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We study the model-building conditions under which a sizahl@@-decay signal to the recently reported
level of 0.4 eV is due to Kaluza-Klein singlet neutrinos in theories with large extra dimensions. Our analysis
is based on 5-dimensional singlet-neutrino models compactified d®l/at orbifold, where the standard-
model fields are localized on a 3-brane. We show that a successful interpretation of a positive signal within the
above minimal 5-dimensional framework would require a non-vanishing shift of the 3-brane from the orbifold
fixed points by an amount smaller than the typical scale (100 Mé\Wharacterizing the Fermi nuclear
momentum. The resulting 5-dimensional models predict a sizable effective Majorana-neutrino mass that could
be several orders of magnitude larger than the light neutrino masses. Most interestingly, the brane-shifted
models with only one bulk sterile neutrino also predict novel trigopnometric textures leading to mass scenarios
with hierarchical active neutrinos and large-v,. and ve-v,, mixings that can fully explain the current
atmospheric and solar neutrino data.
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I. INTRODUCTION tistical methods as well as new information from the form of
the contributing background. They found an excessg$ 8
Recently, realizations of phenomenologically viable theo-events, with statistical significance 2.2—3,1depending on
ries with large compact dimensions of TeV sigd have the method used. From this result, a half-life of 13%®
enriched dramatically our perspectives in searching for physx 10?° years at 95% confidence level.L.) for "®Ge is de-
ics beyond the standard modeéM). Among the possible duced, which implies an absolute value for the effective
higher-dimensional realizations, sterile neutrinos propagatinglajorana-neutrino mass:
in large extra dimensionj2—9] may provide interesting al-
ternatives for generating the observed light neutrino masses. |(m)|=0.39"5%; eV (95% C.L), 1.2
On the other hand, detailed experimental studies of neutrino
properties may even shed light on the geometry and/or shaggiowing an uncertainty of the nuclear matrix element values
of the new dimensions. In this context, one of the most senef +50%.
sitive experimental approaches to neutrino masses and their The above experimental resyit.2), combined with infor-
properties is the search for neutrinoless double beta decayation from solar and atmospheric neutrino data, restricts
[10]. Neutrinoless double beta decay, denoted in short aghe admissible forms of the light-neutrino mass hierarchies in
OvpBB, corresponds to two single beta decgy$,12 occur-  4-dimensional models with 3 left-handéalctive) neutrinos.
ring simultaneously in one nucleus, thereby converting @The allowed scenarios contain either degenerate neutrinos or

nucleus Z,A) into a nucleusZ+2A): i.e., neutrinos that have an inverse mass hierarft4]. Evi-
A A xX42e- dently, a succgssfu! interpretation of a p(_)S|t|veﬂ;B S|gnz_il
z Z+2 : of the appropriate size mentioned above imposes certain con-

straints on the structure of a theory. Here, we study these
Eonstraints on the model building of minimal 5-dimensional
&heories compactified on®t/Z, orbifold. Within the frame-
work of theories with large extra dimensions, previous stud-
ies on neutrinoless double beta decays were performed
5 within the context of higher-dimensional models that utilize
[TOPA 1= [(m)] M, ,33|2G011 (1.1) t_he shi_ning mechanism from_a distant br@hg] and of theo-
m2 g ries with wrapped geometric spa¢&6]. In Ref. [15] the
OvBB decay is accompanied with emission of Majorons,
where(m) denotes the effective neutrino Majorana mass, whereas the prediction ifiL6] falls short by two orders of
is the electron mass antt,, 35 and Gy, denote the appro- magnitude to account for the observable excess in(EQ).
priate nuclear matrix element and the phase space factor, In this paper we consider an even more minimal higher-
respectively. For details, s¢&0-12 and our discussion in dimensional framework of lepton-number violation, in which
Sec. IV. only one 5-dimensiondbulk) sterile neutrino is added to the
Most recently, the Heidelberg-Moscow Collaboration hasfield content of the SM. In this minimal model, the SM fields
reanalyzed its experimental ddtE3], using appropriate sta- are localized on a 4-dimensional Minkowski subspace, also

This process violates lepton number by two units and henc
its observation would signal physics beyond the SM. To
very good approximation, the half-life for ar@Bg decay
mediated by light neutrinos is given by
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termed 3-brane. The violation of the lepton number may ocbrane-shifting gives rise to sizable lepton-number violation.
cur in three distinct waysii) by adding lepton-number vio- Hence, the tree-level rank-1 form of the effective neutrino
lating bilinears of the Majorana type in the Lagrangiéin, ~ mass matrix can be significantly modified through lepton-
by generating lepton-number-violating mass terms througlﬁlumber violating Yukawa terms. As we will see in Sec. V, the
the Scherk-Schwartz mechanisfl7]; (i) by simulta- resulting neutrino mass matrix has sufficiently rich structure
neously coupling theZ,-even andz,-odd two-component 0 enable adequate de_scription of the neutrino data._
spinors of the 5-dimensional sterile neutrino to the same left- Our paper is organized as follows: Sec. Il describes the
handed charged lepton state. As we will see in Sec. Il, thé0W-energy structure of the 5-dimensional orbifold models.
last case(iii) is only possible if the 3-brane describing our Technical details are rgleg_ated to the Appendixes. In Sec. lll,
observable world is shifted from th&/Z, orbifold fixed We study the renormalization-grodRG) effects of the neu-
point. Here, we should also note that after integration of thdfino Yukawa couplings and their possible impact on the
extra dimension, the 5-dimensional orbifold model predicts0»38 decay amplitude. In Sec. IV we give estimates of the
an infinite tower of Kaluza-KleifKK) neutrinos, for which ~ €ffective Majorana-neutrino mass, which are predicted in
the casesi) and (i) become fully equivalent. these mo_o_lels presented in Sec. Il In Sec. V, we discuss _the
One salient feature of th®'/Z, orbifold compactification ~compatibility of such models with solar and atmospheric
is that the KK neutrinos group themselves into approxi-neutrino data. Finally, we draw our conclusions in Sec. VI.
mately degenerate pairs of opposi® parities. As a result,
the lepton-number-violating KK-neutrino effects cancel each [l. MINIMAL HIGHER-DIMENSIONAL
other and so the predictedv@8 decay turns out to be ex- NEUTRINO MODELS
ceedingly small to account for the recent observable excess.
The latter appears to be a major obstacle in theories with In this section we will describe the basic low-energy
large extra dimensions and imposes by itself constraints ostructure of minimal higher-dimensional extensions of the
the model building of higher-dimensional theories. A mini- SM that include singlet neutrinos. In particular, we assume
mal way that avoids the above disastrdlis-parity cancel- that singlet neutrinos being neutral under the SY(2)
lation effects on the 98B decay amplitude would be to ®U(1l)y gauge group can freely propagate in a higher-
arrange the opposi@P-parity KK neutrinos to couple to the dimensional space ¢fL+ (3+ )] dimensions, the so-called
W= bosons with unequal strength. Within the minimal bulk, whereas all SM particles are localized in a
5-dimensional orbifold model outlined above, such a realiza{1+ 3)-dimensional subspace, known as 3-brane or simply
tion can be accomplished only if the 3-brane is displacedrane. However, even singlet neutrinos themselves may live
from one of theS'/Z, orbifold fixed points. In our phenom- in a subspace of an even higher-dimensional spacglof
enological bottom-up approach, the amount of brane-shifting+- (3+ ng) ] dimensions, withf<n,, in which gravity propa-
is not arbitrary but dictated by the requirement that thegates.
model can accommodate the res(lt2) for the effective We shall restrict our study to 5-dimensional models, i.e.
Majorana-neutrino mass. In particular, we will see in Sec. IVthe cases=1, where the singlet neutrinos are compactified
how the resulting brane-shifted 5-dimensional models camn aS'/Z, orbifold. Specifically, the leptonic sector of our
predict a sizable effective Majorana-neutrino mass that coul@-dimensional model consists of the SM lepton fields:
be several orders of magnitude larger than the light neutrino
masses and hence than the difference of their squares as re- v(X)
quired from neutrino oscillation data. L(x)= 1))’ Tr(X), 2.1
Another important constraint on the structure of higher-
dimensional neutrino theories arises from their ability to ex-with | =e,u,7, and one 5-dimensiondbulk) singlet neu-
plain the solar and atmospheric neutrino data by means dfino:
neutrino oscillations. In particular, orbifold models with one
bulk neutrino, as those considered earlier in the literature £(x,y)
[2,4,7-9, seem to prefer the small mixing ang(8MA) N(x,y)= 7y
Mikheyev-Smirnov-WolfensteiltMSW) solution[18] which '
is highly disfavored by recent neutrino data analyses. A|terwherey denotes the additional compact dimension, @nd
natively, if all neutrino data are to be explained by oscilla-gnd 7 are 5-dimensional two-component spinors. The SM
tions of active neutrinos with a small admixture of sterile KK |eptons are localized at the one of the two fixed points of the
component, then the compactification scale has to be muctt/z, orbifold, e.g.y=0. For generality, we will assume

higher than the brane-Dirac mass terms. After integrating ouhat the brane is shifted from the orbifold fixed pointyto
the bulk neutrino of the model, the effective light-neutrino = 5.

mass matrix has a rather restricted form; it is effectively of As usual, we impose the periodic boundary condition

rank 1. As a result, two out of the three active neutrinos arey(x,y) = N(x,y+27R) with respect toy dimension on the

massless. This is rather undesirable, since only one neutrin@inglet neutrino field. In addition, the action 8#/Z, orbi-
mass difference can be formed in this case, so accommodabiding on the 5-dimensional spinois and # entails the

ing all neutrino oscillation data proves rather problematicyqgitional identifications:
[7-9]. However, the earlier studies have not included the
possibility of a shifted brane. As was mentioned above, EXY)=E(X,—y), nxy)=—n(x,—y). (2.3

(2.2
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In other words, the spinoré and » are symmetric and anti- _

symmetric under g reflection, respectively. L= Lsmt+ Eoli0#d,) Eo+
With the above definitions, the most generic effective

4-dimensional Lagrangian of such a model is giverf b|*

~ 1
h{OLD* £5— SMoéo+H.c.

+nzl [En(i;“o"ﬂ)fn-i-;n(i;“&#) n

27R .
Leg= fo dy[ N(iy*d,,+ ysdy)N 1

+ (§n77n+gn;n)_ 2 M(fnfn"';n;n"' H.c)

x| =

1
- E(M NTC®)~IN+H.c)

+V2(hWLD* £, + h{WLD* 5,+H.c) |, (2.9
L h,
+ 5(y_a) L(I)*§+ LO* n+H.c. where
(MF)5/2 (MF)(S/Z
h! na| (Mg|o" na
[ vy fiia P (o ! —
+5(y_a)£sm]7 2.9 hy (ZWMFR)MCOE( R Mp) hlco{ R/’
(2.9
where®=io,®* is the hypercharge-conjugate of the SM ! M| n
Higgs doublet®, with hyperchargey(®)=1, andLsy de- Tlm — 2 naj_ _F) ghl sin( E)_
notes the SM Lagrangian which is restricted on a brane at > (2#MgR)?2 | R Mep 7R
y=a[2]. In addition,M is the fundamentai,-dimensional (2.10

Planck scale and=1 for sterile neutrinos propagating in 5
dimensions. Notice that the mass temgNN is not allowed
in Eq. (2.4), as a result of th&, discrete symmetry. Finally,
in writing Eq. (2.4), we have used the following conventions:

In deriving the last step on the right-hand sid&$HS’s) of

among the Planck massMp, the corresponding
ng-dimensional Planck maskl: and the compactification

0 ot ~1, 0 radii R (all taken to be of equal size
/’L: P =
Polor o) YTl o 1) Mp=(27MR)"02M . (2.1
—io, 0 From Egs. (2.9 and (2.10, we see that the reduced
CO=— 717’32( 0 —iaz)' (25 4-dimensional Yukawa couplinds"} can be suppressed by

many orders of magnitude,3] if there is a large hierarchy

with o#=(1,,¢) and ;":(12,—0-), where o, 5 are the betweenMp and the quantum gravity scaMg. Thus, if

usual Pauli matrices.

We now proceed with the compactification of thedi- dimensions, i.e6=ny, the 4-dimensional Yukawa couplings

Egs. (2.9 and(2.10, we have employed the basic relation

gravity and bulk neutrinos have the same number of extra

mension of theS'/Z, orbifold model. Because of their sym- h{” and h{” are naturally suppressed by a huge factor

metric and antisymmetric propertié2.3) undery reflection, Mg/Mp~10"1% for Mg~10 TeV. From Eq(2.2), we ob-

the two-component spinoré and » can be expanded in a serve that¢ and; belong to the same multiplet and hence

Fourier series of cosine and sine harmonics: have the same lepton number. It then follows from E48)
B that the simultaneous presencehd? andh{™ in an ampli-
1 1 ny tude gives rise to lepton number violation by two units.

sxy)= /Zngo(x)+ [7R ,,2‘1 §n(x)cos<ﬁ), We should note that the above large suppression factor

(2.6)  can be also obtained in a 5-dimensional neutrino model (

=1), where gravity propagates in a 6-dimensional space

1 = ny with compactification radiR,; and R, of unequal size Ifq
n(X,y)= \/: E nn(x)sin< E) (2.7 =2).. .In t.his case, one has to use the general toroidal com-
mR n=1 pactification condition:

where the chiral spinorg,(x) and »,(x) form an infinite Mp=(27Mp)"3ARR, ... R, )"M¢. (2.12
tower of KK modes. ¢

After substituting Eq(2.6) into Eq.(2.4) and integrating  Note that Eq.(2.12) reduces to Eq(2.1)) if all compactifi-
out they coordinate, we obtain the effective 4-dimensionalcation radii are equal. With the help of E@.12), we find,

Lagrangian for ng=2,
hllZ / MF |
IFurther non-covariant extensions to this model have been consid- —1/2 =(27MeR,)? ZM_ hi,. (2.13
ered in[8]. (2mMeRy) P
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plings hll,2 undergo the same large degree of suppression by pr:
a factorMg /Mp.

( v Xk, Xip+1 Xip—1
)’ Xk , Xko+1 , Xky—1 ,
If the brane were located at one of the two orbifold fixed

points, e.g. ay=0, the operatot. ®* » would be absent as Xiotn Xiko=n

a consequence of thé, discrete symmetry. However, if the B ' o
brane is shifted by an amouat* 0, the above operator is no
longer absent. In fact, as we will see in Sec. IV, the coexist

ence of the two operatots®* ¢ andL®* 7 breaks the lep-

(2.18

Xkg+n Xkg—n

‘and M fK the corresponding KK neutrino mass matrix

ton number leading to observable effects in neutrinoless 0 m m m m m
double beta decay experiments. m e 0 0 0 0
Let us now introduce the weak basis for the KK-Weyl
i 1
spinors m 0 et> O 0 0
R
— (et ) (2.14 !
X+n \/5 n="n) . MK m O 0 e~ R 0 0
which enables us to express the effective kinetic term of the m O 0 0 e+ E 0
neutrino sector as follows: R
2
L 1 m 0 0 0 0 e—=
Ekin:XiU"uO",LX_(EXTMX+ H.C.), (2.15 R
2.1
wherex™= (7, €0 X1+ X—1,++ -+ Xn» X-n»--.) and (2.19
The eigenvalues oM ’,fK can be computed from the charac-
Om m m m m. - teristic eigenvalue equation dgy(“—\1)=0, which is
M 0 0 0 o - analytically given by
1
m M+= O 0 0 o n2 . ° 1
R IT[(xn—2)2—=]|| 1+ -m2 > —
1 n=0 R2 A—¢ n=—wx ) n2
MK m 0 0 M_ﬁ 0 o - | (R—S)—Q
2
mo 0 0 M+z 0 - =0. (2.20
2 Since it can be shown that—e= *=n/R is never an exact
moO O 0 0 M- R solution to the characteristic equation, only the second factor

in Eqg. (2.20 can vanish. Employing complex contour inte-

N gration techniques, the summation in the second factor in Eq.
(2.16  (2.20 can be performed exactly, leading to an equivalent
_ _ transcendental equation
with m=vh,/\/2. In a three-generation modefandh; are
both 3-vectors in the flavor space, itg.= (h$,h%,h])T. We A=mm’Rcof TR(A—2)]. (2.21
will discuss intergenerational mixing effects in more detail in
Sec. V. Here, we assume for simplicity tHat=h? .

Following [2], we rearrange the singlet KK-Weyl spinors
& and yx,, such that the smallest diagonal entry
of the KK neutrino mass matrix € in Eq. (2.16) is ||
=min(|M — k/R|)<1/(2R) for a given valuek=Kk,. In this
newly defined basis, the effective kinetic LagrangiariLly
becomes

As was already discussed [i], if e=0, Eq.(2.21) implies

that the mass spectrum consists of massive KK Majorana
neutrinos degenerate in pairs with oppos@iP parities. If
e=1/(2R), the KK mass spectrum contains a massless state,
which is predominantly left-handed mhR<1, while the re-
maining massive KK states form degenerate pairs with op-
posite CP parities, exactly as in the=0 case. However, if
£+#0,1/(2R), the lepton number gets brokérn this case,
there is no massless state in the spectrum, and the above

1—
Lin=5V (10= M)W, (2.17)

2Alternatively, the lepton number may also be broken through the
whereV , is the reordered4-component Majorana-spinor  Scherk-Schwarz mechanism, where the Scherk-Schwarz rotation
vector angle will induce terms very similar to those depending:d,19).
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exact degeneracy among the massive Majorana neutrinos bigith m=y +/(h?+h32)/2 and ¢, =tan (h,/h;) +koa/R. As
comes only approximate, with a mass splitting of order 2 before, we consider an one-generation model VHFFF:?

for each would-be £ —0) degenerate KK pair. — = ) ] o
We now consider an orbifold model, in which tiye=0 andh,=h3, which renders the analytic determination of the

brane is displaced from the orbifold fixed points by an€igenvalue equation tractable. We will relax this assumption
amounta. Under certain restrictions in type | string theory I Sec. V, when discussing the compatibility of this model

[2,20], such an operation can be performed respectingshe with neutrino oscillation data. Thus, for our one-generation
invariance of the original higher-dimensional action. In par_brane-shlfted model, the characteristic eigenvalue equation

ticular, one can take explicitly account of this last property"®2ds
by considering the following replacements in the effective

- > 2 * (n)2
Lagrangian(2.4): _o2 e 1 m
nl;[o (A—¢g) 2 1+)\_(‘3 e o -
1 —e— 5
£8(y—a)— & a(y—a)+d(y+a-2mR)], R
=0, (2.26
1 L .
n&(y—a)ﬁz pld(y—a)—8(y+a—27R)], which is equivalent to
(2.29 i m(n?2
A= — (2.27
with O0s<sa<wR and Osy=<27R. It is obvious that a n=-o )\_8_2
Z,-invariant implementation of brane-shifted couplings re- R

quires the existence of two branes at least, placeg=a _ _
andy=2m7R—a. In addition, we assume thatis a rational ~As opposed to thea=0 case, complex contour integration

number in units ofrR, i.e. techniques are not directly applicable in evaluating the infi-
nite sum in Eq.(2.27. The preventive reason is that the

r functionm(™, analytically continued to the complexplane,

a:aWRl (223 is not bounded from above as— *ic, as it had to be,

because of its dependence on c@#R). However, as has
wherer,q are natural numbers. This last assumption ha®€en mentioned above and discussed further in Appendix A,
been introduced for technical reasons. It enables us to car§pis difficulty may be circumvented by assuming tiaas a
out analytically the infinite summations over KK statege ~ fational number in units ofrR, as stated in E¢2.23. Un-
also our discussion below der this technical assumption, we carry out in Appendix A

Proceeding as above, the effective KK neutrino mass mafhe infinite sum in Eq.(2.27 analytically and derive the

trix M ¥ for the orbifold model with a shifted brane can be €igenvalue equation for the simplest class of cases, where
written down in an analogous form a=mR/q with r.=1 and qan integer larger than 1, i.g

=2. More precisely, we find

O m(o) m(l) m(_l) m(z) m(_z) P

m® ¢ 0 0 0 o - )\zwmzR{co§[¢>h—a()\—s)]co[TrR()\—s)]
W L
m 0 e+ R 0 0 0 1
1 —Esir[2¢h—2a(7\—s)]}. (2.28
w | mtP oo e- o 0 o .-
M= ' Observe that unless=1/(2R), a= wR/2 and ¢,,= 7/4, the
2) 2 o mass spectrum consists of massive non-degenerate KK neu-
m 0 0 0 e+= O : ; )
R trinos. However, it can be shown from E@®.28 that this
72 ) tree-level mass splitting between a pair of KK Majorana neu-
m=2 0 0 0 0 eg—<5 - trinos is generally small fom(,>1/R. In particular, this

tree-level mass splitting is almost independena@ind sub-
- leading so as to play any relevant role in our calculations.
(2.29 At this stage, it is important to comment on taking the
limit a=7R/q—0 in Eq.(2.28), or equivalentlyg—o. This

where limit is not the eigenvalue equatid@.21) which is valid for
K K a=0, because of the presence of the extra non-vanishing
m(n)zl hyc 5<(n RO)a) +F25in<(n RO)a term that depends on singg) in Eq. (2.28. This apparent
:mco{ﬁ— ¢h), (2.25 . %The so-deriveq formula geqeralizes the one presente{d]im
R include brane-shifting and arbitrary Yukawa-coupling effects.
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paradox can be resolved by noticing that the existence of thiare internal &, lines, there is a multiplicative factot
would-be anomalous term is ensured only if the brane=(uR)°X;, with X,=27%2/6T'(5/2). The RG equation for
shifting a is much larger than the fundamental quantum gravthe Yukawa couplind is given by

ity scaleMg, i.e.a>1/M¢. SinceM¢ represents a natural

ultraviolet cutoff of the theory, we expect the onset of new dh 3 - — —

physics above the scaM, most likely of stringy nature, 16772W: E[ta(hhT)h—h(hlhe)]+hTr(3h3hu+3hghd
effectively implying that the KK-Yukawa mass ternns™ -

are exponentially suppressed or zero for KK numbers N —— 9, 3 ,

=M¢R. As we will explicitly demonstrate in Sec. I\see +hehettshh)—hi 79y + 29"/, (3.0
our discussion in Eq(4.18], such a truncation of the KK

sum atM effectively results in a modification of the eigen- \yhereg,, andg’ are the SU(2) and U(1), gauge-coupling

value equatior(2.28 to constants, respectively. Note that for=0 (1), it is X,
=1 (2).Also, for =0, ts=1, the standard RG equation is
\=m2R{ 7 coZ[ ¢y — a(\ — &) ]col 7RO\ —&)] repr(()dzmec[zﬂ_ 5 a

—Si(2aMg)siN2¢,—2a(A—¢)]}. (2.29 We now observe that the four-dimensional Yukawa cou-
. _ . . . pling (h) is suppressed with respect to the higher-
In the above, SK) = fodt(sint/t) is the integral-sine func-  gimensional coupling(h) by means of the relationh
tion. For any finite value of its argument, 8)(can be ex-  =(M:/Mp)?"sh. Thus, even if we considér(1/R)~1, the
panded as four-dimensionah is suppressed by many orders of magni-

2% (—1)-Dyn-1) tude. From Eq(3.1), it is also obvious that unleds is large

: 2 2y 68/n :
Si(x)= 2 ) (2.30 enough to be comparable wittME/Mg) ", the contribu-
a=1 (2n—1)(2n—1)! tions from the top-quark Yukawa coupling or the gauge cou-
o ) ) plings dominate the running, and hence there is no power-
For small x, it is Si(x)~x, while Si(x)=/2 for x—o0. law behavior at lower energies.
Clearly, as long aa>1/M¢, the eigenvalue equation.28 On the contrary, if we go to a very high energy such that

and(2.29 are almost identical, since SMg)=m7/2 10 @ e can ignoréh,, then the terms multiplyings dominate. In
very good approximation. On the other hand, the limit g,ch a case, ignoring the gauge contribution, we can write
—0 does now smoothly go over to E(®.21), as it should B
be. _ _ N . ) dh 5 —

Finally, in addition to the aforementioned tree-level mass 167 dna Eté‘h ) 3.2
splitting, one-loop radiative effects may also contribute to nu
further increase the mass difference between two nearly d‘?htegrating Eq/(3.2) from the scaleuy=R

generate KK Majorana neutrinos,ﬁl andﬁz do not vanish  (5in

simultaneously. The one-loop generated mass splitting, how-

ever, is expected to be sméb] of orderhlhzm(n)/(Swz) 1 1 5X s
~10 2X(Mg/Mp)*Xm=10"*XAmqy, where mq = ==
~n/R<M¢ is the approximate mass of tmth KK pair of h“(1/R) h%(pn) 167
nearly degenerate Majorana neutrinos, am,=m,; 1) .
—my~1R is the mass difference between two adjacent]fhgerm/S 4°f thfe hYukayv_a fllnse d.StrUCtl.”e Ic\c;nljtaa(,u)
KK Majorana pairs. Although such a radiatively-induced _I ('“h) ( Z)fo Le (_)rlgllna —él_mensllzonas 3u alva cou-
mass spliting may play a significant role for leptogenesis?!ind (N) and for the simple casé=n,, Eq.(3.3) takes on

~1to u, we ob-

5
5(MR) : 3.3

[5], its effect on the double beta decay amplitude is negli-the form
gible. Therefore, we neglect radiative effects on the KK mass 1 1 5% s
spectrum throughout the paper. ~ _ 2% (3.4)
a(p) a(lR) 475\ Mg '
Ill. RG EVOLUTION OF NEUTRINO .
YUKAWA COUPLINGS Clearly, a(u)—oe, for a critical scale

The RG evolution of the Yukawa couplings in the stan- 4ws |\

dard 4-dimensional scenario involving sterile neutrinos has Meritical= Mg 5X ;a(1/R) (3.9

been discussed if21]. Here, we derive the corresponding

RG equations for the higher-dimensional case. Since the Reterestingly enough, Eq3.5) implies that the power-law
evolution equations foh! and hl, will be similar, we con-  behavior sets in not just above the compactification scale
centrate only on the former=h). In such a higher- R™1, as was naively expectd@], but well above the quan-
dimensional scenario, the presence of the KK sterile stateigim gravity scaleMg. On the other hand, requiring that
alters the RG running. The triangle and self-energy diagramg(Mg)<1 in Eg. (3.4 implies that «(1/R)<0.55 for &

that contribute to the running remain the same as in the SM= 1. This last condition assures that our theory remains per-

except that in the higher dimensional context, wherever therturbative up to the quantum gravity scalé:. From our
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discussion above, it is obvious that power-law effects on the
Yukawa neutrino couplings can be safely neglected in our

analysis.

IV. EFFECTIVE NEUTRINO-MASS ESTIMATES

In this section we calculate thev@3 observablgm) in

orbifold 5-dimensional models. This quantity determines the"
size of the neutrinoless double beta decay amplitude, whic
is induced byW-boson exchange graphs. To this end, it is

important to know the interactions of tW¥= bosons to the
charged leptons=e,u, 7 and the KK-neutrino mass eigen-
statesn,, . Adopting the conventions d2], the effective
charged current Lagrangian is given by

+ g -~ —
LM =—7"§”w g 62 (B|V|I'y#PLv|
<
+ 00
+n=§;w Binl v,PLN( | +H.C., (4.1

whereg,, is the weak coupling constan®; =(1— ys)/2 is

the left-handed chirality projector, amlis an infinite dimen-
sional mixing matrix. The matribB satisfies the following
crucial identities:

+ o
By, B}, V|+n=§;w BB} = 8. (4.2
+ o0
B,VlmV|B|,V|+n:2_w By nM(n)Bi n=0. (4.3
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(m)

EMGTF(mv)v (4.5

Toup5=

where Mgre= Mgr— Mg is the difference of the nuclear
matrix elements for the so-called Gamow-Teller and Fermi
transitions. Note that this difference of nuclear matrix ele-
ents sensitively depends on the mass of the exchanged KK
Reutrino in a @B decay. Especially if the exchanged KK-
neutrino massn, is comparable or larger than the charac-
teristic Fermi nuclear momentugi~100 MeV, the nuclear
matrix elementM e decreases as m{n). The general ex-
pression for the effective Majorana-neutrino mgss) in

(4.5 is given by

2
OO Be,nm(n)

.-
(M= o) o

X[ Megre(M(ny) = Mgre(m,) . (4.6

In the above, the first term describes the genuine higher-
dimensional effect of KK-neutrino exchanges, while the sec-
ond term is the standard contribution of the light neutrino
rewritten by virtue of Eq(4.3). Note that the dependence of
the nuclear matrix elemeniMgre on the KK-neutrino
massesn, has been allocated ton) in Eq.(4.6). The latter
generally leads to predictions fdm) that depend on the
double beta emitter isotope used in experiment. However, the
difference in the predictions is too small for the higher-
dimensional singlet-neutrino models to be able to operate as
a smoking gun for different §383-decay experiments.

A. Factorization Ansatz for analytic estimates

Equation(4.2) reflects the unitarity properties of the charged ~ T0 obtain analytic estimates that will help us to gain a

lepton weak space, and Ed.3) holds true, as a result of the
absence of the Majorana mass termg; from the effective

better insight into the dynamical properties of E4.6), it
proves useful to approximate thevBpB-decay amplitude

Lagrangian in the flavor basis. For the models under discusZo.gp in EQ. (4.5 by means of the factorizable ans@e3]:

sion, the KK neutrino masses,) can be determined exactly

by the solutions of the corresponding transcendental equa-
tions. To a good approximation, however, these solutions for

largen simplify to*

n
—+te.

R (4.9

M)~

This last expression proves to be a good approximation i

our estimates.
According to Eq.(1.1), the Ov33-decay amplitud€y, 4
is given by[11]

4For |n|>¢ andn<0, the KK mass eigenvaluas,, are nega-

(m)s m; _
Tovpp™ TEAMGTF( m,)+ HZ(m HMere(mp),

4.7
where m, is the proton mass, andMgr{m,) and

Mgre(m,) are the values of the nuclear matrix element
Mgre at m, andmy, respectively. In Eq(4.7), the OvBp

ﬁnatrix element has been written as a sum of two terms. The

first term, which is the dominant one, accounts for effects
coming from KK neutrinos lighter than the characteristic
Fermi nuclear momenturge~100 MeV. In this kinematic
region, the nuclear matrix elemeM ¢ is almost indepen-
dent of the KK neutrino mass\,. The second term in Eq.
(4.7 is due to KK neutrinos much heavier thgp. This is

tive. This corresponds to a neutrino with positive physical mas@enerlcally a subdominant contribution %VBB’ since

|m(n)| and negativeCP parity. One can always take account of the

negativeCP parity by redefining the mixing matrix elemerig _,
asB, _,—iB, _,, for n>gR>0. Although we will allow negative

Mearmp) < Mgrm,).
The quantity(m)g, is an approximation of the effective
Majorana-neutrino massn), which is obtained by approxi-

neutrino masses in our calculations, we should stress that both apiating the nuclear matrix element${gre(m,) entering
proaches are fully equivalent leading to the same analytic results.(m) in Eq. (4.6) by a step function am,)|=q:
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Megre(m,)  for [m|<gg, = m?

M M) = 4.8 N2=1+
oTHMm) =1 for |mgy|>qe . 4.8 n;w

In what follows, we refer to such an approach to the nuclear

matrix elements as the step approximati®®). The effec- N2— 14 g m? 4.12
tive neutrino mass in the SA reads m—=" “~ k\2 :
E— m(n)+ ﬁ
[(ap—2)R]
(M)sa= Bgymﬁ 2 Bﬁ "My Applying complex integration methods for convergent infi-
n=—[(gr+e)R] nite sums, the squared normalization factéf can be cal-
o o culated to give
= >  BZmp- 2>  Bi_.m_n,
=l ar o @ ar e D , m’m’R? > 2o m’
N2=1+ — =1+ 7’m?R%+ —.
(4.9 sirf[wR(m,—¢)] m
(4.13

where we used Eq4.3) to arrive at the last equality for the | gptaining the last equality in Eq4.13, we used the ei-
effective neutrino mass. Notice thah) is not zero, simply  genvalue equatiof2.21) for A\=m,. From Egs.(4.1) and
because the sum over the KK neutrino states is truncated 1@, 13, we immediately see that ifR<1 andm,<m, it is
those with a masim,|,[m | <qe. Be,~1 and hence the lightest neutrino state is predominantly

_Correspondingly, the effects of the heavier KK neutrinos,jeft handed. For the calculation of the effective neutrino
with massesn,)=qg, have been taken into account in the mass, we need

factorizable Ansat4.7) by means of the inverse effective

ngutrino mass(m~1). This newly introduced quantity is , 2mPR2 m(zn)
given by Niy=1+— =1+ m?m’R%>+ —
i wR(M(yy —¢)] m?

+oo +o (n 2

-1 2 1 2 -1 —+te
mbH= >  BZmi+ > B .ml. R
M o PO (g Do I SAN 4.14)
(4.10 m?

where the last approximate equality in E@.14 corre-

The factorizable forn{4.5) of the matrix element constitutes sponds to a large. In Appendix B, we show that the KK

a good approximation except for the isolated region where,q trino masses derived from E@.21) and the mixing-

|M(m|~0dr=~100 MeV. Nevertheless, the effect of the KK iy elements given in Eq$4.11) satisfy the sum rules
neutrinos on the effective neutrino mass is cumulafi§e lgiven by the identitieg4.2) and (4.3).

due to a sum of an infinite number of states, since each K Based on Eq(4.9), we will now perform an estimate of

state has either a tiny Majorana mass or a very suppressefle effective neutrino mass in the simple orbifold model
mixing with the electron neutrinos. Therefore, we expect that, antioned above Plugging the value = 1INy into
" N n

excluding this isolated region of KK-neutrino contributions Eq. (4.9), we may estimate the effective neutrino mass in the
aroundgg will not alter quantitatively our results in a rel- gp throdgh the following steps:

evant way.

We will now rely on Eq.(4.9 to estimate the effective o 1 1 em2R
neutrino masgm)g, in different settings of 5-dimensional (Myga=—m? E + +0 )
orbifold models discussed in Sec. Il. To begin with, let us A G I L L ar
consider a simple orbifold model, wite#0 and & R R
#1/(2R). In addition, we consider the case=0; namely, o 1 1
we take the brane to be located at the one of the two orbifold %mzRf dn( — )
fixed points. Like the neutrino masses, the mixing-matrix @R \N—eR n+eR
elementsB,, andB, , can also be computed exacflg]:

— _meRIn| F°
L Qrte
Be,=7+ Ben=7—. 4.1 2
TN T Ny @ =o(”;FR). (419

where the squares of the normalization factéfsand Ny, In arriving at the last equality in E¢4.15, we approximated
are given by the sum over the KK states by an integral, and used the fact
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that e/qe<1. Since 2R<1, we can estimate that fan  the level reported recenthi 3], we only need to have,~

=10 eV, (Mm)sa=10"° eV, which is undetectably small. * /4 and 1M.,:<asl 1/(2q,:), I.e. the brane is slightly dis-
The above large suppression of the effective neutring®!aced from its origin. For instance, i~1/(3qg), m

mass(m)s, is a consequence of the very drastic cancella-=10 eV and 1R=300 eV, we find thatm)s, is exactly at

tions due to KK neutrinos with opposit@P parities. How- ~ the observable level, i.¢m)s,~0.4 eV.. .

ever, we might be able to overcome this difficulty by arrang- It is now interesting to give an estimate of the inverse

ing the oppositeCP-parity KK neutrinos to couple to the €ffective neutrino masém™1) in the orbifold model with a

electron andW boson with unequal strength. In fact, this is Shifted brane #0). The quantity(m™*) can be approxi-

what happens in orbifold models automatically, if the0 ~ Mately calculated as follows:

brane is shifted toy=a+#0. In this case, the mixing-matrix

elementsB,, and B, , are given by the inverse ok and co2 E‘_(ﬁ
Ny, respectively; but now for the shifted brank/, is . bos [*7 R h
given by (m™5)=m'R dn| ————=—
eR (n+eR)®
ka 2
tw  COS E_d)h) §+8 co< E+¢h
2 _ 2 R
N(n)— 14+m E 5~ s [ S
k=—o0 2002 na (n—¢eR)®
s—m(n)+§ m<“co E—¢h
+o dn 2na
(4.16 =sin(2¢>h)m2R3j —sin &~
where the second approximate equality in E416) corre- aeR N
sponds to large. 3 +=dn  (2na)l em?R
By analogy to Eq(4.15, we may compute the effective + Ecos{ZqSh)stR“f —4sin R 3
Majorana-neutrino mass for the brane-shifted scenaaio ( arR N 20F
#0) as follows: (4.19
co< E_‘f’h) The RHS of the last equality in Eq4.19 can be written
~ PR +°°d R down in a lengthy expression in terms of the integral-sine,
(M)sa~—m R n n+eR integral-cosine and known trigonometric functions. For ex-
ample, for¢,= /4, (m~1) is given by
na
cog = L
N N -1\ _om2R| 22| <i A D
——— (m~*)=~2m°R| a“| Si(2aqg) 2) pre sin(2aqg)
MeRdn [ 2na a em?R
=—sin(2 )mzRf —sin —— __Z o=
®n wr R 20, cog2aqg) 202 (4.20
em’R N ] )
+0 q . (4.17 For the specific model considered above, witis 10 eV,
F

1/R=300 eV and a=1/(3qg¢), we find that (m~1)

In the second step, we have truncated the upper limit of thés 10 ,5 Tev g Heng% the above exercise shows that the
integral at the fundamental quantum gravity sdslle. The contn_but|on from(m )_to the double beta decay amplitude
scaleM ¢ represents a natural ultra-violet cut-off of the prob- (4.5 is subdominant; it gets even more suppressedafor
lem, beyond of which the onset of string-threshold effects aré< 19 .

expected to occur. The last result in E4.17) can now be

expressed in terms of the integral-sine function xpi( B. Numerical evaluation
— (X i ; i
= Jodt(sint/t). Thus, the effective neutrino mass can be 14 gpain realistic predictions for the double beta decay
given by observablgm), one has to take into account the dependence
MYer~ —sin(2 b ) M2RISi(2aMe) — Si(2a of Mgre on the KK neutrino masses),, . To properly
{Msa 2¢n) [Si 2 (2a)] implement thism,) dependence in our extractions of the
em’R effective Majorana masém) from the different nuclei, we
o e (4.18 have used the general formul&.6), where the infinite sum

over n has been truncated &b,,¢=MgR, namely at the
Notice that for a fixed given value d¥, the analytic ex- quantum gravity scal®1-. Notice that the general formula
pression4.18) for the effective neutrino mass goes smoothlyfor (m) in Eq. (4.6) includes the contributions from the KK
to Eqg.(4.15 in the limita—0, as it should be. In order that neutrinos heavier thage, described by the inverse effective
the prediction for neutrinoless double beta decay effects is ateutrino masgm™1) in Eq. (4.20.
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TABLE |. QRPA estimates of the relevant combination of nuclear matrix elem@nts;-= Mgt— Mg, as a function of the KK neutrino
massm, .
(n)

My (MeV) Mare(M(ny)
7GGe SZSe loqvlo 116Cd
<1 4.33 4.03 4.86 3.29
10 4.34 4.04 4.81 3.29
10 3.08 2.82 3.31 2.18
10° 1.40x10°* 1.25x10°* 1.60x 10 * 9.34x 1072
10t 1.39x10°3 1.24x10°8 1.60x10°3 9.26x10° 4
10° 1.39x10°° 1.24x10°° 1.60<10°° 9.26x10°
10° 1.39x10°7 1.24x10°7 1.60x 107 9.26x10°®
10 1.39x10°° 1.24x10°° 1.60x10°° 9.26x10 1°
My (MeV) Mere(M(y))
1281¢ 1301¢ 136xe 150Nd
<1 4.50 3.89 1.83 5.30
10 4.52 3.091 1.88 5.45
10 3.19 2.79 1.48 4.24
10° 1.46x10°* 1.29x10°* 7.07x10°2 2.02x10° %
10 1.46x10°3 1.28<10°3 7.04x10°4 2.02x10°°
10° 1.46<10°° 1.28<10°° 7.05x10°° 2.02x10°°
10° 1.46x10° 7 1.28<10° 7 7.05<10 8 2.02<10°7
10 1.46x10°° 1.28x10°° 7.05x 1010 2.02x10°°

In Table | we present numerical values for the differenceinverse effective neutrino mags1) in Eq. (4.20).
of the nuclear matrix elements\igre= Mgr— Mg, as a As can be seen from Table Il, the deviation between the
function of the KK neutrino mase,,. Our estimates are SA and the one based on the general form{élé) is rather
obtained within the so-called quasiparticle random phase agsignificant ifa is close to 1dr due to the non-trivial nuclear
proximation (QRPA) [24,25. Here, we should note that the matrix element effects mentioned above and due to heavier
numerical values for the nuclear matrix element8fMo  kk-neutrino effects coming from(m~%). However, for
exhibit some instability due to its sensitive dependence oRmgjler values of, i.e. for a<1/(3qg), the agreement be-
the particle—particle couplingep within the context of the  yyeen the effective neutrino mass computed in the SA and
QRPA. .In addition, we should remz_;lrk that in our numericali, o general formuld4.6) is fairly good. In this kinematic
evaluation of(m), the nuclear matrix elemeni§{se have
been interpolated between the values given in Table I.

In Table II we show numerical values for the effective
Majorana-neutrino masém) as derived for different nuclei
in a 5-dimensional brane-shifted model, with=10 eV,
1/R=300 eV, e=1/(4R), ¢,=—wl4 andM=1 TeV. In
addition, we have varied discretely the brane-shifting scal
1/a from 0.05 GeV up to values much larger thigh . The
first column in Table Il gives the predictions obtained in the
SA for the nuclear matrix elements. The SA s closely relate
to our approximative method followed above, leading to re-
sults that are in a very good agreement with E18). Re-
markably enough, even the change of signmis, at 1a
~0.1 GeV in Table Il can be determined sufficiently accu-
rately by analyzing the multiplicative expression/2 Apart from explaining the recent excess in®3 decays,
—Si(2aqg) in Eq. (4.18, which oscillates around/2 [26],  the 5-dimensional model with a small but non-vanishing
for 1/a<0.1 GeV. Analogous remarks can be made for theshifted brane exhibits another very important property. The

regime, the inverse effective neutrino mass ) becomes
rather suppressed according to our discussion in(£g0.
Our numerical estimates in the last column of Table Il offer
firm support of this last observation. Thus, the main contri-
bution to (m) originates from KK neutrinos much lighter
than gr. Consequently, within the 5-dimensional brane-
%hifted model, we have numerically established a sizable
value for(m) in the presently explorable range 0.05-0.84
V. Finally, for very small values &, i.e. fora<1/Mg, we
ecover the undetectably small resi@t15 for the unshifted
branea=0.

C. {m) and the neutrino mass scale
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TABLE II. Numerical estimates ofm) for different nuclei in a 5-dimensional brane-shifted model, with-10 eV, 1R=300 eV, ¢
=1/(4R), ¢p=—m/4 andM=1 TeV. The first column exhibits the numerical values {am) in the step approximatiofSA) for the
nuclear matrix elements, while the last column shows the results for the inverse effective neutrifgnmyss

1/a (m) (eV) (m~1)
(GeVv) SA ®Ge 825e 1000 116cd 1281¢ 1301¢ 136xe 150Nd (Tev'h)
0.05 —0.062 0.009 0.010 0.016 0.012 0.009 0.008 —0.004 —0.004 6.2¢10°6
0.1 —-0.012 0.052 0.054 0.061 0.062 0.052 0.050 0.025 0.026 —3.6x10°°
0.2 0.208 0.096 0.100 0.109 0.114 0.097 0.094 0.058 0.061 —1.3x10°°
0.3 0.307 0.123 0.128 0.136 0.143 0.124 0.121 0.082 0.086 —1.2x10°°
1 0.457 0.271 0.275 0.280 0.287 0.272 0.269 0.241 0.243 —5.7x10°°
10 0.516 0.493 0.493 0.494 0.495 0.493 0.493 0.489 0.489 —6.6x10°7
107 0.515 0.513 —6.7x10°8
10° 0.535 —6.7x1078
10f 0.066 ~6.9x10° 10
10'° <107 0

effective Majorana-neutrino magm) can be several orders quantities(m) and m, is a rather unique feature of our
of magnitude larger than the light neutrino mass, for  higher-dimensional brane-shifted scenario. As we will dis-
certain choices of the parametersand ¢;,. To understand cuss in the next section, the above decorrelation property
this phenomenon, let us first consider the eigenvalue equglays a key role in our model building of 5-dimensional

tion (2.27) for A\=m,,, written in the form brane-shifted scenarios that could explain the neutrino oscil-
lation data.
” m(m2
m,+ > n—=0. (4.21
n=—o
e+ ﬁ —-m, V. ATMOSPHERIC AND SOLAR NEUTRINO DATA

Atmospheric and solar neutrino data7-29, together
Notice that Eq(4.21) constitutes an excellent and very prac- wjth information from laboratory experiments, such as the
tical approximation of the neutrino-mass—mixing sum rule,cHOOZ experimenf30], are very crucial for a given higher-
when the smalm, dependence in the infinite sum over the dimensional singlet-neutrino model to qualify as viable. In
KK neutrino states is neglected and the approximate formuparticular, the latest SNO resul[ta8] appear to disfavor large
las (4.4) and (4.16 for the KK massesn, and mixing-  components of sterile neutrinos, indicating a preference
matrix elements, ,, along withB,,=1, are substituted in  among the different solutions to the solar and atmospheric
Eq. (4.9. Then, the infinite sum over KK neutrino states canneutrino puzzles for those involving transitions between al-
be performed with the help of E§2.28 for rational values  most active neutrino$.To account for this experimental in-
of ain 7R units. Especially fora=R/q with q being an  dication, we assume that the compactification scafeakid
integer much larger than 1, i.e. foMf<a=<1/qgg, the light  the lepton-number-violating bulk parameter are much

neutrino massn, is given by larger than the KK Dirac mass terms™ in Eq. (2.25.
1 In the following, we shall explicitly demonstrate that our
~— 2 T 5-dimensional brane-shifted model with only one bulk neu-
My 7R cos’ gnco(wRe) + 25m(2¢h) ' trino is able to fully explain the neutrino oscillation data.

(4.22  Specifically, we will show that the preferred solar large mix-
ing angle(LMA) and atmospheric solutions, which both re-

It is now easy to see that the light neutrino magscan be  quire largeve-v,, andv,-v, mixings, can be realized within
very suppressed for specific values ¢f and . For in-  our 5-dimensional model. These particular solutions are al-
stance, one obvious choice would his~—7/4 ande lowed, only if the differences of the squares of the light
~1/(4R). On the other hand, the effective neutrino massneutrino masses lie in the ranges:
(m)ga is determined by the second sine-dependent term in
Eq. (4.22 [cf. (4.18], which is induced by brane-shifting
effects. Unlike the suppressed light neutrino masgs the °A recent study[31] seems to suggest that the active neutrino
effective neutrino mas@m) can be sizable in the observable component in the solar neutrinos has to be larger than 86%vat 1
range 0.05-0.84 eV. This loss of correlation between thec.L. A loophole may exist for atmospheric neutrinos, E&2.
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1.8 10—3<Am§tm [eV?]<4.0x 103, massless neutrinos. This last fact is very undesirable, as it
would be very difficult to explain both solar and atmospheric
2.0X 1()*5<AmgD [eV2]<2.0x107%, (5.1) neutrino data with only one non-trivial difference of neutrino

masses in the frequently discussed scenario without brane
with AmZ,,=m? —m?_andAmZ=m? —m? . Accordingto  shifting.
3 2 2 1 . .
the usual conventions, the physical light neutrino masses AS has been discussed in Sec. IV, however, even a small

m,, m, andm,_ are labeled in increasing hierarchical or- @mount of brane shifting may induce sizable lepton-number-
L2 8 violating Yukawa interactions. The latter generate brane-
der, ie.m, <m, <m,..

) ) o ) shifting mass terms that break the rank-1 structure of the
To start with, let us consider the weak basis in which thegffective neutrino mass matrid1*. The resultingM ? in

charged lepton mass matrix is diagonal. Then, in the threezq (5.5) exhibits a novel trigonometric structure that can
generation brane-shifted model, the KK-Dirac Yukawa terMsyredict hierarchical neutrinos with large,—v, and v,—v,
T Jz

are given by the 3-vectors mixings to explain the atmospheric and solar neutrino
na anomalies, along with a smaill.—v, mixing as required by
mecos<— — ¢e> the CHOOZ experimerit30]. At this point, it is important to
R stress that the effective neutrino ma&®) entering the

" a OvBB-decay amplitude gets fully decoupled from the
m=1 micos =—d,]| |, (5.2)  neutrino-mass matrix elemet 2. According to our dis-
cussions in Sec. I\cf. Eq. (4.18], the effective neutrino
mrco\:(%‘_ ¢T> mass for the three-generation case is given by
1
where (m)~— ESIH(Z%)W(me)ZR?&MSe- (5.6
m'—L (h)2+ (hL)2 - E +@ It is important to recall again that unlik&1 ., KK neutrinos
B ! 2% 4= h R’ heavier than the Fermi nuclear momentgpdo not contrib-
2 hy

(5.3 ute significantly to(m), leading to the loss of correlation
betweenim) and M ... The latter is a distinctive feature of
with | =e,x,7. Given our assumption that,1/R>m', the  the KK-neutrino dynamics. This de-correlation betwéan
KK neutrinos can now b_e integra_ted out. Analogously withand M, permit us to consider the interesting cdém)|
Eq. (2.27), the effective light neutrino mass matrix ” can >|M.,|, forall 11" =e,u,7. Such a realization enables us

be computed by to accommodate a sizable positive signal of@B decays

2 M mOT together with the present neutrino oscillation data.

Mri== > — (5.4) To realize the aforementioned hierarchyn)|>|M |,
n=-e E+8 we assume that all phases are close to— w/4. For con-
R creteness, we adopt the following scheme of phases:

Following the same line of steps as in Appendix A, one is T T
able to analytically carry out the infinite sum in E§.4) for b=—7*, mRe=7—0, (5.7
the phenomenologically interesting caseaef wR/q, with g

being an integer much larger than 1. In this limit, we obtainyhere 8,,8,<1. Our choice of phases has been motivated

the novel trigonometric mass texture: by the fact that the above-described decorrelation between
(m) and M ¢, becomes fully operative in this case. To imple-
M, = — 7Rnmm'’| cos¢,cose, cot( wRe) ment the CHOOZ constraint in our model building, we re-
quire thatM g =M 7,=0. This last constraint implies that
1
+ 5sin(¢|+¢|/>}, (5.5 200= = 0¢™ 0. ©8
. ) . _ Moreover, without loss of generality within our phase
with I,1"=e,u, 7. The effective neutrino mass matris.5  scheme, we may také,=0. Under these assumptions, the

consists of two terms(i) the cosine-dependent term that jight neutrino-mass matrix takes on the simple form
arises from the lepton-number-violating bulk mas (or

equivalentlys) and(ii) the sine-dependent term which is due R me2(8,— S,) mem#§, 0

to lepton-number violation in the effective Yukawa couplings , ., 7R m“mes Mmi2( 5.+ 8 mAm’s
and is caused by slightly shifting the brane from the orbifold M7= 2 T (T et ) 5 €
fixed points. The occurrence of the second brane-shifting 0 mm“se  M™(5e—9,)

mass term is always ensured as longaasl/Mg. Without (5.9)
the presence of this brane-shifting-induced term, the effec-
tive neutrino mass matrix5.5) is of rank 1, leading to two Let us now consider the following numerical example:
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5,=0, 0.=26, Within this minimal 5-dimensional brane-shifted framework,
lepton-number violation can be introduced through

m# m” Majorana-like bilinears, which may or may not arise from

E~l-468, E~2-542- the Scherk—Schwarz mechanism, and through lepton-

number-violating Yukawa couplings. However, lepton-

(510 number-violating Yukawa couplings can be admitted in the
This leads to the neutrino mass matrix theory, Only if the 3-brane is shifted from tIS%/ZZ orbifold
fixed points. Apart from a possible stringy oridi20], brane-
-1 147 O shifting might also be regarded as an effective result owing
mm*R to a non-trivial 5-dimensional profile of the Higgs patrticle
Mr=6 1.47 6.46 7.4§. (5.1) P ggs p

[35] and/or other SM field$36,37] that live in different lo-
cations of a 3-brane with non-zero thickness which is cen-

1 . i .
Notice that all elements of the neutrino-mass maiyik” in tergd at one ocfj_;pé; I/t Z2 ?:Elforlf'j 1;|]xeo(lj_pomts_. | theories |
Eqg. (5.11) can be suppressed by choosing a small value for neé major ditficulty of the higher-dimensional theores 1S

the factorizable parameté: In our numerical example, the eIl generic prediction of a KK neutrino spectrum of ap-
neutrino mass matrix5.11) can be diagonalized through proximately degenerate states with oppo€§ite parities that

v,-v, and v, mixing angles close tar/4, whereas the Iea(_j to exceedingly suppressed values for the effective
ve-v. mixing angle is small, below 0.1. In addition, its mass Majorana-neutrino masgn). Nevertheless, we have shown

0 7.46 6.4

eigenvalues are approximately given by that within the 5-dimensional brane-shifted framework, the
KK neutrinos can couple to th&/= bosons with unequal
(M ") giag= 8mM*R(0,1,7). (5.12  strength, thus avoiding the disastra@iB-parity cancellations

_ in the OvpBpB-decay amplitude. In particular, the brane-
Assuming tham®=10 eV and 1R=300 eV for a successful ghjting parametea can be determined from the requirement
interpretation of the recent excess im/@)3 decays, then it that the effective Majorana masgs) is in the observable
should bes=(6-9)x 10" ° to accommodate the neutrino 0s- range[13]: 0.05-0.84 eV. In this way, we have found that
cillation data through the LMA solution. In particular, we 1/a has to be larger than the typical Fermi nuclear momen-
obtain the neutrino-mass differences: tum g-=100 MeV and smaller than the quantum gravity
scaleMg, or equivalently W -<a<1/qQg.
AmGy~(2-4)X107° eV?,  Amg~(4-8)x107° eV2. An irnportagt predicgon of our g—Fdimensional brane-

(5.13 shifted model is that the effective Majorana-neutrino mass
These results are fully compatible with the currently pre-<m> andihe Scaie of I'ght neutrino masses can be .comple_tely
de-correlated for certain natural choices of the Majorana-like

ferred atmospheric and solar LMA solutions to the neutrino~ . . . .
anomalies. bilinear terme and the original 5-dimensional Yukawa cou-

In our demonstrative analysis carried out in this sectionP“ngShlll andh; in Eq. (2.4). For example, ik ~1/(4R) and
we have not attempted to fit the results of the Liquid Scin-N1~—h;, we obtain light-neutrino masses that can be sev-
tillator Neutrino DetectofLSND) as well[33]. In principle, ~ €ral orders of magnitude smaller thém). Nevertheless, it is
our brane-shifted 5-dimensional models are capable of advorth mentioning that if future data did not substantiate the
commodating the LSND results through active-sterile neupresently reported @53 excess, the above model-building
trino transitions. In this case, however, the lowest-lying KK conditions would then need to be modified. Such a possible
singlet neutrinos should be relatively light. As a result, theymodification would not jeopardize, though, the viability of
cannot be integrated out from the light neutrino spectrumour brane-shifted scenario. Indeed, if the upper limit on the
thereby leading to a much more involved effective neutrino-effective neutrino mass became even lower and lower, this
mass matrix. A complete study of this issue, including poswould imply that the above decorrelation property is less and
sible constraints from the cooling of supernova SN 1987Aless necessary.

[8,34], is beyond the scope of the present paper and may be Another important prediction of the 5-dimensional brane-
given elsewhere. shifted model withonly onebulk sterile neutrino is that the

emerging effective light-neutrino mass matrix does no longer
possess the rank-1 form, as opposed to the brane-unshifted
a=0 case. As we have shown in Sec. V, the above properties
We have studied the model-building constraints derivecf the brane-shifted models are sufficient to explain, even
from the requirement that KK singlet neutrinos in theorieswith only one neutrino in the bulk, the present solar and
with large extra dimensions can give rise to a sizableatmospheric neutrino data by means of oscillations of hierar-
OvBB-decay signal to the level of 0.4 eV reported recently.chical neutrinos with large.-v,, and maximalv ,-v, mix-
Our analysis has been focused on 5-dimensi&&L, orbi-  ings. In particular, neutrino-mass textures can be constructed
fold models with one sterilésingle) neutrino in the bulk, that utilize the currently preferred LMA solution, where the
while the SM fields are considered to be localized on av.-v, mixing is small in agreement with the CHOOZ experi-
3-brane. In our model building, we have also allowed thement.
3-brane to be displaced from ti$&/Z, orbifold fixed points. Although a sizable 988-decay signal can be predicted

VI. CONCLUSIONS

113001-13



BHATTACHARYYA et al. PHYSICAL REVIEW D 67, 113001 (2003

within our brane-shifted 5-dimensional models, the above- Our next task is to carry out the summation ovén Eq.
described decorrelation property betwéem) and the actual (A2). For this purpose, we express the RHS of E42)
light neutrino masses suggests, however, that it is rather urentirely in terms of sine and cosine functions by factoring
likely that such a signal be accompanied by a correspondingut the common divisor, i.e.

signal in tritium beta-decay experiments. For example, the

KATRIN project [38] has a sensitivity to active neutrino 7m2R a-1 |

masses larger than 0.35 eV at 95% C.L., and so it can only AN=—G=1 Z co§( bn— —)

probe the existence of light neutrinos much heavier than QH sin(g—l—w) 1=0 q

those considered in our 5-dimensional models. Finally, the i=0 qa q

brane-shifted models under study also have the potential to 1

accommodate the LSND results by virtue of active-sterile 6 I\ 1 (6 mm

neutrino oscillations. In this case, the lowest-lying KK- X €o qa q n:!'_:'[o sin a q) (A3)
neutrino states will contribute to the effective light neutrino- (m=#1)

mass matrix, giving rise to more involved mass textures. In

this context, it would be very interesting to investigate thewith 6= 7R(\ —¢). To further evaluate EqA3), we exploit
question whether a simple higher-dimensional model acthe following trigonometric identitie$:

counting for all the observed neutrino anomalies can be es-

tablished. We plan to address this interesting question in the ql:[l ( 0 |7T) (—1)9-1
sin| = — —| = ———siné, A4
near future. LLsin = a1 (A4)
ACKNOWLEDGMENT q-1 0 |\ q-1 (6 mm _(_ 1)q_1
We thank Martin Hirsch for discussions on QRPA compu- = “®% 4~ g mﬂo Mg q )" e 4 cos®,
tations and Antonio Delgado for comments on the geometric (m=1)
breaking of lepton number violation in higher-dimensional (AS)
theories. . )
“ 2l 0 lx\ % (6 mm
cos 2¢p,— ——|co§ — — — sinf ———
APPENDIX A: EIGENVALUE EQUATION (=0 a a a/m=o a aq
Starting from Eq(2.27), we will derive here the transcen- (—1)9-1 q—2
dental eigenvalue equatioi2.28 for the simplest class of :?q cos<2¢>h+ Ta) (AB6)

brane-shiftings witha= wR/q, wherer =1 andq is an inte-

ger larger than 1, i.eq=2. Then, the eigenvalue equation

(2.27) can be equivalently written as With the help of Eqs(A4) and (A5), we arrive at the tran-
scendental eigenvalue equation

q-1 o= (qk+1)2
m
A‘:
= k;m _8_qk+| mm?R
R A= 5 cof TR(N—¢)]

g-1 o
> mhz Yy ; (A1) cos 2 +_q—2 R(A—¢)
i=o K=o gk+1 bn q 7mR(N—¢

e

R T S aRO—8)] (A7)

where we have used the periodicity propertyn9)? If we replaceq with wR/a in Eq. (A7), we arrive after
= (m(@*D)2 in the second step of E¢A1). In fact, itis this  simple trigonometric algebra at the transcendental eigen-
last periodicity property of the KK-Yukawa terms that we value equatior{2.28. Although we focused our attention on
wish to exploit here to carry out analytically the infinite sumsthe simplest class wita= 7R/qg, we should remark that our
in Eqg. (A1), which has forced us to introduce the technicalmethodology described above can apply equally well to the
constraint(2.23, namely thata/(7R) is a rational number. most general case where the brane-shifeng any rational
Now, the individuall-dependent infinite sums ové&rin Eq.  numberr/q in R units.
(A1) can be performed independently, using complex con-
tour integration techniques. In this way, we obtain
5The proof of these identities is rather lengthy and relies on the
1 q-1 L 1 L particylar properties _o_f thq roots of the unity,_ i.e. the roots of the_
A= —wmzRE COSz( bn— _) CO[[—WR()\ —&)— _} equationzd=1. Specifically, we used the basic property of the unit
q =0 q q q roots that their sum and the sum of their products are zero, while
(A2)  their total product is £ 1)1,
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APPENDIX B: SUM RULES 1 1

In this appendix we will show that the KK-neutrino ﬁ,\ll'inw cNde— MR col 7R(z—z)]

masses determined by the roots of Ej21) and the mixing-

matrix elements given in Eq4.11) satisfy the sum rules 1 2m i(zy—¢)
(4.2) and (4.3). For simplicity, we consider the case=0. = ﬁhm dé 1
However, our considerations carry over very analogously to N 70 zy— mm?R cot{w N+ /e’
the casea= wR/q#0, whereq is an integer larger than 1. 2
Let us first considen4.2) for I=1"=e. We will then 1
prove that 1 ,. ~mmR CO\{’IT N+ 3 ell—¢
) 1+ o ’\Il|£nm fo de ) [[ T,
zy—mm*Rcol w| N+ = |e
|Bev|2+ lim E |Be,n|2:l- (Bl) 2
N—ow N=—N (BS)

Our proof will rely on Cauchy’s integral theorem. Thus, the 1€ Sécond term in the last equality of E§5) vanishes in

LHS of Eq. (B1) can be expressed in terms of a complexthe limit N—oo or equivalently wherey is taken to infinity
integral as follows: in a discrete manner as prescribed by H84). Thus, the

complex integral in the last equality of E@?2) is exactly 1,
which proves the unitarity sum rui@1).

N In the remainder of the appendix, we will prove the

|Bev|2+’\|‘im n:E_N |Be,nl® neutrino-mass-mixing sum rule:
N 1 2 . 2
— "~ lim fﬁ dz + > Bs,m,+ lim _2 Be,nM(n)=0. (B6)
2min_ . Joy \Z—M, nZENZ—Mmepy N—e N==N
1 In our proof, we will follow a path very analogous to the one
X Py outlined above for showing E¢B1). Thus, the LHS of Eq.
1+ m*m?R?/sif[ mR(z—¢)] (B6) may be expressed in terms of a complex integral as
follows:
1 1
=—Iim dz (B2 N

2miy_,, Jey  z—mm?Reof{ wR(z—¢)]
- 2 H 2
Be,m,+ '1|Txn:§_N Be.nMm)

In deriving the second equality in E¢B2), we have noticed

that forz in the vicinity of the pole, e.g. foe=m,, it is =ilim dz z
2miy_., Jey z—am?R cof mR(z—¢€)] .
z— mm’Rcof mR(z—¢)] (B7)
~(z—m) | 1+ 7w m’R? (B3) Evaluating the complex integral on the conto@s defined
™ sif[ 7R(z—¢)]| by Eq.(B4) yields

z

1
Such a substitution is only valid under complex integration, PP lim dz 5
provided there are no singularities of the complex function <7'N—= JCv  z—mm Rco{7R(z—¢)]

cof 7R(z—¢)] on the contourCy. For this purpose, we 1
choose our contours to be circles represented in the complex i(zy—e)mm’R co{ 71'( N+ = |e'?
plane as =i|im fz 40 z
27TiN_>30 0 2 t{ ( 1 i
zy—m™m“Rcot 7 N+§ e
N+% e’
ZN:—+8. (84) 1 2 . 2m 1 )
R =§m R lim f décot m N+§ e+ 0(1/zy) ;.
N— o0 0

(B8)

Then, it can be shown that on the complex contasts,,,

|cotR(zy—¢)| is bounded from above by a constant inde-Similar to the second term in the last equality of EB8),
pendent ofN. Thus, onCy, the last integral in Eq(B2) may  which goes to zero foN— o, the first term vanishes as well
be successively computed as after integration ovep. This can be readily seen by exploit-
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ing, respectively, the periodic and antisymmetric properties of the integrand with respgentbits argument:

27 1 i - r 1 .- o 1)
f décot 7| N+ 5 |e'? =f décot 7| N+ 5|e'’ +f docot #| N+ =|el?
0 2 0 i 2 | . >
o] AN 1)
:f docot w| N+ =|e'? —i—f docot 7| N+ = el(0+7T)
0 I 2 | 0 2
| AR 1)
:f docot w| N+ =|e'? +J docotl — | N+ = |el?
0 L 2 ] 0 2
=0. (BY)

Consequently, the complex integral on the RHS of @Y, vanishes identically, g.e.d.
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