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QCD moment sum rules for Coulomb systems: The charm and bottom quark masses
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In this work the charm and bottom quark masses are determined from QCD moment sum rules for the
charmonium and upsilon systems. To illustrate the special character of these sum rules when applied to
Coulomb systems, we first set up and study the behavior of the sum rules in quantum mechanics. In our
analysis, we include both the results from nonrelativistic QCD and perturbation theory at next-next-to-leading
order. The moments are evaluated at different values ofq2 which correspond to different relative influences
among the theoretical contributions. In the numerical analysis, we obtain the masses by choosing central values
for all input parameters. The error is estimated from a variation of these parameters. First, the analysis is
performed in the pole mass scheme. Second, we employ the potential-subtracted mass in intermediate steps of
the calculation to then infer the quark masses in theMS scheme. Our final results for the pole andMS masses
are Mc51.7560.15 GeV,mc(mc)51.1960.11 GeV,Mb54.9860.125 GeV, and mb(mb)54.24
60.10 GeV.
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I. INTRODUCTION

Quantum chromodynamics, the fundamental theory
strong interactions, represents a basic building block of
standard model. The determination of its parameters rem
an essential task within modern particle physics. The str
coupling constant can be obtained from many differ
sources to a rather high accuracy@1#. Investigations for the
quark masses face much more severe problems. Confine
effects must be taken into account for most systems sens
to the masses. Therefore, apart from the top quark m
nonperturbative methods such as QCD sum rules@2–4#, lat-
tice QCD@5,6#, or chiral perturbation theory@7,8# have to be
employed.

The extraction of the heavy quark masses was among
first applications of the method of QCD sum rules@2,3#. In
this framework the hadronic parameters can be related
perturbative QCD calculation including the nonperturbat
condensate contributions. The analyses were later upd
and extended@9,10#. Recent times have seen a renewed
terest in these investigations. With the development of n
relativistic QCD ~NRQCD! @11,12# it has been recognize
that the Coulombic form of the potential plays a major ro
in the determination of the charm and bottom quark mas
The contributions from NRQCD have been calculated up
next-next-to-leading order~NNLO! @13–15#. In a region
where the system is sensitive to mass effects, they domi
the theoretical evaluation of the sum rules over a pure p
turbative expansion in the strong coupling constant.

The fundamental quantity in this type of sum-rule analy
is the vacuum polarization functionP(q2):

Pmn~q2!5 i E d4x eiqx^T$ j m~x! j n
†~0!%&

5~qmqn2gmnq2!P~q2!, ~1!
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where the relevant vector current is represented either by
charm j m

c (x)5( c̄gmc)(x) or the bottom current j m
b (x)

5(b̄gmb)(x). Via the optical theorem, the experiment
cross sections(e1e2→cc̄,bb̄) is related to the imaginary
part of P(s):

Rc,b~s!5
1

Qc,b
2

s~e1e2→cc̄,bb̄!

s~e1e2→m1m2!

512p Im Pc,b~s1 i e!. ~2!

Usually, moments of the vacuum polarization are defined
taking derivatives of the correlator ats50. However, in this
work we will allow for an arbitrary evaluation points5
24m2j to define the dimensionless moments:

Mn~j!5
12p2

n! S 4m2
d

dsD
n

P~s!U
s524m2j

. ~3!

As we will see in more detail later, the parameterj encodes
much information about the system. By takingj larger, the
evaluation point moves further away from the threshold
gion. As already discussed in@3#, this leads to a better con
vergence for the perturbative expansion. The price to be p
is a small dependence of the moments on the mass.
again limits the possible accuracy when extracting the m
from the moments. Using a dispersion relation we can w
the momentsMn(j) as an integral over the spectral dens
R(s):

Mn~j!5~4m2!n E
smin

`

ds
R~s!

~s14m2j!n11

52 E
0

1

dv
v~12v2!n21R~v !

@11j~12v2!#n11
. ~4!
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The last equation represents a convenient way to expres
moments through the velocity of the heavy quarksv
5A124m2/s. The moments can either be calculated the
retically, including Coulomb resummation, perturbati
theory, and nonperturbative contributions, or be obtain
from experiment. In this way one can relate the heavy qu
masses to the hadronic properties of the quark-antiquark
tems. The theoretical setup is identical for the charmoni
and upsilon and in the first sections we will thus not spec
the quark content. The difference will become crucial for t
phenomenological part and the numerical analysis.

Of decisive importance for the determination of t
masses is the threshold behavior. Here the system reacts
sensitively to mass effects. A small change in the mass le
to a relatively large variation of the moments. Thus the m
can in principle be determined with rather high accura
Therefore we try to develop a consistent physical descrip
of the threshold region which includes all theoretical con
butions and perform a matching between the low and h
energy regions.

Before turning to a discussion of the individual contrib
tions, the next section shall highlight the special characte
the sum rules when applied to the Coulomb system. To
end, we present the sum rules in the framework of quan
mechanics which were developed in@16#. Then we presen
here for the first time the application of the moment su
rules to a system governed by the Coulomb potential.
theoretical contributions can be described analytically. T
sum rules show the dependence of the mass on the mom
explicitly. Furthermore, the dependence of the pole and c
tinuum parts onn and j will be studied and we investigat
how these parameters determine the relative influence
tween the different contributions.

The results from NRQCD can be described similar to
quantum-mechanical sum rules. They contain a nonrelati
tic Green’s function which is composed of a continuo
spectrum above and poles below threshold. We will isol
these contributions and analyze their influence on the m
and the error separately. Namely, the poles will give the la
est individual contribution to the mass. Therefore we will n
use the nonrelativistic expansion to the energy levels it
which suffers from large corrections, but rather evaluate
rectly the Green’s function in a region where the expans
is expected to work. As already done in our previous wo
for the charmonium system@17#, in the theoretical descrip
tion of the correlator we will use information both from Co
lomb resummation and perturbation theory. From a match
between the low and high energy region we construct a s
tral density for the full energy range. This will allow us t
obtain a stable mass prediction for a wide range of par
eters. The parameterj will be used to shift the analysis to
wards a more perturbative region. There the expansion
NRQCD and perturbation theory converge faster and the
ferent theoretical contributions are more equally distribut
This will reduce the systematic uncertainty of the sum-r
approach. Since the sum rules keep the analytic depend
on the input parameters, we will investigate in detail th
influence on the mass. To estimate the error we will v
each of the parameters in suitably large chosen windows
11300
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Until now we have not specified the mass definition to
used in Eq.~3!. A natural choice for this mass is the po
massM. In the numerical analysis we will first use the po
mass scheme to extract the pole masses. However, as
pole masses suffer from renormalon ambiguities@18#, they
can only be determined up to corrections of orderO(LQCD).
Therefore, in the second part of our analysis we shall use
potential-subtracted~PS! massmPS @19#. From this mass
definition we can obtain the modified minimal subtracti
scheme~MS! masses more accurately than from the p
mass scheme.

In the next section we will discuss the quantum
mechanical sum rules. In Sec. III we shall present the c
tributions from the threshold expansion in the framework
NRQCD. Here we will also define the potential-subtract
mass. The perturbative expansion will be derived in the f
lowing section. In Secs. V and VI we will discuss the no
perturbative contributions and the phenomenological spec
function. Then we shall explain the reconstruction of t
spectral density. In the numerical analysis we will obtain t
pole andMS masses from analyses in the pole- and PS-m
scheme, respectively. The origin of different contributions
the error will be carefully investigated. After a comparison
other mass determinations we shall conclude with a su
mary and an outlook.

II. QUANTUM-MECHANICAL SUM RULES
FOR THE COULOMB POTENTIAL

Before studying the full quantum field theory case in d
tail, it will be instructive to first investigate the correspon
ing quantum-mechanical system.1 Since it is possible to de
scribe the system analytically, one can obtain a clea
picture of the structure of the method and the behavior of
different contributions. Let us consider a system of two p
ticles separated by a distancex. The Schro¨dinger equation
for stationary states takes the form

Ĥc~x!5F2
D

2m
1V~x!Gc~x!5Ec~x!, ~5!

where m represents the reduced mass of the system.
Green’s function is constructed with the help of the resolv
operatorĜ(E)5(Ĥ2E)21.

By introducing a full set of intermediate states we obta
the phenomenological side of the Green’s function in po
tion space:

G~x,y;E!5^xuĜ~E!uy&

5 (
a

ca~x!ca* ~y!

Ea2E2 i e
1 E dE8

r~x,y;E8!

E82E2 i e
. ~6!

1The author would like to thank Matthias Jamin, who has initiat
the investigations on the quantum-mechanical sum rules and
contributed a substantial part to the development of these sum r
2-2
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QCD MOMENT SUM RULES FOR COULOMB SYSTEMS: . . . PHYSICAL REVIEW D 67, 113002 ~2003!
The sum runs over the discrete part of the spectrum,ca
being the eigenfunction to the eigenvalueEa . The integral is
taken over the continuum part with the spectral dens
r(x,y;E). By taking the derivative atx5y50, one can de-
fine a physical correlation function

M ~E!5F d

dE
G~x,y;E!G

x5y50

5 (
a

uca~0!u2

~Ea2E2 i e!2

1 E dE8
r~E8!

~E82E2 i e!2
. ~7!

Via a dispersion relation, the spectral density is rela
to the imaginary part of the Green’s functionr(E)
5Im G(0,0;E)/p. The second line of Eq.~7!, constituting
the phenomenological part, can be compared to a pertu
tive expansion ofM (E) thus representing the fundament
equation for the quantum-mechanical sum rules@16,20,21#.
So far the discussion has been general. Now we turn
attention to the Coulomb potential:

V~r !52
a

r
, En52

ma2

2n2
,

ucnlm~0!u25d l0dm0

m3a3

pn3
. ~8!

In order to improve the predictive power it is convenient
formulate the sum rules in the framework of Borel or m
ment sum rules. Here we will discuss the moment sum ru
which closely resemble the field theory case at hand.

In the quantum-mechanical Coulomb problem we defi
the moments as

Mn~j!5
p

n!

2

m2a
S ma2

d

dED n

G~E!U
E5jE1

, j.1. ~9!

Again, we allow for an arbitrary evaluation pointj. A natural
scale is given by the lowest bound state energyE15
2ma2/2. The parameterj has been defined somewhat d
ferent as compared to Eq.~3!. The derivatives must be take
in an energy region below the poles where the Green’s fu
tion is purely real. Here, we must therefore choosej.1,
whereas in Eq.~3!, j50 already represents a perturbati
region. Solving the relevant Schro¨dinger equation, the radia
Green’s function is found to be@22#

G~r ,0;E!5
mk

p
e2krG~12l!U~12l,2;2kr ! ~10!

with the variables

l5
ma

k
and k5A22m~E1 i e!. ~11!
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U(a,b;z) is the confluent hypergeometric function
G(r ,0;E) is singular in the limitr→0, but the moments are
finite and the first momentM1(j) is found to be

M1~j!5l@112l12l2c8~12l!#ul51/Aj . ~12!

The evaluation pointE5jE1 translates intol51/Aj. In this
theoretical expression, all powers ofl are resummed. Thus
the true parameter for the perturbative expansion isl
5a/A22E/m. The higher moments can be derived from
recursion relation:

Mn~j!5
l3

n

d

dl
Mn21~l!U

l51/Aj

. ~13!

To derive the phenomenological parametrization of the s
rules we need the spectral density for positive energies wh
can be obtained from

r~E!5
1

p
Im G~0,0;E!. ~14!

Im G(r ,0;E) is finite in the limit r→0 since it is a physical
quantity and gives the Sommerfeld factor

r~E!5
am2

p~12e2paA2m/E!
, E>0. ~15!

Putting everything together, we obtain the phenomenolog
parametrization

Mn
Phen~j!5Mn

Poles~j!1Mn
Cont~j!

5 (
k51

`
2

k3S Ek

ma2
1

j

2D n11

1 E
0

`

dx
2

~12e2pA2/x!S x1
j

2D n11 . ~16!

Equating this quantity to the theoretical side~12!,~13! estab-
lishes the sum rules. Using the exact formulas, this of cou
represents nothing but an identity. The method comes
play when only limited information on either part is ava
able. It can then, for instance, be used to extract the low
bound state energy by solving forE1 as the higher bound
states are strongly suppressed by the factor 1/k3 in Eq. ~16!.
Likewise, assuming that the energy levels are known,
can solve for the massm since the dominant dependence
the mass originates fromE1:

m5
E1

a2 F S 2

Mn
Theo2Mn

Cont2Mn
HigherPolesD 1/ (n11)

2
j

2G21

.

~17!

Since the higher polesMn
HigherPoles contain Ek and m as

parameters, Eq.~17! represents a fast converging se
2-3
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TABLE I. Relative size of pole and continuum contributions to the theoretical momentsMn
Theo

5Mn
Poles1Mn

Cont for different values ofn at fixedj and for differentj at fixedn.

j54 j510
n 1 3 5 7 1 3 5 7

Mn
Poles/Mn

Theo 0.45 0.83 0.94 0.97 0.16 0.49 0.67 0.78
Mn

Cont/Mn
Theo 0.55 0.17 0.06 0.03 0.84 0.51 0.33 0.22

n53 n57
j 2 4 10 50 2 4 10 50

Mn
Poles/Mn

Theo 0.98 0.83 0.49 0.10 0.9998 0.97 0.78 0.26
Mn

Cont/Mn
Theo 0.02 0.17 0.51 0.90 0.0002 0.03 0.22 0.74
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consistency equation form. Here we shall not discuss th
applications of this sum rule, but finally turn our attention
the behavior of the pole and continuum contributions.

To this end, we again take a closer look at Eq.~16!. Both
contributions depend in a similar way onn and j. But
whereas the integration runs over positive values ofx>0,
the energy levelsEk are located below threshold. Let us in
vestigate the behavior of the moments onn for fixed j. For
low values ofn the higher poles and high energy part of t
continuum integration can have a significant influence. Wh
we proceed to largern we enhance the threshold region
the continuum integration and the lowest pole in the su
Taking nown fixed we see that the variation ofj can dras-
tically change the relative size of both parts: Since the m
ments have a singularity atj51 from E1, values ofj only
slightly larger than 1 will lead to a complete dominance
the first bound state on the sum rules. Largerj enhance the
higher bound states and also the continuum part gets m
and more important. The results are summarized in Tabl
We have depicted the pole and continuum contributions
different values ofn andj. One should keep in mind that th
relative size of the pole and continuum contributions do
not directly depend on the physical system under invest
tion but rather on the values ofn andj chosen for the analy
sis; namely, the poles can depend strongly on these pa
eters. However, it is important to note that the main m
dependence originates from the first bound states since
continuum is largely independent of the mass. This rema
true even in a region where the continuum dominates
moments. Therefore, to obtain good accuracy when extr
ing, e.g., the ground state energy or the mass, it is adva
geous to use lowj and highn. Then the contribution from
E1 will dominate the sum rules. Unfortunately, in this regio
also the perturbative expansion converges more slowly.
perturbative series behaves better for lowern and also for
higherj since this parameter enters directly in the expans
variablel51/Aj. Therefore, in practical applications whe
the exact solutions are not known, one must carefully cho
a range of values forn andj such that the theoretical calcu
lation can be reliably trusted without losing sensitivity on t
parameters one would like to extract. These considerat
will be made more explicit in the numerical analysis. No
we will discuss the Coulomb contributions in the full fie
theory system.
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III. COULOMB RESUMMATION

The theory of NRQCD provides a consistent framewo
to treat the problem of heavy quark-antiquark product
close to threshold. The contributions can be described b
nonrelativistic Schro¨dinger equation and systematically ca
culated in time-independent perturbation theory~TIPT! @23#.
At NNLO the factorized formulation has first been shown
@24#. The correlator is expressed in terms of a Green’s fu
tion G(k)5G(0,0,k):

P~s!5
Nc

2M2 S Ch~as!G~k!1
4k2

3M2
GC~k!D , ~18!

where Nc is the number of colors,k5AM22s/4, and M
represents the pole mass@13#. First we will present the
method in the pole mass scheme and afterwards discus
PS scheme. The constantCh(as) is a perturbative coefficien
needed for the matching between the full and the nonrela
istic theory and naturally depends on the hard scale.GC(k)
represents the Coulomb Green’s function and reads

GC~k!52
CFasM

2

4p F k

CFasM
1 lnS k

m f ac
D

1gE1CS 12
CFasM

2k D G , ~19!

whereCF54/3. The contributions from NRQCD are sum
marized in the potential. The Green’s function obeys the c
responding Schro¨dinger equation

S 2
Dx

M
1VC~x!1DV~x!1

k2

M DG~x,y,k!

5d (3)~x2y!. ~20!

Here VC(x)52CFas /uxu represents the Coulomb potenti
and DV(x) contains the NLO and NNLO corrections. Th
explicit form of the potential is given in the Appendix. Th
full Green’s function can be derived from TIPT. Detai
about this procedure can be found in@13,14#. To calculate the
moments from the Green’s function we will directly perfor
the derivatives ats524M2j according to Eq.~3!. Since the
Green’s function is known analytically@13# as a function of
2-4
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QCD MOMENT SUM RULES FOR COULOMB SYSTEMS: . . . PHYSICAL REVIEW D 67, 113002 ~2003!
k5k(s), this can be done numerically. In this way we ta
advantage of the fact that the perturbative expansion par
eter depends on the evaluation point. The expansion of
moments shows the same behavior as has already been
cussed in the quantum-mechanical sum rules~12!,~13!. There
the expansion parameter of the moments isl51/Aj and so
higher values forj improve the perturbative series. The r
sulting moments include both the pole and the continu
contributions.

The moments depend on three scales: The hard s
mhard;M enters in the coefficientCh of Eq. ~18!. This scale
is also needed for the perturbative expansion which will
discussed in the next section. The soft scalemso f t;Mv is a
typical scale for nonrelativistic processes and the relev
scale for the expansion of the Green’s function. Furtherm
the factorization scalem f ac separates the contributions o
large and small momenta and plays the role of an infra
cutoff. As we perform the calculation only up to NNLO w
are left with a residual dependence on these three scale
fact, the dependence of the mass on the scales, especia
mso f t , is rather large and will give the dominant source
the error. To obtain the central values for the masses we
use a set of values formso f t , m f ac, andmhard according to
the physical expectations from the charmonium and b
tomium systems. The error will then be estimated by allo
ing for sufficiently large variations of these scales.

Though the full theoretical moments from resummati
can thus be determined, we are also interested in the pole
continuum contributions separately. First, we want to anal
them independently and estimate their contribution to
error. Second, in our numerical analysis we will reconstr
the spectral density above threshold. At low velocities it
given by the imaginary part of the nonrelativistic Green
function.

In principle, the expressions for the energies and de
widths of the poles have been calculated at NNLO. O
could then deduce their contribution to the moments as
Eq. ~16!. But in this method the contributions have to b
calculated near threshold and thus show large correct
already for the bottomium and cannot be trusted for the ch
monium.

Therefore, we will choose a different method of evalu
tion @17,25#. By using a dispersion relation, we derive th
continuum from the imaginary part of the correlator. Fro
the difference we can then obtain the pole contributions:

M n
Poles5

12p2

n! S 4M2
d

dsD
n

P~s!U
s524M2j

212p~4M2!n E
4M2

`

ds
Im P~s!

~s14M2j!n11
. ~21!

Nevertheless, for values ofn andj used in our analysis, the
poles will give the largest contribution to the theoretical m
ments and thus the dependence on the scales will rem
relatively strong. In the numerical analysis we will give
detailed account on the size and behavior of these contr
tions.
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Now we investigate the spectral density from the co
tinuum part. We discuss the charmonium system since
differences in the expansion can be seen more clearly tha
the bottomium, which shows a faster convergence. In Fig
we have displayed the spectral density times the weight
tor for the different orders. The area under the spectral d
sity is directly proportional to the moments. We have chos
moments and scales typical for the numerical analysisn
55, j50.5, mso f t51.1 GeV,m f ac51.45 GeV, and mhard
51.75 GeV. The dotted line represents the LO, the das
line includes the NLO, and the solid line represents the
NNLO result. One can see that the expansion of the mom
converges well in the low velocity region. But when higherv
are used, resummation is not capable of incorporating
correct high energy behavior. Therefore, when we rec
struct the complete spectral density, we will use the
summed spectral density only below a separation velo
v,vsep where the expansion can be trusted.

Part of the large corrections to the potential is not inher
to the bound state system but to the definition of the p
mass. In@19,26# it was observed that the long distance se
sitivity in the coordinate space potential cancels to all ord
in perturbation theory with the long distance sensitivity
the pole mass. Therefore, a new mass definition has b
proposed, the potential-subtracted massmPS, where the po-
tential below a separation scalemsep is subtracted:

mPS~msep!5M2dm~msep!,

dm~msep!52
1

2 Euqu,msep

d3q

~2p!3
V~q!. ~22!

The subtracted potentialV(r ,msep) is then defined by

V~r ,msep!5V~r !12dm~msep!. ~23!

FIG. 1. Resummed spectral density times the weight factor c
responding ton55 andj50.5 in LO ~dotted!, NLO ~dashed!, and
NNLO ~solid! at typical scales for the charmoniummso f t

51.1 GeV,m f ac51.45 GeV, andmhard51.75 GeV.
2-5
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When using these definitions the Schro¨dinger equation for
the Green’s function takes its usual form where the p
mass is substituted by the PS mass and the potentia
V(r ,msep) @19#. Since the renormalon contributions ha
been subtracted from the potential, the convergence of
expansion is improved and the strength of the potentia
reduced. The developed methods for the evaluation of
Green’s function can again be employed and the additio
contribution is absorbed in a shift of the energy.

We then express all moments in terms of the PS mass
perform the analysis formPS. The PS mass is perturbative
related to theMS mass:

mPS~msep!5mF11
as~m!

p S k12CF

msep

m D
1S as~m!

p D 2S k22CF

msep

m

w1~m,msep!

4 D
1S as~m!

p D 3S k32CF

msep

m

w2~m,msep!

16 D G ,
k15CF , k2513.44321.041nf ,

k35190.595226.655nf10.653nf
2 , ~24!

wherem5mMS(mMS) is the MS mass evaluated at its ow
scale. The functionsw1 andw2 can be found in the Appendix
where also a more complete list of formulas to the PS m
is given.

The definition of the PS mass and its relation to theMS
mass depends onmsep. This scale must be taken larg
enough to guarantee a perturbative relation between
masses. At the same time it should be chosen smaller th
typical nonrelativistic scale so as not to affect the thresh
behavior,LQCD,msep,M•v. In the numerical analysis we
will see that the use of the PS mass improves the error of
MS mass. To estimate the error onmsep, we shall also vary
this scale in appropriate ranges.

IV. PERTURBATIVE EXPANSION

The perturbative spectral functionRPert(s) can be ex-
panded in powers of the strong coupling constanta
5as /p,

RPert~s!5R(0)~s!1aR(1)~s!1a2R(2)~s!1O~a3!.
~25!

From this expression the corresponding momentsM n
Pert(j)

can be calculated via the integral of Eq.~4!. The leading term
is given byR(0)(v)53/2v(32v2). The analytic form ofR(1)

or P (1) can be found in@27–29#. R(2)(s) is still not fully
known analytically. We employ a method based on Pade´ ap-
proximants to construct the spectral density in the full ene
range@30,31#. It uses available information aroundq250, at
threshold, and in the high energy region. It has the advan
that it gives a good description until relatively close
threshold. In this region the moments show a strong varia
11300
e
by

he
is
e

al

nd

ss

he
a

d

e

y

ge

n

for relatively small changes of the mass. A pure high ene
expansion would only be valid for large values of the velo
ity and a matching between the threshold and the pertu
tive region would be less reliable. To illustrate the perturb
tive convergence we compare the different orders for
charmonium as in the last section for the resummed spe
density. In Fig. 2, we have displayed the spectral den
times the weight factor, again for values ofn55, j50.5,
andmhard51.75 GeV. The expansion converges well in t
high velocity region. As we approach lowerv, the expansion
cannot be trusted since singular terms inv appear which
have to be resummed. These are included in the resum
spectral density which sums up terms of orderas

n/vn2k, for
n>0 and k51,2,3. The leading term in the perturbativ
spectral density at NNLO has a singular behavior;as

2/v,
but its contribution to the moments remains finite since
weight function contains a factor ofv. Consequently, the
graph at NNLO in Fig. 2 starts with a constant set-off atv
50.

As will be explained in more detail in Sec. VII, for th
perturbative moments we will therefore mainly use the sp
tral density above a separation velocityv.vsep with vsep
'0.4. In Table II we compare the behavior of the mome
for different values ofj andvsep. The highervsep andj one
chooses, the more one approaches the perturbative re
and the expansion improves. For typical values of the an
sis, vsep50.4 andj50.5, the convergence is under goo
control.

To calculate the moments in the PS scheme we can
the same integration formula~4! as in the pole mass schem
but now the spectral densityR(s) is evaluated at the velocity
v5A124mPS

2 /s and the start of the integrationvsep must be
transformed to this scheme as well.

At O(as
2) it is no longer true that heavy quark productio

originates exclusively from the heavy quark correlator. Al
the light quark correlator includes a four-fermion cut with
heavy quark pair radiated off the light quarks@32#. The cor-
responding diagrams are shown in Fig. 3. When these c
tributions are included in the measurements, which of cou
depends on the experimental setup, they should be con

FIG. 2. Perturbative spectral density times the weight fac
corresponding ton55 andj50.5 in LO ~dotted!, NLO ~dashed!,
and NNLO ~solid! for mhard51.75 GeV.
2-6
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QCD MOMENT SUM RULES FOR COULOMB SYSTEMS: . . . PHYSICAL REVIEW D 67, 113002 ~2003!
ered in the theoretical side as well. The diagrams have b
calculated in Ref.@33#. The resulting expressions can be sp
in such a way that they allow to introduce Coulomb resu
mation effects of the heavy quark pair in a straightforwa
way. However, as was discussed in@32#, the heavy quark pair
is produced in a color octet state from the gluon splitting.
this case the potential becomes repulsive and the cross
tion decreases close to threshold. For high energies the
gram gives the same contribution as the diagram with
light and heavy quark lines interchanged. Since the m
contribution of this diagram comes from the perturbative
gion, its O(as

2) contribution to the moments is suppress
and has a typical relative size of 231025. The shift in the
final value for theMS bottom quark mass then amounts
Dmb(mb)'9 keV and can be safely neglected within t

TABLE II. Perturbative moments at LO, NLO, and NNLO wit
mhard51.75 GeV andn55 for different values ofj. The moments
are calculated only from the perturbative spectral density abovv
.vsep.

j50
vsep 0 0.2 0.4 0.6

LO 0.31 0.29 0.18 0.055
M 5

Pert NLO 0.72 0.60 0.32 0.081
NNLO 1.29 0.87 0.38 0.085

j50.5
vsep 0 0.2 0.4 0.6

LO 0.046 0.044 0.033 0.014
M 5

Pert NLO 0.096 0.085 0.054 0.020
NNLO 0.15 0.12 0.064 0.021

j51
vsep 0 0.2 0.4 0.6

LO 0.012 0.011 0.0092 0.0048
M 5

Pert NLO 0.023 0.021 0.015 0.0068
NNLO 0.034 0.027 0.017 0.0070

j52
vsep 0 0.2 0.4 0.6

LO 0.0017 0.0017 0.0015 0.00093
M 5

Pert NLO 0.0030 0.0028 0.0023 0.0013
NNLO 0.0041 0.0035 0.0025 0.0013

FIG. 3. Diagrams atO(as
2) from the light quark correlator con

tributing to heavy quark production.
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uncertainty of this analysis. To conclude the theoretical s
of the correlator we now discuss the condensate contr
tions.

V. CONDENSATE CONTRIBUTIONS

The nonperturbative effects on the vacuum correlator
parametrized by the condensates. The leading term is
gluon condensate contribution. It has been calculated u
next-to-leading order@34# and can be written as follows:

PFF
Cond~s!5

^aFF&

16M4
@CFF

(0)~s!1aCFF
(1)~s!1O~a2!#. ~26!

The analytic form of the functionsCFF
(0)(s) and CFF

(1)(s) can
be found in@34#. The results have been calculated in dime
sional regularization with the pole massM. Using a different
mass prescription like the PS mass,CFF

(1)(s) has to change
accordingly. In our analysis below, we employ a value
^aFF&50.02460.012 GeV4 for the gluon condensate.

Furthermore, in@35–37# the dimension 6 and 8 conden
sate contributions have been calculated. However, this
been done only for moments atj50 and therefore only in
this case do we take them into account. For typical value
charmonium scales,mhard5M51.75 GeV, their contribu-
tion is 5–10 % of the leading gluon condensate. In fact,
will be shown in the numerical analysis, the absolute con
bution of the condensates to the full theoretical moment
small, both for the upsilon and the charmonium. Where
former sum-rule analyses for the charmonium have emp
sized the significance of these nonperturbative contributio
their relative suppression in this work is due to three reaso
First, the absolute value of the theoretical moments increa
from the Coulomb resummation. Then we evaluate the m
ments at largerj and smallern where the nonperturbative
contributions are relatively small. Finally, since we obtain
larger pole mass than former analyses, the condensates,
ing with a power of 1/M4, are suppressed further.

VI. PHENOMENOLOGICAL SPECTRAL FUNCTION

Experimentally, the six lowest-lyingc andY resonances
have been observed. To obtain the phenomenological con
of the spectral function we use the narrow-width approxim
tion for the resonances

Rk~s!5
9p

ā2Qc,b
2

Gk~ck ,Yk→e1e2!Ekd~s2Ek
2!, ~27!

where Qc,b represents the electric charge of the charm
bottom quark.ā denotes the running QED coupling eval
ated at a scale around the resonance mass. For the charm
corresponds to the fine structure constanta51/137.04
whereas for the bottom widths the Review of Particle Pro
erties @1# has usedā251.07a2 and we will do so accord-
ingly. The narrow-width approximation provides an excelle
description of these states since the full hadronic widths
much smaller than the masses. The values for the masse
electronic widths are collected in Tables III and IV. For o
2-7
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MARKUS EIDEMÜLLER PHYSICAL REVIEW D 67, 113002 ~2003!
numerical analysis the errors on the masses can be s
neglected and have thus not been listed. It should be ke
mind that the moments from the experimental resonances
not identical to the ones obtained from the poles of
Green’s function in Sec. III which represent a summation
a special kind of theoretical contributions.

For the upsilon system, the hadronic continuum is
measured with sufficient accuracy so we use the assump
of quark-hadron duality and integrate the theoretical spec
density above a continuum thresholds0:

Mb,n

~4Mb
2!n

5
9p

ā2Qb
2 (

k51

6
Gb,kEb,k

~Eb,k
2 14Mb

2j!n11

1 E
s0

`

ds
Rb

Rcstr~s!

~s14Mb
2j!n11

. ~28!

For the parametrization of the spectral density we use
reconstructed spectral densityRb

Rcstr(s) which will be dis-
cussed in the next section. The continuum from openB pro-
duction sets in atAs52MB510.56 GeV just below the
fourth resonance. In the upsilon system the resonances
relatively dominant. The start of the continuum thresholds0
should thus in principle be given by the mass of the seve
resonance. Nevertheless, when we take into account only
first three resonances and a continuum thresholds0 typically
250 MeV above the third resonance and compare the re
to an evaluation with all six resonances ands0 above the
sixth resonance, we miss in the latter a contribution of 3
from the continuum. It seems natural to assume that
contribution originates from openB production. To accoun
for this contribution we lower the value ofs0 to As0
511.0 GeV. To estimate the error we varys0 between

TABLE III. Masses and electronic widths of the first sixck

resonances.

k 1 2 3

Ek ~GeV! 3.097 3.686 3.770
Gk ~keV! 5.2660.37 2.1260.18 0.2460.05

k 4 5 6

Ek ~GeV! 4.040 4.159 4.415
Gk ~keV! 0.7560.15 0.7760.23 0.4760.10

TABLE IV. Masses and electronic widths of the first sixYk

resonances.

k 1 2 3

Ek ~GeV! 9.460 10.023 10.355
Gk ~keV! 1.3260.07 0.5260.04 0.4860.08

k 4 5 6

Ek ~GeV! 10.580 10.865 11.019
Gk ~keV! 0.2560.03 0.3160.07 0.1360.03
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10.8 GeV,As0,11.2 GeV. To be conservative, in th
analysis we also check the influence on the error if we
move the resonances above the continuum.

Above the charmonium threshold recent measureme
have improved the phenomenological situation significan
@38#. Eighty-five data points have been taken in the reg
between 2.0 GeV,As0,4.8 GeV with an average precisio
of 6.6%. The continuum threshold starts atAs52MD
53.73 GeV. From the measured spectral density the li
quark contributions must be subtracted. At this energy
light quarks can be safely assumed to be massless and
high energy approximation@39# provides a good description
The resulting spectral density is shown in Fig. 4. At energ
above the data points we again use the reconstructed spe
density. Since the resonances 3–6 are well reproduced b
data, we only add the first two resonances below the c
tinuum threshold. The error from the data turns out to
small compared to the theoretical uncertainties.

It is interesting to compare the measured cross sectio
the predictions from quark-hadron-duality. On average,
reconstructed spectral density lies above the data points.
should be no surprise as the operator product expan
~OPE! demands an equality of the theoretical and pheno
enological moments only for the full correlator which als
includes the pole contributions. Since the lowest poles
very dominant on the phenomenological side they are co
pensated by a larger theoretical spectral density for inter
diate values ofs. Consequently, one should take care wh
describing the phenomenological spectral density by the
turbative one, in particular, the choice of the integration po
s0 could depend on the values ofj and n. A more detailed
description of the charmonium cross section and the ac
racy of quark-hadron-duality is presented in@40#. Now we
explain how to construct a theoretical spectral density for
full energy range.

VII. RECONSTRUCTION OF THE SPECTRAL DENSITY

Besides the contributions from the poles of the Gree
function and the condensates, the theoretical part of the
relator contains the spectral density above threshold. N

FIG. 4. Rc(s) from @38#.
2-8
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QCD MOMENT SUM RULES FOR COULOMB SYSTEMS: . . . PHYSICAL REVIEW D 67, 113002 ~2003!
we discuss the different parts of the spectral density.
For high velocities the spectral density is well describ

by the perturbative expansion. As explained in Sec. IV,
have used a method which allows a good approximation u
relatively close to threshold. The resummed spectral den
on the other hand, gives a good description for low values
v, but it fails to describe the high energy part. For the
reasons, we introduce a separation velocityvsep. Abovevsep
we only use the perturbative spectral density. Belowvsep we
essentially take the resummed spectral density. The pertu
tive expansion has singular terms inv which are included in
the resummed spectral density, but it also contains contr
tions from higher powers inv which can be isolated by sub
tracting the double-counted terms and these contribut
will be added to the resummed spectral density belowvsep.
In Fig. 5, we have displayed the charmonium spectral den
from the different contributions as a function ofv. This rep-
resentation expands the threshold region. The dotted line
resents the perturbative expansion at NNLO. The dashed
is the resummed spectral density and the dashed-dotted
the reconstructed spectral density. For the charmonium
tem, there exists a range of intermediate values ofv where
neither the perturbative expansion nor the resummation
be trusted. Indeed, it can be clearly seen that the rec
structed spectral density shows a gap at the separation v
ity. Since this gap is not physical but a result of the misma
between the two energy regions we can try to construc
more physical spectral density which interpolates smoo
between small and largev. We can construct this interpola
ing spectral density fromRResumandRPert between the two
velocities v150.2 and v250.6 with RInter5RResum(v2

2

2v2)/(v2
22v1

2)1RPert(v22v1
2)/(v2

22v1
2). There is no ex-

plicit argument for a specific choice ofRInter except that it
should give a smooth transition between the low and h
energy region. We have chosen a quadratic form instead
linear one since it suppresses better the behavior ofRResumat
high v and ofRPert at low v. The moments from the inter
polating spectral density are equal to the moments of
reconstructed spectral density atvsep'0.4, a typical nonrel-

FIG. 5. c system. Solid line: interpolated spectral densi
dashed-dotted line: reconstructed spectral density; dashed line
summed spectral density; dotted line: perturbative spectral den
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ativistic velocity. However, in the analysis we use the reco
structed spectral density and varyvsep between 0.3 and 0.5
to estimate the error.

In Fig. 6, we have shown the same picture, but now
typical scales of the upsilon system. Here the expansion
haves much better.RResumis valid up to higher andRPert to
lower velocities. So we obtain an overlap in the intermedi
region and the result is independent of variations arou
vsep'0.35.

VIII. NUMERICAL ANALYSIS FOR THE BOTTOM
QUARK MASS

We now perform the analysis for the charm and botto
quark masses in the pole and PS scheme. Though the me
of analysis will be similar in all four cases, we discuss eve
case separately as each requires a certain choice of pa
eters and an independent error analysis. Since in the ups
system the theoretical expansions converge better, we
with the bottom quark mass and devote the next section
the charm quark mass.

A. Pole mass scheme

First, one has to fix the parameters on which the sum r
depends. As a general rule, we will choose central values
the parameters to determine the masses and then vary
parameters in appropriate ranges for the error estimate.
us start with the values ofj andn. Since the bottom quark is
relatively heavy, even forj50 the nonrelativistic and per
turbative expansions converge reasonably well. Never
less, the contributions from the poles of the Green’s funct
still dominate the theoretical part. To reduce their influen
and to spread the theoretical contributions more equ
among the poles, the resummed spectral density, and the
turbative spectral density, we must choose a higherj. How-
ever, forj.1, the moments lose sensitivity on the mass a
the error from the input parameters increases. Therefore
use a central value ofj50.5 and varyj between 0<j<1.
Since the relevant scale for the evaluation point is the low

re-
ty.

FIG. 6. Y system. Solid line: reconstructed spectral dens
dashed line: resummed spectral density; dotted line: perturba
spectral density.
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MARKUS EIDEMÜLLER PHYSICAL REVIEW D 67, 113002 ~2003!
bound state energy, values ofj50, 0.5, or 1 already corre
spond to well-separated evaluation points. In the section
the PS scheme we will justify this choice numerically
well.

As was shown in Sec. II, high values ofn enhance the
threshold region and the pole contributions. To keep the
oretical expansions under control, we restrict the moment
n<10. From the lower side,n is limited by the phenomeno
logical uncertainty. Since forn<4 the continuum has a larg
influence on the mass, we use a range of 5<n<10. As cen-
tral values for our scales, we have selected

mso f t52.5 GeV, m f ac53.5 GeV, mhard55.0 GeV.
~29!

We set the hard scale to the central value for the pole m
The soft scale should be given by the mass times a typ
velocity. We choose a value ofmso f t52.5 GeV. Though one
may prefer a slightly lower value ofmso f t , the nonrelativistic
expansion gets large corrections formso f t,2.0 GeV and we
will use this value as the lower bound in the variation
mso f t . The factorization scale separates the different regi
and should lie between the two other scales. The sele
scales are required for a correct description of the spec
density. Since this is a physical quantity, the scales mus
chosen independent ofj and n, which merely serve as a
evaluation point for the moments.

As discussed in the section about the phenomenolog
spectral density, we employ a continuum threshold ofAs0
511.060.2 GeV. We use a separation velocity ofvsep
50.35 and the result is independent for a choice around
value. In the upsilon system, the contribution from the co
densates is suppressed by roughly a factor of 1023–1024 as
compared to the pole contributions and can be safely
glected.

In Table V, we have collected the individual moments f
different values ofn. M n

Poles are the theoretical poles of th
Green’s function.M n

Rcstr contains the moments from th
reconstructed spectral density and includes the mom
from the resummed spectral densityM n

Resumbelow and the
perturbative spectral densityM n

Pert abovevsep. There is no
clear distinction betweenM n

ResumandM n
Pert sincevsep can

be used to shift their values.M n
Continuum are the moments

from the continuum part of the reconstructed spectral den
above s0. For values between 5<n<10 the moments
M n

Rcstr are of a similar size as the pole contributions: f
n55 they exceed the poles and become smaller forn>7.
The influence of the continuum moments is relatively stro

TABLE V. Moments for different n with the parametersj
50.5, mso f t52.5 GeV, m f ac53.5 GeV, mhard55.0 GeV, As0

511.0 GeV, andvsep50.35.

n 5 6 7 8 9 10

M n
Poles 0.079 0.055 0.038 0.026 0.018 0.013

M n
Rcstr 0.098 0.055 0.032 0.019 0.011 0.006

M n
Continuum 0.047 0.023 0.012 0.0059 0.0031 0.001
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for small n but gets more and more suppressed for highen.
The thick solid line in Fig. 7 shows the central value for t
pole mass with the scales from Eq.~29!. Averaging over the
mass between 5<n<10 we obtain

Mb54.984 GeV. ~30!

The error originates mainly from the variation of the scal
For the soft scale we choose a range of 2.0 GeV<mso f t
<3.5 GeV. Belowmso f t,2.0 GeV the pole contributions
show a bad perturbative behavior and the analysis beco
unstable.mso f t.3.5 GeV would use a soft scale at an ener
too high from physical expectation. The hard scale is var
betweenMb/2 and 2Mb , 2.5 GeV<mhard<10.0 GeV. As
before for the central values, also the variation of the fac
ization scale should lie between the two other scales and
use 2.0 GeV<m f ac<5.0 GeV. In Fig. 7, we have also plot
ted the change of the mass for a variation of these scales.
error amounts to

2.0 GeV<mso f t<3.5 GeV: DMb595 MeV,

2.0 GeV<m f ac<5.0 GeV: DMb535 MeV,

2.5 GeV<mhard<10.0 GeV: DMb520 MeV.
~31!

In Table VI, we have listed the dependence ofM 7
Poles

andM 7
Rcstr on the scales. The soft scale has a particula

large influence on the poles. In Table VII, we have co
fronted the LO, NLO, and NNLO corrections in NRQCD fo
n57. Instead of theM 7

Rcstr we directly useM 7
Resum for

this comparison. The analysis confirms that the expans
converge better for smallern and behave worse for highern
as is expected from the more sensitive testing of the thre
old region. The corresponding shift of the mass by go
from NLO to NNLO amounts toDMb'120 MeV.

Now we turn our attention to the other parameters. In
pole mass scheme, a significant uncertainty comes f
LQCD as well. To determineas(m), we have usedas(MZ)

FIG. 7. Thick solid line: central pole mass; thin solid lines:Mb

for mso f t52.0 and 3.5 GeV; dashed lines:Mb for m f ac52.0 and 5.0
GeV; dotted lines:Mb for mhard52.5 and 10.0 GeV.
2-10
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QCD MOMENT SUM RULES FOR COULOMB SYSTEMS: . . . PHYSICAL REVIEW D 67, 113002 ~2003!
50.118160.002@1# and run this value down with the three
loop beta function. The correspondingLQCD for three loops
and four massless flavors is thenLQCD5279629 MeV.
Though as is known relatively precisely, the error on th
mass amounts toDMb550 MeV since the pole mass has
strong dependence on the coupling constant. The choic
the continuum threshold shifts the mass at lown and gives an
error of DMb520 MeV. The error from the experimentall
measured decay widths isDMb530 MeV. When we employ
a value ofj50, the mass decreases by 35 MeV and rises
the same amount forj51. We have summarized the resu
in Table VIII. We have checked for the correlations betwe
the errors from the different input parameters and have fo
almost no correlation between the errors. This also holds
for the PS scheme and for the charm quark mass anal
Thus we add the errors quadratically and our final result
the pole mass is

Mb54.98460.125 GeV. ~32!

Using the three-loop relation between the pole and theMS
mass which has been calculated recently@41,42#, we obtain
mb(mb)54.27760.116 GeV for theMS mass. However, the
relation between the two masses implicitly includes an
certainty ofO(LQCD).

Before turning to the analysis in the PS scheme, we w
to investigate the size of the NNNLO corrections fro

TABLE VII. Size of the moments from the poles and the r
summed spectral density at LO, NLO, and NNLO for different v
ues ofmso f t .

mso f t 2.0 2.25 2.5 2.75 3.0 3.5

LO 0.024 0.020 0.018 0.015 0.014 0.01
M 7

Poles NLO 0.033 0.029 0.027 0.024 0.022 0.01
NNLO 0.050 0.043 0.038 0.034 0.032 0.02

LO 0.022 0.021 0.020 0.019 0.019 0.01
M 7

Resum NLO 0.014 0.014 0.014 0.014 0.014 0.01
NNLO 0.016 0.015 0.014 0.014 0.014 0.01

TABLE VI. M 7
Poles and M 7

Rcstr for different mso f t with m f ac

53.5 GeV andmhard55.0 GeV, for differentm f ac with mso f t

52.5 GeV andmhard55.0 GeV, and for differentmhard with
mso f t52.5 GeV andm f ac53.5 GeV.

mso f t 2.0 2.25 2.5 2.75 3.0 3.5

M 7
Poles 0.050 0.043 0.038 0.034 0.032 0.028

M 7
Rcstr 0.034 0.032 0.032 0.031 0.031 0.030

m f ac 2.0 3.0 3.5 4.0 4.5 5.0

M 7
Poles 0.043 0.039 0.038 0.037 0.036 0.034

M 7
Rcstr 0.032 0.032 0.032 0.032 0.031 0.031

mhard 2.5 4.0 5.0 6.0 8.0 10.0

M 7
Poles 0.038 0.038 0.038 0.038 0.039 0.039

M 7
Rcstr 0.035 0.032 0.032 0.031 0.031 0.030
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NRQCD. In @43#, the leading-log term ofO(as
3 ln as) to the

energy levels has been derived in the framework of poten
NRQCD. The results have been confirmed in@44#, where
also the corrections to the wave function atO(as

3 ln2 as)
were calculated. Recently, the full NNNLO corrections ha
been computed@45,46#, but only for the energy levels them
selves. The results of@44# can be used to estimate the impa
on the Green’s function and the mass. The main contri
tions come from the two lowest bound states. With a typi
soft scale ofmso f t52.5 GeV for the Green’s function, th
O(as

3) contributions lower the mass by approximately
MeV, DMb5235 MeV. We have not included this mas
shift in our final result since these contributions repres
only a part of the full NNNLO corrections. Furthermore, th
results have only been derived forucn(0)u2 andEn and not
for the Green’s function itself. Since the expansion for t
energy and the wave function is not very good, the mass s
may be overestimated. However, it could indicate the size
the NNNLO corrections.

B. Potential-subtracted mass scheme

Here the separation scalemsep appears as an additiona
parameter which enters in the definition of the PS mass~22!.
This scale should be taken large enough in order to guara
a perturbative relation to theMS mass. On the other hand,
should be smaller thanMv so as not to affect the threshol
behavior. A good value ismsep52.0 GeV and we will inves-
tigate a range of 1.0 GeV<msep<3.0 GeV to check the in-
fluence on theMS mass. In Fig. 8, we have plotted the P
mass as a function ofn. As our central values we obtain

mPS,b~msep52 GeV!54.561 GeV,

mb~mb!54.241 GeV. ~33!

Relating the pole, PS, andMS masses we make use of th
recently calculated three-loop result for the masses@41,42#.
Since resummation includes all orders inas , this choice is
more appropriate than the two-loop relation. From the va
tions of the scales, we obtain

TABLE VIII. Single contributions to the error ofMb .

Source DMb

Variation of mso f t 95 MeV
Variation of m f ac 35 MeV
Variation of mhard 20 MeV
Thresholds0 20 MeV
Experimental widths 30 MeV
Variation of LQCD 50 MeV
Variation of j 35 MeV
Total error 125 MeV
2-11
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2.0 GeV<mso f t<3.5 GeV: DmPS,b590 MeV,

2.0 GeV<m f ac<5.0 GeV: DmPS,b535 MeV,

2.5 GeV<mhard<10.0 GeV: DmPS,b510 MeV.
~34!

In Table IX, we again have collected the moments
different values ofn. For low n, M n

Rcstr exceedsM n
Poles,

whose influence grows for largern. In Tables X and XI, we
have shown the scale dependence and the behavior fo
different orders. The large coefficients which have be
found in the Coulomb potential at NNLO~A3! lead to a mass
shift of Dmb(mb)'902100 MeV when going from NLO to
NNLO.

When we lower the continuum threshold toAs0510.8
GeV, the mass decreases for smalln. For As0510.7 GeV,
the mass is completely stable for all values of 3<n<12. But
since the analysis is too complex to draw conclusions
single parameters, we will not use the argument of stab
to fix the values of the parameters. For higher values
As0511.2 GeV, the mass increases for smalln. The error
from this variation isDmPS,b515 MeV. Assuming that the
continuum from open B production can be neglected,As0
should lie above the highest resonance. Keeping the thr
old atAs0511.0 GeV, we must remove the sixth resonan
Then the mass increases by 6 MeV. If we assume a very
threshold and also remove the fifth resonance, the mass
by 22 MeV. The error from the experimental decay widths

FIG. 8. Thick solid line: central PS mass; thin solid lines:mPS,b

for mso f t52.0 and 3.5 GeV; dashed lines:mPS,b for m f ac52.0 and
5.0 GeV; dotted lines:mPS,b for mhard52.5 and 10.0 GeV.

TABLE IX. Moments for differentn with the parametersmso f t

52.5 GeV,m f ac53.5 GeV,mhard55.0 GeV,As0511.0 GeV, and
vsep50.35.

n 5 6 7 8 9 10

M n
Poles 0.043 0.027 0.017 0.010 0.0063 0.003

M n
Rcstr 0.056 0.028 0.014 0.0076 0.0040 0.002

M n
Continuum 0.025 0.011 0.0047 0.0021 0.00095 0.000
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of a similar size,DmPS,b525 MeV. The main part comes
from the width of the first resonance, though it is not
dominant as in the charmonium system. In the PS sche
the influence ofas is significantly reduced. Using the sam
LQCD as before, we obtainDmPS,b520 MeV for the PS
mass andDmb(mb)55 MeV for the MS mass. From this
weak dependence on the strong coupling constant, we ca
use the analysis for an estimate ofas .

Besides the contributions from resummation, this analy
includes the perturbative spectral density abovevsep as well.
Therefore, it is interesting to investigate the influence of
perturbative part on the analysis. In Fig. 9, we have depic
the central mass with a solid line. Then we keep all con
butions, including the poles, the resummed spectral den
and the phenomenological part unchanged except for the
turbative spectral density, for which we use only the low
order. The resulting mass is shown as a dashed line.
analysis becomes unstable for lown since here the perturba
tive contributions play an important part. Now we remo
the perturbative part completely and use only the resumm
spectral density. The dotted line signals clearly that essen
information for lown is lost. Only for highn, dominated by
the poles, does the analysis become more stable, but
also the expansion of the poles behaves more badly.

In Table XII, we have varied the separation scalemsep
between 1.0 GeV<msep<3.0 GeV. The stability of the PS

TABLE X. M 7
Poles and M 7

Rcstr for different mso f t with m f ac

53.5 GeV andmhard55.0 GeV, for differentm f ac with mso f t

52.5 GeV andmhard55.0 GeV, and for differentmhard with
mso f t52.5 GeV andm f ac53.5 GeV.

mso f t 2.0 2.25 2.5 2.75 3.0 3.5

M 7
Poles 0.022 0.019 0.017 0.015 0.014 0.012

M 7
Rcstr 0.016 0.015 0.014 0.014 0.014 0.014

m f ac 2.0 3.0 3.5 4.0 4.5 5.0

M 7
Poles 0.019 0.017 0.017 0.016 0.016 0.015

M 7
Rcstr 0.015 0.015 0.014 0.014 0.014 0.014

mhard 2.5 4.0 5.0 6.0 8.0 10.0

M 7
Poles 0.017 0.017 0.017 0.017 0.017 0.017

M 7
Rcstr 0.016 0.015 0.014 0.014 0.014 0.014

TABLE XI. Size of the moments from the poles and the r
summed spectral density at LO, NLO, and NNLO for different v
ues ofmso f t .

mso f t 2.0 2.25 2.5 2.75 3.0 3.5

LO 0.011 0.0089 0.0077 0.0067 0.0061 0.00
M 7

Poles NLO 0.015 0.013 0.012 0.011 0.0097 0.00
NNLO 0.022 0.019 0.017 0.015 0.014 0.01

LO 0.010 0.0098 0.0094 0.0090 0.0087 0.00
M 7

Resum NLO 0.0070 0.0070 0.0070 0.0070 0.0069 0.00
NNLO 0.0077 0.0072 0.0068 0.0066 0.0064 0.00
2-12
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mass as a function ofn remains almost unchanged, but th
value of the PS mass changes strongly as its definition
pends directly onmsep. In the relation to theMS mass, this
variation is cancelled to such an extent that theMS mass
changes only by 7 MeV.

Now we want to discuss the choice ofj in more detail.
Using a higherj, the theoretical expansions converge bet
and the dominance of the pole contributions is reduced. A
result, the theoretical moments are more equally distribu
Thus the dependence on a single contribution like the p
is reduced. In this way, one gets a better control over
systematic uncertainties in the sum rules. Table XIII sho
theMS mass for differentj. As a measure of the uncertaint
we now investigate the change of the mass conne
with the expansion of the poles in NRQCD. The first en
shows the central value for the mass. Now we add to
poles of the Green’s function the difference between
NNLO and the NLO result. The increase of the mass
shown in the second column. In the third column, we add
difference between the NNLO and the LO result. Here
error on the mass from the expansion of the poles decre
for higherj. If we assume this as a conservative error e
mate, forj50.5 this error is of the same order as the er
from the variation of the soft scale. In fact, the error from t
scales increases for higherj as a result of the decreasin
sensibility on the mass. From the viewpoint of the conv
gence of the series, the scale variation tends to underesti
the error for lowj and to overestimate the error for higherj.
However, forj50.5, both estimates are consistent with ea
other and we have thus chosen this value as our default.
j*1, the better control over the theoretical expansions is
large enough to compensate for the decreasing sensibilit

FIG. 9. Solid line: central PS mass; dashed line: perturba
contribution only at LO; dotted line: without perturbative contrib
tion.

TABLE XII. Change of the masses for different values ofmsep.

msep 1.0 1.5 2.0 2.5 3.0

mPS,b 4.710 4.631 4.561 4.497 4.438
mb(mb) 4.234 4.237 4.241 4.245 4.248
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the mass and the increasing influence of the other contr
tions. The error from 0<j<1 is DmPS,b530 MeV. Table
XIV summarizes the error from all contributions formPS,b
andmb(mb). Our results are

mPS,b~msep52.0!54.56160.112 GeV,

mb~mb!54.24160.098 GeV. ~35!

This value can be compared to theMS mass obtained from
the pole mass scheme,mb(mb)54.27760.116 GeV. The
central value decreases by 30 MeV. In the PS scheme one
better control over the systematic uncertainties, reflected
an improved convergence for the theoretical expansions
in a clear perturbative mass relation.

IX. NUMERICAL ANALYSIS FOR THE CHARM
QUARK MASS

A. Pole mass scheme

The method of analysis will follow along the same lin
as for the bottom quark mass and we will put special emp
sis on the different points in both analyses. First we m
choose the value ofj. As for the bottomium, we will usej
50.5. At this value the pole contributions still represent t
dominant part. In principle one would like to choose a high
value where the theoretical expansions converge be
However, the contribution from the theoretical poles var
significantly with the scales; forj*1 the mass depends to
strongly on these variations. Thus we again use a rang

e

TABLE XIII. Change of theMS mass, when adding the differ
ence from NNLO-NLO to the poles,Dmb

(a) , and the difference
from NNLO-LO, Dmb

(b) .

j mb(mb)/(GeV) Dmb
(a)/(MeV) Dmb

(b)/(MeV)

20.25 4.200 71 114
0 4.215 62 102
0.5 4.241 54 90
1.0 4.262 49 82
1.5 4.278 46 79
2.0 4.292 45 77

TABLE XIV. Single contributions to the error ofmPS,b and
mb(mb).

Source DmPS,b Dmb(mb)

Variation of mso f t 90 MeV 80 MeV
Variation of m f ac 35 MeV 30 MeV
Variation of mhard 10 MeV 10 MeV
Variation of msep 5 MeV
Thresholds0 25 MeV 25 MeV
Experimental error 35 MeV 30 MeV
Variation of LQCD 20 MeV 5 MeV
Variation of j 30 MeV 25 MeV
Total error 112 MeV 98 MeV
2-13
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TABLE XV. Moments for differentn with the parametersmso f t51.2 GeV, m f ac51.45 GeV, mhard

51.75 GeV, andvsep50.4.

n 3 4 5 6 7 8

M n
Poles 0.65 0.48 0.35 0.26 0.19 0.14

M n
Rcstr 0.41 0.21 0.11 0.063 0.036 0.021

M n
Continuum 0.23 0.099 0.046 0.023 0.011 0.0058

M n
Condensates 20.0033 20.0030 20.0027 20.0023 20.0019 20.0015
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0<j<1. Again, in the PS scheme we will investigate t
perturbative behavior for differentj in more detail. Since the
perturbative expansions converge more slowly than for
upsilon we restrict the analysis to smaller values ofn<7.
From the lower side, we choosen>4 since forj50.5 the
moments atn53 already depend significantly on the ph
nomenological part. As central values for our scales we h
selected

mso f t51.2 GeV, m f ac51.45 GeV, mhard51.75 GeV.

~36!

The hard scale corresponds to the central value of the
mass. For the soft scale we would have preferred a some
smaller value but then the NNLO corrections become lar
The moments for different values ofn are shown in Table
XV. M n

Rcstr are the moments from the reconstructed spec
density at vsep50.4. At this separation velocityM n

Rcstr

equals the moments from the interpolating spectral den
which was introduced in Sec. VII. The pole contributio
dominate the sum rule even for smalln. The condensates ar
suppressed compared to the poles and have no influenc
the mass. From Fig. 10, averaging over 4<n<7, we obtain

Mc51.754 GeV. ~37!

The error is dominated by the variation of the scales.
values of mso f t&1.1 GeV the pole contributions get larg
NNLO corrections and we thus choose 1.1 GeV<mso f t
<1.35 GeV. For the hard scale we use a range of 1.4 G

FIG. 10. Thick solid line: central pole mass; thin solid lines:Mc

for mso f t51.1 and 1.35 GeV; dashed lines:Mc for m f ac51.2 and
1.65 GeV; dotted lines:Mc for mhard51.4 and 2.5 GeV.
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<mhard<2.5 GeV and for the factorization scale 1.2 Ge
<m f ac<1.65 GeV. Since the convergence of the nonrela
istic expansion is not very good for the charmonium syste
the scales cannot be chosen arbitrarily far away from th
central values. Though the analysis is stable inside the g
intervals, the expressions tend to become unstable for sc
outside of the chosen ranges. The error amounts to

1.1 GeV<mso f t<1.35 GeV: DMc590 MeV,

1.2 GeV<m f ac<1.65 GeV: DMc565 MeV,

1.4 GeV<mhard<2.5 GeV: DMc540 MeV. ~38!

Table XVI shows the dependence ofM 5
PolesandM 5

Resum

from the different orders onmso f t . To estimate the uncer
tainty from as we employLQCD5329629 MeV which is
the corresponding value for three flavors and three loo
Then the mass shifts by 60 MeV. Since already the low
resonances dominate the phenomenological part, the e
from the measured spectral density and experimental wid
is relatively small. Forj50, the mass decreases by 60 Me
and increases by the same amount forj51. From Table
XVII we then obtain the pole mass

Mc51.75460.147 GeV. ~39!

This corresponds to aMS mass of mc(mc)51.247
60.134 GeV. Again, there is anO(LQCD) uncertainty from
the perturbative relation between the masses so we now
to the PS scheme to determine theMS mass.

B. Potential-subtracted mass scheme

As in the pole scheme, we will usej50.5 within a range
of 0<j<1. For the separation scale we choosemsep51.0

TABLE XVI. Size of the moments from the poles and the r
summed spectral density at LO, NLO, and NNLO for different v
ues ofmso f t .

mso f t 1.1 1.15 1.2 1.25 1.3 1.35

LO 0.19 0.17 0.15 0.13 0.12 0.11
M 5

Poles NLO 0.31 0.28 0.25 0.23 0.21 0.19
NNLO 0.51 0.42 0.36 0.31 0.27 0.24

LO 0.097 0.093 0.090 0.087 0.085 0.083
M 5

Resum NLO 0.043 0.046 0.047 0.048 0.049 0.050
NNLO 0.045 0.040 0.036 0.033 0.031 0.029
2-14
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60.2 GeV. This represents a compromise value. It is s
high enough for a perturbative evaluation and sufficien
below the hard scale. Since in the PS scheme the theore
expansions converge better, one can employ a lower v
for the soft scale and we will usemso f t51.1 GeV. As before,
we use a range of 4<n<7 for the moments.

In Table XVIII, we have shown the moments for differe
n. The poles represent the dominant part of the theoret
correlator. The size of the condensates is'1% of the pole
contributions and also in this scheme they can be negle
for the analysis.

Our central values for the PS andMS masses are

mPS,c~msep51 GeV!51.300 GeV,

mc~mc!51.188 GeV. ~40!

In Fig. 11, we have plotted the PS mass and the co
sponding error from the scales:

1.0 GeV<mso f t<1.25 GeV: DmPS,c585 MeV,

1.2 GeV<m f ac<1.65 GeV: DmPS,c565 MeV,

1.4 GeV<mhard<2.5 GeV: DmPS,c550 MeV.
~41!

Table XIX shows the scale dependence and the beha
for the different orders. Compared to the pole scheme,
uncertainty on as is much improved and amounts t
DmPS,c520 MeV andDmc(mc)510 MeV. As for the bot-
tomium, we now investigate the significance of the pertur
tive contribution. The solid line in Fig. 12 shows the cent
mass. Then we just change the perturbative spectral den
The dashed line shows the LO result and in the dotted

TABLE XVII. Single contributions to the error ofMc .

Source DMc

Variation of mso f t 90 MeV
Variation of m f ac 65 MeV
Variation of mhard 40 MeV
Experimental cross section 5 MeV
Experimental widths 20 MeV
Variation of vsep 10 MeV
Variation of LQCD 60 MeV
Variation of j 60 MeV
Total error 147 MeV
11300
ll
y
cal
ue

al

ed

e-

ior
e

-
l
ity.
e

we neglect the perturbative contribution completely. For lo
n we lose stability for the mass, though the effect is not
pronounced as in the bottom case since for the charmon
the poles play a more dominant part. The influence of
separation scale on the masses is shown in Table XX.
definition of the PS mass depends directly onmsep, but the
MS-mass remains very stable and changes only
Dmc(mc)58 MeV.

Now we turn our attention to the choice ofj. In Table
XXI, the MS mass is depicted for differentj. As we have
done in Table XIII, we add to the pole contributions th
difference from the NNLO-NLO and from NNLO-LO. The
change in theMS mass is shown in the third and fourt
column. Since the poles are relatively dominant, in princi
we would like to use a higher value ofj. But from Table
XXI, one can see that the better expansion is almost co
pensated by the decreasing sensitivity forj*1. In addition,
the errors from the other input parameters grow. Like in
bottom case, the error from the scales improves for lowej.
The error from the scales is still larger than the estima
uncertainty from the expansion, but in order to be conser
tive we will use the larger error from the scales for our er
estimate. The variation ofj changes the central value for th
mass as well and for 0<j<1 we obtain DmPS,c
520 MeV, which shows a much better behavior than in t
pole scheme. A summary of all contributions to the error
presented in Table XXII. Finally we obtain the masses:

FIG. 11. Thick solid line: central PS mass; thin solid line
mPS,c for mso f t51.0 and 1.25 GeV; dashed lines:mPS,c for m f ac

51.2 and 1.65 GeV; dotted lines:mPS,c for mhard51.4 and 2.5
GeV.
TABLE XVIII. Moments for different n with the parametersmso f t51.1 GeV, m f ac51.45 GeV, mhard

51.75 GeV andvsep50.4.

n 3 4 5 6 7 8

M n
Poles 0.22 0.11 0.056 0.028 0.014 0.0071

M n
Rcstr 0.13 0.043 0.016 0.0059 0.0022 0.00088

M n
Continuum 0.057 0.016 0.0047 0.0015 0.00047 0.00015

M n
Condensates 20.0016 20.00097 20.00057 20.00032 20.00018 20.000096
2-15
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mPS,c~msep51.0!51.30060.124 GeV,

mc~mc!51.18860.106 GeV. ~42!

This value is 59 MeV lower than the central value from t
pole scheme. This is no surprise since in the pole scheme
theoretical contributions have large perturbative correcti
and the relation between the masses contains large unce
ties as well.

In our previous work on the charm quark mass@17# we
obtained a slightly higher charm quark mass ofmc(mc)
51.2360.09 GeV. In this work we have chosen an evalu
tion point of j50.5. In the theoretical QCD calculation o
the moments in the PS scheme we have now set the sta
the continuum in Eq.~21! according to the pole mass, whic
is the appropriate mass definition for free quark producti
This leads to a reduction ofmc by 25 MeV. On the phenom
enological side we have included the BES data. This give
better control in the region between 3.8 and 4.6 GeV wh
the assumptions of quark-hadron-duality cannot be expe
to work well. Finally we have extended the error analysis

X. COMPARISON TO OTHER MASS DETERMINATIONS

Now we compare our value for the charm quark mass
other determinations. In this and the next section theMS
masses are always evaluated at their own scale,mc

TABLE XIX. Size of the moments from the poles and the r
summed spectral density at LO, NLO, and NNLO for different v
ues ofmso f t .

mso f t 1.0 1.05 1.1 1.15 1.2 1.25

LO 0.035 0.027 0.022 0.018 0.015 0.01
M 5

Poles NLO 0.064 0.050 0.040 0.033 0.028 0.02
NNLO 0.10 0.075 0.057 0.045 0.036 0.03

LO 0.019 0.016 0.014 0.013 0.011 0.01
M 5

Resum NLO 0.011 0.010 0.0097 0.0092 0.0086 0.00
NNLO 0.0096 0.0075 0.0061 0.0051 0.0043 0.00

FIG. 12. Solid line: central PS mass; dashed line: perturba
contribution only at LO; dotted line: without perturbative contrib
tion.
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5mc(mc) and mb5mb(mb). The basis of the charmonium
sum rules was already laid in@47,48#. Since then, many re
searchers have extracted the charm quark mass from the
rules. In@9# the pole mass was determined from perturbat
theory to NLO resulting in a value ofMc51.46
60.07 GeV. In a second investigation@10,49# the analysis
has been performed in theMS scheme with perturbation
theory to NLO. Using the NLO relation to the pole mass t
author obtains mc51.2660.05 GeV and Mc51.42
60.03 GeV. The author has also performed an analysis
ing resummation in LO with a value ofMc51.45
60.07 GeV. In our analysis the increased value of the p
mass is essentially due to large Coulomb contributions wh
have not been included in former analyses. As a con
quence, the error becomes larger as well.

The charm quark mass can also be derived from dir
application of NRQCD to hadronic bound states. The auth
of @50,51# have studied the energy level of the charmoniu
ground state. They conclude aMS mass of mc51.241
60.015 GeV where the error is from the variation ofas
only. In @15# a similar analysis was performed for the po
mass with the resultMc51.8820.13

10.22 GeV. In @52#, NRQCD
was applied to the mass difference between theB and D
mesons withmc51.2160.11 GeV. Further improvement o
these determinations may be possible in the near fut
However, these determinations face the problem that the c
tributions from NRQCD must be directly evaluated at lo
energies close to threshold whereas in the sum rules the
oretical expansions can be evaluated in a perturbative reg
Furthermore, nonperturbative effects may have a signific
impact on the charmonium energy levels.

During recent years several lattice analyses have b
performed for the charm quark mass@53–58# with rather
widespread results. The most recent one@58# obtains mc
51.2660.0460.12 GeV. This calculation was done at a la
tice spacing ofa'0.07 fm. Though it was done in quenche

e

TABLE XX. Change of the masses for different values ofmsep.

msep 0.8 0.9 1.0 1.1 1.2

mPS,c 1.353 1.326 1.300 1.277 1.255
mc(mc) 1.181 1.184 1.188 1.192 1.196

TABLE XXI. Change of theMS mass, when adding the differ
ence from NNLO-NLO to the poles,Dmc

(a) , and the difference
from NNLO-LO, Dmc

(b) .

j mc(mc)/(GeV) Dmc
(a)/(MeV) Dmc

(b)/(MeV)

20.5 1.161 44 73
0 1.174 35 64
0.5 1.188 31 59
1.0 1.205 30 56
1.5 1.223 29 54
2.0 1.241 30 54
3.0 1.273 31 54
4.0 1.300 34 56
2-16
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QCD, the authors expect a minor decrease of 5% for
unquenched case. Here also a discussion on the prev
lattice analyses can be found. Very recently, two prelimin
results @59,60# from different lattice groups have bee
presented with mc51.31460.05 GeV and mc51.27
60.05 GeV~statistical error only!, respectively.

Reference@61# has applied pseudoscalar sum rules
heavy-light quark systems. Values ofmc51.1060.04 GeV
and mb54.0560.06 GeV were deduced. A discussion
this work can be found in@62#.

In some recent works the charm quark mass has b
determined from charmonium sum rules on perturbat
grounds without Coulomb resummation. The authors of@63#
have used moment sum rules for the charmonium. They
moments ofn'124 and argue that resummation is not ne
essary for such low values ofn. On the theoretical sideP(s)
is calculated up toO(as

2) at a scale ofm53 GeV. This is
compared to the phenomenological part which includes
J/c and c8 resonances and the data from BES@38# above
the D threshold. They obtainmc51.3060.03 GeV. A simi-
lar analysis for the bottom yieldsmb54.2160.05 GeV. In
@64#, a contour integration was performed to apply t
Cauchy sum rules. The integral was closed at an energy
GeV. At this scale the high energy approximation was use
calculateP(s) up to O(as

2). As in @63#, this was compared
to the two lowestc resonances plus the continuum data@38#.
The result ismc51.3760.09 GeV. Very recently, the au
thors of@65# obtainedmc51.28920.045

10.040 GeV from a compari-
son of the perturbative spectral density to continuum d
Reference@66# has presented an update of the SVZ sum ru
@2# with perturbation theory at NNLO. They extract th
gluon condensate and a charm quark mass ofmc51.275
60.015 GeV.

However, in light of the present work it seems doubt
that a reliable determination of the charm quark mass fr
the charmonium system can be achieved by a pure pertu
tive evaluation without resummation as in@63–66#. To
clarify this point, let us return to the numerical analys
Choosingj sufficiently large andn small enough, one can
easily approach a region where the perturbative contribu
represents the dominant part. One could then expect tha
use of perturbation theory and its relative small scale dep

TABLE XXII. Single contributions to the error ofmPS,c and
mc(mc).

Source DmPS,c Dmc(mc)

Variation of mso f t 85 MeV 75 MeV
Variation of m f ac 65 MeV 55 MeV
Variation of mhard 50 MeV 40 MeV
Variation of msep 10 MeV
Experimental cross section 5 MeV 5 MeV
Experimental widths 20 MeV 20 MeV
Variation of vsep 10 MeV 10 MeV
Variation of LQCD 20 MeV 10 MeV
Variation of j 20 MeV 15 MeV
Total error 124 MeV 106 MeV
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dence will give a reasonable approximation. Neverthele
this conclusion is misleading.

For values ofj54 andn54, the moment from the per
turbative contribution exceeds the poles by 30%~for n<3
the phenomenological continuum is very dominant and
analysis becomes unstable!. Nevertheless, a variation of th
soft scale gives an error ofDmc5110 MeV, whereas the
error from the hard scale isDmc570 MeV, and this error
could even be improved by using a high energy approxim
tion. For even higherj, the result is similar: forj56 and
n54 the perturbative contribution is twice as large as
pole contributions, but the error frommso f t gives Dmc

5125 MeV and the error frommhard amounts toDmc

590 MeV. Though the pole contributions are relatively su
pressed, the mass reacts much stronger on the remainin
certainties. This behavior can already be seen in Table X
Ever higherj do not improve the accuracy anymore, but
the same way as the theoretical expansion improves, the
sitivity on the mass is lost. Indeed, if we set the pole con
bution to zero in our analysis,mc would drop by approxi-
mately 300 MeV even for very highj and the analysis could
not be trusted any more.

That a description without inclusion of the theoretic
poles is insufficient can already be seen from the quant
mechanical sum rules for the mass~17!. On the phenomeno
logical side, the main dependence on the mass origin
already from the first bound states, even if the continu
part dominates the moments. The contributions from
poles, starting fromO(as

3), must be included in the theore
ical description as well to obtain a reliable mass determi
tion. As was discussed in@66#, the charmonium system is no
well described as a Coulomb system. In particular, the
pansion for the higher states cannot be trusted and the e
tive potential may differ from the Coulombic one. Howeve
it is indispensable to use the terms from resummation fo
determination of the mass. The most important contribut
to the sum rules originates already from the ground s
~16!,~17!. The quantum-mechanical sum rules show clea
that fixed-order perturbation theory in a system who
ground state is governed by a Coulomb-similar poten
leads to an unstable and unreliable sum rule for the mas

However, it should be kept in mind that a Coulom
dominated description of the charmonium system stands
less firm grounds than for the upsilon system, whose ene
is sufficiently large to allow for a reliable resummation. Th
is also reflected in the fact that the relative error ofmc is
almost a factor 4 larger than the relative error ofmb .

During recent years, much effort has been dedicated to
determination of the bottom quark mass. The methods wh
have been employed were mainly based on QCD sum r
for the upsilon system, NRQCD for the bound states, or
tice QCD. We have listed some of these results in Ta
XXIII. A more complete list of references can be found
@1#. We can directly compare our work to previous sum-ru
analyses. As detailed discussions about the advances
drawbacks of these analyses can be found in@14,70,75#, here
we rather want to point out some interesting differences.
the comparison we will use the work by Hoang@14,71,72#
2-17



n
ct
e
th
a
th
tiv
so
s
lu

o

r o

v
a
i-
ed
s
e

e

o

rs
a
a

th
n
t

sis
the

ess

-
mo-

sum

tri-
a-
not
ed.
ull
ac-
nd

air

not
ub-
ing
he
ral

l

n
he
a-
tal
s a
ot
al
ide
me
the

e

r

for
tial.
ove
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where the most extensive analysis has been presented. I
analysis by Hoang, the theoretical moments were dire
expanded for small energies around threshold. With the h
of a contour integration, this could be used to calculate
moments via the inverse Laplace transform. Since the
proach has focused on the nonrelativistic properties of
upsilon system, for a comparison we now set the perturba
contributions in our analysis to zero. For a closer compari
we choose a value ofj50, where the analysis of Hoang wa
performed. Two effects become important: The central va
of the mass decreases by 25 MeV. Second, atj50 the poles
are more dominant and the influence of the perturbative c
tributions is reduced. Forj50, without perturbation theory
and for 7<n<10 we obtainmb54.17 GeV. Forn&6, the
analysis becomes unstable. Three differences remain. Fo
central mass we have used a factorization scale ofm f ac
53.5 GeV whereas Hoang has performed a scan o
2.5 GeV<m f ac<10.0 GeV which roughly corresponds to
central value ofm f ac55.0 GeV. Second, for the parametr
zation of the phenomenological continuum Hoang has us
continuum threshold ofAs0510.56 GeV, which correspond
to the start ofBB̄ production. As discussed in Sec. VI, w
have chosen a value ofAs0511.0 GeV to parametrize th
nonresonant part of the spectral density. Usingm f ac

55.0 GeV andAs0510.56 GeV we finally arrive atmb
54.14 GeV. In his work, Hoang has estimated the effect
a finite charm quark mass to beDmb'230 MeV. For a
massless charm quark he obtainsmb54.20 GeV, which is
60 MeV higher than our result for similar input paramete
Our error is larger than his one by a factor of 2. Hoang h
used ax2 fit with several moments. In this way he gets
cancellation between theoretical contributions of thex2

function. In our analysis, we keep the mass as a function
n, which serves as an additional check for the stability of
sum rules. Furthermore, atj50.5 the mass reacts stronger o
a variation of the parameters. But as was discussed in

TABLE XXIII. Some references to the bottom quark mass.

QCD sum rules
Authors Mb /(GeV) mb /(GeV)

V @22# 4.8360.01
KPP @67# 4.7560.04
MY @68# 4.2060.10
PP@13# 4.8060.06 4.2160.11
JP@27,69# 4.8460.08 4.1960.06
BS @70# 4.2560.08
H @14,71,72# 4.1760.05
This work 4.9860.125 4.2460.10

NRQCD potential

PY @15# 5.01520.07
10.11 4.4520.03

10.05

BSV @50,51# 4.1960.03
P @52# 4.2160.09

Lattice QCD

A et al. @73# 4.3560.23
GGMR @74# 4.2660.09
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numerical analysis, in this way the control over the analy
is improved and we believe that we have thus reduced
systematic uncertainties of the method.

Now we want to comment on a recent work on massl
contributions to the heavy quark correlator@76,77#. Here it
was shown that atO(as

3) the correlator contains a three
gluon massless intermediate state. Its contribution to the
mentsMn(j50) contains a divergent term fors50 andn
>4. Thus the authors have concluded that the moment
rules can only be reliably evaluated atn,4. We believe that
this claim is unfounded, as was already noticed in@48#. First,
up to now the sum-rule analyses contain perturbative con
butions up toO(as

2) and higher order terms from resumm
tion. At this order the three-gluon cut was not and should
be included in the analysis and all quantities are well defin
Furthermore, even if the calculation was including the f
O(as

3) contributions, these terms must not be taken into
count. The terms from the three-gluon cut mainly correspo
to light quark production and the divergent parts ats50 are
entirely due to light quark production as the heavy quark p
only gives a contribution aboves.4M2. Since they are not
included in the phenomenological part they also should
appear in the theoretical part and must be explicitly s
tracted from the perturbative contributions. The remain
ambiguity which results from the difficulty to separate t
light and heavy quark production in the dispersion integ
aboves.4M2 is a finite effect ofO(as

3) and can be com-
pletely neglected within the uncertainty of this work.

As discussed in@32#, the problem is of a more genera
nature. Already starting atO(as

2), it is no longer true that a

specific flavor currentj m5Q̄gmQ contains only heavy quark
production, nor it is true that all heavy quark productio
originates from this current. As was shown in Sec. IV for t
diagrams of Fig. 3, also light-light and heavy-light correl
tors contain heavy quark production. Since only the to
electromagnetic current, including a sum over all flavors, i
physical observable, the single flavor production is n
uniquely defined. The crucial point is to set up two identic
quantities: the phenomenological and the theoretical s
should be defined in such a way that they contain the sa
contributions. The higher the order, the more complicated
task may be.

XI. CONCLUSIONS

In this work we have obtained the following values for th
charm and bottom quark masses:

Mc51.7560.15 GeV, mc51.1960.11 GeV,

Mb54.9860.125 GeV, mb54.2460.10 GeV.
~43!

As in the last section, we evaluate theMS masses at thei
own scale,mc,b5mc,b(mc,b). Now we summarize the key
features of this analysis.

In Sec. II we have presented a rather complete setup
the quantum-mechanical sum rules in the Coulomb poten
The correlator contains poles below and a continuum ab
2-18



le
d
a

g

nc
.

di
e

th
r

tin

th
al
rtu
b
d
c
e

bo
st

le
o
im
ti
te

sta
er
o

on

tio
o-

t

h
d

an
n

do
av
ul
es
hi

s
y

de-

ark

ng
gely
u-
tent
re-
la-
de-

ly-
The
our
only
m.
six
con-

har-
re-

ction
ove

ess,
rst

e
um
by

e
to a
ies
he

n a
the
to

mp-
of
ust
m-
art.
uct
ion

t be
the
ence
the
the

ried
of
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threshold. The poles only start with a power ofO(a3), but
exhibit a sensitive power behavior in the moment sum ru
~16!. Therefore, the relative size of the poles depen
strongly onn and j. The analysis must be performed in
certain sum-rule window forn andj to guarantee a reliable
theoretical calculation and sensitivity to the phenomenolo
cal parameters.

In the field theory case the expansion of the Green’s fu
tion is known up to NNLO in the framework of NRQCD
The Green’s function is directly evaluated ats0524m2j
and in this way we avoid to sum up the energy levels in
vidually where the expansion is badly convergent. The sp
tral density can be obtained from the imaginary part of
Green’s function and the pole contributions from the diffe
ence between the full and the continuum result. The resul
moments depend on three scales:mso f t , m f ac andmhard . In
particular, the dependence onmso f t is relatively strong and
presents the dominant contribution to the error. Since
pole mass contains renormalon ambiguities, we have
performed the analysis for the PS mass which can be pe
batively related to theMS mass. Whereas the PS mass
definition depends on the separation scale which was use
subtract the long-distance potential, this dependence can
in the transition to theMS mass to a large extent. We hav
then included the perturbative contributions up toO(as

2).
They are necessary to construct the spectral density a
threshold for the full energy range and to guarantee the
bility of the mass in a region of smalln.

One of the great virtues of the method of QCD sum ru
is the analytic dependence on the theoretical and phen
enological parameters. Thus we have investigated their
portance and influence on the analysis. For the determina
of the masses we have used central values for all parame
These values were not motivated by any optimization or
bility requirement, but only grounded on general consid
ations. Each was varied in a suitably large chosen wind
for the error estimate. Only the lower value ofmso f t was also
limited by the convergence of the nonrelativistic expansi
Finally, all errors have been added quadratically.

We have set up the sum rules for an arbitrary evalua
point j. With this parameter it is possible to shift the m
ments into a more perturbative region for higherj or into a
region more sensitive to the bound state energies and
mass for lowerj. We have usedj50.5 both for the charmo-
nium and bottomium. In fact, moving away from the thres
old region and losing sensitivity on the mass, the scale
pendence is even a bit larger than atj50. But the
convergence of the theoretical expansions is improved
the theoretical contributions more equally distributed amo
the different terms; in particular, the pole contributions
not play such a dominant role. Thus we believe that we h
reduced the systematic uncertainties in these sum r
which cannot be accounted for by a variation of the scal

We would like to emphasize a remarkable property of t
analysis: Once a particular set of~central! values for
mso f t , m f ac , and mhard is chosen, theMS masses remain
very stable over a large range of values forn, j, or msep. In
general, theMS bottom quark mass changes only byDmb
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5630 MeV from its central value for 4<n<15 and the
charm quark mass byDmc5615 MeV for 3<n<15. Vary-
ing j between 20.25<j<2, the bottom quark mas
changes byDmb5240

150 MeV and the charm quark mass b
Dmc5230

150 MeV for 20.5<j<2. The variation ofmsep

changes the PS mass significantly since its definition
pends onmsep. But in the relation to theMS mass this
change is almost completely cancelled and the bottom qu
mass changes byDmb567 MeV for 1.0 GeV<msep

<3.0 GeV and the charm quark mass byDmc568 MeV
for 0.8 GeV<msep<1.2 GeV. These results are astonishi
since the variation of these parameters corresponds to lar
different relative influence among the theoretical contrib
tions. Thus we hope that we were able to set up a consis
framework in which the physics of the relevant energy
gion, apart from the remaining uncertainties in the nonre
tivistic and perturbative expansions, has been correctly
scribed.

Let us finally summarize the achieved status. In our ana
sis, several contributions seem to be under good control:
perturbative expansion, as it has been incorporated in
analysis, converges reasonably well. The condensates
give a negligible contribution to the upsilon or charmoniu
On the phenomenological side, for the upsilon the first
resonances have been measured. For the nonresonant
tinuum part, quark-hadron duality has been used. In the c
monium system, the experimental situation has improved
cently. Besides the first six resonances also the cross se
between 2.0 GeV and 4.8 GeV has been measured. Ab
this energy we again use quark-hadron duality. Neverthel
the most important contribution is already given by the fi
two poles.

Of decisive importance for the determination of th
masses is the threshold behavior. The method of QCD s
rules is a very powerful tool to extract the masses since—
the choice ofn and j—it can react very sensitively to th
threshold. Thus, large theoretical uncertainties only lead
relatively small shift in the masses. The main uncertaint
indeed come from the threshold expansion of NRQCD. T
largest potential for an improvement of the analysis lies i
further understanding of this energy region. In particular,
knowledge of the Green’s function at NNNLO could help
reduce the error.

The method of QCD sum rules is based on the assu
tions of quark-hadron duality. With the development
NRQCD it has become clear that the pole contributions m
be included in the theoretical description for a correct co
parison between the theoretical and phenomenological p
The theoretical description is based on the operator prod
expansion and can be performed in a perturbative reg
where all expansions converge well. However, this canno
used for an ever increasing precise determination of
mass. Since on the phenomenological side the depend
on the mass originates mainly from the first bound states,
sensitivity on the mass decreases in a similar way as
theoretical expansions improve. In our analysis we have t
to balance these contributions by an appropriate choicej
2-19



ip
be

u
in
o-
r
fo
pa
y
y

th

o

n

l

-
ole
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andn. Without significant progress in the theoretical descr
tion it seems that further substantial improvement will
difficult to achieve.
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APPENDIX A: POTENTIAL

In NRQCD the Green’s function obeys the Schro¨dinger
equation:

S 2
Dx

M
2

Dx
2

4M3
1VC~x!1

as

4p
D1V~x!

1
as

2

16p2
D2V~x!1DNAV~x!1DBFV~x!1

k2

M D G~x,y,k!

5d (3)~x2y!. ~A1!

VC(x) is the Coulomb potential,DNAV(x) the non-Abelian
part of the quark-antiquark potential,DBFV(x) the Breit-
Fermi potential, and the termsD1V(x) andD2V(x) contain
the first and second order perturbative correction to the C
lomb potential. The explicit expressions read

VC~x!52
CFas

x
, x5uxu,

DNAV~x!52CACF

as
2

2Mx2
,

DBFV~x!5
CFasp

M2
d (3)~x!

2
CFas

2M2x
S p21

1

x2
x~xp!pD 1

3CFas

2M2x3
SL

2
CFas

2M2 S S2

x3
2

3~Sx!2

x5
2

4p

3
~2S223!d (3)~x!D ,

D1V~x!5VC~x!@a112b0gE12b0 ln~xm!#,

D2V~x!5VC~x!@a21b0
2~p2/314gE

2 !12gE~b112b0a1!

1~2b114b0a118b0
2gE!ln~xm!14b0

2 ln2~xm!#,

~A2!
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with the constants

b05112
2nf

3
,

b15
34

3
CA

22
20

3
CATnf24CFTnf5102212.67nf ,

a15
31

9
CA2

20

9
Tnf510.3321.11nf ,

a25S 4343

162
14p22

p4

4
1

22

3
z~3! DCA

2

2S 1798

81
1

56

3
z~3! DCATnf

2S 55

3
216z~3! DCFTnf1S 20

9
Tnf D 2

5456.75266.35nf11.23nf
2 , ~A3!

whereCF54/3, CA53, andT51/2. The coefficienta2 was
first calculated in@78# and later corrected to the above give
value @79#.

APPENDIX B: POTENTIAL-SUBTRACTED MASS

The PS mass is defined by@19#

dm~msep!52
1

2 Euqu,msep

d3q

~2p!3
V~q!,

mPS~msep!5M2dm~msep!. ~B1!

The subtracted potentialV(r ,msep) is related to the potentia
in momentum spaceV(q) anddm(msep):

V~q!52
4pCFas~q!

q2 F11a1

as~q!

4p
1a2S as~q!

4p D 2G ,

V~r !5 E d3q

~2p!3
eiqrV~q!,

V~r ,msep!5V~r !12dm~msep!, ~B2!

with a1 anda2 as in Eq.~A3!. Performing the Fourier trans
formation, one obtains the relation between the PS and p
masses:
2-20
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mPS~msep!5M @11a~m!r PS
(1)~msep!1a2~m!r PS

(2)~m,msep!

1a3~m!r PS
(3)~m,msep!#,

r PS
(1)~msep!52CF

msep

M
,

r PS
(2)~m,msep!52CF

msep

M

w1~m,msep!

4
,

r PS
(3)~m,msep!52CF

msep

M

w2~m,msep!

16
, ~B3!

with a5as /p and the functions

w1~m,msep!5a12b0S ln
msep

2

m2
22D ,

w2~m,msep!5a22~2a1b01b1!S ln
msep

2

m2
22D

1b0
2S ln2

msep
2

m2
24 ln

msep
2

m2
18D , ~B4!
s.

. B

11300
with b0 and b1 from Eq. ~A3!. Using the three-loop resul
between the pole andMS masses, one can relate the PS a
MS masses:

mPS~msep!5mF11a~m!S k12CF

msep

m D
1a2~m!S k22CF

msep

m

w1~m,msep!

4 D
1a3~m!S k32CF

msep

m

w2~m,msep!

16 D G ,
k15CF , k2513.44321.041nf ,

k35190.595226.655nf10.653nf
2 , ~B5!

wherem5mMS(mMS) is the MS mass evaluated at its ow
scale.
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