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Transition form factors between pseudoscalar and vector mesons in light-front dynamics
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We study the transition form factors between pseudoscalar and vector mesons using a covariant fermion field
theory model in 3-1 dimensions. Performing the light-front calculation in tiie=0 frame in parallel with
the manifestly covariant calculation, we note that the suspected nonvanishing zero-mode contribution to the
light-front currentd” does not exist in our analysis of transition form factors. We also perform the light-front
calculation in a purely longitudinal* >0 frame and confirm that the form factors obtained directly from the
timelike region are identical to the ones obtained by the analytic continuation from the spacelike region. Our
results for theB—D* 1, decay process satisfy the constraints on the heavy-to-heavy semileptonic decays
imposed by the flavor independence in the heavy quark limit.
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[. INTRODUCTION basic structure of our calculation is common to any other
model calculations including the more phenomenological

In a recent analysis of spin-1 form factors in light-front and realistic ones. Thus., we may expect the essential findings
dynamics(LFD), we [1] have shown that the zero-mofg] ~ from our model calculation to be supported further by others.

complication can exist even in the matrix elements of thel {OWever, ‘t.dO?S not preclude th‘? possibili.ty that the zero-
plus current)*. Using a simple but exactly solvable model mode contribution may behave differently in different pro-

of the spin-1 system with the polarization vectors obtained ©SS€S: Thus, It appears important to analyze a different pro-

. L cess involving a spin-1 system within the same model.
from the light-front gauge ¢,-.;=0), we found that the In this work, we analyze the transition form factors be-

zero-mode contribution does not vanish in the helicity zeroy,een pseudoscalar and vector mesph§,10-15. These
to-zero amplitude. Neglecting the zero-mode contribution reqrm factors can be measured in semileptonic meson decay
sults in the violation of angular conditiori8]. A more ex-  processes such &-—D* v, andB— pl v, produced fronB
tensive list of previous papers concerning the discussion ofactories [9]. The physical region of momentum transfer
the role played by the zero modes as a source of manyquaredg?, for these processéer form factors is given by
troubles may be consulted in the references cited in Refgim?<q?<(M;—M,)?, whereM, andM, are the masses of
[1-5]. There have been several recif}és-8 in spin-1 sys-  the initial and final state mesons, respectively. This belongs
tems to extract the invariant form factors from the matrixto the timelike region, while the elastic spin-1 meson form
elements of the currents. Without taking into account thefactors(i.e., Gg,Gy, ,Go) of for example the deuteron in the
zero-mode contribution, however, these different recipes delectron deuteron elastic scattering experiment can only be
not generate identical results in the physical form factorsmeasured in the spacelike regiaf=<0. Not long ago, the
even ifJ* is used. same transition form factors were analyzed by Jdyisising
This indicates that the off-diagonal elements in the Fock-a lightlike four-vector calleds (w?=0) and the admixture
state expansion of the current matrix cannot be neglected faf a spuriousw-dependent contribution was reported in the
the helicity zero-to-zero amplitude even in reference framesial-vector form factorA;(g?) in the conventional light-
where the plus component of the momentum transfér,  front formulas(seeNote addedat the end of Sec. W The
vanishes. Since the factorization theorem in perturbativéemoval of thew dependence in the physical form factor
QCD (PQCD relies essentially on the helicity zero-to-zero amounts to the inclusion of the zero-mode contribution that
matrix element diagonal in the Fock-state expansion, theve present in this work. However, the covariant formulation
zero-mode contribution would complicate in principle the presented in our work should be intrinsically distinguished
PQCD analysis of the spin{and higher spipnsystems. For- from the formulation involvingw, since our formulation in-
tunately, our numerical computation indicates that the zerovolves neitherw nor any unphysical form factor.
mode contribution diminishes significantly in the high mo-  This paper is organized as follows. In Sec. I, we present
mentum transfer region where the PQCD analysis ighe manifestly covariant calculation of the transition form
applicable. Although the quantitative results that we foundfactors between pseudoscalar and vector mesons using an
from our model calculation may differ in other models de-exactly solvable Bethe-Salpeter(BS) model of
pending on the details of the dynamics in each model, th¢3+ 1)-dimensional fermion field theory. In Sec. lll, we ap-
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ply the light-front dynamics to calculate the same physical The solvable model, based on the covariant BS model of
form factors. We separate the full amplitudes into the valencé3+ 1)-dimensional fermion field theory, enables us to de-
and nonvalence contributions and compare the results in théve the transition form factors between pseudoscalar and
g*=0 frame and the purely longitudina®™ >0 frame. In vector mesons explicitly. The matrix element
the g*=0 frame, we check whether the suspected zero¢P,;1h|J{_,|P;;00) in this model is given by

mode contribution exists or not within our analysis. In Sec.

IV, we present the numerical results for the transition form (P5;1h|J{_A|P1;00)

factors, making taxonomical decompositions of the full re-

sults into valence and nonvalence contributions. Conclusions ) i d*k S*€; (Py,h)

follow in Sec. V. In Appendix A, we summarize the kinemat- =19192A1A; :D.D-DD.D.°

. . (277) AHmEmEm,~A

ics of the typical reference frames such as Drell-Yan-West rot 2 e
(DWY), Breit (BRT), and target-rest fram@RF) in the tran- (3

sition form factor analysis. In Appendix B, we present the

manifestly covariant results of the electromagnetic form facwhereg, andg, are the normalization factors which can be
tors and decay constants of the pseudoscalar and vector nféxed by requiring both charge form factors of pseudoscalar
sons that are made of two unequal-mass constituents. Theggd vector mesons to be unity at zero momentum transfer,
results are used in fixing the model parameters of our nutespectively. To regularize the covariant fermion triangle
merical analysis. In Appendixes C and D, we present thdoop in 3+1 dimensions, we replace the point gauge-boson
more detailed formulas used in the discussion of Secs. Il Dvertex y*(1—ys) by a non-local(smeareyl gauge-boson

and Ill E, respectively. vertex (A7/D ) y*(1—¥s)A3/D,,, whereD =(P;—k)?
—Af+ie andD,,=(P,—k)>~A3+ie, and thus the factor
Il. MANIFESTLY COVARIANT COMPUTATION (A1A,)? appears in the normalization factok; and A,

play the role of momentum cutoffs similar to the Pauli-
anda_ between a pseudoscalar meson with four—momentun\éﬁIIarS rggularization[lB]. The re?‘ of the denpminator_s in
P, and a vector meson with four-momenta and helicity =0 (3 €- Dm,DmDm,, are coming from the intermediate

h are defined16] by the matrix elements of the electroweak férmion propagators in the triangle loop diagram and are
currentd¥_,=\V*—A* from the initial statg/P,;00) to the ~ 9iven by
final state|P,;1h):

The Lorentz-invariant transition form factogs f, a, ,

D, =(P1—k)?—mi+ig,
<P2§1h|JC—A|P1i00>
D, =k’ —m?+ie,
=ig(g®)e " *Pes P ap— (g% e ¥ m

—a,(g3)(e* - P)PA—a_(q?)(e* - P)g*, (1) Din,=(Po=k)? = mp+is. @

where the momentum transfeg” is given by g*=P¥ Furthermore, the trace term in E@®), S**, is given by

—-P4, P=P;+P,, and the polarization vectore*

=€*(P,,h) of the final state vector meson satisfies the Lor- S*"=Tr[(p,+m,) y*(1— y5)(Pr+mMy) ys(—Kk+m)['"],

entz condition e* (P,,h)-P,=0. While the form factor (5
g(g?) is associated with the vector curréfit, the rest of the

form factorsf(q?), a.(g?), anda_(qg?) are coming from Wherem;, m, andm, are the masses of the constituents
the axial-vector currerd”. Thus, these transition form fac- carrying the intermediate four-momenta=P;—k, k, and
tors defined in Eq(1) are often given by the following con- P2=P2>—k, respectively. For the vector meson vertex, we

vention[17]: shall usel*= y* in this section. While some modification of
this simple vertex will be considered in Sec. Il E, our essen-
V(g?)=(M;+M,)g(g?), tial findings are not altered by that modification.

Using the familiar trace theorems, we find, 81",
f(a®) ,

A(g?)= Mo+ M, §*=4ie""*F[Kk,P15(m—my) +K,P,s(m;—m)
+ Plapzﬁm] +4gﬂy[m1k (k_ P2) + mzk' (k_ Pl)

Ax(GgD)=—(M;+My)a,(q?),
2(g%) (M, 2a (g9 —m(k—Py) - (k—P,) —mym,m]+4[ 2k*k*(m—m,)

1 o v _ y3 v _ LV M
Ao(0)= - L@ +(Mi-MDa. (%) + oa ()], FHEPLT(mg = m) kIR (my = m) =Py A(mg + m)

@ HKP(My—m) + (PP + PPml,  (6)

whereM; and M, are the initial and final meson masses, where one should note that thg"” terms will drop out once
respectively. the polarization vectoe’ (P,,h) is multiplied into S**. We

113007-2



TRANSITION FORM FACTORS BETWEEN . .. PHYSICAL REVIEW B7, 113007 (2003

have checked our result with the one obtained by Jaese [1] does not yield a zero-mode contribution to the vector
Eq. (4.10 of Ref.[4]] and found full agreement between the meson decay constant while the asymmetric smearing of the
two results. hadronic vertex leads to the contamination from the zero
We then decompose the product of five denominatorsnode[4].
given in Eq.(3) into a sum of terms with three denominators  Once we reduce the five propagators into a sum of terms
only: i.e., containing three propagators using Eg), we use the Feyn-
man parametrization for the three propagators, e.g.,

1 - 1 1
D1,Dm,DnDn,Ds, ~ (AZ—mi)(A3—m3) D S N
1 1 1 1 My = M= My
55l 5] @
DA Dml> DA2 sz) 2

. (8
Our treatment of the non-local smeared gauge-boson vertex [Dm+(Dm1_ Dm)x+(sz_ D)yl
remedies[18] the conceptual difficulty associated with the

asymmetry appearing if the fermion-loop were regulated byve then make a Wick rotation of E¢B) in D dimensions to
smearing theyq bound-state vertex. As discussed in our pre-regularize the integral, since otherwise one loses the logarith-
vious work[1,18], the two methods lead to different results mically divergent terms in Eq3). Following the above pro-

for the calculation of the decay constants although they giveedure, we finally obtain the Lorentz-invariant transition

the same result for the form factors. For example, our resultorm factors as follows:

) j\/' 1-x
g9(g°)=- a2 dXJ dy[m;x+myy+m(1l—x—y)]C,

CA m Cm A
22+ [2(my+my—m){(x+Y)(xM2+yM2) —xy P}

1-x
f(q?)=— dxf dy{( —m-+2m,)In

872 CAlAZlemZ

—my{2y M2+ x(M3+M3—g?)} —my{2xM3+y(M3+M3—g?)} + m{2xM2+ 2y M3+ (x+y—1)

><(M§+M§—q2)}—2m1m2m]C],
N 1 1-x

a+(q2)=—f de dy[ (x+y){2x(m—my)+ my,—m}+x(m; —m,—2m)+m]C,
8m2Jo 0

5 N (1 1-x
a-(‘“zﬁfod"fo dy[ (x— y){2x(M—my) + M, — M} —x(my + my) —m]C, ©

where N=g;9,ATA5/(AT—=m7)(AZ—m3) andC=(1/Cy x,~ L/Cp m,~ L/Cpya,+ LCm i) With
Caya, = (1=X=Y)(XMI+YM3) + Xy = (XAT+YAZ) — (1—x—y)m?,

Aym,= (1=X=Y)(XMT+yM3) + Xy — (XAT+ym3) — (1—x—y)m?,

Crnya, = (L=X=Y) (XM +YM3) +xy P — (xmi +yAZ) — (1—x—y)m?,

Crnym, = (L=X=Y)(XMZ+yM3) +xy = (xmi +ymz) — (1 —x—y)m?. (10)

Note that the logarithmic term if(q?) is obtained from dimensional regularization with the Wick rotation.

Ill. LIGHT-FRONT CALCULATION

It is native to the light-front analysis that a judicious choice of the current component is important for an effective
computation of matrix elements. For the present work, we shall use only the plus component of the current matrix element
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(P5;1h|J¢_,|P1;00) in the calculation of the transition form factors.
As we did in Ref[1], the LF calculation for the trace term in E@) with plus current ft=+) can be separated into the
on-shell propagating pa8,, and the instantaneous p&f,, via

r5+m=(¢)on+m>+%y*(p’—p;n) (11)
as
Sy =S""e}(Py,h)=S5M+5. 0, (12)
where
St a=—4ie " # [ my(Paon) k(Ko »= M2 Paon) (Kon)» = M(P1on) u(P20n) 1€+ 4mi[ (Kon € )P3 00T (P2on € )k

—(P20on Kon) €* +] —4my[ (Kon: €%) pfon_ (P1on € )k;n'l' (P1on Kon) €* +] +4m[(paon €*) p:IJ.ron+ (P1on € )p;on

= (P1on" P2or) € " ]1—4m;m,me* * (13
|
and for the transverse polarization vectdr<1), and
:s(th)\/—A: _4(k_ _kc:n)mZpIone*+’ (14) +

Lo 4P
S 0= (Al (1= M+ mm+x g7 ]

o ’

with p;=P;—Kk, p,=P,—k. The subscripton) denotes the 5

on-mass shell ?=m?) quark momentum, i.e.p”=p,,
+

=(m?+p?)/p*. Note that the first term o8, corresponds +KZ (xmy +m,—xm)
to the vector current matrix element and the rest to the axial-
vector current matrix element. The instantaneous contribu-
tion S, comes only from the axial-vector current, i.e.,

S+(h) _ _ot(h 4 (P+)2

instV—A" " “instA - ) . . . +(h:0)_a—1 — - — k=
The polarization vectors used in this analysis are given by InstA— M, (1=x)ma(k™ —Kop), (17)

+x'k, -q,[2x(m;—m)+m,+m]},

ef(*+1)=[e", e ,e ]= for the longitudinal onel{=0), where

2
07_+El(i)'P2LIEL(i1)
PZ

a=P, /P =1-q%/P;, x=k"/P;, X' =xXla,

(+1) _(L=i)
€ (T = )
. ) V2 L ; L i
q-=0x—idy, k-=k,—iky,
1 + PgL_Mg
'E“(O):M—2 P, ,T.Pu : (195 Ap=xmy+(1—x)m. (18)
The traces in Eq913) and(14) are then obtained as Here, we used th®;, =0 frame. The(timelike) momentum

transferg®=(P,— P,)? is in general given by
+

2P
S A U A (L IC N

q2=q*q—qf=(l—a)(M§—7)—;. (19
+(my—m)(a—x)+(m;—my)X]},

Defining the matrix element(P,;1h|Jy_,|P1;00)
q-Ap+ K[ (a—2x) =(Jy_ )" of the plus component of thé— A current in Eq.
(3) as

Sr=1_ 4P [(a—ZX)

on A \/E

X (my—m)—(my+m)] A%k (SEM+stM),

=i AZAZJ ,
+(h=1)_ q+(h=1) B J19atita (2m)* DAleleszDAz
nstv = Snsta =0, (16) (20)
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one obtains the relations between the current matrix elementsatrix elements. This frame corresponds to the &&s@ or
and the weak form factors as follows: 7 in the TRF and BRT frames summarized in Appendix A.

For this particular choice of the purely longitudinal frame,
there are two solutions af for a giveng?: i.e.,

Mi+Mi—g® = [[Mi+M;—q*)®
2M,M, —1

2M M,
where the+ (—) sign in Eq.(24) corresponds to the daugh-

+

P
<J$VP1=-Q%8+‘X%ﬁg(q5,

0. M2
(Iy)=0=o, (21) M,

(24)
for the vector current, and

- PIq- ) ) ter meson recoiling in the positieegative z direction rela-
(Ja)" = —\/5[(14' a)a.(q9)+(1-a)a_(q9], tive to the parent meson. At zero recaiP(= g2, and maxi-
@ mum recoil G?=0), . are given by
aPy aP; M2 q2
+\h=0_ "1 ¢ 2 1 2 "2 HL M,
(Ja)""= M, UCA 2M, M1 o2 + o? a+(qr2nax):a—(qr2nax):|v|_l’

X[(1+a)a (@) +(1-wa-(a?)], (22

M,\?2
a (0)=1, aOZ(—) . 25
for the axial-vector current. +(0) ©) My @9

The form factors are of course independent of the recoil di-
rections ..) if the nonvalence contributions are added to
The extraction of weak form factors can be done in vari-the valence ones. As one can see from Eg$) and (22),

ous ways. Among them, there are two popular ways of exhowever, one should be careful in settigg=0 to get the
tracting the form factors, i.e(1) the form factors are ob- results in this frame. One cannot simply sgt=0 from the
tained in the spacelike region using thé =0 frame and  start, but may set it to zero only after the form factors are
then analytically continued to the timelike region by chang-extracted.

ing g, toig,, and(2) the form factors are obtained by a  Wwhile the form factorg(q?) in the g™ >0 frame can be
direct timelike analysis using @" >0 frame. In this work, gbtained directly from Eq(21), the form factorf(q?) can be

A. Methods of extracting weak form factors

we shall analyze the form factors in both ways. obtained only aftea.. (g?) are calculated.
In the g* =0 frame(i.e., «=1) with the transverse po- To illustrate this, we define
larization modes, one could extract the form factg(s?)
and a.. () without including the zero-mode contributions PIq-
as one can see from Eq21) and (22). One could in prin- (IO e = IA(as) (26)
ciple obtain the form factof(g?) in the @™ =0 frame and B V2

the longitudinal polarization mode. In this case, it is impor-
tant to check whether the zero-mode contribution exists o
not by investigating the instantaneous part of the trace given _ + _ _ +
by Eg. (17). In particular, as we discussed in Sec. |, the a,(g?)= ar(17a)la(a)7a-(1 a+)IA(a7),
admixture of spuriousw-dependent contributions was re- 2(ay—a)
ported[4], indicating a possible zero-mode contribution to . N
the axial form factoid;(q?) which is essentially identical to a(q)= a;(Ita)la(ay)—a (I+a)ly(a)
f(q?) modulo some constant factisee Eq(2)]. As we shall -4 2(a,—a_) '
show in Secs. Il D and Il E, however, we find that the zero- (27)
mode contribution to the form factd(g?) does not exist in
our analysis. and

Using only the plus currer,_ , in theq™ =0 frame, it is
not possible to extract the form factar (q?). On the other f(q?)= M, <J+>h20_l
hand, if one chooses @" >0 frame, specifically a purely aPf A 2
longitudinal momentum frame where the momentum transfer
is given by +(1-a)a_(g?)]. (28)

.F\nd obtain, from EQq(22),

2

2 2

M _
1

a2

[(1+a)a.(g?)

. M3 . -
P®=q'q =(1—a) M%— 7), (23) B. Valence contribution to (Jy_,)

In the valence region €k* <P, , the pole k™ =k,
one can extract all four form factors by using only the plus=(m?+k?—ig)/k* (i.e., the spectator quarks located in
current. We compute them all in this purely longitudinal mo-the lower half of the complek™ plane. Thus, the Cauchy
mentum frame including the nonvalence contributions for thentegration formula for thé™ integral in Eq.(20) gives
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A2A2 (a dx SVA
<‘J\¢7A>Calzglgz 132J 2 ’ ZJ 2k 2 2 2 20nv A2 12 2 12y’ (29)
2(2m) 0 X(1—x)“(1—x") (Ml—MO)(Ml—MAl)(MZ—MO )(MZ—MA2
where
kK24+m? KkZ+m? K2+m2 k'?2+m?
g: L 1+ & y 62: = 2+ - Ll (30)
1-x X 1-x' X'

andM% =MZ(m;—A,), M{2=M{%(m,—A,) with k', =k, +x’q, . Note that there is no instantaneous contribution in the
1 2
valence region. From Eq$16) and (21), we obtain the valence contribution ¢gqg?) as follows:

2 :_ngZAEAg @ dx d2k !
g(q )val a(27T)3 fo X(l—X)z(l—X/)zvf L(M%_Mg)(Mi_Mil)(Mg_M(’)Z)(ME—M/[EZ)
Ky oy
x4 Apt =5 [(M=m,)(1=x)+(my—m)(a—x)+ (M —my)x] | (3
i

While Eq. (31) accounts only for the valence contribution in thé>0 frame, it is the exact solution in tteg" =0 (i.e., «
=1) frame due to the absence of the zero-mode contribution. Here, we should note the discrepancy betwé&éhdrel.
Refs.[14,15 for the calculation of they(q?) form factor. For the simple vector meson vertexItf=y*, our result is the
same as Ref10] but different from Refs[14,15. The authors of Ref$14,15 claimed to compute the-" component of the
vector currenfsee for instance Eq2.75 in [15]]. However, they indeed used the-" component of the current instead of
the “+” one. In their computation they used the coefficienteaf_,, which corresponds tg~ for the electroweak current
vertex rather than the coefficient ef , ,, (or equivalentlye® =) that corresponds to the plus current. This difference in
choosing the component of the current caused the discrepancy between the resultq bb]Refd Refs[14,15. It is well
known [18] that the minus current contains zero-mode contributions.

In theq™ =0 frame, the valence contribution &, (q%) is the exact solution, again due to the absence of the zero-mode
contribution. The result is obtained from Eq$6) and (22) as

) 0192ATAZ (1 dx 1
a;(q )|q+:O:_ f

d?k
(2m)® ox(l—x)“f S (ME-M2(MI—M3Z )(M3—Mg?)(M3—M2)
Ki-d,

2
L

x{(l—Zx)Ap+ [(1-2x)m;—m,—2(1—X)m] ;. (32

As we have shown in the present subsection, Sec. Ill Bshould be when the nonvalence contribution is added to the
the two form factorgy(q?) anda. (g% can be computed in valence one. In the purely longitudingl™>0 frame, we
the " =0 frame. The form factof(q?) can also be com- shall use Egs(27) and (28) to obtain the form factors

puted in the same frame, as we discussed in the last subseg: (q%) and f(g?), while the form factorg(q?) can be ob-
tion, Sec. Il A. The lack of a zero-mode contribution to tained directly from Eq(21).

f(g?) is discussed in Secs. Ill D and Il E. Before we discuss
this point, we first complete the presentation of the matrix

element, i.e., C. Nonvalence contribution to{J$_,)"
In the nonvalence regioR, <k™ <P, the poles are at
R IVEPR LET O VN SRV M 33 S 250
< V*A> ( V7A>val < V7A>nv ( ) k_:kmlEP]_ +[m%+(ki_PlL)2_|8]/(k+_PI) (from
-l =D 2

by computing the nonvalence contributiédy,_,)", in the ~ the struck quark propagaoandk™ =k, =P +[A1+(k,
next subsection, Sec. lll C, for an arbitragy (or ) value. —Py)%—iell(kT— P,) (from the smeared quark-photon
The nonvalence contribution is necessary to compute theertex, and are located in the upper half of the comptéx
form factors in the purely longitudinag® >0 frame. It is  plane.
confirmed in our numerical resultSec. 1\) that the values When we do the Cauchy integration o\er to obtain the
of the calculated form factors in thg" =0 frame are iden- LF time-ordered diagrams, we use E@) to avoid the com-
tical to those in the purely longitudingl® >0 frame, as they plexity of treating doublé&k™ poles and obtain
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I fl dx jdzk SV sk =ky) Sk =k
AN 22w e xxi(x=a)) T T (ME=ME)(@P-M3 ) (ME-M3 )(q?-M3 )
SonV+ S (K =kp) oM+ S P (kT =kp) »
+ - L
(MI=M3(@®~M7 ) (MI=ME)(G®~MF, )

whereMi1 is defined just below Eq(30) and

2 A2 2, A2
kK"t +A1 N K" +A5

Note that the instantaneous contributi8i{’(k~) in Eq.
(34) exists only for the longitudinal polarization vector case
(h=0). The total current matrix element is then given by

2 —
MAlAZ_ o 1—x" Eq. (33).
2 2 "2 2 D. Is the form factor f(g?) immune to the zero mode in the
2 =kl+A1+kl+m2 gt=0 frame?
m ” n
o X 1-x Using the plus component of the axial current given by
Eq. (22), the form factorf (g?) is obtained from the mixture
k"2+m2 k"2+m2 ) B . : K +\h=0
M2 =t L7772 of the longitudinal polarization vectdr.e.,{J,)"~") and the
MMa X" 1—-x" ' transverse oné.e., (Jx)"=1).
Especially, in theg™ =0 frame(i.e., thea— 1 limit), the
) k" +m? K" +A3 form factor f(g?) is given by
Moa= + : (35
1442 X// 1_X// M2
f(0?)=—(MI-M3+a)a.(a®)+ —-(3x)""° (37
with the variables defined by g - Meraya-ta |:>1+< A)
,  1-=x . . wherea, (g?) is given by Eq.(32) and the valence contri-
X'=1g KizkoxXia. (8 pution to(J;)"=Cin theq* =0 frame is given by
|
<J+>h=0—2PIglnglAzfl dx f dzk 1
A (I L ’ ’
v 2m)°3M, Jo x(1—x)* (MI-MO(MI-MZ ) (MZ—M*(M5—M 2
_ 2, MM 2 2 @_ _
X1 Ap[ (L=x)M35+ ~ +xq7 |+ K| my+ " m|+k, -q,[2x(m;—m)+my,+m];. (38

The zero-mode contribution is obtained from thae-1 limit
of (JX)N in Eq. (34). As the only possible source for the
zero mode is the factdt™ —k,,, appearing in Eq(14), only

where (- - -) represents the other three instantaneous terms in
Eq. (34) and S, {"=9(k™) is given by Eq.(17).
Showing only the longitudinal momentum fraction factors

the instantaneous parts of the trace terms could be the origii¢levant to the zero mode, one can easily find that(88).

of a zero-mode contribution. Sincg{"x"=0, the form

factor a, (g?) is immune to the zero mode. Thus, we only

need to check the zero-mode contribution to the matrix ele-

ment of(J;)"=° using Eq.(34).
The zero-mode contributiofif it exists) to (J;)"=° in
Eq. (34) is proportional to

fl dxcPk, O =k, ) .
a XX'(x=a) (MF=M3)(a®~M3 , )

zm__
2"~ lim
a—1

(39

becomes

1
Y

X

1
fdx

1 (1-a)(1-2)
Joot sttt

where the variable change=a+(1—«a)z was made and
the terms in[ - - -] are regular in thex— 1 limit. Thus, 13"

m (1-x)
13"~ lim i-a)

a—1

= lim

a—1

1
(40)
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vanishes in thex—1 limit. Note that the factor ¥/in Eq. (T:)LFQM:S;—_T;— ) (43
(40) comes fromS, {"=% and (1-x)/(1— ) from the en-
ergy denominator combined with the prefactor in E2P). The complete expressions for the form factors with the ver-

Therefore, we conclude that the form facfgg?) is im-  tex I'from are presented in Appendix D.
mune to the zero mode contrary to the discussion made by Because the only suspected term for the zero-mode con-
Jaus[4,5], where a zero-mode contamination in the formtribution isT,"=% in Eq.(42), we shall discuss whether this
factor f(g®) was claimedseeNote addedat the end of Sec. term gives a nonvanishing zero-mode contribution to the
V). As we discussed in Sec. |, our manifestly covariant for-weak form factorf(q?) in theq* =0 limit.
mulation should be distinguished from the formulation in- To investigate the zero-mode contribution frd'rﬁ(hzo),
volving a lightlike four-vectoro(w?=0). This is one of the e use the same argument discussed in the previous subsec-
main observations in our present work. tion, but replacing S;{V(k”=ky orky) with

For readers who are interested in checking our numerica++(h:0) K —k- K= ) =[T+(h=0) Tlh ll' it f
results for the form factors in thg" =0 frame, we presentin A (_ A, OF ml)_[ A lzm. The explicit form
Appendix C the exact LF valence expressi¢eguivalentto  Of [T4""?],n is given by Eq.(D7) in Appendix D.

the covariant resultfor the form factorf(g?) as well as Showing again only the longitudinal momentum fraction
g(9?) anda. (g?), which are obtained by the Feynman pa- factors relevant to the zero mode from EQ\7) in Appendix
rametrization in theg™ =0 frame. D, we find the nonvanishing term in the limit @f—1 (or

In the following subsection, Sec. Ill E, we check if the equivalentlyx—1) as
absence of the zero modefifg?) is still valid in the case of
the vector meson vertex used frequently in the light-front [T (=07 L[_ ] (44)
quark modellLFQM) calculations. A zm 1-x ’

where the factof - - - ] corresponds to the regular part. Equa-
tion (44) holds both for thek™ =k, andk, cases. How-
ever, it is very interesting to note that even though
[T, "=91,..in Eq. (44) itself shows singular behavior as

E. Vector meson vertex in the LFQM

A vector meson vertex frequently used in LFQM calcula-
tions[4,5,10,11,15,1Pis given by

(po— k)~ —1, the net result of the zero-mode contribution is given by
M#=yt— ——m——- 47
7 Mg+ m,+m 1 (1-x) 1
0 zm H
IA~I|m dX(l_—a) m[]

This vertex is denoted by'{qy in the remainder of this amtne
paper. We check in this subsection whether substitution of 1 (1-a)(1-2)
this form of I'* in Eq. (5) instead of the simple verteK* =lim | dzme———=[---], (45)
=~y* would affect our finding in the previous subsection, a—140  N(1-a)(1-2)

i.e., the absence of a zero modefif?). .
Denoting the trace for the second term in E4f) by T~  Where the factof - - - ] again corresponds to the regular part.

[seeS’ in Eq. (12) for the first tern), we obtain Thus,13" vanishes as«— 1 and our conclusion for the van-
ishing zero-mode contribution to the form facfdg?) in the
T':r:-l—+(h)_-|—+(h) g*=0 frame holds even for the vector meson LF vertex
v A I'from, which is frequently used for the more realistic
(po—k)-€*(h) o LFQM analysis.
:_4,—[|6+M (plon),u(pZOn)u(kon)a
Mo+ my+m

IV. NUMERICAL RESULTS

_ + . +
* (P2on Kon™MzM)Py + (P1on Kont MM)p; In this section, we present the numerical results for the
—(Pron* Paont MM)K ™ + (K~ =K )p7. pa transition form factors and verify that all of the four form
ton Fzon TR on) PiorP20r] factors[g(g?),a.(g?),f(q%)] obtained in the LF formula-
(42 tionarein complete agreement with the manifestly covariant
) _ results presented in Sec. Il. We also confirm that the numeri-
for the plus current matrix element. Note that the first termqg| results ofg(g?), a.(g?), andf(q?) obtained in they*
(i.e., the term includings*#*7) in Eq. (42) corresponds t0 =0 frame are identical to those obtained in the purely lon-
the vector current and the rest to the axial-vector Cu”e”@itudinalq+>0 frame, as they should be. We do not aim at
contribution. We use Eq(11) to obtain the last term,K( finding the best-fit parameters to describe the experimental
~Kon) P1odP20n, Which vanishes in the valence diagram. Wedata in this work. As we mentioned earlier, however, our
do not separgtethhe on-shell p:opagatmg part from the instafnodel calculations have a generic structure and the essential
taneous one i, as we did inS, due to the complication of  findings from our calculations are expected to apply to the

the form arising from thef,—k) term in Eq.(42). more realistic models, although the quantitative results
The total trace ’(ﬁ)LFQM for the vertexl“fFQ,\,I is then  would differ from each other depending on the details of the
given by dynamics in each model.
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FIG. 1. Weak form factors for thB— p transition obtained from the purely longitudinal frame. The solid, dotted, and dot-dashed lines

represent the fullval+nv) solution, the valence contribution with, dependence, and the valence contribution with dependence,
respectively. The full solution is exactly identical to the covariant one.

The used model parameters BrD*, andp mesons are
Mg=5.28 GeV, Mp+=2.01 GeV, M,=0.771 GeV, mj
=49 GeV, m;=1.6 GeV, A,=10 GeV, A.=5 GeV, g

tions of the pseudoscalar and vector meson elastic form fac-
tors atq?>=0. The manifestly covariant results for these form
factors and also the decay constants are summarized in Ap-
=5.20, andgy=3.23, as well asn,=my=0.43 GeV, A, pendix B. The decay constartsee Eqs(B6) and(B13)] of
=1.5 GeV, andy,=5.13. B andD* obtained from the above fixed parameters gye
These parameters are fixed from the normalization condi=274 MeV, fpx =216 MeV andfg=150 MeV, which are
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1-6 T T T I T T T
[ — Fullsol.
F V@)
L4- o V(o)

0.6 TR R T T

q’[GeV7]

BD, 2
A, (@)

PHYSICAL REVIEW D67, 113007 (2003

1.1

— Full sol.
Alva.l(a+) T
Apal®) ]

0.6 —

11—

05—

— Full sol.

A a(0)=A,, (@)

04—

¢’[GeV’]

FIG. 2. Weak form factors for thB—D* transition obtained from the purely longitudinal frame. The solid, dotted, and dot-dashed lines
represent the fullval+nv) solution, the valence contribution with, dependence, and the valence contribution with dependence,
respectively. The full solution is exactly the same as the covariant one.

within the range used in Reff4,15,20—-22

(2) for the B—p (heavy-to-lighj transition. Since the weak
form factorsVv, A, andA, do not involvea_ , we computed
these form factors both in thg" =0 DYW frame and in the
purely longitudinalg™>0 frame. The full results depicted

by the solid lines are in complete agreement regardless of the
In Fig. 1, we present the weak form factors defined in Eq.choice of frames, as they should be. In the>0 frame, we

can separate the full result into the valence contribution and
the nonvalence contribution. To show this, we present the
valence contribution computed in the two recoil directions
given by Egs.(24) and (25), i.e., a, (dotted ling and a_
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TABLE I. The calculatedB—p transition form factors at? TABLE Il. The calculatedB—D* transition form factors at
=0. g°=0.
Ref. \Y, Ay A, A, Ref. \Y, Ao Aq A,
This work 0.45 0.69 0.39 0.30 This work 0.89 1.07 0.87 0.62
LCSR[24] 0.6(2) - 0.51) 0.4(2) QM [11] 0.81 - 0.69 0.64
LAT [23] 035902 030905 02790 026700 QM [12] 0.76 0.69 0.66 0.62
QM [11] 0.35 - 0.26 0.24

The form factora_(g?) was also constrained by the fla-
(dot-dashed line Note thata, anda_ are obtained using vor independence in Ref16] as
both o, and «_ solutions as shown in Eq27) and thus
A,(g?) in Fig. 1 does not have any distinction in the valence 5 )
contributions betweeA,, 5 («.) andA,,,(a_). Of course, a4 (Oa) — - (Upad = — W (47)
the nonvalence contributions are obtained by subtracting the pxMB
valence contributions from the full results. We have also con-

. - Our value,a, —a_~—0.36 atq?,,, is consistent with Eq.
firmed the agreement of the full resultsolid lineg and the T max 5
manifestly covariant results presented in Sec. Il. (47) which yieldsa, —a_~—0.31. The form factoa. (q%)

In Fig. 2, we present the same for tBe+D* (heavy-to- was further constrained by the flavor independence in the

heavy transition. The general features are similar to the Casgeavy quark limif16] and is given by
of the heavy-to-light meson decay shown in Fig. 1. However,

one can see that the nonvalence contributions are signifi- (QR0)=— 1 1+ Mo+ (1_ MD*)

cantly reduced in the heavy-to-heavy case. Experimentally, hHma JVAM ps Mg Mg me

two form-factor ratios foB—D* decays, defined bj25,26| (48)
q? 1 vig? This yields the value (g2,) ~ —0.14, which is very close

Ri(g*)=| 1~ 2 N to our valuea, ~—0.15.
L (MetMpe)"JAx(a”) Our results for th— p andB—D* transition form fac-
- 5 1A.(02 tors atq?=0 are also compared with other theoretical results
Ry(q%)=|1— q 2(9%) (4¢)  in Tables | and I, respectively.
(Mg+ MD*)Z_Al(qZ) ' In the following subsection, we present the frame depen-
dence of the individual valence and nonvalence contributions
have been measured by CLE[26] as Rl(qﬁmgz 1.24 using the typical frames summarized in Appendix A.
+0.26+0.12 andRy(g3,,) =0.72+0.18+0.07. We obtain

R1(93,,)=1.05 andR,(g3,,)=0.76, which are compatible Frame dependence

with the these data and other theoretical predictions: we show the frame dependence of the form factpamd
R1(05a) = 1.35 andR,(05,,,) =0.79 in Ref.[25], Ri(0Z,)  ffor B—~D*. In Figs. 3 and 4 we plotted these form factors
=1.27 and Rz(qﬁmgzl.Ol in Ref.[27], and Rl(qﬁm) in the Breit frame for three different orientations of the mo-

=1.24 andR,(qg3,,) =0.91 in Ref.[16]. mentum transfer. The general trend we see is that the contri-
8=mw10 9=m2 0 =97/10
TTTT T T TTTT T 7T TTTT T T
020 __ g 0.20 0.20

o gvaI

- gnv

0.15 0.15

FIG. 3. Breit frameg form factor for B

—D*.

010f " - o0 - o0 .

0.05 - 0.05F - 0.05F —

——

- ~- - . - 4
.

O. 1 I 1 I 1 | 1 | 1 I O. 1 I 1 I 1 I 1 I 1 I 0.0 I-L-P4—1—I—I’r7 I
000 2 4 6 8 10 000 2 4 6 8 10 00 2 4 6 8 10
q° (GeV?) q° (GeV?) q° (GeV?)
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0=n/10 0=97/10

8_0 _I T T T I T T T T 8'0 _I T T T I T T T T 7
7.0 7.0
oo " - 6.0 .
50 — 50 — 50 —
40~ —§ 1 40r -1 4.0 — FIG. 4. Breit framef form factor for B

L ftOt 4 = 4 L i *)D* .
3.0 T val o 3.0 — 3.0 —

B == nv _ B _ - .
2.0 — 20F — 20+ —
10— e _ -+ 10} -+ 10} .

_I 1 1 1 I 1 1 1 I- _-i-l-l-l_ I_I_T-I-: _I_I_J_J-L**'r-r:
0.0 0.0 0.0

0 5 10 0 5 10 0 5 10

q¢ (GeVic) o (GeVic): o (GeVief

bution to the form factor from the nonvalence diagram be-heavy and the heavy-to-light decay mentioned before is
comes smaller as the angleincreases. Fof=m, note that clearly seen in these figures too. The nonvalence parts be-
gq*=0 atg?=0. Thus, the suppression of the nonvalencecome more prominent for the heavy-to-light case. In both
contribution for larger angles, close tb=, is natural es- cases the nonvalence contributionggtandf are suppressed
pecially in the region neag?=0. We found little difference for increasing polar anglé.

between the results calculated in the Breit frame with the

ones calculated in the target-rest frame, so we do not plot the V. CONCLUSION
latter ones.
We show the form factors.. in the Breit frame forB In this work, we analyzed the transition form factors be-

—D* in Fig. 5. As explained before, we can only extracttween pseudoscalar and vector mesons using both the mani-

these form factors if we combine the calculations for twofestly covariant calculation and the light-front calculation for

values of the polar anglé, i.e., two values for. Therefore, (Jy_,). In LFD, we presented three results: one from the

we do not plot the results for different valuesfin Fig. 5, DYW (q* =0) frame, the other from the purely longitudinal

the used values of the polar angle #@e /10 and 97/10. g*>0 frame, and finally results obtained in the Breit frame.
The results for the heavy-to-light decBy- p are givenin  In the DYW (g =0) frame, the transition form factofsg,

Figs. 6—8. The qualitative difference between the heavy-toanda. are obtained by analytic continuation from the space-

0.00 T T T T T T T T T T T T T T T T T T T T

________________ 0.20

-0.05 - 0.15

- 1 o010k .. — Ay _ FIG. 5. Breit framea. form
- b cere @y i factors forB—D*.
L - a—nv 4
0.05— —
[ 1 1 1 1 I 1 1 1 1 I 1
0.000 5 10
9’ (GeVric)® o’ (GeVic)®
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0 =m/10 0=n2
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030 — Yot 030 0.30
) gvaI
- —_— gnv .
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like region. The form factoa_ cannot be obtained in this
frame unless other components of the current besidlgs,)
are calculated. In the purely longitudinal”>0 frame, all
four form factors €, g, anda..) are found from(JJ_,) but

PHYSICAL REVIEW B7, 113007 (2003

6=91/10
IIIIIIIIIIIIIIIIIII
FIG. 6. Breit frameg form fac-
tor for B—p.
]
— H
/
L .
f,/
FRRY NPTV Xl ERREE
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tion to the transition form factof(q?) [or equivalently the
axial-vector form factorA;(q%)]. The absence of a zero
mode is not affected by the modification of the vector meson
vertex fromI'* = y* to oy .

the nonvalence contributions should be computed in addition For the numerical computation, we fixed the model pa-
to the valence ones. We confirmed that all four form factorgameters using the normalization constraints in the elastic

obtained in LFD are identical to the result of the manifestly
covariant calculation and the DYW results fiorg, anda
are identical to those obtained in the purely longitudinal
q">0 frame.

In our analysis, we do not find any zero-mode contribu-

0=m7/10

0=m/2

4.0

ftot

form factors and the available experimental data of decay
constants of the pseudoscalBj and vector D*,p) mesons.
Comparing the results of heavy-to-lighB{-p) and heavy-
to-heavy B—D*) transition form factors, we find that the
nonvalence contributions are significantly reduced in the

0=9n/10

20 -4 20l 4 o0l - FIG. 7. Breit framef form fac-
B i L J L 4 tor for B—p.
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FIG. 8. Breit framea. form
factors forB—p.
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heavy-to-heavy results. Our results for tBe-D* | v, decay 1. Target-rest frame

process satisfy the constraints imposed by the flavor inde-

pendence on the heavy-to-heavy semileptonic defksis
Note addedAfter the completion of this work, the author

of Ref. [4] informed us in a private communication that he P,=(M,0,0M,). (A1)

completely agrees with our results presented in this work due

to the identity Eq.(3.32 of Ref. [4]. This communication |f M, is the mass of the vector mesan? is the invariant

confirmed that his results of the form factors in the case mass square of the lepton pair in the final state, @igithe

=(1,0,0;-1) must be identical to those of our LFD calcula- four-momentum transfer, the kinematical rangeqéfis
tions.

The momentum of the initial pseudoscalar meson with
massM is

mP<g?<(M;—My)2. (A2)
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We define the quantitjlg as

APPENDIX A: KINEMATICS

. . . . . . ME=Mi-M3+q’ (A5)
In this appendix we discuss in some detail the different

reference systems we used. In our previous publicddn 54 fing, for the square of the length of the three-momentum
we used the target rest franGERF), the Breit frame(BRT),

transfer,
and the Drell-Yan-Wes(DYW) frame. In the present case,
where the momentum transfer is time like, the TRF is still M4— aM2g2
straightforward to define, but the other frames are not. That 2__"4 149 (A6)
is why we give the detailed formulas here. We write the 4|v|§
momenta in the LFD formP=(P*,P,,P,,P") with P?
=P*P P2, The complete expression foris
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FIG. 9. The quantitieg ™ (top) andae=P;/P; (bottom in the
TRF for #=0 (solid lineg, 7/2 (dashed lines and# (dotted line$,
respectively, plotted forq=\g?> from 0 to (M;—M,)2
(Decay B—D*.)

~ M

M2+2M,Q cosé
= - ,Qsinén,

2M,

5—2M,Q cosd
oM,

q
(A7)

The behavior of botly* and« is smooth as can be seen
in Figs. 9 and 10.

2. Breit frame

PHYSICAL REVIEW B7, 113007 (2003

0.0 '
0

FIG. 10. The quantitye=P,/P; in the TRF forq=0 (solid
line), (M;—M,)/2 (long dashed ling (M;—M,)/2 (short dashed
line) andM,;— M, (dotted ling, respectively, plotted fop from 0
to 7. (DecayB—D*.)

Forq®=0 andP=0 this choice of momenta corresponds to
a particle with momentumilz bouncing off a “brick wall”

and changing its momentum teﬁ/Z. This process is only
possible if the particle with momenturR, has the same
mass as the one with momentuPy.

Our generalization drops the conditigd=0. Then dif-

ferent massedyl; # M, are allowed. Keepin§>=0 simpli-
fies the formulas. One may relax the latter condition by a

simple boost to a frame whefe+0.
The values ofP® and Q=|q| that correspond to the on-
shell conditionsPf=M? and P5=M3 are given by

Mi+M5 @2

0_ 2
P 2 4’

4= 2(ME+M$G3+ (M- M5)?
\/q (M1+M3)q°+ (M1 2). (A9)

2(Mi+M3)—q?

The LF momenta are easily obtained. As we relygsn
>0 and real momenta, it is clear that >0. We have

q* = g%+ Q%+ Q cos,

The Breit frame is usually defined by the requirement that

there is no energy transfer. In the case of the elastic form cii:Qsineﬁ,
factors this could be achieved easily. However, for a timelike

momentumq the component® is not allowed to vanish in

the physical region. One may define a Breit-like frame in Qsinf6+q?

either of the two following ways. (A10)

(i) Real momenta

4= JaZ+Q2+Qcosh’

P,=P+q/2, P,=P—q/2. (A8) Clearly,q* cannot vanish for reaD.

113007-15



BAKKER, CHOI, AND JI PHYSICAL REVIEW D67, 113007 (2003

6.0

5.0

gaestt e L | L | 1 |
085 1.0 2.0 3.0 4.0 0.0, w2 :
q 0

1.0 S T - T - T FIG. 12. The quantityx=P /P in the Breit frame forg=0
(solid ling), (M;—M>)/2 (long dashed ling (M;—M,)/,2 (dotted
) line) andM;— M, (dashed ling respectively, plotted fo# from 0

o5l — to 7. (Decay B—D*.)
o M2+ M2 g2
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In the kinematically allowed domain botP™+P~ and
i ] P*P~ are positive, so both are separately positive. We find,

0.2k _ for them,
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FIG. 11. The quantities* (uppe) and «=P;/P; (lower) in
the Breit frame with real momenta fof=0 (solid lineg, /2
(dashed lines and 7 (dotted lineg, respectively, plotted fog?
from 0 to (M;—M,)2. (Decay B—D*.) - ME—ME_ E\/(Mf—M%)Z —2(M2+M2)+ )
2qcosf 2 q2co6 1 M) g
The behavior of botly™ anda is smooth as can be seen (A13)
in Figs. 11 and 12.
(ii) Complexq

In order to avoid confusion we reserve the notation withFor this unphysical kinematiag” =0 is allowed. The lower

Q for the case of real momenta. In order to follow Rflas ~ boundg?=0 leads to a divergent limit foP*, while P~
close as possible we define tends to 0. Their product is of course finite for all values|of

The behavior ofy™ is smooth(linear), but o has a singu-

larity at #= /2. This singularity is a branch point. For val-

- ues ofd between 0 andr/2, « increases to 1 for all values of
q=(qcosd,iq sinon,q coso). (A11) g In the interval #/2,7] « increases for alf from a value
of (4M3—g?)/(4M3—g?) to its value atd= 7. This behav-

Next we determiné®. Now we takeP =0, but we allow for  10F is illustrated in Figs. 13 and 14.
P9+ 0; otherwise, we shall not be able to satisfy the on-shell
conditions forP; andP,. Then,P?=M? and P5=M3 give 3. Drell-Yan-West frame

the equations As the DYW frame is characterized ly" =0, we are
) ) obliged to take&l purely imaginary to getj?>>0. The solu-
ptip-— Mi—Mj tion of the on-shell conditions is particularly simple. Our
gcosh ’ final results are
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4.0 ; — —

2.0

q" 0.0

-2.0

FIG. 13. The quantities® (upped and a=P;/P; (lower) in
the Breit frame with complex momenta fé= 0 (solid lines, =/4
(long dashed lings 7/2 (short dashed lings37/4 (dotted line$,
and 7 (dot dashed lin@s respectively, plotted fog? from 0 to
(M{—M,)2. (Decay B—D*.)

q=<0iqﬁ —M'f—Mngqz
Py

(A14)

If we substitute for the arbitrar?; the valueM,, we

PHYSICAL REVIEW B7, 113007 (2003

1.0 - i

0.0 L

FIG. 14. The quantityy=P; /P in the Breit frame with com-
plex momenta forg=0 (solid line), (M;—M,)/2 (long dashed
line), (M1;—My)/y2 (short dashed lineandM ;— M, (dotted ling,
respectively, plotted fop from O to 7. (Decay B—D*.)

APPENDIX B: ELASTIC FORM FACTORS AND DECAY
CONSTANTS OF MESONS WITH UNEQUAL
QUARK MASSES

In this appendix, we summarize the manifestly covariant
formulas of elastic form factors and decay constants of pseu-
doscalar and vector mesons with the unequal quark masses
such asB andD* mesons.

1. Pseudoscalar meson electromagnetic form factor

The electromagnetic form factdes(qz) of a pseudo-
scalar meson is defined by the matrix element given by

(P'[3#[P)=(P"#+P*)F(q?), (B1)
whereP andP’'=P+q are the four-momenta of initial and
final states, respectively. If the meson is made of a quark and
an antiquark with mass(charge values m; (e;) and

m, (e,), respectiverFpng) is given by

2 44
OpsAi€1 1 1-x

Fod @)= — e f dx J d

pd 0°) 8m2(AZ-m?)2Jo  Jo Y
szAlmlcmzmlA:L

XINm———————=+{—(x+y)(x+y—1)°M?

szAlAlcmzmlm1

{4-3(x+y)}

—(2—Xx—y)XyF+2(x+y—1)ymm,

—(X+y)m}Coy| +(12), (B2)

wheree; +e, must be identical to the charge of the meson,

obtain a quasi-TRF kinematics. Needless to say, this kine- 1 1 1 1

matics cannot be obtained from the formulas given before for

the TRF.

Ci=F C —C + (B3)
myA Ay myAmy mymy A g m,m;my
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and
=(x+y)(1-x—y)M?+xyf—(x+y)A2

—(1—x—y)mj

CmZAlAl

Crnpaym, = (XFY) (L =X=y)MZ+xy? — (XAF+ym)
—(1-x—y)m3,

Crnymyn, = (XHY)(L=X=y)MZ+ Xy — (XmE +yAf)

Crnymym, = (X+Y)(1=X=y)MZ+ Xy~ (x+y)ms

—(1—-x—y)m3. (B4)

2. Pseudoscalar meson decay constant

The decay constarit,s of a pseudoscalar meson is defined
by the matrix element

(0] _ Al Py=1P#f . (B5)

From this definition, we find

JpsATAS
7A(Af—mi)(AZ—m3)

ps—

1 leAZCAlm2
X f dx{xml+(1—x)m2}lnc—
0

A1A2Cm1mz

where

Crnym,=X(1=X)M?=xmi — (1—x)m3,

Crma,=X(1=X)MZ—xmi— (1-X)A3,

Caym,=X(1=X)M2Z=xA{—(1=x)m5,

Capn,=X(1=X)MZ=xAF = (1=X)A3. (B7)
3. Vector meson electromagnetic form factors

The electromagnetic form factof$,(q?), F,(g?), and

F1(g?)] of a vector meson are defined by the matrix element

between the initial state of helicity and four-momentunf
and the final state di’ andP’:
(P',h'[3%[P )= ?)

G;rMQ' Eth(qz)

e;‘, en(P'+P)*F4(q
+ehq- e;:,—

(er-q)(€n-0)
J’_—

oz (PP’

),

(B8)

PHYSICAL REVIEW D67, 113007 (2003

whereey, (e;,) is the polarization vector of the initi&final)
helicity h (h") state. If the meson is made of a quark and an
antiquark with masgcharge valuesm; (e;) andm, (e,),
respectivelyF;(q?) (i=1,2,3) are given by

Fi(g%)= 2(A2191 2)2f fl d

CmZAlmlCmZmlAl

y| (2—x—y)

X In +{=(x+y)(x+y—1)2M?

CmZAlAlCmZmlml

—(2—=X—y)XyP+2(x+y—1)m;m,

—(x+y)M}Cyp| +(152), (B9)

Fz(q2)=‘ Azleinl)zf flx

CmZAlmlcmZmlAl

(2+x+y)

XIn +H{(x+y)(x+y+1)

CmZAlAlcmZmlml

X (x+y—1)M2=xy(x+y)q>— (x+y)m;

—2mymy}Cos| +(12), (B10)

2740 1 1-x
Fa(g?) = 928 fdxfo dy8xy(x+y—1)

8m2(A5—m3)2Jo

X M?C o+ (12), (B11)

wheree; +e, must be equal to the charge of the meson and
C,, is identical to the one given in EGB3).

4. Vector meson decay constant

The decay constarit, of a vector meson is defined by the
matrix element

(0]3&_,|P,hy=iMf e (h), (B12)

wheree(h) is the polarization vector of the helicity state.
From this definition, we find
f dx

gv 2A2

f —
4m°M(A3—m2)(A3—m3)Jo

{mim,+x(1—x)M?%

o c

>< R —_

n Crr,Conmy ApAN(=Crn) + Ca,

X In( - leAZ) + CAlmZIn( - CAlmZ) - lem2
XIN(=Crnym)) |, (B13)

wherelemZ, Cma, Caymy Capn, are given by Eq(B7).
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APPENDIX C: ANALYTIC EXPRESSIONS OF g(g?), a,(g?, AND f(g?) IN THE gq*=0 FRAME FOR I'* =%

For the numerical analysis of the weak form factors indqhie=0 frame, we use Feynman parametrization to integrate out
the transverse momenturk, .
Similar to the covariant analysis, we first separate the energy denominators as follows:

1 B (1—x)? (1 1 )( 1 1 ) 1
(MF=MHMI=MZ)(MZ-MH(M5-M2)  (mE—AD(m5—A5) N1 Nia/INa  Npy/?
whereN;=M$—Mg, Njy=M$-MZ , Np=M3-M¢? andNpy=M3-M/2.
Now using Feynman parametrization
1 _fl dx 2
ab  Jo [ax+b(1-x)]?
we obtain, from Eqgs(31), (32), and(37),
) Nfl 1 1
=— xdxfd A,—X(1=y)(m;—m —(a,—ayy)—(a;—a
9(q%) Py o YA —=x(1=y)(my—my)] ary+ ay(1—y) +y(1—y)x2q? (ap—app) —(ag—ag)
+(a;—ag ,az—’azA)} : (ox)]
s Nfl 1 1
a =— xdxfd 1-2x)A,—x(1— 1-2x)m;—m,—2(1—x)m
{@)=5-]; , v )Ap—X(1=y)[( )m; —m,—2(1-x)m]} oy T (1Y) y(L—y)
—(az—apy) —(ag—apy) H(a;—agy 132—’321&)} : (CH
f(q?)=(Mi-M3-g?a,(g?) Nfldfld C ! ( )—( )
= — — a - X —(ax—ayg))—(ag—a
q 1~ Mz—Qg%)a+(q an2)o o DRSS ary+ ay(1—y) +y(1—y)x2q? 2—8o) 17817
ajna
+(a1—>a1A,a2—>a2A) —Cgm M) , (C5)
A1281A2A
|
where an=ary+ag (1-y) +y(1-y)x*q?,
a;=x(1—x)MZ—xmi— (1—x)m?, .
ajpz=anyta(l-y)+y(l-y)xqs,
a,=x(1—x)M5—xm—(1—x)m?,
ajaon=aay+an(l—y)+y(1—y)x%qg°. (C8)
a1y =a1(My— A1), 820 = a(My— Ay), (o) HaA AT ST
Cy= A [X(1=X)M5+mm—x%g?]—x3(1—y)2(xmy APPENDIX D: FORM FACTORS g(q?), a4(g2), AND f(q?)

IN THE q*=0 FRAME FOR I'["
+m,—xm)g%+x3(1—y)[2x(m; —m) + m,+m]q?, q LFQM

In this appendix, we give the exact LF expressions for the
form factorsg(q?), a.(q?), andf(qg?) intheq™ =0 frame

Co=x(my=m)+m,, €7 for the more realistic LF vector meson vertex function given
and by Eg. (41). We shall write g-F?(g?), a5 ?"(g?), and
f-FM(g?) for the vertexI'/roy to distinguish them from
app=ary+ay(1-y)+y(1-y)x’d? those obtained foF * = y*.
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To obtain the form factog(g?), we first calculate the tracé, (=1) for the vector current with transverse polarization,
which is given by

—_— . * =
T\-;(h:l)z_4i (p2 k) € (h l)E
M{+my+m

TEY(P1on) w(P20n) W(Kon)

2
:_4\/§P+€+—xyquL_(kL'Ch)kL. (D1)
! M{+my+m

Note thatTJ(hzl) is independent ok~ [which is due toe* (h=1)=0] and thus free from the zero-mode contribution as in
the case ol "=1y".

Modifying S;. (=Y st h=1_T8(=1)in Eq. (21) for I'* given by Eq.(41), we obtain the form factog-Fo(g?) in the
g*=0 frame as

242

Lrom 2):_9192A1A2 1 dx &K 1

9 q 3 _y\4 2_ 2 2_ 2 2 apr2 2 np12
(2m)* Jo x(1-x) (M1—Mg)(M1—M7 )(M3—Mg9)(M3—My?)

a. 2

x{Ap+L<ml—mz>+ (D2)

kz_(ki'ch)zl

2 2
ai

oy M{+my+m

We note that our result far-FM(g?) in Eq.(D2) is equivalent to that obtained by J443 [see, for example, Eg4.13 in Ref.
[4]] and free from the zero-mode contribution.
Now, the traceT 1 " for the axial-vector current is given by

(p2—K) - €*(h) o
Ta M =4—————[(P20n Ko~ M2M) P + (P10 Kon™ MiM)P; = (P1om Paon™ MiMo)K ™ + (k™ —Kg)P1 P2 1.
Mg+my+m
(D3)
The form factora;™*M(g?) in the q*=0 frame is obtained from the axial-vector current with transverse polarizakion (

=1) [see thea—1 limit in Eq. (22)]. Explicitly, the trace is given by

4\2p;f

Trheno VIR
X(Mg+my+m)

(xg-+ k5 {k, k' +H[(1=x)m=xmy] Ay +X(1=X)2(K™ ko) P1 }. (D4)

Even though p,—Kk) - €* (h=1) is independent df~, there is a possibility to get a zero-mode contribution from the last term,
i.e., the term proportional tok("—k), in Eq. (D3) or (D4). While the valence parf,T.("=Y] ., is obtained fork~

=Kgn, the zero-mode par[,TX(hzl)]Zm, is obtained fork*:k;]1 or k*:kgl. However, counting only the longitudinal

momentum fraction terms, one can easily find from Ho4) that the zero-mode part &f, ("= vanishes a$T,"="1,,,
~(1-x)%?in thea—1 (or x—1) limit and the valence part as/1—x in thex— 1 limit. Therefore, following the argument
given in Sec. Ill D, there is no zero-mode contribution to the form faati®™(q?). Modifying S~ —s/Hh=1

—[TA M=, in Eq. (22) and taking the limit ofx—1, we obtain

afM(g?) =

A2AZ (1 dx 1
01927 2f (1—2%) As

d?k
(2m)3 ox<1—x)4f F(ME=MY(MI—M3E )(M3—ME?)(M3—M2)

k,-q 2(xq +k,-qy)
LZL[(l—Zx)ml—mz—Z(l—x)m]— S

+ 2 '
q; Xq; (Mg+my+m)

1k, - k,L"'[(l_X)m_sz]AP}J , (D5

which is again equivalent to that obtained by Jiis[see, for example, his E¢4.14)].

Finally, we need to compute the trace in EB3) with the longitudinal polarization vectohE&0) to obtainf-FeM(g?).
Here we again separate the trace tethl(,hZO), into the valence par{fl';(hzo)]va|, with k™ =k, and the possible zero-mode
part,[TX(hzo)]Zm, with k‘=k;]1 and k‘=k;1. Explicitly, the valence part is given by
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4P;
XMy(Mg+my+m)

[TA O a=— {(XM3+(1—=x)M§ZHk, -k’ +[(1—x)m—xmy] Ap}, (D6)

while the possible zero-mode part ﬂof=k;1 is given by

N
[T;<“—°)]zm=xM2(M‘2zlmz+m) {XM3_+xM3=Mi=a?H{k, -k’ +[(1=x)m=xmp]Ap+X(1-x)2 (M~ M3 )},
(D7)
whereM3 is defined as
_,  AFH[k —(1-x)q, ]
M3, = X1 (D8)

The zero-mode part fdic*:k;11 can be easily obtained by changing—m; in Eq. (D7).
Counting the longitudinal momentum fraction terms in EQ7), one can easily find the singular behavior given by Eq.

(44), i.e.
e [1
[TA(h O)]zmw 1—x (D9)

asx— 1. However, as we showed in Sec. lI[&e Eq(45)], there is no zero-mode contributiontd®™(q?) even though the
trace term itself shows singular behavionas 1.

Therefore, the form factdi-F?M(g?) in theq™ =0 frame can be obtained from the valence contribution fsée Eq(21)]
and it is given by

M, _
FFOM(a%) = Zo R e (ME- Mz +af)a™(a?), (D10)
1

where

A2A2 (1 dx g+ (h=0) _r+(h=0)
heo _ 9102/\7 2J' onA [ Ta Jvar (D1

(In)lrQm= 3 4f o VI 2 _ M 2\ (M2_M2) "
(2m)* Jox(1-X) (M1—Mg)(MI—M7 )(M3—Mg9) (M= M0

We note the difference from the conclusion drawn by Jdus], where the author claimed that the form fact¢g?) receives
a zero-mode contributiofseeNote addecat the end of Sec. V
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