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Strings in the Ramond-Ramond plane wave background at finite temperature

Leopoldo A. Pando Zayas
Michigan Center for Theoretical Physics, Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1120
and School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540

Diana Vamah
Department of Physics, Princeton University, Princeton, New Jersey 08544
(Received 7 January 2003; published 27 May 2003

We calculate the thermal partition function in the canonical ensemble for type [IB superstrings in the plane
wave background with a constant null RR five-form. The Hagedorn temperature is found to be higher than the
corresponding value for strings in flat space. In the limit corresponding to the weakly coupled field theory we
find that the Hagedorn temperature is pushed to infinity. The key property of strings in the plane wave
background under investigation on which our result relies is that the effective mass of the bosonic and
fermionic coordinates in the light-cone gauge is proportional to the momepturithe free energy is finite as
the Hagedorn temperature is approached from below, suggesting a possible phase transition.
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I. INTRODUCTION AND SUMMARY (N") match precisely the string theory prediction which is
reliable at strong couplinfg]. This provides an example of
The AdS conformal field theoryCFT) correspondence smooth interpolation between the weak and strong coupling
has given a concrete realization of the connection betweefegimes of a sector ok'=4 SYM theory. Additional explo-
gauge theories and string theory in the context\Gf4 su-  ration of more complicated observables was presentf@l]in
persymmetric Yang-Mills and type IIB string theory on In the context of the Penrose limit of Ag8 S°, it is very
AdS;x S° [1]. One of the immediate implications of the cor- natural to pose a similar question about the nonzero tempera-
respondence, pointed out by Witten [il], is the relation ture correspondence. The present situation is very peculiar,
between the corresponding theories at nonzero temperaturigewever. An important ingredient introduced in the analysis
Namely, it was conjectured that a direct relation exists beof [2] is the consideration of all backgrounds with the same
tween a nonzero temperature field theory and the properlgsymptotic behavior. In the concrete case6£4 SYM
thermalized supergravity background. This correspondencgeory this implies the need to consider at least thermalized
was effectively anticipated in a series of papg3$ A re-  AdS; and the Schwarzschild-AdS black hole. The inclusion
markable feature of the nonzero temperature correspondengg these two backgrounds implies the presence of Hawking-
is that it involves nonsupersymmetric theories on both sidepage phase transitions. The question of the proper thermali-
and it is therefore a more dynamical connection than theation of the plane wave background is ambiguous. More-
usual zero-temperature correspondence. over, the Penrose limit of the Schwarzschild-AdS black hole
Recently, Berenstein, Maldacena, and Nast8N) [4]  does not seem to naturally determine a horizon and therefore
put a new twist on the AdS/CFT correspondence and proit lacks the notion of temperatuf&0]. Thus, the supergravity
posed a gauge theory interpretation of the PenroseeGu approach seems to be at least not straightforward. On the
limit of AdS5x S° [5]. The type IIB maximally supersym- other hand, the fact that string theory on the plane wave can
metric plane wave background with a constant null Ramondbe quantized in the light-cone gauge gives us the possibility

Ramond(RR) five-form resulting from the limit is of exploring some of the corresponding thermodynamic
_ _ properties.
ds?=—2dx"dx™ — p2xx' (dx™)?+dxdx, Strings in flat space exhibit a Hagedorn density of states
(1.)  p(M)=M"2 expOM), with a andb constants characterizing
F 1237 F 15675~ 2. the various string models. Given the exponential growth in

the density of states, the theory cannot be defined above a
In this limit a particular sector ofV=4 super Yang-Mills critical temperaturd ,~ 1/(Isb). This behavior has inspired
(SYM) theory survives in the gauge theory side while thea lot of speculations; one analogy that is frequently made is
string theory is solvable in the light-cone gaudge7]. One  between the Hagedorn transition of strings and the
particularly interesting observation that follows from the confinement/deconfinement phase transition of QCD. It is
study of BMN operators is that certain quantities, such as theatural to return to this question within the context of the
dimensions of the BMN operators, when calculated usingBMN limit of N=4 SYM theory since it provides an ex-
perturbative gauge theory in the effective 't Hooft coupling ample of gauge/string relation on one side of which we have
an exactly solvable string theory.
At first sight it seems very plausible that the high-
*Email address: Ipandoz@ias.edu temperature observables of string theory in the plane wave
"Email address: dvaman@feynman.princeton.edu background have to be essentially the same as in flat space.
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An intuitive way to think about this is by using the fact that The paper is organized as follows. Section Il contains a
ultimately the main contribution to high temperature effectsshort review of the canonical ensemble for strings in the
comes from the behavior of highly excited strings. Adding alight-cone gauge. Section Ill contains the essential ingredi-
mass term(m) to the bosons does not seem to be a strongnts in the calculation of the thermal partition function for
enough modification since for any that we have for large the Green-SchwarzG9) strings in the plane wave back-
enough excitation levels, the expression for the frequen- ground. Throughout Sec. Ill we make explicit how our re-
cies vn“+m< will be better and better approximated by the sults generalize those for GS strings in flat space. In Sec. IV
flat space expressiom. However, a key property of strings we assemble all the ingredients and discuss the two natural
in the plane wave background that invalidates the above redimiting cases: flat spaceul s—0) and the weak field theory
soning is that in the light-cone gauge the mass parameter {gtls—) and discuss the thermodynamic quantities of in-

not constant but p* dependentm=2wa’up®. We will  terest(free energy and specific h¢at

show that this explicit dependence @ when properly

taken into consideration modifies the modular properties of Il. REVIEW OF THE CANONICAL ENSEMBLE

the partition function in a crucial way and in particular is OF STRINGS IN LIGHT-CONE

responsible for the Hagedorn temperature being higher than . ) ]

the corresponding value for strings in flat space. Since in the following sections we need to address the

To make the connection to the BMN sector more preciséhermal properties of s_trings whose action is known only in
recall the following relations between the string and thethe light-cone gauge-fixed form, and therefore a covariant
gauge theory quantitiesca’pt=J/\YN, 2p u=A—1J treatment is not available, we begin with a brief review of the

whereJ is theR charge A is the conformal dimension, and ~ ¢&nonical ensemble of light-cone string®1,12. As ex-
is the 't Hooft coupling. The BMN sector is singled out by pIam_ed in [11]_, the finite temperature one-string partition
considering operators with fixed" and finitep~. Having ~ function is defined by

fixed p* means considering operators whoRecharge J
grows as\N as N—o. We, by integrating ovep™, are
forced to effectively consider a larger sector than the BMN
sector. This fact obscures the direct relevance of our strin
calﬁgg;gg ;c;riégethgeatj]gﬁélhgﬁfri)éusl;?ees. associated with defin_being the [ight-cone Hamiltonian. Thus the partition function
ing thermodynamics in gravitational backgrounds, in this pa-Can be written as
per we compute the thermal partition function of the type 11B
supe_rstring in the plane wave bapkground with constant null Zl(B)=|sf dp*e*ﬁp+z|c(ﬂlp+). (2.2)

RR five-form. Moreover, we restrict ourselves to the leading

genus one contribution to the thermal partition function. We, . - L

pay special attention to the Hagedorn temperature which h <or open strings, the part!uon functpn IS evaluated Sver a
now a parametric dependence an We find that foru#0 cylindrical worldsheet, with periodic time~t+B/p™,

s . while for closed strings we must additionally impose the
the He}gedorn temperature is higher than the CorreSpondlr\\gvel-matching constrgint' equal momentum }éarrigd by the
value in flat space i

left and right oscillators. This is usually done by means of a
Lagrange multiplier,

Z,(B)=Tre PP'=Tre AP +P), 2.

here B is the inverse temperatur®*|®)=p™|®) is the
ght-cone momentum, andl~|®)=1/p* (H,.|®)) with H,,

B

- —16myo(uBn) + 16wy wBu) =0, (1.2
2Ta Zl(ﬁ): |Sf dp+ f d)\e—ﬁp+Tr e_(B/p+)HIc+27i>‘(NL_NR)_
wherey, and 4, are the zero-point energies of integer and 2.3
half-integer moded massive oscillators, respectively. In th
limit uls—0, the first correction to the flat space value of
the Hagedorn temperaturelig~ 1/27 s+ 4. In the “weak
field theory limit” (uls—<0) we find that the Hagedorn tem-
perature is pushed to infinity. We also provide an approxi
mate expression for the free energy near the Hagedorn te
perature assuming that the main contribution comes from th
one-string sector. A saddle point evaluation shows that the
free energy is finite as we approach the Hagedorn tempera- z|c=f DX e I1*ZLUX@] (2.4
ture from below. Therefore a phase transition could take

place afT ;= 1/8,, . Given that in the canonical ensemble the
energy fluctuations are notoriously large neaily, the an-
swer to the true naturdimiting or phase transitionof the
Hagedorn temperature is held by a complementary picture to
the one presented here, namely by the microcanonical en- =T+ iTy= N B
semble. 2m7p

From the point of view of the light-cone partition function,
the effect of the angla is to twist the ends of the cylinder
before identifying them.

Another useful way to approach the partition function is
by way of the path integral formalism, with the light-cone
artition function given by

and where the worldsheet action is integrated over a tbrus
with modular parameter

(2.5

T
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One of the advantages of the path integral approach is that it Ill. PARTITION FUNCTION OF GS STRINGS
makes the modular properties of the partition function mani- IN THE pp-WAVE BACKGROUND
fest. We will repeatedly exploit this fact in the following

The most straightforward way to obtain the partition func-
tion is through the Hamiltonian. The light-cone Hamiltonian
of the first-quantized GS type IIB string in the plane wave
background with constant null RR five-form background is
given by[6,7]

sections.

Having defined the one-string partition function it is natu-
ral to define the partition function for a gas of strings at
constant temperaturécanonical ensemble The partition
function for a gas of strings is built out of the one-string
partition function through further exponentiation:

® 1 R —
1 ﬂﬁ ) - i Toi 1o TGyt 22
nz(p=3 3 [1-(-VT+— (26 Hie= | (% "2 S )+ 2, m
8
for the supersymmetric case andZijB)=3=,_,1/rZ,(Br) % 2 (a fal +al 1a
for the bosonic case. The thermodynamical potential associ- = non

ated with the canonical ensemble is the free energy

8
1 +2 (Sﬁ*$+§ﬁ*§i‘>”. (3.)
F('B)Z_Eln Z(B). 2.7 a1
Another thermodynamical quantity of interest is the specifioyhere we follow the conventions of Metsaev and Tseytlin
heat [7]. We want to emphasize at this point that the mass param-
2 eter isp*-dependent:
cv=,826—BQIn Z(B). (2.9
m=u(2ma’')p™. (3.2

At temperatures higher than the Hagedorn temperafyre

the free energy diverges. If the free energy remains finite

while Ty is approached from below there is the possibility of Explicitly performing the trace of the light-cone Hamil-
a phase transition. On the other hand, if the free energy annian, and implementing the level-matching constraint
specific heat are infinite, the Hagedorn temperature is a limx(Ng—N_) as discussed in the previous section leads to the
iting (maxima) temperature. light-cone partition function

. 8
z|c(£)\)= 11 {exp > (— ﬁ+N\/n 2 ,'8+N’\/n’2+m2+27-ri)\(Nn—N’n’))]
p ap

!
N,N’=0 a'p

I 8

X|exp X (— '8+N\/n2+m2— A N'\/n’2+m2+27ri)\(Nn—N’n’))
NN’ =0,1 a'p a
% 8 8

X expE (— ﬂ+Nm expE (— 'B+Nm)
N=0 ! N=0,1 a'p

B [, ? ’
. 1+exp< - 2+m2+27-r|>\n) 1+exp(— +m)
11 a'p a'p

n=1
1- ex;{ A 2+m2+2m)\n) 1—exp< - ,'8+ m)
a'p ap

't
1+exp( h Y, 2+m2+2m)\n)

’ +

- (3.3

1— exp( +\/ n2+m +27-r|)\n)
p
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where we have taken into account that the usual normal ofFor d—2 transverse scalars, the one-string partition function
dering shift cancels between fermions and bos@nsach reads
sector it equals the zero-point energym/2
2o ynThm). ZL9p) =1 fwd +flolxexp(—ﬁ )
The above expression is formally the answer for the par- L *Jo P 0 P
tition function. However, it is very difficult to extract infor-

mation directly in this form. We turn to the path integral 2ma’'p™” B T2\
approach where we can derive the modular properties of the X T 7| A 2mp*
partition function. The latter will enable us to study the ther-
modynamic properties of the strings. B w B2
:mf dTlf deeX%_ , )
A. Scalars S 0 2ma’ T
To motivate some of the further manipulations needed to X 20727, (7222 ()| ~20072), (3.7

extract information from the partition function presented )

above we will also include the treatment for flat space. An-Where we have made the change of variaiema’p”
other important point we would like to make is that by con- = 72. The UV asymptotic behavior,,—0, of the one-string
sidering strings at nonzero temperature we explicitly breatartition function is uncovered by using the modular proper-
supersymmetry and therefore some of the thermodynamities of the Dedekindp(7) function. Under theSmodular
properties of strings can be seen equally well by consideringfansformationr— —1/7
only the bosonic sector. Thus we analyze first the bosonic 1
contribution to the free energy, keeping in mind similarities N\ ==
with a system of closed bosonic strings. Let us briefly recall 77( T {7(7). 3.8
the determination of the Hagedorn temperature for the

bosonic string in flat space. Each scalar degree of freedorffubstituting Eq(3.8) into Eq. (3.7) one finds that the inte-
contributes the following factor to the transverse partitiongrand of the one-string partition function in the UV regime

function: behaves as
z(°'°)<£ x) - dpexp( _ B exp( i i n r‘(d+2)’2|7|d‘2exp< 4w72—d_2 __F ) (3.9
SR 2a'p") \a'p” i g 2472 2ma'r,
« ﬁ 1 2 At temperatures higher than the Hagedorn temperature
n=1
1—ex;{— ,ﬁ+n+27-ri)\n) 1 Wz(d—2)| 31
a'p BH—T—H— N—3 s (3.10
rnt
o~ /TYP o 1 B the free energy diverges.
B 12 4'p* To evaluate the contribution of the scalar modes of the
. ) type IIB GS superstring in the plane wave background we
H 1 choose to do a path integral calculation. This approach will
Xn:1 B pay off in the sense that the modular properties of the parti-
l-exp ——— n+27-ri)\n) tion function are much more transparent when the partition
ap function is expressed as a double product. Let us therefore

(3.4) begin with

A convenient way of rewriting the a_lbove expression is by ng’o)(T,m)=f DX ex _f dzzi(—azé?r m2)X |,
means of introducing a complex variable: T

(3.11

g=exp2mi7), T=ENHI——. (3.5  where the worldsheet integral is taken over a tomsi;
map + 7¢,, and the modular parameter is denoted as usual. by
Substituting the Fourier decomposition of the doubly peri-

In this variable the partition function takes the following odic function

simple form which highlights its modular properties:

o0

207 =r; 1’2( (qE)”Z“{ I1 (1-a"

)2 X(flyfz):nl%‘zez Xninz €XA 271 (N1€1+N565)]
n=1

(3.12

=1, " n(n)| 2. (3.60 in the path integral and using
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d?z=d¢,dé,7s, (3.13 The double product form of the partition function makes
manifest its modular properties. For example, recalling that

1 m depends explicitly omp™ = g/27a’ 7, and substitutingn
d,07= 4—(|7-|2(91 — 2710195+ 35°), (3.14  =2ma’up’ into Eq.(3.15 one derives:
T2
2991z, ul| ) =227, ). (3.16

we can explicitly perform the Gaussian integrals oXgf »
in Eqg. (3.11): For cases considered in the literat(it&,14), m was uncor-
5 —(d-2) related with the torus modular parameter, and €g16 is
27 then replaced by,.(— 1/7,m|7|) =z(7,m).!
[T = (=] Ini7—ny2+m? : pic Yic JT) T AT
nynpeZ 47, Following [15], one of the infinite products in E¢3.15
(3.195 can be performed and the result is

2097, p)=

—(d-2)

m/i2+ >, JnZ+m? . (3.1
n=1

Z%0(7,m)= ex;{ —2m(d=2)7,

H HZ (1—exg 2m(— r,yn?+m?+irn)])

This expression is in fact a natural generalization of the o s

Dedekind# function, where the first exponent substitutes the f dXXS_l[3(0,iX2)—1]=7T_S/2F(§) {(s), s=2.

factor q*/?* of the # function. We use’ function regulariza- 0 (3.20

tion to define the Casimir energy of a system of massive '

oscillators The expression obtained in E(.6) for the partition func-
tion also represents the generalization to the complex plane
of the modular forms‘(lm)(e‘ZWZ) introduced by{13]. The

_ _+ Z N2t feature that makes this generalization special is that the ap-

m? : .
propriate modular form for massive transverse scalass
opposed to massless transverse scalansot a holomorphic
function of the complex torus parameter
m 1 1 1 The UV behavior of the scalar degrees of freedom of the

=5t Tptame §m In(4me"?) closed one-string partition function
Z(B,p)= f fdr ex B
( 1) B 2 ' 27Ta T
_qyn__ = _ 2n mpB
+2 (-1 T{@n—1m* |, le(g,m( - _) 3.21)
n'r'| — E 72

(3.18

1After trivial relabelings in the double product,

wherey is the Euler constant. Note that the zeroth order term

in the yo(m) mass expansion is the same as for a massless 20— vrull=| [ 2 27| 7| |—n;—n,7l?
scalars”_,n={(—1)=—1/12. The terms of order greater PRI ez [ ar, |72
and equal to 2 can be derived as follows:

> 2 —(d-2)
) eve
T|T2

whereas for constamh we have

2
T2 27| 72| | =ny—ny7|?
ng’o)(—l/’r,m|7'|)=[ H ?((

ny,npeZ |7' 47'2 |T|2

n§=:1 Z 1/2)

B 1 o ( it)
_2r(—1/2)f0 dt 05 0.7/~ 1

X exp( —tm?)t 32 (3.19

J’dtexp( t(n?+m?))t 3?2

—(d-2)

+m2|r|2) =709 r,m).

and after Taylor expanding the exponential, use further that
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is now determined with the help of tf@modular transfor- Next, by invoking the modular properties 6,
mation (3.16). The integrand of Eq(3.21) behaves as

®4(O,7')=(—i7')1/2®2(0,— %) (3.28

1 _n2 ’
_ge B2ma TZZI(((:),O)( T,M)
72
=0 4 one obtains the ultraviolet behavior of the integrand in Eq.
_e—ﬁz/zm’fz(l_e—yﬁ/|r|)—(d—2)/2 (3.27:
2 —,82/27Ta'T 2l T
X @~ 2m(d=2)(r2 /|71 yo(uB) (3.22 72€ zemre. (3.29

Ignoring for the moment the fermionic degrees of freedomSince nearr,—0 the integrand is convergent, the type Il
and judging only by Eq(3.21), the Hagedorn phase transi- supers_trmgs in flat space background can undergo a phase
tion occurs again at the point whefg(3,u) becomes di- transition atTy=1/(2mls).

vergent In the plane wave background the transverse fermions are
massive and this prevents us from using the triple product

,Bﬁ formula or the®-function technology. However, the fermi-

"o —2m(d—=2)yo(Bn)=0. (3.23  onic partition function is still a modular form, and we can

still perform anS transformation in order to read-off its as-

Note that since the mass parameteis temperature depen- YMPIotics for7,—0. _ _ o
dentm= 3/ 75, the finite temperature behavior of strings in  1he light-cone gauge-fixed action of the fermionic de-
the pp-wave background is fundamentally different than that9"€€s of freedom for type IIB GS superstring in the plane
of strings in flat space. We will come back to address thigvave background takes the fotm

issue at length in Sec. IV. .

B. Fermions S:f dzzazl (iS'?9,S'2+iS%27,5*2+2mSH2s22).
Let us briefly recall the thermal partition function of (3.30

closed superstrings in flat space. The contribution of the fer-

mionic (physica) degrees of freedom to the light-cone parti- Since we are interested in evaluating the thermal

tion function partition function, we impose periodicity in the direct-
ion and antiperiodicity in the worldsheet time
direction. Therefore we make the identifications

B2 S(e+16) =S .E), S(EET1)=-S(EE), 2
=&+ 7&,, where as explained before=\+iB/27a’'p™*.

can be rewritten using Jacobi’s triple product formula inIn the new coordinates the action becomes

terms of the® functions:

d-2

22 7)= ( 211 11+q7?

S= J &1 dEx(ISHA(— 70, + 3,) SHA+iS?3(rdy — 0,) P2

B3 o 1/2
I1 g4 1+a=n(n11 (1+q““)2(1—q”)}
n=0 n=0 +2mgag?d), (3.30
=(0,(0,7)n(1) " H (3.2
. . . Substituting the appropriate Fourier decomposition of the
For type Il superstringsd—2=8) the one string partition fermionic degrees of freedom

function is
" 2 _ i2 im(2n,+1
Zg_llz’o)(ﬁ): B %J' dTl exd — ﬁ Sa(gl’&)_nl%ez gi‘l‘nzel wnlflelﬂ'r( ny+1)é, (332
2mls)o 71,2 2ma’ 1
X 27190 ,(0,7) n(7) 38 (3.26 into the the path integral expression of the partition function
we obtain
Using some®-function algebra:0,(0,7)®3(0,7)04(0,7)
= p(7)® and®4(0,7)0,4(0,7) =0 ,4(0,2r) the one-string par-
tition function can be cast in a more concise form 2A few manipulations are in order to bring the fermionic action in
this form. One first redefines the Weyl complex space-time fermions
(1/2,0) = dr, B2 of [7] by conveniently absorbing a factor ofp™: #*=S¢
Zy(B)=p | — | driexpg — iqas o T ; ;
1 0 722 27a’ +iS5/\V2pT,«=1.8 and after evaluating the matrixIl
= y142y3y* present in the fermionic mass temp* #1146, a trivial
><2’16|®4(0,27-)|’16. (3.27 reshuffling of the variableS* leads to the action presented here.
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tion. The partition function for fermions obeying this new
_ 1 g2
Zl(g'llz)(ﬂm):j DS'DS?e 5155 boundary conditions is
27\2 2n,+1|? ) 8 2 2 8
= —| [ny7+ +m? 12,0 _ 2m\ %2 +1
Ll,ln_!ez 72((472) v 2 2 )(Tam)—[nlgez 72((4_7_2) 5> TTN2 +m?
m w
_ - 2 2
_ex;{ 16m75| +nzl JnZ+m } =ex;{ 167”2,1:21/2 N,
x[nHZ (1+exgd 2m(— rpn?+m? x{ [I Q-exg2m(—rpynZ+m?
< nez+1/2
8 8
+|Tln)])} : (3.33 +i~rln)])] : (3.39

where in the last step we used a resul{ 18]
Under the modula6 transformation, a function antiperi- The Casimir energy for half-integer modes can be computed
odic in theé, direction becomes antiperiodic in tife direc-  using {-function regularization

yyAm)= 21/2 Jn?+ m2=% 21 J(2n+ 1)2+4m2=% 21 Jn?+4m?- 21 JnZ+m?= %[yO(Zm)—m]—[yo(m)— g}
1
1 1 - F( 2
ﬂ—zmzln(we’V)JrE (—1)"(2? t-1)————¢(2n—1)m?", (3.3
ST
' 2

where in the first line we rewrite the sum over odd integers  IV. HAGEDORN TEMPERATURE OF IIB STRINGS
as the the sum over all minus even integers; in the second IN THE pp-WAVE BACKGROUND

line we use thel-function regularization introduced in Eq.

(3.18. As we expected, the modulstransformation relates V& have by now computed all the ingredients that go into
the two partition functions the partition function. In a sense we can now simply return to

the light-cone string partition function already given by Eq.

(3.3). However, after the detour of the path integral compu-
212 Uz, | 7)) =20V 7, ). (3.369  tation we have gained knowledge of the modular properties

of Eg. (3.3, and thus paved the road to find out the high

. : energy behavior of the partition function. The one-string par-
Once again, recall thah is not a constantm= wB/1,. We tition function is

can now easily extract the high-energy behavior of the fer-
mionic light-cone partition function:

75—0
2012) 7 1) —, glomn /I ) (3.37) Zy(Bw)= I def dr, exp( )
™ 2ma’ 5

The two modular forms we have introduced in E¢®.33 % (00 MBY oap) _ B 41
and (3.34 are also generalizations to the complex plane of Ze | T 5 Zc (Al “.D
the modular forms f{"(e"2772) and, respectively,
f("W(e=2772) of [13] with the distinguishing property that
they are not holomorphic functions af In terms of the one-string partition function the free energy is
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z[ _( 1 Zl(ﬁr)

de

- , r r
dlel [1_(_1)r]e_ﬁ2r2/2wa TZZI(S,O)( - %) Zl(g,l/z)( . ﬂ) 4.2

T2

4mls)o 7'

In flat space where the only dependence on the number dimit it corresponds to the weakly coupled field thedrjo
stringsr comes from expt 8%r?/27a’ ,), one can explicitly  better answer the question of the Hagedorn temperature for
perform the summation overand write the free energy as a largemwe find it convenient to use an alternative expression
combination of theta function§l2]. Given the more in- for the Casimir energietsee the Appendix for a derivation
volvedr dependence in Ed4.2) we have not been able to
find such a closed form of the free energy. However, it can

_ 2
still be argued that the main contribution arises from the Yo(m)— + E Vn®+m?
one-string term. In this case the relevant integrand behaves

as Eqgs(3.22,(3.37: m m —1+y . mg 1
—— | —— ml—— > —K_y(27nm)|.
2 2 4 T n=10N
L egz/zmwzzl(gm( - “_B) zfé’vl’z)( - “_/3) 4.6
75 T2 T2

For the fermions we will simply use the identity described in
Eqg. (3.35 to relate their Casimir energy to that of bosons. In
Eq. (4.4) we have thapy is proportional to the difference of
the Casimir energies:

75—0
_e—BZ/ZTra'TZ(l_ e—,u,B/|T|)—4
2

x @~ 167(72/|71%) vo(1B) 167 (72 /| 71%) Y1/ B) (4.3 B

- =167 vy uBr) — Yo(mBr)]
2mTa

where we have used tf@modular transformation to arrive 1
to the second line. Considering the region where the above =—yo(2uBy) —2v0( 1 By)
expression diverges we find that the Hagedorn temperature 2
for the type GS IIB superstring in the plane wave back-
ground is determined by solving:

1
_ P s S[2K_y(2mnpB) —K_y(4mnupi) .

T n=1

B 4.7)
- =167 yo(uBr) + 167y uBu) =0, (4.4

2ma As u—oo, the difference between the two Casimir energies

approaches zero since all the Bessel functions in the infinite
and it depends parametrically qm. Taking u=0 in the  sum (4.6) vanish in the limit, and therefore the Hagedorn
above equation and making use of E(B18 and(3.35 we  temperature is pushed toward infinity. Recalling that the
find that By=27ls which is nothing but the value corre- Hagedorn temperature can be interpreted as the temperature
sponding to flat space. To further explore the behavior of the@vhere a winding state becomes tachyofii6],* we can re-
Hagedorn temperature we consider the limit of smalln  phrase the above result as the disappearance of the tachyon
units of the string scalég, that is, uls<1. Expanding Eq. associated with the Hagedorn temperature. In this form the
(4.4 up to terms linear inu and using the expressions
(3.18,(3.395 we find

SHowever, as mentioned in the Introduction, we should be ex-
tremely careful conjecturing the relation of our results to the BMN
for uls<1, (4.5  limit since we simply do not work on that limit.
4From the path integral approach we obtain the free energy natu-
rally expressed as an integral over the entire stripl2<t,
that is, the Hagedorn temperature is higher than its value fog 1o ,0<7,<=). Using the fact that the integrand enjoys modular
strings in flat space. properties, the free energy can be rewritten as an integral over the
This result is very interesting and naturally leads us intofundamental domain only. The net effect of this manipulation is to
the question of the behavior in the opposite limil,s—%.  add a trace over “winding” modes in the partition function. These
This limit is the more important due to the results [8]  modes can be interpreted as states of the string wrapping the tem-
where it has been established that in the context of the BMNoral direction.

TH%

2l
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result is similar to recent investigations of type pB4,17, 1 1 , ,
where the tachyon has been found to disappear ingthe F~— ﬂf drz—ze*/g ’Zﬂa’fzf drefn2me’
—o0 |imit, s 2

Having established the existence and some of the proper-
ties of the Hagedorn temperature we turn to the question of
its nature. Namely, we would like to find out whether the

2 2 3
X E*ﬁH 71/271'&' T,

Hagedorn temperature signals a maximal temperature or it ~— — [ dr, Tz‘lfze(ﬁfrﬁz)/ZW'72~—c(ﬂH)\/B—BH
simply points to the possibility of a phase transition. To an- H
swer this question we should consider the behavior of the | yaqy1ar (4.10)

free energy and the specific heat as we approach the Hage-

dorn temperature from below. Working in the one-string ap- ) o
proximation and assuming that the main contribution to théVhich should be compared with the rougher approximation
free energy(4.2) comes form the UV region and using Eq. used in Eq.(4.8), where the integral over; was omitted.

(4.3, we find that, for fixedu, the free energy diverges near T_hus the free energy is, in the end, finite, and a phase tran-
the Hagedorn temperature sition may occur when the system reaches the Hagedorn tem-

perature. Note, however, that the specific heat is infinite at
T4, and negative.
1 1
F’\" - ﬂf dTZ_Z
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!

1| p?
xexp — — + 167 yo(uB) — YA uB)]
27a

T
F(T)NC(/BH)_lTHET+analytiC in (B=Bu), (4.9 APPENDIX
For completeness we include a brief derivation of Eq.
where (4.6):
— 2 ApS ’ — ) . * 1 1
C(Br)= Bl (ma")+ 167 Byl voluBr) — vy mBr)] > mzz S R m—m = S[F(O)-m],
n=1 neZ
Let us now turn to the specific heat which we write in terms (A1)
of the free energy as
. ) ) F(a)= 2>, V(n+a)Z+m?. (A2)
Cy= 2 InZ= — B BF = — B2 2 F 4 B F ne?

(4.10  Using the Poisson summation formula we can write

Using Eq.(4.9) one derives that the specific heat also blows w

up near the Hagedorn temperature. Therefore for type IIB F(a)= 2 exp(27rika)f dy exp(—27iky)\y?+m?.

strings in the RR plane wave background the Hagedorn tem- kez o

perature is limiting, and, at least from the point of view of a (A3)

canonical ensemble analysis, there is no phase transition

which the system undergoes Bf,. Curiously, in flat space Next substitute

only open strings seem to have a limiting Hagedorn tempera-

ture. At least to this level of scrutiny, type IIB strings in the 1 w

RR plane wave background behave as open strings. y2+m?= —f dtt*2exd —t(y?+m?)]
Note addedA better estimation of the free energy behav- I'(=12Jo

ior (finite or divergenk at the Hagedorn temperature can be

done by evaluating the; integral, as pointed out by Brower

et al.[18]. Using the saddle point approximation, the integralinto Eg. (A3), perform the Gaussian integral ovgr and

over 71 of Eq. (4.3 yields arrive at

(Ad)
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N I other terms in Eq(A5) can be expressed in terms of modi-
F(a)= m kEZ exp(2mika) JO dtt2 fied Bessel functions, and we obtain
k?mr? + “. 2mcog2wka)
2 - T
Xex;{—tm —T . (A5) F(a)=— ymZ_Z K_,(27km).
2 =1 k
(A6)

The termk=0 in the sum leads to a divergent expression,

proportional tol'(—1)/T"(—1/2) which is further regulated

by keeping only the finite part df (—1+ €), with e—0. Substituting this expression into Eg\1) completes the deri-
After one more change of variable=tm/(m|k|), the vation of Eq.(4.6).
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