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Phases of bosonic strings and two dimensional gauge theories
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We propose that the extrinsic curvature and torsion of a bosonic string can be employed as Hamiltonian
variables in a two dimensional Landau-Ginzburg gauge field theory. Their interpretation in terms of the Abelian
Higgs multiplet leads to two different phases. In the phase with unbroken gauge symmetry the ground state
describes open strings while in the phase with broken gauge symmetry the ground state involves closed strings.
Finally, we relate aspects of the extrinsic geometry to the spectral properties of a Dirac operator, minimally
coupled to the Abelian Higgs multiplet.
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I. INTRODUCTION

In the Wilsonian approach to renormalization group eq
tions the Polyakov action@1# is a relevant term for describin
the high energy limit of a bosonic string. But at lower en
gies there can be corrections such as the extrinsic curva
term@2#. Here we shall be interested in additional correctio
that emerge from the extrinsic geometry of the string and
may affect its low energy behavior. For definiteness we c
sider a bosonic string in three spatial dimensions; e
though the quantization of the Polyakov action dictatesD
526, the role of a critical dimension becomes less obvio
when higher order corrections are included. This is beca
such corrections in general fail to be conformally invaria
on the worldsheet. We shall suggest that in three spatia
mensions the extrinsic geometry leads to effective two
mensional Landau-Ginzburg gauge field theories such as
Abelian Higgs model.

The Abelian Higgs model is particularly interesting as
comes in two different phases. We propose that the ph
with unbroken gauge symmetry is natural for describ
open strings. The phase where the U~1! gauge symmetry
becomes spontaneously broken is then more natural for
scribing closed strings. In this phase the Polyakov act
admits an interpretation as the vacuum expectation valu
the Higgs field; it gives a mass to the two dimensional vec
field. Finally, we consider coupling of fermions to the Hig
multiplet and find that the index of an appropriate two
mensional Dirac operator can be employed to inspect
geometric properties of the string.

We note that previously somewhat similar relations b
tween the extrinsic geometry of a bosonic string and cer
field theory models have been considered in@3#. Our con-
struction is somewhat different, and our results are to
viewed as complementary to those in@3#.

II. BOSONIC STRING AND ABELIAN HIGGS
HAMILTONIAN

We start from the static limit of the 311 dimensional
classical bosonic string action
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S5m2E dsdtA2ggab]aXm]bXm ~m50,1,2,3!. ~1!

We choose a proper time gauge where the worldsheet c
dinatet becomes proportional toX0; thus in the static limit
the t}X0 dependence can be ignored. The remaining spa
variablesXi(s)( i 51,2,3) then describe the string as a cur
which is embedded inR3. We chooses so that it coincides
with the R3 arclength of the string,s→sP@0,L#. HereL is
the ~variable! total length of the string inR3, a remnant of
the modular parameters on the string worldsheet. The s
energy now reduces to

E5m2E
0

L

ds]sX
i]sX

i5m2
•L. ~2!

Note that the energy of the string depends only on the st
tensionm2 and the~modular! lengthL.

The three component unit vector

t5
dX

ds
~3!

is tangent to the curveXi(s) in R3. Together with the unit
normal n and the unit binormalb5t3n, we then have an
orthonormal frame inR3, at each point along the string. I
terms of the complex combinationeF

65 1
2 (n6 ib) these vec-

tors are subject to the Frenet equations

dt

ds
5

1

2
k~eF

11eF
2!, ~4!

deF
6

ds
52kt7 i teF

6 . ~5!

Herek is the extrinsic curvature andt is the torsion of the
string,

k[k65eF
6
•]st, ~6!

t5
i

2
eF

2
•]seF

1 . ~7!
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Notice that we writek6 to distinguish the two different bu
equivalent representations of the curvature in terms of
complex Frenet frame (t,eF

6). Obviously any physical prop
erty of the string should be independent of the choice
basis vectors on the normal planes. Instead of the Fr
combinationeF

6 we may then introduce an arbitrary comple
orthonormal framee6 that relates to the Frenet frameeF

6 by
a rotation with an angleu(s) on the normal planes,

eF
6→e65e6 iueF

6 . ~8!

This rotation sendsk6 to the complex conjugate pair

k6→e6 iuk6 ~9!

while for the torsion we get

t→t2]su. ~10!

In Eqs. ~9!,~10! we identify the gauge transformation stru
ture of a two dimensional, Hamiltonian Abelian Higgs mu
tiplet (f,Ai): The frame rotation~8! corresponds to a stati
U~1! gauge transformation,k1 together with its complex
conjugatek2 corresponds to the complex scalar fieldf
;k1 , and t to the spatial componentA1;t of the U~1!
gauge field in the HamiltonianA050 gauge. Since the phys
cal properties of the string are independent of the lo
frame, they should remain invariant under the U~1! transfor-
mations~9!,~10!. In particular, any Landau-Ginzburg energ
of the string which involves the multiplet (k1 ,t)
; (f,A1) should be U~1! gauge invariant.

III. GEOMETRY AND PHASE STRUCTURE

The Abelian Higgs model admits two different phase
Consequently, we have two alternatives for the static U~1!
invariant Landau-Ginzburg energy. We first consider
phase where the gauge symmetry remains unbroken.
described by the following Landau expansion:

EI5m2E
0

L

ds~]sX
i !21E

0

L

ds$aufu21bu~]s1 iA1!fu2

1•••%. ~11!

In the ground state the average value of local curvature a
the string vanishes,

^ufu2&50. ~12!

Since L5” 0 this means that in the ground state the str
cannot form a closed curve. Consequently, this phase is
propriate for describing open strings. Note that the first t
terms in Eq.~11! reproduce the rigid string action of@2#, and
the third term is a higher derivative correction. Consequen
we expect that Eq.~11! describes strings in the same unive
sality class with the action in@2#.

The phase where the gauge symmetry becomes broke
the Higgs effect can be described by the following Land
Ginzburg energy,
10600
e

f
et

l

.

e
is

ng

g
p-
o

ly

by
-

EII 5E
0

L

ds@ u~]s1 iA1!fu21l~ ufu22a2!2#. ~13!

Notice that, unlike in Eq.~11!, now we do not introduce~1!
explicitly. This term is in fact already contained in the fie
independent part of the potential in Eq.~13!, which accord-
ing to Eq.~2! can be rewritten as

E
0

L

dsl~ ufu22a2!25E
0

L

dsl@ ufu422a2ufu2A]sX
i]sX

i

1a4]sX
i]sX

i #.

In particular the~static! string action~1! is proportional to
the ground state expectation value of the complex Higgs s
lar f,

^ufu2&5a2A]sX
i]sX

i . ~14!

With a25” 0 we have spontaneous symmetry breaking, a
Eq. ~13! describes the string in a phase which is differe
from that described by Eq.~11!. Notice that in the ground
state~14! the energy~13! vanishes. In particular, this groun
state energy is independent of the length~modular param-
eter! L. The U~1! gauge invariant variables (r,C) are defined
by

f5reix and t5C1]sx. ~15!

In terms of these we have for the energy

EII 5E
0

L

ds$~]sr!21r2C21l~r22a2!%. ~16!

The variabler describes the curvature of the string, andC
describes the~frame independent! torsion. There is an inter-
play between the parametersL and a and the ground state
geometry of the string: WhenL•a52pn the ground state of
the string hasr25a2 andC50 which corresponds to a cir
cular planar unknot inR3. For other values ofL•a the
ground state geometry becomes more involved. WithL•a
>2p the ground state string can form a closed curve inR3,
and the Landau-Ginzburg energy~13! is appropriate for de-
scribing closed strings. But for 0,L•a,2p the ground
state string with vanishing energy is an open, bent string

The phase factorx in Eq. ~15! is defined modulo 2pk,
with k an integer. In the Abelian Higgs model this integ
labels the different instanton vacua. In the present cask
counts the number of times the~normal frame of the! string
rotates around its axis when we move once around the str
Sincex is absent in Eq.~16! these rotations of the norma
frame have no effect on the energy. In order to relate
strings with differentk to the instanton vacua, we add to th
arclengths an additional coordinatet, which we view as the
Euclidean time coordinate and expand Eq.~13! to the Abe-
lian Higgs model

S5E d2xF1

4
Fmn

2 1u~]m1 iAm!fu21l~ ufu22a2!2G .
~17!
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We interpret this as a~covariantized! Euclidean time depen
dent action for the string worldsheet. Its Hamiltonian clea
yields Eq.~13! for a static string in theA050 gauge. This
action is known to support two dimensional vortices as
stantons. We assume thatL•a52p so that the ground stat
string is a circular planar unknot; it corresponds to a vacu
state of the Higgs action~17!. We introduce an instanton tha
interpolates between two such ground state string vacu
t56T→6` with different integersk. The instanton has a
nontrivial first Chern character (5 integerm), and in the
A050 gauge

C1~F !5
1

2pE F5
1

2p R
1T

dst~s!2
1

2p R
2T

dst~s!5m.

~18!

This coincides with the difference in the integersk that count
the number of times the frames of the ground state string
t56T rotate around their axis when we move once arou
the strings.

IV. COUPLING TO FERMIONS

In general, the string can self-link, and in particular
closed string can form a knot. The Calugareanu theo
@4,5# states that the~integer valued! self-linking numberL of
a knotted stringK equals the sum of its twistT and writhe
W,

L~K !5T~K !1W~K !.

This resembles an index theorem for the instanton in
Abelian Higgs model~17!. For this we consider a Seifer
surfaceS of K. This is a smooth orientable Riemann surfa
in R3 with one boundary component that coincides with t
stringK. We reinterpret Eq.~17! as a~static! Hamiltonian on
the Seifert surface, withk6 and t appropriately extended
into an Abelian Higgs multiplet (f,Ai) on S so thatt coin-
cides with the component ofAi which is tangential toK
along the boundary ofS, andf is equal tok1 on the bound-
.
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ary. We define a two dimensional Dirac operatorD”
5gaea

i (] i1Ai1v i) on S, with v i the spin connection. The
Atiyah-Patodi-Singer index theorem computes the index
this Dirac operator onS in terms of the first Chern characte
~18! overS and theh invariant of the restriction ofD” on the
boundary ofS,

IndexD” 5
1

2pES
F1

1

2
h5

1

2p R
K
t1

1

2
h.

Presumably this coincides with the Calugareanu relati
The self-linking of the string equals the index of the Dir
operator, its twist equals the integral ofF5dA over the Se-
ifert surface, and the writhe coincides with theh-invariant of
the boundary Dirac operator. Notice that the twist can also
interpreted physically as the magnetic flux through the S
ert surface.

V. CONCLUSIONS

In conclusion, we have investigated the extrinsic geo
etry of bosonic strings in 311 dimensions. In particular, we
have proposed that the extrinsic curvature and torsion ca
viewed as variables in a two dimensional gauge field theo
This leads to the Abelian Higgs model as a Landau-Ginzb
description of the string, with its two phases relating to op
and closed strings in a rather natural fashion. Furtherm
we have studied the coupling of fermions to the Abeli
Higgs multiplet. The ensuing Dirac operator can then
employed to inspect the extrinsic geometric properties of
string.
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