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Strings in the Ramond-Ramond plane wave background at finite temperature
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We calculate the thermal partition function in the canonical ensemble for type IIB superstrings in the plane
wave background with a constant null RR five-form. The Hagedorn temperature is found to be higher than the
corresponding value for strings in flat space. In the limit corresponding to the weakly coupled field theory we
find that the Hagedorn temperature is pushed to infinity. The key property of strings in the plane wave
background under investigation on which our result relies is that the effective mass of the bosonic and
fermionic coordinates in the light-cone gauge is proportional to the momentump1. The free energy is finite as
the Hagedorn temperature is approached from below, suggesting a possible phase transition.
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I. INTRODUCTION AND SUMMARY

The AdS conformal field theory~CFT! correspondence
has given a concrete realization of the connection betw
gauge theories and string theory in the context ofN54 su-
persymmetric Yang-Mills and type IIB string theory o
AdS53S5 @1#. One of the immediate implications of the co
respondence, pointed out by Witten in@2#, is the relation
between the corresponding theories at nonzero tempera
Namely, it was conjectured that a direct relation exists
tween a nonzero temperature field theory and the prop
thermalized supergravity background. This corresponde
was effectively anticipated in a series of papers@3#. A re-
markable feature of the nonzero temperature correspond
is that it involves nonsupersymmetric theories on both si
and it is therefore a more dynamical connection than
usual zero-temperature correspondence.

Recently, Berenstein, Maldacena, and Nastase~BMN! @4#
put a new twist on the AdS/CFT correspondence and p
posed a gauge theory interpretation of the Penrose-Gu¨ven
limit of AdS53S5 @5#. The type IIB maximally supersym
metric plane wave background with a constant null Ramo
Ramond~RR! five-form resulting from the limit is

ds2522dx1dx22m2xix
i~dx1!21dxidxi ,

~1.1!
F112345F1567852m.

In this limit a particular sector ofN54 super Yang-Mills
~SYM! theory survives in the gauge theory side while t
string theory is solvable in the light-cone gauge@6,7#. One
particularly interesting observation that follows from th
study of BMN operators is that certain quantities, such as
dimensions of the BMN operators, when calculated us
perturbative gauge theory in the effective ’t Hooft coupli

*Email address: lpandoz@ias.edu
†Email address: dvaman@feynman.princeton.edu
0556-2821/2003/67~10!/106006~10!/$20.00 67 1060
n

re.
-
ly
ce

ce
s
e

-

-

e
g

(l8) match precisely the string theory prediction which
reliable at strong coupling@8#. This provides an example o
smooth interpolation between the weak and strong coup
regimes of a sector ofN54 SYM theory. Additional explo-
ration of more complicated observables was presented in@9#.

In the context of the Penrose limit of AdS53S5, it is very
natural to pose a similar question about the nonzero temp
ture correspondence. The present situation is very pecu
however. An important ingredient introduced in the analy
of @2# is the consideration of all backgrounds with the sa
asymptotic behavior. In the concrete case ofN54 SYM
theory this implies the need to consider at least thermali
AdS5 and the Schwarzschild-AdS black hole. The inclusi
of these two backgrounds implies the presence of Hawki
Page phase transitions. The question of the proper therm
zation of the plane wave background is ambiguous. Mo
over, the Penrose limit of the Schwarzschild-AdS black h
does not seem to naturally determine a horizon and there
it lacks the notion of temperature@10#. Thus, the supergravity
approach seems to be at least not straightforward. On
other hand, the fact that string theory on the plane wave
be quantized in the light-cone gauge gives us the possib
of exploring some of the corresponding thermodynam
properties.

Strings in flat space exhibit a Hagedorn density of sta
r(M )5M 2a exp(bM), with a andb constants characterizin
the various string models. Given the exponential growth
the density of states, the theory cannot be defined abo
critical temperatureTH;1/(l sb). This behavior has inspired
a lot of speculations; one analogy that is frequently mad
between the Hagedorn transition of strings and
confinement/deconfinement phase transition of QCD. It
natural to return to this question within the context of t
BMN limit of N54 SYM theory since it provides an ex
ample of gauge/string relation on one side of which we ha
an exactly solvable string theory.

At first sight it seems very plausible that the hig
temperature observables of string theory in the plane w
background have to be essentially the same as in flat sp
©2003 The American Physical Society06-1



at
ct

a
n

-
e

s
re
er

o
is
th

is
he

y

N
rin

fin
pa
IB
nu
in

h

di

nd
th
o

-
x

te
th
th
er
k

he

e
e

s a
the
di-

or
-
e-
. IV
tural

in-

the
in

ant
he

n

on

r a

he
the
f a

,
r

is
e

s

L. A. PANDO ZAYAS AND D. VAMAN PHYSICAL REVIEW D 67, 106006 ~2003!
An intuitive way to think about this is by using the fact th
ultimately the main contribution to high temperature effe
comes from the behavior of highly excited strings. Adding
mass term~m! to the bosons does not seem to be a stro
enough modification since for anym that we have for large
enough excitation levels (n), the expression for the frequen
ciesAn21m2 will be better and better approximated by th
flat space expression:n. However, a key property of string
in the plane wave background that invalidates the above
soning is that in the light-cone gauge the mass paramet
not constant, but p1 dependent:m52pa8mp1. We will
show that this explicit dependence onp1 when properly
taken into consideration modifies the modular properties
the partition function in a crucial way and in particular
responsible for the Hagedorn temperature being higher
the corresponding value for strings in flat space.

To make the connection to the BMN sector more prec
recall the following relations between the string and t
gauge theory quantitiesma8p15J/Al, 2p2/m5D2J,
whereJ is theR charge,D is the conformal dimension, andl
is the ’t Hooft coupling. The BMN sector is singled out b
considering operators with fixedp1 and finitep2. Having
fixed p1 means considering operators whoseR chargeJ
grows asAN as N→`. We, by integrating overp1, are
forced to effectively consider a larger sector than the BM
sector. This fact obscures the direct relevance of our st
calculation for the gauge theory side.

Leaving aside the usual difficulties associated with de
ing thermodynamics in gravitational backgrounds, in this
per we compute the thermal partition function of the type I
superstring in the plane wave background with constant
RR five-form. Moreover, we restrict ourselves to the lead
genus one contribution to the thermal partition function. W
pay special attention to the Hagedorn temperature which
now a parametric dependence onm. We find that form5” 0
the Hagedorn temperature is higher than the correspon
value in flat space

2
bH

2

2pa8
216pg0~mbH!116pg1/2~mbH!50, ~1.2!

whereg0 andg1/2 are the zero-point energies of integer a
half-integer moded massive oscillators, respectively. In
limit m l s→0, the first correction to the flat space value
the Hagedorn temperature isTH'1/2p l s14m. In the ‘‘weak
field theory limit’’ (m l s→`) we find that the Hagedorn tem
perature is pushed to infinity. We also provide an appro
mate expression for the free energy near the Hagedorn
perature assuming that the main contribution comes from
one-string sector. A saddle point evaluation shows that
free energy is finite as we approach the Hagedorn temp
ture from below. Therefore a phase transition could ta
place atTH51/bH . Given that in the canonical ensemble t
energy fluctuations are notoriously large nearbyTH , the an-
swer to the true nature~limiting or phase transition! of the
Hagedorn temperature is held by a complementary pictur
the one presented here, namely by the microcanonical
semble.
10600
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The paper is organized as follows. Section II contain
short review of the canonical ensemble for strings in
light-cone gauge. Section III contains the essential ingre
ents in the calculation of the thermal partition function f
the Green-Schwarz~GS! strings in the plane wave back
ground. Throughout Sec. III we make explicit how our r
sults generalize those for GS strings in flat space. In Sec
we assemble all the ingredients and discuss the two na
limiting cases: flat space (m l s→0) and the weak field theory
(m l s→`) and discuss the thermodynamic quantities of
terest~free energy and specific heat!.

II. REVIEW OF THE CANONICAL ENSEMBLE
OF STRINGS IN LIGHT-CONE

Since in the following sections we need to address
thermal properties of strings whose action is known only
the light-cone gauge-fixed form, and therefore a covari
treatment is not available, we begin with a brief review of t
canonical ensemble of light-cone strings@11,12#. As ex-
plained in @11#, the finite temperature one-string partitio
function is defined by

Z1~b!5Tr e2bP0
5Tr e2b(P11P2), ~2.1!

whereb is the inverse temperature,P1uF&5p1uF& is the
light-cone momentum, andP2uF&51/p1(HlcuF&) with Hlc
being the light-cone Hamiltonian. Thus the partition functi
can be written as

Z1~b!5 l sE dp1e2bp1
zlc~b/p1!. ~2.2!

For open strings, the partition function is evaluated ove
cylindrical worldsheet, with periodic timet;t1b/p1,
while for closed strings we must additionally impose t
level-matching constraint: equal momentum carried by
left and right oscillators. This is usually done by means o
Lagrange multiplier,

Z1~b!5 l sE dp1E dle2bp1
Tr e2(b/p1)Hlc12p il(NL2NR).

~2.3!

From the point of view of the light-cone partition function
the effect of the anglel is to twist the ends of the cylinde
before identifying them.

Another useful way to approach the partition function
by way of the path integral formalism, with the light-con
partition function given by

zlc5E DXe2*Td2zL[X(z)] , ~2.4!

and where the worldsheet action is integrated over a toruT
with modular parameter

t5t11 i t25l1 i
b

2pp1
. ~2.5!
6-2
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One of the advantages of the path integral approach is th
makes the modular properties of the partition function ma
fest. We will repeatedly exploit this fact in the followin
sections.

Having defined the one-string partition function it is nat
ral to define the partition function for a gas of strings
constant temperature~canonical ensemble!. The partition
function for a gas of strings is built out of the one-strin
partition function through further exponentiation:

ln Z~b!5
1

2 (
r 51

`

@12~21!r #
Z1~br !

r
~2.6!

for the supersymmetric case and lnZ(b)51
2(r51

` 1/rZ1(br )
for the bosonic case. The thermodynamical potential ass
ated with the canonical ensemble is the free energy

F~b!52
1

b
ln Z~b!. ~2.7!

Another thermodynamical quantity of interest is the spec
heat

cV5b2
]2

]b2 ln Z~b!. ~2.8!

At temperatures higher than the Hagedorn temperatureTH
the free energy diverges. If the free energy remains fin
while TH is approached from below there is the possibility
a phase transition. On the other hand, if the free energy
specific heat are infinite, the Hagedorn temperature is a
iting ~maximal! temperature.
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III. PARTITION FUNCTION OF GS STRINGS
IN THE pp-WAVE BACKGROUND

The most straightforward way to obtain the partition fun
tion is through the Hamiltonian. The light-cone Hamiltonia
of the first-quantized GS type IIB string in the plane wa
background with constant null RR five-form background
given by @6,7#

Hlc5
1

a8
Fm~a0

i †a0
i 1S0

i †S0
i !1 (

n51

`

An21m2

3S (
i 51

8

~an
i †an

i 1ãn
i †ãn

i !

1 (
a51

8

~Sn
a †Sn

a1S̃n
a †S̃n

a!D G , ~3.1!

where we follow the conventions of Metsaev and Tseyt
@7#. We want to emphasize at this point that the mass par
eter isp1-dependent:

m5m~2pa8!p1. ~3.2!

Explicitly performing the trace of the light-cone Hami
tonian, and implementing the level-matching constra
l(NR2NL) as discussed in the previous section leads to
light-cone partition function
zlcS b

p1
,l D 5 )

n,n851

` F exp (
N,N850

` S 2
b

a8p1
NAn21m22

b

a8p1
N8An821m212p il~Nn2N8n8!D G 8

3F exp (
N,N850,1

S 2
b

a8p1
NAn21m22

b

a8p1
N8An821m212p il~Nn2N8n8!D G 8

3F exp (
N50

` S 2
b

a8p1
NmD G 8F exp (

N50,1
S 2

b

a8p1
NmD G 8

5 )
n51

` US 11expS 2
b

a8p1
An21m212p ilnD

12expS 2
b

a8p1
An21m212p ilnD D

8U 2S 11expS 2
b

a8p1
mD

12expS 2
b

a8p1
mD D

8

5 )
nPZ S 11expS 2

b

a8p1
An21m212p ilnD

12expS 2
b

a8p1
An21m212p ilnD D

8

, ~3.3!
6-3
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where we have taken into account that the usual norma
dering shift cancels between fermions and bosons~in each
sector it equals the zero-point energym/2
1(n51

` An21m2).
The above expression is formally the answer for the p

tition function. However, it is very difficult to extract infor
mation directly in this form. We turn to the path integr
approach where we can derive the modular properties of
partition function. The latter will enable us to study the th
modynamic properties of the strings.

A. Scalars

To motivate some of the further manipulations needed
extract information from the partition function present
above we will also include the treatment for flat space. A
other important point we would like to make is that by co
sidering strings at nonzero temperature we explicitly bre
supersymmetry and therefore some of the thermodyna
properties of strings can be seen equally well by conside
only the bosonic sector. Thus we analyze first the boso
contribution to the free energy, keeping in mind similariti
with a system of closed bosonic strings. Let us briefly rec
the determination of the Hagedorn temperature for
bosonic string in flat space. Each scalar degree of freed
contributes the following factor to the transverse partiti
function:

zlc
(0,0)S b

p1
,l D 5E

2`

`

dp expS 2
bp2

2a8p1D expS b

a8p1 (
n51

`

nD
3 )

n51

` U 1

12expS 2
b

a8p1
n12p ilnDU

2

52Apa8p1

b
expS 2

1

12

b

a8p1D
3 )

n51

` U 1

12expS 2
b

a8p1
n12p ilnDU

2

.

~3.4!

A convenient way of rewriting the above expression is
means of introducing a complex variable:

q5exp~2p i t!, t5l1 i
b

2pa8p1
. ~3.5!

In this variable the partition function takes the followin
simple form which highlights its modular properties:

zlc
(0,0)~t!5t2

21/2S ~qq̄!1/24U)
n51

`

~12qn!U D 22

5t2
21/2uh~t!u22. ~3.6!
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For d22 transverse scalars, the one-string partition funct
reads

Z1
(0,0)~b!5 l sE

0

`

dp1E
0

1

dl exp~2bp1!

3SA2pa8p1

b UhS l1 i
b

2pp1D U22D d22

5
b

2p l s
E dt1E

0

`

dt2 expS 2
b2

2pa8t2
D

32d22t2
2(d22)/212uh~t!u22(d22), ~3.7!

where we have made the change of variableb/2pa8p1

5t2. The UV asymptotic behavior,t2→0, of the one-string
partition function is uncovered by using the modular prop
ties of the Dedekindh(t) function. Under theS-modular
transformationt→21/t

hS 2
1

t D5A2 i th~t!. ~3.8!

Substituting Eq.~3.8! into Eq. ~3.7! one finds that the inte-
grand of the one-string partition function in the UV regim
behaves as

t2
2(d12)/2utud22 expS 4pt2

d22

24utu2
2

b2

2pa8t2
D . ~3.9!

At temperatures higher than the Hagedorn temperature

bH5
1

TH
5Ap2~d22!

3
l s ~3.10!

the free energy diverges.
To evaluate the contribution of the scalar modes of

type IIB GS superstring in the plane wave background
choose to do a path integral calculation. This approach
pay off in the sense that the modular properties of the pa
tion function are much more transparent when the partit
function is expressed as a double product. Let us there
begin with

zlc
(0,0)~t,m!5E DX expF2E

T
d2zX̄~2]z] z̄1m2!XG ,

~3.11!

where the worldsheet integral is taken over a torus:z5j1
1tj2, and the modular parameter is denoted as usual bt.
Substituting the Fourier decomposition of the doubly pe
odic function

X~j1 ,j2!5 (
n1,n2PZ

Xn1,n2 exp@2p i ~n1j11n2j2!#

~3.12!

in the path integral and using
6-4
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d2z5dj1dj2t2 , ~3.13!

]z] z̄5
1

4t2
2
~ utu2]1

222t1]1]21]2
2!, ~3.14!

we can explicitly perform the Gaussian integrals overXn1,n2
in Eq. ~3.11!:

zlc
(0,0)~t,m!5F )

n1 ,n2PZ
t2S S 2p

4t2
D 2

un1t2n2u21m2D G2(d22)

.

~3.15!
th
h

iv

rm
le
r

ha

10600
The double product form of the partition function mak
manifest its modular properties. For example, recalling t
m depends explicitly onp15b/2pa8t2 and substitutingm
52pa8mp1 into Eq. ~3.15! one derives:

zlc
(0,0)~21/t,m/utu!5zlc

(0,0)~t,m!. ~3.16!

For cases considered in the literature@13,14#, m was uncor-
related with the torus modular parameter, and Eq.~3.16! is
then replaced byzlc(21/t,mutu)5zlc(t,m).1

Following @15#, one of the infinite products in Eq.~3.15!
can be performed and the result is
zlc
(0,0)~t,m!5expF22p~d22!t2S m/21 (

n51

`

An21m2D GF )
nPZ

~12exp@2p~2t2An21m21 i t1n!# !G2(d22)

. ~3.17!
lane

ap-

the
This expression is in fact a natural generalization of
Dedekindh function, where the first exponent substitutes t
factor q1/24 of the h function. We usez function regulariza-
tion to define the Casimir energy of a system of mass
oscillators

g0~m!5
m

2
1 (

n51

`

An21m2

5
m

2
1F 2

1

12
1

1

2
m2

1

2
m2 ln~4pe2g!

1 (
n52

`

~21!n

GS n2
1

2D
n!GS 2

1

2D z~2n21!m2nG ,

~3.18!

whereg is the Euler constant. Note that the zeroth order te
in the g0(m) mass expansion is the same as for a mass
scalar(n51

` n5z(21)521/12. The terms of order greate
and equal to 2 can be derived as follows:

(
n51

`

An21m25 (
n51

`
1

G~21/2!
E

0

`

dt exp„2t~n21m2!…t23/2

5
1

2G~21/2!
E

0

`

dtFQ3S 0,
i t

p D21G
3exp~2tm2!t23/2, ~3.19!

and after Taylor expanding the exponential, use further t
e
e

e

ss

t

E
0

`

dxxs21@Q3~0,ix2!21#5p2s/2GS s

2D z~s!, s>2.

~3.20!

The expression obtained in Eq.~2.6! for the partition func-
tion also represents the generalization to the complex p
of the modular formsf 1

(m)(e22pt2) introduced by@13#. The
feature that makes this generalization special is that the
propriate modular form for massive transverse scalars~as
opposed to massless transverse scalars! is not a holomorphic
function of the complex torus parametert.

The UV behavior of the scalar degrees of freedom of
closed one-string partition function

Z1~b,m!5
b

2p l s
E

0

`dt2

t2
2E dt1 expS 2

b2

2pa8t2
D

3zlc
(0,0)S t,

mb

t2
D ~3.21!

1After trivial relabelings in the double product,

zlc
(0,0)~21/t,m/utu!5F )

n1 ,n2PZ

t2

utu2 S S 2putu2

4t2
D 2

u2n12n2tu2

utu2

1S bmutu2

utut2
D 2D G2(d22)

5zlc
(0,0)~t,m!

whereas for constantm we have

zlc
(0,0)~21/t,mutu!5F )

n1 ,n2PZ

t2

utu2 S S 2putu2

4t2
D 2u2n12n2tu2

utu2

1m2utu2D G2(d22)

5zlc
(0,0)~t,m!.
6-5
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is now determined with the help of theS-modular transfor-
mation ~3.16!. The integrand of Eq.~3.21! behaves as

1

t2
2

e2b2/2pa8t2zlc
(0,0)~t,m!

——→
t2→0 1

t2
2

e2b2/2pa8t2~12e2mb/utu!2(d22)/2

3e22p(d22)~t2 /utu2!g0(mb). ~3.22!

Ignoring for the moment the fermionic degrees of freed
and judging only by Eq.~3.21!, the Hagedorn phase trans
tion occurs again at the point whereZ1(b,m) becomes di-
vergent

2
bH

2

2pa8
22p~d22!g0~mbH!50. ~3.23!

Note that since the mass parameterm is temperature depen
dentm5mb/t2, the finite temperature behavior of strings
thepp-wave background is fundamentally different than th
of strings in flat space. We will come back to address t
issue at length in Sec. IV.

B. Fermions

Let us briefly recall the thermal partition function o
closed superstrings in flat space. The contribution of the
mionic ~physical! degrees of freedom to the light-cone par
tion function

zlc
(1/2,0)~t!5S uqu1/12)

n51

`

u11qnu2D d22

~3.24!

can be rewritten using Jacobi’s triple product formula
terms of theQ functions:

)
n50

`

q1/24~11qn!5h~t!21/2F )
n50

`

~11qn11!2~12qn!G1/2

5„Q2~0,t!h~t!21
…

1/2. ~3.25!

For type II superstrings (d2258) the one string partition
function is

Z1
(1/2,0)~b!5

b

2p l s
E

0

` dt2

t2
2E dt1 expS 2

b2

2pa8t2
D

32216uQ2~0,t!h~t!23u8. ~3.26!

Using someQ-function algebra:Q2(0,t)Q3(0,t)Q4(0,t)
5h(t)3 andQ3(0,t)Q4(0,t)5Q4(0,2t) the one-string par-
tition function can be cast in a more concise form

Z1
(1/2,0)~b!5bE

0

` dt2

t2
2E dt1 expS 2

b2

2pa8t2
D

32216uQ4~0,2t!u216. ~3.27!
10600
t
s

r-

Next, by invoking the modular properties ofQ4

Q4~0,t!5~2 i t!21/2Q2S 0,2
1

t D ~3.28!

one obtains the ultraviolet behavior of the integrand in E
~3.27!:

t2
2e2b2/2pa8t2e2p/t2. ~3.29!

Since neart2→0 the integrand is convergent, the type
superstrings in flat space background can undergo a p
transition atTH51/(2p l s).

In the plane wave background the transverse fermions
massive and this prevents us from using the triple prod
formula or theQ-function technology. However, the ferm
onic partition function is still a modular form, and we ca
still perform anS transformation in order to read-off its as
ymptotics fort2→0.

The light-cone gauge-fixed action of the fermionic d
grees of freedom for type IIB GS superstring in the pla
wave background takes the form2

S5E d2z(
a51

8

~ iS1,a]zS
1,a1 iS2,a] z̄S

2,a12mS1,aS2,a!.

~3.30!

Since we are interested in evaluating the therm
partition function, we impose periodicity in thes direct-
ion and antiperiodicity in the worldsheet tim
direction. Therefore we make the identification
Sa(j111,j2)5Sa(j1 ,j2), Sa(j1 ,j211)52Sa(j1 ,j2), z
5j11tj2, where as explained beforet5l1 ib/2pa8p1.
In the new coordinates the action becomes

S5E dj1dj2„iS
1,a~2 t̄]11]2!S1,a1 iS2,a~t]12]2!S2,a

12mS1,aS2,a
…. ~3.31!

Substituting the appropriate Fourier decomposition of
fermionic degrees of freedom

Sa~j1 ,j2!5 (
n1 ,n2PZ

Sn1 ,n2

a ei2pn1j1eip(2n211)j2 ~3.32!

into the the path integral expression of the partition funct
we obtain

2A few manipulations are in order to bring the fermionic action
this form. One first redefines the Weyl complex space-time fermi
of @7# by conveniently absorbing a factor ofAp1: ua5S1

a

1 iS2
a/A2p1,a51.8 and after evaluating the matrixP

5g1g2g3g4 present in the fermionic mass termmp1ūPu, a trivial
reshuffling of the variablesSa leads to the action presented here
6-6
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zlc
(0,1/2)~t,m!5E DS1DS2e2S[S1,S2]

5F )
n1 ,n2PZ

t2S S 2p

4t2
D 2Un1t1

2n211

2 U2

1m2D G8

5expF16pt2S m

2
1 (

n51

`

An21m2D G
3H )

nPZ
„11exp@2p~2t2An21m2

1 i t1n!#…J 8

, ~3.33!

where in the last step we used a result of@15#.
Under the modularS transformation, a function antiperi

odic in thej2 direction becomes antiperiodic in thej1 direc-
er
o
.

fe

o

t

10600
tion. The partition function for fermions obeying this ne
boundary conditions is

zlc
(1/2,0)~t,m!5F )

n1 ,n2PZ
t2S S 2p

4t2
D 2U2n111

2
t1n2U2

1m2D G8

5expF16pt2 (
n51/2

`

An21m2G
3H )

nPZ11/2
„12exp@2p~2t2An21m2

1 i t1n!#…J 8

. ~3.34!

The Casimir energy for half-integer modes can be compu
usingz-function regularization
g1/2~m!5 (
n51/2

`

An21m25
1

2 (
n51

`

A~2n11!214m25
1

2 (
n51

`

An214m22 (
n51

`

An21m25
1

2
@g0~2m!2m#2Fg0~m!2

m

2 G

5
1

24
2

1

2
m2 ln~pe2g!1 (

n52

`

~21!n~22n2121!

GS n2
1

2D
n!GS 2

1

2D z~2n21!m2n, ~3.35!
nto
to

q.
u-

ties
gh
ar-

is
where in the first line we rewrite the sum over odd integ
as the the sum over all minus even integers; in the sec
line we use thez-function regularization introduced in Eq
~3.18!. As we expected, the modularS transformation relates
the two partition functions

zlc
(1/2,0)~1/t,m/utu!5zlc

(0,1/2)~t,m!. ~3.36!

Once again, recall thatm is not a constant:m5mb/t2. We
can now easily extract the high-energy behavior of the
mionic light-cone partition function:

zlc
(0,1/2)~t,m! ——→

t2→0

e16p(t2 /utu2)g1/2(mb). ~3.37!

The two modular forms we have introduced in Eqs.~3.33!
and ~3.34! are also generalizations to the complex plane
the modular forms f 2

(m)(e22pt2) and, respectively,
f 4

(m)(e22pt2) of @13# with the distinguishing property tha
they are not holomorphic functions oft.
s
nd

r-

f

IV. HAGEDORN TEMPERATURE OF IIB STRINGS
IN THE pp-WAVE BACKGROUND

We have by now computed all the ingredients that go i
the partition function. In a sense we can now simply return
the light-cone string partition function already given by E
~3.3!. However, after the detour of the path integral comp
tation we have gained knowledge of the modular proper
of Eq. ~3.3!, and thus paved the road to find out the hi
energy behavior of the partition function. The one-string p
tition function is

Z1~b,m!5
b

2p l s
E

0

` dt2

t2
2E dt1 expS 2

b2

2pa8t2
D

3zlc
(0,0)S t,

mb

t2
D zlc

(0,1/2)S t,
mb

t2
D . ~4.1!

In terms of the one-string partition function the free energy
6-7
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F~b!52
1

2b (
r 51

`

@12~21!r #
Z1~br !

r

52
1

4p l s
E

0

` dt2

t2
2E dt1(

r 51

`

@12~21!r #e2b2r 2/2pa8t2zlc
(0,0)S t,

mbr

t2
D zlc

(0,1/2)S t,
mbr

t2
D . ~4.2!
r
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o
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In flat space where the only dependence on the numbe
stringsr comes from exp(2b2r2/2pa8t2), one can explicitly
perform the summation overr and write the free energy as
combination of theta functions@12#. Given the more in-
volved r dependence in Eq.~4.2! we have not been able t
find such a closed form of the free energy. However, it c
still be argued that the main contribution arises from
one-string term. In this case the relevant integrand beha
as Eqs.~3.22!,~3.37!:

1

t2
2

e2b2/2pa8t2zlc
(0,0)S t,

mb

t2
D zlc

(0,1/2)S t,
mb

t2
D

——→
t2→0 1

t2
2

e2b2/2pa8t2~12e2mb/utu!24

3e216p(t2 /utu2)g0(mb)e16p(t2 /utu2)g1/2(mb), ~4.3!

where we have used theS-modular transformation to arrive
to the second line. Considering the region where the ab
expression diverges we find that the Hagedorn tempera
for the type GS IIB superstring in the plane wave bac
ground is determined by solving:

2
bH

2

2pa8
216pg0~mbH!116pg1/2~mbH!50, ~4.4!

and it depends parametrically onm. Taking m50 in the
above equation and making use of Eqs.~3.18! and~3.35! we
find that bH52p l s which is nothing but the value corre
sponding to flat space. To further explore the behavior of
Hagedorn temperature we consider the limit of smallm in
units of the string scalel s , that is,m l s!1. Expanding Eq.
~4.4! up to terms linear inm and using the expression
~3.18!,~3.35! we find

TH'
1

2p l s
14m for m l s!1, ~4.5!

that is, the Hagedorn temperature is higher than its value
strings in flat space.

This result is very interesting and naturally leads us i
the question of the behavior in the opposite limit,m l s→`.
This limit is the more important due to the results of@8#
where it has been established that in the context of the B
10600
of
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ve
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N

limit it corresponds to the weakly coupled field theory.3 To
better answer the question of the Hagedorn temperature
largem we find it convenient to use an alternative express
for the Casimir energies~see the Appendix for a derivation!:

g0~m!5
m

2
1 (

n51

`

An21m2

5
m

2
1F2

m

2
2

211g

4
m22

m

p (
n51

`
1

n
K21~2pnm!G .

~4.6!

For the fermions we will simply use the identity described
Eq. ~3.35! to relate their Casimir energy to that of bosons.
Eq. ~4.4! we have thatbH is proportional to the difference o
the Casimir energies:

bH
2

2pa8
516p@g1/2~mbH!2g0~mbH!#

5
1

2
g0~2mbH!22g0~mbH!

5
mbH

p (
n51

`
1

n
@2K21~2pnmbH!2K21~4pnmbH!#.

~4.7!

As m→`, the difference between the two Casimir energ
approaches zero since all the Bessel functions in the infi
sum ~4.6! vanish in the limit, and therefore the Hagedo
temperature is pushed toward infinity. Recalling that t
Hagedorn temperature can be interpreted as the temper
where a winding state becomes tachyonic@16#,4 we can re-
phrase the above result as the disappearance of the tac
associated with the Hagedorn temperature. In this form

3However, as mentioned in the Introduction, we should be
tremely careful conjecturing the relation of our results to the BM
limit since we simply do not work on that limit.

4From the path integral approach we obtain the free energy n
rally expressed as an integral over the entire strip (21/2<t1

<1/2,0<t2,`). Using the fact that the integrand enjoys modu
properties, the free energy can be rewritten as an integral ove
fundamental domain only. The net effect of this manipulation is
add a trace over ‘‘winding’’ modes in the partition function. The
modes can be interpreted as states of the string wrapping the
poral direction.
6-8
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result is similar to recent investigations of type 0B@14,17#,
where the tachyon has been found to disappear in thm
→` limit.

Having established the existence and some of the pro
ties of the Hagedorn temperature we turn to the questio
its nature. Namely, we would like to find out whether t
Hagedorn temperature signals a maximal temperature
simply points to the possibility of a phase transition. To a
swer this question we should consider the behavior of
free energy and the specific heat as we approach the H
dorn temperature from below. Working in the one-string a
proximation and assuming that the main contribution to
free energy~4.2! comes form the UV region and using E
~4.3!, we find that, for fixedm, the free energy diverges nea
the Hagedorn temperature

F;2
1

2p l s
E

0

1

dt2

1

t2
2

3expS 2
1

t2
F b2

2pa8
116p@g0~mb!2g1/2~mb!#G D .

~4.8!

Evaluating the integral we can estimate the behavior of
free energy near the Hagedorn temperature

F~T!;C~bH!21
TH

TH2T
1analytic in ~b2bH!, ~4.9!

where

C~bH!5bH
2 /~pa8!116pbHm@g08~mbH!2g1/28 ~mbH!#.

Let us now turn to the specific heat which we write in term
of the free energy as

cV5b2
]2

]b2 ln Z52b2
]2

]b2 bF52b2F2
]

]b
F1b

]2

]b2 F G .
~4.10!

Using Eq.~4.9! one derives that the specific heat also blo
up near the Hagedorn temperature. Therefore for type
strings in the RR plane wave background the Hagedorn t
perature is limiting, and, at least from the point of view of
canonical ensemble analysis, there is no phase trans
which the system undergoes atTH . Curiously, in flat space
only open strings seem to have a limiting Hagedorn temp
ture. At least to this level of scrutiny, type IIB strings in th
RR plane wave background behave as open strings.

Note added. A better estimation of the free energy beha
ior ~finite or divergent! at the Hagedorn temperature can
done by evaluating thet1 integral, as pointed out by Browe
et al. @18#. Using the saddle point approximation, the integ
over t1 of Eq. ~4.3! yields
10600
r-
of

it
-
e

ge-
-
e

e

s
B

-

on

a-

-

l

F;2
1

2p l s
E dt2

1

t2
2

e2b2/2pa8t2E dt1ebH
2 /2pa8t2

3e2bH
2 t1

2/2pa8t2
3

;2
1

bH
E dt2 t2

21/2e(bH
2

2b2)/2pa8t2;2c~bH!Ab2bH

1regular, ~4.11!

which should be compared with the rougher approximat
used in Eq.~4.8!, where the integral overt1 was omitted.
Thus the free energy is, in the end, finite, and a phase t
sition may occur when the system reaches the Hagedorn
perature. Note, however, that the specific heat is infinite
TH , and negative.
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APPENDIX

For completeness we include a brief derivation of E
~4.6!:

(
n51

`

An21m25
1

2 S (
nPZ

An21m22mD 5
1

2
@F~0!2m#,

~A1!

F~a!5 (
nPZ

A~n1a!21m2. ~A2!

Using the Poisson summation formula we can write

F~a!5 (
kPZ

exp~2p ika!E
2`

`

dy exp~22p iky!Ay21m2.

~A3!

Next substitute

Ay21m25
1

G~21/2!
E

0

`

dtt23/2exp@2t~y21m2!#

~A4!

into Eq. ~A3!, perform the Gaussian integral overy, and
arrive at
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F~a!5
Ap

G~21/2! (
kPZ

exp~2p ika!E
0

`

dtt22

3expS 2tm22
k2p2

t D . ~A5!

The termk50 in the sum leads to a divergent expressio
proportional toG(21)/G(21/2) which is further regulated
by keeping only the finite part ofG(211e), with e→0.

After one more change of variablev5tm/(puku), the
B

E

ss

ys

s

he
,

d
d

10600
,

other terms in Eq.~A5! can be expressed in terms of mod
fied Bessel functions, and we obtain

F~a!52
211g

2
m22 (

k51

`
2m cos~2pka!

pk
K21~2pkm!.

~A6!

Substituting this expression into Eq.~A1! completes the deri-
vation of Eq.~4.6!.
t-

B

hys.

e
,’’

.

@1# J. Maldacena, Adv. Theor. Math. Phys.2, 231 ~1998!; S. S.
Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.
428, 105 ~1998!; E. Witten, Adv. Theor. Math. Phys.2, 253
~1998!.

@2# E. Witten, Adv. Theor. Math. Phys.2, 505 ~1998!.
@3# S. S. Gubser, I. R. Klebanov, and A. W. Peet, Phys. Rev. D54,

3915 ~1996!; Nucl. Phys.B534, 202 ~1998!.
@4# D. Berenstein, J. M. Maldacena, and H. Nastase, J. High

ergy Phys.04, 013 ~2002!.
@5# M. Blau, J. Figueroa-O’Farrill, and G. Papadopoulos, Cla

Quantum Grav.19, 4753 ~2002!; M. Blau, J. Figueroa-
O’Farrill, C. Hull, and G. Papadopoulos, J. High Energy Ph
01, 047 ~2002!.

@6# R. R. Metsaev, Nucl. Phys.B625, 70 ~2002!.
@7# R. R. Metsaev and A. A. Tseytlin, Phys. Rev. D65, 126004

~2002!; J. G. Russo and A. A. Tseytlin, J. High Energy Phy
04, 021 ~2002!.

@8# C. Kristjansen, J. Plefka, G. W. Semenoff, and M. Staudac
Nucl. Phys.B643, 3 ~2002!; D. Berenstein and H. Nastase
‘‘On lightcone string field theory from super Yang-Mills an
holography,’’ hep-th/0205048; D. J. Gross, A. Mikhailov, an
n-

.

.

.

r,

R. Roiban, Ann. Phys.~N.Y.! 301, 31 ~2002!; N. R. Constable,
D. Z. Freedman, M. Headrick, S. Minwalla, L. Motl, A. Pos
nikov, and W. Skiba, Adv. Theor. Math. Phys.07, 017 ~2002!;
A. Santambrogio and D. Zanon, Phys. Lett. B545, 425~2002!.

@9# I. R. Klebanov, M. Spradlin, and A. Volovich, Phys. Lett.
548, 111 ~2002!.

@10# L. A. Pando Zayas and J. Sonnenschein, J. High Energy P
05, 010 ~2002!.

@11# E. Alvarez, Nucl. Phys.B269, 596 ~1986!.
@12# E. Alvarez and M. A. Osorio, Phys. Rev. D36, 1175~1987!.
@13# O. Bergman, M. R. Gaberdiel, and M. B. Green, ‘‘D-bran

interactions in type IIB plane-wave background
hep-th/0205183.

@14# T. Takayanagi, J. High Energy Phys.12, 022 ~2002!.
@15# H. Saleur and C. Itzykson, J. Stat. Phys.48, 449 ~1987!.
@16# J. Polchinski, Commun. Math. Phys.104, 37 ~1986!; J. J. Atick

and E. Witten, Nucl. Phys.B310, 291 ~1988!.
@17# F. Bigazzi, A. L. Cotrone, L. Girardello, and A. Zaffaroni, J

High Energy Phys.10, 030 ~2002!.
@18# R. C. Brower, D. A. Lowe, and C.-I. Tan, Nucl. Phys.B652,

127 ~2003!.
6-10


