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We analyze the structure of supersymmetricd€eike cosmological solutions of string theory. Just as the
original four-dimensional Gael universe, these solutions represent rotating, topologically trivial cosmologies
with a homogeneous metric and closed timelike curves. First we focus on the “phenomenological” aspects of
holography, and identify the preferred holographic screens associated with inertial comoving observers in
Godel universes. We find that holography can serve as a chronology protection agency: The closed timelike
curves are either hidden behind the holographic screen, or broken by it into causal pieces. In fact, holography
in Godel universes has many features in common with de Sitter space, suggesting debu@werses could
represent a supersymmetric laboratory for addressing the conceptual puzzles of de Sitter holography. Then we
initiate the investigation of “microscopic” aspects of holography ofd8buniverses in string theory. We show
that Galel universes ar& dual topp waves, and use this fact to generate newd@dike solutions of string
and M theory byT dualizing known supersymmetrjgp-wave solutions.
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[. INTRODUCTION Historically, microscopic holography in string theory has
been relatively easier to understand for solutions with a “ca-
Many long-standing conceptual questions of quantunmonical” preferred holographic screen which is observer-
gravity, and even of classical general relativity, are findingindependent, and typically located at asymptotic infinity. Ho-
their answers in string theory. Among the most notable exiography in AdS spaces is a prime example of this. On the
amples are various classes of supersymmetric timelike sirether hand, cosmological backgrounds in string theory re-
gularities, or the microscopic explanation of Bekenstein-quire an understanding of holography in more complicated
Hawking entropy for a class of configurations controllableenvironments, which may not exhibit canonical, observer-
by spacetime supersymmetry. On the other hand, manindependent preferred screens at conformal infinity. Here, the
puzzles of quantum gravity still remain unanswered. In parprime example is given by de Sitter space: When viewed
ticular, the role of time in cosmological, and other time- from the perspective of an inertial observer living in the
dependent, solutions of string theory still defies any systemstatic patch, the preferred holographic screen in de Sitter
atic understanding. space is most naturally placed at the cosmological horizon.
While many crucial questions of quantum gravity are as-This leads to the fascinating idea of observer-dependent ho-
sociated with high spacetime curvature or with cosmologicalographic screens, associated with a finite number of degrees
horizons, some puzzles become apparent already in spacef freedom accessible to the obseryfar more details, see
times with very mild curvature, no horizons, and even triviale.g.[2—-6]; see alsd7,8] for a complementary point of view
topology. How can the low-energy classical relativity fail to on de Sitter holography that uses other preferred screens, not
represent a good approximation to quantum gravity for smalassociated with an inertial obseryer
curvature and in the absence of horizons? Arguments leading Of course, string theory promises to be a unified theory of
to the holographic principlgl] indicate that general relativ- gravity and quantum mechanics, but it is at present unclear
ity misrepresents the true degrees of freedom of quanturhow it manages to reconcile the general relativistic concept
gravity, by obscuring the fact that they are secretly holo-of time (notoriously difficult because of spacetime diffeo-
graphic. In those instances where string theory has been sugiorphism invariancewith the quantum mechanical role of
cessful in resolving puzzles of quantum gravity, it has dongime as an evolutionary Hamiltonian parameter. Again, this
so by identifying the correct microscopic degrees of free-problem becomes somewhat trivialized in the presence of
dom, which frequently are poorly reflected by the naise-  supersymmetry, but persists in all but the most trivial time-
pengravity approximation. In this paper we investigate andependent backgrounds of string theory.
example in which holography suggests a very specific dra- In this paper, we analyze a class of supersymmetric solu-
matic modification of the degrees of freedom in quantumtions of string theory and M theory, which—at least in the
gravity already at very mild curvatures, in a homogeneouglassical supergravity approximation—are described by ge-
and highly supersymmetric cosmological background. ometries with no global time function. In particular, we focus
our attention on string theory analogs of d&dis universe.
Godel’s original solution 9] is a homogeneous rotating cos-
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universe has been discussed in a remarkable paper by Gaunire of preferred holographic screens implied by the covari-
lett et al.[10], who classified all supersymmetric solutions of ant prescriptior{ 15] for their identification in classicalsu-
five-dimensional supergravity with eight supercharges, angengravity solutions. This “phenomenological” analysis
found a maximally supersymmetric @Gel-like solution that leads to valuable hints, indicating how the problem of closed
can be lifted to a solution of M theory with twenty Killing timelike curves may be resolved in the @ universe. In-
spinors. The existence of this solution was also noticed predeed, we will claim that the apparent pathologies of the
viously by Tseytlin, see footnote 26 d¢fi1]. It is worth  semiclassical supergravity solution can be resolved when ho-
stressing that the @l universe of M theory is time- lography is properly taken into account. Semiclassical gen-
orientable: There is an invariant notion of future and pasteral relativity without holography is not a good approxima-
lightcones, at each point in spacetime. Also, there is a globdion of this solution, despite its small curvature, absence of
time coordinate t and in facts/dt is an everywhere timelike horizons, and trivial spacetime topology.

Killing vector (in effect, making supersymmetry possible Notice also that homogeneity of the @& solution makes
However,t is not a global timefunction The surfaces of things at least superficially worse: It implies that there are
constantt are not everywhere spacelikéctually, the solu-  closed timelike curves through every point in spacetime.
tion cannot be foliated by everywhere-spacelike surfaces ddowever, these closed timelike curves are also in a s¢ase
all—the classical Cauchy problem is always ill-defined in0be explained beloytopologically “large.” Our analysis of
this spacetime. It is hard to imagine how such an apparentl{he structure of holographic screens in this geometry reveals
pathological behavior of global time could be compatible@n intricate system of observer-dependent preferred holo-
with the conventional role of time in the Hamiltonian picture graphic screens, which always carve out a causal part of
of quantum mechanics. Indeed, this solution turns out t$Pacetime, and effectively screen all the closed timelike
have classical pathologies: Just asiéks original solution, curves and hide any violations of causality from the |nert!al
the supersymmetric @l metric allows closed timelike Observer.In fact, the causa_ll structure of the part of spacetime
curves, seemingly suggesting either the possibility of timecarved out by the screen is precisely that of an AdS space,
travel (cf. [13]) or at least grave causality problems. cut off at some finite radial distance. _

These classical pathologies could imply that théd€lo The preferred holographic screens in thed@louniverse
solution, despite its high degree of supersymmetry, stays in@'€ very much like the screens associated with the inertial
consistent even in full string or M theory. There are of courseobservers in the static patch of de Sitter space. First of all,
pathological solutions of Einstein's equations whose probihey are associated with the selection of an obsefaed
lems do not get resolved in string theory, with the negativetherefore represent “movable,” noncanonical screens, not lo-
mass Schwarzschild black hole being one example. cated at conformal infinity Moreover, they are compact,

However, there are reasons why one might feel reluctar#mplying a finite covariant bound on entropy and—in the
to discard this solution as manifestly unphysical, despite thétrong version of the holographic principle—a finite number
sicknesses of the classical metric: This solution is homogef degrees of freedom associated with any inertial observer.
neous, its curvature can be kept small everywh@repar- ~ Thus, the Gdel universe should serve as a useful supersym-
ticular, there are no singularities and no horizornd the ~ Metric laboratory for addressing some of the conceptual puz-
solution is highly supersymmetric. It is also impossible tozling issues of de Sitter holography. _
eliminate the closed timelike curves by going to a universal The results of our “phenomenological” analysis of holog-
cover—indeed, the Gtel solution is already topologically 'aphy also reveal the importance, for cosmological space-
trivial.? times, of a local description of physics as associated with an

We feel that any solution should be presumed consisterfPserver inside the universe. It is not sensible to pretend that
until proven otherwise, and this will be our attitude towardsthe observer stays at asymptotic infinity, and observes only
the Galel solution in this paper. Our aim will be to analyze €lements of the traditionally definegimatrix (or some suit-
holographic properties of the supersymmetricd@lesolution ~ @ble analogs therepfClearly, this only stresses the need for
in string theory. The solution is remarkably simple, and as? conceptual framework defining more environmentally-
we will see in Sec. V, turns out to be related by duality to thefriendly, “cosmological” observables as associated with cos-
solvable supersymmetrigp-wave backgrounds much stud- Mological observers in string theory.
ied recently. However, before we attempt the analysis of The structure of the paper is as follows. In Sec. II, we set
“microscopic” holography in string theory, we will first the stage by reviewing and analyzing d&s cosmological
adopt a more “phenomenological” approach as pioneered byolution G3X R of Einstein's gravity in four space-time di-

BOUSSO[].S] (See[3,16] for reviews’ and ana'yze the struc- mensions. DeSpIte its Slmp|ICIty, this solution already exhib-
its all the crucial issues of our argument. We apply Bousso’s

prescription for the covariant holographic screens, and find

ISee, e.g[12] for a detailed discussion of the distinction between SCré€ns that are observer-dependent, compact, and causality-
a global time coordinate and a global time function. preserving. In addition, we establish connection with holog-

2This should be contrasted with the case of solutions with"@Phy in AdS spaces: @el's solution can be viewed as a
“trivial” (in the sense of Cartdd4]) closed timelike curves, such mem_ber of a two-parameter mOdP“ Space of homogeneous
as those in the flat Minkowski spacetime with time compactified 0nSO|UtI0hS of Einstein’s equations Wlth_tl‘IVIa| spacetime topol-
st, where the closed timelike curves can be eliminated by liftingogy, with AdSXR also in this moduli space. We show that
the solution to its universal cover. under the corresponding deformation the observer-dependent
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preferred holographic screens of @d's universe recede to the value of the cosmological constant and the density of
infinity and become the canonical holographic boundary ofpressureless matter both determined by the rotation param-
AdS;XR. In Sec. lll we move on to the supersymmetric eter(},

Godel universe of M theory, which can be written &g

X RS, First we analyze th&js part of the geometry as a 02
solution of minimald=5 supergravity, study in detail the p:TGN’
structure of geodesics in this solution and use it to determine

the preferred holographic screens, and show how chronologyistorically, this solution was instrumental in the discussion
can be protected by holography. Then we extend our analysist whether or not classical general relativity satisfies Mach's
to the full GsX R® Godel geometry in M theory. Section IV principle (see, e.g.[19], Sec. 12.4

points out remarkable analogies between holography in the \yhile the homogeneity of Gtel's universe is(almost
supersymmetric Giel universe and holography in de Sitter manifest in the coordinate system used in Ej2), the ro-
space. In Sec. V, we embark on the analysis of “micro-tational symmetry ofis2 around any point in space becomes

scopic” duality of Galel universes in string theory. First, we \ore obvious in cylindrical coordinatés r, ¢), in which the
compactify the M theory solution 08! to obtain a Gdel metric takes the following form:

solution of type IIA superstring theory, and show that upon
further St compactification the type IIA Gael universe isT 1
dual to a supersymmetric type lIBp wave, which can be dsi=—dt?+dr?— 52(sini’f‘(Qr)—sinl‘?(Qr))dq&2
obtained as the Penrose limit of the intersecting D3-D3 sys-

tem. We point out that this Gleljpp-wave T duality is a 23

much more general phenomenon, and can be used to con- - Tsinhz((lr)dtdqﬁ. (2.4
struct new Gdel universes in string and M theory Bydu-

alizing knownpp waves. The relation tpp waves is just one
aspect of the remarkable degree of solvability ofd€loso-
lutions in string theory. We intend to present a more detailed

A=-202 (2.3

Indeed,dld¢ is a Killing vector, of norm squared

a 2

analysis of “microscopic” aspects of holography in the _
Godel universes of string and M theory elsewhégt&]. In d¢

the Appendix we summarize some geometric properties of
the supersymmetric Giel solutions. The orbits of this Killing vector are closed, and become

closed timelike curves for>r,

=Q%(l—sinl"F(Qr))sinhz(Qr). (2.5

Il. HOLOGRAPHY IN GO DEL'S FOUR-DIMENSIONAL 1 1
UNIVERSE r0=5arcsinm1)zaln(1+\/§). (2.6)
A. Godel’s solution

In 1949, on the occasion of Albert Einstein’s 70th birth- We will call the surface of =r thevelocity-of-light surface
day, Kurt Galel presented a rotating cosmological solutionthe null geodesics emitted from the origin in this coordinate
[9] of Einstein’s equations with negative cosmological con-system reach the velocity-of-light surface in a finite affine
stant and pressureless matter; this solution is topologicallparameter, and then spiral back to the origin where they re-
trivial and homogeneous but exhibits closed timelike curvesfocus, again in finite affine parameter.
Our exposition of Gdel's solution follows[9,18]. The homogeneity of the solution implies that there are

The spacetime manifold of this solution has the trivial closed timelike curves through every point in spacetime.
topology of R*, which we will cover by a global coordinate Note that in a well-defined sense all the closed timelike
system(r, X, y, 2. The metric factorizes into a direct sum of curves are topologically “large”: In order to complete a

the (trivial) metricdz? on R and a nontrivial metric ofr®, closed timelike trajectory starting at any poltone has to
travel outside of the velocity-of-light surfades defined by
dsj=ds;+d7Z, (2.)  an observer aP) before being able to return 8 along a

causal curve. This fact will play an important role in our

where argument for the holographic resolution of the problem of

closed timelike curves below. Notice also that none of the
closed timelike curves is a geodesic, and that the closed
timelike curves cannot be trivially eliminated by a lift to the
universal cover: The manifold is already topologically trivial.
This class of solutions is characterized by a rotation param- Godel's universe represents a solution with a good time-
eter ). We will refer to the manifoldR® equipped with the like Killing vector (indeed,d/4t is Killing and everywhere
nontrivial part(2.2) of Godel's metric asG;. Thus, in our timelike), which however cannot be used to define a univer-
notation, Galel’s universe igj3X R. The metric onG; has a  sal time function: The slices of the foliation by surfaces of
four-dimensional group of isometries. The geometry exhibitsconstantt are not everywhere spacelike. The classical
dragging of inertial frames, associated with rotation. The fullCauchy problem is always globally ill-defined for this geom-
four-dimensional geometry solves Einstein’s equations, wittetry.

1
dsi=—d7r?+dx®+ Ee‘““dyz— 2e*Xdrdy. (2.2
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B. Preferred holographic screens in Gdel's universe H

We now apply Bousso’s phenomenological framework for ?
holography[15,3,16 to Gadel's universe. We identify its
preferred holographic screens, associated with particular ob-
servers as follows.

Consider a geodesic observer comoving with the distribu-
tion of dust in Gdel's universe(and placed at the origin
=0 of our coordinate system without loss of generality
Imagine that the observer sends out light rays in all direc-
tions from the origin at some fixed time, say 0. These
light rays will at first expand—i.e., the surfaces that they
reach in some fixed affine parametewill grow in area, at

least for small enough values »f The preferred holographic h C

screen will be reached when we reach the surface of maximal

area(or maximal geodesic expansijon r>n
Alternatively, one can followincoming light rays into

their past, until reaching the surface where the geodesics no r

longer expand. This is again the location of the preferred
screen3. The preferred screefi can then be used to impose
a covariant bound on the entropy inside the region of space
surrounded byB [15], which should not exceed one-fourth of
the area of3 in Planck units. P
We will first analyze the three-dimensional par; of
Godel's solution, which contains much of the nontrivial ge-
ometry(see Fig. 1L Even though all the geodesics of @G's
universe are knowf20], one can in fact use the symmetries  FIG. 1. The geometry of the three-dimensional pggt of
of G; to determine the location of the screen without anyGadel's universe, with the flat fourth dimensiarsuppressed. Null
explicit knowledge of the geodesic curves. Sirgkeis rota-  geodesics emitted from the origihfollow a spiral trajectory, reach
tionally invariant in ¢, all the null geodesics emitted from the velocity-of-light surface at the critical distancg, and spiral
the origin will reach the same radial distanda.) within the back to the origin in finite affine parameter. The cu@ef constant
same affine parametéassuming that we use a rotationally r>To tangent tod/d¢ is an example of a closed timelike curve. A
invariant normalization o for geodesics emitted in differ- more detailed version of this picture appears in Hawking and Ellis
ent directions from the origin and also for the same global [18]-

time coordinaté. Thus, to determine the surface of maximal

geodesic expansion, we can just evaluate the area of the siptational symmetryp, and its points represefin our case
faces of constant and t (in our case of course one- one-dimensionalorbits of the rotation group, i.e., surfaces
dimensional of constant andt. For each such surface, one can define the

total of four light sheets: Two oriented forward in time, and
27 i two oriented backward. In generic points of the diagram, two
A= Esmr’(ﬂr)vl—smhz(ﬂr), (2.7 of these light sheets will be nonexpanding. At each point of
the Bousso diagram one can draw a wedge pointing in the
direction of nonexpanding light sheets. These wedges then
point in the direction of the preferred holographic screen.
One can directly verify that our preferred holographic
screen satisfies the defining property

and maximize it as a function of This very simple calcu-
lation yields a preferred screel that is isomorphic to a
cylinder of constant =r,, and anyt, with

1 1 =
erﬁarcsinV( —) . (2.9 =0, (2.9
V2 where 6 is the expansion parameter defined for a spacelike

. . . ) codimension-two surfacB (in any spacetime with coordi-
Of course, this screen is observer-dependent, in this Ca3e tesx”) as

associated with the comoving inertial observer located at the
origin for all values oft. Other comoving inertial observers 6=h*"D ¢, (2.10
would see different but isomorphic screens, in a pattern simi-
lar to the structure of cosmological horizons associated wittwith ¢, the lightlike covector orthogonal tB (smoothly but
inertial observers in de Sitter spa¢8ee Fig. 2. arbitrarily extended to some neighborhoodB)f D, is the

One can take advantage of the rotational symmetry of theovariant derivative, and,,, is the induced metric oB. The
solution, and visualize the location of the preferred screemost convenient way of identifying the surface @0 in
using a spacetime diagram of the type introduced by BoussGodel's universe is to use as the vector tangent to the
[15] (see Fig. 3 This diagram suppresses the dimension ofcongruence of null geodesics emitted by the observer at the
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with 0= ¢=<27. The preferred holographic screen carves
out a cylindrical compact region of spacetirivenich we will
call the holographic region in the G part of Galel's uni-
verse, centered on the comoving inertial observer at the ori-
gin. This region contains no closed timelike curves, as can be
easily demonstrated by noticing that the causal structure of
the holographic region is identical to that of a cylindrical
portion of (the universal cover 9fAdS;. The closed timelike
C curves of the fullG; geometry fall into two categories: Either
they stay completely outside of the holographic region, or
they enter it and leave it again after traveling a causal trajec-
r>r, tory within the holographic region.

1. Preferred screens iz XR

The full Gadel universe is of the direct product forg
X R. The presence of the extra, translationally-invariant di-
mension parametrized lwactually implies a richer structure
of preferred screens than the one we just found indhe
factor. This is in fact a preview of what we will find in the

FIG. 2. The geometry of our preferred holographic screen inN€Xt section in the case of supersymmetrici€csolutions in
Godel's universe, as defined by the inertial observer following theM theory and string theory: Those solutions typically also
comoving geodesic at the origin of spatial coordinates. The translacontain extra flat dimensions.
tionally invariant dimensiozis again suppressed. Two closed time-  First of all, there is one preferred screen that can be easily
like curves are indicated: On€, at constant value af=0 andr identified: The three-dimensional surfa&e< R, whereH is
>r, is outside of the preferred screen, while anoti@r, passes the preferred screen associated with the observer at the spa-
through the origin at=0 and intersects the screen in two, causally tial origin in Gz, andR is the extra coordinate, clearly
connected points. satisfies the zero-expansion conditi@?9). Thus, by defini-

tion, this surfaceH X R is a preferred screen. This screen is

origin. An explicit calculation confirms in this case thats ~ observer-dependent, and the observer associated with it can
proportional tod, g4, and therefore vanishes at the surfacebe thought of either as a string wrapped aroundr as a

of r=ry. more traditional observer “delocalized” alorg each local-
The metric induced on the preferred holographic scféen ized at the origin of coordinates & . Unless we compactify
is of signature(—+), everywhere nonsingular: z on S', the overall area of this translationally-invariant

screen is of course infinite, but the screen still has a finite
“area density” per unit distance alorg
dep?+ qu’)dt (2.12) Alternativel_y, one can ask_wha_t is the preferred screen
Q associated with an localized inertial observerGgx R. If
one follows null geodesics emitted frofor converging ontp
a point inGs; X R where the observer is located, one finds that
the surface of maximal geodesic expansion is at a finite dis-
< tance from the observer in all space directions including
This compact, translationally-noninvariant screen is com-
pletely contained within the velocity-of-light surface as de-
< fined by the observer.
>— P For either of these two classes of screeng/ixX R, all
<

1

— A2
dst,= dt?+ 75

closed timelike curves are again either hidden outside of the
screen or broken by it into causal observable pieces.

2. Covariant entropy bounds and screen complementarity

T g The existence of preferred screens; and the structure of

FIG. 3. The Bousso diagram for th# part of the Gdel uni-  the Bousso diagram for @el's universe imply a holo-
verse metric, with the angular coordinafe suppressed, and the 9raphic entropy bound on the amount of entropy through any
structure of nonexpanding light sheets indicated by the boldSPatial slice of the compact holographic region associated

wedges. The preferred holographic screen is at the finite vglué ~ With each screen. This entropy is limited by one fourth of the
the radial coordinate, strictly smaller than the location of the area of the screen measured in Planck units. Our screen is

velocity-of-light surface at,. A null geodesic sent fror® would ~ neither at conformal infinity, nor located at a horizon. The
reach the velocity-of-light surface &’ in a finite affine parameter, closest analog would be the preferred holographic screen lo-
and refocus again at the spatial originfr. cated at the equator of the Einstein static universe. Just as in
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that case, the holographic screen ofd8ks universe can be with (1 e R andm?eR. For m>=4Q2, we recover Gdel’s
used to bound the entropy in either direction normal to themetric (2.2). On the other hand, fom?=80? we get the
screen. In particular, the light rays that start at the screen angirect-product metric on Ads<R [23]. Notice also that the
travel in the direction of larger values ofrefocus at the metric simplifies in the limit ofm—0 keepingQ fixed; this
velocity-of-light surface, and then travel back again to themetric has been analyzed by Som and Raychaud2dii
screen. This is rather reminiscent of the behavior of lightyng js in fact a closer analog of the string theorydélo
rays in Einstein’s static universe: lightrays emitted from oneniverse than Gael’s solution itself.

pole of the spatial sphere reach the screen at the equator anlasmce all the solutions in Eq2.12 are rotationally invari-

travel to the other hemisphere, refocus at the opposite po'%znt, we can easily identify the preferred screens for this en-
and travel back to the screen and then to the point they werg family of metrics using the same symmetry argument as

originally emitted from. é'n Godel's universe itself. The holographic scredtiof the

The strong version of the holographic principle suggest o X .
that the compact holographic screen implies a finite bounggtn;&'v;?l three-dimensional part of E¢2.12 are now lo-

on the number of degrees of freedom effectively accessibl
to the inertial observer. The good causal structure of the ho-

lographic region associated with that observer may suggest 2 1602 -1/2
that the quantum mechanics of this finite number of degrees rH:—arcsinV(<7—2) ) (2.13
of freedom could be well-defined, and screened from the m m

acausal behavior outside of the velocity-of-light surface by a

screen complementarity principle. o ~ Thus, form?<8Q?, the screen is at a finite value of,, and
Of course, one may find the very definition of entropy in a5 we approach the ASR limit it recedes to infinity and

atic. However, in t_he case o_f Gel’; universe all that matters connection with Ad$ leads to a particularly intriguing way
for our argument is the region strictly below the velocity-of- of thinking about holography of this family of solutions in
light surface. One can in principle imagine cuttingdgls  terms of breaking conformal invariance on the holographic
solution off at some finite larger thanr,, but smaller than gcreen of AdS once we move away from the Aggimit.
ro, and replacing the outside with some causal geometry. Ciearly, our observation that preferred holographic
The covariant entropy bound can then be safely applied tgcreens can either screen closed timelike curves or break
the holographic region, without any possible conceptual difthem up into causal pieces is not restricted to homogeneous
ficulties with the definition of entropy in the presence of space-times. An example of the same phenomenon in an in-
closed timelike curves. homogeneous solution can be easily found: Consider the

~ The intricate structure of compact preferred screens ass@yassic cylindrically symmetric inhomogeneous solution with
ciated with the observers in @el's universe suggests that ¢|gsed timelike curves found in 1937 by van Stock[@8],

holography may be the correct, causal way of thinking aboufyhich in the cylindrical coordinates takes the form
this geometry without modifying it. However, one is forced

to replace the naive “metaobserver” perspective of the ge-

ometry by a system of local observers, each of which sees a ds?=—dt*—2Qr?d¢dt+r*(1- Q%% d¢?
causal region screened from the rest of the naive classical 022 )
geometry by the preferred holographic screen. Each indi- e (dZ*+dr?). (2.14

vidual observer would only have access to a finite amount of

degrees of freedom associated with the corresponding holgg js giraightforward to show that the preferred holographic
graphic region. Within this finite number of degrees of free-gqaen a5 defined by the inertial observer located at the origin
dom, causality and quantum mechanics would be protecteqs aqain compact and shields the closed timelike curves from

In th!s paper we will not dlscuss_ nonlnemal observersy, observer, just as in the case of the homogenes®IGo
attempting to travel along closed timelike curves. In the iverse.

spirit of Hawking’s original chronology protection conjec-
ture [21], one may expect a large back reaction from the

geometry that can protect the solution from such observers,;; HOLOGRAPHY IN THE SUPERSYMMETRIC GO ~DEL

. . UNIVERSE
C. Godel's universe as deformed Ad$ and holography

The Galel solution of M theory found if10] has a direct
product formgs X R®, where the nontrivial five-dimensional
part Gs represents a maximally supersymmetric solution of
minimal supergravity in five dimensions. The underlying
spacetime ofGs is topologically trivial, isomorphic taR®.
Again, just as in the case of @el's four-dimensional solu-

120 mr 2 1 tion, much of the nontrivial structure of the solution is car-
dsz:—(dt+ po sinhz(y)ohﬁ) +sinff(mnd¢®  ried in this five-dimensional factags, which plays a role
analogous taj; of the previous section. We will therefore
+dr?+d2, (2.12  study holography of this five-dimensional solution first.

It is useful to embed our discussion of @&'s universe
into a broader framework. Consider all spacetime-
homogeneous metrics of the @al type. It has been shown
[22] that this family of metrics is parametrized by two pa-
rameters{) andm, with the metric given by
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A. Holography in the Godel universe ofN=1 d=5 verseGs is given by the semidirect produét(2)& (SU(2)
supergravity xXU(1)), whereH(2) is the Heisenberg algebra with five

The five-dimensional Giel geometrygs is a maximally generz_;\tori _ . _
supersymmetric, topologically trivial, homogeneous solution While the translation symmetrieB; of the solution are
of minimal five-dimensional supergravifg0]. We introduce ~ almost manifest in the Cartesian coordinates; , the rota-
generic coordinateX*, x=0,...4 onR®, but we will soon tion symmetries are rather obscure. It is therefore convenient
specialize to several specific coordinate systems. The minfo introduce a new coordinate system. First, we introduce a
mal d=5 supergravity contains an Abelian gauge fielg ~ Pair of polar coordinates, one in each of the two main planes
whose field strengtiF,, we normalize such that the La- Of rotation,

rangian has the following form,
grang 9 X1=r1C0S¢1, X3=TI,C0S¢h,,

1 . .
R_ZFMVFILV+... , (3.2 Xo=r1SiNd;, X4=r,SiNe,. (3.6

1
£5: > f d5X
5

2x2

] ) ) In these “bipolar” coordinates, the metric becomes
where the *--" stand for a Chern-Simons self-interaction of

the gauge field and for fermionic terms. ds?=—dt?—28(r2d ¢, +rad¢,)dt+dri+dr3
The Galel solution takes the form of a fibration over the )22 ) 5o o
flat EuclideanR* with fibers isomorphic toR and with a —2p°rirdé dé,+ri(l—pry)de]
simple twist, which in a Cartesian coordinate syster; , 204 0202\ 2
i=1,...4, can be written as Fra(1=p7r3)d ). 3.7
4 The non-Abelian part of the rotation symmetries becomes
dszz—(dt+Bw)2+2 dx2 manifest in spherical coordinates,¢q,¢,,9), with &
=1 e[0,7/2),
F=2v3pJ, (3.2 X;+ix,=re'%1cosd,
with the twist one-formw given by Xgt+ix,=re'%2sin g, (3.9

w=X10X—Xo0X; + X3dXs— X4dX3=J;;x;dx;, (3.3 which bring the metric to the following form:

2

= Jo=Ju= —Jyam & r 2
and J,,= —Jy=J3,= —Jss=1 a preferred Kaler form on 42— dt+%03) +dr4r2d0z 39

R%. In Eq.(3.2), B is a constant rotation parameter, of mass

dimension one. Without any substantial loss of generality, we

will assumep to be positive. HeredQ§ is the standard unit-volume metric &, ando;
As remarked irf10], this solution is homogeneous, and in is one of the right-invariant one-forms &U(2),

fact has a nine-dimensional group of bosonic isometries. The

Killing vectors are given by 03=2(cos Yd¢py+Si 9dehy). (3.10
Po=4, It is clear from this expression for the metric that even
though the solution does not exhibit the fuBO(4)
Pi=a,— BJijX;0, ~SU(2)xXSU(2) rotation symmetry irR*, the nonzero ro-
tation parameteB keeps the righSU(2) [together with a
L=X;dp— Xpd1+Xgdq— X403, U(1) subgroup of the lefSU(2)] unbroken.
It was also noted if10] that the Gdel universeGs pre-
Ry =Xqdp— Xpd1— X34+ X403, serves all eight supersymmetries of minirdat 5 supergrav-
ity. Thus, the bosonic symmetry algel@5) will extend to
Ro=X1d3— X301+ Xods— X405, a superalgebra with eight superchar@edt is natural to split
R3=X1&4—X4¢91+X3&2—X2&3, (34)

) ) . . 3As we will see in Sec. IV, the remarkable similarity between this
whered; = dl 9x; . The commutation relations of this bosonic symmetry algebra and pp-wave symmetry algebra is not a coin-

symmetry algebra are cidence: When lifted to string theory, the @ solution is actually
T dual to a supersymmetrigp wave. Notice, however, that in the
[Ra,Rg]=2€44,R,, [L,R.]=0, symmetry algebra ofs, the central extension generaf@j of the
Heisenberg algebra is represented by a timelike Killing vector,
[Pi,Pj1=28J;;P. (3.5  while in thepp wave it would be null. One can actually show by a
direct calculation that the five-dimensional @b universe(or the
Here «,8,...=1,2,3 go over a basis of anti-self-dual two- string theory lifts thereof to be studied belpdoes not admit any

tensors inR*. R, andL act on the momentR; as _l_rotations. covariantly constant null vectors, which proves that it is not “se-
Thus, we find that the symmetry algebra of thed@louni-  cretly” a pp wave in unusual coordinates.
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Q into two four-component spinor~. In this notation, the dﬁznd: r2d9%+r? cos 9(1— B%r? cos ﬁ)d(ﬁ%
(anticommutation relations of the full symmetry superalge- )
bra can be written as follows: +r2sir? 9(1— B2r? sir? 9)d g3

—2B%r*cog O sifdde,de,, (3.12

[PO,Qi]:()’ [Rin]:FRQia

implying that the induced area of this surface is given by

[P;,Q"]=0, [Pi.Q 1=8J;I'Q",
A(r)= f§m=2w2r3\/l—ﬁ2r2, (3.13

—Jr7 + :FOP , _7, + ZFiP-,

1Q7.Q1 o 1Q.Q7 ' whereh;,q is the determinant of the induced met(.12.

o We conclude that the preferred holographic screen is located

{Q,Q }=T%Py+2pL), (3.11) atradial distance (call it r;;) where the areé3.13) is maxi-
mized,

together with Eq(3.5). In Eq. (3.1, R denotes any of the V3
rotation generator®, or L, andI'y is a shorthand for the rH=2—,
generator of conventional rotations associated with B
e SO(4), in the corresponding spinor representation of

(3.19

The screen carries a Lorentz-signature induced metric,

SO(4).

Once we examine the structure of preferred holographic 3
screens in the next subsection, it will be interesting to see dsff —dt?— = (cog dd¢, +sir’ 9de,)dt
how these screens are compatible with the structure of the 2p
supersymmetry algebr@.5), (3.11). 3

+ a7 d 92+ cog dd g3+ sir? 9d g3
B. Preferred holographic screens 3
Consider an inertial, comoving observer located at an ar- - Z(cos2 9d e+ sir? dd¢,)?|, (3.15

bitrary point in space, which we place without any loss of
generality at the origin of cartesian coordinates 0. Since
we are focusing on the perspective of an observer at th

origin, it will be convenient to use either the “bipolar” or the 3/4. The screen metri(3.15 seems to exhibit dragging of

spherical coordinates. . . frames, but this is an artifact of a coordinate choice. Upon
The symmetry arguments that allowed us to identify the —

preferred screen in @el's universej; without actually cal- Ttrod_uzmtg Eew 3a|;guLar coordinates g = ¢, —45t, ¢,
culating the geodesics can in fact be extended to the super- $2—4pt, Eq.(3.19 becomes
symmetric solutiorgs as well. Despite the fact that the full

with each spacelike slice of constahisomorphic to the
§quashed three-sphere of radiysand squashing parameter

SO(4) rotation symmetry ofR* is broken to anSU(2) ds?= —4dt?+ — | d9?+ cod 9d @2+ sin? 9d ¢2
. e 4 2 1 2
X U(1) subgroup, the unbroken group still acts transitively
on the three-spheres of constanindeed, one can think of 3 o o
the S® at constant as a copy ofSU(2), onwhich the full — Z(co§ 9d ¢, + sir? 6d¢2)2}. (3.1

SO(4) rotations would act by the left action of osJ(2)

and the right action of the oth&U(2). In the Galel solu-

tion, the metric on theS® of constant radius is that of a

squashed three-sphere, which still leaves(ttansitive right : o . .

action by SU(2) unbroken. This unbrokeBU(2) is suffi- . Thg screen and s '°C<’?‘t'°” |n.the ) UNIVErse can be
visualized exactly as in Fig. 2, witkh now collectively de-

cient to reduce our analysis of the location of preferred” =" ; .
screens to the maximization of the area of the surf&esf noting the coordinates on the squashed thre;e—sphere. Ag?'”'
the preferred screen cuts out a compact region of space with

constant as a function of (at constant), precisely as in the e . ) .
; L : . : the observer inside, which we will refer to as the holographic
simpler case ofj; studied in the previous section. Without egion

knowing the precise structure of the null geodesics emitted dt . .
The compact preferred holographic screen also implies a

some timet <0 in all directions from the origin, the symme- . . .
C . . finite bound on the entropy that flows through a spacelike
tries imply that these geodesics will reach & of some ; . i :
section of the holographic region. This entropy has to be

fixed radiusr att=0. :
Thus, in order to find the preferred holographic Screenﬁsjr;]i?s”er than one fourth of the area of the screen in Planck

associated with the inertial comoving observer at the origin,

This phenomenon is analogous to the behavior of horizons in
rotating black holes in five dimensioh26].

we only need to maximize the volume of tB2 at fixedr, as 2733
a function ofr. The induced metric on ths® of radiusr at S< _2_H (3.1
constantt is given by Ks
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(Notice that ourks is related to the 5D Newton constant by (£,6)=—M?2  (&,0)=—E,
8mGn= Ké)

It is interesting to analyze the symmetries preserved by
the screen. While all the rotation symmetriesU(2)
XU(1) as well as the time translation symmetry are left
unbroken, all the space translations are broken by the screederelL,, L, are the angular momenta in the two preferred
Similarly, the structure of the supersymmetry algebra revealplanes of rotation. The: sign of M? corresponds to timelike
that one half of the superchargegmamelyQ ) will be bro-  and spacelike geodesics, withthe energy of the particle in
ken by the screen, while the remaining half of supersymmethe timelike case. In the null cagd?=0 we will find it
try represented b (and associated with Killing spinors convenient to rescale the affine parametealong the geo-
which are simply constahis compatible with the presence desic so as to sdi=1.
of the screen. Thus, the screen can preserve as much as 1/2The integrals of motior§3.19 imply
of the full supersymmetry of the Glel solution, leaving an

(&g )=L1, (&304,)=Lo. (3.19

unbroken symmetry which coincides with the symmetry left ) L, . L,

unbroken by the choice of the inertial comoving observer. $1=BE+—, ¢,=BE+—,

Once we lift the solution to M theory, we can also think of M1 r2

the preferred comoving observer as a massless particle mov-

ing with the speed of light along the extra dimension and t=(1- 22— B2r2)E—B(L,+L,), (3.20

preserving 1/2 of supersymmetry. Thus, the symmetries of
the observer seem compatible with the symmetries that can
be left unbroken by her preferred holographic screen. as well as

In order to verify that this simplified argument for identi-
fying the preferred screens, which relies on the large sym-
metry of the solution, coincides with the conventional local
definition of the screefil5] as the surface of vanishing ex-
pansion parametef=0 of the null geodesics emitted from L
(or, by the time reflection symmetry, sent towarthe origin + r
in space, we must first analyze the structure of geodesic mo-
tion in the Galel spacetime. This analysis will also refine our
understanding of the Glel universe geometry.

. L
(F1)2+(F2)* = (1= Bori= By E?+ 2BE(Ly+ o)+
1

NN

=—M?2. (3.21)

NN

In order to identify the holographic screen we need the
null geodesics going through the origin. Note that for non-
zero values of the angular momerta or L,, the effective
potential forr; andr, precludes the geodesics from reaching

"In this subsection we will find all the geodesics in the the originr,=r,=0. Thus, all the geodesics passing through
Godel universe. the origin will havel ;=L,=0, and we focus on those naw.

First, one can use the symmetries of the solution to simin order to separatie; from i, we need one more integral of
plify the analysis. By homogeneity, it will be sufficient to motion. Consider
consider geodesics through the orighof our coordinate
systemP={t=x,,=0}. In any case, for the identification of ; ]
the preferred screens we are primarily interested in null geo- (& R;)=(sin ¢, sin¢,+cose, cos¢2)(—2 L+ —le)
desics emitted from the origth. ' ra

We will write the tangent vector to the geodesic as

C. Geodesics in the Gdel universe Gs

+(SiN ¢4 COSho—COSh4 SiNh,)(Fof 1 — T4 5).
9 d . 9 I . 9 (3.22
=t—+i—+ P Fip—+ pp—— .
& o rl&rl ¢1(9¢1 rzar2 ¢2¢9¢2’ (3.18
o ] At zero angular momentum, E(B.22) has to vanish, imply-
where=d/d\ denotes the derivative with respect to an af-jng that the angle betweerr; andr, is another integral of
fine parametek along the geodesic. motion. Thus, the equations of motion for the geodesics that

lows us to explicitly solve for all the geodesics without any
restrictions. First of all, the following integrals of motion 2 a2e2E2 2 a2
will be useful, (F)°+ BT E“=E*—M?, (3.23

plus Eqg.(3.20 with L; set to zero. These can be easily

“Moreover, since th&U(2) part of the symmetry group acts tran- Solved, yielding
sitively on the celestial sphere & one could rotate the initial
momentum vector along the geodesic to lay entirely inxke x,
=0 plane. By angular momentum conservation, corresponding to 50Of course, all the geodesics with nonzero angular momenta can
the two Killing vectorsd/d¢, andd/d¢,, the geodesic would then be easily obtained from those with zero angular momenta by the
stay in thex;=x,=0 plane throughout its history. action of the large isometry group of the &® metric.
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1 =
=g 1—M?Zsin(8\)cosd,
. )
r,= 3 1—M?sin(\)sin ¥,
X
1 1
t:E(L+MQA+ZE(L—M%QMZBA%Hm (3.24
N\
b1= BN+ 3,
»=PBN+ o

, )  ,(0) FIG. 4. The behavior of null geodesics emitted from an arbitrary
with ¢ €[0,7/2) and ¢1 , ¢ €[0,2m) all constants. We point P in the Galel universe, with the initial momentum in the
have rescaled the affine parameteso as to sekE equal to  (x, x.) plane, and with several such geodesics indicated. Each geo-
one. For null geodesic$/1°=0, while for the timelike geo- desic travels along a circular trajectory, reaches the velocity-of-light
desicsM?e[0,1] as a result of our rescaling of. Notice  surface and returns back B penetrating the preferred screen ex-
that the comoving time at the origin(the coordinate corre- actly twice during each rotation cycle.
sponding to the Killing vecto#,) is nota good affine param-

eter along the null geodesics passing through the origin. In- T

stead, either one of the two main rotation angles ¢, AR:@ (3.28
plays the role of a natural affine parametas long asg is

nonzero of course to complete one period of oscillation and refocus at the ori-

Even though the spherical coordinate system is noin. The amount of global comoving time coordinate elapsed

smooth at the origin, it is easy to verify—by switching to the during the completion of one oscillation cycle equals
original Cartesian coordinate system—that the system of null

geodesicg3.249 represents the complete system of all geo- T

desics passing through the origin. Indeed, the tangent vector At= ﬁ (329

to this congruence at=0 is given in the Cartesian coordi-

nates by Note that the light ray arrives with its momentum equal to

the initial-value momentum; thus, the light ray traveled a full
circle in the (q,x,) plane. The same holds true for the
(X3,X4) plane.
; ; During one refocusing cycle, the proper area of the three-
. 0 . .0 sphere reached by the geodesics reaches a maximum twice,
+sind COS¢(2 )(9_x3 +sind S'n¢(2 )(9_x4' (329 precisely when they reach the preferred screen—first on their
way out towards the velocity-of-light surfacevhere the
demonstrating that the constarits (> and ¢) are indeed  proper area of th&® goes to zerpand then again on their
parametrizing the entire celestial sphere at the origin. way back to the origir(see Fig. 4. In fact, they reach the
Thus, we see an interesting refocusing behavior of alholographic screen for the first time at affine parameter
geodesics in the Giel universe:
They start moving from the origin towards larger values A= o (3.30
of r, which at first means larger proper-radius spheres, but 3B’ '
then at affine parameter

& 7 +cosd cos¢>(°)i +cosd sin ¢(°)i
A=075t Loax, Lo,

one third into the oscillation cycle.
Since any given geodesic moves around a circle in each of
A= ﬁ (3.2  the preferred planes of rotation, it is instructive to use the
translation symmetries of the solution, and transform Eg.

they reach the velocity-of-light surface, located at the Iargesf"z‘g Into the frame a;souated V‘.”t.h the observer at the cen-
: ; . . er of this circular motion. The Killing vector&.4) can be
valuer of the radial coordinate that is accessible by geo-

desic motion from the origin, easny mteg_ra_ted to give finite translatu_)ns. For example, we
find that a finite translation bg alongx, is accompanied by
1 an x;-dependent translation in

(3.27

rO:E' r_ r_ r_
X,=Xp+a, X;=X;, t'=t+pxa. (3.3)

By that time, both¢, and ¢, change exactly byr/2. Thenit  When one transforms E¢3.24) to the primed coordinates
takes another associated with the center of the circular motion of a geode-
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sic, thex;-dependent time translatiof3.31) eliminates the D. The Godel universe of M theory

sin(26N) term in the expression for as a function of the The lift of the five-dimensional Giel universegs to M
affine parameter in Eq3.24). Thus,t becomes a good affine heory involves adding six flat dimensiom®, which we
parameter precisely for the class of geodesics that C'rdBarametrize by coordinatas,, a=1,...6. Together, x; and

around the origin at fixed constant form a coordinate systerX™ on R, with M =0,...10.

. . . a
SO fgr, we were mgmly concentrating on ’?“” 9e0desiCStha action of eleven-dimensional supergravity has the form
emanating from the origin. The analysis is easily extended to

timelike geodesics, which turn out to exhibit a similar cyclic 1 u
behavior. However, they only reach up to a certain critical £11:ﬁ d-X

1
R__GMNPQGMNPQ+"‘ ) (338)
. ; . 48
distancer,, strictly smaller than the distance, of the

velocity-of-light surface, where “...” stand for the Chern-Simons term plus fermionic
terms. The eleven-dimensional @ solution is then given
I’M=\1—|\/| ro. (332 by
In terms of the global comoving time coordindtehe time- 4 6
like geodesics sent from the origin take longer to refocus at ds?=— (dt+ Bw)?+ >, dx2+ >, dy?,
the origin than null geodesics, the refocusing time being i=1 a=1
1+M?) 7 Giian=2BJiiKap, (3.39
At(M)= a+MYm 25 )7 (3.33 e e

with all the other nonzero components @f;ypq related to
_ _ Eqg.(3.39 by permutations of indices, and the idar formK

The geodesic expansioft on theR® factor defined byK;,=— Ky =Kgs= —K3=Kgg

We are now in a position to verify that the holographic = —Kgs=1.

screen is indeed located gy =v3/23 by a direct analysis of Consider again the congruence of all null geodesics emit-
the geodesics in the @el metric. Recall that according to ted from the origin in space, where our comoving observer is
Bousso’s prescriptiofil5], the screen is determined as the located. The longitudinal moment&?® along y, are con-
surfaceBB where the geodesic expansiérvanishes, leading served, leading to the following congruence of null geode-
to the “equation of motion” for the preferred holographic sics:
screen,

1
6=0, (3.34 =g 1—K?sin(8\)cosd,

with 6=h*"D , &, defined as the contraction of the covariant 1
derivativeD £, of the null covectorf,, with respect to the ro= B 1-K*sin(B\)sin 9,
induced metrich,,, on B.

The null geodesic$3.24) define a congruence whose as-

sociated tangent vector is _ E 2 i RN
t 2(1+K ))\+4IB(1 K9)sin(28\) +tg,
E=(1-B%? a+3( i + i + 1—32r2(9
ot Clagy i, o’ b1= BN+ ¢,
(3.35
. b2=BN+ By,
Its covector dualwhich we denote by the same let®rhas
a rather simple form, yA=K2\ (3.40
— _ [1 _ p2¢2 .
§=¢,dX4=—dt+ y1-prodr. (3.36 Just as in the case of four-dimensionalddbs solution

GsX R discussed in the previous section, one can use geode-
sics in the supersymmetric ‘@el solution GsxXR® of M
theory to define several different classes of preferred screens
(see Fig. b. First of all, there is a preferred screen which is

a direct product ofR® and the screen that we found @t

We can now evaluate the covariant derivativgé, and con-
tract it against the induced metii¢'”, to obtain the geodesic
expansiond. After some straightforward algebra,

—43%r2 . . . . . -
o= 34pT (337 uin Gs. This screen is translationally invariant along all
ryil—p%r? the extra dimensiong,, and clearly satisfies thé=0 con-

dition trivially. It is observer-dependent, and should be asso-
Thus, 6 vanishes precisely at=r,,=v3/2(, in accord with  ciated with an observer localized at a pointda but other-
our anticipation in Eq(3.14). Notice also tha® diverges at  wise delocalized along®, or with the maximal expansion of
the origin and at the velocity-of-light surface, confirming thatlight rays sent with zero momentul? from the origin ingGs
those are indeed caustics of the geodesic motion. and arbitraryy, .

106003-11



BOYDA et al. PHYSICAL REVIEW D 67, 106003 (2003

T Iyl IV. ANALOGIES WITH HOLOGRAPHY IN de SITTER
SPACE

Holography in de Sitter space is difficult due to the ab-
sence of a solvable model or an explicit embedding of de
Sitter into string theory. As we have seen in the previous
sections, holography in the @el universes exhibits notable
analogies with holography in de Sitter space.

There are two important classes of preferred holographic
screens in de Sitt¢d5]: First, the future and past infinity are
global, observer-independent screens of Euclidean signature.
An attempt to formulate holography using these scré@hs
| r has led to the conjectured dS conformal field the@@yT)

0 I correspondenci]. However, it is difficult to associate these
global screens with an observer inside de Sitter: Distinct
points at future infinity in de Sitter are outside of each oth-
in G5 for all values of|y|, and can be associated with an ex’[endederS causal Influ_ence, and any oper_atlonal definition of mea-
observer delocalized or wrapped alopg. The screen associated surable correlations seems to reqUIre a met_aobserver.

with a localized observer is compact in all space directions, and '_I'h_e second c!ass of screens is more Su'tz_ibl_e for the_de-
extends beyond,,, closer to the velocity-of-light surface,. scription of physics as seen by an observer inside de Sitter
[2,3,6]: The preferred screen of a given observer is located at
. ) , . . his or her cosmological horizon. Since the area of this
In_ad%mo_n, observers localized in a p0|ﬁtbc_)th in g_s observer-dependent screen is finite, the strong version of the
and in R” will naturally see a compact screen in all direc- hojographic principle implies a finite number of degrees of
tions. The precise location of this compact screen can bgeedom in the quantum mechanics associated with that ob-
found by considering the full congruen¢@.40 of gedesics  server. The finiteness of the number of degrees of freedom
emitted fromP. One can in principle calculate the expansionaccessible to any given observer leads to various conceptual
parameterd and find the preferred compact screen as theuzzles, such as the recently discussed question of time re-
surface of maximal expansion. currences[27]. Observers following different trajectories

Using the affine parametex and the total momentum have access to different holographic regions, perhaps sug-
K?=K,K? alongR® as coordinates, the shape of the screergesting a quantum mechanical description of de Sitter space
is determined from th&@=0 condition by a rather compli- as a web of infinitely many Hilbert spacésach associated
cated implicit function ofx andK?, with an observer and grasping a finite number of degrees of

freedon) with a complicated system of maps between them
(reflecting the exchange of data between causally connected
1 observers, and the horizon complementarity pringiple
0= ﬁsinfl(,B)\)[(l— K?)B\ cog BN)+K2sin(Bn)] L Given the conceptual complexity of de Sitter holography,
it would be very helpful to have an explicit simple solvable
X[5K2+2(1—K?)B2\2+ (—5K?+4(1—K?) g?\?) model exhibiting similar properties. We believe that the su-
persymmetric Gdel universes may provide such a model.
X Cog28\) +2(3—K?) B\ sin(28N)]. (3.4)  Indeed, preferred screens appearing iid&oholography
share many properties with the second type of preferred
screens in de Sitter space:
This screen is compact in all space dimensions, and exhibits Both represent an example of homogeneous geometries
SO(6)xXSU(2)XU(1) rotation invariance, witlsO(6) act-  with screens that are only defined when an observer has been

FIG. 5. The two types of preferred screens in the M-theory
Godel GsX RS, The translationally-invariant screen is located at

ing ony, andSU(2)xU(1) onx;. selected. Observers following different worldlines will see
There are several interesting points about this compadiifferent holographic screens.
screen. First of all, along,=0 this screen extends in thie The underlying spacetime geometry is homogeneous, but

directions beyond the location,, of the translationally in- this homogeneity is broken by the selection of the observer,
variant screen. This is in fact intuitively clear: once we addand consequently by the location of the observer-dependent
the flat dimensiony,, the tendency of the geodesics to ex- holographic screen, implying that the screen breaks sponta-
pand in they, dimensions competes against the refocusingneously some of the symmetries of the naive vacuum. This
behavior of the geodesics in thelirection ofGg, effectively  picture of observer-dependent holography stresses the impor-
slowing down the process of reaching the surface of maximaiance of a local, environmentally-friendly definition of cos-
area, which now happens for a slightly larger valuerof mological observables.

Notice also that the entire compact screen still fits nicely The finite proper area of the holographic screen implies a
within the velocity-of-light surface as defined by our ob- finite bound on the entropy that flows through the compact
server. Therefore, closed timelike curves are again shieldelolographic region of space associated with the observer. In
from the observer by this screen. addition, the strong version of the holographic principle sug-
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gests that the observer has only access to a finite number efz, and also switch from the Cartesian coordinate® the
degrees of freedom. Since the volume of space accessible tbipolar” coordinates given in Eq(3.6). Then, we perform a
the observer is effectively finite, the system has effectivelyu-dependent rotation in each of the two preferred planes of
been put in a finite box. Some of the conceptual difficultiesrotation,

with a possible stringy realization of de Sitter space are con-

ne_ct_ed to the fact that it is very difficult to confine strings in b= — Bu. (5.4)
a finite box.
There are also some qualitative d_lff(_erences betweedeGo Upon introducing new Cartesian coordinafes
and de Sitter holography worth pointing out:
In the Galel universe, the preferred screens are timelike, o iy e iy
just as the canonical global screen in AdS space. On the X +IXp=r €™,
other hand, the observer-dependent preferred screens in de _
Sitter space are null. Xa+iX,=r,€ %2, (5.5

The Galel universe is supersymmetric.
In order to decide whether holography in thedebuniverse

the type 1IB metric(5.3 T dual to the Gdel universe be-

can be used as a supersymmetric laboratory for exploringgmes

conceptual questions arising in de Sitter hologradtymore
generally, holography in cosmological spacetiimesne
needs a more microscopic understanding of thelebaini-
verses in string and M theory.

V. T DUALITY OF GO DEL UNIVERSES

One can compactify one of the flat directioRS (sayyg)
of the M-theory Gdel solution onSt with constant radiug
and obtain the following type IIA Gael background:

4 5
ds?=—(dt+ Bw)?+ _Zl (dx;)2+ 21 (dy,)?,

Hijs=28J; (5.1

Fijab=28JijKap,

where now in type IIA theona,b...=1,...5. The dilaton is
constant, implying that the string couplirgy can be kept
small everywhere, and the ‘@el solution is a solution of
weakly coupled type IlA superstring theory. Now, we cBn
dualize along various dimensions.

A. T duality to a supersymmetric type IIB pp wave

The H field of the type IIA Galel solution(5.1) extends
alongys, the dimension that was paired up in M theory with
the extra dimensiolg. It turns out thafl duality along this
dimension is particularly interesting. We first rename
=z, and use the gauge in which

Bi,= BJ;x\. (5.2)
Due to the absence df,, cross terms in the metric, no
B-field will be generated aftef duality, and one gets

4 4
ds?g=—dt?—2Bw(dt+dz)+ >, dX+ >, dy?+dZ.
i=1 a=1

(5.3

To see that this type 1B solution is in fact a supersymmetric
pp wave, it will be convenient to change the coordinates as

follows. First, define light-cone coordinates=t+z, v=t

4 4
du?+ Y, dx’+ > dya.
=1 a=1
(5.6

4
dsfg = —oluolv—ﬁz(Z1 %?

This metric has the standard form of a supersymmedpic
wave, with the Gdel rotation parametes precisely equal to
the conventionally normalizeg parameter of thep wave.
One can also easily dualize the Ramond-Ramond fields:
The self-dual type 1IB five-form of the type 1IB solution is
given by Fs~duldJOK, whereJ=3{,_,J;;d%0d% andK
=E§,b:1KabdyaDdyb. This type 1IB solution is in fact the
supersymmetrigpp wave resulting from the Penrose limit of
the near-horizon Ad$< S T4 geometry of a system of in-
tersecting D3-branes, and was first found 28].

B. Godelpp-wave T duality

We have shown that the type IIA'@el universe isT dual
to a type [IBpp wave. One can turn this observation around,
and ask whether other knowp waves can also b€ dual to
new Galel-like universes. We indeed find a rich picture of
Godel or pp-wave duality which goes beyond the scope of
the pp-wave T dualities discussed in the literatufsee, e.g.,
[29)).

Before generalizing the result of the previous subsection
to a broader class of @el orpp-wave pairs, it is instructive
to first clarify which Killing dimension of the type IIBp-
wave is being compactified d® and T-dualized to produce
the type IIA Galel universe. Consider first the Killing vector

J J

T &7

of the type IIBpp-wave background. This vector is spacelike
at the origin, but becomes timelike at some critical radial
distance. One can remedy this problem by augmenging
with a rotation in each of the two preferred planes

Jd d i
Ju Jdv

&= (5.8

A
—t =
2
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This Killing vector ¢ is everywhere spacelike, with the
spacelike rotation off-setting the effect of tde’® terms in
the metric to keep this modified Killing vector spacelike.
Moreover, the norm of is

|&2=1. (5.9
Consequently, if we compactify the orbit gfon a circle of
fixed radiuskR andT dualize, the dilaton field of the resulting
solution will stay constant. Thi§ duality is precisely the
inverse of the type lIA-1I1B T duality that maps the Giel
solution to thepp wave. Note that closed timelike curves are
introduced even though the orbifold action is generated by a
everywhere-spacelike Killing vector.

C. New supersymmetric Galel universes in string
and M theory

PHYSICAL REVIEW D 67, 106003 (2003

VI. DISCUSSION

Following a phenomenological approach to holography,
we have identified preferred holographic screens as seen by
inertial observers in a class of homogeneous universes of the
Godel type, with closed timelike curves. The structure of
holographic screens change dramatically the question of cau-
sality, by hiding all closed timelike curves or breaking them
into causal pieces. It is tempting to suspect that holography
serves as the chronology protection agency, and in combina-
tion with a version of the complementarity principle can lead
to a consistent quantum mechanical description of this uni-
verse. We also noticed close analogies with the structure of
Holographic screens in de Sitter space, which can make the
Godel universes an interesting supersymmetric laboratory for
exploring de Sitter holography. This phenomenological iden-
tification of natural screens does not tell us, however,
whether the holographic dual is given by some self-

These observations lead to a very simple and general pr&Onsistent quantum mechanics, or whether the pathology of

scription for constructing a large class of @ or pp-wave
T-dual pairs. Start with anpp wave in which an analog of
the Killing vector £ of Eq. (5.8 [and satisfying Eq(5.9) if
we want constangg] can be identified. Compactification on
St along this Killing direction followed byT duality pro-
duces a Gdel like solution of theT-dual string theory.

As an example of this, we present a new supersymmetri
Godel universe of type IIA theory, as thiedual of the maxi-
mally supersymmetric type |Ipp wave[30]. Using the ob-
vious generalization of E(5.8) that now involves four in-
dependent rotations in four independent two-planes opthe
wave, we obtain a type IIA geometry with a constaiitand
F,4. This type IlA solution can be lifted to an M-theory so-
lution of R topology. Its metric factorizes to a product of a
nontrivial metric on ag, factor and the flat metric oR?,

8 2
ds?= — (dt+ Bw)2+ lZl (olx,)2+A21 (dya)?,

(5.10

W = J|JX|dXJ f
and the four-form strength can be written as

Gijki=4B¢€iji» Gijag= —2BJijKas,
Gmnpq: _4,3€mnpqa Grmnag= —2BImrKas,

(5.11
where i,...=1,...,4 andm,...=5,...,8, while the indices
l,...=1,...,8 andA,B=1,2; all the nonzero components of
the Kéhler formsJ,; andK g are now given byd;,= —Jy;
=J34= —J43= Js6= —Jgs= J7g= —Jgr=1 and Kpp=—Ky;
=1.

This new supersymmetric ‘@el solutionGyx R? of M

theory exhibits exactly the same qualitative holographic fea-

tures as thes X R® solution. In particular one finds compact

closed timelike curves is just translated into some inconsis-
tency of the holographic dual. These and similar questions
require a microscopic understanding of holography inléo
universes in string or M theory. We have found evidence that
the Galel-like cosmologies represent a remarkable and
highly solvable class of solutions of string theory, and are in
Eact T dual to solvable supersymmetmp-wave solutions.
Further investigation of microscopic aspects ofd8buni-
verses and their holography in string and M theory is in
progresq17].

Note addedAs was pointed out to us after the completion
of this work, theT-duality relation between the 5D @el
universe(5.1) and the geometry of Eq5.3) can also be
obtained from aT-duality relation found a week earlier by
Herdeiro in[32], by taking the limit of zero chargeB=Q
=Qyk=0 in Eq. (4.12) of [32].° However, it was not real-
ized in[32] that theT dual of the Gdel universe is a super-
symmetricHpp wave; instead, thi§ dual was conjecturally
interpreted in32] as a rotating background.
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APPENDIX: GEOMETRY OF THE GO DEL UNIVERSES

In this appendix we collect various aspects of the Rie-
mannian geometry of the @el universess and Gq that
play a central role in the paper.

We are using thet++ conventions of MTW[31]; in
particular, our metric is of the “mostly plus” signature.

closed timelike curves that are topologically large, and the

analysis of geodesics reveals the same qualitative structure
holographic screens.

of
%We thank Harvey Reall for pointing this out to us.
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1. The five-dimensional Galel universe t _ p3, .2 1 _ 2, 2
o ) ) o F¢2rl_ﬁ rifs, F¢11¢2_:8 rirs,
In the original Cartesian coordinatésy; it is natural to
introduce a vielbein B2
. rés =22
ef=dt+Bw, e=dx, i=1,.4, (A1) 215 ry
so that the metric oG5 can be written simply as ) 4 B
=B, T2 =pro, Tli=-—,
2 Pt rot r2
9.=—¢,e°+> ele,. (A2) (A8)
|

_ _op2.2
In this vielbein, the spin connection one-forms are ra(1=2572),

Qij :B‘]ijdt+ BZJiijexkdX‘z ,

b2 _ 2
‘é’z I‘__B f2:
Qijo=— Qo= BJ;jdx; . (A3)
. . . . t — n3 2 r _ p2.2

These simple expressions for the spin connection can be used F¢1r2_:8 rary, F(,,21¢2—3 rara,

to easily extract the form of the Ricci tensor in the Cartesian

coordinates, B2
b2 _ _ 1

v 4 22442 3 by r
R, dX*dX"=4p°dt*+8B°J;;x;dtdX 12 2

+2B2(85:—2B23.,.J; X X, ) dx dx: . .
B8y = 2% Jicdjexix ) dxidxg 2. The nine-dimensional Galel universe

(A4) This solution, discussed in Sec. V,Tsdual to the maxi-
The scalar curvature is constant, mally supersymmetric type IIp wave.
We again introduce the natural vielbein in which the met-
R=4p?, (A5)  ric is of the form(A2),
as is indeed implied by the homogeneity of the solution. The ef=dt+Bw, e'=dx, i=1,..8. (A9)
Einstein tensorG,,=R,,—1/2Rg,, has the pressureless
fluid form, In this basis, the spin connection one-forms are given by
“d XY= 6 B2dt2 37 yv.dx
G, dX*dX"=6B°dt"+ 123°J;;x;dx;dt Q= BI5dt+ 23,53k XdX,
+68%J; XX dx;dx;
Qo= —Q¢=BIyydxy, (A10)
=64%u,u,dX*dX”, A6
AU (A6) with the Ricci tensor
with
RundXMdXN=8p2dt?+ 1683, ,x,dx,dt
uMdX":—dt—,BJinide (A?)

+(28%6);+ 8B Ik dax) dxdxy,
the covariant dual of the timelike Killing vect@¥ ot. This is (A11)
matched by the energy-momentum tensor of the constant
gauge field strengtk ~J, which is also of the pressureless the scalar curvature
fluid form.

For the calculation of the geodesic expansion paranteter R=8p2, (A12)
in the body of the paper, it is also useful to know the nonzero
Christoffel symbols in the “bipolar” coordinates and the Einstein tensor

(ri,é1.1202),
1
(RMN—ERQMN)dX""de

B
It =g, T'=pr, TH=-—,
B #ut o =128%d1*+248%), x,dx,dt— (2828
Ft(blrl=ﬂ3ri, F;11¢l=—r1(1—2,82r§ , —128*J ) xkdyx) dxdx; . (AL13)
1 Notice that unlike in the case of the five-dimensionaldélo
| A solution, the Einstein tensor of the nine-dimensionab@o
P11y universe is no longer of the pressureless fluid form.
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