the requirement t
there is no energy transfer. In the case of the elastic fo
factors this could be achieved easily. However, for a timel
momentumq the componentq0 is not allowed to vanish in
the physical region. One may define a Breit-like frame
either of the two following ways.

~i! Real momenta

P15P1q/2, P25P2q/2. ~A8!

FIG. 9. The quantitiesq1 ~top! anda5P2
1/P1

1 ~bottom! in the
TRF for u50 ~solid lines!, p/2 ~dashed lines!, andp ~dotted lines!,
respectively, plotted for q5Aq2 from 0 to (M12M2)2.
(Decay B→D* .)
11300
t
m
e

For q050 andPW 50 this choice of momenta corresponds
a particle with momentumqW /2 bouncing off a ‘‘brick wall’’
and changing its momentum to2qW /2. This process is only
possible if the particle with momentumP1 has the same
mass as the one with momentumP2.

Our generalization drops the conditionq050. Then dif-
ferent masses,M1ÞM2, are allowed. KeepingPW 50 simpli-
fies the formulas. One may relax the latter condition by
simple boost to a frame wherePW Þ0.

The values ofP0 and Q5uqW u that correspond to the on

shell conditionsP1
25M1

2 andP2
25M2

2 are given by

P05AM1
21M2

2

2
2

q2

4
,

Q5Aq422~M1
21M2

2!q21~M1
22M2

2!2

2~M1
21M2

2!2q2
. ~A9!

The LF momenta are easily obtained. As we rely onq2

.0 and real momenta, it is clear thatq1.0. We have

q15Aq21Q21Q cosu,

qW'5Q sinu n̂,

q25
Q2sin2u1q2

Aq21Q21Q cosu
. ~A10!

Clearly,q1 cannot vanish for realQ.

FIG. 10. The quantitya5P2
1/P1

1 in the TRF forq50 ~solid
line!, (M12M2)/2 ~long dashed line!, (M12M2)/A2 ~short dashed
line! and M12M2 ~dotted line!, respectively, plotted foru from 0
to p. ~DecayB→D* .)
7-15
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The behavior of bothq1 anda is smooth as can be see
in Figs. 11 and 12.

~ii ! Complexq
In order to avoid confusion we reserve the notation w

Q for the case of real momenta. In order to follow Ref.@1# as
close as possible we define

q5~q cosu,iq sinun̂,q cosu!. ~A11!

Next we determineP. Now we takePW 50, but we allow for
P0Þ0; otherwise, we shall not be able to satisfy the on-sh
conditions forP1 andP2. Then,P1

25M1
2 andP2

25M2
2 give

the equations

P11P25
M1

22M2
2

q cosu
,

FIG. 11. The quantitiesq1 ~upper! and a5P2
1/P1

1 ~lower! in
the Breit frame with real momenta foru50 ~solid lines!, p/2
~dashed lines!, and p ~dotted lines!, respectively, plotted forq2

from 0 to (M12M2)2. (Decay B→D* .)
11300
ll

P1P25
M1

21M2
2

2
2

q2

4
. ~A12!

In the kinematically allowed domain bothP11P2 and
P1P2 are positive, so both are separately positive. We fi
for them,

P15
M1

22M2
2

2q cosu
1

1

2
A~M1

22M2
2!2

q2cos2u
22~M1

21M2
2!1q2,

P25
M1

22M2
2

2q cosu
2

1

2
A~M1

22M2
2!2

q2cos2u
22~M1

21M2
2!1q2.

~A13!

For this unphysical kinematicsq150 is allowed. The lower
bound q250 leads to a divergent limit forP1, while P2

tends to 0. Their product is of course finite for all values ofq.
The behavior ofq1 is smooth~linear!, but a has a singu-

larity at u5p/2. This singularity is a branch point. For va
ues ofu between 0 andp/2, a increases to 1 for all values o
q. In the interval@p/2,p# a increases for allq from a value
of (4M2

22q2)/(4M1
22q2) to its value atu5p. This behav-

ior is illustrated in Figs. 13 and 14.

3. Drell-Yan-West frame

As the DYW frame is characterized byq150, we are
obliged to takeqW' purely imaginary to getq2.0. The solu-
tion of the on-shell conditions is particularly simple. O
final results are

FIG. 12. The quantitya5P2
1/P1

1 in the Breit frame forq50
~solid line!, (M12M2)/2 ~long dashed line!, (M12M2)/A2 ~dotted
line! andM12M2 ~dashed line!, respectively, plotted foru from 0
to p. (Decay B→D* .)
7-16
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q5S 0,iqn̂,
M1

22M2
21q2

P1
1 D ,

P15S P1
1 ,0W' ,

M1
2

P1
1D ,

P25S P1
1 ,2 iqn̂,

M2
22q2

P1
1 D . ~A14!

If we substitute for the arbitraryP1
1 the valueM1, we

obtain a quasi-TRF kinematics. Needless to say, this k
matics cannot be obtained from the formulas given before
the TRF.

FIG. 13. The quantitiesq1 ~upper! and a5P2
1/P1

1 ~lower! in
the Breit frame with complex momenta foru50 ~solid lines!, p/4
~long dashed lines!, p/2 ~short dashed lines!, 3p/4 ~dotted lines!,
and p ~dot dashed lines!, respectively, plotted forq2 from 0 to
(M12M2)2. (Decay B→D* .)
11300
e-
r

APPENDIX B: ELASTIC FORM FACTORS AND DECAY
CONSTANTS OF MESONS WITH UNEQUAL

QUARK MASSES

In this appendix, we summarize the manifestly covaria
formulas of elastic form factors and decay constants of ps
doscalar and vector mesons with the unequal quark ma
such asB andD* mesons.

1. Pseudoscalar meson electromagnetic form factor

The electromagnetic form factorFps(q
2) of a pseudo-

scalar meson is defined by the matrix element given by

^P8uJmuP&5~P8m1Pm!Fps~q2!, ~B1!

whereP and P85P1q are the four-momenta of initial and
final states, respectively. If the meson is made of a quark
an antiquark with mass~charge! values m1 (e1) and
m2 (e2), respectively,Fps(q

2) is given by

Fps~q2!5
gps

2 L1
4e1

8p2~L1
22m1

2!2E0

1

dxE
0

12x

dyF $423~x1y!%

3 ln
Cm2L1m1

Cm2m1L1

Cm2L1L1
Cm2m1m1

1$2~x1y!~x1y21!2M2

2~22x2y!xyq212~x1y21!m1m2

2~x1y!m1
2%C12G1~1↔2!, ~B2!

wheree11e2 must be identical to the charge of the meso

C125
1

Cm2L1L1

2
1

Cm2L1m1

2
1

Cm2m1L1

1
1

Cm2m1m1

~B3!

FIG. 14. The quantitya5P2
1/P1

1 in the Breit frame with com-
plex momenta forq50 ~solid line!, (M12M2)/2 ~long dashed
line!, (M12M2)/A2 ~short dashed line! andM12M2 ~dotted line!,
respectively, plotted foru from 0 to p. (Decay B→D* .)
7-17
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and

Cm2L1L1
5~x1y!~12x2y!M21xyq22~x1y!L1

2

2~12x2y!m2
2 ,

Cm2L1m1
5~x1y!~12x2y!M21xyq22~xL1

21ym1
2!

2~12x2y!m2
2 ,

Cm2m1L1
5~x1y!~12x2y!M21xyq22~xm1

21yL1
2!

2~12x2y!m2
2 ,

Cm2m1m1
5~x1y!~12x2y!M21xyq22~x1y!m1

2

2~12x2y!m2
2 . ~B4!

2. Pseudoscalar meson decay constant

The decay constantf ps of a pseudoscalar meson is defin
by the matrix element

^0uJV2A
m uP&5 iPm f ps. ~B5!

From this definition, we find

f ps5
gpsL1

2L2
2

4p2~L1
22m1

2!~L2
22m2

2!

3E
0

1

dx$xm11~12x!m2% ln
Cm1L2

CL1m2

CL1L2
Cm1m2

, ~B6!

where

Cm1m2
5x~12x!M22xm1

22~12x!m2
2 ,

Cm1L2
5x~12x!M22xm1

22~12x!L2
2 ,

CL1m2
5x~12x!M22xL1

22~12x!m2
2 ,

CL1L2
5x~12x!M22xL1

22~12x!L2
2 . ~B7!

3. Vector meson electromagnetic form factors

The electromagnetic form factors@F1(q2), F2(q2), and
F3(q2)] of a vector meson are defined by the matrix elem
between the initial state of helicityh and four-momentumP
and the final state ofh8 andP8:

^P8,h8uJmuP,h&52eh8
* eh~P81P!mF1~q2!

1eh
mq•eh8

* 2eh8
* mq•ehF2~q2!

1
~eh8

* •q!~eh•q!

2M2
~P81P!mF3~q2!,

~B8!
11300
t

whereeh (eh8
* ) is the polarization vector of the initial~final!

helicity h (h8) state. If the meson is made of a quark and
antiquark with mass~charge! valuesm1 (e1) and m2 (e2),
respectively,Fi(q

2) ( i 51,2,3) are given by

F1~q2!5
gv

2L1
4e1

8p2~L1
22m1

2!2E0

1

dxE
0

12x

dyF ~22x2y!

3 ln
Cm2L1m1

Cm2m1L1

Cm2L1L1
Cm2m1m1

1$2~x1y!~x1y21!2M2

2~22x2y!xyq212~x1y21!m1m2

2~x1y!m1
2%C12G1~1↔2!, ~B9!

F2~q2!52
gv

2L1
4e1

8p2~L1
22m1

2!2E0

1

dxE
0

12x

dyF ~21x1y!

3 ln
Cm2L1m1

Cm2m1L1

Cm2L1L1
Cm2m1m1

1$~x1y!~x1y11!

3~x1y21!M22xy~x1y!q22~x1y!m1
2

22m1m2%C12G1~1↔2!, ~B10!

F3~q2!5
gv

2L1
4e1

8p2~L1
22m1

2!2E0

1

dxE
0

12x

dy8xy~x1y21!

3M2C121~1↔2!, ~B11!

wheree11e2 must be equal to the charge of the meson a
C12 is identical to the one given in Eq.~B3!.

4. Vector meson decay constant

The decay constantf v of a vector meson is defined by th
matrix element

^0uJV2A
m uP,h&5 iM f ve

m~h!, ~B12!

wheree(h) is the polarization vector of the helicityh state.
From this definition, we find

f v5
gvL1

2L2
2

4p2M ~L1
22m1

2!~L2
22m2

2!
E

0

1

dxF $m1m21x~12x!M2%

3 ln
Cm1L2

CL1m2

CL1L2
Cm1m2

2CL1L2
ln~2CL1L2

!1Cm1L2

3 ln~2Cm1L2
!1CL1m2

ln~2CL1m2
!2Cm1m2

3 ln~2Cm1m2
!G , ~B13!

whereCm1m2
, Cm1L2

, CL1m2
, CL1L2

are given by Eq.~B7!.
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APPENDIX C: ANALYTIC EXPRESSIONS OF g„q2
…, a¿„q

2
…, AND f „q2

… IN THE q¿Ä0 FRAME FOR G¿Äg¿

For the numerical analysis of the weak form factors in theq150 frame, we use Feynman parametrization to integrate
the transverse momentum,k' .

Similar to the covariant analysis, we first separate the energy denominators as follows:

1

~M1
22M0

2!~M1
22ML1

2 !~M2
22M08

2!~M2
22ML2

82 !
5

~12x!2

~m1
22L1

2!~m2
22L2

2!
S 1

N1
2

1

N1L
D S 1

N2
2

1

N2L
D , ~C1!

whereN15M1
22M0

2, N1L5M1
22ML1

2 , N25M2
22M08

2, andN2L5M2
22ML2

82 .

Now using Feynman parametrization

1

ab
5E

0

1 dx

@ax1b~12x!#2
~C2!

we obtain, from Eqs.~31!, ~32!, and~37!,

g~q2!5
N

8p2E0

1

xdxE
0

1

dy@Ap2x~12y!~m12m2!#H 1

a1y1a2~12y!1y~12y!x2q2
2~a2→a2L!2~a1→a1L!

1~a1→a1L ,a2→a2L!J , ~C3!

a1~q2!5
N

8p2E0

1

xdxE
0

1

dy$~122x!Ap2x~12y!@~122x!m12m222~12x!m#%H 1

a1y1a2~12y!1y~12y!x2q2

2~a2→a2L!2~a1→a1L!1~a1→a1L ,a2→a2L!J , ~C4!

f ~q2!5~M1
22M2

22q2!a1~q2!2
N

4p2E0

1

dxE
0

1

dyH C1F 1

a1y1a2~12y!1y~12y!x2q2
2~a2→a2L!2~a1→a1L!

1~a1→a1L ,a2→a2L!G2C2lnS a12La1L2

a12a1L2L
D J , ~C5!
the

en
where

a15x~12x!M1
22xm1

22~12x!m2,

a25x~12x!M2
22xm2

22~12x!m2,

a1L5a1~m1→L1!,a2L5a2~m2→L2!, ~C6!

C15Ap@x~12x!M2
21m2m2x2q2#2x2~12y!2~xm1

1m22xm!q21x2~12y!@2x~m12m!1m21m#q2,

C25x~m12m!1m2 , ~C7!

and

a125a1y1a2~12y!1y~12y!x2q2,
11300
a12L5a1y1a2L~12y!1y~12y!x2q2,

a1L25a1Ly1a2~12y!1y~12y!x2q2,

a1L2L5a1Ly1a2L~12y!1y~12y!x2q2. ~C8!

APPENDIX D: FORM FACTORS g„q2
…, a¿„q

2
…, AND f „q2

…

IN THE q¿Ä0 FRAME FOR GLFQM
¿

In this appendix, we give the exact LF expressions for
form factorsg(q2), a1(q2), and f (q2) in the q150 frame
for the more realistic LF vector meson vertex function giv
by Eq. ~41!. We shall write gLFQM(q2), a1

LFQM(q2), and
f LFQM(q2) for the vertexGLFQM

1 to distinguish them from
those obtained forG15g1.
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To obtain the form factorg(q2), we first calculate the traceTV
1(h51) for the vector current with transverse polarizatio

which is given by

TV
1(h51)524i

~p22k!•e* ~h51!

M081m21m
e1mns~p1on!m~p2on!n~kon!s

524A2P1
1e12xy

k'
2 qL2~k'•q'!kL

M081m21m
. ~D1!

Note thatTV
1(h51) is independent ofk2 @which is due toe1(h51)50] and thus free from the zero-mode contribution as

the case ofG15g1.
Modifying Son V

1(h51)→Son V
1(h51)2TV

1(h51) in Eq. ~21! for G1 given by Eq.~41!, we obtain the form factorgLFQM(q2) in the
q150 frame as

gLFQM~q2!52
g1g2L1

2L2
2

~2p!3 E
0

1 dx

x~12x!4E d2k'

1

~M1
22M0

2!~M1
22ML1

2 !~M2
22M08

2!~M2
22ML2

82 !

3H AP1
k'•q'

q'
2 ~m12m2!1

2

M081m21m
F k'

2 2
~k'•q'!2

q'
2 G J . ~D2!

We note that our result forgLFQM(q2) in Eq. ~D2! is equivalent to that obtained by Jaus@4# @see, for example, Eq.~4.13! in Ref.
@4## and free from the zero-mode contribution.

Now, the traceTA
1(h) for the axial-vector current is given by

TA
1(h)54

~p22k!•e* ~h!

M081m21m
@~p2on•kon2m2m!p1

11~p1on•kon1m1m!p2
12~p1on•p2on1m1m2!k11~k22kon

2 !p1
1p2

1#.

~D3!

The form factora1
LFQM(q2) in the q150 frame is obtained from the axial-vector current with transverse polarizationh

51) @see thea→1 limit in Eq. ~22!#. Explicitly, the trace is given by

TA
1(h51)52

4A2P1
1

x~M081m21m!
~xqL1kL!$k'•k8'1@~12x!m2xm2#Ap1x~12x!2~k22kon

2 !P1
1%. ~D4!

Even though (p22k)•e* (h51) is independent ofk2, there is a possibility to get a zero-mode contribution from the last te
i.e., the term proportional to (k22kon

2 ), in Eq. ~D3! or ~D4!. While the valence part,@TA
1(h51)#val , is obtained fork2

5kon
2 , the zero-mode part,@TA

1(h51)#zm, is obtained fork25km1

2 or k25kL1

2 . However, counting only the longitudina

momentum fraction terms, one can easily find from Eq.~D4! that the zero-mode part ofTA
1(h51) vanishes as@TA

1(h51)#zm

;(12x)3/2 in thea→1 ~or x→1) limit and the valence part as;A12x in thex→1 limit. Therefore, following the argumen
given in Sec. III D, there is no zero-mode contribution to the form factora1

LFQM(q2). Modifying Son A
1(h51)→Son A

1(h51)

2@TA
1(h51)#val in Eq. ~22! and taking the limit ofa→1, we obtain

a1
LFQM~q2!52

g1g2L1
2L2

2

~2p!3 E
0

1 dx

x~12x!4E d2k'

1

~M1
22M0

2!~M1
22ML1

2 !~M2
22M08

2!~M2
22ML2

82 !
H ~122x!AP

1
k'•q'

q'
2 @~122x!m12m222~12x!m#2

2~xq'
2 1k'•q'!

xq'
2 ~M081m21m!

$k'•k8'1@~12x!m2xm2#AP%J , ~D5!

which is again equivalent to that obtained by Jaus@4# @see, for example, his Eq.~4.14!#.
Finally, we need to compute the trace in Eq.~D3! with the longitudinal polarization vector (h50) to obtainf LFQM(q2).

Here we again separate the trace term,TA
1(h50) , into the valence part,@TA

1(h50)#val , with k25kon
2 and the possible zero-mod

part, @TA
1(h50)#zm, with k25km1

2 andk25kL1

2 . Explicitly, the valence part is given by
113007-20
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@TA
1(h50)#val52

4P1
1

xM2~M081m21m!
$xM2

21~12x!M08
2%$k'•k8'1@~12x!m2xm2#AP%, ~D6!

while the possible zero-mode part fork25kL1

2 is given by

@TA
1(h50)#zm5

4P1
1

xM2~M081m21m!
$xM̃L1

2 1xM2
22M1

22q'
2 %$k'•k8'1@~12x!m2xm2#AP1x~12x!2~M1

22ML1

2 !%,

~D7!

whereM̃L1

2 is defined as

M̃L1

2 5
L1

21@k'2~12x!q'#2

x~12x!
. ~D8!

The zero-mode part fork25km1

2 can be easily obtained by changingL1→m1 in Eq. ~D7!.

Counting the longitudinal momentum fraction terms in Eq.~D7!, one can easily find the singular behavior given by E
~44!, i.e.

@TA
1(h50)#zm;A 1

12x
~D9!

asx→1. However, as we showed in Sec. III E@see Eq.~45!#, there is no zero-mode contribution tof LFQM(q2) even though the
trace term itself shows singular behavior asx→1.

Therefore, the form factorf LFQM(q2) in theq150 frame can be obtained from the valence contribution only@see Eq.~21!#
and it is given by

f LFQM~q2!5
M2

P1
1

^JA
1&LFQM

h50 2~M1
22M2

21q'
2 !a1

LFQM~q2!, ~D10!

where

^JA
1&LFQM

h50 5
g1g2L1

2L2
2

~2p!3 E
0

1 dx

x~12x!4E d2k'

Son A
1(h50)2@TA

1(h50)#val

~M1
22M0

2!~M1
22ML1

2 !~M2
22M08

2!~M2
22ML2

82 !
. ~D11!

We note the difference from the conclusion drawn by Jaus@4,5#, where the author claimed that the form factorf (q2) receives
a zero-mode contribution~seeNote addedat the end of Sec. V!.
,

ys.
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