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Neutrinoless double beta decay from singlet neutrinos in extra dimensions
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We study the model-building conditions under which a sizable 0nbb-decay signal to the recently reported
level of 0.4 eV is due to Kaluza-Klein singlet neutrinos in theories with large extra dimensions. Our analysis
is based on 5-dimensional singlet-neutrino models compactified on anS1/Z2 orbifold, where the standard-
model fields are localized on a 3-brane. We show that a successful interpretation of a positive signal within the
above minimal 5-dimensional framework would require a non-vanishing shift of the 3-brane from the orbifold
fixed points by an amount smaller than the typical scale (100 MeV)21 characterizing the Fermi nuclear
momentum. The resulting 5-dimensional models predict a sizable effective Majorana-neutrino mass that could
be several orders of magnitude larger than the light neutrino masses. Most interestingly, the brane-shifted
models with only one bulk sterile neutrino also predict novel trigonometric textures leading to mass scenarios
with hierarchical active neutrinos and largenm-nt and ne-nm mixings that can fully explain the current
atmospheric and solar neutrino data.
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I. INTRODUCTION

Recently, realizations of phenomenologically viable the
ries with large compact dimensions of TeV size@1# have
enriched dramatically our perspectives in searching for ph
ics beyond the standard model~SM!. Among the possible
higher-dimensional realizations, sterile neutrinos propaga
in large extra dimensions@2–9# may provide interesting al
ternatives for generating the observed light neutrino mas
On the other hand, detailed experimental studies of neut
properties may even shed light on the geometry and/or sh
of the new dimensions. In this context, one of the most s
sitive experimental approaches to neutrino masses and
properties is the search for neutrinoless double beta de
@10#. Neutrinoless double beta decay, denoted in shor
0nbb, corresponds to two single beta decays@11,12# occur-
ring simultaneously in one nucleus, thereby converting
nucleus (Z,A) into a nucleus (Z12,A): i.e.,

Z
AX→ Z12

A X12e2.

This process violates lepton number by two units and he
its observation would signal physics beyond the SM. To
very good approximation, the half-life for a 0nbb decay
mediated by light neutrinos is given by

@T1/2
0nbb#215

u^m&u2

me
2

uM 0nbbu2G01, ~1.1!

where^m& denotes the effective neutrino Majorana mass,me
is the electron mass andM0nbb andG01 denote the appro
priate nuclear matrix element and the phase space fa
respectively. For details, see@10–12# and our discussion in
Sec. IV.

Most recently, the Heidelberg-Moscow Collaboration h
reanalyzed its experimental data@13#, using appropriate sta
0556-2821/2003/67~11!/113001~17!/$20.00 67 1130
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tistical methods as well as new information from the form
the contributing background. They found an excess of 0nbb
events, with statistical significance 2.2–3.1s, depending on
the method used. From this result, a half-life of 1.520.7

116.8

31025 years at 95% confidence level~C.L.! for 76Ge is de-
duced, which implies an absolute value for the effect
Majorana-neutrino mass:

u^m&u50.3920.34
10.45 eV ~95% C.L.!, ~1.2!

allowing an uncertainty of the nuclear matrix element valu
of 650%.

The above experimental result~1.2!, combined with infor-
mation from solar and atmospheric neutrino data, restr
the admissible forms of the light-neutrino mass hierarchie
4-dimensional models with 3 left-handed~active! neutrinos.
The allowed scenarios contain either degenerate neutrino
neutrinos that have an inverse mass hierarchy@14#. Evi-
dently, a successful interpretation of a positive 0nbb signal
of the appropriate size mentioned above imposes certain
straints on the structure of a theory. Here, we study th
constraints on the model building of minimal 5-dimension
theories compactified on aS1/Z2 orbifold. Within the frame-
work of theories with large extra dimensions, previous stu
ies on neutrinoless double beta decays were perform
within the context of higher-dimensional models that utili
the shining mechanism from a distant brane@15# and of theo-
ries with wrapped geometric space@16#. In Ref. @15# the
0nbb decay is accompanied with emission of Majoron
whereas the prediction in@16# falls short by two orders of
magnitude to account for the observable excess in Eq.~1.2!.

In this paper we consider an even more minimal high
dimensional framework of lepton-number violation, in whic
only one 5-dimensional~bulk! sterile neutrino is added to th
field content of the SM. In this minimal model, the SM field
are localized on a 4-dimensional Minkowski subspace, a
©2003 The American Physical Society01-1
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termed 3-brane. The violation of the lepton number may
cur in three distinct ways:~i! by adding lepton-number vio
lating bilinears of the Majorana type in the Lagrangian;~ii !
by generating lepton-number-violating mass terms thro
the Scherk-Schwartz mechanism@17#; ~iii ! by simulta-
neously coupling theZ2-even andZ2-odd two-component
spinors of the 5-dimensional sterile neutrino to the same l
handed charged lepton state. As we will see in Sec. II,
last case~iii ! is only possible if the 3-brane describing o
observable world is shifted from theS1/Z2 orbifold fixed
point. Here, we should also note that after integration of
extra dimension, the 5-dimensional orbifold model predi
an infinite tower of Kaluza-Klein~KK ! neutrinos, for which
the cases~i! and ~ii ! become fully equivalent.

One salient feature of theS1/Z2 orbifold compactification
is that the KK neutrinos group themselves into appro
mately degenerate pairs of oppositeCP parities. As a result,
the lepton-number-violating KK-neutrino effects cancel ea
other and so the predicted 0nbb decay turns out to be ex
ceedingly small to account for the recent observable exc
The latter appears to be a major obstacle in theories w
large extra dimensions and imposes by itself constraints
the model building of higher-dimensional theories. A min
mal way that avoids the above disastrousCP-parity cancel-
lation effects on the 0nbb decay amplitude would be to
arrange the oppositeCP-parity KK neutrinos to couple to the
W6 bosons with unequal strength. Within the minim
5-dimensional orbifold model outlined above, such a reali
tion can be accomplished only if the 3-brane is displac
from one of theS1/Z2 orbifold fixed points. In our phenom
enological bottom-up approach, the amount of brane-shif
is not arbitrary but dictated by the requirement that
model can accommodate the result~1.2! for the effective
Majorana-neutrino mass. In particular, we will see in Sec.
how the resulting brane-shifted 5-dimensional models
predict a sizable effective Majorana-neutrino mass that co
be several orders of magnitude larger than the light neut
masses and hence than the difference of their squares a
quired from neutrino oscillation data.

Another important constraint on the structure of high
dimensional neutrino theories arises from their ability to e
plain the solar and atmospheric neutrino data by mean
neutrino oscillations. In particular, orbifold models with on
bulk neutrino, as those considered earlier in the literat
@2,4,7–9#, seem to prefer the small mixing angle~SMA!
Mikheyev-Smirnov-Wolfenstein~MSW! solution@18# which
is highly disfavored by recent neutrino data analyses. Al
natively, if all neutrino data are to be explained by oscil
tions of active neutrinos with a small admixture of sterile K
component, then the compactification scale has to be m
higher than the brane-Dirac mass terms. After integrating
the bulk neutrino of the model, the effective light-neutrin
mass matrix has a rather restricted form; it is effectively
rank 1. As a result, two out of the three active neutrinos
massless. This is rather undesirable, since only one neut
mass difference can be formed in this case, so accommo
ing all neutrino oscillation data proves rather problema
@7–9#. However, the earlier studies have not included
possibility of a shifted brane. As was mentioned abo
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brane-shifting gives rise to sizable lepton-number violatio
Hence, the tree-level rank-1 form of the effective neutri
mass matrix can be significantly modified through lepto
number violating Yukawa terms. As we will see in Sec. V, t
resulting neutrino mass matrix has sufficiently rich structu
to enable adequate description of the neutrino data.

Our paper is organized as follows: Sec. II describes
low-energy structure of the 5-dimensional orbifold mode
Technical details are relegated to the Appendixes. In Sec.
we study the renormalization-group~RG! effects of the neu-
trino Yukawa couplings and their possible impact on t
0nbb decay amplitude. In Sec. IV we give estimates of t
effective Majorana-neutrino mass, which are predicted
these models presented in Sec. II. In Sec. V, we discuss
compatibility of such models with solar and atmosphe
neutrino data. Finally, we draw our conclusions in Sec. V

II. MINIMAL HIGHER-DIMENSIONAL
NEUTRINO MODELS

In this section we will describe the basic low-ener
structure of minimal higher-dimensional extensions of t
SM that include singlet neutrinos. In particular, we assu
that singlet neutrinos being neutral under the SU(2L
^ U(1)Y gauge group can freely propagate in a high
dimensional space of@11(31d)# dimensions, the so-called
bulk, whereas all SM particles are localized in
(113)-dimensional subspace, known as 3-brane or sim
brane. However, even singlet neutrinos themselves may
in a subspace of an even higher-dimensional space o@1
1(31ng)# dimensions, withd<ng , in which gravity propa-
gates.

We shall restrict our study to 5-dimensional models, i
the cased51, where the singlet neutrinos are compactifi
on a S1/Z2 orbifold. Specifically, the leptonic sector of ou
5-dimensional model consists of the SM lepton fields:

L~x!5S n l~x!

l L~x!
D , l R~x!, ~2.1!

with l 5e,m,t, and one 5-dimensional~bulk! singlet neu-
trino:

N~x,y!5S j~x,y!

h̄~x,y!
D , ~2.2!

where y denotes the additional compact dimension, andj
and h are 5-dimensional two-component spinors. The S
leptons are localized at the one of the two fixed points of
S1/Z2 orbifold, e.g. y50. For generality, we will assume
that the brane is shifted from the orbifold fixed point toy
5a.

As usual, we impose the periodic boundary conditi
N(x,y)5N(x,y12pR) with respect toy dimension on the
singlet neutrino field. In addition, the action ofS1/Z2 orbi-
folding on the 5-dimensional spinorsj and h entails the
additional identifications:

j~x,y!5j~x,2y!, h~x,y!52h~x,2y!. ~2.3!
1-2
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In other words, the spinorsj andh are symmetric and anti
symmetric under ay reflection, respectively.

With the above definitions, the most generic effecti
4-dimensional Lagrangian of such a model is given by@2,5#1

Leff5E
0

2pR

dyH N̄~ igm]m1g5]y!N

2
1

2
~MNTC(5)21N1H.c.!

1d~y2a!F h1
l

~MF!d/2
LF̃* j1

h2
l

~MF!d/2
LF̃* h1H.c.G

1d~y2a!LSMJ , ~2.4!

where F̃5 is2F* is the hypercharge-conjugate of the S
Higgs doubletF, with hyperchargeY(F)51, andLSM de-
notes the SM Lagrangian which is restricted on a brane
y5a @2#. In addition,MF is the fundamentalng-dimensional
Planck scale andd51 for sterile neutrinos propagating in
dimensions. Notice that the mass termmDN̄N is not allowed
in Eq. ~2.4!, as a result of theZ2 discrete symmetry. Finally
in writing Eq. ~2.4!, we have used the following convention

gm5S 0 sm

s̄m 0 D , g55S 212 0

0 12
D ,

C(5)52g1g35S 2 is2 0

0 2 is2
D , ~2.5!

with sm5(12 ,s) and s̄m5(12 ,2s), wheres1,2,3 are the
usual Pauli matrices.

We now proceed with the compactification of they di-
mension of theS1/Z2 orbifold model. Because of their sym
metric and antisymmetric properties~2.3! undery reflection,
the two-component spinorsj and h can be expanded in
Fourier series of cosine and sine harmonics:

j~x,y!5
1

A2pR
j0~x!1

1

ApR
(
n51

`

jn~x!cosS ny

R D ,

~2.6!

h~x,y!5
1

ApR
(
n51

`

hn~x!sinS ny

R D , ~2.7!

where the chiral spinorsjn(x) and hn(x) form an infinite
tower of KK modes.

After substituting Eq.~2.6! into Eq. ~2.4! and integrating
out they coordinate, we obtain the effective 4-dimension
Lagrangian

1Further non-covariant extensions to this model have been con
ered in@8#.
11300
at

l

Leff5LSM1 j̄0~ i s̄m]m!j01S h̄1
l (0)LF̃* j02

1

2
Mj0j01H.c.D

1 (
n51

` F j̄n~ i s̄m]m!jn1h̄n~ i s̄m]m!hn

1
n

R
~jnhn1 j̄nh̄n!2

1

2
M ~jnjn1h̄nh̄n1H.c.!

1A2~ h̄1
l (n)LF̃* jn1h̄2

l (n)LF̃* hn1H.c.!G , ~2.8!

where

h̄1
l (n)5

h1
l

~2pMFR!d/2
cosS na

R D5S MF

MP
D d/ng

h1
l cosS na

R D ,

~2.9!

h̄2
l (n)5

h2
l

~2pMFR!d/2
sinS na

R D5S MF

MP
D d/ng

h2
l sinS na

R D .

~2.10!

In deriving the last step on the right-hand sides~RHS’s! of
Eqs. ~2.9! and ~2.10!, we have employed the basic relatio
among the Planck massMP, the corresponding
ng-dimensional Planck massMF and the compactification
radii R ~all taken to be of equal size!:

MP5~2pMFR!ng/2MF . ~2.11!

From Eqs. ~2.9! and ~2.10!, we see that the reduce
4-dimensional Yukawa couplingsh̄1,2

(n) can be suppressed b
many orders of magnitude@2,3# if there is a large hierarchy
betweenMP and the quantum gravity scaleMF . Thus, if
gravity and bulk neutrinos have the same number of ex
dimensions, i.e.d5ng , the 4-dimensional Yukawa coupling
h̄1

(n) and h̄2
(n) are naturally suppressed by a huge fac

MF /MP;10215, for MF'10 TeV. From Eq.~2.2!, we ob-
serve thatj and h̄ belong to the same multiplet and hen
have the same lepton number. It then follows from Eq.~2.8!
that the simultaneous presence ofh̄1

(n) and h̄2
(n) in an ampli-

tude gives rise to lepton number violation by two units.
We should note that the above large suppression fa

can be also obtained in a 5-dimensional neutrino modeld
51), where gravity propagates in a 6-dimensional sp
with compactification radiiR1 and R2 of unequal size (ng
52). In this case, one has to use the general toroidal c
pactification condition:

MP5~2pMF!ng/2~R1R2 . . . Rng
!1/2MF . ~2.12!

Note that Eq.~2.12! reduces to Eq.~2.11! if all compactifi-
cation radii are equal. With the help of Eq.~2.12!, we find,
for ng52,

h1,2
l

~2pMFR1!1/2
5~2pMFR2!1/2

MF

MP
h1,2

l . ~2.13!id-
1-3
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We easily see that ifR2;1/MF , the original Yukawa cou-
plings h1,2

l undergo the same large degree of suppression
a factorMF /MP.

If the brane were located at one of the two orbifold fix
points, e.g. aty50, the operatorLF̃* h would be absent as
a consequence of theZ2 discrete symmetry. However, if th
brane is shifted by an amountaÞ0, the above operator is n
longer absent. In fact, as we will see in Sec. IV, the coex
ence of the two operatorsLF̃* j andLF̃* h breaks the lep-
ton number leading to observable effects in neutrinol
double beta decay experiments.

Let us now introduce the weak basis for the KK-We
spinors

x6n5
1

A2
~jn6hn!, ~2.14!

which enables us to express the effective kinetic term of
neutrino sector as follows:

Lkin5x̄ i s̄m]mx2S 1

2
xTMx1H.c.D , ~2.15!

wherexT5(n l , j0 , x1 , x21 , . . . , xn , x2n , . . . ) and

M KK51
0 m m m m m •••

m M 0 0 0 0 •••

m 0 M1
1

R
0 0 0 •••

m 0 0 M2
1

R
0 0 •••

m 0 0 0 M1
2

R
0 •••

m 0 0 0 0 M2
2

R
•••

A A A A A A �

2 ,

~2.16!

with m5vh̄1 /A2. In a three-generation model,m andh̄1 are
both 3-vectors in the flavor space, i.e.h̄15(h̄1

e ,h̄1
m ,h̄1

t)T. We
will discuss intergenerational mixing effects in more detail
Sec. V. Here, we assume for simplicity thath̄15h̄1

e .
Following @2#, we rearrange the singlet KK-Weyl spino

j0 and xn
6 , such that the smallest diagonal ent

of the KK neutrino mass matrixM KK in Eq. ~2.16! is u«u
5min(uM2 k/R u)<1/(2R) for a given valuek5k0. In this
newly defined basis, the effective kinetic Lagrangian~2.15!
becomes

Lkin5
1

2
C̄n~ i ]”2M n

KK !Cn , ~2.17!

whereCn is the reordered~4-component! Majorana-spinor
vector
11300
y

t-

s

e

Cn
T5F S n l

n̄ l
D , S xk0

x̄k0

D , S xk011

x̄k011
D , S xk021

x̄k021
D ,

•••,S xk01n

x̄k01n
D , S xk02n

x̄k02n
D , •••G ~2.18!

andM n
KK the corresponding KK neutrino mass matrix

M n
KK51

0 m m m m m •••

m « 0 0 0 0 •••

m 0 «1
1

R
0 0 0 •••

m 0 0 «2
1

R
0 0 •••

m 0 0 0 «1
2

R
0 •••

m 0 0 0 0 «2
2

R
•••

A A A A A A �

2 .

~2.19!

The eigenvalues ofM n
KK can be computed from the chara

teristic eigenvalue equation det(M n
KK2l1)50, which is

analytically given by

)
n50

` F ~l2«!22
n2

R2GF 11
«

l2«
2m2 (

n52`

`
1

~l2«!22
n2

R2
G

50. ~2.20!

Since it can be shown thatl2«56n/R is never an exact
solution to the characteristic equation, only the second fa
in Eq. ~2.20! can vanish. Employing complex contour inte
gration techniques, the summation in the second factor in
~2.20! can be performed exactly, leading to an equivale
transcendental equation

l5pm2R cot@pR~l2«!#. ~2.21!

As was already discussed in@2#, if «50, Eq.~2.21! implies
that the mass spectrum consists of massive KK Major
neutrinos degenerate in pairs with oppositeCP parities. If
«51/(2R), the KK mass spectrum contains a massless st
which is predominantly left-handed ifmR,1, while the re-
maining massive KK states form degenerate pairs with
positeCP parities, exactly as in the«50 case. However, if
«Þ0,1/(2R), the lepton number gets broken.2 In this case,
there is no massless state in the spectrum, and the a

2Alternatively, the lepton number may also be broken through
Scherk-Schwarz mechanism, where the Scherk-Schwarz rota
angle will induce terms very similar to those depending on« @2,19#.
1-4
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exact degeneracy among the massive Majorana neutrino
comes only approximate, with a mass splitting of order«
for each would-be («→0) degenerate KK pair.

We now consider an orbifold model, in which they50
brane is displaced from the orbifold fixed points by
amounta. Under certain restrictions in type I string theo
@2,20#, such an operation can be performed respecting theZ2
invariance of the original higher-dimensional action. In p
ticular, one can take explicitly account of this last prope
by considering the following replacements in the effect
Lagrangian~2.4!:

jd~y2a!→ 1

2
j@d~y2a!1d~y1a22pR!#,

hd~y2a!→ 1

2
h@d~y2a!2d~y1a22pR!#,

~2.22!

with 0<a,pR and 0<y<2pR. It is obvious that a
Z2-invariant implementation of brane-shifted couplings
quires the existence of two branes at least, placed aty5a
andy52pR2a. In addition, we assume thata is a rational
number in units ofpR, i.e.

a5
r

q
pR, ~2.23!

where r ,q are natural numbers. This last assumption h
been introduced for technical reasons. It enables us to c
out analytically the infinite summations over KK states~see
also our discussion below!.

Proceeding as above, the effective KK neutrino mass
trix M n

KK for the orbifold model with a shifted brane can b
written down in an analogous form

M n
KK51

0 m(0) m(1) m(21) m(2) m(22)
•••

m(0) « 0 0 0 0 •••

m(1) 0 «1
1

R
0 0 0 •••

m(21) 0 0 «2
1

R
0 0 •••

m(2) 0 0 0 «1
2

R
0 •••

m(22) 0 0 0 0 «2
2

R
•••

A A A A A A �

2 ,

~2.24!

where

m(n)5
v

A2
F h̄1cosS ~n2k0!a

R D1h̄2sinS ~n2k0!a

R D G
5m cosS na

R
2fhD , ~2.25!
11300
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with m5vA(h̄1
21h̄2

2)/2 andfh5tan21(h̄2 /h̄1)1k0a/R. As

before, we consider an one-generation model withh̄15h̄1
e

andh̄25h̄2
e , which renders the analytic determination of th

eigenvalue equation tractable. We will relax this assumpt
in Sec. V, when discussing the compatibility of this mod
with neutrino oscillation data. Thus, for our one-generat
brane-shifted model, the characteristic eigenvalue equa
reads

)
n50

` F ~l2«!22
n2

R2GF 11
«

l2«
2

1

l2« (
n52`

`
m(n)2

l2«2
n

R
G

50, ~2.26!

which is equivalent to

l5 (
n52`

`
m(n)2

l2«2
n

R

. ~2.27!

As opposed to thea50 case, complex contour integratio
techniques are not directly applicable in evaluating the in
nite sum in Eq.~2.27!. The preventive reason is that th
functionm(n), analytically continued to the complexn plane,
is not bounded from above asn→6 i`, as it had to be,
because of its dependence on cos(na/R). However, as has
been mentioned above and discussed further in Appendi
this difficulty may be circumvented by assuming thata is a
rational number in units ofpR, as stated in Eq.~2.23!. Un-
der this technical assumption, we carry out in Appendix
the infinite sum in Eq.~2.27! analytically and derive the
eigenvalue equation for the simplest class of cases, wh
a5pR/q with r 51 and q an integer larger than 1, i.e.q
>2. More precisely, we find3

l5pm2RH cos2@fh2a~l2«!#cot@pR~l2«!#

2
1

2
sin@2fh22a~l2«!#J . ~2.28!

Observe that unless«51/(2R), a5pR/2 andfh5p/4, the
mass spectrum consists of massive non-degenerate KK
trinos. However, it can be shown from Eq.~2.28! that this
tree-level mass splitting between a pair of KK Majorana ne
trinos is generally small form(n)@1/R. In particular, this
tree-level mass splitting is almost independent ofa and sub-
leading so as to play any relevant role in our calculations

At this stage, it is important to comment on taking th
limit a5pR/q→0 in Eq.~2.28!, or equivalentlyq→`. This
limit is not the eigenvalue equation~2.21! which is valid for
a50, because of the presence of the extra non-vanish
term that depends on sin(2fh) in Eq. ~2.28!. This apparent

3The so-derived formula generalizes the one presented in@2# to
include brane-shifting and arbitrary Yukawa-coupling effects.
1-5
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paradox can be resolved by noticing that the existence of
would-be anomalous term is ensured only if the bra
shifting a is much larger than the fundamental quantum gr
ity scaleMF , i.e. a@1/MF . SinceMF represents a natura
ultraviolet cutoff of the theory, we expect the onset of ne
physics above the scaleMF , most likely of stringy nature,
effectively implying that the KK-Yukawa mass termsm(n)

are exponentially suppressed or zero for KK numbersn
*MFR. As we will explicitly demonstrate in Sec. IV@see
our discussion in Eq.~4.18!#, such a truncation of the KK
sum atMF effectively results in a modification of the eigen
value equation~2.28! to

l5m2R$p cos2@fh2a~l2«!#cot@pR~l2«!#

2Si~2aMF!sin@2fh22a~l2«!#%. ~2.29!

In the above, Si(x)5*0
xdt(sint/t) is the integral-sine func-

tion. For any finite value of its argument, Si(x) can be ex-
panded as

Si~x!5 (
n51

1`
~21!(n21)x(2n21)

~2n21!~2n21!!
. ~2.30!

For small x, it is Si(x)'x, while Si(x)5p/2 for x→`.
Clearly, as long asa@1/MF , the eigenvalue equations~2.28!
and ~2.29! are almost identical, since Si(2aMF)5p/2 to a
very good approximation. On the other hand, the limita
→0 does now smoothly go over to Eq.~2.21!, as it should
be.

Finally, in addition to the aforementioned tree-level ma
splitting, one-loop radiative effects may also contribute
further increase the mass difference between two nearly
generate KK Majorana neutrinos, ifh̄1 andh̄2 do not vanish
simultaneously. The one-loop generated mass splitting, h
ever, is expected to be small@5# of order h̄1h̄2m(n) /(8p2)
;10223(MF /M P)23m(n)&10223Dm(n) , where m(n)
'n/R<MF is the approximate mass of thenth KK pair of
nearly degenerate Majorana neutrinos, andDm(n)5m(n11)
2m(n)'1/R is the mass difference between two adjac
KK Majorana pairs. Although such a radiatively-induce
mass splitting may play a significant role for leptogene
@5#, its effect on the double beta decay amplitude is ne
gible. Therefore, we neglect radiative effects on the KK m
spectrum throughout the paper.

III. RG EVOLUTION OF NEUTRINO
YUKAWA COUPLINGS

The RG evolution of the Yukawa couplings in the sta
dard 4-dimensional scenario involving sterile neutrinos
been discussed in@21#. Here, we derive the correspondin
RG equations for the higher-dimensional case. Since the
evolution equations forh̄1

l and h̄2
l will be similar, we con-

centrate only on the former ([h̄). In such a higher-
dimensional scenario, the presence of the KK sterile st
alters the RG running. The triangle and self-energy diagra
that contribute to the running remain the same as in the S
except that in the higher dimensional context, wherever th
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are internal jn lines, there is a multiplicative factortd
5(mR)dXd , with Xd52pd/2/dG(d/2). The RG equation for
the Yukawa couplingh̄ is given by

16p2
dh̄

d ln m
5

3

2
@ td~ h̄h̄†!h̄2h̄~he

†he!#1h̄ Tr~3hu
†hu13hd

†hd

1he
†he1tdh̄†h̄!2h̄S 9

4
gw

2 1
3

4
g82D , ~3.1!

wheregw andg8 are the SU(2)L and U(1)Y gauge-coupling
constants, respectively. Note that ford50 (1), it is Xd
51 (2). Also, for d50, td51, the standard RG equation
reproduced@21#.

We now observe that the four-dimensional Yukawa co
pling (h̄) is suppressed with respect to the highe
dimensional coupling~h! by means of the relation:h̄
5(MF /M P)d/ngh. Thus, even if we considerh(1/R);1, the
four-dimensionalh̄ is suppressed by many orders of mag
tude. From Eq.~3.1!, it is also obvious that unlesstd is large
enough to be comparable with (M P

2 /MF
2)d/ng, the contribu-

tions from the top-quark Yukawa coupling or the gauge co
plings dominate the running, and hence there is no pow
law behavior at lower energies.

On the contrary, if we go to a very high energy such th
we can ignoreht , then the terms multiplyingtd dominate. In
such a case, ignoring the gauge contribution, we can wr

16p2
dh̄

d ln m
;

5

2
tdh̄3. ~3.2!

Integrating Eq.~3.2! from the scalem0[R21 to m, we ob-
tain

1

h̄2~1/R!
2

1

h̄2~m!
.

5Xd

16p2d
~mR!d. ~3.3!

In terms of the Yukawa fine structure constanta(m)
5h2(m)/(4p) of the original 5-dimensional Yukawa cou
pling ~h! and for the simple cased5ng , Eq. ~3.3! takes on
the form

1

a~m!
.

1

a~1/R!
2

5Xd

4pd S m

MF
D d

. ~3.4!

Clearly,a(m)→`, for a critical scale

mcritical5MFS 4pd

5Xda~1/R! D
1/d

. ~3.5!

Interestingly enough, Eq.~3.5! implies that the power-law
behavior sets in not just above the compactification sc
R21, as was naively expected@2#, but well above the quan
tum gravity scaleMF . On the other hand, requiring tha
a(MF)<1 in Eq. ~3.4! implies that a(1/R),0.55 for d
51. This last condition assures that our theory remains p
turbative up to the quantum gravity scaleMF . From our
1-6
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discussion above, it is obvious that power-law effects on
Yukawa neutrino couplings can be safely neglected in
analysis.

IV. EFFECTIVE NEUTRINO-MASS ESTIMATES

In this section we calculate the 0nbb observablê m& in
orbifold 5-dimensional models. This quantity determines
size of the neutrinoless double beta decay amplitude, wh
is induced byW-boson exchange graphs. To this end, it
important to know the interactions of theW6 bosons to the
charged leptonsl 5e,m,t and the KK-neutrino mass eigen
statesn(n) . Adopting the conventions of@22#, the effective
charged current Lagrangian is given by

L int
W6

52
gw

A2
W2m (

l 5e,m,t
S Bln l

l̄ gmPLn l

1 (
n52`

1`

Bl ,nl̄ gmPLn(n)D 1H.c., ~4.1!

wheregw is the weak coupling constant,PL5(12g5)/2 is
the left-handed chirality projector, andB is an infinite dimen-
sional mixing matrix. The matrixB satisfies the following
crucial identities:

Bln l
Bl 8n l

* 1 (
n52`

1`

Bl ,nBl 8,n
* 5d l l 8 , ~4.2!

Bln l
mn l

Bl 8n l
1 (

n52`

1`

Bl ,nm(n)Bl 8,n50. ~4.3!

Equation~4.2! reflects the unitarity properties of the charg
lepton weak space, and Eq.~4.3! holds true, as a result of th
absence of the Majorana mass termsn ln l 8 from the effective
Lagrangian in the flavor basis. For the models under disc
sion, the KK neutrino massesm(n) can be determined exactl
by the solutions of the corresponding transcendental eq
tions. To a good approximation, however, these solutions
largen simplify to4

m(n)'
n

R
1«. ~4.4!

This last expression proves to be a good approximation
our estimates.

According to Eq.~1.1!, the 0nbb-decay amplitudeT0nbb
is given by@11#

4For unu.« and n,0, the KK mass eigenvaluesm(n) are nega-
tive. This corresponds to a neutrino with positive physical m
um(n)u and negativeCP parity. One can always take account of th
negativeCP parity by redefining the mixing matrix elementsBl ,2n

asBl ,2n→ iBl ,2n , for n.«R.0. Although we will allow negative
neutrino masses in our calculations, we should stress that both
proaches are fully equivalent leading to the same analytic resu
11300
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T0nbb5
^m&
me

MGTF~mn!, ~4.5!

where MGTF5MGT2MF is the difference of the nuclea
matrix elements for the so-called Gamow-Teller and Fe
transitions. Note that this difference of nuclear matrix e
ments sensitively depends on the mass of the exchanged
neutrino in a 0nbb decay. Especially if the exchanged KK
neutrino massm(n) is comparable or larger than the chara
teristic Fermi nuclear momentumqF'100 MeV, the nuclear
matrix elementMGTF decreases as 1/m(n)

2 . The general ex-
pression for the effective Majorana-neutrino mass^m& in
~4.5! is given by

^m&5
1

MGTF~mn! (
n52`

`

Be,n
2 m(n)

3@MGTF~m(n)!2MGTF~mn!#. ~4.6!

In the above, the first term describes the genuine high
dimensional effect of KK-neutrino exchanges, while the s
ond term is the standard contribution of the light neutrinon,
rewritten by virtue of Eq.~4.3!. Note that the dependence o
the nuclear matrix elementMGTF on the KK-neutrino
massesm(n) has been allocated tôm& in Eq. ~4.6!. The latter
generally leads to predictions for^m& that depend on the
double beta emitter isotope used in experiment. However,
difference in the predictions is too small for the highe
dimensional singlet-neutrino models to be able to operate
a smoking gun for different 0nbb-decay experiments.

A. Factorization Ansatz for analytic estimates

To obtain analytic estimates that will help us to gain
better insight into the dynamical properties of Eq.~4.6!, it
proves useful to approximate the 0nbb-decay amplitude
T0nbb in Eq. ~4.5! by means of the factorizable ansatz@23#:

T0nbb'
^m&SA

me
MGTF~mn!1

mp
2

me
^m21&MGTF~mp!,

~4.7!

where mp is the proton mass, andMGTF(mn) and
MGTF(mp) are the values of the nuclear matrix eleme
MGTF at mn and mp , respectively. In Eq.~4.7!, the 0nbb
matrix element has been written as a sum of two terms.
first term, which is the dominant one, accounts for effe
coming from KK neutrinos lighter than the characteris
Fermi nuclear momentumqF'100 MeV. In this kinematic
region, the nuclear matrix elementMGTF is almost indepen-
dent of the KK neutrino massm(n) . The second term in Eq
~4.7! is due to KK neutrinos much heavier thanqF . This is
generically a subdominant contribution toT0nbb , since
MGTF(mp)!MGTF(mn).

The quantity^m&SA is an approximation of the effective
Majorana-neutrino masŝm&, which is obtained by approxi-
mating the nuclear matrix elementsMGTF(m(n)) entering
^m& in Eq. ~4.6! by a step function atum(n)u5qF :

s

p-
.

1-7
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MGTF~m(n)!5HMGTF~mn! for um(n)u<qF ,

0 for um(n)u.qF .
~4.8!

In what follows, we refer to such an approach to the nucl
matrix elements as the step approximation~SA!. The effec-
tive neutrino mass in the SA reads

^m&SA5Ben
2 mn1 (

n52[(qF1«)R]

[(qF2«)R]

Be,n
2 m(n)

52 (
n5[(qF2«)R]

1`

Be,n
2 m(n)2 (

n5[(qF1«)R]

1`

Be,2n
2 m(2n) ,

~4.9!

where we used Eq.~4.3! to arrive at the last equality for th
effective neutrino mass. Notice that^m& is not zero, simply
because the sum over the KK neutrino states is truncate
those with a massum(n)u,um(2n)u<qF .

Correspondingly, the effects of the heavier KK neutrin
with massesm(n)*qF , have been taken into account in th
factorizable Ansatz~4.7! by means of the inverse effectiv
neutrino masŝ m21&. This newly introduced quantity is
given by

^m21&5 (
n5[(qF2«)R]

1`

Be,n
2 m(n)

211 (
n5[(qF1«)R]

1`

Be,2n
2 m(2n)

21 .

~4.10!

The factorizable form~4.5! of the matrix element constitute
a good approximation except for the isolated region wh
um(n)u'qF'100 MeV. Nevertheless, the effect of the K
neutrinos on the effective neutrino mass is cumulative@6#
due to a sum of an infinite number of states, since each
state has either a tiny Majorana mass or a very suppre
mixing with the electron neutrinos. Therefore, we expect t
excluding this isolated region of KK-neutrino contribution
aroundqF will not alter quantitatively our results in a re
evant way.

We will now rely on Eq.~4.9! to estimate the effective
neutrino masŝ m&SA in different settings of 5-dimensiona
orbifold models discussed in Sec. II. To begin with, let
consider a simple orbifold model, with«Þ0 and «
Þ1/(2R). In addition, we consider the casea50; namely,
we take the brane to be located at the one of the two orbi
fixed points. Like the neutrino masses, the mixing-mat
elementsBen andBe,n can also be computed exactly@2#:

Ben5
1

N , Be,n5
1

N(n)
, ~4.11!

where the squares of the normalization factorsN and N(n)
are given by
11300
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N 2511 (
n52`

1`
m2

S «2mn1
n

RD 2 ,

N (n)
2 511 (

k52`

1`
m2

S «2m(n)1
k

RD 2 . ~4.12!

Applying complex integration methods for convergent in
nite sums, the squared normalization factorN 2 can be cal-
culated to give

N 2511
p2m2R2

sin2@pR~mn2«!#
511p2m2R21

mn
2

m2
.

~4.13!

In obtaining the last equality in Eq.~4.13!, we used the ei-
genvalue equation~2.21! for l5mn . From Eqs.~4.11! and
~4.13!, we immediately see that ifmR!1 andmn!m, it is
Ben'1 and hence the lightest neutrino state is predomina
left handed. For the calculation of the effective neutri
mass, we need

N (n)
2 511

p2m2R2

sin2@pR~m(n)2«!#
511p2m2R21

m(n)
2

m2

'

S n

R
1« D 2

m2
, ~4.14!

where the last approximate equality in Eq.~4.14! corre-
sponds to a largen. In Appendix B, we show that the KK
neutrino masses derived from Eq.~2.21! and the mixing-
matrix elements given in Eqs.~4.11! satisfy the sum rules
given by the identities~4.2! and ~4.3!.

Based on Eq.~4.9!, we will now perform an estimate o
the effective neutrino mass in the simple orbifold mod
mentioned above. Plugging the value ofBe,n51/N(n) into
Eq. ~4.9!, we may estimate the effective neutrino mass in
SA through the following steps:

^m&SA52m2 (
n5[qFR]

` S 1

«1
n

R

1
1

«2
n

R
D 1OS «m2R

qF
D

'm2RE
qFR

1`

dnS 1

n2«R
2

1

n1«RD
52m2R lnS qF2«

qF1« D
5OS «m2R

qF
D . ~4.15!

In arriving at the last equality in Eq.~4.15!, we approximated
the sum over the KK states by an integral, and used the
1-8
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that «/qF!1. Since 2«R&1, we can estimate that form
510 eV, ^m&SA&1026 eV, which is undetectably small.

The above large suppression of the effective neutr
mass^m&SA is a consequence of the very drastic cance
tions due to KK neutrinos with oppositeCP parities. How-
ever, we might be able to overcome this difficulty by arran
ing the oppositeCP-parity KK neutrinos to couple to the
electron andW boson with unequal strength. In fact, this
what happens in orbifold models automatically, if they50
brane is shifted toy5aÞ0. In this case, the mixing-matrix
elementsBen and Be,n are given by the inverse ofN and
N(n) , respectively; but now for the shifted brane,N(n) is
given by

N (n)
2 511m2 (

k52`

1` cos2S ka

R
2fhD

S «2m(n)1
k

RD 2 '

S n

R
1« D 2

m2cos2S na

R
2fhD ,

~4.16!

where the second approximate equality in Eq.~4.16! corre-
sponds to largen.

By analogy to Eq.~4.15!, we may compute the effectiv
Majorana-neutrino mass for the brane-shifted scenarioa
Þ0) as follows:

^m&SA'2m2RE
qFR

1`

dnS cos2S na

R
2fhD

n1«R

2

cos2S na

R
1fhD

n2«R
D

52sin~2fh!m2RE
qFR

MFRdn

n
sinS 2na

R D
1OS «m2R

qF
D . ~4.17!

In the second step, we have truncated the upper limit of
integral at the fundamental quantum gravity scaleMF . The
scaleMF represents a natural ultra-violet cut-off of the pro
lem, beyond of which the onset of string-threshold effects
expected to occur. The last result in Eq.~4.17! can now be
expressed in terms of the integral-sine function Si(x)
5*0

xdt(sint/t). Thus, the effective neutrino mass can
given by

^m&SA'2sin~2fh!m2R@Si~2aMF!2Si~2aqF!#

1OS «m2R

qF
D . ~4.18!

Notice that for a fixed given value ofMF , the analytic ex-
pression~4.18! for the effective neutrino mass goes smooth
to Eq. ~4.15! in the limit a→0, as it should be. In order tha
the prediction for neutrinoless double beta decay effects
11300
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the level reported recently@13#, we only need to havefh;
6p/4 and 1/MF!a&1/(2qF), i.e. the brane is slightly dis-
placed from its origin. For instance, ifa'1/(3qF), m
510 eV and 1/R5300 eV, we find that̂ m&SA is exactly at
the observable level, i.e.^m&SA;0.4 eV.

It is now interesting to give an estimate of the inver
effective neutrino masŝm21& in the orbifold model with a
shifted brane (aÞ0). The quantitŷ m21& can be approxi-
mately calculated as follows:

^m21&'m2R3E
qFR

1`

dnS cos2S na

R
2fhD

~n1«R!3

2

cos2S na

R
1fhD

~n2«R!3
D

5sin~2fh!m2R3E
qFR

1` dn

n3
sinS 2na

R D
1

3

2
cos~2fh!m2«R4E

qFR

1` dn

n4
sinS 2na

R D2
«m2R

2qF
3

.

~4.19!

The RHS of the last equality in Eq.~4.19! can be written
down in a lengthy expression in terms of the integral-si
integral-cosine and known trigonometric functions. For e
ample, forfh5p/4, ^m21& is given by

^m21&'2m2RFa2S Si~2aqF!2
p

2 D2
1

4qF
2

sin~2aqF!

2
a

2qF
cos~2aqF!G2

«m2R

2qF
3

. ~4.20!

For the specific model considered above, withm510 eV,
1/R5300 eV and a51/(3qF), we find that ^m21&
&1025 TeV21. Hence, the above exercise shows that
contribution from^m21& to the double beta decay amplitud
~4.5! is subdominant; it gets even more suppressed foa
!1/qF .

B. Numerical evaluation

To obtain realistic predictions for the double beta dec
observablêm&, one has to take into account the depende
of MGTF on the KK neutrino massesm(n) . To properly
implement thism(n) dependence in our extractions of th
effective Majorana masŝm& from the different nuclei, we
have used the general formula~4.6!, where the infinite sum
over n has been truncated atunmaxu5MFR, namely at the
quantum gravity scaleMF . Notice that the general formula
for ^m& in Eq. ~4.6! includes the contributions from the KK
neutrinos heavier thanqF , described by the inverse effectiv
neutrino masŝm21& in Eq. ~4.20!.
1-9
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TABLE I. QRPA estimates of the relevant combination of nuclear matrix elements,MGTF5MGT2MF , as a function of the KK neutrino
massm(n) .

m(n) ~MeV! MGTF(m(n))

76Ge 82Se 100Mo 116Cd

<1 4.33 4.03 4.86 3.29
10 4.34 4.04 4.81 3.29
102 3.08 2.82 3.31 2.18
103 1.4031021 1.2531021 1.6031021 9.3431022

104 1.3931023 1.2431023 1.6031023 9.2631024

105 1.3931025 1.2431025 1.6031025 9.2631026

106 1.3931027 1.2431027 1.6031027 9.2631028

107 1.3931029 1.2431029 1.6031029 9.26310210

m(n) ~MeV! MGTF(m(n))

128Te 130Te 136Xe 150Nd

<1 4.50 3.89 1.83 5.30
10 4.52 3.91 1.88 5.45
102 3.19 2.79 1.48 4.24
103 1.4631021 1.2931021 7.0731022 2.0231021

104 1.4631023 1.2831023 7.0431024 2.0231023

105 1.4631025 1.2831025 7.0531026 2.0231025

106 1.4631027 1.2831027 7.0531028 2.0231027

107 1.4631029 1.2831029 7.05310210 2.0231029
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In Table I we present numerical values for the differen
of the nuclear matrix elements,MGTF5MGT2MF , as a
function of the KK neutrino massm(n) . Our estimates are
obtained within the so-called quasiparticle random phase
proximation~QRPA! @24,25#. Here, we should note that th
numerical values for the nuclear matrix element of100Mo
exhibit some instability due to its sensitive dependence
the particle–particle couplinggPP within the context of the
QRPA. In addition, we should remark that in our numeric
evaluation of^m&, the nuclear matrix elementsMGTF have
been interpolated between the values given in Table I.

In Table II we show numerical values for the effectiv
Majorana-neutrino masŝm& as derived for different nucle
in a 5-dimensional brane-shifted model, withm510 eV,
1/R5300 eV, «51/(4R), fh52p/4 and MF51 TeV. In
addition, we have varied discretely the brane-shifting sc
1/a from 0.05 GeV up to values much larger thanMF . The
first column in Table II gives the predictions obtained in t
SA for the nuclear matrix elements. The SA is closely rela
to our approximative method followed above, leading to
sults that are in a very good agreement with Eq.~4.18!. Re-
markably enough, even the change of sign of^m&SA at 1/a
'0.1 GeV in Table II can be determined sufficiently acc
rately by analyzing the multiplicative expressionp/2
2Si(2aqF) in Eq. ~4.18!, which oscillates aroundp/2 @26#,
for 1/a&0.1 GeV. Analogous remarks can be made for
11300
e
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n
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inverse effective neutrino mass^m21& in Eq. ~4.20!.
As can be seen from Table II, the deviation between

SA and the one based on the general formula~4.6! is rather
significant ifa is close to 1/qF due to the non-trivial nuclea
matrix element effects mentioned above and due to hea
KK-neutrino effects coming from^m21&. However, for
smaller values ofa, i.e. for a&1/(3qF), the agreement be
tween the effective neutrino mass computed in the SA
the general formula~4.6! is fairly good. In this kinematic
regime, the inverse effective neutrino mass^m21& becomes
rather suppressed according to our discussion in Eq.~4.20!.
Our numerical estimates in the last column of Table II of
firm support of this last observation. Thus, the main con
bution to ^m& originates from KK neutrinos much lighte
than qF . Consequently, within the 5-dimensional bran
shifted model, we have numerically established a siza
value for ^m& in the presently explorable range 0.05–0.
eV. Finally, for very small values ofa, i.e. for a!1/MF , we
recover the undetectably small result~4.15! for the unshifted
branea50.

C. Šm‹ and the neutrino mass scale

Apart from explaining the recent excess in 0nbb decays,
the 5-dimensional model with a small but non-vanishi
shifted brane exhibits another very important property. T
1-10
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TABLE II. Numerical estimates of̂m& for different nuclei in a 5-dimensional brane-shifted model, withm510 eV, 1/R5300 eV, «
51/(4R), fh52p/4 and MF51 TeV. The first column exhibits the numerical values for^m& in the step approximation~SA! for the
nuclear matrix elements, while the last column shows the results for the inverse effective neutrino mass^m21&.

1/a ^m& ~eV! ^m21&

~GeV! SA 76Ge 82Se 100Mo 116Cd 128Te 130Te 136Xe 150Nd (TeV21)

0.05 20.062 0.009 0.010 0.016 0.012 0.009 0.008 20.004 20.004 6.231026

0.1 20.012 0.052 0.054 0.061 0.062 0.052 0.050 0.025 0.026 23.631026

0.2 0.208 0.096 0.100 0.109 0.114 0.097 0.094 0.058 0.061 21.331025

0.3 0.307 0.123 0.128 0.136 0.143 0.124 0.121 0.082 0.086 21.231025

1 0.457 0.271 0.275 0.280 0.287 0.272 0.269 0.241 0.243 25.731026

10 0.516 0.493 0.493 0.494 0.495 0.493 0.493 0.489 0.489 26.631027

102 0.515 0.513 26.731028

103 0.535 26.731028

104 0.066 26.9310210
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effective Majorana-neutrino mass^m& can be several order
of magnitude larger than the light neutrino massmn , for
certain choices of the parameters« and fh . To understand
this phenomenon, let us first consider the eigenvalue eq
tion ~2.27! for l5mn , written in the form

mn1 (
n52`

`
m(n)2

«1
n

R
2mn

50. ~4.21!

Notice that Eq.~4.21! constitutes an excellent and very pra
tical approximation of the neutrino-mass–mixing sum ru
when the smallmn dependence in the infinite sum over th
KK neutrino states is neglected and the approximate form
las ~4.4! and ~4.16! for the KK massesm(n) and mixing-
matrix elementsBe,n , along withBen51, are substituted in
Eq. ~4.3!. Then, the infinite sum over KK neutrino states c
be performed with the help of Eq.~2.28! for rational values
of a in pR units. Especially fora5pR/q with q being an
integer much larger than 1, i.e. for 1/MF!a&1/qF , the light
neutrino massmn is given by

mn'2pm2RFcos2fhcot~pR«!1
1

2
sin~2fh!G .

~4.22!

It is now easy to see that the light neutrino massmn can be
very suppressed for specific values offh and «. For in-
stance, one obvious choice would befh'2p/4 and «
'1/(4R). On the other hand, the effective neutrino ma
^m&SA is determined by the second sine-dependent term
Eq. ~4.22! @cf. ~4.18!#, which is induced by brane-shifting
effects. Unlike the suppressed light neutrino massmn , the
effective neutrino masŝm& can be sizable in the observab
range 0.05–0.84 eV. This loss of correlation between
11300
a-
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quantities ^m& and mn is a rather unique feature of ou
higher-dimensional brane-shifted scenario. As we will d
cuss in the next section, the above decorrelation prop
plays a key role in our model building of 5-dimension
brane-shifted scenarios that could explain the neutrino os
lation data.

V. ATMOSPHERIC AND SOLAR NEUTRINO DATA

Atmospheric and solar neutrino data@27–29#, together
with information from laboratory experiments, such as t
CHOOZ experiment@30#, are very crucial for a given higher
dimensional singlet-neutrino model to qualify as viable.
particular, the latest SNO results@28# appear to disfavor large
components of sterile neutrinos, indicating a preferen
among the different solutions to the solar and atmosph
neutrino puzzles for those involving transitions between
most active neutrinos.5 To account for this experimental in
dication, we assume that the compactification scale 1/R and
the lepton-number-violating bulk parameter« are much
larger than the KK Dirac mass termsm(n) in Eq. ~2.25!.

In the following, we shall explicitly demonstrate that ou
5-dimensional brane-shifted model with only one bulk ne
trino is able to fully explain the neutrino oscillation dat
Specifically, we will show that the preferred solar large m
ing angle~LMA ! and atmospheric solutions, which both r
quire largene-nm andnm-nt mixings, can be realized within
our 5-dimensional model. These particular solutions are
lowed, only if the differences of the squares of the lig
neutrino masses lie in the ranges:

5A recent study@31# seems to suggest that the active neutri
component in the solar neutrinos has to be larger than 86% ats
C.L. A loophole may exist for atmospheric neutrinos, see@32#.
1-11
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1.831023,Dmatm
2 @eV2#,4.031023,

2.031025,Dm(
2 @eV2#,2.031024, ~5.1!

with Dmatm
2 5mn3

2 2mn2

2 andDm(
2 5mn2

2 2mn1

2 . According to

the usual conventions, the physical light neutrino mas
mn1

, mn2
and mn3

are labeled in increasing hierarchical o

der, i.e.mn1
<mn2

<mn3
.

To start with, let us consider the weak basis in which
charged lepton mass matrix is diagonal. Then, in the th
generation brane-shifted model, the KK-Dirac Yukawa ter
are given by the 3-vectors

m(n)5S mecosS na

R
2feD

mmcosS na

R
2fmD

mtcosS na

R
2ftD

D , ~5.2!

where

ml5
v

A2
A~ h̄1

l !21~ h̄2
l !2, f l5tan21S h̄2

l

h̄1
l D 1

k0a

R
,

~5.3!

with l 5e,m,t. Given our assumption that«,1/R@ml , the
KK neutrinos can now be integrated out. Analogously w
Eq. ~2.27!, the effective light neutrino mass matrixM n can
be computed by

M n52 (
n52`

1` m(n)m(n)T

n

R
1«

. ~5.4!

Following the same line of steps as in Appendix A, one
able to analytically carry out the infinite sum in Eq.~5.4! for
the phenomenologically interesting case ofa5pR/q, with q
being an integer much larger than 1. In this limit, we obta
the novel trigonometric mass texture:

M l l 8
n

52pRmlml 8Fcosf lcosf l 8cot~pR«!

1
1

2
sin~f l1f l 8!G , ~5.5!

with l ,l 85e,m,t. The effective neutrino mass matrix~5.5!
consists of two terms:~i! the cosine-dependent term th
arises from the lepton-number-violating bulk massM ~or
equivalently«) and~ii ! the sine-dependent term which is du
to lepton-number violation in the effective Yukawa couplin
and is caused by slightly shifting the brane from the orbifo
fixed points. The occurrence of the second brane-shif
mass term is always ensured as long asa@1/MF . Without
the presence of this brane-shifting-induced term, the ef
tive neutrino mass matrix~5.5! is of rank 1, leading to two
11300
s

e
e-
s

s

g

c-

massless neutrinos. This last fact is very undesirable, a
would be very difficult to explain both solar and atmosphe
neutrino data with only one non-trivial difference of neutrin
masses in the frequently discussed scenario without b
shifting.

As has been discussed in Sec. IV, however, even a s
amount of brane shifting may induce sizable lepton-numb
violating Yukawa interactions. The latter generate bra
shifting mass terms that break the rank-1 structure of
effective neutrino mass matrixM n. The resultingM n in
Eq. ~5.5! exhibits a novel trigonometric structure that ca
predict hierarchical neutrinos with largenm –nt and nm –ne
mixings to explain the atmospheric and solar neutr
anomalies, along with a smallne–nt mixing as required by
the CHOOZ experiment@30#. At this point, it is important to
stress that the effective neutrino mass^m& entering the
0nbb-decay amplitude gets fully decoupled from th
neutrino-mass matrix elementM ee

n . According to our dis-
cussions in Sec. IV@cf. Eq. ~4.18!#, the effective neutrino
mass for the three-generation case is given by

^m&'2
1

2
sin~2fe!p~me!2RÞM ee

n . ~5.6!

It is important to recall again that unlikeM ee
n , KK neutrinos

heavier than the Fermi nuclear momentumqF do not contrib-
ute significantly to^m&, leading to the loss of correlation
between̂ m& andM ee

n . The latter is a distinctive feature o
the KK-neutrino dynamics. This de-correlation between^m&
and M ee

n permit us to consider the interesting caseu^m&u
@uM l l 8

n u, for all l ,l 85e,m,t. Such a realization enables u
to accommodate a sizable positive signal of 0nbb decays
together with the present neutrino oscillation data.

To realize the aforementioned hierarchyu^m&u@uM l l 8
n u,

we assume that all phasesf l are close to2p/4. For con-
creteness, we adopt the following scheme of phases:

f l52
p

4
1d l , pR«5

p

4
2d« , ~5.7!

whered l ,d«!1. Our choice of phases has been motiva
by the fact that the above-described decorrelation betw
^m& andM ee

n becomes fully operative in this case. To impl
ment the CHOOZ constraint in our model building, we r
quire thatM et

n 5M te
n 50. This last constraint implies that

2d«52de2dt . ~5.8!

Moreover, without loss of generality within our phas
scheme, we may takedm50. Under these assumptions, th
light neutrino-mass matrix takes on the simple form

M n5
pR

2 S me2~dt2de! memmdt 0

mmmedt mm2~de1dt! mmmtde

0 mtmmde mt2~de2dt!
D .

~5.9!

Let us now consider the following numerical example:
1-12
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dt5d, de52d,

mm

me
'1.468,

mt

me
'2.542.

~5.10!

This leads to the neutrino mass matrix

M n5d
pme2R

2 S 21 1.47 0

1.47 6.46 7.46

0 7.46 6.46
D . ~5.11!

Notice that all elements of the neutrino-mass matrixM n in
Eq. ~5.11! can be suppressed by choosing a small value
the factorizable parameterd. In our numerical example, th
neutrino mass matrix~5.11! can be diagonalized throug
nm-nt and ne-nm mixing angles close top/4, whereas the
ne-nt mixing angle is small, below 0.1. In addition, its ma
eigenvalues are approximately given by

~M n!diag'dpme2R~0,1,7!. ~5.12!

Assuming thatme510 eV and 1/R5300 eV for a successfu
interpretation of the recent excess in 0nbb decays, then it
should bed5(6 –9)31023 to accommodate the neutrino o
cillation data through the LMA solution. In particular, w
obtain the neutrino-mass differences:

Dmatm
2 '~224!31023 eV2, Dm(

2 '~428!31025 eV2.
~5.13!

These results are fully compatible with the currently p
ferred atmospheric and solar LMA solutions to the neutr
anomalies.

In our demonstrative analysis carried out in this secti
we have not attempted to fit the results of the Liquid Sc
tillator Neutrino Detector~LSND! as well@33#. In principle,
our brane-shifted 5-dimensional models are capable of
commodating the LSND results through active-sterile n
trino transitions. In this case, however, the lowest-lying K
singlet neutrinos should be relatively light. As a result, th
cannot be integrated out from the light neutrino spectru
thereby leading to a much more involved effective neutrin
mass matrix. A complete study of this issue, including p
sible constraints from the cooling of supernova SN 198
@8,34#, is beyond the scope of the present paper and ma
given elsewhere.

VI. CONCLUSIONS

We have studied the model-building constraints deriv
from the requirement that KK singlet neutrinos in theor
with large extra dimensions can give rise to a siza
0nbb-decay signal to the level of 0.4 eV reported recen
Our analysis has been focused on 5-dimensionalS1/Z2 orbi-
fold models with one sterile~singlet! neutrino in the bulk,
while the SM fields are considered to be localized on
3-brane. In our model building, we have also allowed
3-brane to be displaced from theS1/Z2 orbifold fixed points.
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Within this minimal 5-dimensional brane-shifted framewor
lepton-number violation can be introduced throu
Majorana-like bilinears, which may or may not arise fro
the Scherk–Schwarz mechanism, and through lept
number-violating Yukawa couplings. However, lepto
number-violating Yukawa couplings can be admitted in t
theory, only if the 3-brane is shifted from theS1/Z2 orbifold
fixed points. Apart from a possible stringy origin@20#, brane-
shifting might also be regarded as an effective result ow
to a non-trivial 5-dimensional profile of the Higgs partic
@35# and/or other SM fields@36,37# that live in different lo-
cations of a 3-brane with non-zero thickness which is c
tered at one of theS1/Z2 orbifold fixed points.

One major difficulty of the higher-dimensional theories
their generic prediction of a KK neutrino spectrum of a
proximately degenerate states with oppositeCP parities that
lead to exceedingly suppressed values for the effec
Majorana-neutrino masŝm&. Nevertheless, we have show
that within the 5-dimensional brane-shifted framework, t
KK neutrinos can couple to theW6 bosons with unequa
strength, thus avoiding the disastrousCP-parity cancellations
in the 0nbb-decay amplitude. In particular, the bran
shifting parametera can be determined from the requireme
that the effective Majorana mass^m& is in the observable
range@13#: 0.05–0.84 eV. In this way, we have found th
1/a has to be larger than the typical Fermi nuclear mom
tum qF5100 MeV and smaller than the quantum grav
scaleMF , or equivalently 1/MF(a&1/qF .

An important prediction of our 5-dimensional bran
shifted model is that the effective Majorana-neutrino ma
^m& and the scale of light neutrino masses can be comple
de-correlated for certain natural choices of the Majorana-
bilinear term« and the original 5-dimensional Yukawa cou
plingsh1

l andh2
l in Eq. ~2.4!. For example, if«'1/(4R) and

h1
l '2h2

l , we obtain light-neutrino masses that can be s
eral orders of magnitude smaller than^m&. Nevertheless, it is
worth mentioning that if future data did not substantiate
presently reported 0nbb excess, the above model-buildin
conditions would then need to be modified. Such a poss
modification would not jeopardize, though, the viability
our brane-shifted scenario. Indeed, if the upper limit on
effective neutrino mass became even lower and lower,
would imply that the above decorrelation property is less a
less necessary.

Another important prediction of the 5-dimensional bran
shifted model withonly onebulk sterile neutrino is that the
emerging effective light-neutrino mass matrix does no lon
possess the rank-1 form, as opposed to the brane-unsh
a50 case. As we have shown in Sec. V, the above proper
of the brane-shifted models are sufficient to explain, ev
with only one neutrino in the bulk, the present solar a
atmospheric neutrino data by means of oscillations of hie
chical neutrinos with largene-nm and maximalnm-nt mix-
ings. In particular, neutrino-mass textures can be constru
that utilize the currently preferred LMA solution, where th
ne-nt mixing is small in agreement with the CHOOZ expe
ment.

Although a sizable 0nbb-decay signal can be predicte
1-13
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within our brane-shifted 5-dimensional models, the abo
described decorrelation property between^m& and the actual
light neutrino masses suggests, however, that it is rather
likely that such a signal be accompanied by a correspond
signal in tritium beta-decay experiments. For example,
KATRIN project @38# has a sensitivity to active neutrin
masses larger than 0.35 eV at 95% C.L., and so it can o
probe the existence of light neutrinos much heavier th
those considered in our 5-dimensional models. Finally,
brane-shifted models under study also have the potentia
accommodate the LSND results by virtue of active-ste
neutrino oscillations. In this case, the lowest-lying KK
neutrino states will contribute to the effective light neutrin
mass matrix, giving rise to more involved mass textures
this context, it would be very interesting to investigate t
question whether a simple higher-dimensional model
counting for all the observed neutrino anomalies can be
tablished. We plan to address this interesting question in
near future.
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APPENDIX A: EIGENVALUE EQUATION

Starting from Eq.~2.27!, we will derive here the transcen
dental eigenvalue equation~2.28! for the simplest class o
brane-shiftings witha5pR/q, wherer 51 andq is an inte-
ger larger than 1, i.e.q>2. Then, the eigenvalue equatio
~2.27! can be equivalently written as

l5 (
l 50

q21

(
k52`

`
m(qk1 l )2

l2«2
qk1 l

R

5 (
l 50

q21

m( l )2 (
k52`

`
1

l2«2
qk1 l

R

, ~A1!

where we have used the periodicity property (m( l ))2

5(m(qk1 l ))2 in the second step of Eq.~A1!. In fact, it is this
last periodicity property of the KK-Yukawa terms that w
wish to exploit here to carry out analytically the infinite sum
in Eq. ~A1!, which has forced us to introduce the technic
constraint~2.23!, namely thata/(pR) is a rational number.
Now, the individuall-dependent infinite sums overk in Eq.
~A1! can be performed independently, using complex c
tour integration techniques. In this way, we obtain

l5
1

q
pm2R(

l 50

q21

cos2S fh2
lp

q D cotF1

q
pR~l2«!2

lp

q G .
~A2!
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Our next task is to carry out the summation overl in Eq.
~A2!. For this purpose, we express the RHS of Eq.~A2!
entirely in terms of sine and cosine functions by factori
out the common divisor, i.e.

l5
pm2R

q)
l 50

q21

sinS u

q
2

lp

q D (
l 50

q21

cos2S fh2
lp

q D

3cosS u

q
2

lp

q D )
m50

(mÞ l )

q21

sinS u

q
2

mp

q D , ~A3!

with u5pR(l2«). To further evaluate Eq.~A3!, we exploit
the following trigonometric identities:6

)
l 50

q21

sinS u

q
2

lp

q D5
~21!q21

2q21
sinu, ~A4!

(
l 50

q21

cosS u

q
2

lp

q D )
m50

(mÞ l )

q21

sinS u

q
2

mp

q D5
~21!q21

2q21
q cosu,

~A5!

(
l 50

q21

cosS 2fh2
2lp

q D cosS u

q
2

lp

q D )
m50

(mÞ l )

q21

sinS u

q
2

mp

q D
5

~21!q21

2q21
q cosS 2fh1

q22

q
u D . ~A6!

With the help of Eqs.~A4! and ~A5!, we arrive at the tran-
scendental eigenvalue equation

l5
pm2R

2
H cot@pR~l2«!#

1

cosF2fh1
q22

q
pR~l2«!G

sin@pR~l2«!#
J . ~A7!

If we replaceq with pR/a in Eq. ~A7!, we arrive after
simple trigonometric algebra at the transcendental eig
value equation~2.28!. Although we focused our attention o
the simplest class witha5pR/q, we should remark that ou
methodology described above can apply equally well to
most general case where the brane-shiftinga is any rational
numberr /q in pR units.

6The proof of these identities is rather lengthy and relies on
particular properties of theq roots of the unity, i.e. the roots of the
equationzq51. Specifically, we used the basic property of the u
roots that their sum and the sum of their products are zero, w
their total product is (21)q21.
1-14
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APPENDIX B: SUM RULES

In this appendix we will show that the KK-neutrin
masses determined by the roots of Eq.~2.21! and the mixing-
matrix elements given in Eq.~4.11! satisfy the sum rules
~4.2! and ~4.3!. For simplicity, we consider the casea50.
However, our considerations carry over very analogously
the casea5pR/qÞ0, whereq is an integer larger than 1.

Let us first consider~4.2! for l 5 l 85e. We will then
prove that

uBenu21 lim
N→`

(
n52N

N

uBe,nu251. ~B1!

Our proof will rely on Cauchy’s integral theorem. Thus, t
LHS of Eq. ~B1! can be expressed in terms of a compl
integral as follows:

uBenu21 lim
N→`

(
n52N

N

uBe,nu2

5
1

2p i
lim

N→`
R

CN

dzS 1

z2mn
1 (

n52N

N
1

z2m(n)
D

3
1

11p2m2R2/sin2@pR~z2«!#

5
1

2p i
lim

N→`
R

CN

dz
1

z2pm2R cot@pR~z2«!#
. ~B2!

In deriving the second equality in Eq.~B2!, we have noticed
that for z in the vicinity of the pole, e.g. forz'm(n) , it is

z2pm2R cot@pR~z2«!#

'~z2m(n)!H 11
p2m2R2

sin2@pR~z2«!#
J . ~B3!

Such a substitution is only valid under complex integratio
provided there are no singularities of the complex funct
cot@pR(z2«)# on the contourCN . For this purpose, we
choose our contours to be circles represented in the com
plane as

zN5

S N1
1

2Deiu

R
1«. ~B4!

Then, it can be shown that on the complex contoursz5zN ,
ucotpR(zN2«)u is bounded from above by a constant ind
pendent ofN. Thus, onCN the last integral in Eq.~B2! may
be successively computed as
11300
o

,
n

ex

-

1

2p i
lim

N→`
R

CN

dz
1

z2pm2R cot@pR~z2«!#

5
1

2p i
lim

N→`
E

0

2p

du
i ~zN2«!

zN2pm2R cotFpS N1
1

2DeiuG

511
1

2p
lim

N→`
E

0

2p

du

pm2R cotFpS N1
1

2DeiuG2«

zN2pm2R cotFpS N1
1

2DeiuG .

~B5!

The second term in the last equality of Eq.~B5! vanishes in
the limit N→` or equivalently whenzN is taken to infinity
in a discrete manner as prescribed by Eq.~B4!. Thus, the
complex integral in the last equality of Eq.~B2! is exactly 1,
which proves the unitarity sum rule~B1!.

In the remainder of the appendix, we will prove th
neutrino-mass-mixing sum rule:

Ben
2 mn1 lim

N→`
(

n52N

N

Be,n
2 m(n)50. ~B6!

In our proof, we will follow a path very analogous to the on
outlined above for showing Eq.~B1!. Thus, the LHS of Eq.
~B6! may be expressed in terms of a complex integral
follows:

Ben
2 mn1 lim

N→`
(

n52N

N

Be,n
2 m(n)

5
1

2p i
lim

N→`
R

CN

dz
z

z2pm2R cot@pR~z2«!#
.

~B7!

Evaluating the complex integral on the contoursCN defined
by Eq. ~B4! yields

1

2p i
lim

N→`
R

CN

dz
z

z2pm2R cot@pR~z2«!#

5
1

2p i
lim

N→`
E

0

2p

du

i ~zN2«!pm2R cotFpS N1
1

2DeiuG
zN2pm2R cotFpS N1

1

2DeiuG
5

1

2
m2R lim

N→`
H E

0

2p

du cotFpS N1
1

2DeiuG1O~1/zN!J .

~B8!

Similar to the second term in the last equality of Eq.~B8!,
which goes to zero forN→`, the first term vanishes as we
after integration overu. This can be readily seen by exploi
1-15
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ing, respectively, the periodic and antisymmetric properties of the integrand with respect tou and its argument:

E
0

2p

du cotFpS N1
1

2DeiuG5E
0

p

du cotFpS N1
1

2DeiuG1E
p

2p

du cotFpS N1
1

2DeiuG
5E

0

p

du cotFpS N1
1

2DeiuG1E
0

p

du cotFpS N1
1

2Dei (u1p)G
5E

0

p

du cotFpS N1
1

2DeiuG1E
0

p

du cotF2pS N1
1

2DeiuG
50. ~B9!

Consequently, the complex integral on the RHS of Eq.~B7! vanishes identically, q.e.d.
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~1996!; P. Hořava and E. Witten, Nucl. Phys.B460, 506
~1996!; B475, 94 ~1996!.

@2# K.R. Dienes, E. Dudas, and T. Gherghetta, Nucl. Phys.B557,
25 ~1999!.

@3# N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and J. Marc
Russell, Phys. Rev. D65, 024032~2002!.

@4# G. Dvali and A.Yu. Smirnov, Nucl. Phys.B563, 63 ~1999!.
@5# A. Pilaftsis, Phys. Rev. D60, 105023~1999!.
@6# A. Ioannisian and A. Pilaftsis, Phys. Rev. D62, 066001

~2000!; A.E. Faraggi and M. Pospelov, Phys. Lett. B458, 237
~1999!; G.C. McLaughlin and J.N. Ng, Phys. Rev. D63,
053002~2001!; K. Agashe and G.H. Wu, Phys. Lett. B498,
230 ~2001!; B. He, T.P. Cheng, and L.F. Li,ibid. 553, 277
~2003!.

@7# R.N. Mohapatra, S. Nandi, and A. Perez-Lorenzana, Ph
Lett. B 466, 115 ~1999!; R.N. Mohapatra and A. Perez
Lorenzana, Nucl. Phys.B576, 466 ~2000!; R. Barbieri, P.
Creminelli, and A. Strumia,ibid. B585, 28 ~2000!; Y. Gross-
man and M. Neubert, Phys. Lett. B474, 361 ~2000!; A. Ioan-
nisian and J.W.F. Valle, Phys. Rev. D63, 073002~2001!; D.O.
Caldwell, R.N. Mohapatra, and S.J. Yellin,ibid. 64, 073001
~2001!; K.R. Dienes and I. Sarcevic, Phys. Lett. B500, 133
~2001!; A. de Gouvea, G.F. Giudice, A. Strumia, and K. Tob
Nucl. Phys.B623, 395 ~2002!.

@8# A. Lukas, P. Ramond, A. Romanino, and G.G. Ross, J. H
Energy Phys.04, 010 ~2001!.

@9# H. Davoudiasl, P. Langacker, and M. Perelstein, Phys. Rev
65, 105015~2002!.

@10# M. Doi, T. Kotani, and E. Takasugi, Suppl. Prog. Theor. Ph
83, 1 ~1985!.

@11# For example, see the textbook by K. Grotz and H.V. Klapd
The Weak Interaction in Nuclear, Particle and Astrophys
~Adam Hilger, Bristol, 1989!.

@12# H.V. Klapdor-Kleingrothaus,Sixty Years of Double Beta Deca
11300
s.

h

D

.

,

~World Scientific, Singapore, 2001!.
@13# H.V. Klapdor-Kleingrothaus, A. Dietz, H.L. Harney, and I.V

Krivosheina, Mod. Phys. Lett. A16, 2409 ~2001!; H.V.
Klapdor-Kleingrothaus, A. Dietz, and I. Krivosheina, Part. N
clei 110, 57 ~2002!; Found. Phys.32, 1181~2002!.

@14# H.V. Klapdor-Kleingrothaus and U. Sarkar, Mod. Phys. Lett.
16, 2469 ~2001!; H.V. Klapdor-Kleingrothaus, H. Pa¨s, and
A.Yu. Smirnov, Phys. Rev. D 63, 073005 ~2001!;
hep-ph/0103076; W. Rodejohann, Nucl. Phys.B597, 110
~2001!; J. Phys. G28, 1477~2002!; H. Minakata and H. Sug-
iyama, Phys. Lett. B532, 275 ~2002!; S. Pascoli and S.T. Pet
cov, ibid. 544, 239 ~2002!; H. Nunokawa, W.-J. Teves, and R
Zukanovich Funchal, Phys. Rev. D66, 093010~2002!.

@15# R.N. Mohapatra, A. Perez-Lorenzana, and C.A. de S. Pi
Phys. Lett. B491, 143 ~2000!.

@16# S.J. Huber and Q. Shafi, Phys. Lett. B544, 295 ~2002!.
@17# J. Scherk and J.H. Schwarz, Phys. Lett.82B, 60 ~1979!; Nucl.

Phys.B153, 61 ~1979!; P. Fayet, Phys. Lett.159B, 121~1985!;
Nucl. Phys.B263, 649 ~1986!.

@18# L. Wolfenstein, Phys. Rev. D17, 2369 ~1978!; S.P. Mikheev
and A.Y. Smirnov, Yad. Fiz.42, 1441 ~1985! @Sov. J. Nucl.
Phys.42, 913 ~1985!#.

@19# A. Delgado, G. von Gersdorff, and M. Quiros, J. High Ener
Phys.12, 002 ~2002!; see also J.A. Bagger, F. Feruglio, and
Zwirner, Phys. Rev. Lett.88, 101601~2002!.

@20# For example, see, E.G. Gimon and J. Polchinski, Phys. Re
54, 1667~1996!.

@21# P.H. Chankowski and S. Pokorski, Int. J. Mod. Phys. A17, 575
~2002!.

@22# See Ioannisian and Pilaftsis@6#.
@23# M. Hirsch and H.V. Klapdor-Kleingrothaus, inProceedings of

the Double Beta Decay and Related Topics, Trento, 1995
~World Scientific, Singapore, 1996!, p. 175.

@24# K. Muto, E. Bender, and H.V. Klapdor, Z. Phys. A334, 187
~1989!.

@25# A. Staudt, K. Muto, and H.V. Klapdor-Kleingrothaus, Euro
phys. Lett.13, 31 ~1990!; M. Hirsch, K. Muto, T. Oda, and
H.V. Klapdor-Kleingrothaus, Z. Phys. A347, 151 ~1994!.

@26# See, e.g.,Handbook of Mathematical Functions, edited by M.
Abramowitz and I.A. Stegun~Verlag Harri Deutsch, Frankfurt
1984!, p. 60.
1-16



u

K

.
D

NEUTRINOLESS DOUBLE BETA DECAY FROM SINGLET . . . PHYSICAL REVIEW D 67, 113001 ~2003!
@27# Super-Kamiokande Collaboration, Y. Fukudaet al., Phys. Rev.
Lett. 81, 1562~1998!; Phys. Lett. B433, 9 ~1998!; S. Fukuda
et al., Phys. Rev. Lett.85, 3999~2000!.

@28# SNO Collaboration, Q.R. Ahmadet al., Phys. Rev. Lett.87,
071301~2001!; 89, 011301~2002!.

@29# G. Altarelli and F. Feruglio, Phys. Rep.320, 295 ~1999!;
hep-ph/0206077; J.N. Bahcall, P.I. Krastev, and A. Y
Smirnov, J. High Energy Phys.05, 015 ~2001!; G.L. Fogli, E.
Lisi, A. Marrone, and A. Palazzo, Phys. Rev. D64, 093007
~2001!; A. Bandyopadhyay, S. Choubey, S. Goswami, and
Kar, Phys. Lett. B 519, 83 ~2001!; J.N. Bahcall, M.C.
Gonzalez-Garcia, and C. Pena-Garay, J. High Energy Phys07,
054 ~2002!; P.C. de Holanda and A.Yu. Smirnov, Phys. Rev.
66, 113005~2002!; M. Maltoni, T. Schwetz, M.A. Tortola, and
J.W. Valle, Nucl. Phys. B~Proc. Suppl.! 114, 203 ~2003!; M.
Maltoni, T. Schwetz, and J.W. Valle, Phys. Rev. D67, 093003
~2003!.

@30# CHOOZ Collaboration, M. Apollonioet al., Phys. Lett. B466,
415 ~1999!.

@31# P.C. de Holanda and A.Yu. Smirnov, hep-ph/0211264.
11300
.

.

@32# H. Päs, L. Song, and T.J. Weiler, Phys. Rev. D67, 073019
~2003!.

@33# LSND Collaboration, C. Athanasopouloset al., Phys. Rev.
Lett. 77, 3082~1996!; 81, 1774~1998!.

@34# S. Hannestad, P. Keranen, and F. Sannino, Phys. Rev. D66,
045002 ~2002!; G. Cacciapaglia, M. Cirelli, Y. Lin, and A.
Romanino,ibid. 67, 053001~2003!.

@35# V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett.125B, 136
~1983!.

@36# N. Arkani-Hamed and M. Schmaltz, Phys. Rev. D61, 033005
~2000!; E.A. Mirabelli and M. Schmaltz,ibid. 61, 113011
~2000!; G. Dvali and M. Shifman, Phys. Lett. B475, 295
~2000!; G.C. Branco, A. de Gouvea, and M.N. Rebelo,ibid.
506, 115 ~2001!; M. Raidal and A. Strumia,ibid. 553, 72
~2003!.

@37# H.V. Klapdor-Kleingrothaus and U. Sarkar, Phys. Lett. B541,
332 ~2002!.

@38# KATRIN Collaboration, C. Weinheimeret al., Prog. Part.
Nucl. Phys.48, 141 ~2002!.
1-17


