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QCD moment sum rules for Coulomb systems: The charm and bottom quark masses
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In this work the charm and bottom quark masses are determined from QCD moment sum rules for the
charmonium and upsilon systems. To illustrate the special character of these sum rules when applied to
Coulomb systems, we first set up and study the behavior of the sum rules in quantum mechanics. In our
analysis, we include both the results from nonrelativistic QCD and perturbation theory at next-next-to-leading
order. The moments are evaluated at different valueg?ofrhich correspond to different relative influences
among the theoretical contributions. In the numerical analysis, we obtain the masses by choosing central values
for all input parameters. The error is estimated from a variation of these parameters. First, the analysis is
performed in the pole mass scheme. Second, we employ the potential-subtracted mass in intermediate steps of
the calculation to then infer the quark masses inNt& scheme. Our final results for the pole avié masses
are M. =1.750.15 GeV,m,(m.)=1.19+0.11 GeV,M_,=4.98+0.125 GeV, and my(m,)=4.24

+0.10 GeV.
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[. INTRODUCTION where the relevant vector current is represented either by the

charm j¢ 2(X)= (C'yMC)(X) or the bottom currentj, b (x)
Quantum chromodynamics, the fundamental theory of_ (by#b)(x) Via the optlcal theorem, the experimental

strong interactions, represents a basic building block of the bb) lated h
standard model. The determination of its parameters remairf€ 0SS sectionr(e”e” —cc,bb) is related to the imaginary

an essential task within modern particle physics. The stronﬁa"t of I1(s):
coupling constant can be obtained from many different

sources to a rather high accurddy. Investigations for the 1 o(ete —cc,bb)
guark masses face much more severe problems. Confinement Reb(S)= - P
effects must be taken into account for most systems sensitive Qepo(ere —uu)
to the masses. Therefore, apart from the top quark mass, =127 Im Il p(s+ie). )

nonperturbative methods such as QCD sum r{esd], lat-
tice QCD[5,6], or chiral perturbation theory’,8] have to be
employed.

The extraction of the heavy quark masses was among t
first applications of the method of QCD sum rulgs3]. In
this framework the hadronic parameters can be related to a
perturbative QCD calculation including the nonperturbative
condensate contributions. The analyses were later updated 1272 d\"
and extended9,10]. Recent times have seen a renewed in- Mn(é)= <4m d_s) (s)
terest in these investigations. With the development of non-
relativistic QCD (NRQCD) [11,12 it has been recognized
that the Coulombic form of the potential plays a major roleAs we will see in more detail later, the paramegeencodes
in the determination of the charm and bottom quark massegnuch information about the system. By takigdarger, the
The contributions from NRQCD have been calculated up teevaluation point moves further away from the threshold re-
next-next-to- |ead|ng orde(NNLO) [13 13 In a reg|0n glOﬂ As already discussed [6] this leads to a better con-
where the system is sensitive to mass effects, they dominatergence for the perturbative expansion. The price to be paid
the theoretical evaluation of the sum rules over a pure peris & small dependence of the moments on the mass. This

Usually, moments of the vacuum polarization are defined by
Haking derivatives of the correlator at=0. However, in this
work we will allow for an arbitrary evaluation poirg=
4m?¢ to define the dimensionless moments:

3

s=—4m2¢

turbative expansion in the strong coupling constant. again limits the possible accuracy when extracting the mass
The fundamental quantity in this type of sum-rule analysisffom the moments. Using a dispersion relation we can write
is the vacuum polarization functioi (q?): the momentsM,,(£) as an integral over the spectral density
R(s):

(=i [ dxe(T(i 00100 PR L.
2(6)=(4m s

=(0,9,~9,,991(g?), (1) Smin (S+4mMZE)N*L

_..2yn-1
fld v(1-0v°)"" "R(v)
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The last equation represents a convenient way to express the Until now we have not specified the mass definition to be
moments through the velocity of the heavy quarks used in Eq.(3). A natural choice for this mass is the pole
=\/1—4m?s. The moments can either be calculated theomassM. In the numerical analysis we will first use the pole
retically, including Coulomb resummation, perturbationMass scheme to extract the pole masses. However, as the
theory, and nonperturbative contributions, or be obtained©le masses suffer from renormalon ambiguifizg], they
from experiment. In this way one can relate the heavy quarl@n only be determined up to corrections of or@¢R qcp)-
masses to the hadronic properties of the quark-antiquark sydherefore, in the second part of our analysis we shall use the
tems. The theoretical setup is identical for the charmoniunpotential-subtractedPS massmps [19]. From this mass
and upsilon and in the first sections we will thus not specifydefinition we can obtain the modified minimal subtraction
the quark content. The difference will become crucial for thescheme(MS) masses more accurately than from the pole
phenomenological part and the numerical analysis. mass scheme.

Of decisive importance for the determination of the In the next section we will discuss the quantum-
masses is the threshold behavior. Here the system reacts véRgchanical sum rules. In Sec. Ill we shall present the con-
sensitively to mass effects. A small change in the mass leadgbutions from the threshold expansion in the framework of
to a relatively large variation of the moments. Thus the mas§iRQCD. Here we will also define the potential-subtracted
can in principle be determined with rather high accuracymass. The perturbative expansion will be derived in the fol-
Therefore we try to develop a consistent physical descriptiofowing section. In Secs. V and VI we will discuss the non-
of the threshold region which includes all theoretical contri-perturbative contributions and the phenomenological spectral
butions and perform a matching between the low and highunction. Then we shall explain the reconstruction of the
energy regions. spectral density. In the numerical analysis we will obtain the

Before turning to a discussion of the individual contribu- pole andMS masses from analyses in the pole- and PS-mass
tions, the next section shall highlight the special character oscheme, respectively. The origin of different contributions to
the sum rules when applied to the Coulomb system. To thighe error will be carefully investigated. After a comparison to
end, we present the sum rules in the framework of quantunather mass determinations we shall conclude with a sum-
mechanics which were developed[ib6]. Then we present mary and an outlook.
here for the first time the application of the moment sum
rules to a system governed by the Coulomb potential. All
theoretical contributions can be described analytically. The
sum rules show the dependence of the mass on the moments
explicitly. Furthermore, the dependence of the pole and con- Before studying the full quantum field theory case in de-
tinuum parts om and ¢ will be studied and we investigate tail, it will be instructive to first investigate the correspond-
how these parameters determine the relative influence béng quantum-mechanical systénsince it is possible to de-
tween the different contributions. scribe the system analytically, one can obtain a clearer

The results from NRQCD can be described similar to thepicture of the structure of the method and the behavior of the
quantum-mechanical sum rules. They contain a nonrelativisdifferent contributions. Let us consider a system of two par-
tic Green’s function which is composed of a continuousticles separated by a distange The Schidinger equation
spectrum above and poles below threshold. We will isolatéor stationary states takes the form
these contributions and analyze their influence on the mass
and the error separately. Namely, the poles will give the larg-
est individual contribution to the mass. Therefore we will not Hy(x)=
use the nonrelativistic expansion to the energy levels itself
which suffers from large corrections, but rather evaluate di-
rectly the Green’s function in a region where the expansiorwhere u represents the reduced mass of the system. The
is expected to work. As already done in our previous workGreen'’s function is constructed with the help of the resolvent
for the charmonium systgﬂhl?], in the theoretical descrip- operatorG(E)=(H—E) .
tion of the correlator we will use information both from Cou- By introducing a full set of intermediate states we obtain
lomb resummation and perturbation theory. From a matchingne phenomenological side of the Green’s function in posi-
between the low and high energy region we construct a spegppn space:
tral density for the full energy range. This will allow us to
obtain a stable mass prediction for a wide range of param-

1. QUANTUM-MECHANICAL SUM RULES
FOR THE COULOMB POTENTIAL

A
— =—+V(X)

o YO=Epx), (5

eters. The parameter will be used to shift the analysis to- G(x.y:E)=(x|G(E)ly)

wards a more perturbative region. There the expansions of % S,
NRQCD and perturbation theory converge faster and the dif- - 2 MJF f dE,p(L,E). (6)
ferent theoretical contributions are more equally distributed. « E.~E-le E'-E-ie

This will reduce the systematic uncertainty of the sum-rule

approach. Since the sum rules keep the analytic dependentce———

on the input parameters, we will investigate in detail their The author would like to thank Matthias Jamin, who has initiated
influence on the mass. To estimate the error we will varythe investigations on the quantum-mechanical sum rules and has
each of the parameters in suitably large chosen windows. contributed a substantial part to the development of these sum rules.
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The sum runs over the discrete part of the spectry, U(a,B;z) is the confluent hypergeometric function.
being the eigenfunction to the eigenvaldg. The integralis  G(r,0;E) is singular in the limitr —0, but the moments are

taken over the continuum part with the spectral densityfinite and the first momen¥ ,(¢) is found to be
p(x,y;E). By taking the derivative at=y=0, one can de-

fine a physical correlation function M.(&)=N[1+ 2)\+2)\2¢'(1_)\)]|x:1/@- (12
d ' The evaluation poinE = ¢E, translates inta. = 1/y/€. In this
M(E)= EG(X*V’E) theoretical expression, all powers pfare resummed. Thus
x=y=0 the true parameter for the perturbative expansioniis
1,(0)|2 =a/\—2E/n. The higher moments can be derived from a
= E _rer?ll recursion relation:
@ (E,—E—ie)?
3 d
E’ Mn(g):__Mn—l()\) . (13)
+ f dE’p(—)_. 7) n dx N=1NE
(E'—E—i€)?

To derive the phenomenological parametrization of the sum
Via a dispersion relation, the spectral density is relatedules we need the spectral density for positive energies which
to the imaginary part of the Green's functiop(E) can be obtained from
=Im G(0,0;E)/7r. The second line of Eq.7), constituting
the phenomenological part, can be compared to a perturba-
tive expansion oM (E) thus representing the fundamental
equation for the quantum-mechanical sum ryl&§,20,21].
So far the discussion has been general. Now we turn odm G(r,0;E) is finite in the limitr —0 since it is a physical

p(E)= %Im G(0,0;E). (14)

attention to the Coulomb potential: quantity and gives the Sommerfeld factor
2 2
o na au
V=1, En=- T PE)= e B0 (15)
ulad Putting everything together, we obtain the phenomenological
| nim(0) = 8100mo—— - (8)  parametrization
N

MPhe :MPole +MCont
In order to improve the predictive power it is convenient to 0 8) 0 18) 8

formulate the sum rules in the framework of Borel or mo- * 2
ment sum rules. Here we will discuss the moment sum rules = Z nTi
which closely resemble the field theory case at hand. k=1 K3 Ex + §
In the quantum-mechanical Coulomb problem we define wa? 2
the moments as
Mn(§)= o7 ——| ma®5g| G(E) . 1. (9 (1-e ™) x+ 2

E=¢E,

Again, we allow for an arbitrary evaluation poiatA natural ~ EQuating this quantity to the theoretical side?),(13) estab-
scale is given by the lowest bound state enefgy= lishes the sum rules. Using the exact formulas, this of course
— wa?l2. The paramete¢ has been defined somewhat dif- represents nothing but an identity. The method comes into
ferent as compared to E(B). The derivatives must be taken play when only limited information on either part is avail-
in an energy region below the poles where the Green'’s funcable. It can then, for instance, be used to extract the lowest
tion is purely real. Here, we must therefore chogsel, Pound state energy by solving féf, as the higher bound
whereas in Eq(3), é=0 already represents a perturbative States are strongly suppressed by the factet i Eq. (16).
region. Solving the relevant Schtimger equation, the radial LKewise, assuming that the energy levels are known, one

Green's function is found to bg22] can solve for the masg since the dominant dependence on
the mass originates froif:
k
G(r,0E)= e T(1-)U1-\22kn)  (10) E, 2 AR
m= ? MTheo_ MCont_ MHigherPoIes - E
with the variables " K ¥ (17)
o ; ; HigherPoles ;
A= Ha and k=y_2u(Etie). (11) Since the higher poleM containE, and u as

k parameters, Eq(l17) represents a fast converging self-

113002-3



MARKUS EIDEMULLER PHYSICAL REVIEW D 67, 113002 (2003

TABLE |. Relative size of pole and continuum contributions to the theoretical momihj2*°
=MPolesy M Eontfor different values oh at fixed ¢ and for different¢ at fixedn.

&=4 §=10
n 1 3 5 7 1 3 5 7
MPoleg Theo 0.45 0.83 0.94 0.97 0.16 0.49 0.67 0.78
MmSenym Thee 0.55 0.17 0.06 0.03 0.84 0.51 0.33 0.22
n=3 n=7
¢ 2 4 10 50 2 4 10 50
MPoleg Theo 0.98 0.83 0.49 0.10 0.9998 0.97 0.78 0.26
MmSonym Thee 0.02 0.17 0.51 0.90 0.0002 0.03 0.22 0.74
consistency equation for. Here we shall not discuss the Ill. COULOMB RESUMMATION

applications of this sum rule, but finally turn our attention to

the bEhaV'or of the pol_e and continuum contributions. to treat the problem of heavy quark-antiquark production
To this end, we again take a closer look at EXp). Both |56 tg threshold. The contributions can be described by a

contributions depend in a similar way amand §. But  onrelativistic Schirdinger equation and systematically cal-

whereas the integration runs over positive values®f0,  cylated in time-independent perturbation thetHPT) [23].

the energy level&, are located below threshold. Let us in- At NNLO the factorized formulation has first been shown in

vestigate the behavior of the momentsrofor fixed §. For  [24]. The correlator is expressed in terms of a Green’s func-

low values ofn the higher poles and high energy part of thetion G(k)=G(0,0k):

continuum integration can have a significant influence. When

we proceed to largen we enhance the threshold region in N, 4k?

the continuum integration and the lowest pole in the sum. (s)= PVE Ch(as)G(k) + ch(k) , (18

Taking nown fixed we see that the variation gfcan dras-

tically change the relat_ive size of both parts: Since the MOy here N, is the number of colorsk=yMZ—s/4, andM
ments have a smgulant_y =1 from E,, values Of§ only represents the pole ma$&3]. First we will present the
shgh_tly larger than 1 will lead to a complete dominance 0fmethod in the pole mass scheme and afterwards discuss the
the first bound state on the sum rules. 'Largeﬁnhance the PS scheme. The constddi( ) is a perturbative coefficient
higher bound states and also the continuum part gets MOLGaeded for the matching between the full and the nonrelativ-

and more important. The results are summarized in Table Iistic theory and naturally depends on the hard saalg(k)
We have depicted the pole and continuum contributions foFepresents the Coulomb Green's function and reads.

different values oh and¢. One should keep in mind that the

The theory of NRQCD provides a consistent framework

relative size of the pole and continuum contributions does CraM?2 K K

not directly depend on the physical system under investiga- Ge(k)=— Z CoaM +In( )

tion but rather on the values afand¢ chosen for the analy- ™ Fds Mfac

sis; namely, the poles can depend strongly on these param- CraM

eters. However, it is important to note that the main mass +yet¥|1- oK ” (19

dependence originates from the first bound states since the

continuum is largely independent of the mass. This remainﬁ/hereCF=4/3 The contributions from NRQCD are sum-

true even in a region wherg the continuum dominates th‘?ﬂarized in the potential. The Green'’s function obeys the cor-
moments. Therefore, to obtain good accuracy when extract

) _ esponding Schidinger equation
ing, e.g., the ground state energy or the mass, it is advanta-
geous to use low and highn. Then the contribution from A, K2
E, will dominate the sum rules. Unfortunately, in this region ( i +Ve(X)+AV(X) + Vi
also the perturbative expansion converges more slowly. The

perturbative series behaves better for loweand also for = 5@ (x—y). (20)
higher ¢ since this parameter enters directly in the expansion

variable\ = 1/\/¢. Therefore, in practical applications where Here V(x)=— Cras/|x| represents the Coulomb potential
the exact solutions are not known, one must carefully choosand AV(x) contains the NLO and NNLO corrections. The
a range of values fon and ¢ such that the theoretical calcu- explicit form of the potential is given in the Appendix. The
lation can be reliably trusted without losing sensitivity on thefull Green’s function can be derived from TIPT. Details
parameters one would like to extract. These considerationabout this procedure can be found &8,14]. To calculate the
will be made more explicit in the numerical analysis. Now moments from the Green’s function we will directly perform
we will discuss the Coulomb contributions in the full field the derivatives as= —4M?2¢ according to Eq(3). Since the
theory system. Green’s function is known analyticalll 3] as a function of

G(x,y.k)
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k=k(s), this can be done numerically. In this way we take ' ' ' ' ' ' '
advantage of the fact that the perturbative expansion param _
eter depends on the evaluation point. The expansion of the.Z gL i
moments shows the same behavior as has already been dig
cussed in the quantum-mechanical sum r(e&%,(13). There
the expansion parameter of the momenta is1/\/¢ and so
higher values fo¢ improve the perturbative series. The re-
sulting moments include both the pole and the continuum 0.1-
contributions. P
The moments depend on three scales: The hard scal®s
Mhara~M enters in the coefficiert,, of Eq. (18). This scale =
is also needed for the perturbative expansion which will be g
discussed in the next section. The soft sqalg;~Mv is a
typical scale for nonrelativistic processes and the relevani 0
scale for the expansion of the Green’s function. Furthermore,
the factorization scalgu,. separates the contributions of  piG. 1. Resummed spectral density times the weight factor cor-
large and small momenta and plays the role of an infraregesponding tm=5 andé=0.5 in LO (dotted, NLO (dashed and
cutoff. As we perform the calculation only up to NNLO we NNLO (solid) at typical scales for the charmoniumueos,
are left with a residual dependence on these three scales. #11.1 GeV, ur,c=1.45 GeV, andun,q=1.75 GeV.
fact, the dependence of the mass on the scales, especially on

Msoft, IS rather Ia}rge and will give the dominant source Of_ Now we investigate the spectral density from the con-

the error. To obtain the central values for the masses we will, \ |\ m part. We discuss the charmonium system since the
use a set of values fQLsoft, Lrac, and ttnarq acg:ordmg 0 gifferences in the expansion can be seen more clearly than in
the physical expectations from the charmonium and botye )o1tomium, which shows a faster convergence. In Fig. 1,
Fom:cum S3f/f$t¢ms|' 'The error will thenf bﬁ estlmatled by allowsye have displayed the spectral density times the weight fac-
Ing for sufficiently large variations of these scales. tor for the different orders. The area under the spectral den-

ThﬁUQE tr(;e full _the((j)retmal m(?me_nts fromdr_eSl;]mmaltlonsi y is directly proportional to the moments. We have chosen
can thus be determined, we are also Interested In the pole ai(y o5 and scales typical for the numerical analysis,

continuum contributions separately. First, we want to analyze_ 5, £=0.5, ueor=1.1 GeV, uiac=1.45 GeV, and unarg

them independ'ently and egtimate the'ir contri'bution to the, 1.75 GeV. The dotted line represents the LO, the dashed
error. Second, in our numerical analysis we will reconstiuCline includes the NLO, and the solid line represents the full
the spectral d_en3|ty above threshold. At IOW_ v_eI(_)cmes 't ISUNLO result. One can see that the expansion of the moments
given by the imaginary part of the nonrelativistic Greer]’Sconverges well in the low velocity region. But when higher
function. are used, resummation is not capable of incorporating the
widths of the poles have been calculated at NNLO. O”.eﬁ?r:ceftthr:ggo?nnpigz ggg?gg’lr-dzzgg‘?\r’z Vv\(/ri}lerl:svgetrzgc(r)g-

EOUlzjlg'eg (:e_(rj]u;:ﬁ thn?'ertﬁggt;'r?gtg:]&pbﬂ:% nmorzr;egtstoaz;%ummed spectral density only below a separation velocity
a. - butl IS Ibutions hav <vsep Where the expansion can be trusted.

. U
c?lcucljat?d nheaL threshold agd thus T)how Iar%ef coLrect;]ons Part of the large corrections to the potential is not inherent
;Lenailu% or the bottomium and cannot be trusted for the ¢ a5 the bound st_ate system but to the definitioq of the pole
Theréfore we will choose a different method of evalua-mas-s' !n[19,26] It was observed that Fhe long distance sen-
' sitivity in the coordinate space potential cancels to all orders

gggt'[r}7’ﬁ1ql‘r§z1 liﬁglgmzd.'r?grers'(;?t gliﬂgnéovyzlgtec:;ve':rtgriin perturbation theory with the long distance sensitivity in
nuu imaginary p : the pole mass. Therefore, a new mass definition has been

the difference we can then obtain the pole contributions: proposed, the potential-subtracted masss, where the po-
tential below a separation scale,, is subtracted:

0.5v9)° R*™

)/

1272 d\"
M,E’°'93=—n7|7 (4M2d—s I(s)
s=—4M2¢ mps(/.Lsep):M_5m(Msep)'
on [ ImII(s)
—12m(4M?) f 48— e (@D
am (s+4M<¢) 1 d’q
5m(ﬂsep):_§fq<ﬂsep(277)3 V@ 2

Nevertheless, for values ofand ¢ used in our analysis, the
poles will give the largest contribution to the theoretical mo-
ments and thus the dependence on the scales will remaiy g sypiracted potential(r, ueep) is then defined by
relatively strong. In the numerical analysis we will give a

detailed account on the size and behavior of these contribu-

tions. V(r, psep) =V(r)+2m(psep)- (23

113002-5



MARKUS EIDEMULLER PHYSICAL REVIEW D 67, 113002 (2003

When using these definitions the Sotlirger equation for for relatively small changes of the mass. A pure high energy
the Green’s function takes its usual form where the poleexpansion would only be valid for large values of the veloc-

mass is substituted by the PS mass and the potential kty and a matching between the threshold and the perturba-
V(r,usep [19]. Since the renormalon contributions have tive region would be less reliable. To illustrate the perturba-

been subtracted from the potential, the convergence of thive convergence we compare the different orders for the
expansion is improved and the strength of the potential isharmonium as in the last section for the resummed spectral
reduced. The developed methods for the evaluation of thdensity. In Fig. 2, we have displayed the spectral density
Green'’s function can again be employed and the additionaimes the weight factor, again for values &5, £=0.5,

contribution is absorbed in a shift of the energy.

and uparg=1.75 GeV. The expansion converges well in the

We then express all moments in terms of the PS mass artugh velocity region. As we approach lower the expansion
perform the analysis fomps. The PS mass is perturbatively cannot be trusted since singular termsvinappear which

related to theiS mass:

ag(m)

Mps(sep =M 1+

Msep)

2
n ( as(m)> (kz_CF Mrsnep Wl(mzall’vsep))

ag(m) 3 MsepWZ(mvﬂsep)
+( ) (ks‘CFWT ’
ky=Cg, k,=13.443-1.04h,

ks=190.595- 26.65%;+0.65%?, (24)

have to be resummed. These are included in the resummed
spectral density which sums up terms of ordéfv“‘k, for

n=0 and k=1,2,3. The leading term in the perturbative
spectral density at NNLO has a singular behavioai/v,

but its contribution to the moments remains finite since the
weight function contains a factor af. Consequently, the
graph at NNLO in Fig. 2 starts with a constant set-ofvat
=0.

As will be explained in more detail in Sec. VI, for the
perturbative moments we will therefore mainly use the spec-
tral density above a separation velocity>vse, With v,
~0.4. In Table 1l we compare the behavior of the moments
for different values o andvep. The highewg.,andé one
chooses, the more one approaches the perturbative region
and the expansion improves. For typical values of the analy-

where m= mys(Myg) IS the MS mass evaluated at its own sis, Usep=0.4 and£=0.5, the convergence is under good
scale. The functiong/; andw, can be found in the Appendix control.
where also a more complete list of formulas to the PS mass To calculate the moments in the PS scheme we can use

is given. L
The definition of the PS mass and its relation to 8

the same integration formuld) as in the pole mass scheme,
but now the spectral densii(s) is evaluated at the velocity

mass depends o, This scale must be taken large v= \/l—4m2PS/s and the start of the integratian,., must be
enough to guarantee a perturbative relation between thgansformed to this scheme as well.

masses. At the same time it should be chosen smaller than a At O(a?) it is no longer true that heavy quark production
typical nonrelativistic scale so as not to affect the thresholdriginates exclusively from the heavy quark correlator. Also
behavior,A gcp<usep<M-v. In the numerical analysis we the light quark correlator includes a four-fermion cut with a
will see that the use of the PS mass improves the error of theeavy quark pair radiated off the light quard2]. The cor-

MS mass. To estimate the error pn.,, we shall also vary
this scale in appropriate ranges.

IV. PERTURBATIVE EXPANSION

The perturbative spectral functioRPe"(s) can be ex-
panded in powers of the strong coupling constant
= aglm,

RPe(s)=R(O)(s)+aRM)(s) +a’R®)(s)+0O(a%).
(25

From this expression the corresponding momewt§®"(&)
can be calculated via the integral of E4). The leading term
is given byR(®)(v) =3/20(3—v?). The analytic form oR™)
or II® can be found iM27-29. R®)(s) is still not fully
known analytically. We employ a method based on Paple

proximants to construct the spectral density in the full energy

range[30,31]. It uses available information arougd=0, at

responding diagrams are shown in Fig. 3. When these con-
tributions are included in the measurements, which of course
depends on the experimental setup, they should be consid-

threshold, and in the high energy region. It has the advantage FIG. 2. Perturbative spectral density times the weight factor
that it gives a good description until relatively close to corresponding te=5 and£=0.5 in LO (dotted, NLO (dashedl
threshold. In this region the moments show a strong variatiomnd NNLO (solid) for wpaq=1.75 GeV.
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TABLE Il. Perturbative moments at LO, NLO, and NNLO with uncertainty of this analysis. To conclude the theoretical side
Mharg=1.75 GeV anch=5 for different values ot. The moments

are calculated only from the perturbative spectral density above

>Usep-
§=0
Usep 0 0.2 0.4 0.6
LO 0.31 0.29 0.18 0.055
M Ee" NLO 0.72 0.60 0.32 0.081
NNLO 1.29 0.87 0.38 0.085
(=05
Usep 0 0.2 0.4 0.6
LO 0.046 0.044 0.033 0.014
M 5Pert NLO 0.096 0.085 0.054 0.020
NNLO 0.15 0.12 0.064 0.021
é=1
Usep 0 0.2 0.4 0.6
LO 0.012 0.011 0.0092 0.0048
M 5Pert NLO 0.023 0.021 0.015 0.0068
NNLO 0.034 0.027 0.017 0.0070
§=2
Usep 0 0.2 0.4 0.6
LO 0.0017 0.0017 0.0015 0.00093
M E’ert NLO 0.0030 0.0028 0.0023 0.0013
NNLO 0.0041 0.0035 0.0025 0.0013

ered in the theoretical side as well. The diagrams have be
calculated in Ref[33]. The resulting expressions can be spli
in such a way that they allow to introduce Coulomb resum
mation effects of the heavy quark pair in a straightforward
way. However, as was discussed 32], the heavy quark pair

is produced in a color octet state from the gluon splitting. In.
this case the potential becomes repulsive and the cross sd

of the correlator we now discuss the condensate contribu-
tions.

V. CONDENSATE CONTRIBUTIONS

The nonperturbative effects on the vacuum correlator are
parametrized by the condensates. The leading term is the
gluon condensate contribution. It has been calculated up to
next-to-leading ordef34] and can be written as follows:

iiﬂ? [cE(s)+aCt(s)+0(a?)]. (26)

MEe"(s)=

The analytic form of the function€%(s) and C(s) can
be found in[34]. The results have been calculated in dimen-
sional regularization with the pole mals Using a different
mass prescription like the PS mag{(s) has to change
accordingly. In our analysis below, we employ a value of
(aFF)=0.024+0.012 GeV for the gluon condensate.
Furthermore, if35-37 the dimension 6 and 8 conden-
sate contributions have been calculated. However, this has
been done only for moments &0 and therefore only in
this case do we take them into account. For typical values of
charmonium scalesyna,q=M=1.75 GeV, their contribu-
tion is 5-10 % of the leading gluon condensate. In fact, as
will be shown in the numerical analysis, the absolute contri-
bution of the condensates to the full theoretical moments is
small, both for the upsilon and the charmonium. Whereas
former sum-rule analyses for the charmonium have empha-
sized the significance of these nonperturbative contributions,

e?eir relative suppression in this work is due to three reasons:

irst, the absolute value of the theoretical moments increases
from the Coulomb resummation. Then we evaluate the mo-

ments at large€ and smallem where the nonperturbative
contributions are relatively small. Finally, since we obtain a
larger pole mass than former analyses, the condensates, start-
pg with a power of 1“4, are suppressed further.

tion decreases close to threshold. For high energies the dia-
gram gives the same contribution as the diagram with the VI- PHENOMENOLOGICAL SPECTRAL FUNCTION

light and heavy quark lines interchanged. Since the main Experimentally, the six lowest-lying and Y resonances

contribution of this diagram comes from the perturbative re
gion, its O(ag) contribution to the moments is suppresse

and has a typical relative size o210 °. The shift in the

final value for theMS bottom quark mass then amounts to
Amy(my)=~9 keV and can be safely neglected within the

FIG. 3. Diagrams aO(ag) from the light quark correlator con-

tributing to heavy quark production.

‘have been observed. To obtain the phenomenological content
dof the spectral function we use the narrow-width approxima-

tion for the resonances

97 Iy
= lk
a’Q3,

R(s)= I, Y—e e )ES(s—ED), (27)

where Q. , represents the electric charge of the charm or

bottom quark.a denotes the running QED coupling evalu-
ated at a scale around the resonance mass. For the charm this
corresponds to the fine structure constant1/137.04
whereas for the bottom widths the Review of Particle Prop-

erties[1] has usedr?=1.07a2 and we will do so accord-
ingly. The narrow-width approximation provides an excellent
description of these states since the full hadronic widths are
much smaller than the masses. The values for the masses and
electronic widths are collected in Tables Il and IV. For our
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TABLE Ill. Masses and electronic widths of the first sik 6 T I T I T I T I T T .
resonances. L
5 -
k 1 2 3
Ey (GeV) 3.097 3.686 3.770 4
I'y (keV) 5.26+0.37 2.12£0.18 0.24£0.05 r
o 3_
k 4 5 6 a
E, (GeV) 4.040 4.159 4.415 2r
I, (keV) 0.75+0.15 0.770.23 0.470.10 -
1_
numerical analysis the errors on the masses can be safel % o . L

L L 1 L L

neglected and have thus not been listed. It should be kept it 6 3.8 4 4.2 44 4.6 4.3
mind that the moments from the experimental resonances ar _ s

not identical to the ones obtained from the poles of the

Green’s function in Sec. Il which represent a sﬁmmation of FIG. 4. Rq(s) from [38].
a special kind of theoretical contributions. ] .

For the upsilon system, the hadronic continuum is notl0.8 Gew Vsp<<11.2 GeV. To be conservative, in the

measured with sufficient accuracy so we use the assumptigialysis we also check the influence on the error if we re-

of quark-hadron duality and integrate the theoretical spectrdfove the resonances above the continuum.
density above a continuum threshaigl Above the charmonium threshold recent measurements

have improved the phenomenological situation significantly

6 [38]. Eighty-five data points have been taken in the region

Mbén = _92772 > — Fb’kEZ’k — between 2.0 Ge¥. \/s,<4.8 GeV with an average precision
(AMp)"  a”Qpk=1 (B +4ME)" of 6.6%. The continuum threshold starts gs=2Mp
Restr =3.73 GeV. From the measured spectral density the light
+ fw dSRb—(s)_ (2¢)  Quark contributions must be subtracted. At this energy the
so (s+4aMigntt light quarks can be safely assumed to be massless and the

high energy approximatiof89] provides a good description.

For the parametrization of the spectral density we use thdhe resulting spectral density is shown in Fig. 4. At energies
reconstructed spectral densiﬁﬁcs“(s) which will be dis- @above the data points we again use the reconstructed spectral
cussed in the next section. The continuum from opegro- density. Since the resonances 3—6 are well reproduced by the
duction sets in atys=2Mg=10.56 GeV just below the data, we only add the first two resonances below the con-
fourth resonance. In the upsilon system the resonances af@uum threshold. The error from the data turns out to be
relatively dominant. The start of the continuum threshgjd Small compared to the theoretical uncertainties. _
should thus in principle be given by the mass of the seventh It S interesting to compare the measured cross section to
resonance. Nevertheless, when we take into account only tf8€ predictions from quark-hadron-duality. On average, the
first three resonances and a continuum threshghypically reconstructed spectral density lies above the data points. This

250 MeV above the third resonance and compare the resuffiould be no surprise as the operator product expansion
to an evaluation with all six resonances amgdabove the (OPB demands an equality of the theoretical and phenom-

sixth resonance, we miss in the latter a contribution of 309gn0logical moments only for the full correlator which also
from the continuum. It seems natural to assume that thidcludes the pole contributions. Since the lowest poles are
contribution originates from opeB production. To account VeTy dominant on the phenomenological side they are com-
for this contribution we lower the value of, to S, p_ensated by a larger theoretical spectral density for interme-
—11.0 GeV. To estimate the error we vasy between diate values of. Consequently, one should take care when
describing the phenomenological spectral density by the per-
turbative one, in particular, the choice of the integration point

TABLE IV. Masses and electronic widths of the first s¥, '
Sp could depend on the values éfandn. A more detailed

resonances. A : |
description of the charmonium cross section and the accu-
Kk 1 2 3 racy of quark-hadron-duality is presented[#0]. Now we
explain how to construct a theoretical spectral density for the
Ek (Ge\/) 9.460 10.023 10.355 full energy range.
'y (keV) 1.32+0.07 0.52:0.04 0.48-0.08
k 4 5 6 VIl. RECONSTRUCTION OF THE SPECTRAL DENSITY
Ey (GeV) 10.580 10.865 11.019 Besides the contributions from the poles of the Green'’s
Ty (keV) 0.25+0.03 0.310.07 0.13-0.03 function and the condensates, the theoretical part of the cor-

relator contains the spectral density above threshold. Now
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FIG. 5. ¢ system. Solid line: interpolated spectral density; FIG. 6. Y system. Solid line: reconstructed spectral density;
dashed-dotted line: reconstructed spectral density; dashed line: rdashed line: resummed spectral density; dotted line: perturbative
summed spectral density; dotted line: perturbative spectral densitgpectral density.

we discuss the different parts of the spectral density. ativistic velocity. However, in the analysis we use the recon-
For high velocities the spectral density is well describedstructed spectral density and vary,, between 0.3 and 0.5

by the perturbative expansion. As explained in Sec. IV, weto estimate the error.

have used a method which allows a good approximation until In Fig. 6, we have shown the same picture, but now for

relatively close to threshold. The resummed spectral densityypical scales of the upsilon system. Here the expansion be-

on the other hand, gives a good description for low values ohaves much betteRR5'™Mis valid up to higher and&RP®" to

v, but it fails to describe the high energy part. For thesdower velocities. So we obtain an overlap in the intermediate

reasons, we introduce a separation velogiy,. Abovevge,
we only use the perturbative spectral density. BelQw, we

region and the result is independent of variations around
Usep~0.35.

essentially take the resummed spectral density. The perturba-

tive expansion has singular termsurwhich are included in

the resummed spectral density, but it also contains contribu-

VIIl. NUMERICAL ANALYSIS FOR THE BOTTOM
QUARK MASS

tions from higher powers in which can be isolated by sub- )

tracting the double-counted terms and these contributions W& now perform the analysis for the charm and bottom
will be added to the resummed spectral density bedquy. quark masses in the pole and PS scheme. Though the method
In Fig. 5, we have displayed the charmonium spectral densit?f analysis will be similar in all .four cases, we d|§cuss every
from the different contributions as a functionof This rep- ~ caSe Separately as each requires a certain choice of param-
resentation expands the threshold region. The dotted line ref3ters and an independent error analysis. Since in the upsilon
resents the perturbative expansion at NNLO. The dashed lin&yStem the theoretical expansions converge better, we start
is the resummed spectral density and the dashed-dotted lif¥th the bottom quark mass and devote the next section to
the reconstructed spectral density. For the charmonium sy&€ charm quark mass.

tem, there exists a range of intermediate values @fhere
neither the perturbative expansion nor the resummation can
be trusted. Indeed, it can be clearly seen that the recon- First, one has to fix the parameters on which the sum rule
structed spectral density shows a gap at the separation velogepends. As a general rule, we will choose central values for
ity. Since this gap is not physical but a result of the mismatchhe parameters to determine the masses and then vary these
between the two energy regions we can try to construct @arameters in appropriate ranges for the error estimate. Let
more physical spectral density which interpolates smoothlys start with the values af andn. Since the bottom quark is
between small and large. We can construct this interpolat- rejatively heavy, even foE=0 the nonrelativistic and per-

A. Pole mass scheme

ing spectral density frorlRR®sUMand RP¢" between the two
velocities v,=0.2 and v,=0.6 with RM€’'=RResuTy,2

—0v)(v5-v)+ R (w2 —v2)/(v5—v3). There is no ex-
plicit argument for a specific choice &'"®" except that it

turbative expansions converge reasonably well. Neverthe-
less, the contributions from the poles of the Green'’s function
still dominate the theoretical part. To reduce their influence
and to spread the theoretical contributions more equally

should give a smooth transition between the low and higlamong the poles, the resummed spectral density, and the per-
energy region. We have chosen a quadratic form instead of trbative spectral density, we must choose a highdiow-
linear one since it suppresses better the behaviRR6t'™at  ever, foré>1, the moments lose sensitivity on the mass and
high v and of RP®" at low v. The moments from the inter- the error from the input parameters increases. Therefore, we
polating spectral density are equal to the moments of theise a central value gf=0.5 and varyé between G=¢<1.
reconstructed spectral densitywat,~0.4, a typical nonrel-  Since the relevant scale for the evaluation point is the lowest
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TABLE V. Moments for differentn with the parameters 52 T T T T T T
=0.5, usor=2.5 GeV, uiac=3.5 GeV, unaq=5.0 GeV, sq
=11.0 GeV, andge,=0.35.

n 5 6 7 8 9 10
MPoles 0.079 0.055 0.038 0.026 0.018 0.013
M Restr 0.098 0.055 0.032 0.019 0.011 0.0067 S 5

Meontinuum 9047 0,023 0.012 0.0059 0.0031 0.0016

4.9
bound state energy, values §f0, 0.5, or 1 already corre-
spond to well-separated evaluation points. In the section or
the PS scheme we will justify this choice numerically as 4_84 ' L
well.

As was shown in Sec. Il, high values ofenhance the
threshold region and the pole contributions. To keep the the- FIG. 7. Thick solid line: central pole mass; thin solid liné4;,
oretical expansions under control, we restrict the moments téor u,1=2.0 and 3.5 GeV, dashed lindd:, for u;,.=2.0 and 5.0
n<10. From the lower side) is limited by the phenomeno- GeV; dotted linesM,, for up,¢=2.5 and 10.0 GeV.
logical uncertainty. Since fai<4 the continuum has a large
influence on the mass, we use a range €ffs<10. As cen-  for smalln but gets more and more suppressed for higher

tral values for our scales, we have selected The thick solid line in Fig. 7 shows the central value for the
pole mass with the scales from E@9). Averaging over the
Msoft= 2.5 GeV, pac=3.5 GeV, wpag=5.0 Gev('zg) mass betweensn<10 we obtain
M,=4.984 GeV. (30)

We set the hard scale to the central value for the pole mass. o _ o

The soft scale should be given by the mass times a typica{[he error originates mainly from the variation of the scales.
velocity. We choose a value @f,;=2.5 GeV. Though one FOr the soft scale we choose a range of 2.0 €@\

may prefer a slightly lower value gf.,, the nonrelativistic =~ =3-2 G€V. Below us,<2.0 GeV the pole contributions
expansion gets large corrections fog.;<2.0 GeV and we show a bad perturbative behavior and the analysis becomes

will use this value as the lower bound in the variation of Unstableus,«>3.5 GeV would use a soft scale at an energy
wsoft. The factorization scale separates the different regioni0 high from physical expectation. The hard scale is varied
and should lie between the two other scales. The selectdetweenMp/2 and My, 2.5 GeVs unarg<10.0 GeV. As
scales are required for a correct description of the spectr:_QefQVG for the central_values, also the variation of the factor-
density. Since this is a physical quantity, the scales must pigation scale should lie between the two other scales and we
chosen independent @f and n, which merely serve as an US€ 2.0 Ge¥s u,c<5.0 GeV. In Fig. 7, we have also plot-
evaluation point for the moments. ted the change of the mass for a variation of these scales. The
As discussed in the section about the phenomzr:/c@gic&”or amounts to
spectral density, we employ a continuum thresholdyef . _
=11.0-0.2 GeV. We use a separation velocity ofe, 2.0 GeVspsori=3.5 GeV: AM,p=95 MeV,
=0.35 and the result is independent for a choice around this
value. In the upsilon system, the contribution from the con-
densates is suppressed by roughly a factor 6300 * as
compared to the pole contributions and can be safely ne-
glected.

. In Table V, we have;:gllgcted the individ_ual moments for | Taple VI, we have listed the dependence.fof”
dn‘fere,nt valugs oh. /;/igtr are.the theoretical poles of the andM;ecstr on the scales. The soft scale has a particularly
Green's function.M ;™" contains the moments from the |5r46 nfluence on the poles. In Table VII, we have con-
reconstructed spectral density apd RTS%I#des the momentsynted the LO, NLO, and NNLO corrections in NRQCD for
from the _resummed spectral %er:sr&y n below anq the  —7. Instead of them Restr e directly useM XYM for
perturbative spectral density! ,°" abovevse,. There is N0 this comparison. The analysis confirms that the expansions
clear distinction betwee §°“Mand M [*" sincev e, can converge better for smallerand behave worse for highar
be used to shift their values\ {°"""""™ are the moments as is expected from the more sensitive testing of the thresh-
from the continuum part of the reconstructed spectral densitpld region. The corresponding shift of the mass by going
above s,. For values between $n=<10 the moments from NLO to NNLO amounts taAM,~120 MeV.

MR are of a similar size as the pole contributions: for  Now we turn our attention to the other parameters. In the
n=5 they exceed the poles and become smallemfsi7. pole mass scheme, a significant uncertainty comes from
The influence of the continuum moments is relatively strongAocp as well. To determinerg(un), we have usedrs(M7)

2.0 GeV<pu;,c<5.0 GeV: AM,=35 MeV,

2.5 GeVs upag<10.0 GeV: AM,=20 MeV.
(39)

Poles

113002-10



QCD MOMENT SUM RULES FOR COULOMB SYSTEMS . . PHYSICAL REVIEW D 67, 113002 (2003

TABLE VI. M 'S and M ReSU for different weo s With sfac TABLE VIII. Single contributions to the error ofl .
=3.5 GeV andunaq=5.0 GeV, for differentus,. With rgoft
=2.5 GeV andupag=5.0 GeV, and for differentuy, g4 With Source AMy
=2.5GeV an =3.5 GeV.
Hsott erac Variation of peqr 95 MeV
Hsoft 2.0 2.25 25 2.75 3.0 3.5  Variation of uf,ac 35 MeV
Variation of wparq 20 MeV
M5O 0.050 0.043 0.038 0.034 0032 0.028 Thresholds, 20 MeV
MRS 0034 0032 0032 0031 0031 0030 Experimental widths 30 MeV
Mtac 2.0 3.0 35 4.0 4.5 5.0 Variation OfAQCD 50 MeV
Variation of ¢ 35 MeV
MPeles 0043  0.039 0.038 0.037 0.036 0.034 Total error 125 MeV

M Best 0.032 0.032 0.032 0.032 0.031 0.031

Khard 25 4.0 5.0 6.0 80 100

NRQCD. In[43], the leading-log term 0®(a?In ay) to the
energy levels has been derived in the framework of potential
NRQCD. The results have been confirmed[##4], where
also the corrections to the wave function @(czgln2 ay)
=0.1181+0.002[1] and run this value down with the three- Were calculated. Recently, the full NNNLO corrections have
loop beta function. The corresponding,cp, for three loops ~ been computefs,4d, but only for the energy levels them-
and four massless flavors is thefigcp=279+29 MeV. selves. The results ¢#4] can be used to estimate the impact
Though a4 is known relatively precisely, the error on the On the Green’s function and the mass. The main contribu-
mass amounts tA M, =50 MeV since the pole mass has a tions come from the two lowest bound states. With a typical
strong dependence on the coupling constant. The choice ebft scale ofug,=2.5 GeV for the Green’s function, the
the continuum threshold shifts the mass at loand gives an  O(a?) contributions lower the mass by approximately 35
error of AM,=20 MeV. The error from the experimentally MeV, AM,=—35 MeV. We have not included this mass
measured decay widths M ,=30 MeV. When we employ  shift in our final result since these contributions represent
a value of¢=0, the mass decreases by 35 MeV and rises bynly a part of the full NNNLO corrections. Furthermore, the
the same amount faf=1. We have summarized the results results have only been derived fag,(0)|? andE, and not

in Table VIII. We have checked for the correlations betweenrgy, the Green’s function itself. Since the expansion for the
the errors from the different input parameters and have foungnergy and the wave function is not very good, the mass shift

almost no correlation between the errors. This also holds truﬁay be overestimated. However. it could indicate the size of
for the PS scheme and for the charm quark mass analysiﬁ1e NNNLO corrections '

Thus we add the errors quadratically and our final result for
the pole mass is

MPBeles 0038 0.038 0038 0.038 0.039 0.039
MRSt 0,035 0032 0032 0031 0.031 0.030

M,=4.984+0.125 GeV. (32) B. Potential-subtracted mass scheme

L Here the separation scajes., appears as an additional

Using the three-loop relation between the pole andMi®&  parameter which enters in the definition of the PS ni2gs
mass which has been calculated recefdl¥,42, we obtain  This scale should be taken large enough in order to guarantee
mp(Mp) =4.277£0.116 GeV for theMS mass. However, the a perturbative relation to théS mass. On the other hand, it
relation between the two masses implicitly includes an unshould be smaller thaMv so as not to affect the threshold
certainty ofO(Aqcp)- behavior. A good value ifse,=2.0 GeV and we will inves-

Before turning to the analysis in the PS scheme, we wanfigate a range of 1.0 Ge¥uge=3.0 GeV to check the in-
to investigate the size of the NNNLO corrections from fiyence on theViS mass. In Fig. 8, we have plotted the PS

) mass as a function af. As our central values we obtain
TABLE VII. Size of the moments from the poles and the re-

summed spectral density at LO, NLO, and NNLO for different val- Mpsp(usep=2 GeV)=4.561 GeV,
ues of wgpfi-
Msoft 2.0 2.25 2.5 2.75 3.0 3.5 mb(mb):424l Gev (33)

LO 0.024 0.020 0.018 0.015 0.014 0.012
/\/17'30""S NLO 0.033 0.029 0.027 0.024 0.022 0.019 o
NNLO 0.050 0.043 0.038 0.034 0.032 0.028 Relating the pole, PS, andS masses we make use of the
LO 0.022 0.021 0.020 0.019 0.019 0.018 recently calculated three-loop result for the madgds42.
MBesum NIO  0.014 0.014 0.014 0.014 0.014 0.014 Since resummation includes all ordersdg, this choice is
NNLO 0.016 0.015 0.014 0.014 0.014 0.013 More appropriate than the two-loop relation. From the varia-
tions of the scales, we obtain
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FIG. 8. Thick solid line: central PS mass; thin solid lings s,
for wsor=2.0 and 3.5 GeV; dashed linaspgy, for wi,c=2.0 and
5.0 GeV; dotted linesmpgy, for wpag=2.5 and 10.0 GeV.

2.0 GeVspugor=3.5 GeV: Amps,=90 MeV,
2.0 GeVsui<5.0 GeV: Ampgp=35 MeV,

2.5 GeVs uparg=10.0 GeV: Ampgp,=10 MeV.
(34)

In Table IX, we again have collected the moments fo

different values of. For low n, M R exceedsM F°'®s,
whose influence grows for larger In Tables X and XI, we

have shown the scale dependence and the behavior for t
different orders. The large coefficients which have beerP

found in the Coulomb potential at NNL@3) lead to a mass
shift of Amy(my)~90— 100 MeV when going from NLO to
NNLO.

When we lower the continuum threshold t(s,=10.8
GeV, the mass decreases for smallFor \'s,=10.7 GeV,
the mass is completely stable for all values efi83<12. But

since the analysis is too complex to draw conclusions o
single parameters, we will not use the argument of stability,
to fix the values of the parameters. For higher values o

Jso=11.2 GeV, the mass increases for smallThe error
from this variation isAmpg,=15 MeV. Assuming that the
continuum from open B production can be neglectds,

PHYSICAL REVIEW D 67, 113002 (2003

TABLE X. M Po'es and M RSY for different uqqr With sfac
=3.5 GeV andun,q=5.0 GeV, for different s, With wgost
=2.5 GeV andup,¢=5.0 GeV, and for differentuy,,.q With
Msoi=2.5 GeV andus,.=3.5 GeV.

Lsoft 2.0 2.25 25 2.75 3.0 35
MPoles 0022 0.019 0.017 0015 0.014 0.012
MBSt 0016 0015 0.014 0.014 0.014 0.014

Liac 2.0 3.0 35 4.0 45 5.0
MbPeles 0019 0017 0017 0.016 0.016 0.015
MEBestt 0,015 0.015 0.014 0014 0.014 0.014

Lhard 25 4.0 5.0 6.0 8.0 10.0
MbPeles 0,017 0.017 0017 0017 0.017 0.017
MEBest 0,016 0.015 0.014 0014 0.014 0.014

of a similar size,Ampg,=25 MeV. The main part comes
from the width of the first resonance, though it is not as
dominant as in the charmonium system. In the PS scheme,
the influence ofa, is significantly reduced. Using the same
Agcp as before, we obtaidmpg,=20 MeV for the PS
mass andAmy(m,)=5 MeV for the MS mass. From this
weak dependence on the strong coupling constant, we cannot
ruse the analysis for an estimate @f.

Besides the contributions from resummation, this analysis
includes the perturbative spectral density aboyg, as well.
H’@erefore, it is interesting to investigate the influence of the
erturbative part on the analysis. In Fig. 9, we have depicted
the central mass with a solid line. Then we keep all contri-
butions, including the poles, the resummed spectral density,
and the phenomenological part unchanged except for the per-
turbative spectral density, for which we use only the lowest
order. The resulting mass is shown as a dashed line. The
analysis becomes unstable for lowsince here the perturba-
tive contributions play an important part. Now we remove
The perturbative part completely and use only the resummed
pectral density. The dotted line signals clearly that essential
nformation for lown is lost. Only for highn, dominated by
the poles, does the analysis become more stable, but here
also the expansion of the poles behaves more badly.

In Table XIl, we have varied the separation scalg.,

should lie above the highest resonance. Keeping the thresRutween 1.0 Ge¥ ueo,=3.0 GeV. The stability of the PS
old at\/sy,=11.0 GeV, we must remove the sixth resonance. .

Then the mass increases by 6 MeV. If we assume a very high tag|E xI.

Size of the moments from the poles and the re-

threshold and also remove the fifth resonance, the mass risggmmed spectral density at LO, NLO, and NNLO for different val-
by 22 MeV. The error from the experimental decay widths isyes of 4 ;.

TABLE IX. Moments for differentn with the parameterg.g,s; Hsoft 20 225 25 2.75 3.0 3.5
=2.5 GeV, iiac=3.5 GeV, tnarq=5.0 GeV, Js,=11.0 GeV, and
Vsep=0.35. LO 0.011 0.0089 0.0077 0.0067 0.0061 0.0051
MPoles NLO 0.015 0.013 0.012 0.011 0.0097 0.0084
n 5 6 7 8 9 10 NNLO 0.022 0.019 0.017 0.015 0.014 0.012
MFoles 0.043 0.027 0.017 0.010 0.0063 0.0039 LO 0.010 0.0098 0.0094 0.0090 0.0087 0.0082

Mpes 0.056 0.028 0.014 0.0076 0.0040

_ 0.0022 MEesU™ NLO 0.0070 0.0070 0.0070 0.0070 0.0069 0.0068
mgentinuum 0025 0,011 0.0047 0.0021 0.00095 0.00044

NNLO 0.0077 0.0072 0.0068 0.0066 0.0064 0.0062
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4.7 T T T T ' T ' TABLE XIIl. Change of theMS mass, when adding the differ-
ence from NNLO-NLO to the polesAm{®, and the difference
from NNLO-LO, Am{? .

£ my(mp)/(GeV)  AmP/(MeV)  Am{P/(MeV)
—-0.25 4.200 71 114
0 4.215 62 102
0.5 4.241 54 90
1.0 4.262 49 82

441 7 15 4.278 46 79
2.0 4,292 45 77

4 3 L | L | L | L

4 6 8 10 12

the mass and the increasing influence of the other contribu-

tions. The error from &¢<1 is Amps,=30 MeV. Table
FIG. 9. Solid line: central PS mass; dashed line: perturbativeX|V summarizes the error from all contributions fampg),

contribution only at LO; dotted line: without perturbative contribu- gnd my(my). Our results are

tion.

n

Mpsp(sep=2.00=4.561+0.112 GeV,

mass as a function af remains almost unchanged, but the
value of the PS mass changes strongly as its definition de- my(m,) =4.241+0.098 GeV. (35
pends directly onugep. In the relation to theMS mass, this o
variation is cancelled to such an extent that M8 mass This value can be compared to tMS mass obtained from
changes only by 7 MeV. the pole mass schemen,(m,)=4.277-0.116 GeV. The

Now we want to discuss the choice &fin more detail. central value decreases by 30 MeV. In the PS scheme one has
Using a higher¢, the theoretical expansions converge bettefoetter control over the systematic uncertainties, reflected in
and the dominance of the pole contributions is reduced. As &n improved convergence for the theoretical expansions and
result, the theoretical moments are more equally distributedn @ clear perturbative mass relation.
Thus the dependence on a single contribution like the poles
is reduced. In this way, one gets a better control over the IX. NUMERICAL ANALYSIS FOR THE CHARM
systematic uncertainties in the sum rules. Table XIIl shows QUARK MASS
the MS mass for differené. As a measure of the uncertainty,
we now investigate the change of the mass connected
with the expansion of the poles in NRQCD. The first entry The method of analysis will follow along the same lines
shows the central value for the mass. Now we add to th@s for the bottom quark mass and we will put special empha-
poles of the Green's function the difference between thesis on the different points in both analyses. First we must
NNLO and the NLO result. The increase of the mass ischoose the value of. As for the bottomium, we will us¢
shown in the second column. In the third column, we add the=0.5. At this value the pole contributions still represent the
difference between the NNLO and the LO result. Here thedominant part. In principle one would like to choose a higher
error on the mass from the expansion of the poles decreasgglue where the theoretical expansions converge better.
for higher &. If we assume this as a conservative error estiHowever, the contribution from the theoretical poles varies
mate, foré=0.5 this error is of the same order as the errorsignificantly with the scales; fof=1 the mass depends too
from the variation of the soft scale. In fact, the error from thestrongly on these variations. Thus we again use a range of
scales increases for highéras a result of the decreasing
sensibility on the mass. From the viewpoint of the conver- TABLE XIV. Single contributions to the error opsy, and
gence of the series, the scale variation tends to underestimatie(Ms)-
the error for low¢ and to overestimate the error for highéer

A. Pole mass scheme

However, foré=0.5, both estimates are consistent with each ~ Source Ampsp Amy(my)

other and we have thus chosen this value as our default. FQgyiation of u 90 MeV 80 MeV

¢=1, the better control over the theoretical expansions is N0y yiation of iac 35 MeV 30 MeV

large enough to compensate for the decreasing sensibility o iation of ftnarg 10 MeV 10 MeV

ar

. Variation of ugep 5 MeV

TABLE XII. Change of the masses for different valuesiaf, .. Thresholds, 25 MeV 25 MeV
Experimental error 35 MeV 30 MeV

1.0 15 2.0 2.5 3.0

Fsep Variation of Agcp 20 MeV 5 MeV

Mpsp 4.710 4.631 4.561 4.497 4.438  \Variation of ¢ 30 MeV 25 MeV
m,(m,) 4.234 4.237 4.241 4.245 4.248  Total error 112 MeV 98 MeV
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TABLE XV. Moments for differentn with the parametergigyi=1.2 GeV, wiac=1.45 GeV, uparg
=1.75 GeV, anth5¢=0.4.

n 3 4 5 6 7 8
M Foles 0.65 0.48 0.35 0.26 0.19 0.14
Mot 0.41 0.21 0.11 0.063 0.036 0.021
M Gontinuum 0.23 0.099 0.046 0.023 0.011 0.0058
M Gondensates -0.0033  —0.0030  —0.0027  -0.0023  —0.0019  —0.0015

0<¢=<1. Again, in the PS scheme we will investigate the <, . ,<2.5 GeV and for the factorization scale 1.2 GeV
perturbative behavior for differedtin more detail. Since the < ,,.<1.65 GeV. Since the convergence of the nonrelativ-
perturbative expansions converge more slowly than for thestic expansion is not very good for the charmonium system,
upsilon we restrict the analysis to smaller valuesnsf7.  the scales cannot be chosen arbitrarily far away from their
From the lower side, we choose=4 since foré=0.5 the  central values. Though the analysis is stable inside the given
moments ain=3 already depend significantly on the phe- intervals, the expressions tend to become unstable for scales
nomenological part. As central values for our scales we haveutside of the chosen ranges. The error amounts to

selected
1.1 GeV= ugo1=1.35 GeV: AM.=90 MeV,
Msofi=1.2 GeV, =145 GeV, pupag=1.75 GeV.

(36) 1.2 GeVs u=1.65 GeV: AM =65 MeV,

The hard scale corresponds to the central value of the pole 4 4 GeVE iy, q<2.5 GeV: AM,=40 MeV. (39
mass. For the soft scale we would have preferred a somewhat ' hard== ' ¢ '
smaller value but then the NNLO corrections become large. Taple XVI shows the dependence bt £°'eSand A Resum

) . 5
The moments for different values of are shown in Table om the different orders OMueori. To estimate the uncer-

XV. M Restrare the moments from the. reconstrqctedRséps)Sctragainty from a we employ A gcp=329+29 MeV which is
density atvse,=0.4. At this separation velocity\ ; the corresponding value for three flavors and three loops.
equals the moments from the interpolating spectral densityrhen the mass shifts by 60 MeV. Since already the lowest
which was introduced in Sec. VII. The pole contributions resonances dominate the phenomenological part, the error
dominate the sum rule even for smallThe condensates are from the measured spectral density and experimental widths
suppressed compared to the poles and have no influence @relatively small. Fog=0, the mass decreases by 60 MeV
the mass. From Fig. 10, averaging ovexA<7, we obtain  and increases by the same amount er1. From Table

XVII we then obtain the pole mass
M.=1.754 GeV. (37

. . - M.=1.754+0.147 GeV. (39
The error is dominated by the variation of the scales. For

values of,usoﬁ_s 1.1 GeV the pole contributions get large  This corresponds to aIS mass of me(m,) = 1.247
NNLO corrections and we thus choose 1.1 GeMsorr  +0.134 GeV. Again, there is @®(A qcp) uncertainty from
=<1.35 GeV. For the hard scale we use a range of 1.4 Gehe perturbative relation between the masses so we now turn

to the PS scheme to determine & mass.

2 — T T T T 1

B. Potential-subtracted mass scheme

As in the pole scheme, we will use=0.5 within a range
of 0<{<1. For the separation scale we chogsg ;=1.0

TABLE XVI. Size of the moments from the poles and the re-

= summed spectral density at LO, NLO, and NNLO for different val-
ues of ugofi-
Hsoft 1.1 115 1.2 125 13 1.35
1.6 N LO 0.19 0.17 0.5 013 0.12 0.11
N R R RN SR SRR R M 5P°|es NLO 031 028 025 0.23 0.21 0.19
34 5 6 7 8 9% 10 NNLO 051 042 036 031 027 024

LO 0.097 0.093 0.090 0.087 0.085 0.083

FIG. 10. Thick solid line: central pole mass; thin solid lini; MEeSUm NLO 0.043 0.046 0.047 0.048 0.049 0.050
for wsos=1.1 and 1.35 GeV, dashed lindsgt, for us,.=1.2 and NNLO 0.045 0.040 0.036 0.033 0.031 0.029
1.65 GeV; dotted linesM, for up,q=1.4 and 2.5 GeV.
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TABLE XVII. Single contributions to the error o . 1.5 — T T T T T T T T ]
Source AM,.
Variation of ugq 90 MeV
Variation of w4 65 MeV
Variation of pparq 40 MeV g
Experimental cross section 5 MeV g 13- -
Experimental widths 20 MeV L
Variation of vgep 10Mev [T
Variation of Agcp 60 MeV 1.2F 7]
Variation of ¢ 60 MeV
Total error 147 MeV
1.1 ' | L | L 1 ' | L | L 1 L
3 4 5 6 7 8 9 10

+0.2 GeV. This represents a compromise value. It is still
high enough for a perturbative evaluation and sufficiently FIG. 11. Thick solid line: central PS mass; thin solid lines:
below the hard scale. Since in the PS scheme the theoretic&psc for #sor=1.0 and 1.25 GeV, dashed linestps . for ufac
expansions converge better, one can employ a lower valug 1-2 and 1.65 GeV, dotted linesnps for unag=1.4 and 2.5
for the soft scale and we will use,,=1.1 GeV. As before, GeV.
we use a range of4n<7 for the moments.
In Table XVIII, we have shown the moments for different we neglect the perturbative contribution completely. For low
n. The poles represent the dominant part of the theoretical we lose stability for the mass, though the effect is not as
correlator. The size of the condensates<i$% of the pole  pronounced as in the bottom case since for the charmonium
contributions and also in this scheme they can be neglectegie poles play a more dominant part. The influence of the
for the analysis. o separation scale on the masses is shown in Table XX. The
Our central values for the PS aMiS masses are definition of the PS mass depends directly oq.,, but the
Mpsc(ise=1 GEV)=1.300 GeV, Xl:]:(nn?SS: 8re|\r/r|1§\|/r?s very stable and changes only by
m.(m,)=1.188 GeV. (40) Now we turn our attention to the choice éf In Table
XXI, the MS mass is depicted for differegt As we have
In Fig. 11, we have plotted the PS mass and the corredone in Table XlIl, we add to the pole contributions the
sponding error from the scales: difference from the NNLO-NLO and from NNLO-LO. The
change in theMS mass is shown in the third and fourth

1.0 GeVsugon=1.25 GeVi Ampsc=85 MeV, column. Since the poles are relatively dominant, in principle

1.2 GeVs 1, <1.65 GeV: Amps.=65 MeV we would like to use a higher value @ But from Table
: fac=1. ' PSc ' XXI, one can see that the better expansion is almost com-
1.4 GeV=uparg<25 GeV: Ampg.=50 MeV. pensated by the decreasing sensitivity §er1. In addition,

(41) the errors from the other input parameters grow. Like in the
bottom case, the error from the scales improves for logver
Table XIX shows the scale dependence and the behavidrhe error from the scales is still larger than the estimated
for the different orders. Compared to the pole scheme, thencertainty from the expansion, but in order to be conserva-
uncertainty on «g is much improved and amounts to tive we will use the larger error from the scales for our error
Ampg =20 MeV andAm,(m;)=10 MeV. As for the bot- estimate. The variation af changes the central value for the
tomium, we now investigate the significance of the perturbamass as well and for €¢<1 we obtain Ampg,
tive contribution. The solid line in Fig. 12 shows the central =20 MeV, which shows a much better behavior than in the
mass. Then we just change the perturbative spectral densityole scheme. A summary of all contributions to the error is
The dashed line shows the LO result and in the dotted ling@resented in Table XXII. Finally we obtain the masses:

TABLE XVIIl. Moments for differentn with the parametergg,;=1.1 GeV, piac=1.45 GeV, wnard
=1.75 GeV anth s ;= 0.4.

n 3 4 5 6 7 8
M Poles 0.22 0.11 0.056 0.028 0.014 0.0071
M Ecsv 0.13 0.043 0.016 0.0059 0.0022 0.00088
M Gontinuum 0.057 0.016 0.0047 0.0015 0.00047 0.00015
M §ondensates —0.0016  —0.00097  —0.00057  —0.00032 —0.00018 —0.000096
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TABLE XIX. Size of the moments from the poles and the re- ~ TABLE XX. Change of the masses for different valuesuqf .
summed spectral density at LO, NLO, and NNLO for different val-

ues of ugpfi- Msep 0.8 0.9 1.0 1.1 1.2
Lort 10 105 11 115 12 125 Mpsc 1.353 1326  1.300 1277  1.255
me(me) 1.181 1.184 1.188 1.192 1.196

LO 0.035 0.027 0.022 0.018 0.015 0.013
MEC'®S  NLO 0.064 0.050 0.040 0.033 0.028 0.024

NNLO 0.10 0.075 0.057 0.045 0.036 0.030 =M(My) and my=m;(m). The basis of the charmonium
LO 0019 0016 0014 0013 0011 0010 Sum rules was already laid {#7,48. Since then, many re-

MESSUm NLO  0.011 0.010 0.0097 0.0092 0.0086 0.0081 searchers have extracted the charm quark mass from the' sum
NNLO 0.0096 0.0075 0.0061 0.0051 0.0043 0.00377UIES. In[9] the pole mass was determined from perturbation
theory to NLO resulting in a value ofM.=1.46
+0.07 GeV. In a second investigati¢f0,49 the analysis
Mpsc(4sep=1.0=1.300=0.124 GeV, has been performed in thBIS scheme with perturbation
theory to NLO. Using the NLO relation to the pole mass the
me(m;)=1.188+0.106 GeV. (42 author obtains m.=1.26+0.05 GeV and M.=1.42

) ) +0.03 GeV. The author has also performed an analysis us-
This value is 59 MeV lower than the central value from theing resummation in LO with a value ofM.=1.45
pole scheme. This is no surprise since in the pole scheme theg 07 GeV. In our analysis the increased value of the pole
theoretical contributions have large perturbative correctiongnass is essentially due to large Coulomb contributions which
and the relation between the masses contains large uncertaifsve not been included in former analyses. As a conse-
ties as well. guence, the error becomes larger as well.

In our previous work on the charm quark m443] we The charm quark mass can also be derived from direct
obtained a slightly higher charm quark mass rof(mc)  application of NRQCD to hadronic bound states. The authors
=1.23+0.09 GeV. In this work we have chosen an evalua-of [50,51] have studied the energy level of the charmonium
tion point of ¢&=0.5. In the theoretical QCD calculation of ground state. They conclude BS mass of m.=1.241
the moments in the PS scheme we have now set the start f 315 Gev where the error is from the vari;tion of
the continuum in Eq(21) according to the pole mass, which 4y "|n [15] a similar analysis was performed for the pole
is the appropriate mass definition for free quark producuonmaSS with the resulM .= 1 88*0'52 GeV. In[52], NRQCD
This leads to a reduction afi, by 25 MeV. On the phenom- applied to the mass di?fg'rgnce between Bhand D
enological side we have included the BES data. This gives fhesons withm.=1.21+-0.11 GeV. Further improvement of

. . =1 . .
t)hetter contr(t)_I n th? reg|inhbgtwe%n 3|'.? and 4'? é;ev Whetr?hese determinations may be possible in the near future.
€ assumptions of quark-hadron-duality cannot be expec eIqowever, these determinations face the problem that the con-
to work well. Finally we have extended the error analysis. tributions from NRQCD must be directly evaluated at low
energies close to threshold whereas in the sum rules the the-
X. COMPARISON TO OTHER MASS DETERMINATIONS oretical expansions can be evaluated in a perturbative region.

Now we compare our value for the charm quark mass tg-urthermore, nonperturbative effects may have a significant

other determinations. In this and the next section M@ |mp|)3act_ on the crtlarmomum enelrglyt!t_evels. | h b
masses are always evaluated at their own scate, uring recent years several iatlice analyses have been
performed for the charm quark maps3—-5§ with rather

1.5—————— — — widespread results. The most recent dB8] obtains m,

=1.26+0.04=0.12 GeV. This calculation was done at a lat-
tice spacing o~ 0.07 fm. Though it was done in quenched
L4 | TABLE XXI. Change of theMS mass, when adding the differ-
ence from NNLO-NLO to the polesAm{®, and the difference
P from NNLO-LO, Am{®) .
En- 13- -
[ ] £ my(my)/(GeV)  Am@P/(MeV)  Am®P)/(MeV)
12 . -0.5 1.161 44 73
0 1.174 35 64
0.5 1.188 31 59
S T N I B T 1.0 1.205 30 56
3 4 5 6 I 10 45 1.223 29 54
2.0 1.241 30 54
FIG. 12. Solid line: central PS mass; dashed line: perturbative3.0 1.273 31 54
contribution only at LO; dotted line: without perturbative contribu- 4.0 1.300 34 56
tion.
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TABLE XXII. Single contributions to the error omps. and  dence will give a reasonable approximation. Nevertheless,
me(mc). this conclusion is misleading.
For values ofé{=4 andn=4, the moment from the per-

Source AMpsc AMe(Me) turbative contribution exceeds the poles by 30f% n<3
Variation of weos 85 MeV 75 MeV the phenomenological continuum is very dominant and the
Variation of u . 65 MeV 55 MeV analysis becomes unstahl&levertheless, a variation of the
Variation of wparq 50 MeV 40 MeV soft scale gives an error acfm;=110 MeV, whereas the
Variation of ssep 10 MeV error from the hard scale iAm,=70 MeV, and this error
Experimental cross section 5 MeV 5 MeV could even be improved by using a high energy approxima-
Experimental widths 20 MeV 20 MeV tion. For even higheg, the result is similar: fo€=6 and
Variation ofv e, 10 MeV 10 MeV n=4 the perturbative contribution is twice as large as the
Variation of A gcp 20 MeV 10 MeV pole contributions, but the error fronugys; gives Amg
Variation of & 20 MeV 15 MeV =125 MeV and the error fromunaq @amounts toAm,
Total error 124 MeV 106 MeV =90 MeV. Though the pole contributions are relatively sup-

pressed, the mass reacts much stronger on the remaining un-
certainties. This behavior can already be seen in Table XXI.
QCD, the authors expect a minor decrease of 5% for thé&ver higheré do not improve the accuracy anymore, but in
unquenched case. Here also a discussion on the previotise same way as the theoretical expansion improves, the sen-
lattice analyses can be found. Very recently, two preliminarysitivity on the mass is lost. Indeed, if we set the pole contri-
results [59,60 from different lattice groups have been bution to zero in our analysisn, would drop by approxi-
presented with m;=1.314-0.05 GeV and m:=1.27  mately 300 MeV even for very high and the analysis could
+0.05 GeV(statistical error only respectively. not be trusted any more.

Reference[61] has applied pseudoscalar sum rules to  That a description without inclusion of the theoretical
heavy-light quark systems. Values of.=1.10-0.04 GeV  pojes is insufficient can already be seen from the quantum-
and m,=4.05+0.06 GeV were deduced. A discussion oNmechanical sum rules for the ma4s). On the phenomeno-
this work can be found if62]. logical side, the main dependence on the mass originates

In some recent works the charm quark mass has beef\ready from the first bound states, even if the continuum
determined from charmonium sum rules on perturbativg,art dominates the moments. The contributions from the
grounds without Coulomb resummation. The authorf8]  5jes; starting fronD(«2), must be included in the theoret-
have used moment sum rules for the charmonium. They US| jescription as well to obtain a reliable mass determina-
moments oh~1-4 and argue that resummation is not N€C-jon As was discussed [i66], the charmonium system is not
essary for such low valzues af On the theoretical sidH(S) || described as a Coulomb system. In particular, the ex-
is calculated up t®(a;) at a scale ofu=3 GeV. This is  pansjon for the higher states cannot be trusted and the effec-
compared to the phenomenological part which includes theye potential may differ from the Coulombic one. However,
J/y and ¢’ resonances and the data from BESB] above it js indispensable to use the terms from resummation for a
the D threshold. They obtaim,=1.30+0.03 GeV. Asimi-  determination of the mass. The most important contribution
lar analysis for the bottom yields),=4.21+0.05 GeV. In  to the sum rules originates already from the ground state
[64], a contour integration was performed to apply the(16),(17). The quantum-mechanical sum rules show clearly
Cauchy sum rules. The integral was closed at an energy of fyat fixed-order perturbation theory in a system whose
GeV. At this scale the high energy approximation was used t@round state is governed by a Coulomb-similar potential
calculatell(s) up to O(a?). As in[63], this was compared |eads to an unstable and unreliable sum rule for the mass.
to the two lowest) resonances plus the continuum d34]. However, it should be kept in mind that a Coulomb-
The result ism.=1.37+0.09 GeV. Very recently, the au- dominated description of the charmonium system stands on
thors of[65] obtainedm,= 1.289ﬁ8jgﬁgGeV from a compari- less firm grounds than for the upsilon system, whose energy
son of the perturbative spectral density to continuum datais sufficiently large to allow for a reliable resummation. This
Referencg66] has presented an update of the SVZ sum ruless also reflected in the fact that the relative errornaf is
[2] with perturbation theory at NNLO. They extract the almost a factor 4 larger than the relative erromay.
gluon condensate and a charm quark massngf1.275 During recent years, much effort has been dedicated to the
+0.015 GeV. determination of the bottom quark mass. The methods which

However, in light of the present work it seems doubtful have been employed were mainly based on QCD sum rules
that a reliable determination of the charm quark mass fronfor the upsilon system, NRQCD for the bound states, or lat-
the charmonium system can be achieved by a pure perturbéiee QCD. We have listed some of these results in Table
tive evaluation without resummation as {63—64. To  XXIIl. A more complete list of references can be found in
clarify this point, let us return to the numerical analysis.[1]. We can directly compare our work to previous sum-rule
Choosingé¢ sufficiently large anch small enough, one can analyses. As detailed discussions about the advances and
easily approach a region where the perturbative contributiodrawbacks of these analyses can be fourd 70,79, here
represents the dominant part. One could then expect that thvee rather want to point out some interesting differences. For
use of perturbation theory and its relative small scale deperthe comparison we will use the work by Hoaht4,71,73
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TABLE XXIIl. Some references to the bottom quark mass.  numerical analysis, in this way the control over the analysis

is improved and we believe that we have thus reduced the
QCD sum rules systematic uncertainties of the method.

Authors My /(GeV) my/(GeV) Now we want to comment on a recent work on massless

contributions to the heavy quark correla{d6,77). Here it

V [22] 4.83+0.01 3 ;
KPP[67] 4.75+0.04 was shown that aD(«g) the correlator contains a three-
' ' gluon massless intermediate state. Its contribution to the mo-
MY [68] 4.20+-0.10 . .
mentsM,(£=0) contains a divergent term fa=0 andn
PP[13] 4.80+0.06 4.21+0.11 _
IP[27.69 4.84+0.08 4.19-0.06 =4. Thus the authors have concluded that the r_noment sum
BS 7(‘) T 4 '25+ 0'08 rules can only be reliably evaluatedrat.4. We believe that
[70) PR this claim is unfounded, as was already noticef4i@|. First,
H [_14'71'72 4.1720.05 up to now the sum-rule analyses contain perturbative contri-
This work 4.98£0.125 4.24-0.10

butions up toO(ag) and higher order terms from resumma-

NRQCD potential tion. At this order the three-gluon cut was not and should not

PY [15] 5.015 01 4.45'008 be included in the analysis and all quantities are well defined.
BSV [50,51] 4.19+0.03 Furthermore, even if the calculation was including the full
P[52] 4.21+0.09 O(«?) contributions, these terms must not be taken into ac-
Lattice QCD count. The terms from the three-gluon cut mainly correspond
to light quark production and the divergent partsatO are
Aetal.[73] 4.35+0.23 entirely due to light quark production as the heavy quark pair
GGMR[74] 4.26+0.09 only gives a contribution above>4M?2. Since they are not

included in the phenomenological part they also should not

where the most extensive analysis has been presented. In t grear in the theoretical _part and.mu.st be epr|C|tIy.syb-
analysis by Hoang, the theoretical moments were direct racted from the perturbative contributions. The remaining

expanded for small energies around threshold. With the hel mbiguity which results from t_he Qifficulty_ to separate the
of a contour integration, this could be used to calculate th jght and heavy quark production in the dispersion integral

2 i 3
moments via the inverse Laplace transform. Since the ap':_\boves>4M is a finite effect 0fO(«;) and can be com-

proach has focused on the nonrelativistic properties of th@!€tely neglected within the uncertainty of this work.

upsilon system, for a comparison we now set the perturbative AS discussed i32], the pzrob!e_m is of a more general
contributions in our analysis to zero. For a closer comparisoff@ture. Already starting @(«s), it is no longer true that a
we choose a value @f=0, where the analysis of Hoang was specific flavor current,=Qv,Q contains only heavy quark
performed. Two effects become important: The central valugroduction, nor it is true that all heavy quark production
of the mass decreases by 25 MeV. Second=a0 the poles originates from this current. As was shown in Sec. IV for the
are more dominant and the influence of the perturbative cordiagrams of Fig. 3, also light-light and heavy-light correla-
tributions is reduced. Fof=0, without perturbation theory tors contain heavy quark production. Since only the total
and for 7<n=10 we obtainm,=4.17 GeV. Fom=6, the electromagnetic current, including a sum over all flavors, is a
analysis becomes unstable. Three differences remain. For ophysical observable, the single flavor production is not
central mass we have used a factorization scaleugf, ~ uniquely defined. The crucial point is to set up two identical
=3.5 GeV whereas Hoang has performed a scan ovejuantities: the phenomenological and the theoretical side
2.5 Ge\& u,,=<10.0 GeV which roughly corresponds to a should be defined in such a way that they contain the same
central value ofus,.=5.0 GeV. Second, for the parametri- contributions. The higher the order, the more complicated the
zation of the phenomenological continuum Hoang has used {&sk may be.

continuum threshold of's,=10.56 GeV, which corresponds

to the start ofBB production. As discussed in Sec. VI, we XI. CONCLUSIONS

have chosen a value ofs,=11.0 GeV to parametrize the |, his work we have obtained the following values for the
nonresonant part of the spectral density. Usipgac  charm and bottom quark masses:

=5.0 GeV and/s,=10.56 GeV we finally arrive am,

=4.14 GeV. In his work, Hoang has estimated the effect of M.=1.75+0.15 GeV, m,=1.19+0.11 GeV,

a finite charm quark mass to hemy~—30 MeV. For a

massless charm quark he obtaimg=4.20 GeV, which is M,=4.98-0.125 GeV, m,=4.24+0.10 GeV.

60 MeV higher than our result for similar input parameters. (43

Our error is larger than his one by a factor of 2. Hoang has o

used ay? fit with several moments. In this way he gets aAs in the last section, we evaluate tMS masses at their
cancellation between theoretical contributions of th&¢  own scalem.,=m. (M ,). Now we summarize the key
function. In our analysis, we keep the mass as a function ofeatures of this analysis.

n, which serves as an additional check for the stability of the In Sec. Il we have presented a rather complete setup for
sum rules. Furthermore, &t=0.5 the mass reacts stronger on the quantum-mechanical sum rules in the Coulomb potential.
a variation of the parameters. But as was discussed in th&he correlator contains poles below and a continuum above
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threshold. The poles only start with a power®@fa®), but  =+30 MeV from its central value for 4n<15 and the
exhibit a sensitive power behavior in the moment sum rulegharm quark mass him.= =15 MeV for 3<n<15. Vary-
(16). Therefore, the relative size of the poles dependsng ¢ between —0.25<¢<2, the bottom quark mass
strongly onn and &. The analysis must be performed in a changes byAmbzfig MeV and the charm quark mass by

certain sum-rule window fon and ¢ to guarantee a reliable Am.= jgg MeV for —0.5<¢<2. The variation of e

theoretical calculation and sensitivity to the phenomenologichanges the PS mass significantly since its definition de-
cal parameters. . pends onge,. But in the relation to theVS mass this

In the field theory case the expansion of the Green'’s funcghange is almost completely cancelled and the bottom quark
tion is known up to NNLO in the framework of NRQCD. 1555 changes byAm,==7 MeV for 1.0 GeVs g,
The Green’s function is directly evaluated sf= —4m?¢ <3.0 GeV and the charm quark mass Ayn,= =8 MeV
and in this way we avoid to sum up the energy levels indior 0.8 Gevi g, =<1.2 GeV. These resuilts are astonishing
vidually where the expansion is badly convergent. The Specgince the variation of these parameters corresponds to largely
tral density can be obtained from the imaginary part of theyitterent relative influence among the theoretical contribu-
Green's function and the pole contributions from the differ-4ons Thus we hope that we were able to set up a consistent
ence between the full and the continuum result. The resulting.; mework in which the physics of the relevant energy re-
moments depend on three scalgSsst, irac A Knara- N gion, apart from the remaining uncertainties in the nonrela-

particular, the dependence @i is relatively strong and jisic and perturbative expansions, has been correctly de-
presents the dominant contribution to the error. Since th%cribed

pole mass contains _renormalon amb|gu|t|gs, we have also Let us finally summarize the achieved status. In our analy-
performed the analysis for the PS mass which can be pertur- I )
bativel lated 1o theiiS Wh the PS b sis, several contributions seem to be under good control: The
de:\rg(ieti)(;nr?jg een dg on the sgazsrétionesfg:dsé wr?ich wssaiie dy erturbative expansion, as it has been incorporated in our

P . parat ; ‘E? alysis, converges reasonably well. The condensates only
subtract the long-distance potential, this dependence cancels

. . give a negligible contribution to the upsilon or charmonium.
n the_ transition o theVS mass toa I_arg(_a extent Wez have On the phenomenological side, for the upsilon the first six
then included the perturbative contributions up@d«s).

Th ; truct th wral d i ab resonances have been measured. For the nonresonant con-
€y are necessary 1o construct the spectral density aboyg, |, part, quark-hadron duality has been used. In the char-

threshold for the full energy range and to guarantee the sta- : o .
o . > monium system, the experimental situation has improved re-
bility of the mass in a region of smatl.

One of the great virtues of the method of QCD sum rule cently. Besides the first six resonances also the cross section
is the analytic dependence on the theoretical and pheno etween 2.0 GeV and 4.8 GeV has been measured. Above

enological parameters. Thus we have investigated their imNis energy we again use quark-hadron duality. Nevertheless,

portance and influence on the analysis. For the determinatioff€ MOSt important contribution is already given by the first
of the masses we have used central values for all parametef&/© poles. o
These values were not motivated by any optimization or sta- Of decisive importance for the determination of the
b|||ty requirement, but 0n|y grounded on genera| considerinasses is the threshold behavior. The method of QCD sum
ations. Each was varied in a suitably large chosen windowules is a very powerful tool to extract the masses since—by
for the error estimate. Only the lower valueof,; was also  the choice ofn and é&—it can react very sensitively to the
limited by the convergence of the nonrelativistic expansionthreshold. Thus, large theoretical uncertainties only lead to a
Finally, all errors have been added quadratically. relatively small shift in the masses. The main uncertainties
We have set up the sum rules for an arbitrary evaluatioindeed come from the threshold expansion of NRQCD. The
point £&. With this parameter it is possible to shift the mo- largest potential for an improvement of the analysis lies in a
ments into a more perturbative region for higlgeor into a  further understanding of this energy region. In particular, the
region more sensitive to the bound state energies and théowledge of the Green’s function at NNNLO could help to
mass for lower. We have used=0.5 both for the charmo- reduce the error.
nium and bottomium. In faCt, mOVing away from the thresh- The method of QCD sum rules is based on the assump-
old region and losing sensitivity on the mass, the scale dejons of quark-hadron duality. With the development of
pendence is even a bit larger than &t=0. But the NRQCD it has become clear that the pole contributions must
convergence of the theoretical expansions is improved anfe included in the theoretical description for a correct com-
the theoretical contributions more equally distributed amongyarison between the theoretical and phenomenological part.
the different terms; in particular, the pole contributions doThe theoretical description is based on the operator product
not play such a dominant role. Thus we believe that we havexpansion and can be performed in a perturbative region
reduced the systematic uncertainties in these sum rulghere all expansions converge well. However, this cannot be
which cannot be accounted for by a variation of the scalessed for an ever increasing precise determination of the
We would like to emphasize a remarkable property of thismass. Since on the phenomenological side the dependence
analysis: Once a particular set dtentra) values for  on the mass originates mainly from the first bound states, the
Msofts Mfac, and uparq IS chosen, theMS masses remain sensitivity on the mass decreases in a similar way as the
very stable over a large range of valuestioré, or use,. In theoretical expansions improve. In our analysis we have tried
general, theMS bottom quark mass changes only Ayn,  to balance these contributions by an appropriate choige of
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andn. Without significant progress in the theoretical descrip-with the constants
tion it seems that further substantial improvement will be

difficult to achieve.
2n;
bo=11-—=,
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APPENDIX A: POTENTIAL (1798 56
. i T 5 4(3)|CaTn
In NRQCD the Green’s function obeys the Sdttirger 81 3 £(3) | CaTny
equation: 55 20 )
. A2 —(3—1%(3))CFTnf+ ETnf)
- — +V (x)+ A V(X)
M ame € ! — 456.75- 6635+ 1.23?, (A3)
2 2
23
+ S

ZAZV(X)+ANAV(X)+ABFV(X)+ i G(x,y,k) whereCr=4/3,C,=3, andT=1/2. The coefficienga, was
T

first calculated ir{ 78] and later corrected to the above given

=5®)(x—vy). (A1) value[79].

Vc(x) is the Coulomb potentialAyaV(X) the non-Abelian
part of the quark-antiquark potentiahggV(x) the Breit-
Fermi potential, and the terms;V(x) and A,V(x) contain The PS mass is defined p%9]
the first and second order perturbative correction to the Cou-

lomb potential. The explicit expressions read

oMtz = | 9 Vi
C (Msep=—"75 q),
Ve=-—222 x=|x], <nsed 27)°

APPENDIX B: POTENTIAL-SUBTRACTED MASS

a’ Mps(sep =M — dM(usep) - (B1)

S
2Mx?’

AnaV(X)=—CaCr

The subtracted potenti®d(r, usep) is related to the potential
in momentum spac¥(q) and ém(usep:

ABFV(X)— VE 5(3)(X)

47Cra(q) as(q) as(q))?
Cras( , 1 ) 3Cras Vi=-—5" [1+a1 4 ”‘2( 4 ) }
— | PP+ x(xp)p | + SL
2M?x X2 2M2x3
Cras[ S 3(S¥? 4w ) d’q
- —_— 257-3)80C)(x V(r =f e'IVv(q),
2M? R ) e N
AV(X)=V +2boye+2bg | ,
1V(X)=Vc(x)[az 0YE oln(xu)] V(r, psep =V(r)+26m(ugep), (B2)

AV (X)=Vc(X)[ag+b3(m%3+ 4v2) + 2 ye(by+2boay)
+(2by+ 4bga + 8b2yg)In(xu) + 4b2 IN2(x ) ], with a; anda, as in Eq.(A3). Performing the Fourier trans-

(A2) masses:
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Mps( tsep =M 1+a(u)r R peep +a2(p)r @ p,usep  With b andb; from Eq. (A3). Using the three-loop result
between the pole anblS masses, one can relate the PS and

+ad(u)r S, psep ], MS masses:
I
(1)(Msep) —Ck I\S/Iep, o
se
Mps sep) =M 1+a(m)| ky—Cr ")

:U“sepwl(:“ :U‘sep)
(Bl pisep = — Cp Boep I e

wq(m,
+a2(m)(k2—CFM;fp 1( 4/-Lsep))

Msep Wal (s Usep)
r§2 . psep=—Cr ,\TPT, (B3)

MsepWZ(mal’vsep)) }

+a3(m)(k3_CF o 16

with a= a¢ /7 and the functions

ul ki=Cg, k,=13.443-1.041n¢,

W1, sep) =a1—bg| IN Sep 2) vr 2 f
2 ks=190.595- 26.65%;+0.65%7, (B5)
se

Wo( 1, psep) = 8~ (281bg+by) | IN—3F—2

2 2 — )

+b2| In? '“sep_4 | .“sep+8), (B4) Whelrem=mM—S(mM—s) is the MS mass evaluated at its own
M o Scale.
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