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We consider two simple covariant models for pigose with scalar and the other with spjneonstituents
Pion generalized parton distributions are derived by integration over the light-cone energy. The model distri-
butions are consistent with all known properties of generalized parton distributions, including positivity. We
also construct corresponding double distributions by appealing to the Lorentz invariance of the form factor.
These ostensibly constructed double distributions lead to incorrect generalized parton distributions that need
not respect the positivity constraints. This inconsistency arises from the ambiguity inherent in defining double
distributions in the standard one-component formalisren in the absence of the Polyakov-Weiss jeivie
demonstrate that the correct model double distributions can be calculated from nondiagonal matrix elements of
twist-two operators.
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I. INTRODUCTION been used to obtain GPID&1] based on DDs. Without modi-
fying the quark distribution, the resulting GPDs violate the
In recent years generalized parton distributid@PD9 positivity constraint$12]. This inconsistency is attributed to
[1] have generated a considerable amount of attention. Theseissing contributions from non-wave function vertex dia-
distributions stem from hadronic matrix elements that aregrams which are absent when one uses noncovariant vertices.
both nondiagonal with respect to hadron states and involvén general these diagrams are a substitute for higher Fock
qguark and gluon operators separated by a lightlike distance&omponents, sdd 3]. The covariant models used here, how-
Thus physics of both inclusivigrarton distributions, e.gand  ever, allow us to test the uniqueness of this ostensible con-
exclusive (form factors, e.g. reactions is contained in the struction.
GPDs. At the leading-twist level, these new structure func- Indeed we find that appealing to Lorentz invariance is
tions describe the soft physics of a variety of hard exclusiveenough to determine only one component of the double dis-
processessee the reviewf2]). tribution in the two-component formalisifeven for C-odd
Since lightlike correlation functions are involved in the distributions, where the Polyakov-WeiEsterm [14] is ab-
description of deeply virtual Compton scatterif@VC$s), senj. Moreover, the component determined from the reduc-
e.g., there exists a simple decomposition of these matrix elion relations is ambiguous. We show that in the scalar con-
ements in terms of the light-cone Fock space wave functionstituent model, missing the second component leads to
of the initial and final state$3,4]. This representation of incorrect GPDs. The same is true for the spionstituent
GPDs is ideal for physical intuition; however, comparatively model, where additionally the positivity constraint is vio-
little has been done to show that the light-cone wave functated. The correct DDs unique to each model can be calcu-
tion representation is consistent with the reduction propertielated from nondiagonal matrix elements of twist-two opera-
required of the generalized parton distributions. Below wetors which we demonstrate. On the other hand, exploiting the
undertake a simpler task of presenting covariant models foambiguity inherent in defining one component D@dich is
the pion which respect the properties of GPDs. Albeit simpleakin to gauge freedoifl5]) one can generate infinitely many
these models illustrate the utility and physicality of the light- different GPD models which share the same form faatut
cone Fock representation as well as provide a guide to urguark distribution as well as satisfy polynomialignd likely
derstanding how the reduction relations arise in this formalpositivity).
ism which will be useful when nonperturbative solutions for ~ The organization of the paper is as follows. First in Sec.
the Fock components in QCD become available. The scaldt, we explicitly derive the GPD for the scalar triangle dia-
constituent model which we consider is merely the trianglegram with pointlike vertices. Next we show the DD for this
graph with pointlike verticegthis has been considered[®], = model extracted from the form factor in the Drell-Yan frame
see alsd6]). The spins model is based on an earlier exactly leads to incorrect GPDs. Having encountered this problem,
soluble, (1+1)-dimensional light-front modgl7]. An exten-  we review definitions of the double distributions in Sec. Ill.
sion of this model to 3-1 dimensions, which involves regu- Here we also calculate the missing component of the DD for
larizing the divergent light-front current, has been done inthe scalar triangle diagram. In Sec. 1V, we present the model
[8]. for the spinj case. Next in Sec. IV B, we regularize the
Another approach is to use the formalism of double dis-current and then extract this model's GPD. Although not
tributions (DDs) [9,10]. This formalism elegantly explains manifest, this model satisfies polynomiality, which is dem-
the polynomiality conditions required of GPDs and thusonstrated in Sec. IV C. Usind.1] as a guide, we construct a
gives one the ability to construct models consistent withDD for this model in Sec. IV D. Similar to Sec. Il, this one-
known properties—although insight into model constructioncomponent DD too gives rise to a different GPD than the
has often been limited to factorizatioAnsaze Recently light-front projection. Additionally positivity is not satisfied
two-body light-front wave function models of the pion have by this one-component DOSec. IV B. We calculate the
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complete two-component DD from matrix elements of twist-
two operators in Sec. IV F. Lastly we conclude with a brief A
summary(Sec. V.

II. PION WITH SCALAR CONSTITUENTS

For the pion model with scalar constituents, we choose
the pointlike Bethe-Salpeter vertdx(k,P)=1, where the k—P
coupling constant is assumed to be absorbed into the overall P P
normalization. Furthermore, we choose derivative coupling
of the photon to charged scalar particles.

The pion electromagnetic form factor for this model can
be calculated from the Feynman triangle diagram. In order to
derive the GPD, however, we need to choose the kinematic¥hich leads to
specified in Fig. 1 withk as the momentum of the struck
quark. Using the stated pion vertex and taking the (L—=2I2)H(X, L, 1) = 0(x—)H (X, {,1)
plus-component of the currehtwe have

FIG. 1. Covariant triangle diagram for the pion electromagnetic
form factor.

F(t)= LN'ZJ d*k(2kT + AT [K2—m?+ie] ! '
(1—¢2)P* Using k *=k*+ (1—x’)A* for the relative transverse mo-
mentum of the final state, the functional forms are
X[(k+A)2—m?+ie] Y (P—k)2—m?+ie] %
1
@ H1(X,§,t)=(2x—§)|N|2J dk* Dy(x,k*[M?2)
where the momentum transfertis A2 and the skewness is
defined relative to the initial stata*=—/P*<0. Physi- X Dyy(x', k" [M2)/x(1—x)x’ (6)

cally ¢ plays the role of Bjorken variable for DVCS. Addi-
tionally we work in the frame wher =0.

To turn Eq.(1) into an expression for the GPB(X, ¢,t), Hz(X,é“.t)Z(ZX—DlNVJ dkiDW(x,ki|M2)
we insertd(k*/P* —x) to fix the momentum of the struck N
quark and keeg+# 0. This forces X Dy (X" K™ [/ X" (1= X") (1= X), (7)
F(t):f H(x,¢,Hdx. (2 where x"=x/¢ and k" =k"+x"A" are the relative mo-

menta of the photon. Additionally, we use the replacement
Lastly we integrate ovek™ to project onto the light cone.

Doing the contour integration to extradi(x,,t) in Eq. (1), K 24 m?
we are confronted with the poles Dw(x,k*[M?)"1=M2— XA=x" )
e
Ka =Kon= x’ which is the propagator of the Weinberg equati@].
Comments about the GPB(x,¢,t) in Eq. (5) are in or-
ie der. Firstly, the model is covariant and thus the sum rule and
Ko =P~ +(k=P)on= 77 (3)  polynomiality conditions are mesee Sec. IV C below for

clarification. We have checked this explicitly and suitable
. discussion can be found if5,6]. Secondly,H,(x,Z,t) ap-
kK-=—A"+(k+A). — e pearing in Eq.(6) satisfies the relevant positivity constraint
¢ on oy’ for a compound scalar of scalar constituefwhich appears
in the Appendix off 12]) which is clear from inspection.

where the on-shell energies gg,= (p*%+m?)/2p™ and the Consideration of this model was first done from the per-
abbreviationx’ = (x— ¢)/(1—¢) is used. Thus the nonvan- spective of DDs, see e.g. the toy model [8f. This DD
ishing contribution to the integral is model was revisited recently with derivative coupling at the
photon vertex in the Appendix ¢fl1] and the same DD also
27 [ x(1—x)][ 6(x— {)Regk, ) — 6({—x)Regk, )], appears irf5]. To derive the DD for this simple model, we

(4) appeal to Lorentz invariance as suggestefiliti, recalling
along the way the relevant properties of DDs.
First consider the form factor. In the=0 frame, Eqs(6)
'For any vectora®, we define the light-cone variablea™ and (7) reduce to the Drell-Yan formulpl7] via the defini-
=1/{2(a’+a3). tion in Eq. (2):
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dxdk* 3t .
F<t>=|N|2f X(1— ) PwOk M)
o —LC
g 2r -~ DD-based 7
X Dy(X, K- + (1= x) AL [M2), 9) n o
D[ ]
wheret=— A?. The form factor is Lorentz invariant and has X .
a decomposition in terms of the Lorentz invariant DD = RN
F(x,y;t): namely, I 7 )
1 0 02 04 06¢08 1
=f f F(x,y;t)dydx (10) X
070 FIG. 2. Comparison of covariant GPDs for the scalar triangle
The DD satisfies the following relatiof40]: support prop-  diagram. The GPDs EdS) (denoted LG and Eq.(15) (DD-based
erty are plotted as a function of for fixed /=0.7 andt= —m? for the
massM ,=m<2m. We also plot the difference between the two
F(X,y;t)x0(1—x—y), (11 curves ). The area under the curves is identicaly—m?) for

LC and DD-based GPDs, and hence zero for their differehce

reduction to the quark distribution at zero momentum transthe same form factor and quark distribution. Additionally we

fer plot their difference §) as a function of.
q(x)= jkx,:(x,y;o)dy (12) IIl. DEFINING DOUBLE DISTRIBUTIONS
° In this section we define DDs via their moments by fol-
and isMiinchensymmetric[18] lowing the two-component formalism ¢fl4,15. Focusing
on the ambiguities inherent in defining one-component DDs
F(X,y:t)=F(x,1-x—V;t). (13)  from two-component objects, we will understand why the

DD in Eqg. (14) leads to an incorrect GPD. Moreover, we
shall calculate the correct DD for the scalar triangle diagram
from matrix elements of twist-two operators. We remark in
passing that the two components of the [iglow F andG,

or F andD term in the standard formalignsan be viewed as
projections of a single function of two variablgk9].

Using Eqg.(9), we can writeF(t) in the form(10) with

FOuyi)= X|N[26(1—x—y) 14
(xyit)= m?—x(1-x)M2—y(1-x—y)t’

which satisfies Eq911)—(13). The ingenuity of DDs comes A. Definitions
about when we construct the GPD via '

Above we have worked in Radyushkin’s asymmetrical
frame and asymmetrical variables which are ideal for pertur-
bation theory and are a natural generalization of ordinary
parton distributions. The nondiagonal matrix elements of
In this form the sum rule and polynomiality conditions fol- twist-two operators are, however, more conveniently ex-
low trivially. pressed in variables symmetric with respect to initial and

In Fig. 2, we plot the GPD Eq5) as well as the GPD final state<. To this end we define the average momentum

derived from DD via Eq(15). Surprisingly the two are dif- P*= (P+ P')“[2. Let D#*=1(d*—d*). Then for a pion of
ferent despite the fact both models are covariant and possespin+ constituents we have

11
HOx, 2t = jo foﬂz,y;t)a(x—z—zy)dydz (19

(P+ A2 (0)yHiD 1. -

= _ " n!
-iD#nly(0)|P— A/2>:23Mk20 ICE

- E k'(n k)! nk(t)EM"'E“hk(

An(t)PH1. . PEn- k(

A\ #n—k+1

..(_

A

2

)ﬂn]

A

A\ Hn—k+1 #nl
S (-4

(16)

2Good discussion of the conversion from symmetrical and asymmetrical variables and distributions can be fa@GhdAiditionally
advantages and disadvantages of both are presented.

113004-3



B. C. TIBURZI AND G. A. MILLER PHYSICAL REVIEW D 67, 113004 (2003

where the action of ... on Lorentz indices produces only the symmetric traceless parirasadiance restrictk in the first

sum to be even and odd in the second. For a pion of scalar constituents, refilagith 2iD*. As it stands there is
considerable freedom in the above decomposition, e.g. one could rewrite the abowByyjthy (t)/(n—k+1) as a contri-
bution toA,(t). Carrying this out for alk, puts the bulk in the first term and renders the second term proportional only to the
symmetric traceless part oh(-1) A’s—moments of the Polyakov-Weig3 term[14]. This is the usually encountered form
of the DD with D term. Calculationally, however, we find E(L.6) is the most useful.

The F and G DDs can be defined as generators of the coefficient functions

Awt= | ag T ekt (B act) 17)
-1 —1+|8]

Bnk(t)=f1 dﬁjllﬁl daB" kG (B, a:t). (18)
-1 -1+

As a consequence of the restrictionslom the sums, the functioR (3, «;t) is even ina while G(3,«;t) is odd. Also for
n-even, there is no contribution from tti@ term to the functiorG(3,a;t).
These functions then appear in the decomposition of matrix elements of lightlike separated operators

_ _ — — (1 1-1g] L=
(P+A/2| w(—z—/2)z¢(z—/2)|P—A/2>:2P-zf d,Bf | ldae_'ﬁp‘”'“A'Z’zF(,B,a;t)
-1 ~1+|8
1 1-8] =
_Azf dBJ dae—lﬁP~Z+laA~Z/ZG(ﬂ'a;t), (19)
-1 —1+|p|
wherez?=0. B
Denotingé=—A*/2P*, the GPD in symmetric variables reads
~ 1 = — —
H(x,g,t)zﬂf dz eXP 2 (P+ A2l y(— 2 12)y " (2 12)|P— AI2). (20)
Inserting Eq.(19) into this definition yields
~ 1 1-1g] ~
H(x,g,t)=f_ldﬁf_l+|ﬁlda5(x—ﬁ—ga)[F(B,a;t)+§G(ﬁ,a;t)]. (21

By integrating overx, we uncovertwo sum rules: the sum We see thatG(B,a;t) does affect higher moments of the
rule for the form factor GPD. This is the source of the discrepancy shown in Fig. 2

as we now demonstrate.

f dﬁf daF(B,a;t)=F(t) (22 B. Scalar model, revisited

To derive bothF and G DDs for the scalar triangle dia-
gram of Sec. Il, we must now consider the action of the

and what we call thé&-sum rule oo o .
operator 2D [#iD#1...iD#nl. This produces a factor

f dﬂf daG(B,a;t)=0, (23) ;(2k+A)[“(2k+A)“l- - (2k+ Ay~ (24)

which is trivial sinceG is an odd function ofe. Equation in the integrand of Eq(9), which we now take in the sym-
(23) has nontrivial consequences however, e.g. it shows theetric frame. After the integration ovéris performed, we
method employed bj11] leads only to arF-type DD in Eq. ~ are left only with

(19). This function integrates to the form factor via Eg2)
and in the forward limit{£,t— 0} reduces to the quark dis-
tribution (when integrated ovew). ThusF(3,a;t) should
be properly termed the forward-visible DD, which encom- . o
passesnorethan just neglecting th® term. From Eq(16), X (BP— aAl2)H1- . . (BP— aA[2)"n], (25

1 1-8 _
J dﬁf daD(B,a;t)(28P—aA)
0 -1+8
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where we have used the replacement

1

m?—B(1- M2 —t[(1-B)>—a?]/4
(26)

D(B,a;t)=

Using the binomial expansion, we can identify3, «;t)
andG(B,a;t) via Egs.(17) and(18), namely
F(B,a;t)=BO(1—-B—a)D(B,a;)IN[> (27

G(B,a;t)=ab(1—B—a)D(B,a;t)|N|?.
(28)

PHYSICAL REVIEW D67, 113004 (2003

I'(k,P)=—igy°. (33
Here we have assumed oy coupling at the quark-pion
vertex with coupling constarg, whereas four Dirac struc-
tures exist[21]. This simple coupling is suggested by an
effective interaction Lagrangian of the for(see, e.g[22])
L= —igm-qy°m, (34)
where the coupling constagt=m/f ., with m the constitu-
ent mass and, the pion decay constant. Notice tfladder
approximation kernel is independent of light-cone time.
Thus this modelas well as the scalar triangle model in Sec.
II) is a special case of the instantaneous formalism described
by [23] in the impulse approximation. The relation of the

To compare with the results of Sec. Il, we must revert toyertex to the Bethe-Salpeter wave function is given by

asymmetric variables which is accomplished {§—x,y

—(a—pB+1)/2}. The denominator common to both terms

becomes
D(xy;t)= ! . (29
m?—x(1—x)M2—y(1—x—y)t
Thus we have
F(X,y;t)=x60(1—x—y)D(x,y;t)|N[? (30

G(x,y;t)=(2y+x—1)6(1—x—y)D(x,y;t)[N[% (3D

Notice the functionG(x,y;t) is Munchen antisymmetric
which is required becausB(B,«;t) is odd with respect to
.

To construct the GPI(x,{,t) we must also convert Eq.

(21) to asymmetric variables.
1 1-z
H(x,g,t):f dzf dys(x—z—¢y)
0 0

X

. ¢ .
F(x,y,t)+2T§G(x,y,t). (32

We can now plot the GPD in E@32) using the two DDs in
Egs.(30) and(31). The result agrees with E¢) depicted in
Fig. 2. Moreover, the contribution fromiZ/(2—¢)]G is

identically the difference’ plotted in the figure. In the DD

i
V(k,P)=—(—ig)y>——. (39
b e 9 o mrie
The valence wave function can be found by projecting the
Bethe-Salpeter wave function onto the light-corie=0, see
e.g.[24]. Using the normalization convention ¢25], we
have
n

dk™ u,(xP* k')
& Y
i U)\r[(l_X)P+,Pl_kJ']

XW(k,P)y — ,

P(X,Kie NN ) =

2pt) 2w

(36)

wherex is the fraction of the pion’s plus momentum carried
by the quark x=k*/P*), and the relative transverse mo-
mentum iskyy=k*—xP-. The valence wave function is

found from Eq.(36) to be

gvyN./2C

WKL) = S

Dw(x,k[M2)

X[k,)\@\’}\/—)\mb‘)\',}\/], (37)

where we have employed the notatikp=k!+i\k?. As a
result of the contour integration, we have a factorgpk(1
—x)] implicitly in Eq. (37). Additionally the wave function

formalism, the reduction relations alone do not determine thés symmetric under interchange xfand 1—x. As is known,

GPD. We illustrate this further with a spipion model.

IV. PION WITH SPIN- % CONSTITUENTS
A. Bethe-Salpeter amplitude and pion wave function

For the spins model, we choose the triviallqasymmet—
ric Bethe-Salpeter vertex

3Notice F and G are projections of a single functiod (3, «;t)
=f(B,a) in the notation of 19]. Determination off (3, a) for the

the simplistic form of this wave function leads to divergent

quark distributions and form factors which will be handled

below. Since this model is honrenormalizable, the choice of
regularization scheme influences the dynamics.

B. Form factor and generalized parton distribution

The pion electromagnetic form factor for this model can
be calculated from the Feynman triangle diagram. In order to
extract the GPD, however, we need to choose the kinematics
specified in Fig. 1 withk as the momentum of the struck
qguark. As it stands, using the wave function Eg§7), the

spin4 model of Sec. IV, however, cannot be done by inspection. triangle diagram diverges. Following the approach&if we
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covariantly smear the pointlike photon vertex in Fig. 1 in aBecause our concern is with model comparisons not phe-
way reminiscent of Pauli-Villars regularization nomenology, we shall chooge=m for simplicity. Although

not obvious from inspection, results fat#m exhibit the
same features investigated below. Most noteworthy, positiv-
ity remains satisfied when #m.

Considering matrix elements of the current operalbr
between pion states, the mod8&B) conserves current. This
can be demonstrated most easily by calculating in the
— 4 vertex in a covariant manndQGlzﬂ_ This Smearing Breit frame. Addltlona"y since the model is fU”y covariant,
should additionally respect theq symmetry of the vertex. W€ can extract the electromagnetic form factor from any
We do not pursue this option here since positivity constraint§omponent of the current. In particular, potential end-point
(see Sec. IV Eare likely to be violated. On the other hand, Singularities present in matrix elements.bf have been re-
one could use Pauli-Villars subtractions to regulate themoved by the photon vertex smearing £86) [8]. Using the
theory, however, positivity would also be put into question.plus component of the current, we have the expression

A2 A2
Y :
kK2—A2+ie” (k+A)2—A’+ie

y—-Th= (39

Equation(38) is a simple way to model noqacomponents
of the wave function. Alternatively one could smear thg

F(t)= igZNc|C|2m4f d*k Tr[(K+m)y°(k—P+m)y>(k+A+m)y*] 39
1— £ (2m)*PT [K2—m?+ie][(k+A)2—m?+ie] [ (P—K)2—m?+ie]
2
where the momentum transfertis A? and the skewness is defined relative to the initial statd™ = — /P " <0.
To calculate the GPD, we follow the procedure described in Sec. Il. The result can be written as
(1_ §/2)H(Xag!t) = H(X_ g)Heff(ngyt) + e(g_x)[Hlnst(Xagyt) + anal(xigvt)]v (40)

where Hg is the piece determined by the effective two-body wave functidys, is the contribution from instantaneous
propagation of the spectator quark, and the remaining contributions we term nonvéthoeigh strictly speaking the
instantaneous piece is also of the nonvalence variltis a peculiarity of this model that explicit instantaneous terms are not
present forx>{.

The functional forms are

€

Hax,20= [ =5 S i K ek AN, (41
(2m) AN
47D3 (X" kL [t)
Hm(x,g,t)z—Af dkiw—l (42)
(1—-x)X"(1—x")
2(k- k' +m?)Dy(x,k* [M2) DG, (x" k" [t)
ana|(x,/:,t)=—Af dk* ? | hd | [2{Dy(X", K" [t)
X(1=x)X"(1—=x")x"(1—-x")(1-¢)
+Dy(x,k*[M2)], (43)
where we have defined the effective wave function
. gVNc/2Cm?
A CA SHW )=m[kﬁm—xmax,fw]DwX,kllMi) (44)

and made the abbreviatiod=g?C|?°N.m*2(27)3. It is  independent and hence does not vanisk=ad,1. This is the
sensible to think of Eq(44) as an effective wave function dynamical reason why the un-regularized wave function Eq.
sincex— 1—x symmetry has been lost. Moreover the wave(37) does not vanish at the end points. Continuity of the GPD

function vanishes at=1 and is nonvanishing at=0. This

is a desirable addition to the dynamics stemming from the

regularization. Notice the ladder kern@4) is momentum

at x=¢ follows directly from Eqs.(41)—(43).
In Fig. 3, we plot the GPD for the parameterst
=0.14 GeV andm=0.33 GeV. On the left, the graph
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2r ' ' =02
e - %ﬂ'g FIG. 3. On the left, the GPD
= 0. Eq. (40) is plotted at fixedt=

5 e -G08 J
NN —m- for a few values ofZ. On

;}1 7 the right, the same GPD is plotted
% for fixed {=0.5 for a few values
T of t. The model parameters are ar-
bitrarily chosen asM =0.14 GeV
0/4 andm=0.33 GeV.
0 0.2 0.4 0.6 0.8 1
X
shows the GPD for a few values ¢fas a function of for D. Double distribution
fixed t, while on the right we have fixed andt varying. To construct the DD, we shall first proceed incorrectly by

appealing to the Lorentz invariance of the form factor as in

Sec. Il. This will at least lead to one component of the DD

satisfying the reduction relations and can be compared to Eq.
Since not manifest, one should check the covariance of40).

the model Eq.(40). With the covariant starting point Eg. Using Eq.(41) in the A*=0 (Drell-Yan) frame, we can

(39), we anticipate polynomiality will be satisfied which pro- write F(t) in the form(10) with

vides a useful check on our expressions E4%)—(43). First

we define the moments of the GPD with respect to asymmet- F(%,Y;) =[3m?—=M2x(1—x) +y(1—x—y)t]

ric variables

C. Sum rule and polynomiality

27 A0(1—Xx—Yy)y(1l—x—Yy)

X .
pn(g,t):f XH(x.£ 1)dx, (45 (1=X)[m? = M2x(1=x) = y(1=x=y)t]*
(47)
Polynomiality requires the momengs, to be of the form Aside from factors arising from spin, this DD is basically the

same as that considered [ihd] which one can realize by
n utilizing \2=— I\/IfT/4+ m?. Not surprisingly, then, this DD
_ s satisfies Eqs(11)—(13). For reference we give the quark dis-
(8=, 2nj(D) ¢ (46) tribution function

27 A (1-x)[3m>—M2x(1-x)]

The zeroth moment is merely the sum rule for the form fac- q(x)=
o . .. 6 [mZ_MZX(l_X)]S

tor, henceagy(t)=F(t). For simplicity, we check a few of 17

the lowest moments for the polynomiality condition E46)

at t=0. In Fig. 4, we plot the moment®,({,0) for n which could be calculated directly frome in EQ. (44).

=0,1,2,3 which appear as smooth functions. Additionally we In Fig. 5, we plot the GPD Eq40) as well as the GPD

plot simple (-+1)-point polynomial fits to the moments, derived from DD Eq(47) via Eq.(15). As in Sec. Il, the two

. (49

which line up nicely with the integral&t5). are different despite the fact both models are covariant and
possess the same form factor and quark distribution. Addi-
P (L.t=0) tionally we plot their difference as a function gf
1 P E. Positivity constraints
- P, .
- P Here we demonstrate another difference between the GPD
- P, e in Eq. (40) and the one stemming from the one-component
0.5 - P, X X DD Eq. (47). To do so, we look at the positivity constraints.
N e X Originally these constraints appeared [it0,28 and were
X ifxx derived from the positivity of the density matrix by restrict-
o SO SR S i Al e _
d . . s . ing the final-state parton to have positive plus-momentum
0 02 04 06 08 1

[and ignoring the contribution fror&(x,,t) for the spins
casd. Although the matrix elements involved for GPDs are
FIG. 4. Polynomiality conditions checked for the GPD E4f). off diagonal, they are still restricted by positivity and their
The moment$,(£,t=0) from Eq.(45) are plotted as a function of diagonal elements. Correcting the constraints for the pres-
¢ for n=0,1,2,3. Additionallyx s denote the simplen(+1)-point  ence of theE distribution was first done if4]. By consider-
polynomial fit to the momenP,, . ing the positivity of the norm on Hilbert space, stricter con-

113004-7



B. C. TIBURZI AND G. A. MILLER PHYSICAL REVIEW D 67, 113004 (2003

T T T T T T | T 1.04 T T T T T T T T T T T
L — e G L — DD-based |
«—~ [ | DD-based s ] . - Light-cone
S04l -9 P <02
< - ¥ =)
" I
=02k . wn
P >
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FIG. 5. Comparison of covariant GPDs for the spinor triangle  FIG. 6. Comparison of GPDs: GPD calculated from the DD Eq.
diagram. The GPDs E@40) (denoted LG and Eq.(47) (DD-based (47) via Eg. (15 (DD-basedl compared with the light-cone projec-
are plotted as a function offor fixed {=0.9 andt=—4m? for the tion of the form factor Eq(40) (light-cone for fixed {=0.4 att
massM ,=0.15m. We also plot the difference between the two =0. Here we plot the ratidR(x,{) appearing in Eq(50) as a
curves ). The area under the curves is identicafly— 4m?) for function of x>{. Positivity constrains this ratio to be less than 1.

LC and DD-based GPDs, and hence zero for their differehce IH(x,£,0)]
R(X,{)=(1-{2) ————=<1, (50)

straints for the spirk distributionsH and E have recently va(x)q(x’)

appeared as well as constraints for the full set of twist-two

GPDs[29]. whereq(x) is the model distribution function in Eg48). Of

For the scalar pion case there is of course no contributiogourse the above result holds for finitet, however since
from the nonexistenE distribution and hence the original the functionF decreases with-t, Eq. (50) is the tightest
bounds are actually corre@hodulo factors due to the differ- constraint. Notice forl\/l,zﬁﬁo, the limitt=0 is in an un-
ence of a spiry proton versus a spin-0 pidnGiven the  physical region. If we treat this limit as formal, however, and
matrix element definition of the GPD consistent with E2), analytically continue our expressions, we can use (Bf).

namely Such continuation is consistent with the light-cone Fock
B space representation of GP[34.
H(X,Z,t) = 1 f di Given the constraint Eq50), we can test whether GPDs
e 1-¢/12) 4w calculated from the light-cone projectiqdl) and DD (47)
L _ satisfy positivity. In Fig. 6, we ploR(x,{) for each GPD as
eXP 2 (a(P)(0)y " y(z7)|m(P)), a function ofx for the fixed value of =0.4. There is notice-

(49) ably different behavior in the figure: positivity is violated by
the DD-based model. As abovEec. Ill), we must carefully
the spin-0 positivity constrainffor x>¢) reads derive contributions from the other componétx,y;t).

F. Derivation of the correct DDs

To derive both F and G DDs for the spiny pion model, we must consider the action of the operator

YHD #1. . .iD*#nl between nondiagonal pion states. Inserted into(B§). which is now taken in the symmetrical frame, this
operator produces

iAJ d4kTr{(k+ m) Y5 (K— P+ A/2+ m) y>(K+ A+ m) Y14 (k+ A72)#1- - - (k+ A/2)#n)

[k2—m2+ie]q (K+A)2—m2+ie]d (K—P+A/2)2—m?+ie] 6y

The presence of the trace

T ...} #=4

— AH —
PA(M?— k2= k- A)+ —- (M= K2+ 2k-P) +k*

2_ 2_£ P—k-
M=Kk =+ 2k -P—K- A (52)

complicates evaluating E¢51) by requiring contributions from diagrams reduced by one propagator. Since we have smeared

the photon via Eq(38), the reduced diagrams are finite. Let us denote the propagators simﬂ[yzlok—ﬁ— A2)2—m?
+ie, B=(k+A)>—m?+ie and¢=k?—m?+ie. To correctly evaluate Eq51), we must write the trace as

w

T Jr=aPH - 5B |+ 5 Tk 53

, 1 ,
M?= 2 =20+ 5 (B-©) M?= > -2

B -
2
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and evaluate each term separately canceling propagators in the denominator (6f)Ed.hese integrals can easily be
evaluated using Feynman parameters. For example, let us consider the nonreduced contribution (6@mn Hte denomi-
nator of Eq.(51) appears aQ(®82¢? and so we introduce two Feynman paramefety} to render the denominator specifi-
cally in the form[ x2A+y2B+ (1—x—y) €] °. One then translatdg* to render the integrahyper) spherically symmetric via

the definitionk“zl”+,83”—(a+ 1)A#/2. HereB=x and a=x+2y—1. Using a Wick rotation to evaluate the resulting
integral overl, we can cast the contribution to EG1) from nonreduced terms in the form

wAfldBfliﬁ da%[(l—ﬁ)z— a?]D(B,a;t)3{2A M2+ (1- B)t/2] — Aa(M2 —t/2)}1»
0 —1+p

n!

n I = _ A\ Bn—k+1 A\ #nl
- ph- M1, .. PHMn—k| — — | — —
X2 k=i A PP k( 2) ( 2) 54

with D(B,«;t) given by Eq.(26). Given the form of Eq(54), we can identify{3,«} as DD variables and hence read off
contributions toF and G DDs.

SF(B,a;t)=mA[(1— B)2— &?]D(B,a;t)*[ M2+ (1— B)t/2] (55)

6G(B,a;t)=mAa[(1— B)?— a?]D(B,a;1)3(M2—1/2). (56)

Notice that these contributions respect the properties of DDs, nafirelg even ina while G is odd. This need not be the
case, however, for each intermediate step of the calculation, e.g. contribution®frechuced terms ané-reduced terms are
individually neither even nor odd ine while their sum is even and their difference is odd.

Ignoring for the moment contributions frogt-reduced terms, we arrive at the DDs

F(B,a;t)=mAD(B,a;t)*{(1— B)m’— Ba’M %+ (1- B)[(1- B)*— o?]t/4} (57)

G(B,a;t)=—mAaD(B,a;t)3(m?—M2(1— B— a?) +[(1— B)%— a?]t/4}. (58

The contribution fronRl-reduced terms has the form ofDaterm. Using Feynman parameters for the denomin2iee? and
suitable changes of variables, we arrive at the contribution to%k).

_A[ufld “A“nﬂ(l_“z)(_é)”l (_é)“"] (59
0 - (1-aduap! 2] T 2

from which we can identify thé®-term

D(art) = A2 (60)
T = (1—- a4
Although strictly speaking, th® term is a contribution to th& DD, we shall treat it separately for ease.
Switching now to asymmetric variables, we have
F(,y;t)=mAD(X,y;)*[(1—x)m? = X(x+2y—1)*M2 +(1=x)y(1—x=y)t] (61)
G(x,y;t) == mA(X+2y = 1)D(x,y;) M’ +y(1—x—y)t—=M2[ 1—x—(x+2y—1)?]} (62)
D(y;t)=mAy(1-y)(2y—1)[m*~y(1-y)t]~? (63)

113004-9
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where the functiorD(x,y;t) is given by Eq.(29). Accord-
ingly F(x,y;t) is Minchensymmetric and5(x,y;t) is anti-
symmetric, whileD(y;t) is antisymmetric about=1/2. No-
tice F(x,y;t) in Eq. (61) is not that of Eq.(47). Given the
ambiguity inherent in defining versusG DDs|cf. Eq.(23)],
there is no reason to believe tikes would be the same. In
principle, we could construct a gauge transformafibs| to
render theFs the same. This would enable identification of
the missingG function unique to Sec. IV D. We shall not
pursue this tangential poifitlt suffices to note: the proce-
dure in[11] leads only to one component of the DD and
precisely which componeriin the decomposition of Eq.
(16)] is unknown.

The functionF(x,y;t) satisfies the reduction relations: it
reduces to the quark distribution via E§2) and integrates
to the form factor(13)—the latter can only be checked nu-

merically. Lastly then it remains to see whether the DD-

based GPD lines up with true GPD calculated in Sec. IV B
To construct the GPD we use the form of E§2) modified
to handle theD term in Eq.(63) separately

1 1-z
H(x,Z,t)= fo dzfo dyd(x—z—¢y)

X

. ¢ .
F(x,y;t)+ 2TgG(x,y,t)

g[X"(l—X")]

22-0) D(x";t).

(64)

In Fig. 7, we plot the GPD Ed40) and the DD-based Eq.
(64). They are identical. We also plot the individualand

PHYSICAL REVIEW D 67, 113004 (2003

T T T T T T T T

—LC
-G+ D-term

_ . 1 . 1 . | . | |
0204 06 08¢
X
FIG. 7. Contributions to the covariant GPD from DDs. The
light-cone GPD Eq(40) and the DD-based Eq64) are identical,

denoted(LC) and plotted as a function of for fixed {=0.9 andt
=—4m? for the massM,=0.15m. We also plot the individual

‘contributions fromF in Eq. (61) and from[{/(2—¢)]G+{1[2(2

—{)1}D in Eqgs.(62) and(63), denoted G+D term).

ever, share the same form factor and quark distribution, since
their respectiveG functions do not contribute to the reduc-
tion relations. Thus one can always use DD-gauge freedom
[15] to transform a giverF into a new function and throw
away contributions frontc. The result is an infinite set of
different GPDs with identical form factors and quark distri-
butions. As pointed out in Sec. IV E, one must be careful to
maintain positivity although it is likely that there still is an
infinite set of GPDs which would.

V. SUMMARY

Above we consider two covariant models for pions: one
with scalar constituents and the other with spinThe spin-

G+ D contributions to the GPD. Even in the absence of thes model requires regularization and we choose the method in
D term, the contribution fronG cannot be neglected in as- [8] in order to maintain positivity. For each case we derive
certaining the DD. Again calculation of the GPD from the the GPD from its matrix element definition which forces us
full two-component DD agrees with the light-cone GPD to consider the triangle diagram for the form factor with the
definition. The argument of Lorentz invariance used to calflus momentum of the struck quark kept fixed in a general

culate anF DD that satisfies the reduction relations does notA * #0 frame.

determine the GPD.

We also construct the DDs for each model. The approach

For a given model, there exists a unique two-componenef [11] leads only to one component of the DRhe

DD in the decomposition of Eq.16). This DD produces a

“forward-visible” piece) which is itself ambiguous, thus re-

GPD which is then consistent with the light-cone projectionsulting GPDs are incorrect and need not satisfy positivity.
and satisfies all the necessary reduction relations. On thEhis fact remains true even fdZ-odd distributions. This

other hand, if one is interested in constructdtitierentGPD
models satisfying the reduction relations, polynomiality, etc.

one could exploit the ambiguity of one-component DDs.

Consider the following. The contribution to the GPD frédm
in Fig. 7 is markedly different from Eq40) and the analo-
gous contribution from Eq(47). These three GPDs, how-

“Notice the contribution to the GPD from th2 term resembles
that of Hi, in EqQ. (42) but is not identical. Both terms originate
from a reduction of the spectator’s propagator. In the case obthe
term, the spectator’s propagator is completely removed by2the
reduction. FoH ., there is residuat dependence stemming from
the light-cone instantaneous propagafor2P* (1—x).

means the reduction relations alone are not enough from

which to calculate a model’s Diand hence GPD To obtain

both components of the DD unambiguously, we calculate the
matrix elements of twist-two operators. The resulting DD-
based GPDs then agree with those calculated on the light
cone. The “gauge freedom” inherent in definifkgvs G DDs
could be exploited, however, for phenomenological studies
where one is interested in a mathematical fit to data, rather
than a calculation of a given model’s DD.

ACKNOWLEDGMENTS

This work was funded by the U.S. Department of Energy,
grant: DE-FG03-97ER41014.

113004-10



GENERALIZED PARTON DISTRIBUTIONS AND DOUBE . . . PHYSICAL REVIEW D67, 113004 (2003

[1] D. Muiller, D. Robaschik, B. Geyer, F.M. Dittes, and J. e, [15] O.V. Teryaev, Phys. Lett. B10, 125(200J.
Fortschr. Phys42, 101(1994); X.-D. Ji, Phys. Rev. Lett78, [16] S. Weinberg, Phys. Ret50, 1313(1966.
610(1997; Phys. Rev. D55, 7114(1997; A.V. Radyushkin,  [17] S.D. Drell and T.-M. Yan, Phys. Rev. Let24, 181 (1970;
Phys. Lett. B380, 417 (1996; 385 333(1996. G.B. West,ibid. 24, 1206(1970.

[2] X.-D. Ji, J. Phys. G24, 1181 (1998; A.V. Radyushkin, [18] L. Mankiewicz, G. Piller, and T. Weigl, Eur. Phys. J.5C119
hep-ph/0101225; K. Goeke, M.V. Polyakov, and M. Vander- (1999.

haeghen, Prog. Part. Nucl. Phys,, 401 (2002. [19] A.V. Belitsky, D. Miller, A. Kirchner, and A. ScHear, Phys.
[3] S.J. Brodsky, M. Diehl, and D.S. Hwang, Nucl. PhB§96, 99 Rev. D64, 116002(2001).
(200D. [20] K.J. Golec-Biernat and A.D. Martin, Phys. Rev.59, 014029

[4] M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, Nucl. Phys.
B596, 33 (2001).

[5] P.V. Pobylitsa, Phys. Rev. b7, 094012(2003.

[6] L. Theussl, S. Noguera, and V. Vento, nucl-th/0211036.

[7] M. Sawicki and L. Mankiewicz, Phys. Rev. 87, 421 (1988;
L. Mankiewicz and M. Sawickijbid. 40, 3415(1989.

[8] B.L. Bakker, H.-M. Choi, and C.-R. Ji, Phys. Rev. B,

(1999.
[21] C.H. Llewellyn-Smith, Ann. Phys(N.Y.) 53, 521 (1969.
[22] T. Frederico and G.A. Miller, Phys. Rev. &6, 4207 (1992);
50, 210(1994.
[23] B.C. Tiburzi and G.A. Miller, Phys. Rev. b5, 074009(2002.
[24] H.H. Liu and D.E. Soper, Phys. Rev. 48, 1841(1993.

074014(2001). [25] G.P. Lepage and S.J. Brodsky, Phys. Re22)2157(1980.

[9] A.V. Radyushkin, Phys. Rev. B6, 5524 (1997). [26] J.P.B.C. de Melo, H.W. Naus, and T. Frederico, Phys. Rev. C
[10] A.V. Radyushkin, Phys. Rev. B9, 014030(1999. 59, 227{3(1999; J.P.B.C. de Melo, T. Frederico, E. Pace, and
[11] A. Mukherjee, 1.V. Musatov, H.C. Pauli, and A.V. Radyushkin, G. Salme Nucl. Phys.A707, 399 (2002.

Phys. Rev. D67, 073014(2003. [27] W. Jaus, Phys. Rev. B0, 054026(1999.

[12] B.C. Tiburzi and G.A. Miller, Phys. Rev. B7, 013010(2003.  [28] B. Pire, J. Soffer, and O. Teryaev, Eur. Phys. J8C103
[13] B.C. Tiburzi and G.A. Miller, hep-ph/0205109; Phys. Rev. D (1999.

67, 054014(2003; 67, 054015(2003. [29] P.V. Pobylitsa, Phys. Rev. B5, 077504(2002; 65, 114015
[14] M.V. Polyakov and C. Weiss, Phys. Rev.dD, 114017(1999. (2002.

113004-11



