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Three-loop radiative-recoil corrections to hyperfine splitting in muonium
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We calculate three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by the
diagrams with the first order electron and muon polarization loop insertions in graphs with two exchanged
photons. These corrections are enhanced by the large logarithm of the electron-muon mass ratio. The leading
logarithm squared contribution was obtained a long time ago. Here we calculate the single-logarithmic and
nonlogarithmic contributions. We previously calculated the three-loop radiative-recoil corrections generated by
two-loop polarization insertions in the exchanged photons. The current paper therefore concludes calculation of
all three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by diagrams with closed
fermion loop insertions in the exchanged photons. The new results obtained here improve the theory of
hyperfine splitting, and affect the value of the electron-muon mass ratio extracted from experimental data on
the muonium hyperfine splitting.
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[. INTRODUCTION logical stage in implementing our program, we present below
the calculation of all single-logarithmic and nonlogarithmic

Recently we initiated a program of calculating all three-three-loop radiative-recoil corrections generated by diagrams
loop radiative-recoil corrections to hyperfine splittitdFS)  with one-loop electron and muon polarization insertions in
in muonium[1]. Three-loop radiative-recoil corrections are the exchanged photons. There are four gauge invariant sets
enhanced by the presence of the cube of the large logarithiwf such three-loop diagrams, and we calculate all their con-
of the electron-muon mass rati@]. All leading logarithm tributions.
cubed and logarithm squared contributions of this order were
calculated a long time ag@—4] (see also reviews ifi,5]).

As the first step of our program we obtained 1} previously Il. RADIATIVE-RECOIL CORRECTION OF ORDER

unknown single-logarithmic and nonlogarithmic radiative- a(Za)(m/M)E.

recoil corrections of order®(Za)(m/M)Eg! generated by ) )

graphs with two-loop polarization insertiofisreducible and All four sets of diagrams considered below can be ob-

reduciblé in the two-photon exchange diagrams. As the nexti@ined from the two-photon exchange diagrams with the ra-
diative photons in the electron or muon lines by insertions of
the one-loop electron or muon polarization operators. As was

*Email addresses: eides@pa.uky.edu, eides@thd.pnpi.spb.ru discussed |r[1], it is sufficient to calculate contributions of

TEmail address: asdean@pop.uky.edu these diagrams in the scattering approximation. In the calcu-

*Email address: shelyuto@vniim.ru lations below we use the approach developed earlier for ana-

We define the Fermi energy as lytic calculation of the two-loop radiative-recoil corrections
16 mim\3 of orders a(Za)(M/M)Eg and Z%a)(Za)(m/M)Eg in
Engz“azm ﬁr) chR,, (2) [6,7] (these corrections were also calculated numerically in

: [8]). To make this paper self-contained we first briefly re-
wheremandM are the electron and muon massasjs the reduced ind th d fth in st in th lculati f th
mass of an electron-muon systemis the fine structure constat, min € reader o € main steps In the calculation o e

is the velocity of light is the Planck constanB., is the Rydberg corrections induced by the radiative photon insertions in the

constant, and is the nucleus charge in terms of the electron chargelectron line. . o _
(z=1 for muonium). The Fermi energjE; does not include the The integral representation for the radiative corrections of

muon anomalous magnetic moment which does not factorize in ~ order a(Za)(m/M)Eg generated by the graphs with radia-
the case of recoil corrections, and should be considered on the sartige insertions in the electron line in Fig. 1 has the form
grounds as other corrections to hyperfine splitting. [9,10]
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where the dimensionless integration momentkiris mea- Next we separate thg.-dependent angu-independent
sured in units of the electron mass, the small parametisr  terms in the integrand with the help of the identity
defined as half the ratio of the electron and muon masses
[u=m/(2M)], the auxiliary functions of the Feynman pa-
rametersa(x,y) andb(x,y) are defined by the relationships 1
2 1—x (k?+ = ?cog0)[ (k>+a?)?+ 4b%k*cos 6]
a?=———, b=——, 3
iy PTIoy @ u? 1
k2 a2 4, 2h2k4 ]| 212
and explicit expressions for the coefficient functiansare (k*+a%)?—4p2o?k*| p?k*+cos'o
collected in Table I. We used the Yennie gauge for the radia- 212
. ; ) 2° ; 4bk
tive photons in the derivation of the explicit expressions for —
these coefficient functions; . (k?>+a?)?+ 4b%k?cog
After the Wick rotation and transition to four-dimensional 5 -

spherical coordinates, the expression in Ej.acquires the M 1 B 4b°k
form (k2+a2)2| u2k2+cof6 (k¥+a?)2+4b%k%codh|’

: a(Za) mo 1 ™ ® ©)

SESTIne= ( 5 ) —E¢ f dasinZHJ dk®D(k, 0)
m? M T8xu2lo 0

where, at the last step, we omitted the term proportional to
k? 1 w? in the denominator before the square bracket since, as can

X , (4
k?+ u~%cog6 (k®>+a?)?+4b%k?cos g
TABLE |. Coefficients in the electron-line factor.
where
16
1 X 9 \?2 G ﬁ[(lfx)(xf3y)*2y|nX]
D(k,e)=f dxf dy| (2+cog6)| (cysirPo+cok?)| — y(d=y)
0 0 Ja
9 P C 3[f(17x)(x7yf2y2/x)+2(xf4y+4y2/x)ln X]
+2c3— | (k*+a%)—8bcy(2+cos §)cos b— ya-y
Ja Ja
g Cs 1 5 [1—6x—2X—(y/x)(26— BY/x— 37x— 2x°+ 12xy
+12b 00520( c5—2—c7) yd=y)
Ja +161nx)]
—120600520i(k2+a2)} (5) [ (ZX 4; 2 Sy+7 )
2 . 4 —4X"—3y+ IXY,
9a y(1-y)?
We introduced derivatives with respectdd in order to re- ,
duce the powers in the denominators before integration ovet 1y (6x—3x"—8y+2xy)
angles. Ty
G s
<A i /\’\-I diagrams with B 7
S 5 + 2 S S + S S + ( crossed exchanged )
photon lines 1—X
C
7 2 "

FIG. 1. Electron-line radiative-recoil corrections.
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be shown, thi; tgrm generqtes recoil corrections which are a Ny S S Pt
least quadratic in the recoil factat. Then the integral for \ ) \ \
the radiative corrections in Eq4) becomes a sum of + + +

u-dependent angi-independent integrals
FIG. 2. Electron line and electron vacuum polarization.

e—line a’(Za) m. 1 i r]2 ” k2 Kk
o T2 MEFE o dgsing 0 dk™D(k, 0) momentum integralfor a more detailed discussion of this
method see, e.g.11]). All contributions, up to and including
K2 1 the corrections quadratic in the small mass ratidV, were
X analytically calculated earlier in this framewof&,10] (see
(k?+a?)?| u?k?+coso also[11,5)).
4b%k?
- I1l. DIAGRAMS WITH RADIATIVE PHOTONS IN THE
2 2\2 2,2
(k?+a%)?+4b%k?cos'd ELECTRON LINE AND ELECTRON VACUUM
_ spe—li i
_ 5E,ii ine 5Egi ine 7) POLARIZATION

: . . . The general expression for the contribution to HFS arising
which we will further callx integrals and integrals, respec-  fom the diagrams in Fig.Zis obtained from the integral in

tively. _ _ _ _ _ Eq. (4) by insertion in the integrand of the doubled one-loop
It is convenient to write the angular integrals in Eg). in electron polarization 4/ m)k?l ,(k)

terms of the standard functiors;, defined as

1 (= al , AN v2(1—0v2%3)
®,(k)=—— | dosirocog"e 2\ 7K el =2| ]k fo ey O
mucJo
(k?+a?)?—4u2b%k* where the additional multiplicity factor 2 corresponds to the
X fact that we can insert the vacuum polarization in each of the

2 -2 2 2\2 21,2
(k?+ u~?cog0)[ (k2+a?)2+ 4b2k?cog ] exchanged photons.

1 (= Then all contributions to HFS generated by the diagrams
= —f dgsinfocos"g| ————— in Fig. 2 are given by the integral
7Jo w?k?+cog o
21,2 2(Za) m_ 1 ™ »
_ 4b%k ppee_ S Za) Me J dasinzaf dk2D(k, 6)
(Ke+a2)2+ 4b%k2cod n M amutlo °
4
=07(k) + R (k) + r(k). ®) k 1

. _ _ , , ><k2+ w%co0g0 (k?+a?)?+4b%k2cog
Explicit expressions for these functions and their properties
are collected in Appendix Asee alsd10]). 1 p(1-0v%3)

The c integrals with the functiond)ﬁ(k) do not contain f V-
Lo . . 0  4+k(1-v°)

any free parameters and generate only contributions linear in
m/M to HFS. These integrals are pure numbers, which admit . o . )
analytic calculation. Thew integrals with the functions TO obtain the radiative-recoil corrections of order
®S(k), dX(k) parametrically depend om and generate a?(Za)(m/M)Eg contained in this integral we
both nonrecoil and recoil contributions to HFS. Contribu-follow the route described in the previous section. First
tions of a fixed order in the small mass rafihich are often we write the integral in Eq.(10) as a sum of seven
enhanced by the large logarithms of the mass yatam be - and sevenc-integrals. These integrals are collected
extracted from theu integrals with the help of an auxiliary in Table 1l and Table Ill, where the dimensionless
parametero chosen such that it satisfies the inequality 1 contributions §e to the energy shifts are defined &&;
<o<u~ 1 The parameter is used to separate the momen- = §e, a?(Za)(m/M)Eg /2.
tum integration into two regions, a region of small momenta The c integrals in Table lll automatically contain only
0<k=o, and a region of large momenta<k<<. In the  contributions linear in the recoil factan/M, and can be
region of small momenta one uses the conditioki<1l to  immediately calculated numerically. The respective results
simplify the integrand, and in the region of large momentaare again presented in Table Ill, and the total contribution of
the same goal is achieved with the help of the condition all c integrals is
>1. Note that fork=¢ both conditions on the integration
momenta are valid simultaneously, so in the sum of the low-
momenta and high-momenta integrals@ltlependent terms  2The graphs with the crossed exchanged photons are not shown
cancel and one obtains @&independent result for the total explicitly in this figure and similar figures below.

(10
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TABLE Il. w integrals for the diagrams in Fig. 2.
see k2 . ; ; H1-v%3)
€1 dx dycl d 2)3[2c1> S(K)+ 2D (k) — DE(k) — DE(K) | dvm
ee 2(1-v33)
0€,5 dx dycz dk2 [2<I>S(k)+2d3"(k)+cl>"(k)] e sm—
k2(1 v?)
L% ——fm%% fd% [mewe¢%m+¢%mlfd—j9:fEL
" ye C 4 k(1-0?)
Ses f d f dyb f e ———— [2(K)+ DE(K)] f A—v)
X —
Pz yoG 2)3 4+ KX(1—0?)
2 2
(l v713)
5eSS —6fd f% b Jd% DK f
“e X, RS P R E—
2 2
ee (1 v /3)
e oo [t [
" f “Jo V% +a%)? i 4r12(1-0?)
Sfdrdbjdkz ()f AL
ee - X G
d€,u7 P9 ) T hera 1 L arik(i—v?)
«(Za) m a¥(Za) m. insertions of the radiative photons in the electron line, are
SEC = del"—— MEF_6 961823) T MEF linear in the large logarithm of the mass ratio. Hence the
v a

(11)

The situation with thew integrals is more complicated.

corrections of ordew?(Za)(m/M)Eg are quadratic in this
large logarithm. The coefficient before the logarithm
squared, which we obtain in this way, coincides with the one

Besides the recoil contributions linear in the small mass rati@btained earlief3], and the analytically obtained coefficient
m/M, they contain both nonrecoil contributions and the re-Pefore the single-logarithmic term, as well as the nonloga-

coil contributions of higher order in the mass ratio. We
would like to remove the already known nonrecoil contribu-
tlons to extract in analytic form aII coeff|C|ents before the

rithmic contribution, are new. The results of the calculation
of the u integrals are collected in Table IV.
As an |Ilustrat|on of our methods let us obtam the f|rst

and to calculate numerically the nonlogarthmic term which igine in Table Il. It contains a nonrecoil contribution

linear in the recoil factor. To this end, we need to throw away
the recoil contributions of higher orders which are also con-
tained in thew integrals and which are too small from the
phenomenological point of view. If preserved, these higher
order recoil contributions result only in the loss of accuracy
in the numerical integrations. It is easy to see that the inte-
grals with the functiond§(k) generate only already known
nonrecoil contributions and can be safely omitted for our
present goals. We extract the contributions lingard loga-
rithmically enhancedin the recoil factor from theu inte-
grals by separating the integration region with the help of an
auxiliary parameter as described in the previous section.
All logarithms of the mass ratio originate from the high mo-
mentum parts of thew integrals, where we can use the high
energy asymptotic expansion of the polarization operator.
Thus we obtain in the analytic form all coefficients before

(nonrecoﬂ—f dxj dyolj dk2

1
XJdv
0

v2(1—v2/3)

4+k*(1-0?

)

K4

a%)?

D5(k)

lfl x = K
=— dxf d f dkéf—————
MJo 0 ya 0 (k*+a?)®

1
dev
0

4+Kk3(1-

v2(1—v23)
vz).

(12

the logarithms of the mass ratio. The radiative-recoil correcThis integral, as well as all other nonrecoil contributions of

tions of ordera(Za)(m/M)Eg in Eq. (10), generated by the

order a?(Za)Eg, was calculated analytically ifl2], and
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TABLE Ill. c integrals for the diagrams in Fig. 2.

b€t f—J‘ dxrdyclf dkz( 5
el

4p%Kk? J’l vA(1—v?/3)
(K2+a?)?+4b?k’cos6 Jo YAt k?(1—0v?)

Sess ——J dxfdycgj d¥| —

422 Jl vA(1-v%3)
U
(K+a?)?+4b?k%cogh Jo 4+ Kk (1—v?)

ee
O€cs ——f dxfdyQ;f 2k2+a fdesmze

422 f vA(1-v%3)
1
(K+a?)?+4b?k%cos0 Jo 4+ k3 (1—v?)

> g K* o1 (7
Secy Zfdxfd b fdkz———Jdasinzecosze
« o Jo yoa o dat (K+a?)? ™ Jo

4p%K? Jl ' v3(1—v?3)
(K+a?)2+402kcog0 Jo  4+K3(1—v?)

> g K1
decs —Sfdxﬁd b fdkz———fdasinze
¢ o Jo ybs o da®(K+ad)? T Jo

4p%K32 J—ld vA(1—v?3)
(K+a2)2+4b?kPco 4+K3(1-0v?)

decg dxfd de<2 fdasmza
¢ f ¥ da? k2+a

21,2 2(1_.2
Xco20 Aok f MLACRD) 0.0543901(2)
(K+a?)?+4bkcog0 Jo  4+k3(1—-v?)

1 oo k4 1 T
decy 3fdxfd b fdkz——fdasinza
c7 0 0 Yy C7 0 (k2+a2)277 o

4p%K? f‘ vA(1—v?3)
(IC+ 222+ 40%2c020 Jo 4+ K2(1—0?)

f désirte

2+a2

X (2—cog6—cog ) —0.916881(3)

fdesmze

Jga® k2+a

X (2+cog0) 1.76474(1)

X (2+co0) 5.93600(5)

X (2+cos6) 0.0312952(2)

X Cc0L0 0.00034832)

Xcoso 0.0919342(3)

numerically in[13], and we will not consider it here. We
write the recoil part of the integral in the first line in Table Il 5e f dxj dyclf k2
as a sum of low-momentum and high-momentum integrals

[2‘19“( )~ @1(k)

u%l—vam

} 1
_qh(mILdv4+k%1—v%

— s.ee> ee<
=0€,, +0€,; .

SHere, as well as in similar cases below, we allow ourselves a
slightly confusing notation, using the same symb‘@fj both for (13
the total contribution of thew integral and for its recoil part. We
hope this will not lead to any misunderstanding since in this paper
we are interested only in the recoil corrections. First we estimate the high momentum péfff considering
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TABLE IV. Simplified u integrals for the diagrams in Fig. 2.

21 * K 1 p31-v¥3
e ——fdxfdyclf dié— 23de (2 )2 ~2.105912 (2)
16J,  Jo o (k*+a9)°Jo 4+ko(1—v°)
7 5|2M+4772 20 M = 57T2+14(772—5) 7’ 5) oM
ee —_—— — _ —_t— -t — _—— —_
S€uoaiuza |3 3/  m |9 9)'m' 18 18 27 3 3"m
3 (= 477 20\ M
> _ 2 2_ 2, .2 R — | T
+4fodxfodk2{( 1+6x+232)| In k2= In(k>+a?) +|9 g)lnm
ai a* 57
— —— [~ AX(—1+x+2Inx)| —Ink2+In(k*+a)) T8 18
K*+af
2 2 4 2(4_.2
a1 & J" LA +0.4698395(7)
K+al 20e+ay|) Jo 4+kA(1-v?)
52 271I ,M 2072 542I M 52 271I oM
O€p2n T3 m T T, "3 1™ m
130772 2718I2331d d 20r° 542|NI
54307~ )(n_)_ZOXOy% 9 %27/ y
4 2
y fd p K2 f v2(1-0?3) _ 5w 20T
- v 18 ' 108
0o |(K+ad)® K+4|Jo 4+kA(1-0v?)
~0.797177 (4)
47 89 ,M (16x° 356 M 27" 89x7° 47 89| M
Sece _ —+ ||l ———— _ —
43b 3 9/ m'\9 27)"m 9 54 3 9 m
1122898I233dd lom® 356 M
+o12m" = 89)( n—)+ZOXOY%b <5 327"y,
4 2
y fcd g K2 fld v¥(1-v?3) L 2m 89
- v 9 54
0o |(K+ad)? K+4|Jo 4+kA(1-0v?)
+5.398568(7)
9 * Kt 1 v(1-v23)
Seb = f dx f dyb f di f dv —0.3738824(5)
o 2J0 )y P4 ) T erade o ar ki (1-v?)
1 > Kt 1 v2(1-v?3)
Sebs —3deﬁd b Jolk2 Jdv 0.127357(3)
#o o Jo ybs o (K+ad o 4+Kk3(1-0v?)
sece i 7I ,M 82 28I M 7% 572 14 ? 7|2M
6 32" m T T3 "m T8 3 3 37 2/™m
1 3 87 28\ M
+—(27—21)(8 In2—-3 +—J1dxfd - 4+ In—
18( )( )20 oyoa + 9+3In
* Kt K| T vX(1-v%3) 7t 5w’ 14
X | did - v ‘s 5o
o (k2+a2)2 k2+4 0 4+k2(1_U2) 18 36 3
—0.1944535 (6)
see 1# 5|2|v| 8r 200 M «* =2 10 m? 5I2
wl I m e T3 "m T 3% 3 372",
1 3 87 20\ M
——(27°—15)(8 In2—-3 ——Jidxfd b i P
52198 239 x| dyba At
% Kt K| T vX(1-v%3) 7 10
X | did - dv -t
o [(R+a®? K+4llo 4+K(1-0v?) 18 36 3

—0.8472862 (4)
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the leading term in the integrand in the high momentum limit

(more technical details on similar estimates can be found in j dxf dyolf —
[10]) (k*+a%)
y fld v3(1-v?3) an
U 1
0o 4+k31-v?
f dxf dyolf 2 3[2<I>"(k) P4(k)
a“) which is just the first entry in Table IV.
L ) ) Let us turn now to the next integrals in Table Il. Each of
_(I)M(k)]f do > (1-v°3) the integralsde;s and de5$ generates spurious logarithm
2 0 4+k3(1-v?) cubed contr|but|ons which cancel in the sum of these terms.
(
) It is therefore convenient to rearrange these terms in such
= dk way that spurious logarithm cubed terms do not arise at all.
~ —In2k2 — —
L K4 k7205 (k) = P1(k) = D5 (k)] To this end we write the coefficient functiors in the form
1
~ —zlnza. (14
o _4(1-2y)

4
cz—mx(—1+x+2 Inx)+(1_ )3[—(l—x)

We see that the high momentum contribution is suppressed

X(—=1-2y/X)+2(—4+4y/X)InXx+x(—1+x+21
like 1/0%. We have already extracted the recoil factor from ( yix+2( YR X+ x( X nx)

563? explicitly, so now we are looking only for such contri- X (4—5y+2y?)]
butions which are not additionally suppressed. Hence, in the
leading order in the recoil parameter we can omit the high- — ¢2a™ C2b- (18)

momentum contribution toﬁeﬂl, and in our approximation
the total contribution to the energy shift is given by the low-
momentum integral We have choser,, essentially as the singular part of the
function ¢, at y=0 and multiplied this singular part by the
factor (1—2y)/(1—y) in order to simplify integration over
y. Since (1-2y)dy/[y(1—y)]=—da%a? this makes inte-
gration overy trivial. The spurious logarithm cubed term
f dxf dyclf dk2 [zqw( ) originates only from the integral of the functi@g, . On the
other hand, the integrals ov&randy with the functioncyy,
02(1—02/3) remain finite even if we omit? in the denominator K*
—(D‘f(k)—d)é‘(k)]f dv——————-. (19  +a?3 which leads to significant simplifications in the high-
0 4+k(1-v9) : ee
momentum part of the integrale,,,
Following the same logic, we represent the coefficient
functionscs also as a sum of two functiores, andcsy
To extract the leading nonvanishing contribution to this inte-
gral atu— 0 we substitute in the integrand the leading terms
in the smallu expansion of the function®/(k) (see Ap-

pendix A and obtain C3=y§;—2§) (1—6x—2x%)+ (1_1 )2{2(1—y)
X(1—6x—2x%)+(1—y)(8+2x) — (1X)[26(1—X)
569KN__ dxj dyclj L +2X(1—X)—6(1—x%)y/x—6x(1—y)+ 16 Inx]}
(k +a“) =Caa+ Cap. (19

209 _ .2
Xfld v(1-0v7I3) 16)

0 Um' Now the sum of the recoil contributions to HFS generated by
the u2 and 3 integrals in Table Il may be written in the
form

The momentum integral is ultravioletly convergent, so the

magnitude of the integral with an infinite upper limit differs

. . , SeS5+ 6€55=10 +8e5,+ 0 20
from the integral in Eq(16) only by inverse powers of, €2t 0€,3= 0€,5q, y3at O€onT O€,3,.  (20)
which we omit anyway. Hence, the totall contribution to
the energy shift is given by the integral Let us consider calculation of thée}5, . ,3, contribution
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56;/.2a+p.3a 2[ dXJ' dyJ’

+ €

Caak?
(k2+ a2)3 (k2+a?)2

1 p2(1-0v23) " P
K rrrerrmme EL U R A

(21)

,u2a+ n3ar

As mentioned above, calculation of théntegral becomes trivial after the change of varialylesa®. In the high-momentum
integral we next expand over the inverse powerk%fand use the asymptotic expansions of the arising funcliyps (these
functions were defined and their properties were discussgtlin

e 1(=dKk*[( 16 27
5M2a+ﬂ3a:§j02F —glnk—T—i-lO

16| c 20
— _?n +§

2 5 )
3Ink—g |24 (k) + P (k)]

7w 5\(4 10
~l T + 5 §[2V110+ Vllﬂ_§[2V100+ Vi1l

7’ 5) =M 4% 20 M.t 5772+ ™. 5 | L[5 25), -
“1F 3" M e T 9/"m 18 18 3 T3/nfot| g~ g/ (22

In the low-momentum part of the integral we again preserve only the leading terms in theuseadansion of the functions
DF(k)

(23

fl v2(1—-0v?/3)
do———
0 4+k*(1-v?

C2ak® Caak?
2
€oarusa™ def dyj dk{ (K+a?)?  (K+a?)?

and integrate explicitly ovey

@ 5 572 25 14(77 —5)
€5 9a+ u3a= <?—§)Inzo+(—7+ 5 no+ ——=- j J 21 (—1+6x+2x?)| Ink?—In(k?+a?)
2 2 4 2 2
al al 1 a‘l 1 v (1_U /3)
- —4x(—1+x+2Inx)| —Ink®+In(k?+a?) + - = J dv———, (24
k2+a? ( ) ( 2 k*+af 2 (k*+ad?|| o 4+K¥(1-0?) 24

Whereafzx/(l—x). Note that we again extended the momentum integration to infinity in the finite integrals for the low-
momentum contribution. Finally, summing the high- and low-momentum contributions we obtairititependent result

(TS| M (4 20 M S +—14(772_5)+3fd fmdkz 1+ 6x+2x2)| In k2= In(k?
waruta= |3 3/t Tg TNt e s T 27 ), 9X), dk) (Tt ExE2xT) Ink i n(
2 2 4 2 2
a 2a 1 a 1 1-v4/3
+a2)— —— | —4x(—1+x+2 Inx)| —Ink?+In(k2+a?) + 12—— 12 fde,
k’+a? kK+a; 2 (k®+a)?||Jo  4+k¥(1-v?)

(25

which is convenient for numerical calculations.
For our final example let us derive an expressiondef3,, in the third line in Table IV. We start with the general expression
for this contribution from Table Il

1 ¥ (1-0v%3)
PR Zf dxf dyf (k2+a2)3f Ly PP T PO (26)

As we already mentioned above in this case we are free to amin comparison withk? in the denominator in the
high-momentum part of this integral
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%= zf dxf dyf dk c2bf LA CEL Ty 129600 @)

4+Kk3(1—v?
J dk? (1072 271 2I . 5 (k) 4 DK
~3), @l 3 o §n—§[ o(k)+PL(k)]
572 271 10
~6 36 [2V110+ Vil = [2V100+ Vioil
5772+271I M _ 207* 542 M 5774+271772+ 57 270
BT 9 " 27)"m 18 "108 |73 " 18)" 7
2572 135
+| — 9 +ﬁ Ino. (27)
|
Dealing with the low-momentum part of the integral in oo 572 271 ,M 202 542\ M
Eq. (26) we would like to extract analytically leading loga- ~ d€,20=| — 3~ + 7g|In“ o+ ——g— T 57 |In
rithms of o. This would allow us to get rid of any trace of
the parametes in the final expression for this integral, mak- 57 27172 )
ing it much more suitable for further numerical calculations. ~ 18 T 108 54307 —27)(8In2-3)
The double integral ovex andy, with the integrand includ-
ing the functionc,,, cannot be calculated analytically as 31 x S K6
easily as the integral with the functicef3, ., ,3, above. In - —f dxf dyObe k m
order to overcome this difficulty we use the identity
k2

fl v2(1—-0v?/3)

U4+k2(1—vz). (30)

K4 - k’+4

(K+a?)? k2+4

k* 1
(k*+a%)? k*+4

(28)

Calculation of the remaining integrals goes along simi-
lar lines, and does not require any additional new tricks.
Calculating the nonlogarithmic contributions numerically

in the low-momentum part of the integral in E@6). Ana-  and collecting allu-integrals from Table IV, we obtain the
lytic calculation of the integral with the first term on the total contribution of allu integrals

right-hand sidgRHYS) is simple. On the other hand, all loga-

rithms of o are supplied by this integral since the second ce. 2, oM M

term on the RHS in Eq28) decreases at lardefaster than o€, =5 In" 3 In0+4.456061). (32)
the first term. Then we obtain the low-momentum contribu-

tion to the integral in Eq(26) in the form The sum ofu andc integrals in Eq(31) and Eq.(11) gives

all radiative-recoil corrections of ordew?(Za)(m/M)Eg
generated by the diagrams in Fig. 2,

5 ( 572 N 271 2o+ 2572 135
=| =3 tg|not| g g [Ine 5 ,M 22 M
ee_ ee €e_ " 1n2__ 4 T |ln—
. 0€°%= Se,, + O€; 5 In o + 3 In = +11.417883).
— a(sowz— 271)(8In2—-23) (32
6 IV. DIAGRAMS WITH RADIATIVE PHOTONS IN THE
— §f1dexdy(‘Qbfwdk2 ELECTRON LINE AND MUON VACUUM POLARIZATION
4 2. 42)3
0 0 0 (k*+a%) Let us consider now the diagrams in Fig. 3. The only
K2 1 p2(1-0203) difference between these diagrams and the diagrams in Fig. 2
- f v———————. (29
k?+4 4+k*(1-v?)

Pads I I ST
b {9 fr § 9 9
Finally, the total expression for thg2b integral has the

form FIG. 3. Electron line and muon vacuum polarization.
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from the previous section is that they contain the muortegrals which generate radiative-recoil corrections in the case
vacuum polarization insertich, of muon polarization insertions

a a 1 v2(1—02/3) w 4 2 5

w2+ k3 (1-0v?) 3 6 2
instead of the electron vacuum polarization, and the respec- X[205(k) +205 (k) + D1 (k)]
tive contribution to HFS has the forficompare Eq(10)]

57%2 271
6 36

led v3(1—v23) a5
a’(Za) m. 1 0 vﬂiz*’kz(l_vz), 39
SEH=——— —E¢ J daslnzﬁf dk?D(k, 6)
T M 4dap )

K4 1 5eeﬂ>~2rdk2 k=24 _2m 8 [203(k)

y u3 2 3 3 3 18 0

k?+ 1~ 2cog6 (k?+a?)?+4b%k?cos 6 ) )

+2q>ﬂ(k)+qw(k)]fld LACURC R

0 L o™ 2 rie(1—0?)

S )
X dv YN (34)

0 pnctke(1-v9)

0 2 _ .2
We transform the integrand in the sum g@fandc integrals 5ee,u>%< w2 2_1)f dk%)’f(k)fldv vi(1-v773)
exactly as in the previous section, the only difference being n8 2 w2+ k3 (1-0v?)
that each integrand now contains as a factor the muon (37)
vacuum polarization insertion from E@33) instead of the
electron vacuum polarization insertion. This immediately )2 5
i inlificati ; ; (1 vel3)

leads to significant simplification of further calculations in ¢ _eux>__ dkztl)"(k) d
comparison to the case of the electron polarization. The *’ —2+ k*(1—v 2y’
muon polarization insertion in E¢34) is suppressed 4 2 (38)
at integration momenta much smaller than the muon mass.
But the characteristic integration momenta in thimtegrals
are of order one in our dimensionless units, and hence now

all c integrals do not generate corrections linear in the recoil
factor m/M. Low-momenta parts of thg integrals, where

The sum of all these contributions has the form

» 7
S~ _ f de2(§[2q>g(k)+2¢6‘(k)+‘1”f(k)]

integration goes over momente<oc<<1l/u, are also sup- ©

pressed asr’u?. Only the high-momenta parts of the

integrals, where integration effectively goes over the mo- 1 v3(1—0v23)

menta comparable to 4/ generate contributions linear in +3®M(k)]f Um' (39

m/M =2u. Such contributions are present only in than- K

tegrals connected with the coefficient functianys c3, Cg,

andc,. Note that the integrals with the coefficient functions Or explicitly

c, andc; contain the functiondg(k) = 1/(xk) in the inte-

grand. In the case of the electron vacuum polarizataord o 70 2

the absence of any polarization at)dle integrals with this Sel” ~ —f ,d kzri[—k(\/ltuzkz—,uk)

function generated nonrecoil corrections only. This essen- o ®

tially happened because the characteristic integration mo- 1

mer}:ta wrt)a?e of order one, and in this region the c?ontribution — pky1+ p?ke+ pPk>+ >

of the function 1/«k) is obviously enhanced as// In the

present case, characteristic integration momenta are about 1

1/(uk), and the integrals with the functiob(k) generate — k14 p oK+ Pk + 5

recoil corrections on a par with the integrals with the other

functions® (k). Xfl v2(1-v?3) (40
Integration over the Feynman parametgrandy in the 0 v 0 2 Kk3(1—p?) )

high-momenta integrals simplifies and may be performed
analytically, and we obtain all one-dimensional momenta in-
We can extend the momentum integration region in this in-
tegral to zero, since contributions from small momenta are
“We ascribe an extra factdf to each photon emission by the additionally suppressed by powersaf. It is also natural to
heavy line, but being somewhat inconsequential, do not writeZany rescale the integration momentlm- uk. Then the expres-
factor in the muon vacuum polarization. sion for the radiative-recoil corrections has the form

113003-10
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o0 diagrams with
56‘;“:—[0 dk[?[Z(\/sz—k) 5WS +2 Lir § ii + ("Oflfiﬁﬁ?ﬂ;ged)
+kl —k 1+ K2+ K2+ 1 FIG. 4. Muon-line radiative-recoil corrections.

2
1 peeue 2T >+ 4056778 (42)
+6k| —KVLHRPHkE+ 5 €u 18~ "
1 02(1—02/3) V. DIAGRAMS WITH RADIATIVE PHOTONS IN THE
X fo I TR(1-07) (41) MUON LINE AND MUON VACUUM POLARIZATION
—v

The expression in Eq(2), for the radiative corrections
The integral in the first line of this equation is propor- generated by the diagrams with the radiative photon inser-
tional to the integral for the muon polarization contribution tions in the electron line Fig. 1, was obtained without expan-
of ordera(Za)(m/M)Eg in [10], and the contribution of the sion in the mass ratio. Hence, after the substitutiors M
integral in the second line may be calculated in the samand a— Z?« it goes into the expression for the corrections

way. Finally we obtain generated by the diagrams in Fig® 4,
|
- (Z%a)(Z d*k 1
SEMline— —( @)(ze) f dxf f (3K§—2Kk?)
w? i 2 (k2+i0)2 k2+4,uk0+|0 k?—4uky+i0

csk?+ cgk?2kg c/k?
% (—K2+2bky+a?2)? —k2+2bky+a?

" c1k?+cy(k?)? c3k®+c42ko
(—k%+2bky+a?)®  (—k?+2bky+a?)?

] . (43

The dimensionless integration momentum here is measured in muon mass units, and apparent incomplete symmetry with the
expression in Eq(2) is due to asymmetry of the paramejerm/(2M).

Unlike the case of the radiative photon insertions in the electron line in Sec. Il, the integral (A3t goes not generate
nonrecoil contribution§7,14]. This happens because the radiative photon insertions in the muon line suppress the contribution
from the integration momenta of order of the electron mass which were responsible for the nonrecoil correction by an extra
factor u2. Hence, for calculation of the leading order recoil corrections we can safely allev@ in Eq. (43),

5EM'|ine (Zza)(za) m E 1f1d fxd f d4k (3k2 2k2)
~—mmm —_ X _—m —_
22 M r2)o Y] Tzaeriog] O

csk?+ cgk?2kg c/k?
% (—K2+2bky+a?)? —k2+2bky+a?

c,k?+c,(k?)? c3k?+c42kg
(—k2+2bky+a?)®  (—k2+2bky+a?)?

] : (44)

After the Wick rotation and transition to the four-

214
dimensional spherical coordinates we have — L—JZ,
(k®>+a?)?
p-line _ ( Za)(Za nZ
oE w2 j dosire All corrections to HFS described by the integral in Eq.
(45) were analytically calculated if7]. Contributions to the
" fwdkzD(k " 1 fenerg;r/] shift generated b)(;thﬁ kgiiagrams in Figr.] 5 are obta(ijned
1 0) ) rom the expression in Eq45 insertion in the integran
0 (k?+a%)+4b%k?cos’0 of the doublloed muon vacuum golarization ’
(45)
. . , . 1 v (1-0v23)
where the differential operataP(k,6) was defined in Eq. ( )kz (k)= 2( )kZJ dp ————.  (46)
(5). There are nqu-dependent terms in Eq45), and this a 0 4+k¥(1-v?)

expression for the energy shift is similar to thétegrals in
Eq. (7). It can be formally obtained from the expression in
Eq. (7) by the substitution SWe use the convention that the heavy line charggeis
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TABLE V. c integrals for the diagrams in Fig. 5.

1 00 9 21 T
der” fdxfdyqj il — —fdesinza
0 0 0 dac] T Jo

Ki(k*+a?) J_‘ vA(1—v?3)
(IC+ 222+ 402020 Jo 4+ K2(1—0?)

Sl fl xkz 0)21 T nz
€ dxﬁd jd — —jdesi 6
0 oyczo dga?) ™ Jo

K (kP +a?) fl vA(1-v%3)
(K2+a?)?+4b%Pcog6 Jo v4+k2(1—v2)

1 %0 g1 (=
oes* Zfdxfd fdkz——fdﬁsinze
° o Jo Yo 0 da2 T Jo

IK2(k2+a?) f v3(1—v?3)
(K2+a?)?+4b%k2cos0 Jo v4+k2(1—v2)

1 o0 9 1 T
def” fSdefdyqu dkz—z—fdesinzeco§0
0 0 0 dac T Jo

K Jld vA(1-v%3)
1)
(K+a?)?+4b?k%cosh Jo 4+ k3 (1—v?)

o »o9 1"
Sel# 12] dxf dybch’ dkz—z—f désir?g
0 0 0 dac T Jo
2 2(1_.2
Xco20 K f BLACRLL) —0.0027928(4)
(K+a?)?+4b%Kcosd Jo 4+ K3 (1—v?)

1 X oo J 1 T
deg” —12f dxf dycsf dkz—z—f dé sirte
0 0 0 dac T Jo

Ke(k2+a) J1 v3(1—v?3)
(K+a2)2+4b%Kcog6 Jo “at k3(1—v?)

1 X o 1 T )
Seb —12( dx | dybg | dk®*= | d@sirfe
0 0 0 T Jo
k2

J1 vA(1-v23)
U
(K+a%?+4b%K2cogd Jo 4+ K*(1—v?)

X (2—cog6—coso) 0.297870(1)

X (2+cog0) —0.759522(5)

X (2+cos0) —1.11839(2)

X (2+c0g6) —0.0484183(2)

Xcogh —0.0251636(1)

Xcoso —0.1453343(4)

This expression is apparently different from the respective a(Z2a)(Za) m _ 1 (= w0
expression in Eq(33) because now our dimensionless mo- 5EW‘:—3 MEF—J’ dasinzaf dk?D(k, 6)
menta are measured in terms of the muon mass. Finally, the ™ mJo 0
integral for the contribution to HFS generated by the dia- K2 N 2 2
L vo(1—-0v4/3)
grams in Fig. 5 has the form X v
(k®>+a?)?+4b%k?cog6)o 4+ Kk*(1—v?)
< | @(ZPa)(Za) m
= 21 el TMEF' (47)
2¢ §+2§§+2 §<§2 §
g All seven contributions are collected in Table V, and the total
A ~ e contribution to HFS generated by the diagrams in Fig. 5

FIG. 5. Muon line and muon vacuum polarization. IS
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) é) g Ci) g g <§> é g Sel®=12.944474). (52
+2 +2 +2
The integral forse4® is proportional to the integral for the
R 7 S N radiative-recoil corrections generated by the radiative photon

insertions in the muon line, which is known analytically

FIG. 6. Muon line and electron vacuum polarization. . h )
[7,14]. Hence, we can immediately put down an analytic

ne.
Seth=—1.801762). (4g) ~ esultforde:
e 4 M 10 ) 39
VI. DIAGRAMS WITH RADIATIVE PHOTONS IN THE o065 =\ 3 InE_ 9 §(3) 3min 2tg (53
MUON LINE AND ELECTRON VACUUM
POLARIZATION Then the total contribution to HFS generated by the diagrams

. N . in Fig. 6 is equal to
Let us turn now to the diagrams in Fig. 6. The only dif-

ference between these diagrams and the diagrams in Fig. 5 is 13\ M

that now we have electron polarization insertions instead of ~ 0€“°=| 6{(3)—4mIn2+—- 5 |In +24.3211%4).

the muon polarization insertions. The respective analytic ex- (54)
pression is obtained from the one in E47) by substitution

of the electron polarization instead of the muon polarization

VIl. DISCUSSION OF RESULTS

Zfl v2(1—v?/3) Collecting the results in Eq$32), (42), (48), and(54) we
YN obtain the three-loop single-logarithmic and -nonlogarithmic
0 AtkAl-vY) corrections - -
generated by the one-loop electron and muon po
1 v2(1-0v23) larization insertions in the exchanged photons
—2 J v . (49
0o 4(M/M)*+k*(1-v?) (Za) M. a(Z%a)(Za) M
SE= 5¢€° 3 MEF 6—3M F,

The typical integration momenta in E(5) are of order of m m
the muon mass and, since we are calculating to linear accu- (59

racy inm/M, it is sufficient to substitute instead of the elec-
tron polarization operator the leading terms in its expansion
overm/M:

5 M 22 M
5ee=§ |n2m +3 |nE +7.361103), (56)
NE v3(1-v%/3) 2 2,4 M 10
kJ v4 M2 KA1 3Ink 3Inm—g. 131 M
° (M/M)*+k*(1-v%) (50) Set=|6¢(3)— 4772In2+ In—+22.519395).  (57)

Then the total contribution to HFS generated by the diagramff we recall that in the real muoniun@=1 and that the
in Fig. 6 is given by the integral logarithm-squared term was already calculated eaflBgr
then the new three-loop single-logarithmic and

a(Z%a)(Za) m -nonlogarithmic corrections obtained above may be written
SEre= T F2 f désirfg as
83
xfwdkzD(k 8 SE¢=||6£(3)—4m?In 24+ In—
0 " (K2+a?)2+ 4b%k2cog 6
a® m.
2 4 M 10 +29.880496)}——EF. (58)
X —Ink2+—ln———> m M
3 3 m 9
22,0(7 Combining this result with the result of our earlier papgr
_ (sepes peney L@z m btain all three- ingle-logarithmi d
= (5e!®+ 5el®) . v Ee, (51 we obtain all three-loop single-logarithmic  an
T

-nonlogarithmic corrections generated by the electron and
muon polarization insertions in the exchanged photons
where the contributiode.®==;€e4® corresponds to the first

term in the last brackets, and the contributiéel® corre- B 9 67 M o’

sponds to the second and third terms in the same brackets JEtwot= | | =47 In2+ In—+9 593186)| — MEF’
We calculatese® numerically and collect all seven contri- (59)
butions to this integral in Table VI. The sum of all these

contributions is or, numerically
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TABLE VI. c integrals for the diagrams in Fig. 6.

1t = [ 9\1 (7
Sty —f dxrdyclj dkz(—) —j désirte
3o Jo o \dga? TJo

K2+a? |
n
(K2+a?)?+4b%k2cos o

11 = (9 \21 (7
5 ne - | = .
€co SdeJ:dyQJ;dI@(aaz) 7_rjod@smze

K(k*+a?)
X (2+cos0 In K —1.235177(4)
( ) (k®+a?)?+4b%Pcogo

Sele 2 ld d wdkz 9 1 Wde i
e § 0 X 0 y03 0 527_7 0 !
2

k*+a?

X (2+cog6 In k2 26.74813(3)
( ) (K2+a?)?+4b%kcoso

8 > 9 1 (m
Seky — f dx r dybg, f die— —~ f dosintdcofo
3Jo 0 0 dac T Jo

1
X (2+Ccog0 In K2 1.304129(5)
( ) (K+a?)2+4b%kcog6

= Jd 1 (™
Sets 4J1dxfdybc~5j dkz—z—J dosinto
o Jo 0 da T Jo
1

Xcog0 In k2 0.411544(4)
(K2+a?)>+4b%k2cog

> g9 1 (7
Seks —4fdxfdycef dkz—z—fdesin%
0 0 0 dacm Jo

K2+ a?
n
(K2+a?)?+4b%kPcogo

1 0 1 (7
Sels —4fdxfdybqf dkz—fdasinze
o Jo o TJo
1

In K2 1.259721(4)
(K+a2)2+4b%kcoso

X (2—cog6—coso) K2 —15.49349(3)

XcosH K2 —0.0503852(6)

Xcog6

SOE=—-0.0288 kHz. (60 ACKNOWLEDGMENTS
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[10,15,18. All these results improve the accuracy of the
theory of hyperfine splitting and affect the value of the
electron-muon mass ratio derived from the experimental data
[17] on hyperfine splittingsee, e.g., reviews ifb,18]). We
postpone discussion of the phenomenological implications of Calculations described in this paper are greatly facilitated
the result above until the completion of the calculations ofby the use of the auxiliary functiord (k) (n=0,1,2,3) de-
the remaining three-loop radiative recoil corrections. fined by the relationship

APPENDIX: STANDARD AUXILIARY FUNCTIONS
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1 T
— désirfd cos"o
TMJ0

Pn(k)=

" (k2+a2)2—4,u,2b2k4
(K24 1~ 2co20)[ (K2 +a?)2+ 4b2k2coL6]
(A1)

PHYSICAL REVIEW b7, 113003 (2003

The integral over angles may be explicitly calculated, and
the result of the integration is conveniently written as a surmgnd

D (k) =Di(k) + DK+ DT(K), (A2)
where
(k)= 12, (A3)
uk
DH(K)=W -—, Ad
o(k)=W(¢,) . (A4)
1
Pk =~ £,W(E) + 5, (A5)
1)y 1
Dy (k)= fu( §W(E)— 5]+ g (A6)
1
Dg(k)=—W(&c), (A8)
c 1
<D1(k):§cw(§c)_ E, (A9)
c 1)y 1
Dy (k)=—¢&c ch(fc)_E 3 (A10)

OS(k) = 1) 1
3(K)=é&c| éc §CW(§c)—§ +§ 16 (Al11)
The standard functiolV(¢) has the form
1
W(§)=\/l+g—1 (A12)
(k?+a?)?
gp,zlu’zkzv gC: 4b2k2 (A13)

One may easily obtain asymptotic expressions for the
function W(¢&)

NG

(-0

. 1
lIimW(¢)—

% (A14)

E—o

High- and low-momentum asymptotic expressions for the
functions ®;(k) may also be easily calculated. Let us cite
low-momentum expansions, which were used in the main
text for calculation of the contributions to the hyperfine split-
ting of relative orderu?

uk
PE(k)~—1+ >, (A15)
" 1 2
Pr(k)~ 5 = pk+ (nk)%, (A16)
1 (uk)?
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