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Large N dynamics in QED in a magnetic field
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The expression for the dynamical mass of fermions in QED in a magnetic field is obtained for a large
number of the fermion flavorN in the framework of 1/N expansion. The existence of a threshold valueNthr ,
dividing the theories with essentially different dynamics, is established. For the number of flavorsN!Nthr , the
dynamical mass is very sensitive to the value of the coupling constantab , related to the magnetic scalem
5AueBu. For N of the order ofNthr or larger, a dynamics similar to that in the Nambu–Jona-Lasinio model
with a cutoff of the order ofAueBu and the dimensional coupling constantG;1/(NueBu) takes place. In this
case, the value of the dynamical mass is essentiallyab independent~the dynamics with an infrared stable fixed

point!. The value ofNthr separates a weak coupling dynamics~with ãb[Nab!1) from a strong coupling one

~with ãb*1) and is of the order of 1/ab .
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I. INTRODUCTION

The phenomenon of the magnetic catalysis of dynam
symmetry breaking was established as a universal phen
enon in a wide class of (211)- and (311)-dimensional
relativistic models in Refs.@1,2# ~for earlier consideration o
dynamical symmetry breaking in a magnetic field see R
@3,4#!. The general result states that a constant magnetic
B leads to the generation of a fermion dynamical mass~a gap
in a one-particle energy spectrum! even at the weakest attrac
tive interaction between fermions. The essence of this ef
is the dimensional reductionD→D22 in the dynamics of
fermion pairing in a magnetic field. At weak coupling, th
dynamics is dominated by the lowest Landau level~LLL !
which is essentiallyD22 dimensional@1,2#. The applica-
tions of this effect have been considered both in conden
matter physics@5,6# and cosmology~for reviews see Ref.
@7#!.

The phenomenon of the magnetic catalysis was studie
gauge theories, in particular, in QED@8–14# and in QCD
@15–18#. In Ref. @9#, the present authors derived a
asymptotic expression for the fermion dynamical mass in
chiral limit in QED, reliable for a weak couplingab and for
the number of charged fermionsN being not too large~here
ab is the running coupling related to the magnetic scalem2

;ueBu). Specifically, when the parameterãb[Nab is small,
i.e., ãb!1, the fermion dynamical mass is@9#

mdyn5C1AueBuF~ ãb!expF2
pN

ãbln~C2 /ãb!
G , ~1!

*On leave of absence from Bogolyubov Institute for Theoreti
Physics, 03143, Kiev, Ukraine.
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whereF(ãb).(ãb)1/3, and the constantsC1 and C2 are of
order one.

In this paper, we will extend the analysis of Ref.@9# to the
case with a large couplingãb . As will be discussed below
such a strong coupling regime can be put under control
large values ofN in the framework of 1/N expansion. It will
be shown that the expression for the dynamical mass in
dynamical regime is essentially different from that in Eq.~1!
and it reads

mdyn.AueBuexp~2N!. ~2!

It is noticeable that this expression ofmdyn is ab indepen-
dent. As will be shown below, the origin of such a drama
change of the form of the dynamical mass is intimately co
nected with the dynamics of the screening of the pho
interactions in a magnetic field in the region of momen
relevant for the chiral symmetry breaking dynamics,mdyn

2

!uk2u!ueBu. In this region, photons acquire a massMg of
order ANabueBu. More rigorously, Mg is the mass of a
fermion-antifermion composite state coupled to the pho
field. The appearance of such mass resembles the ps
Higgs effect in (111)-dimensionalmassiveQED ~massive
Schwinger model! @19# ~see below!. The crossover from the
dynamics corresponding to expression~1! to that correspond-
ing to expression~2! occurs for such a threshold value o
Nthr when the massMg;ANthrabueBu becomes of order
AueBu, i.e., for ãb

thr[Nthrab;1.
Let us consider this point in more detail. There are gen

cally three different scales,AueBu, Mg , and mdyn , in this
problem. These scales correspond to the following four,
namically different, energy regions. The first one is the
gion with the energy scale above the magnetic scaleAueBu.
In that region, the dynamics is essentially the same as
l
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QED without a magnetic field. In particular, the running co
pling increases logarithmically with increasing the ener
scale there. The second region is that with the energy s
below the magnetic scaleAueBu but larger than the photon
massMg . In that region the photon can be considered
approximately massless. The next, third, region is the reg
with the energy scale less than the photon massMg but
larger than the fermion massmdyn . In this region, the photon
is heavy, and the interaction is similar to that in the Namb
Jona-Lasinio~NJL! model ~with the current-current interac
tion! in a magnetic field. The important point is that ju
those third and second regions are relevant for spontan
chiral symmetry breaking in this problem. At last, the four
region is the region with the energy scaleE less than the
fermion massmdyn . In that region, fermions decouple an
their interaction is suppressed by powers of the ra
E/mdyn .

Now, whenN grows up toNthr;1/ab , the photon mass
Mg becomes of the order of the scaleAueBu and, therefore,
the third region, betweenMg andAueBu, shrinks and disap-
pears. Thus forN of order Nthr or larger, the dynamics o
spontaneous chiral symmetry breaking is solely provided
the second region, through the interaction with a heavy p
ton. As a result, the dynamics becomes similar to that in
NJL model in a magnetic field with cutoffAueBu and the
dimensional coupling constantG.ab /Mg

2;1/NueBu. This
implies that this dynamics isab independent and, therefore
corresponds to an infrared stable fixed point. It also expla
the origin of the threshold valueNthr;1/ab . In the rest of
the paper, we will derive expression~2! and justify this quali-
tative dynamical picture.

II. MAGNETIC CATALYSIS IN QED

We begin by considering the Schwinger-Dyson~SD or
gap! equation for the fermion propagator. It has the follo
ing form:

G21~x,y!5S21~x,y!14pabgm

3E G~x,z!Gn~z,y,z8!Dnm~z8,x!d4zd4z8,

~3!

where S(x,y) and G(x,y) are the bare and full fermion
propagators in an external magnetic field,Dnm(x,y) is the
full photon propagator andGn(x,y,z) is the full amputated
vertex function.

Let us first consider the weak coupling dynamics (ab
!1) with the number of fermion flavorsN of order one. In
this case, one might think that the rainbow~ladder! approxi-
mation is reliable in this problem. However, this is not t
case. Because of the (111)-dimensional form of the fer-
mion propagator in the LLL approximation, there are r
evant higher order contributions@8,9#. In particular, there is a
large contribution of fermions to the polarization operat
Fortunately, one can solve this problem@9#. Let us discuss
this in more detail.
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First of all, one can show that the dynamics of t
fermion-antifermion pairing is mainly induced in the regio
of momentak much less thanAueBu and much larger than the
dynamical massmdyn , i.e., in the the second and third sca
regions discussed in the Introduction. In particular, this i
plies that the magnetic scaleueBu yields a dynamical ultra-
violet cutoff in this problem.

The important ingredient of this dynamics is a large co
tribution of fermions to the polarization operator. It is larg
because of an~essentially! (111)-dimensional form of the
fermion propagator in a strong magnetic field. Its expli
form in the one-loop approximation is@9#:

P mn.
abN

3p
~ki

mki
n2ki

2gi
mn!

ueBu

mdyn
2

, ~4!

for uki
2u!mdyn

2 , and

P mn.2
2abN

p
~ki

mki
n2ki

2gi
mn!

ueBu

ki
2

, ~5!

for mdyn
2 !uki

2u!ueBu, where gi
mn[diag(1,0,0,21) is the

projector onto the longitudinal subspace, andki
m[gi

mnkn

~note that the magnetic field is in thex3 direction!. Similarly,
we introduce the orthogonal projectorg'

mn[gmn2gi
mn

5diag(0,21,21,0) andk'
m[g'

mnkn that we shall use below
Notice that fermions in a strong magnetic field do not cou
to the transverse subspace spanned byg'

mn and k'
m . This is

because in a strong magnetic field only the fermions from
LLL matter and they couple only to the longitudinal comp
nents of the photon field. The latter property follows fro
the fact that spins of the LLL fermions are polarized alo
the magnetic field@8#.

The expressions~4! and ~5! coincide with those for the
polarization operator in the massive~111!-dimensional
QED, QED111 ~Schwinger model! @19# if the parameter
2abueBu here is replaced by the dimensional couplinge1

2 of
QED111. As in the Schwinger model, Eq.~5! implies that
there is a massive resonance in theki

mki
n2ki

2gi
mn component

of the photon propagator. Its mass is

Mg
25

2Nab

p
ueBu. ~6!

This is reminiscent of the pseudo Higgs effect in the
11)-dimensional massive QED. It is not the genuine Hig
effect because there is no complete screening of the ele
charge in the infrared region withuki

2u!mdyn
2 . This can be

seen clearly from Eq.~4!. Nevertheless, the pseudo Higg
effect is manifested in creating a massive resonance and
resonance provides the dominant forces leading to ch
symmetry breaking.

Now, the main points of the analysis of the weak coupli
dynamics in QED in a magnetic field are@9#: ~i! the so called
improved rainbow approximation is reliable in this proble
provided a special nonlocal gauge is used, and~ii ! the rel-
evant region of momenta in this problem ismdyn

2 !uk2u
!ueBu. We recall that in the improved rainbow approxim
3-2
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tion the vertexGn(x,y,z) is taken to be bare and the photo
propagator is taken in the one-loop approximation. Fo
weak coupling dynamics, this approximation is reliable sin
in that special gauge the loop contributions in the vertex
suppressed by powers ofab . @It is appropriate to call this
approximation the ‘‘strong-magnetic-field-loop improve
rainbow approximation.’’ It is an analog of the hard-dens
loop improved rainbow approximation in QED or QCD wi
a nonzero baryon density@20#.# This leads us to the expres
sion ~1! for the dynamical gap.

Let us now turn to the case with a large number of f
mion flavorsN. The crucial point is that the improved rain
bow approximation is still reliable in this case. The essen
difference, however, is that now one has to consider not
conventional loop expansion~with a smallab) but the 1/N
expansion~with a small 1/N). It is well known @21# that in
this expansion the coupling constantãb[Nab has to be kept
fixed asN→`. A great advantage of the 1/N expansion is
that now one can treat the dynamics with an arbitrary va
of ãb : it could be small (ãb!1), intermediate (ãb;1), or
large (ãb@1). Indeed, independently of the value ofãb , the
loop corrections in the vertex are suppressed by power
1/N and, therefore, the improved rainbow approximation
indeed reliable for largeN.

Let us now proceed to the analysis of the SD equation
the dynamical mass of fermions in QED in a magnetic fi
for a large number of flavorsN. In the improved rainbow
approximation, the SD equation reads in Euclidean sp
@see Eq.~54! in Ref. @9##

B~p2!5
ab

2p2E d2qB~q2!

q21mdyn
2 E

0

` dx exp~2x/2ueBu!

x1~q2p!21Mg
2

, ~7!

where B(q2) is the fermion mass function and the tw
dimensional vectorq is q5(q4 ,q3) with q452 iq0.

As we mentioned in the Introduction, in the limit of sma
coupling constantãb , the above SD equation was solved
Ref. @9#, using numerical as well as approximate analyti
methods. The result for the dynamical mass of fermions
quoted in Eq.~1!. Here we would like to comment on th
nature of the interaction, provided by photons, in this we
coupling regime. One could easily check that the domin
interaction is provided by the photons with the~‘‘longitudi-
nal’’ ! momenta in the following range:mdyn

2 &(q2p)2

&ueBu. Then, by noticing that the photon mass also lies
the same range of momenta, i.e.,mdyn

2 !Mg
2!ueBu, one finds

that the degree of importance of the photon mass is chan
when the values of momenta are sweeping the relevant ra
of momenta. While in the near-infrared region withmdyn

2

&(q2p)2&Mg
2 ~the third region, in the nomenclature of In

troduction! the interaction is local with a good precision,
becomes essentially nonlocal in the intermediate range
momenta whereMg

2&(q2p)2&ueBu ~the second region in
that nomenclature!.

In the opposite limit,ãb*1, the structure of the SD equa
tion ~7! considerably simplifies. The simplification come
due to the new hierarchy of scales,ueBu&Mg

2 @see Eq.~6!#.
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From physical point of view, this hierarchy means that t
photon mass is so large that the interaction leading to
mion pairing is essentially local. Therefore, by neglecti
(q2p)2 term in the denominator of the second integral
the right hand side of Eq.~7!, we derive an approximate
algebraic form of the gap equation that works rather wel
large values ofãb ,

2
ãb

2pN
expS ãb

p
DEiS 2

ãb

p
D ln

ueBu

m2
51, ~8!

where Ei(z) is the exponential integral function. By makin
use of the asymptotic expansion of the exponential integ
function at largeãb , this equation is further simplified, an
the following result for the dynamical mass of fermions
obtained:

mdyn.AueBuexp~2N!, for ãb@1. ~9!

Notice that this regime with largeãb is qualitatively the
same as in the NJL model with the cutoff of orderueBu and
the dimensional coupling constant G.ab /Mg

2

5p/(2NueBu).
Therefore our analysis shows that there are two qua

tively different regimes of dynamics of spontaneous symm
try breaking in QED in a magnetic field at large number
flavors. The first of them, which develops forãb!1, is es-
sentially the same as the weakly coupled regime with a sm
number of fermion flavorsN. The other limiting case appear
when ãb*1, and it is characterized by pairing dynami
governed by an almost local interaction. In terms of the nu
ber of fermion flavors, these two regimes occur forN
!1/ab and forN*1/ab , respectively.

III. CONCLUSION

QED in an external magnetic field yields an example o
rich dynamics. It is important that this dynamics can be tak
under control both for a weak coupling constantãb with N of
order one and for an arbitrary value ofãb when N@1. In
accordance with the general analysis of Refs.@1,2#, the phe-
nomenon of the magnetic catalysis in QED is universal,
though its dynamics varies dramatically with increasingN.

In this paper we did not discuss the dynamical regi
with a strong coupling constantãb andN of order one~genu-
ine strong coupling regime!. Although in this case the dy
namics does not admit a controllable approximation, o
should expect that spontaneous chiral symmetry breakin
this regime takes place even without an external magn
field @22#. An external magnetic field should presumably e
hance the value of the dynamical mass for fermions, a
happens for example in the supercritical phase of the N
model ~see Ref.@2# and the second paper in Ref.@8#!.
3-3
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