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Three-loop radiative-recoil corrections to hyperfine splitting in muonium
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We calculate three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by the
diagrams with the first order electron and muon polarization loop insertions in graphs with two exchanged
photons. These corrections are enhanced by the large logarithm of the electron-muon mass ratio. The leading
logarithm squared contribution was obtained a long time ago. Here we calculate the single-logarithmic and
nonlogarithmic contributions. We previously calculated the three-loop radiative-recoil corrections generated by
two-loop polarization insertions in the exchanged photons. The current paper therefore concludes calculation of
all three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by diagrams with closed
fermion loop insertions in the exchanged photons. The new results obtained here improve the theory of
hyperfine splitting, and affect the value of the electron-muon mass ratio extracted from experimental data on
the muonium hyperfine splitting.
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I. INTRODUCTION

Recently we initiated a program of calculating all thre
loop radiative-recoil corrections to hyperfine splitting~HFS!
in muonium @1#. Three-loop radiative-recoil corrections a
enhanced by the presence of the cube of the large logar
of the electron-muon mass ratio@2#. All leading logarithm
cubed and logarithm squared contributions of this order w
calculated a long time ago@2–4# ~see also reviews in@1,5#!.
As the first step of our program we obtained in@1# previously
unknown single-logarithmic and nonlogarithmic radiativ
recoil corrections of ordera2(Za)(m/M )ẼF

1 generated by
graphs with two-loop polarization insertions~irreducible and
reducible! in the two-photon exchange diagrams. As the n

*Email addresses: eides@pa.uky.edu, eides@thd.pnpi.spb.ru
†Email address: asdean@pop.uky.edu
‡Email address: shelyuto@vniim.ru
1We define the Fermi energy as

ẼF5
16

3
Z4a2

m

M S mr

m D 3

chR̀ , ~1!

wheremandM are the electron and muon masses,mr is the reduced
mass of an electron-muon system,a is the fine structure constant,c
is the velocity of light,h is the Planck constant,R` is the Rydberg
constant, andZ is the nucleus charge in terms of the electron cha

(Z51 for muonium!. The Fermi energyẼF does not include the
muon anomalous magnetic momentam which does not factorize in
the case of recoil corrections, and should be considered on the
grounds as other corrections to hyperfine splitting.
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logical stage in implementing our program, we present be
the calculation of all single-logarithmic and nonlogarithm
three-loop radiative-recoil corrections generated by diagra
with one-loop electron and muon polarization insertions
the exchanged photons. There are four gauge invariant
of such three-loop diagrams, and we calculate all their c
tributions.

II. RADIATIVE-RECOIL CORRECTION OF ORDER

a„Za…„mÕM …ẼF

All four sets of diagrams considered below can be o
tained from the two-photon exchange diagrams with the
diative photons in the electron or muon lines by insertions
the one-loop electron or muon polarization operators. As w
discussed in@1#, it is sufficient to calculate contributions o
these diagrams in the scattering approximation. In the ca
lations below we use the approach developed earlier for a
lytic calculation of the two-loop radiative-recoil correction

of orders a(Za)(m/M )ẼF and (Z2a)(Za)(m/M )ẼF in
@6,7# ~these corrections were also calculated numerically
@8#!. To make this paper self-contained we first briefly r
mind the reader of the main steps in the calculation of
corrections induced by the radiative photon insertions in
electron line.

The integral representation for the radiative corrections
order a(Za)(m/M )ẼF generated by the graphs with radi
tive insertions in the electron line in Fig. 1 has the for
@9,10#
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dEe-l ine5a~Za!ẼF

1

8p2m
E

0

1

dxE
0

x

dyE d4k

ip2~k21 i0!2 S 1

k21m21k01 i0
1

1

k22m21k01 i0
D H ~3k0

222k2!

3F c1k21c2~k2!2

~2k212bk01a2!3
1

c3k21c42k0

~2k212bk01a2!2G23k0F c5k21c6k22k0

~2k212bk01a2!2
1

c7k2

2k212bk01a2G J [(
1

7

dEi
e-l ine ,

~2!
s
-
s

ia
fo

al

v

l to
can
where the dimensionless integration momentumk is mea-
sured in units of the electron mass, the small parameterm is
defined as half the ratio of the electron and muon mas
@m5m/(2M )#, the auxiliary functions of the Feynman pa
rametersa(x,y) andb(x,y) are defined by the relationship

a25
x2

y~12y!
, b5

12x

12y
, ~3!

and explicit expressions for the coefficient functionsci are
collected in Table I. We used the Yennie gauge for the rad
tive photons in the derivation of the explicit expressions
these coefficient functionsci .

After the Wick rotation and transition to four-dimension
spherical coordinates, the expression in Eq.~2! acquires the
form

dEe2 l ine5
a~Za!

p2

m

M
ẼF

1

8pm2E0

p

du sin2uE
0

`

dk2D~k,u!

3
k2

k21m22cos2u

1

~k21a2!214b2k2cos2u
, ~4!

where

D~k,u!5E
0

1

dxE
0

x

dyH ~21cos2u!F ~c1sin2u1c2k2!S ]

]a2D 2

12c3

]

]a2G ~k21a2!28bc4~21cos2u!cos2u
]

]a2

112b cos2uS c5

]

]a2
2c7D

212c6cos2u
]

]a2
~k21a2!J . ~5!

We introduced derivatives with respect toa2 in order to re-
duce the powers in the denominators before integration o
angles.

FIG. 1. Electron-line radiative-recoil corrections.
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Next we separate them-dependent andm-independent
terms in the integrand with the help of the identity

1

~k21m22cos2u!@~k21a2!214b2k2cos2u#

5
m2

~k21a2!224m2b2k4 F 1

m2k21cos2u

2
4b2k2

~k21a2!214b2k2cos2u
G

'
m2

~k21a2!2 F 1

m2k21cos2u
2

4b2k2

~k21a2!214b2k2cos2u
G ,

~6!

where, at the last step, we omitted the term proportiona
m2 in the denominator before the square bracket since, as

TABLE I. Coefficients in the electron-line factor.

c1
16

y~12y!3
@~12x!~x23y!22y ln x#

c2
4

y~12y!3
@2~12x!~x2y22y2/x!12~x24y14y2/x!ln x#

c3

1

y~12y!2
@126x22x22~y/x!~2626y/x237x22x2112xy

116 lnx!#

c4
1

y~12y!2
~2x24x225y17xy!

c5
1

y~12y!2
~6x23x228y12xy!

c6 2b2
x2y

x2

c7 2
12x

x
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be shown, this term generates recoil corrections which ar
least quadratic in the recoil factorm. Then the integral for
the radiative corrections in Eq.~4! becomes a sum o
m-dependent andm-independent integrals

dEe2 l ine'
a~Za!

p2

m

M
ẼF

1

8pE0

p

du sin2uE
0

`

dk2D~k,u!

3
k2

~k21a2!2 F 1

m2k21cos2u

2
4b2k2

~k21a2!214b2k2cos2u
G

5dEm i
e2 l ine1dEci

e2 l ine , ~7!

which we will further callm integrals andc integrals, respec-
tively.

It is convenient to write the angular integrals in Eq.~7! in
terms of the standard functionsFn

i defined as

Fn~k![
1

pm2E0

p

du sin2u cos2nu

3
~k21a2!224m2b2k4

~k21m22cos2u!@~k21a2!214b2k2cos2u#

5
1

pE0

p

du sin2u cos2nuF 1

m2k21cos2u

2
4b2k2

~k21a2!214b2k2cos2u
G

5Fn
S~k!1Fn

m~k!1Fn
C~k!. ~8!

Explicit expressions for these functions and their proper
are collected in Appendix A~see also@10#!.

The c integrals with the functionsFn
C(k) do not contain

any free parameters and generate only contributions linea
m/M to HFS. These integrals are pure numbers, which ad
analytic calculation. Them integrals with the functions
Fn

S(k), Fn
m(k) parametrically depend onm and generate

both nonrecoil and recoil contributions to HFS. Contrib
tions of a fixed order in the small mass ratio~which are often
enhanced by the large logarithms of the mass ratio! can be
extracted from them integrals with the help of an auxiliary
parameters chosen such that it satisfies the inequality
!s!m21. The parameters is used to separate the mome
tum integration into two regions, a region of small momen
0<k<s, and a region of large momentas<k,`. In the
region of small momenta one uses the conditionmk!1 to
simplify the integrand, and in the region of large momen
the same goal is achieved with the help of the conditionk
@1. Note that fork.s both conditions on the integratio
momenta are valid simultaneously, so in the sum of the lo
momenta and high-momenta integrals alls-dependent terms
cancel and one obtains as-independent result for the tota
11300
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momentum integral~for a more detailed discussion of th
method see, e.g.,@11#!. All contributions, up to and including
the corrections quadratic in the small mass ratiom/M , were
analytically calculated earlier in this framework@6,10# ~see
also @11,5#!.

III. DIAGRAMS WITH RADIATIVE PHOTONS IN THE
ELECTRON LINE AND ELECTRON VACUUM

POLARIZATION

The general expression for the contribution to HFS aris
from the diagrams in Fig. 22 is obtained from the integral in
Eq. ~4! by insertion in the integrand of the doubled one-lo
electron polarization (a/p)k2I e(k)

2S a

p D k2I e~k!52S a

p D k2E
0

1

dv
v2~12v2/3!

41k2~12v2!
, ~9!

where the additional multiplicity factor 2 corresponds to t
fact that we can insert the vacuum polarization in each of
exchanged photons.

Then all contributions to HFS generated by the diagra
in Fig. 2 are given by the integral

dEee5
a2~Za!

p3

m

M
ẼF

1

4pm2E0

p

du sin2uE
0

`

dk2D~k,u!

3
k4

k21m22cos2u

1

~k21a2!214b2k2cos2u

3E
0

1

dv
v2~12v2/3!

41k2~12v2!
. ~10!

To obtain the radiative-recoil corrections of ord
a2(Za)(m/M )ẼF contained in this integral we
follow the route described in the previous section. Fi
we write the integral in Eq.~10! as a sum of seven
m- and sevenc-integrals. These integrals are collecte
in Table II and Table III, where the dimensionles
contributions de to the energy shifts are defined asdEi

5de ia
2(Za)(m/M )ẼF /p3.

The c integrals in Table III automatically contain onl
contributions linear in the recoil factorm/M , and can be
immediately calculated numerically. The respective resu
are again presented in Table III, and the total contribution
all c integrals is

2The graphs with the crossed exchanged photons are not sh
explicitly in this figure and similar figures below.

FIG. 2. Electron line and electron vacuum polarization.
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TABLE II. m integrals for the diagrams in Fig. 2.

dem1
ee 1

2E0

1

dxE
0

x

dyc1E
0

`

dk2
k4

~k21a2!3
@2F0

s~k!12F0
m~k!2F1

m~k!2F2
m~k!#E

0

1

dv
v2~12v2/3!

41k2~12v2!

dem2
ee 1

2E0

1

dxE
0

x

dyc2E
0

`

dk2
k6

~k21a2!3
@2F0

s~k!12F0
m~k!1F1

m~k!#E
0

1

dv
v2~12v2/3!

41k2~12v2!

dem3
ee

2
1

2E0

1

dxE
0

x

dyc3E
0

`

dk2
k4

~k21a2!2
@2F0

s~k!12F0
m~k!1F1

m~k!#E
0

1

dv
v2~12v2/3!

41k2~12v2!

dem4
ee

4E
0

1

dxE
0

x

dybc4E
0

`

dk2
k4

~k21a2!3
@2F1

m~k!1F2
m~k!#E

0

1

dv
v2~12v2/3!

41k2~12v2!

dem5
ee

26E
0

1

dxE
0

x

dybc5E
0

`

dk2
k4

~k21a2!3
F1

m~k!E
0

1

dv
v2~12v2/3!

41k2~12v2!

dem6
ee

3E
0

1

dxE
0

x

dyc6E
0

`

dk2
k4

~k21a2!2
F1

m~k!E
0

1

dv
v2~12v2/3!

41k2~12v2!

dem7
ee 23E

0

1

dxE
0

x

dybc7E
0

`

dk2
k4

~k21a2!2
F1

m~k!E
0

1

dv
v2~12v2/3!

41k2~12v2!
.
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dEc
ee5dec

eea2~Za!

p3

m

M
ẼF56.96182~3!

a2~Za!

p3

m

M
ẼF .

~11!

The situation with them integrals is more complicated
Besides the recoil contributions linear in the small mass r
m/M , they contain both nonrecoil contributions and the
coil contributions of higher order in the mass ratio. W
would like to remove the already known nonrecoil contrib
tions, to extract in analytic form all coefficients before t
logarithmically enhanced terms linear in the recoil fact
and to calculate numerically the nonlogarthmic term which
linear in the recoil factor. To this end, we need to throw aw
the recoil contributions of higher orders which are also c
tained in them integrals and which are too small from th
phenomenological point of view. If preserved, these hig
order recoil contributions result only in the loss of accura
in the numerical integrations. It is easy to see that the in
grals with the functionF0

s(k) generate only already know
nonrecoil contributions and can be safely omitted for o
present goals. We extract the contributions linear~and loga-
rithmically enhanced! in the recoil factor from them inte-
grals by separating the integration region with the help of
auxiliary parameters as described in the previous sectio
All logarithms of the mass ratio originate from the high m
mentum parts of them integrals, where we can use the hig
energy asymptotic expansion of the polarization opera
Thus we obtain in the analytic form all coefficients befo
the logarithms of the mass ratio. The radiative-recoil corr
tions of ordera(Za)(m/M )ẼF in Eq. ~10!, generated by the
11300
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insertions of the radiative photons in the electron line,
linear in the large logarithm of the mass ratio. Hence
corrections of ordera2(Za)(m/M )ẼF are quadratic in this
large logarithm. The coefficient before the logarith
squared, which we obtain in this way, coincides with the o
obtained earlier@3#, and the analytically obtained coefficien
before the single-logarithmic term, as well as the nonlo
rithmic contribution, are new. The results of the calculati
of the m integrals are collected in Table IV.

As an illustration of our methods let us obtain the fir
three entries in Table IV. We start with the integral in the fi
line in Table II. It contains a nonrecoil contribution

dem1
ee~nonrecoil!5E

0

1

dxE
0

x

dyc1E
0

`

dk2
k4

~k21a2!3
F0

s~k!

3E
0

1

dv
v2~12v2/3!

41k2~12v2!

5
1

mE0

1

dxE
0

x

dyc1E
0

`

dk2
k3

~k21a2!3

3E
0

1

dv
v2~12v2/3!

41k2~12v2!
. ~12!

This integral, as well as all other nonrecoil contributions
order a2(Za)EF , was calculated analytically in@12#, and
3-4



THREE-LOOP RADIATIVE-RECOIL CORRECTIONS TO . . . PHYSICAL REVIEW D67, 113003 ~2003!
TABLE III. c integrals for the diagrams in Fig. 2.

dec1
ee

2
1

4E0

1

dxE
0

x

dyc1E
0

`

dk2S ]

]a2D2
k4

k21a2

1

p E0

p

du sin2u

3~22cos2u2cos4u!
4b2k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
20.916881~3!

dec2
ee

2
1

4E0

1

dxE
0

x

dyc2E
0

`

dk2S ]

]a2D2
k6

k21a2

1

p E0

p

du sin2u

3~21cos2u!
4b2k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
1.76474~1!

dec3
ee

2
1

2E0

1

dxE
0

x

dyc3E
0

`

dk2
]

]a2

k4

k21a2

1

p E0

p

du sin2u

3~21cos2u!
4b2k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
5.93600~5!

dec4
ee

2E
0

1

dxE
0

x

dybc4E
0

`

dk2
]

]a2

k4

~k21a2!2

1

p E0

p

du sin2u cos2u

3~21cos2u!
4b2k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
0.0312952~2!

dec5
ee

23E
0

1

dxE
0

x

dybc5E
0

`

dk2
]

]a2

k4

~k21a2!2

1

p E0

p

du sin2u

3cos2u
4b2k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
0.0003483~2!

dec6
ee

3E
0

1

dxE
0

x

dyc6E
0

`

dk2
]

]a2

k4

k21a2

1

p E0

p

du sin2u

3cos2u
4b2k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
0.0543901~2!

dec7
ee

3E
0

1

dxE
0

x

dybc7E
0

`

dk2
k4

~k21a2!2

1

p E0

p

du sin2u

3cos2u
4b2k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
0.0919342~3!
e
II
ls

s

pe
numerically in @13#, and we will not consider it here. W
write the recoil part of the integral in the first line in Table
as a sum of low-momentum and high-momentum integra3

3Here, as well as in similar cases below, we allow ourselve
slightly confusing notation, using the same symboldem1

ee both for
the total contribution of them integral and for its recoil part. We
hope this will not lead to any misunderstanding since in this pa
we are interested only in the recoil corrections.
11300
dem1
ee5

1

2E0

1

dxE
0

x

dyc1E
0

`

dk2
k4

~k21a2!3
@2F0

m~k!2F1
m~k!

2F2
m~k!#E

0

1

dv
v2~12v2/3!

41k2~12v2!
5dem1

ee.1dem1
ee, .

~13!

First we estimate the high momentum partdem1
ee. considering

a

r
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TABLE IV. Simplified m integrals for the diagrams in Fig. 2.

dem1
ee

2
21

16E0

1

dxE
0

x

dyc1E
0

`

dk2
k4

~k21a2!3 E
0

1

dv
v2~12v2/3!

41k2~12v2!
22.105912 (2)

dem2a1m3a
ee Sp2

3
2

5

3Dln2
M

m
1S4p2

9
2

20

9 Dln M

m
1

p4

18
2

5p2

18
1

14~p225!

27 S p2

3
2

5

3D ln2
M

m

1
3

4E0

1

dxE
0

`

dk2H ~2116x12x2!F ln k22ln~k21a1
2! 1S4p2

9
2

20

9 Dln M

m

2
a1

2

k21a1
2G24x~211x12 ln x!F2ln k21ln~k21a1

2!
1

p4

18
2

5p2

18

1
2a1

2

k21a1
2

2
1

2

a1
4

~k21a1
2!2GJE

0

1

dv
v2~12v2/3!

41k2~12v2!
10.4698395~7!

dem2b
ee S2 5p2

3
1

271

18 Dln2
M

m
1S2 20p2

9
1

542

27 D ln
M

m S2 5p2

3
1

271

18 Dln2
M

m

2
1

54
~30p22271!~8 ln 223!2

3

4E0

1

dxE
0

x

dyc2b 1S2 20p2

9
1

542

27 D ln
M

m

3E
0

`

dk2F k6

~k21a2!3
2

k2

k214
GE

0

1

dv
v2~12v2/3!

41k2~12v2!

2
5p4

18
1

271p2

108

20.797177 (4)

dem3b
ee S4p2

3
2

89

9 Dln2
M

m
1S16p2

9
2

356

27 D ln
M

m
1

2p4

9
2

89p2

54 S 4p2

3
2

89

9 D ln2
M

m

1
1

27
~12p2289!~8 ln 223!1

3

4E0

1

dxE
0

x

dyc3b 1S16p2

9
2

356

27 D ln
M

m

3E
0

`

dk2F k4

~k21a2!2
2

k2

k214
GE

0

1

dv
v2~12v2/3!

41k2~12v2!

1
2p4

9
2

89p2

54

15.398568~7!

dem4
ee 9

2E0

1

dxE
0

x

dybc4E
0

`

dk2
k4

~k21a2!3 E
0

1

dv
v2~12v2/3!

41k2~12v2!
20.3738824~5!

dem5
ee

23E
0

1

dxE
0

x

dybc5E
0

`

dk2
k4

~k21a2!3 E
0

1

dv
v2~12v2/3!

41k2~12v2!
0.127357~3!

dem6
ee Sp2

3
2

7

2Dln2
M

m
1S2 8p2

9
1

28

3 Dln M

m
1

p4

18
2

5p2

36
2

14

3 S p2

3
2

7

2D ln2
M

m

1
1

18
~2p2221!~8 ln 223!1

3

2E0

1

dxE
0

x

dyc6 1S2 8p2

9
1

28

3 Dln M

m

3E
0

`

dk2F k4

~k21a2!2
2

k2

k214
GE

0

1

dv
v2~12v2/3!

41k2~12v2!
1

p4

18
2

5p2

36
2

14

3

20.1944535 (6)

dem7
ee S2 p2

3
1

5

2Dln2
M

m
1S8p2

9
2

20

3 Dln M

m
2

p4

18
2

p2

36
1

10

3 S 2
p2

3
1

5

2D ln2
M

m

2
1

18
~2p2215!~8 ln 223!2

3

2E0

1

dxE
0

x

dybc7 1S8p2

9
2

20

3 Dln M

m

3E
0

`

dk2F k4

~k21a2!2
2

k2

k214
GE

0

1

dv
v2~12v2/3!

41k2~12v2!
2

p4

18
2

p2

36
1

10

3

20.8472862 (4)
113003-6
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THREE-LOOP RADIATIVE-RECOIL CORRECTIONS TO . . . PHYSICAL REVIEW D67, 113003 ~2003!
the leading term in the integrand in the high momentum lim
~more technical details on similar estimates can be foun
@10#!

dem1
ee.5

1

2E0

1

dxE
0

x

dyc1E
s2

`

dk2
k4

~k21a2!3
@2F0

m~k!2F1
m~k!

2F2
m~k!#E

0

1

dv
v2~12v2/3!

41k2~12v2!

;E
s

` dk2

k4
ln2k2@2F0

m~k!2F1
m~k!2F2

m~k!#

;
1

s2
ln2s. ~14!

We see that the high momentum contribution is suppres
like 1/s2. We have already extracted the recoil factor fro
dem1

ee explicitly, so now we are looking only for such contr
butions which are not additionally suppressed. Hence, in
leading order in the recoil parameter we can omit the hi
momentum contribution todem1

ee , and in our approximation
the total contribution to the energy shift is given by the lo
momentum integral

dem1
ee,5

1

2E0

1

dxE
0

x

dyc1E
0

s2

dk2
k4

~k21a2!3
@2F0

m~k!

2F1
m~k!2F2

m~k!#E
0

1

dv
v2~12v2/3!

41k2~12v2!
. ~15!

To extract the leading nonvanishing contribution to this in
gral atm→0 we substitute in the integrand the leading ter
in the smallm expansion of the functionsF i

m(k) ~see Ap-
pendix A! and obtain

dem1
ee,'2

21

16E0

1

dxE
0

x

dyc1E
0

s2

dk2
k4

~k21a2!3

3E
0

1

dv
v2~12v2/3!

41k2~12v2!
. ~16!

The momentum integral is ultravioletly convergent, so t
magnitude of the integral with an infinite upper limit diffe
from the integral in Eq.~16! only by inverse powers ofs,
which we omit anyway. Hence, the totalm1 contribution to
the energy shift is given by the integral
11300
t
in

ed

e
-

-
s

e

dem1
ee52

21

16E0

1

dxE
0

x

dyc1E
0

`

dk2
k4

~k21a2!3

3E
0

1

dv
v2~12v2/3!

41k2~12v2!
, ~17!

which is just the first entry in Table IV.
Let us turn now to the next integrals in Table II. Each

the integralsdem2
ee and dem3

ee generates spurious logarithm
cubed contributions which cancel in the sum of these ter
It is therefore convenient to rearrange these terms in s
way that spurious logarithm cubed terms do not arise at
To this end we write the coefficient functionsc2 in the form

c25
4~122y!

y~12y!
x~211x12 lnx!1

4

~12y!3
@2~12x!

3~2122y/x!12~2414y/x!ln x1x~211x12 lnx!

3~425y12y2!#

[c2a1c2b . ~18!

We have chosenc2a essentially as the singular part of th
function c2 at y.0 and multiplied this singular part by th
factor (122y)/(12y) in order to simplify integration over
y. Since (122y)dy/@y(12y)#52da2/a2 this makes inte-
gration overy trivial. The spurious logarithm cubed term
originates only from the integral of the functionc2a . On the
other hand, the integrals overx andy with the functionc2b
remain finite even if we omita2 in the denominator (k2

1a2)3, which leads to significant simplifications in the high
momentum part of the integraldem2

ee .
Following the same logic, we represent the coefficie

functionsc3 also as a sum of two functionsc3a andc3b

c35
122y

y~12y!
~126x22x2!1

1

~12y!2
$2~12y!

3~126x22x2!1~12y!~812x!2~1/x!@26~12x!

12x~12x!26~12x2!y/x26x~12y!116 lnx#%

[c3a1c3b . ~19!

Now the sum of the recoil contributions to HFS generated
the m2 andm3 integrals in Table II may be written in th
form

dem2
ee1dem3

ee5dem2a1m3a
ee 1dem2b

ee 1dem3b
ee . ~20!

Let us consider calculation of thedem2a1m3a
ee contribution
3-7
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dem2a1m3a
ee 5

1

2E0

1

dxE
0

x

dyE
0

`

dk2F c2ak6

~k21a2!3
2

c3ak4

~k21a2!2G E0

1

dv
v2~12v2/3!

41k2~12v2!
@2F0

m~k!1F1
m~k!#5em2a1m3a

ee.

1em2a1m3a
ee, . ~21!

As mentioned above, calculation of they integral becomes trivial after the change of variablesy→a2. In the high-momentum
integral we next expand over the inverse powers ofk2, and use the asymptotic expansions of the arising functionsVlnm ~these
functions were defined and their properties were discussed in@10#!

em2a1m3a
ee. 5

1

2Es2

` dk2

k2 F S 2
16

3
ln k2

2p2

3
110D2S 2

16

3
ln k1

20

3 D G S 2

3
ln k2

5

9D @2F0
m~k!1F1

m~k!#

'S 2
p2

6
1

5

6D H 4

3
@2V1101V111#2

10

9
@2V1001V101#J

'S p2

3
2

5

3D ln2
M

m
1S 4p2

9
2

20

9 D ln
M

m
1

p4

18
2

5p2

18
1S 2

p2

3
1

5

3D ln2s1S 5p2

9
2

25

9 D ln s. ~22!

In the low-momentum part of the integral we again preserve only the leading terms in the smallm expansion of the functions
F i

m(k)

em2a1m3a
ee, 5

3

4E0

1

dxE
0

x

dyE
0

s2

dk2F2
c2ak6

~k21a2!3
1

c3ak4

~k21a2!2G E0

1

dv
v2~12v2/3!

41k2~12v2!
~23!

and integrate explicitly overy

em2a1m3a
ee, 5S p2

3
2

5

3D ln2s1S 2
5p2

9
1

25

9 D ln s1
14~p225!

27
1

3

4E0

1

dxE
0

`

dk2H ~2116x12x2!F ln k22 ln~k21a1
2!

2
a1

2

k21a1
2G24x~211x12 lnx!F2 ln k21 ln~k21a1

2!1
2a1

2

k21a1
2

2
1

2

a1
4

~k21a1
2!2G J E0

1

dv
v2~12v2/3!

41k2~12v2!
, ~24!

wherea1
25x/(12x). Note that we again extended the momentum integration to infinity in the finite integrals for the

momentum contribution. Finally, summing the high- and low-momentum contributions we obtain thes-independent result

em2a1m3a
ee 5S p2

3
2

5

3D ln2
M

m
1S 4p2

9
2

20

9 D ln
M

m
1

p4

18
2

5p2

18
1

14~p225!

27
1

3

4E0

1

dxE
0

`

dk2H ~2116x12x2!F ln k22 ln~k2

1a1
2!2

a1
2

k21a1
2G24x~211x12 lnx!F2 ln k21 ln~k21a1

2!1
2a1

2

k21a1
2

2
1

2

a1
4

~k21a1
2!2G J E0

1

dv
v2~12v2/3!

41k2~12v2!
,

~25!

which is convenient for numerical calculations.
For our final example let us derive an expression fordem2b

ee in the third line in Table IV. We start with the general expressi
for this contribution from Table II

dem2b
ee 5

1

2E0

1

dxE
0

x

dyE
0

`

dk2
c2bk6

~k21a2!3E0

1

dv
v2~12v2/3!

41k2~12v2!
@2F0

m~k!1F1
m~k!#. ~26!

As we already mentioned above in this case we are free to omita2 in comparison withk2 in the denominator in the
high-momentum part of this integral
113003-8
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em2b
ee.5

1

2E0

1

dxE
0

x

dyE
s2

`

dk2c2bE
0

1

dv
v2~12v2/3!

41k2~12v2!
@2F0

m~k!1F1
m~k!#

'
1

2Es

` dk2

k2 S 10p2

3
2

271

9 D S 2

3
ln k2

5

9D @2F0
m~k!1F1

m~k!#

'S 5p2

6
2

271

36 D H 4

3
@2V1101V111#2

10

9
@2V1001V101#J

'S 2
5p2

3
1

271

18 D ln2
M

m
1S 2

20p2

9
1

542

27 D ln
M

m
2

5p4

18
1

271p2

108
1S 5p2

3
2

271

18 D ln2s

1S 2
25p2

9
1

1355

54 D ln s. ~27!
in
-
f
-
s

s

e
-
nd

u

-
ks.
lly

ly
ig. 2
Dealing with the low-momentum part of the integral
Eq. ~26! we would like to extract analytically leading loga
rithms of s. This would allow us to get rid of any trace o
the parameters in the final expression for this integral, mak
ing it much more suitable for further numerical calculation
The double integral overx andy, with the integrand includ-
ing the functionc2b , cannot be calculated analytically a
easily as the integral with the functionem2a1m3a

ee above. In
order to overcome this difficulty we use the identity

k4

~k21a2!3
5

1

k214
1F k4

~k21a2!3
2

1

k214
G ~28!

in the low-momentum part of the integral in Eq.~26!. Ana-
lytic calculation of the integral with the first term on th
right-hand side~RHS! is simple. On the other hand, all loga
rithms of s are supplied by this integral since the seco
term on the RHS in Eq.~28! decreases at largek faster than
the first term. Then we obtain the low-momentum contrib
tion to the integral in Eq.~26! in the form

dem2b
ee,5S 2

5p2

3
1

271

18 D ln2s1S 25p2

9
2

1355

54 D ln s

2
1

54
~30p22271!~8 ln 223!

2
3

4E0

1

dxE
0

x

dyc2bE
0

`

dk2F k6

~k21a2!3

2
k2

k214
G E

0

1

dv
v2~12v2/3!

41k2~12v2!
. ~29!

Finally, the total expression for them2b integral has the
form
11300
.

-

dem2b
ee 5S 2

5p2

3
1

271

18 D ln2
M

m
1S 2

20p2

9
1

542

27 D ln
M

m

2
5p4

18
1

271p2

108
2

1

54
~30p22271!~8 ln 223!

2
3

4E0

1

dxE
0

x

dyc2bE
0

`

dk2F k6

~k21a2!3

2
k2

k214
G E

0

1

dv
v2~12v2/3!

41k2~12v2!
. ~30!

Calculation of the remainingm integrals goes along simi
lar lines, and does not require any additional new tric
Calculating the nonlogarithmic contributions numerica
and collecting allm-integrals from Table IV, we obtain the
total contribution of allm integrals

dem
ee5

5

2
ln2

M

m
1

22

3
ln

M

m
14.45606~1!. ~31!

The sum ofm andc integrals in Eq.~31! and Eq.~11! gives
all radiative-recoil corrections of ordera2(Za)(m/M )ẼF
generated by the diagrams in Fig. 2,

deee5dem
ee1dec

ee5
5

2
ln2

M

m
1

22

3
ln

M

m
111.41788~3!.

~32!

IV. DIAGRAMS WITH RADIATIVE PHOTONS IN THE
ELECTRON LINE AND MUON VACUUM POLARIZATION

Let us consider now the diagrams in Fig. 3. The on
difference between these diagrams and the diagrams in F

FIG. 3. Electron line and muon vacuum polarization.
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EIDES, GROTCH, AND SHELYUTO PHYSICAL REVIEW D67, 113003 ~2003!
from the previous section is that they contain the mu
vacuum polarization insertion,4

2S a

p D k2I m~k!52S a

p D k2E
0

1

dv
v2~12v2/3!

m221k2~12v2!
, ~33!

instead of the electron vacuum polarization, and the resp
tive contribution to HFS has the form@compare Eq.~10!#

dEem5
a2~Za!

p3

m

M
ẼF

1

4pm2E0

p

du sin2uE
0

`

dk2D~k,u!

3
k4

k21m22cos2u

1

~k21a2!214b2k2cos2u

3E
0

1

dv
v2~12v2/3!

m221k2~12v2!
. ~34!

We transform the integrand in the sum ofm andc integrals
exactly as in the previous section, the only difference be
that each integrand now contains as a factor the m
vacuum polarization insertion from Eq.~33! instead of the
electron vacuum polarization insertion. This immediate
leads to significant simplification of further calculations
comparison to the case of the electron polarization. T
muon polarization insertion in Eq.~34! is suppressed ask2m2

at integration momenta much smaller than the muon m
But the characteristic integration momenta in thec integrals
are of order one in our dimensionless units, and hence
all c integrals do not generate corrections linear in the re
factor m/M . Low-momenta parts of them integrals, where
integration goes over momentak<s!1/m, are also sup-
pressed ass2m2. Only the high-momenta parts of them
integrals, where integration effectively goes over the m
menta comparable to 1/m, generate contributions linear i
m/M52m. Such contributions are present only in them in-
tegrals connected with the coefficient functionsc2 , c3 , c6,
andc7. Note that the integrals with the coefficient functio
c2 and c3 contain the functionF0

s(k)51/(mk) in the inte-
grand. In the case of the electron vacuum polarization~and
the absence of any polarization at all! the integrals with this
function generated nonrecoil corrections only. This ess
tially happened because the characteristic integration
menta were of order one, and in this region the contribut
of the function 1/(mk) is obviously enhanced as 1/m. In the
present case, characteristic integration momenta are a
1/(mk), and the integrals with the functionF0

s(k) generate
recoil corrections on a par with the integrals with the oth
functionsF(k).

Integration over the Feynman parametersx and y in the
high-momenta integrals simplifies and may be perform
analytically, and we obtain all one-dimensional momenta

4We ascribe an extra factorZ to each photon emission by th
heavy line, but being somewhat inconsequential, do not write anZ
factor in the muon vacuum polarization.
11300
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tegrals which generate radiative-recoil corrections in the c
of muon polarization insertions

dem2
em.'2E

s2

`

dk2F S 2
4

3
ln k2

p2

6
1

5

2D1S 5p2

6
2

271

36 D G
3@2F0

s~k!12F0
m~k!1F1

m~k!#

3E
0

1

dv
v2~12v2/3!

m221k2~12v2!
, ~35!

dem3
em.'2E

s2

`

dk2F S 4

3
ln k2

5

3D1S 2
2p2

3
1

89

18D G@2F0
s~k!

12F0
m~k!1F1

m~k!#E
0

1

dv
v2~12v2/3!

m221k2~12v2!
, ~36!

dem6
em.'S p22

21

2 D E
s

`

dk2F1
m~k!E

0

1

dv
v2~12v2/3!

m221k2~12v2!
,

~37!

dem7
em.'S 2p21

15

2 D E
s

`

dk2F1
m~k!E

0

1

dv
v2~12v2/3!

m221k2~12v2!
.

~38!

The sum of all these contributions has the form

dem
em.'2E

s2

`

dk2H 7

2
@2F0

s~k!12F0
m~k!1F1

m~k!#

13F1
m~k!J E

0

1

dv
v2~12v2/3!

m221k2~12v2!
, ~39!

or explicitly

dem
em.'2E

s2

`

dk2H 7

2 F 2

mk
~A11m2k22mk!

1S 2mkA11m2k21m2k21
1

2D G
13S 2mkA11m2k21m2k21

1

2D J
3E

0

1

dv
v2~12v2/3!

m221k2~12v2!
. ~40!

We can extend the momentum integration region in this
tegral to zero, since contributions from small momenta
additionally suppressed by powers ofsm. It is also natural to
rescale the integration momentumk→mk. Then the expres-
sion for the radiative-recoil corrections has the form
3-10
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dem
em52E

0

`

dkH 7F2~A11k22k!

1kS 2kA11k21k21
1

2D G
16kS 2kA11k21k21

1

2D J
3E

0

1

dv
v2~12v2/3!

11k2~12v2!
. ~41!

The integral in the first line of this equation is propo
tional to the integral for the muon polarization contributio
of ordera(Za)(m/M )ẼF in @10#, and the contribution of the
integral in the second line may be calculated in the sa
way. Finally we obtain
r-

in

11300
e

dem
em52

5p2

12
1

1

18
524.0567796 . . . . ~42!

V. DIAGRAMS WITH RADIATIVE PHOTONS IN THE
MUON LINE AND MUON VACUUM POLARIZATION

The expression in Eq.~2!, for the radiative corrections
generated by the diagrams with the radiative photon ins
tions in the electron line Fig. 1, was obtained without expa
sion in the mass ratio. Hence, after the substitutionsm↔M
and a→Z2a it goes into the expression for the correctio
generated by the diagrams in Fig. 4,5

FIG. 4. Muon-line radiative-recoil corrections.
y with the

ribution
an extra
dEm-l ine5
~Z2a!~Za!

p2

m

M
EF

1

4E0

1

dxE
0

x

dyE d4k

ip2~k21 i0!2 S 1

k214mk01 i0
1

1

k224mk01 i0
D H ~3k0

222k2!

3F c1k21c2~k2!2

~2k212bk01a2!3
1

c3k21c42k0

~2k212bk01a2!2G23k0F c5k21c6k22k0

~2k212bk01a2!2
1

c7k2

2k212bk01a2G J . ~43!

The dimensionless integration momentum here is measured in muon mass units, and apparent incomplete symmetr
expression in Eq.~2! is due to asymmetry of the parameterm5m/(2M ).

Unlike the case of the radiative photon insertions in the electron line in Sec. II, the integral in Eq.~43! does not generate
nonrecoil contributions@7,14#. This happens because the radiative photon insertions in the muon line suppress the cont
from the integration momenta of order of the electron mass which were responsible for the nonrecoil correction by
factor m2. Hence, for calculation of the leading order recoil corrections we can safely allowm→0 in Eq. ~43!,

dEm-l ine'
~Z2a!~Za!

p2

m

M
EF

1

2E0

1

dxE
0

x

dyE d4k

ip2~k21 i0!3 H ~3k0
222k2!F c1k21c2~k2!2

~2k212bk01a2!3
1

c3k21c42k0

~2k212bk01a2!2G
23k0F c5k21c6k22k0

~2k212bk01a2!2
1

c7k2

2k212bk01a2G J . ~44!
q.

ned
After the Wick rotation and transition to the fou
dimensional spherical coordinates we have

dEm-l ine5
~Z2a!~Za!

p2

m

M
EF

1

2pE0

p

du sin2u

3E
0

`

dk2D~k,u!
1

~k21a2!214b2k2cos2u
,

~45!

where the differential operatorD(k,u) was defined in Eq.
~5!. There are nom-dependent terms in Eq.~45!, and this
expression for the energy shift is similar to thec integrals in
Eq. ~7!. It can be formally obtained from the expression
Eq. ~7! by the substitution
2
b2k4

~k21a2!2
→Z2.

All corrections to HFS described by the integral in E
~45! were analytically calculated in@7#. Contributions to the
energy shift generated by the diagrams in Fig. 5 are obtai
from the expression in Eq.~45! by insertion in the integrand
of the doubled muon vacuum polarization

2S a

p D k2I m~k!52S a

p D k2E
0

1

dv
v2~12v2/3!

41k2~12v2!
. ~46!

5We use the convention that the heavy line charge isZe.
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TABLE V. c integrals for the diagrams in Fig. 5.

de1
mm E

0

1

dxE
0

x

dyc1E
0

`

dk2S ]

]a2D2
1

p E0

p

du sin2u

3~22cos2u2cos4u!
k2~k21a2!

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
0.297870~1!

de2
mm E

0

1

dxE
0

x

dyc2E
0

`

dk2S ]

]a2D2
1

p E0

p

du sin2u

3~21cos2u!
k4~k21a2!

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
20.759522~5!

de3
mm

2E
0

1

dxE
0

x

dyc3E
0

`

dk2
]

]a2

1

p E0

p

du sin2u

3~21cos2u!
k2~k21a2!

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
21.11839~2!

de4
mm

28E
0

1

dxE
0

x

dybc4E
0

`

dk2
]

]a2

1

p E0

p

du sin2u cos2u

3~21cos2u!
k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
20.0484183~2!

de5
mm

12E
0

1

dxE
0

x

dybc5E
0

`

dk2
]

]a2

1

p E
0

p

du sin2u

3cos2u
k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
20.0027928~4!

de6
mm

212E
0

1

dxE
0

x

dyc6E
0

`

dk2
]

]a2

1

p E
0

p

du sin2u

3cos2u
k2~k21a2!

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
20.0251636~1!

de7
mm 212E

0

1

dxE
0

x

dybc7E
0

`

dk2
1

p E
0

p

du sin2u

3cos2u
k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!
20.1453343~4!
tiv
o-
, t
ia

tal
. 5
This expression is apparently different from the respec
expression in Eq.~33! because now our dimensionless m
menta are measured in terms of the muon mass. Finally
integral for the contribution to HFS generated by the d
grams in Fig. 5 has the form

FIG. 5. Muon line and muon vacuum polarization.
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dEmm5
a~Z2a!~Za!

p3

m

M
EF

1

pE0

p

du sin2uE
0

`

dk2D~k,u!

3
k2

~k21a2!214b2k2cos2u
E

0

1

dv
v2~12v2/3!

41k2~12v2!

5S (
1

7

de i
mmDa~Z2a!~Za!

p3

m

M
EF . ~47!

All seven contributions are collected in Table V, and the to
contribution to HFS generated by the diagrams in Fig
is
3-12



if-
. 5

o
e

io

cc
c-
io

m

t

ke
i-
se

ton
ly
tic

ms

ic
po-

d
ten

d
and

THREE-LOOP RADIATIVE-RECOIL CORRECTIONS TO . . . PHYSICAL REVIEW D67, 113003 ~2003!
demm521.80176~2!. ~48!

VI. DIAGRAMS WITH RADIATIVE PHOTONS IN THE
MUON LINE AND ELECTRON VACUUM

POLARIZATION

Let us turn now to the diagrams in Fig. 6. The only d
ference between these diagrams and the diagrams in Fig
that now we have electron polarization insertions instead
the muon polarization insertions. The respective analytic
pression is obtained from the one in Eq.~47! by substitution
of the electron polarization instead of the muon polarizat

2k2E
0

1

dv
v2~12v2/3!

41k2~12v2!

→2k2E
0

1

dv
v2~12v2/3!

4~m/M !21k2~12v2!
. ~49!

The typical integration momenta in Eq.~45! are of order of
the muon mass and, since we are calculating to linear a
racy inm/M , it is sufficient to substitute instead of the ele
tron polarization operator the leading terms in its expans
over m/M :

2k2E
0

1

dv
v2~12v2/3!

4~m/M !21k2~12v2!
'

2

3
ln k21

4

3
ln

M

m
2

10

9
.

~50!

Then the total contribution to HFS generated by the diagra
in Fig. 6 is given by the integral

dEme5
a~Z2a!~Za!

p3

m

M
EF

1

2pE0

p

du sin2u

3E
0

`

dk2D~k,u!
1

~k21a2!214b2k2cos2u

3S 2

3
ln k21

4

3
ln

M

m
2

10

9 D
5~dec

me1des
me!

a~Z2a!~Za!

p3

m

M
EF , ~51!

where the contributiondec
me5( ieci

me corresponds to the firs
term in the last brackets, and the contributiondes

me corre-
sponds to the second and third terms in the same brac
We calculatedec

me numerically and collect all seven contr
butions to this integral in Table VI. The sum of all the
contributions is

FIG. 6. Muon line and electron vacuum polarization.
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f

x-

n

u-

n

s

ts.

dec
me512.94447~4!. ~52!

The integral fordes
me is proportional to the integral for the

radiative-recoil corrections generated by the radiative pho
insertions in the muon line, which is known analytical
@7,14#. Hence, we can immediately put down an analy
result fordes

me :

des
me5S 4

3
ln

M

m
2

10

9 D S 9

2
z~3!23p2ln 21

39

8 D . ~53!

Then the total contribution to HFS generated by the diagra
in Fig. 6 is equal to

deme5S 6z~3!24p2ln 21
13

2 D ln
M

m
124.32115~4!.

~54!

VII. DISCUSSION OF RESULTS

Collecting the results in Eqs.~32!, ~42!, ~48!, and~54! we
obtain the three-loop single-logarithmic and -nonlogarithm
corrections generated by the one-loop electron and muon
larization insertions in the exchanged photons

dE5dee
a2~Za!

p3

m

M
ẼF1dem

a~Z2a!~Za!

p3

m

M
ẼF ,

~55!

where

dee5
5

2
ln2

M

m
1

22

3
ln

M

m
17.36110~3!, ~56!

dem5S 6z~3!24p2ln 21
13

2 D ln
M

m
122.51939~5!. ~57!

If we recall that in the real muoniumZ51 and that the
logarithm-squared term was already calculated earlier@3#
then the new three-loop single-logarithmic an
-nonlogarithmic corrections obtained above may be writ
as

dEf5F S 6z~3!24p2ln 21
83

6 D ln
M

m

129.88049~6!Ga3

p3

m

M
ẼF . ~58!

Combining this result with the result of our earlier paper@1#
we obtain all three-loop single-logarithmic an
-nonlogarithmic corrections generated by the electron
muon polarization insertions in the exchanged photons

dEtot5F S 24p2ln 21
67

12D ln
M

m
19.59318~6!Ga3

p3

m

M
ẼF ,

~59!

or, numerically
3-13
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TABLE VI. c integrals for the diagrams in Fig. 6.

dec1
me 1

3E0

1

dxE
0

x

dyc1E
0

`

dk2S ]

]a2D2
1

p E0

p

du sin2u

3~22cos2u2cos4u!
k21a2

~k21a2!214b2k2cos2u
ln k2 215.49349~3!

dec2
me 1

3E0

1

dxE
0

x

dyc2E
0

`

dk2S ]

]a2D2
1

p E0

p

du sin2u

3~21cos2u!
k2~k21a2!

~k21a2!214b2k2cos2u
ln k2 21.235177~4!

dec3
me 2

3E0

1

dxE
0

x

dyc3E
0

`

dk2
]

]a2

1

p E0

p

du sin2u

3~21cos2u!
k21a2

~k21a2!214b2k2cos2u
ln k2 26.74813~3!

dec4
me

2
8

3E0

1

dxE
0

x

dybc4E
0

`

dk2
]

]a2

1

p E0

p

du sin2u cos2u

3~21cos2u!
1

~k21a2!214b2k2cos2u
ln k2 1.304129~5!

dec5
me

4E
0

1

dxE
0

x

dybc5E
0

`

dk2
]

]a2

1

p E0

p

du sin2u

3cos2u
1

~k21a2!214b2k2cos2u
ln k2 0.411544~4!

dec6
me

24E
0

1

dxE
0

x

dyc6E
0

`

dk2
]

]a2

1

p E0

p

du sin2u

3cos2u
k21a2

~k21a2!214b2k2cos2u
ln k2 20.0503852~6!

dec7
me 24E

0

1

dxE
0

x

dybc7E
0

`

dk2
1

p E0

p

du sin2u

3cos2u
1

~k21a2!214b2k2cos2u
ln k2 1.259721~4!
rre
tly
e

he
a

s
o

Y-
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ted
dE520.0288 kHz. ~60!

This correction has the same scale as some other co
tions to hyperfine splitting in muonium calculated recen
@10,15,16#. All these results improve the accuracy of th
theory of hyperfine splitting and affect the value of t
electron-muon mass ratio derived from the experimental d
@17# on hyperfine splitting~see, e.g., reviews in@5,18#!. We
postpone discussion of the phenomenological implication
the result above until the completion of the calculations
the remaining three-loop radiative recoil corrections.
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APPENDIX: STANDARD AUXILIARY FUNCTIONS

Calculations described in this paper are greatly facilita
by the use of the auxiliary functionsFn(k)(n50,1,2,3) de-
fined by the relationship
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Fn~k![
1

pm2E0

p

du sin2u cos2nu

3
~k21a2!224m2b2k4

~k21m22cos2u!@~k21a2!214b2k2cos2u#
.

~A1!

The integral over angles may be explicitly calculated, a
the result of the integration is conveniently written as a s

Fn~k![Fn
S~k!1Fn

m~k!1Fn
C~k!, ~A2!

where

Fn
S~k!5

dn0

mk
, ~A3!

F0
m~k!5W~jm!2

1

Ajm

, ~A4!

F1
m~k!52jmW~jm!1

1

2
, ~A5!

F2
m~k!5jmS jmW~jm!2

1

2D1
1

8
, ~A6!

F3
m~k!52jmFjmS jmW~jm!2

1

2D1
1

8G1
1

16
, ~A7!

F0
C~k!52W~jC!, ~A8!

F1
C~k!5jCW~jC!2

1

2
, ~A9!

F2
C~k!52jCS jCW~jC!2

1

2D2
1

8
, ~A10!
tt

iz

tt

11300
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F3
C~k!5jCFjCS jCW~jC!2

1

2D1
1

8G2
1

16
. ~A11!

The standard functionW(j) has the form

W~j!5A11
1

j
21 ~A12!

and

jm5m2k2, jC5
~k21a2!2

4b2k2
. ~A13!

One may easily obtain asymptotic expressions for
function W(j)

lim
j→0

W~j!→ 1

Aj
,

lim
j→`

W~j!→ 1

2j
. ~A14!

High- and low-momentum asymptotic expressions for
functions F i(k) may also be easily calculated. Let us ci
low-momentum expansions, which were used in the m
text for calculation of the contributions to the hyperfine sp
ting of relative orderm2

F0
m~k!'211

mk

2
, ~A15!

F1
m~k!'

1

2
2mk1~mk!2, ~A16!

F2
m~k!'

1

8
2

~mk!2

2
. ~A17!
tt.
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