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Generalized parton distributions and double distributions for qq̄ pions

B. C. Tiburzi and G. A. Miller
Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195-1560, USA

~Received 3 January 2003; published 12 June 2003!

We consider two simple covariant models for pions~one with scalar and the other with spin-1
2 constituents!.

Pion generalized parton distributions are derived by integration over the light-cone energy. The model distri-
butions are consistent with all known properties of generalized parton distributions, including positivity. We
also construct corresponding double distributions by appealing to the Lorentz invariance of the form factor.
These ostensibly constructed double distributions lead to incorrect generalized parton distributions that need
not respect the positivity constraints. This inconsistency arises from the ambiguity inherent in defining double
distributions in the standard one-component formalism~even in the absence of the Polyakov-Weiss term!. We
demonstrate that the correct model double distributions can be calculated from nondiagonal matrix elements of
twist-two operators.
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I. INTRODUCTION

In recent years generalized parton distributions~GPDs!
@1# have generated a considerable amount of attention. T
distributions stem from hadronic matrix elements that
both nondiagonal with respect to hadron states and invo
quark and gluon operators separated by a lightlike dista
Thus physics of both inclusive~parton distributions, e.g.! and
exclusive ~form factors, e.g.! reactions is contained in th
GPDs. At the leading-twist level, these new structure fu
tions describe the soft physics of a variety of hard exclus
processes~see the reviews@2#!.

Since lightlike correlation functions are involved in th
description of deeply virtual Compton scattering~DVCS!,
e.g., there exists a simple decomposition of these matrix
ements in terms of the light-cone Fock space wave functi
of the initial and final states@3,4#. This representation o
GPDs is ideal for physical intuition; however, comparative
little has been done to show that the light-cone wave fu
tion representation is consistent with the reduction proper
required of the generalized parton distributions. Below
undertake a simpler task of presenting covariant models
the pion which respect the properties of GPDs. Albeit simp
these models illustrate the utility and physicality of the ligh
cone Fock representation as well as provide a guide to
derstanding how the reduction relations arise in this form
ism which will be useful when nonperturbative solutions f
the Fock components in QCD become available. The sc
constituent model which we consider is merely the trian
graph with pointlike vertices~this has been considered in@5#,
see also@6#!. The spin-12 model is based on an earlier exact
soluble, (111)-dimensional light-front model@7#. An exten-
sion of this model to 311 dimensions, which involves regu
larizing the divergent light-front current, has been done
@8#.

Another approach is to use the formalism of double d
tributions ~DDs! @9,10#. This formalism elegantly explain
the polynomiality conditions required of GPDs and th
gives one the ability to construct models consistent w
known properties—although insight into model construct
has often been limited to factorizationAnsätze. Recently
two-body light-front wave function models of the pion ha
0556-2821/2003/67~11!/113004~11!/$20.00 67 1130
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been used to obtain GPDs@11# based on DDs. Without modi
fying the quark distribution, the resulting GPDs violate t
positivity constraints@12#. This inconsistency is attributed t
missing contributions from non-wave function vertex di
grams which are absent when one uses noncovariant vert
In general these diagrams are a substitute for higher F
components, see@13#. The covariant models used here, ho
ever, allow us to test the uniqueness of this ostensible c
struction.

Indeed we find that appealing to Lorentz invariance
enough to determine only one component of the double
tribution in the two-component formalism~even forC-odd
distributions, where the Polyakov-WeissD term @14# is ab-
sent!. Moreover, the component determined from the red
tion relations is ambiguous. We show that in the scalar c
stituent model, missing the second component leads
incorrect GPDs. The same is true for the spin-1

2 constituent
model, where additionally the positivity constraint is vio
lated. The correct DDs unique to each model can be ca
lated from nondiagonal matrix elements of twist-two ope
tors which we demonstrate. On the other hand, exploiting
ambiguity inherent in defining one component DDs~which is
akin to gauge freedom@15#! one can generate infinitely man
different GPD models which share the same form factorand
quark distribution as well as satisfy polynomiality~and likely
positivity!.

The organization of the paper is as follows. First in S
II, we explicitly derive the GPD for the scalar triangle dia
gram with pointlike vertices. Next we show the DD for th
model extracted from the form factor in the Drell-Yan fram
leads to incorrect GPDs. Having encountered this probl
we review definitions of the double distributions in Sec. I
Here we also calculate the missing component of the DD
the scalar triangle diagram. In Sec. IV, we present the mo
for the spin-12 case. Next in Sec. IV B, we regularize th
current and then extract this model’s GPD. Although n
manifest, this model satisfies polynomiality, which is de
onstrated in Sec. IV C. Using@11# as a guide, we construct
DD for this model in Sec. IV D. Similar to Sec. II, this one
component DD too gives rise to a different GPD than t
light-front projection. Additionally positivity is not satisfied
by this one-component DD~Sec. IV E!. We calculate the
©2003 The American Physical Society04-1
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B. C. TIBURZI AND G. A. MILLER PHYSICAL REVIEW D 67, 113004 ~2003!
complete two-component DD from matrix elements of twi
two operators in Sec. IV F. Lastly we conclude with a br
summary~Sec. V!.

II. PION WITH SCALAR CONSTITUENTS

For the pion model with scalar constituents, we choo
the pointlike Bethe-Salpeter vertexG(k,P)51, where the
coupling constant is assumed to be absorbed into the ov
normalization. Furthermore, we choose derivative coupl
of the photon to charged scalar particles.

The pion electromagnetic form factor for this model c
be calculated from the Feynman triangle diagram. In orde
derive the GPD, however, we need to choose the kinema
specified in Fig. 1 withk as the momentum of the struc
quark. Using the stated pion vertex and taking t
plus-component of the current,1 we have

F~ t !5
2 i uNu2

~12z/2!P1E d4k~2k11D1!@k22m21 i e#21

3@~k1D!22m21 i e#21@~P2k!22m21 i e#21,

~1!

where the momentum transfer ist5D2 and the skewness i
defined relative to the initial stateD152zP1,0. Physi-
cally z plays the role of Bjorken variable for DVCS. Add
tionally we work in the frame whereP'50.

To turn Eq.~1! into an expression for the GPDH(x,z,t),
we insertd(k1/P12x) to fix the momentum of the struc
quark and keepzÞ0. This forces

F~ t !5E H~x,z,t !dx. ~2!

Lastly we integrate overk2 to project onto the light cone
Doing the contour integration to extractH(x,z,t) in Eq. ~1!,
we are confronted with the poles

ka
25kon

2 2
i e

x
,

kb
25P21~k2P!on

2 2
i e

x21
, ~3!

kc
252D21~k1D!on

2 2
i e

x8
,

where the on-shell energies arepon
2 5(p'21m2)/2p1 and the

abbreviationx85(x2z)/(12z) is used. Thus the nonvan
ishing contribution to the integral is

2p iu@x~12x!#@u~x2z!Res~kb
2!2u~z2x!Res~ka

2!#,
~4!

1For any vector am, we define the light-cone variablesa6

[1/A2(a06a3).
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which leads to

~12z/2!H~x,z,t !5u~x2z!H1~x,z,t !

1u~z2x!H2~x,z,t !. ~5!

Using k8'5k'1(12x8)D' for the relative transverse mo
mentum of the final state, the functional forms are

H1~x,z,t !5~2x2z!uNu2E dk'DW~x,k'uMp
2 !

3DW~x8,k8'uMp
2 !/x~12x!x8 ~6!

H2~x,z,t !5~2x2z!uNu2E dk'DW~x,k'uMp
2 !

3DW~x9,k9'ut !/zx9~12x9!~12x!, ~7!

where x9[x/z and k9'[k'1x9D' are the relative mo-
menta of the photon. Additionally, we use the replaceme

DW~x,k'uM2!215M22
k'21m2

x~12x!
, ~8!

which is the propagator of the Weinberg equation@16#.
Comments about the GPDH(x,z,t) in Eq. ~5! are in or-

der. Firstly, the model is covariant and thus the sum rule
polynomiality conditions are met~see Sec. IV C below for
clarification!. We have checked this explicitly and suitab
discussion can be found in@5,6#. Secondly,H1(x,z,t) ap-
pearing in Eq.~6! satisfies the relevant positivity constrai
for a compound scalar of scalar constituents~which appears
in the Appendix of@12#! which is clear from inspection.

Consideration of this model was first done from the p
spective of DDs, see e.g. the toy model of@9#. This DD
model was revisited recently with derivative coupling at t
photon vertex in the Appendix of@11# and the same DD also
appears in@5#. To derive the DD for this simple model, w
appeal to Lorentz invariance as suggested in@11#, recalling
along the way the relevant properties of DDs.

First consider the form factor. In thez50 frame, Eqs.~6!
and ~7! reduce to the Drell-Yan formula@17# via the defini-
tion in Eq. ~2!:

FIG. 1. Covariant triangle diagram for the pion electromagne
form factor.
4-2
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GENERALIZED PARTON DISTRIBUTIONS AND DOUBLE . . . PHYSICAL REVIEW D67, 113004 ~2003!
F~ t !5uNu2E dxdk'

x~12x!
DW~x,k'uMp

2 !

3DW~x,k'1~12x!D'uMp
2 !, ~9!

wheret52D'
2 . The form factor is Lorentz invariant and ha

a decomposition in terms of the Lorentz invariant D
F(x,y;t): namely,

F~ t !5E
0

1E
0

1

F~x,y;t !dydx. ~10!

The DD satisfies the following relations@10#: support prop-
erty

F~x,y;t !}u~12x2y!, ~11!

reduction to the quark distribution at zero momentum tra
fer

q~x!5E
0

12x

F~x,y;0!dy ~12!

and isMünchensymmetric@18#

F~x,y;t !5F~x,12x2y;t !. ~13!

Using Eq.~9!, we can writeF(t) in the form ~10! with

F~x,y;t !5
xuNu2u~12x2y!

m22x~12x!Mp
2 2y~12x2y!t

, ~14!

which satisfies Eqs.~11!–~13!. The ingenuity of DDs comes
about when we construct the GPD via

H~x,z,t !5E
0

1E
0

1

F~z,y;t !d~x2z2zy!dydz. ~15!

In this form the sum rule and polynomiality conditions fo
low trivially.

In Fig. 2, we plot the GPD Eq.~5! as well as the GPD
derived from DD via Eq.~15!. Surprisingly the two are dif-
ferent despite the fact both models are covariant and pos
11300
-

ess

the same form factor and quark distribution. Additionally w
plot their difference (d) as a function ofx.

III. DEFINING DOUBLE DISTRIBUTIONS

In this section we define DDs via their moments by fo
lowing the two-component formalism of@14,15#. Focusing
on the ambiguities inherent in defining one-component D
from two-component objects, we will understand why t
DD in Eq. ~14! leads to an incorrect GPD. Moreover, w
shall calculate the correct DD for the scalar triangle diagr
from matrix elements of twist-two operators. We remark
passing that the two components of the DD~belowF andG,
or F andD term in the standard formalism! can be viewed as
projections of a single function of two variables@19#.

A. Definitions

Above we have worked in Radyushkin’s asymmetric
frame and asymmetrical variables which are ideal for per
bation theory and are a natural generalization of ordin
parton distributions. The nondiagonal matrix elements
twist-two operators are, however, more conveniently
pressed in variables symmetric with respect to initial a
final states.2 To this end we define the average momentu
P̄m5(P1P8)m/2. Let DJ m5 1

2 (]Wm2]Qm). Then for a pion of
spin-12 constituents we have

FIG. 2. Comparison of covariant GPDs for the scalar trian
diagram. The GPDs Eq.~5! ~denoted LC! and Eq.~15! ~DD-based!
are plotted as a function ofx for fixed z50.7 andt52m2 for the
massMp5m,2m. We also plot the difference between the tw
curves (d). The area under the curves is identicallyF(2m2) for
LC and DD-based GPDs, and hence zero for their differenced.
^P̄1D/2uc̄~0!g [miDJ m1
••• iDJ mn ]c~0!uP̄2D/2&52P̄[m(

k50

n
n!

k! ~n2k!!
Ank~ t !P̄m1

•••P̄mn2kS 2
D

2 D mn2k11

•••S 2
D

2 D mn]

2D [m(
k50

n
n!

k! ~n2k!!
Bnk~ t !P̄m1

•••P̄mn2kS 2
D

2 D mn2k11

•••S 2
D

2 D mn]

,

~16!

2Good discussion of the conversion from symmetrical and asymmetrical variables and distributions can be found in@20#. Additionally
advantages and disadvantages of both are presented.
4-3
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where the action of . . . on Lorentz indices produces only the symmetric traceless part andT invariance restrictsk in the first
sum to be even and odd in the second. For a pion of scalar constituents, replacegm with 2iDJ m. As it stands there is
considerable freedom in the above decomposition, e.g. one could rewrite the above withkBn,k21(t)/(n2k11) as a contri-
bution toAnk(t). Carrying this out for allk, puts the bulk in the first term and renders the second term proportional only t
symmetric traceless part of (n11) D ’s—moments of the Polyakov-WeissD term @14#. This is the usually encountered form
of the DD with D term. Calculationally, however, we find Eq.~16! is the most useful.

The F andG DDs can be defined as generators of the coefficient functions

Ank~ t !5E
21

1

dbE
211ubu

12ubu
dabn2kakF~b,a;t ! ~17!

Bnk~ t !5E
21

1

dbE
211ubu

12ubu
dabn2kakG~b,a;t !. ~18!

As a consequence of the restrictions onk in the sums, the functionF(b,a;t) is even ina while G(b,a;t) is odd. Also for
n-even, there is no contribution from theD term to the functionG(b,a;t).

These functions then appear in the decomposition of matrix elements of lightlike separated operators

^P̄1D/2uc̄~2z2/2!z”c~z2/2!uP̄2D/2&52P̄•zE
21

1

dbE
211ubu

12ubu
dae2 ibP̄•z1 iaD•z/2F~b,a;t !

2D•zE
21

1

dbE
211ubu

12ubu
dae2 ibP̄•z1 iaD•z/2G~b,a;t !, ~19!

wherez250.
Denotingj52D1/2P̄1, the GPD in symmetric variables reads

H~ x̃,j,t !5
1

4pE dz2eix̃ P̄1z2
^P̄1D/2uc̄~2z2/2!g1c~z2/2!uP̄2D/2&. ~20!

Inserting Eq.~19! into this definition yields

H~ x̃,j,t !5E
21

1

dbE
211ubu

12ubu
dad~ x̃2b2ja!@F~b,a;t !1jG~b,a;t !#. ~21!
th

-

e
. 2

-
he

-

By integrating overx̃, we uncovertwo sum rules: the sum
rule for the form factor

E dbE daF~b,a;t !5F~ t ! ~22!

and what we call theG-sum rule

E dbE daG~b,a;t !50, ~23!

which is trivial sinceG is an odd function ofa. Equation
~23! has nontrivial consequences however, e.g. it shows
method employed by@11# leads only to anF-type DD in Eq.
~19!. This function integrates to the form factor via Eq.~22!
and in the forward limit$j,t→0% reduces to the quark dis
tribution ~when integrated overa). Thus F(b,a;t) should
be properly termed the forward-visible DD, which encom
passesmore than just neglecting theD term. From Eq.~16!,
11300
e

-

we see thatG(b,a;t) does affect higher moments of th
GPD. This is the source of the discrepancy shown in Fig
as we now demonstrate.

B. Scalar model, revisited

To derive bothF and G DDs for the scalar triangle dia
gram of Sec. II, we must now consider the action of t
operator 2iDJ [miDJ m1

••• iDJ mn ] . This produces a factor

1

2n
~2k1D! [m~2k1D!m1

•••~2k1D!mn] ~24!

in the integrand of Eq.~9!, which we now take in the sym
metric frame. After the integration overk is performed, we
are left only with

E
0

1

dbE
211b

12b

daD~b,a;t !~2bP̄2aD! [m

3~bP̄2aD/2!m1
•••~bP̄2aD/2!mn] , ~25!
4-4
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where we have used the replacement

D~b,a;t !5
1

m22b~12b!Mp
2 2t@~12b!22a2#/4

.

~26!

Using the binomial expansion, we can identifyF(b,a;t)
andG(b,a;t) via Eqs.~17! and ~18!, namely3

F~b,a;t !5bu~12b2a!D~b,a;t !uNu2 ~27!

G~b,a;t !5au~12b2a!D~b,a;t !uNu2.
~28!

To compare with the results of Sec. II, we must revert
asymmetric variables which is accomplished by$b→x,y
→(a2b11)/2%. The denominator common to both term
becomes

D~x,y;t !5
1

m22x~12x!Mp
2 2y~12x2y!t

. ~29!

Thus we have

F~x,y;t !5xu~12x2y!D~x,y;t !uNu2 ~30!

G~x,y;t !5~2y1x21!u~12x2y!D~x,y;t !uNu2. ~31!

Notice the functionG(x,y;t) is München antisymmetric
which is required becauseG(b,a;t) is odd with respect to
a.

To construct the GPDH(x,z,t) we must also convert Eq
~21! to asymmetric variables.

H~x,z,t !5E
0

1

dzE
0

12z

dyd~x2z2zy!

3FF~x,y;t !1
z

22z
G~x,y;t !G . ~32!

We can now plot the GPD in Eq.~32! using the two DDs in
Eqs.~30! and~31!. The result agrees with Eq.~5! depicted in
Fig. 2. Moreover, the contribution from@z/(22z)#G is
identically the differenced plotted in the figure. In the DD
formalism, the reduction relations alone do not determine
GPD. We illustrate this further with a spin-1

2 pion model.

IV. PION WITH SPIN- 1
2 CONSTITUENTS

A. Bethe-Salpeter amplitude and pion wave function

For the spin-12 model, we choose the triviallyqq̄ symmet-
ric Bethe-Salpeter vertex

3Notice F and G are projections of a single functionD(b,a;t)
5 f (b,a) in the notation of@19#. Determination off (b,a) for the
spin-12 model of Sec. IV, however, cannot be done by inspectio
11300
e

G~k,P!52 igg5. ~33!

Here we have assumed onlyg5 coupling at the quark-pion
vertex with coupling constantg, whereas four Dirac struc
tures exist@21#. This simple coupling is suggested by a
effective interaction Lagrangian of the form~see, e.g.@22#!

LI52 igp•q̄g5tq, ~34!

where the coupling constantg5m/ f p , with m the constitu-
ent mass andf p the pion decay constant. Notice the~ladder
approximation! kernel is independent of light-cone time
Thus this model~as well as the scalar triangle model in Se
II ! is a special case of the instantaneous formalism descr
by @23# in the impulse approximation. The relation of th
vertex to the Bethe-Salpeter wave function is given by

C~k,P!5
i

k”2m1 i e
~2 ig !g5

i

k”2P” 2m1 i e
. ~35!

The valence wave function can be found by projecting
Bethe-Salpeter wave function onto the light-conex150, see
e.g. @24#. Using the normalization convention of@25#, we
have

c~x,krel
' ;l,l8!5

1

2P1E dk2

2p

ūl~xP1,k'!

Ax
g1

3C~k,P!g1
vl8@~12x!P1,P'2k'#

A12x
,

~36!

wherex is the fraction of the pion’s plus momentum carrie
by the quark (x5k1/P1), and the relative transverse mo
mentum is krel

' 5k'2xP'. The valence wave function is
found from Eq.~36! to be

c~x,k';l,l8!5
gANc/2C
x~12x!

DW~x,k'uMp
2 !

3@k2ldl,l82lmdl,2l8#, ~37!

where we have employed the notationkl5k11 ilk2. As a
result of the contour integration, we have a factor ofu@x(1
2x)# implicitly in Eq. ~37!. Additionally the wave function
is symmetric under interchange ofx and 12x. As is known,
the simplistic form of this wave function leads to diverge
quark distributions and form factors which will be handle
below. Since this model is nonrenormalizable, the choice
regularization scheme influences the dynamics.

B. Form factor and generalized parton distribution

The pion electromagnetic form factor for this model c
be calculated from the Feynman triangle diagram. In orde
extract the GPD, however, we need to choose the kinema
specified in Fig. 1 withk as the momentum of the struc
quark. As it stands, using the wave function Eq.~37!, the
triangle diagram diverges. Following the approach of@8#, we
4-5
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covariantly smear the pointlike photon vertex in Fig. 1 in
way reminiscent of Pauli-Villars regularization

gm→GL
m5

L2

k22L21 i e
gm

L2

~k1D!22L21 i e
. ~38!

Equation~38! is a simple way to model non-qq̄ components
of the wave function. Alternatively one could smear theqq̄
2p vertex in a covariant manner@26,27#. This smearing
should additionally respect theqq̄ symmetry of the vertex.
We do not pursue this option here since positivity constra
~see Sec. IV E! are likely to be violated. On the other han
one could use Pauli-Villars subtractions to regulate
theory, however, positivity would also be put into questio
ve

th

11300
ts

e
.

Because our concern is with model comparisons not p
nomenology, we shall chooseL5m for simplicity. Although
not obvious from inspection, results forLÞm exhibit the
same features investigated below. Most noteworthy, pos
ity remains satisfied whenLÞm.

Considering matrix elements of the current operatorJm

between pion states, the model~38! conserves current. This
can be demonstrated most easily by calculatingD•J in the
Breit frame. Additionally since the model is fully covarian
we can extract the electromagnetic form factor from a
component of the current. In particular, potential end-po
singularities present in matrix elements ofJ2 have been re-
moved by the photon vertex smearing Eq.~38! @8#. Using the
plus component of the current, we have the expression
s

not
F~ t !5
ig2NcuCu2m4

12
z

2

E d4k

~2p!4P1

Tr@~k”1m!g5~k”2P” 1m!g5~k”1D”1m!g1#

@k22m21 i e#2@~k1D!22m21 i e#2@~P2k!22m21 i e#
, ~39!

where the momentum transfer ist5D2 and the skewnessz is defined relative to the initial state:D152zP1,0.
To calculate the GPD, we follow the procedure described in Sec. II. The result can be written as

~12z/2!H~x,z,t !5u~x2z!Heff~x,z,t !1u~z2x!@H inst~x,z,t !1Hnval~x,z,t !#, ~40!

where Heff is the piece determined by the effective two-body wave function,H inst is the contribution from instantaneou
propagation of the spectator quark, and the remaining contributions we term nonvalence~although strictly speaking the
instantaneous piece is also of the nonvalence variety!. It is a peculiarity of this model that explicit instantaneous terms are
present forx.z.

The functional forms are

Heff~x,z,t !5E dk'

~2p!3 (
l,l8

ceff* ~x8,k8';l,l8!ceff~x,k';l,l8!, ~41!

H inst~x,z,t !52AE dk'
4zDW

3 ~x9,k'ut !

~12x!x9~12x9!
~42!

Hnval~x,z,t !52AE dk'
2~k'

•k8'1m2!DW~x,k'uMp
2 !DW

2 ~x9,k9'ut !

x~12x!x9~12x9!x8~12x8!~12z!
@2zDW~x9,k9'ut !

1DW~x,k'uMp
2 !#, ~43!

where we have defined the effective wave function

ceff~x,k';l,l8!5
gANc/2Cm2

x2~12x!
@k2ldl,l82lmdl,2l8#DW

2 ~x,k'uMp
2 ! ~44!
Eq.
PD
and made the abbreviationA5g2uCu2Ncm
4/2(2p)3. It is

sensible to think of Eq.~44! as an effective wave function
sincex→12x symmetry has been lost. Moreover the wa
function vanishes atx51 and is nonvanishing atx50. This
is a desirable addition to the dynamics stemming from
regularization. Notice the ladder kernel~34! is momentum
e

independent and hence does not vanish atx50,1. This is the
dynamical reason why the un-regularized wave function
~37! does not vanish at the end points. Continuity of the G
at x5z follows directly from Eqs.~41!–~43!.

In Fig. 3, we plot the GPD for the parameters:M
50.14 GeV and m50.33 GeV. On the left, the graph
4-6



d

r-

GENERALIZED PARTON DISTRIBUTIONS AND DOUBLE . . . PHYSICAL REVIEW D67, 113004 ~2003!
FIG. 3. On the left, the GPD
Eq. ~40! is plotted at fixedt5
2m2 for a few values ofz. On
the right, the same GPD is plotte
for fixed z50.5 for a few values
of t. The model parameters are a
bitrarily chosen as:M50.14 GeV
andm50.33 GeV.
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shows the GPD for a few values ofz as a function ofx for
fixed t, while on the right we have fixedz and t varying.

C. Sum rule and polynomiality

Since not manifest, one should check the covariance
the model Eq.~40!. With the covariant starting point Eq
~39!, we anticipate polynomiality will be satisfied which pro
vides a useful check on our expressions Eqs.~41!–~43!. First
we define the moments of the GPD with respect to asymm
ric variables

Pn~z,t !5E xnH~x,z,t !dx. ~45!

Polynomiality requires the momentsPn to be of the form

Pn~z,t !5(
j 50

n

an j~ t !z j . ~46!

The zeroth moment is merely the sum rule for the form f
tor, hencea00(t)5F(t). For simplicity, we check a few o
the lowest moments for the polynomiality condition Eq.~46!
at t50. In Fig. 4, we plot the momentsPn(z,0) for n
50,1,2,3 which appear as smooth functions. Additionally
plot simple (n11)-point polynomial fits to the moments
which line up nicely with the integrals~45!.

FIG. 4. Polynomiality conditions checked for the GPD Eq.~40!.
The momentsPn(z,t50) from Eq.~45! are plotted as a function o
z for n50,1,2,3. Additionally3 ’s denote the simple (n11)-point
polynomial fit to the momentPn .
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D. Double distribution

To construct the DD, we shall first proceed incorrectly
appealing to the Lorentz invariance of the form factor as
Sec. II. This will at least lead to one component of the D
satisfying the reduction relations and can be compared to
~40!.

Using Eq.~41! in the D150 ~Drell-Yan! frame, we can
write F(t) in the form ~10! with

F~x,y;t !5@3m22Mp
2 x~12x!1y~12x2y!t#

3
2pAu~12x2y!y~12x2y!

~12x!@m22Mp
2 x~12x!2y~12x2y!t#3

.

~47!

Aside from factors arising from spin, this DD is basically th
same as that considered in@11# which one can realize by
utilizing l252Mp

2 /41m2. Not surprisingly, then, this DD
satisfies Eqs.~11!–~13!. For reference we give the quark dis
tribution function

q~x!5
2pA

6

~12x!2@3m22Mp
2 x~12x!#

@m22Mp
2 x~12x!#3

, ~48!

which could be calculated directly fromceff in Eq. ~44!.
In Fig. 5, we plot the GPD Eq.~40! as well as the GPD

derived from DD Eq.~47! via Eq.~15!. As in Sec. II, the two
are different despite the fact both models are covariant
possess the same form factor and quark distribution. Ad
tionally we plot their difference as a function ofx.

E. Positivity constraints

Here we demonstrate another difference between the G
in Eq. ~40! and the one stemming from the one-compon
DD Eq. ~47!. To do so, we look at the positivity constraint
Originally these constraints appeared in@10,28# and were
derived from the positivity of the density matrix by restric
ing the final-state parton to have positive plus-moment
@and ignoring the contribution fromE(x,z,t) for the spin-12
case#. Although the matrix elements involved for GPDs a
off diagonal, they are still restricted by positivity and the
diagonal elements. Correcting the constraints for the p
ence of theE distribution was first done in@4#. By consider-
ing the positivity of the norm on Hilbert space, stricter co
4-7
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straints for the spin-12 distributionsH and E have recently
appeared as well as constraints for the full set of twist-t
GPDs@29#.

For the scalar pion case there is of course no contribu
from the nonexistentE distribution and hence the origina
bounds are actually correct~modulo factors due to the differ
ence of a spin-12 proton versus a spin-0 pion!. Given the
matrix element definition of the GPD consistent with Eq.~2!,
namely

H~x,z,t !5
1

12z/2E dz2

4p

eixP1z2
^p~P8!uc̄~0!g1c~z2!up~P!&,

~49!

the spin-0 positivity constraint~for x.z) reads

FIG. 5. Comparison of covariant GPDs for the spinor trian
diagram. The GPDs Eq.~40! ~denoted LC! and Eq.~47! ~DD-based!
are plotted as a function ofx for fixed z50.9 andt524m2 for the
massMp50.15m. We also plot the difference between the tw
curves (d). The area under the curves is identicallyF(24m2) for
LC and DD-based GPDs, and hence zero for their differenced.
11300
o

n

R~x,z![~12z/2!
uH~x,z,0!u

Aq~x!q~x8!
<1, ~50!

whereq(x) is the model distribution function in Eq.~48!. Of
course the above result holds for finite2t, however since
the functionF decreases with2t, Eq. ~50! is the tightest
constraint. Notice forMp

2 Þ0, the limit t50 is in an un-
physical region. If we treat this limit as formal, however, a
analytically continue our expressions, we can use Eq.~50!.
Such continuation is consistent with the light-cone Fo
space representation of GPDs@3,4#.

Given the constraint Eq.~50!, we can test whether GPD
calculated from the light-cone projection~41! and DD ~47!
satisfy positivity. In Fig. 6, we plotR(x,z) for each GPD as
a function ofx for the fixed value ofz50.4. There is notice-
ably different behavior in the figure: positivity is violated b
the DD-based model. As above~Sec. III!, we must carefully
derive contributions from the other componentG(x,y;t).

FIG. 6. Comparison of GPDs: GPD calculated from the DD E
~47! via Eq. ~15! ~DD-based! compared with the light-cone projec
tion of the form factor Eq.~40! ~light-cone! for fixed z50.4 at t
50. Here we plot the ratioR(x,z) appearing in Eq.~50! as a
function of x.z. Positivity constrains this ratio to be less than 1
tor
is

eared
F. Derivation of the correct DDs

To derive both F and G DDs for the spin-12 pion model, we must consider the action of the opera
g [miDJ m1

••• iDJ mn ] between nondiagonal pion states. Inserted into Eq.~39! which is now taken in the symmetrical frame, th
operator produces

iA
p E d4k

Tr$~k”1m!g5~k”2P”̄1D” /21m!g5~k”1D”1m!g [m%~k1D/2!m1
•••~k1D/2!mn]

@k22m21 i e#2@~k1D!22m21 i e#2@~k2P̄1D/2!22m21 i e#
. ~51!

The presence of the trace

Tr$ . . . % m54F P̄ m~m22k22k•D!1
Dm

2
~m22k212k•P̄!1kmS m22k22

t

2
12k•P̄2k•D D G ~52!

complicates evaluating Eq.~51! by requiring contributions from diagrams reduced by one propagator. Since we have sm
the photon via Eq.~38!, the reduced diagrams are finite. Let us denote the propagators simply byA5(k2P̄1D/2)22m2

1 i e, B5(k1D)22m21 i e andC5k22m21 i e. To correctly evaluate Eq.~51!, we must write the trace as

Tr$ . . . % m54F P̄ mS t

2
2

1

2
~B1C! D1

Dm

2 S M22
t

4
2A1

1

2
~B2C! D1kmS M22

t

2
2AD G ~53!
4-8
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and evaluate each term separately canceling propagators in the denominator of Eq.~51!. These integrals can easily b
evaluated using Feynman parameters. For example, let us consider the nonreduced contribution from Eq.~53!. The denomi-
nator of Eq.~51! appears asAB2C2 and so we introduce two Feynman parameters$x,y% to render the denominator specifi
cally in the form@xA1yB1(12x2y)C#25. One then translateskm to render the integral~hyper-! spherically symmetric via
the definitionkm5 l m1bP̄m2(a11)Dm/2. Hereb5x and a5x12y21. Using a Wick rotation to evaluate the resultin
integral overl, we can cast the contribution to Eq.~51! from nonreduced terms in the form

pAE
0

1

dbE
211b

12b

da
1

4
@~12b!22a2#D~b,a;t !3$2P̄@bMp

2 1~12b!t/2#2Da~Mp
2 2t/2!% [m

3 (
k50

n
n!

k! ~n2k!!
bn2kakP̄m1

•••P̄mn2kS 2
D

2 D mn2k11

•••S 2
D

2 D mn]

~54!

with D(b,a;t) given by Eq.~26!. Given the form of Eq.~54!, we can identify$b,a% as DD variables and hence read o
contributions toF andG DDs.

dF~b,a;t !5pA@~12b!22a2#D~b,a;t !3@bMp
2 1~12b!t/2# ~55!

dG~b,a;t !5pAa@~12b!22a2#D~b,a;t !3~Mp
2 2t/2!. ~56!

Notice that these contributions respect the properties of DDs, namelydF is even ina while dG is odd. This need not be th
case, however, for each intermediate step of the calculation, e.g. contributions fromB-reduced terms andC-reduced terms are
individually neither even nor odd ina while their sum is even and their difference is odd.

Ignoring for the moment contributions fromA-reduced terms, we arrive at the DDs

F~b,a;t !5pAD~b,a;t !3$~12b!m22ba2Mp
2 1~12b!@~12b!22a2#t/4% ~57!

G~b,a;t !52pAaD~b,a;t !3$m22Mp
2 ~12b2a2!1@~12b!22a2#t/4%. ~58!

The contribution fromA-reduced terms has the form of aD-term. Using Feynman parameters for the denominatorB2C2 and
suitable changes of variables, we arrive at the contribution to Eq.~51!

2D [mE
21

1

da
pAan11~12a2!

@m22~12a2!t/4#2 S 2
D

2 D m1

•••S 2
D

2 D mn]

~59!

from which we can identify theD-term

D~a;t !5pA a~12a2!

@m22~12a2!t/4#2
. ~60!

Although strictly speaking, theD term is a contribution to theG DD, we shall treat it separately for ease.
Switching now to asymmetric variables, we have

F~x,y;t !5pAD~x,y;t !3@~12x!m22x~x12y21!2Mp
2 1~12x!y~12x2y!t# ~61!

G~x,y;t !52pA~x12y21!D~x,y;t !3$m21y~12x2y!t2Mp
2 @12x2~x12y21!2#% ~62!

D~y;t !5pAy~12y!~2y21!@m22y~12y!t#22 ~63!
113004-9
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where the functionD(x,y;t) is given by Eq.~29!. Accord-
ingly F(x,y;t) is Münchensymmetric andG(x,y;t) is anti-
symmetric, whileD(y;t) is antisymmetric abouty51/2. No-
tice F(x,y;t) in Eq. ~61! is not that of Eq.~47!. Given the
ambiguity inherent in definingF versusG DDs @cf. Eq.~23!#,
there is no reason to believe theFs would be the same. In
principle, we could construct a gauge transformation@15# to
render theFs the same. This would enable identification
the missingG function unique to Sec. IV D. We shall no
pursue this tangential point.4 It suffices to note: the proce
dure in @11# leads only to one component of the DD an
precisely which component@in the decomposition of Eq
~16!# is unknown.

The functionF(x,y;t) satisfies the reduction relations:
reduces to the quark distribution via Eq.~12! and integrates
to the form factor~13!—the latter can only be checked nu
merically. Lastly then it remains to see whether the D
based GPD lines up with true GPD calculated in Sec. IV
To construct the GPD we use the form of Eq.~32! modified
to handle theD term in Eq.~63! separately

H~x,z,t !5E
0

1

dzE
0

12z

dyd~x2z2zy!

3FF~x,y;t !1
z

22z
G~x,y;t !G

1
u@x9~12x9!#

2~22z!
D~x9;t !. ~64!

In Fig. 7, we plot the GPD Eq.~40! and the DD-based Eq
~64!. They are identical. We also plot the individualF and
G1D contributions to the GPD. Even in the absence of
D term, the contribution fromG cannot be neglected in as
certaining the DD. Again calculation of the GPD from th
full two-component DD agrees with the light-cone GP
definition. The argument of Lorentz invariance used to c
culate anF DD that satisfies the reduction relations does
determine the GPD.

For a given model, there exists a unique two-compon
DD in the decomposition of Eq.~16!. This DD produces a
GPD which is then consistent with the light-cone projecti
and satisfies all the necessary reduction relations. On
other hand, if one is interested in constructingdifferentGPD
models satisfying the reduction relations, polynomiality, e
one could exploit the ambiguity of one-component DD
Consider the following. The contribution to the GPD fromF
in Fig. 7 is markedly different from Eq.~40! and the analo-
gous contribution from Eq.~47!. These three GPDs, how

4Notice the contribution to the GPD from theD term resembles
that of H inst in Eq. ~42! but is not identical. Both terms originat
from a reduction of the spectator’s propagator. In the case of thD
term, the spectator’s propagator is completely removed by thA

reduction. ForH inst , there is residualx dependence stemming from
the light-cone instantaneous propagatorg1/2P1(12x).
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ever, share the same form factor and quark distribution, s
their respectiveG functions do not contribute to the reduc
tion relations. Thus one can always use DD-gauge freed
@15# to transform a givenF into a new function and throw
away contributions fromG. The result is an infinite set o
different GPDs with identical form factors and quark dist
butions. As pointed out in Sec. IV E, one must be careful
maintain positivity although it is likely that there still is a
infinite set of GPDs which would.

V. SUMMARY

Above we consider two covariant models for pions: o
with scalar constituents and the other with spin-1

2 . The spin-
1
2 model requires regularization and we choose the metho
@8# in order to maintain positivity. For each case we deri
the GPD from its matrix element definition which forces
to consider the triangle diagram for the form factor with t
plus momentum of the struck quark kept fixed in a gene
D1Þ0 frame.

We also construct the DDs for each model. The appro
of @11# leads only to one component of the DD~the
‘‘forward-visible’’ piece! which is itself ambiguous, thus re
sulting GPDs are incorrect and need not satisfy positiv
This fact remains true even forC-odd distributions. This
means the reduction relations alone are not enough f
which to calculate a model’s DD~and hence GPD!. To obtain
both components of the DD unambiguously, we calculate
matrix elements of twist-two operators. The resulting D
based GPDs then agree with those calculated on the
cone. The ‘‘gauge freedom’’ inherent in definingF vs G DDs
could be exploited, however, for phenomenological stud
where one is interested in a mathematical fit to data, ra
than a calculation of a given model’s DD.
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FIG. 7. Contributions to the covariant GPD from DDs. Th
light-cone GPD Eq.~40! and the DD-based Eq.~64! are identical,
denoted~LC! and plotted as a function ofx for fixed z50.9 andt
524m2 for the massMp50.15m. We also plot the individual
contributions fromF in Eq. ~61! and from@z/(22z)#G1$1/@2(2
2z)#%D in Eqs.~62! and ~63!, denoted~G1D term!.
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