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Phases of bosonic strings and two dimensional gauge theories
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We propose that the extrinsic curvature and torsion of a bosonic string can be employed as Hamiltonian
variables in a two dimensional Landau-Ginzburg gauge field theory. Their interpretation in terms of the Abelian
Higgs multiplet leads to two different phases. In the phase with unbroken gauge symmetry the ground state
describes open strings while in the phase with broken gauge symmetry the ground state involves closed strings.
Finally, we relate aspects of the extrinsic geometry to the spectral properties of a Dirac operator, minimally
coupled to the Abelian Higgs multiplet.
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I. INTRODUCTION
S= ,ﬁf dodty—ggPaX*dpX* (1=0,1,2,3. (1)

In the Wilsonian approach to renormalization group equa-
tions the Polyakov actioﬁl] is a relevant term for describing We choose a proper time gauge where the worldsheet coor-
the high energy limit of a bosonic string. But at lower ener-dinatet becomes proportional t°; thus in the static limit
gies there can be corrections such as the extrinsic curvatutge t«X° dependence can be ignored. The remaining spatial
term[2]. Here we shall be interested in additional correctionsyariablesx'(o) (i = 1,2,3) then describe the string as a curve
that emerge from the extrinsic geometry of the string and thafyhich is embedded iR®. We chooser so that it coincides
may affect its low energy behavior. For definiteness we conyyith the R? arclength of the stringg—se[0,L]. HereL is
sider a bosonic string in three spatial dimensions; evefye (variable total length of the string irR®, a remnant of

though the quantization of the Polyakov action dictadleS  the modular parameters on the string worldsheet. The static
=26, the role of a critical dimension becomes less obviougnergy now reduces to

when higher order corrections are included. This is because

such corrections in general fail to be conformally invariant L o

on the worldsheet. We shall suggest that in three spatial di- E:MZJ dsdgeX'deX'= u? L. ()
mensions the extrinsic geometry leads to effective two di- 0

mensional Landau-Ginzburg gauge field theories such as t
Abelian Higgs model.

The Abelian Higgs model is particularly interesting as it
comes in two different phases. We propose that the phase
with unbroken gauge symmetry is natural for describing dx
open strings. The phase where théllUgauge symmetry t=— 3
becomes spontaneously broken is then more natural for de- ds
scribing closed strings. In this phase the Polyakov action _
admits an interpretation as the vacuum expectation value dé tangent to the curv'(s) in R®. Together with the unit
the Higgs field; it gives a mass to the two dimensional vectofnormaln and the unit binormab=txn, we then have an
field. Finally, we consider coupling of fermions to the Higgs orthonormal frame irR®, at each point along the string. In
multiplet and find that the index of an appropriate two di-terms of the complex combinaticgf = 3(n=ib) these vec-
mensional Dirac operator can be employed to inspect théors are subject to the Frenet equations
geometric properties of the string.

We note that previously somewhat similar relations be- dt r, -
tween the extrinsic geometry of a bosonic string and certain ds EK(eF +e), )
field theory models have been considered 3h Our con-

rﬁote that the energy of the string depends only on the string
tensionu? and the(modulaj lengthL.
The three component unit vector

struction is somewhat different, and our results are to be deE

viewed as complementary to those[B]. e KtFiTer . (5)
[l. BOSONIC STRING AND ABELIAN HIGGS Here k is the extrinsic curvature and is the torsion of the
HAMILTONIAN String,
We start from the static limit of the 81 dimensional k. —et. ot 5
classical bosonic string action K= K= - dsl, ©
oo @)
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Notice that we writex . to distinguish the two different but L _

equivalent representations of the curvature in terms of the En= JO ds[|(ds+iA ¢l*+N(|¢|*—a®?]. (13
complex Frenet framet (e ). Obviously any physical prop-

erty of the string should be independent of the choice of\otice that, unlike in Eq(11), now we do not introducél)
basis vectors+ on the normal planes. Instead of the Frenelplicitly. This term is in fact already contained in the field
combinationez we may then introduce an arbitrary complex independent part of the potential in Ed.3), which accord-
orthonormal framee* that relates to the Frenet franee by  ing to Eq.(2) can be rewritten as

a rotation with an angl@(s) on the normal planes,

. o | dsndelz-ani= [dslol-2a gl XX
0 0

+ +
ec—e =e e .

This rotation send&.. to the complex conjugate pair +a%9sX! 9sX'].
Ke—e 0, (9) In particular the(statig string action(1) is proportional to
B a the ground state expectation value of the complex Higgs sca-
while for the torsion we get lar ¢,
T— 7= 0. (10 (I¢1%)=aJo:X'deX". (14

In Egs. (9),(10) we identify the gauge transformation struc- With a°#0 we have spontaneous symmetry breaking, and
ture of a two dimensional, Hamiltonian Abelian Higgs mul- EQ. (13) describes the string in a phase which is different
tiplet (¢,A;): The frame rotatior(8) corresponds to a static from that described by Eq11). Notice that in the ground
U(1) gauge transformations, together with its complex state(14) the energy(13) vanishes. In particular, this ground
conjugatex_ corresponds to the complex scalar fiefd State energy is independent of the lengthodular param-
~Ky, and 7 to the spatia' Componemle of the LK]_) etEI) L. The L(l) gauge invariant Val’iab|e$)(C) are defined
gauge field in the HamiltoniaAy=0 gauge. Since the physi- by
cal properties of the string are independent of the local
frame, they should remain invariant under thel)ransfor-
mations(9),(10). In particular, any Landau-Ginzburg energy
of the string which involves the multiplet «(, ,7)

~ (¢,A;) should be Wl) gauge invariant.

¢=peX and 7=C+dgy. (15)

In terms of these we have for the energy

L
= =J ds{(dep)?>+p*C*+N(p°—a®)}.  (16)
I1l. GEOMETRY AND PHASE STRUCTURE °
The variablep describes the curvature of the string, abd
describes théframe independeitorsion. There is an inter-
eplay between the parameteltsand a and the ground state
eometry of the string: Wheh-a=27n the ground state of
e string hagp?=a? andC=0 which corresponds to a cir-
cular planar unknot inR®. For other values ol -a the
ground state geometry becomes more involved. Witk

The Abelian Higgs model admits two different phases.
Consequently, we have two alternatives for the statit)U
invariant Landau-Ginzburg energy. We first consider th
phase where the gauge symmetry remains unbroken. It :
described by the following Landau expansion:

L . L
E, =,uzf ds(asx')2+f ds{a||?+ Bl(ds+iA;) $|? =2 the ground state string can form a closed curv&in
0 0 and the Landau-Ginzburg ener¢y3) is appropriate for de-
40 (11) scribing closed strings. But for QOL-a<2# the ground

state string with vanishing energy is an open, bent string.
In the ground state the average value of local curvature along The phase factog in Eq. (15) is defined modulo Zk,
the string vanishes, with k an integer. In the Abelian Higgs model this integer
labels the different instanton vacua. In the present d¢ase
(|p|%=0. (120 counts the number of times tiigormal frame of thestring
rotates around its axis when we move once around the string.
Since L#0 this means that in the ground state the stringSince x is absent in Eq(16) these rotations of the normal
cannot form a closed curve. Consequently, this phase is afframe have no effect on the energy. In order to relate the
propriate for describing open strings. Note that the first twostrings with differentk to the instanton vacua, we add to the
terms in Eq.(11) reproduce the rigid string action f], and  arclengths an additional coordinate which we view as the
the third term is a higher derivative correction. ConsequenthEuclidean time coordinate and expand Etp) to the Abe-
we expect that Eq11) describes strings in the same univer- lian Higgs model
sality class with the action if2].

The phase where the gauge symmetry becomes broken by . f 2 } 2 . 2 2 22
the Higgs effect can be described by the following Landau- S= ] dx 4'sz+|(‘9“+"6‘“)¢| A ¢l*-a%)?.
Ginzburg energy, (17)
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We interpret this as é&ovariantizedl Euclidean time depen- ary. We define a two dimensional Dirac operat@r
dent action for the string worldsheet. Its Hamiltonian clearly= y2el(4,+ A+ w;) on S, with w; the spin connection. The
yields Eq.(13) for a static string in theA;=0 gauge. This Atiyah-Patodi-Singer index theorem computes the index of
action is known to support two dimensional vortices as in-this Dirac operator o in terms of the first Chern character
stantons. We assume tHata=2 so that the ground state (18) overS and the invariant of the restriction ob on the
string is a circular planar unknot; it corresponds to a vacuunboundary ofS,

state of the Higgs actioflL7). We introduce an instanton that

interpolates between two such ground state string vacua at 1 1 1 1
t=+T— oo with different integersk. The instanton has a '”dEXD:EJSF+ Py éKTJFE 7.
nontrivial first Chern character=( integerm), and in the

Ao=0 gauge

Presumably this coincides with the Calugareanu relation:
1 1 1 The self—li.nking of the string .equals the index of the Dirac
Cy(F)= 5 F= 5 § dsr(s)— 5 35 dsr(s)=m. operator, its twist equals the integral Bf=dA over the Se-

™ ™ JaT mJ-T ifert surface, and the writhe coincides with thenvariant of
(18 the boundary Dirac operator. Notice that the twist can also be

This coincides with the difference in the integ&rthat count interpreted physically as the magnetic flux through the Seif-

the number of times the frames of the ground state strings &'t surface.
t==T rotate around their axis when we move once around
the strings. V. CONCLUSIONS

In conclusion, we have investigated the extrinsic geom-
etry of bosonic strings in-81 dimensions. In particular, we
In general, the string can self-link, and in particular ahave proposed that the extrinsic curvature and torsion can be

closed string can form a knot. The Calugareanu theoren{ieWed as variables in a two dimensional gauge field theory.
[4,5] states that thénteger valueglself-linking numberZ of ~ This leads to the Abelian Higgs model as a Landau-Ginzburg

a knotted string< equals the sum of its twisf and writhe ~ description of the string, with its two phases relating to open
W and closed strings in a rather natural fashion. Furthermore,

we have studied the coupling of fermions to the Abelian
L(K)=7(K)+W(K). Higgs multiplet. The ensuing Dirac operator can then be

_ _ _ _ employed to inspect the extrinsic geometric properties of the
This resembles an index theorem for the instanton in th&tring.

Abelian Higgs model(17). For this we consider a Seifert
surfaceS of K. This is a smooth orientable Riemann surface
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