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Holographic protection of chronology in universes of the Go¨del type
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Berkeley Center for Theoretical Physics and Department of Physics, University of California, Berkeley, California 94720-730
and Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8162

~Received 22 January 2003; published 19 May 2003!

We analyze the structure of supersymmetric Go¨del-like cosmological solutions of string theory. Just as the
original four-dimensional Go¨del universe, these solutions represent rotating, topologically trivial cosmologies
with a homogeneous metric and closed timelike curves. First we focus on the ‘‘phenomenological’’ aspects of
holography, and identify the preferred holographic screens associated with inertial comoving observers in
Gödel universes. We find that holography can serve as a chronology protection agency: The closed timelike
curves are either hidden behind the holographic screen, or broken by it into causal pieces. In fact, holography
in Gödel universes has many features in common with de Sitter space, suggesting that Go¨del universes could
represent a supersymmetric laboratory for addressing the conceptual puzzles of de Sitter holography. Then we
initiate the investigation of ‘‘microscopic’’ aspects of holography of Go¨del universes in string theory. We show
that Gödel universes areT dual topp waves, and use this fact to generate new Go¨del-like solutions of string
and M theory byT dualizing known supersymmetricpp-wave solutions.
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I. INTRODUCTION

Many long-standing conceptual questions of quant
gravity, and even of classical general relativity, are find
their answers in string theory. Among the most notable
amples are various classes of supersymmetric timelike
gularities, or the microscopic explanation of Bekenste
Hawking entropy for a class of configurations controllab
by spacetime supersymmetry. On the other hand, m
puzzles of quantum gravity still remain unanswered. In p
ticular, the role of time in cosmological, and other tim
dependent, solutions of string theory still defies any syste
atic understanding.

While many crucial questions of quantum gravity are
sociated with high spacetime curvature or with cosmolog
horizons, some puzzles become apparent already in sp
times with very mild curvature, no horizons, and even triv
topology. How can the low-energy classical relativity fail
represent a good approximation to quantum gravity for sm
curvature and in the absence of horizons? Arguments lea
to the holographic principle@1# indicate that general relativ
ity misrepresents the true degrees of freedom of quan
gravity, by obscuring the fact that they are secretly ho
graphic. In those instances where string theory has been
cessful in resolving puzzles of quantum gravity, it has do
so by identifying the correct microscopic degrees of fre
dom, which frequently are poorly reflected by the naive~su-
per!gravity approximation. In this paper we investigate
example in which holography suggests a very specific d
matic modification of the degrees of freedom in quant
gravity already at very mild curvatures, in a homogeneo
and highly supersymmetric cosmological background.

*Email address: ekboyda@socrates.berkeley.edu
†Email address: sganguli@socrates.berkeley.edu
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Historically, microscopic holography in string theory ha
been relatively easier to understand for solutions with a ‘‘
nonical’’ preferred holographic screen which is observ
independent, and typically located at asymptotic infinity. H
lography in AdS spaces is a prime example of this. On
other hand, cosmological backgrounds in string theory
quire an understanding of holography in more complica
environments, which may not exhibit canonical, observ
independent preferred screens at conformal infinity. Here,
prime example is given by de Sitter space: When view
from the perspective of an inertial observer living in th
static patch, the preferred holographic screen in de S
space is most naturally placed at the cosmological horiz
This leads to the fascinating idea of observer-dependent
lographic screens, associated with a finite number of deg
of freedom accessible to the observer~for more details, see
e.g.@2–6#; see also@7,8# for a complementary point of view
on de Sitter holography that uses other preferred screens
associated with an inertial observer!.

Of course, string theory promises to be a unified theory
gravity and quantum mechanics, but it is at present unc
how it manages to reconcile the general relativistic conc
of time ~notoriously difficult because of spacetime diffe
morphism invariance! with the quantum mechanical role o
time as an evolutionary Hamiltonian parameter. Again, t
problem becomes somewhat trivialized in the presence
supersymmetry, but persists in all but the most trivial tim
dependent backgrounds of string theory.

In this paper, we analyze a class of supersymmetric s
tions of string theory and M theory, which—at least in th
classical supergravity approximation—are described by
ometries with no global time function. In particular, we foc
our attention on string theory analogs of Go¨del’s universe.
Gödel’s original solution@9# is a homogeneous rotating co
mological solution of Einstein’s equations with pressurele
matter and negative cosmological constant, which played
important role in the conceptual development of general re
tivity. Recently, a supersymmetric generalization of Go¨del’s
©2003 The American Physical Society03-1
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universe has been discussed in a remarkable paper by G
lett et al. @10#, who classified all supersymmetric solutions
five-dimensional supergravity with eight supercharges,
found a maximally supersymmetric Go¨del-like solution that
can be lifted to a solution of M theory with twenty Killing
spinors. The existence of this solution was also noticed p
viously by Tseytlin, see footnote 26 of@11#. It is worth
stressing that the Go¨del universe of M theory is time
orientable: There is an invariant notion of future and p
lightcones, at each point in spacetime. Also, there is a glo
time coordinate t, and in fact]/]t is an everywhere timelike
Killing vector ~in effect, making supersymmetry possible!.
However, t is not a global timefunction: The surfaces of
constantt are not everywhere spacelike.1 Actually, the solu-
tion cannot be foliated by everywhere-spacelike surface
all—the classical Cauchy problem is always ill-defined
this spacetime. It is hard to imagine how such an appare
pathological behavior of global time could be compatib
with the conventional role of time in the Hamiltonian pictu
of quantum mechanics. Indeed, this solution turns out
have classical pathologies: Just as Go¨del’s original solution,
the supersymmetric Go¨del metric allows closed timelike
curves, seemingly suggesting either the possibility of ti
travel ~cf. @13#! or at least grave causality problems.

These classical pathologies could imply that the Go¨del
solution, despite its high degree of supersymmetry, stays
consistent even in full string or M theory. There are of cou
pathological solutions of Einstein’s equations whose pr
lems do not get resolved in string theory, with the negati
mass Schwarzschild black hole being one example.

However, there are reasons why one might feel reluc
to discard this solution as manifestly unphysical, despite
sicknesses of the classical metric: This solution is homo
neous, its curvature can be kept small everywhere~in par-
ticular, there are no singularities and no horizons!, and the
solution is highly supersymmetric. It is also impossible
eliminate the closed timelike curves by going to a univer
cover—indeed, the Go¨del solution is already topologically
trivial.2

We feel that any solution should be presumed consis
until proven otherwise, and this will be our attitude towar
the Gödel solution in this paper. Our aim will be to analyz
holographic properties of the supersymmetric Go¨del solution
in string theory. The solution is remarkably simple, and
we will see in Sec. V, turns out to be related by duality to t
solvable supersymmetricpp-wave backgrounds much stud
ied recently. However, before we attempt the analysis
‘‘microscopic’’ holography in string theory, we will first
adopt a more ‘‘phenomenological’’ approach as pioneered
Bousso@15# ~see@3,16# for reviews!, and analyze the struc

1See, e.g.,@12# for a detailed discussion of the distinction betwe
a global time coordinate and a global time function.

2This should be contrasted with the case of solutions w
‘‘trivial’’ ~in the sense of Carter@14#! closed timelike curves, such
as those in the flat Minkowski spacetime with time compactified
S1, where the closed timelike curves can be eliminated by lift
the solution to its universal cover.
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ture of preferred holographic screens implied by the cov
ant prescription@15# for their identification in classical~su-
per!gravity solutions. This ‘‘phenomenological’’ analysi
leads to valuable hints, indicating how the problem of clos
timelike curves may be resolved in the Go¨del universe. In-
deed, we will claim that the apparent pathologies of t
semiclassical supergravity solution can be resolved when
lography is properly taken into account. Semiclassical g
eral relativity without holography is not a good approxim
tion of this solution, despite its small curvature, absence
horizons, and trivial spacetime topology.

Notice also that homogeneity of the Go¨del solution makes
things at least superficially worse: It implies that there a
closed timelike curves through every point in spacetim
However, these closed timelike curves are also in a sens~to
be explained below! topologically ‘‘large.’’ Our analysis of
the structure of holographic screens in this geometry rev
an intricate system of observer-dependent preferred h
graphic screens, which always carve out a causal par
spacetime, and effectively screen all the closed timel
curves and hide any violations of causality from the inert
observer. In fact, the causal structure of the part of space
carved out by the screen is precisely that of an AdS spa
cut off at some finite radial distance.

The preferred holographic screens in the Go¨del universe
are very much like the screens associated with the ine
observers in the static patch of de Sitter space. First of
they are associated with the selection of an observer~and
therefore represent ‘‘movable,’’ noncanonical screens, not
cated at conformal infinity!. Moreover, they are compac
implying a finite covariant bound on entropy and—in th
strong version of the holographic principle—a finite numb
of degrees of freedom associated with any inertial obser
Thus, the Go¨del universe should serve as a useful supersy
metric laboratory for addressing some of the conceptual p
zling issues of de Sitter holography.

The results of our ‘‘phenomenological’’ analysis of holo
raphy also reveal the importance, for cosmological spa
times, of a local description of physics as associated with
observer inside the universe. It is not sensible to pretend
the observer stays at asymptotic infinity, and observes o
elements of the traditionally definedS matrix ~or some suit-
able analogs thereof!. Clearly, this only stresses the need f
a conceptual framework defining more environmental
friendly, ‘‘cosmological’’ observables as associated with co
mological observers in string theory.

The structure of the paper is as follows. In Sec. II, we
the stage by reviewing and analyzing Go¨del’s cosmological
solution G33R of Einstein’s gravity in four space-time di
mensions. Despite its simplicity, this solution already exh
its all the crucial issues of our argument. We apply Bouss
prescription for the covariant holographic screens, and fi
screens that are observer-dependent, compact, and caus
preserving. In addition, we establish connection with holo
raphy in AdS spaces: Go¨del’s solution can be viewed as
member of a two-parameter moduli space of homogene
solutions of Einstein’s equations with trivial spacetime top
ogy, with AdS33R also in this moduli space. We show th
under the corresponding deformation the observer-depen

h
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preferred holographic screens of Go¨del’s universe recede to
infinity and become the canonical holographic boundary
AdS33R. In Sec. III we move on to the supersymmetr
Gödel universe of M theory, which can be written asG5
3R6. First we analyze theG5 part of the geometry as
solution of minimald55 supergravity, study in detail th
structure of geodesics in this solution and use it to determ
the preferred holographic screens, and show how chrono
can be protected by holography. Then we extend our ana
to the full G53R6 Gödel geometry in M theory. Section IV
points out remarkable analogies between holography in
supersymmetric Go¨del universe and holography in de Sitt
space. In Sec. V, we embark on the analysis of ‘‘mic
scopic’’ duality of Gödel universes in string theory. First, w
compactify the M theory solution onS1 to obtain a Go¨del
solution of type IIA superstring theory, and show that up
further S1 compactification the type IIA Go¨del universe isT
dual to a supersymmetric type IIBpp wave, which can be
obtained as the Penrose limit of the intersecting D3-D3 s
tem. We point out that this Go¨del/pp-wave T duality is a
much more general phenomenon, and can be used to
struct new Go¨del universes in string and M theory byT du-
alizing knownpp waves. The relation topp waves is just one
aspect of the remarkable degree of solvability of Go¨del so-
lutions in string theory. We intend to present a more deta
analysis of ‘‘microscopic’’ aspects of holography in th
Gödel universes of string and M theory elsewhere@17#. In
the Appendix we summarize some geometric properties
the supersymmetric Go¨del solutions.

II. HOLOGRAPHY IN GO¨ DEL’S FOUR-DIMENSIONAL
UNIVERSE

A. Gödel’s solution

In 1949, on the occasion of Albert Einstein’s 70th birt
day, Kurt Gödel presented a rotating cosmological soluti
@9# of Einstein’s equations with negative cosmological co
stant and pressureless matter; this solution is topologic
trivial and homogeneous but exhibits closed timelike curv
Our exposition of Go¨del’s solution follows@9,18#.

The spacetime manifold of this solution has the triv
topology ofR4, which we will cover by a global coordinat
system~t, x, y, z!. The metric factorizes into a direct sum o
the ~trivial! metric dz2 on R and a nontrivial metric onR3,

ds4
25ds3

21dz2, ~2.1!

where

ds3
252dt21dx21

1

2
e4Vxdy222e2Vxdtdy. ~2.2!

This class of solutions is characterized by a rotation par
eterV. We will refer to the manifoldR3 equipped with the
nontrivial part ~2.2! of Gödel’s metric asG3 . Thus, in our
notation, Go¨del’s universe isG33R. The metric onG3 has a
four-dimensional group of isometries. The geometry exhib
dragging of inertial frames, associated with rotation. The
four-dimensional geometry solves Einstein’s equations, w
10600
f

e
gy
is

e

-

s-

n-

d

of

-
ly
s.

l

-

s
ll
h

the value of the cosmological constant and the density
pressureless matter both determined by the rotation par
eterV,

r5
V2

2pGN
, L522V2. ~2.3!

Historically, this solution was instrumental in the discussi
of whether or not classical general relativity satisfies Mac
principle ~see, e.g.,@19#, Sec. 12.4!.

While the homogeneity of Go¨del’s universe is~almost!
manifest in the coordinate system used in Eq.~2.2!, the ro-
tational symmetry ofds3

2 around any point in space becom
more obvious in cylindrical coordinates~t, r, f!, in which the
metric takes the following form:

ds3
252dt21dr22

1

V2 „sinh4~Vr !2sinh2~Vr !…df2

2
2&

V
sinh2~Vr !dtdf. ~2.4!

Indeed,]/]f is a Killing vector, of norm squared

U ]

]fU2

5
1

V2 „12sinh2~Vr !…sinh2~Vr !. ~2.5!

The orbits of this Killing vector are closed, and becom
closed timelike curves forr .r 0 ,

r 05
1

V
arcsinh~1![

1

V
ln~11& !. ~2.6!

We will call the surface ofr 5r 0 thevelocity-of-light surface;
the null geodesics emitted from the origin in this coordina
system reach the velocity-of-light surface in a finite affi
parameter, and then spiral back to the origin where they
focus, again in finite affine parameter.

The homogeneity of the solution implies that there a
closed timelike curves through every point in spacetim
Note that in a well-defined sense all the closed timel
curves are topologically ‘‘large’’: In order to complete
closed timelike trajectory starting at any pointP, one has to
travel outside of the velocity-of-light surface~as defined by
an observer atP! before being able to return toP along a
causal curve. This fact will play an important role in o
argument for the holographic resolution of the problem
closed timelike curves below. Notice also that none of
closed timelike curves is a geodesic, and that the clo
timelike curves cannot be trivially eliminated by a lift to th
universal cover: The manifold is already topologically trivia

Gödel’s universe represents a solution with a good tim
like Killing vector ~indeed,]/]t is Killing and everywhere
timelike!, which however cannot be used to define a univ
sal time function: The slices of the foliation by surfaces
constant t are not everywhere spacelike. The classi
Cauchy problem is always globally ill-defined for this geom
etry.
3-3
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B. Preferred holographic screens in Go¨del’s universe

We now apply Bousso’s phenomenological framework
holography @15,3,16# to Gödel’s universe. We identify its
preferred holographic screens, associated with particular
servers as follows.

Consider a geodesic observer comoving with the distri
tion of dust in Go¨del’s universe~and placed at the originr
50 of our coordinate system without loss of generalit!.
Imagine that the observer sends out light rays in all dir
tions from the origin at some fixed time, sayt50. These
light rays will at first expand—i.e., the surfaces that th
reach in some fixed affine parameterl will grow in area, at
least for small enough values ofl. The preferred holographic
screen will be reached when we reach the surface of max
area~or maximal geodesic expansion!.

Alternatively, one can followincoming light rays into
their past, until reaching the surface where the geodesic
longer expand. This is again the location of the prefer
screenB. The preferred screenB can then be used to impos
a covariant bound on the entropy inside the region of sp
surrounded byB @15#, which should not exceed one-fourth o
the area ofB in Planck units.

We will first analyze the three-dimensional partG3 of
Gödel’s solution, which contains much of the nontrivial g
ometry~see Fig. 1!. Even though all the geodesics of Go¨del’s
universe are known@20#, one can in fact use the symmetrie
of G3 to determine the location of the screen without a
explicit knowledge of the geodesic curves. SinceG3 is rota-
tionally invariant inf, all the null geodesics emitted from
the origin will reach the same radial distancer (l) within the
same affine parameter~assuming that we use a rotational
invariant normalization ofl for geodesics emitted in differ
ent directions from the origin!, and also for the same globa
time coordinatet. Thus, to determine the surface of maxim
geodesic expansion, we can just evaluate the area of the
faces of constantr and t ~in our case of course one
dimensional!,

A5
2p

V
sinh~Vr !A12sinh2~Vr !, ~2.7!

and maximize it as a function ofr. This very simple calcu-
lation yields a preferred screenH that is isomorphic to a
cylinder of constantr 5r H and anyt, with

r H5
1

V
arcsinhS 1

&
D . ~2.8!

Of course, this screen is observer-dependent, in this
associated with the comoving inertial observer located at
origin for all values oft. Other comoving inertial observer
would see different but isomorphic screens, in a pattern s
lar to the structure of cosmological horizons associated w
inertial observers in de Sitter space.~See Fig. 2.!

One can take advantage of the rotational symmetry of
solution, and visualize the location of the preferred scre
using a spacetime diagram of the type introduced by Bou
@15# ~see Fig. 3!. This diagram suppresses the dimension
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rotational symmetryf, and its points represent~in our case
one-dimensional! orbits of the rotation group, i.e., surface
of constantr andt. For each such surface, one can define
total of four light sheets: Two oriented forward in time, an
two oriented backward. In generic points of the diagram, t
of these light sheets will be nonexpanding. At each point
the Bousso diagram one can draw a wedge pointing in
direction of nonexpanding light sheets. These wedges t
point in the direction of the preferred holographic screen

One can directly verify that our preferred holograph
screen satisfies the defining property

u50, ~2.9!

whereu is the expansion parameter defined for a space
codimension-two surfaceB ~in any spacetime with coordi
natesxm) as

u5hmnDmzn , ~2.10!

with zm the lightlike covector orthogonal toB ~smoothly but
arbitrarily extended to some neighborhood ofB!, Dm is the
covariant derivative, andhmn is the induced metric onB. The
most convenient way of identifying the surface ofu50 in
Gödel’s universe is to use asz the vector tangent to the
congruence of null geodesics emitted by the observer at

FIG. 1. The geometry of the three-dimensional partG3 of
Gödel’s universe, with the flat fourth dimensionz suppressed. Null
geodesics emitted from the originP follow a spiral trajectory, reach
the velocity-of-light surface at the critical distancer 0 , and spiral
back to the origin in finite affine parameter. The curveC of constant
r .r 0 tangent to]/]f is an example of a closed timelike curve.
more detailed version of this picture appears in Hawking and E
@18#.
3-4
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origin. An explicit calculation confirms in this case thatu is
proportional to] rgff , and therefore vanishes at the surfa
of r 5r H .

The metric induced on the preferred holographic screeH
is of signature~21!, everywhere nonsingular:

dsH
2 52dt21

1

4V2 df21
&

V
dfdt ~2.11!

FIG. 2. The geometry of our preferred holographic screen
Gödel’s universe, as defined by the inertial observer following
comoving geodesic at the origin of spatial coordinates. The tran
tionally invariant dimensionz is again suppressed. Two closed tim
like curves are indicated: One,C, at constant value oft50 andr
.r 0 is outside of the preferred screen, while another,C8, passes
through the origin att50 and intersects the screen in two, causa
connected points.

FIG. 3. The Bousso diagram for theG3 part of the Go¨del uni-
verse metric, with the angular coordinatef suppressed, and th
structure of nonexpanding light sheets indicated by the b
wedges. The preferred holographic screen is at the finite valuer H of
the radial coordinater, strictly smaller than the location of th
velocity-of-light surface atr 0 . A null geodesic sent fromP would
reach the velocity-of-light surface atP9 in a finite affine parameter
and refocus again at the spatial origin inP8.
10600
with 0<f<2p. The preferred holographic screen carv
out a cylindrical compact region of spacetime~which we will
call the holographic region! in the G3 part of Gödel’s uni-
verse, centered on the comoving inertial observer at the
gin. This region contains no closed timelike curves, as can
easily demonstrated by noticing that the causal structure
the holographic region is identical to that of a cylindric
portion of~the universal cover of! AdS3. The closed timelike
curves of the fullG3 geometry fall into two categories: Eithe
they stay completely outside of the holographic region,
they enter it and leave it again after traveling a causal tra
tory within the holographic region.

1. Preferred screens inG3ÃR

The full Gödel universe is of the direct product formG3
3R. The presence of the extra, translationally-invariant
mension parametrized byz actually implies a richer structure
of preferred screens than the one we just found in theG3
factor. This is in fact a preview of what we will find in th
next section in the case of supersymmetric Go¨del solutions in
M theory and string theory: Those solutions typically al
contain extra flat dimensions.

First of all, there is one preferred screen that can be ea
identified: The three-dimensional surfaceH3R, whereH is
the preferred screen associated with the observer at the
tial origin in G3 , and R is the extra coordinatez, clearly
satisfies the zero-expansion condition~2.9!. Thus, by defini-
tion, this surfaceH3R is a preferred screen. This screen
observer-dependent, and the observer associated with it
be thought of either as a string wrapped aroundz or as a
more traditional observer ‘‘delocalized’’ alongz, each local-
ized at the origin of coordinates inG3 . Unless we compactify
z on S1, the overall area of this translationally-invaria
screen is of course infinite, but the screen still has a fin
‘‘area density’’ per unit distance alongz.

Alternatively, one can ask what is the preferred scre
associated with an localized inertial observer inG33R. If
one follows null geodesics emitted from~or converging onto!
a point inG33R where the observer is located, one finds th
the surface of maximal geodesic expansion is at a finite
tance from the observer in all space directions includingz.
This compact, translationally-noninvariant screen is co
pletely contained within the velocity-of-light surface as d
fined by the observer.

For either of these two classes of screens inG33R, all
closed timelike curves are again either hidden outside of
screen or broken by it into causal observable pieces.

2. Covariant entropy bounds and screen complementarity

The existence of preferred screens; and the structur
the Bousso diagram for Go¨del’s universe imply a holo-
graphic entropy bound on the amount of entropy through
spatial slice of the compact holographic region associa
with each screen. This entropy is limited by one fourth of t
area of the screen measured in Planck units. Our scree
neither at conformal infinity, nor located at a horizon. T
closest analog would be the preferred holographic screen
cated at the equator of the Einstein static universe. Just a
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BOYDA et al. PHYSICAL REVIEW D 67, 106003 ~2003!
that case, the holographic screen of Go¨del’s universe can be
used to bound the entropy in either direction normal to
screen. In particular, the light rays that start at the screen
travel in the direction of larger values ofr refocus at the
velocity-of-light surface, and then travel back again to t
screen. This is rather reminiscent of the behavior of lig
rays in Einstein’s static universe: lightrays emitted from o
pole of the spatial sphere reach the screen at the equato
travel to the other hemisphere, refocus at the opposite p
and travel back to the screen and then to the point they w
originally emitted from.

The strong version of the holographic principle sugge
that the compact holographic screen implies a finite bo
on the number of degrees of freedom effectively access
to the inertial observer. The good causal structure of the
lographic region associated with that observer may sug
that the quantum mechanics of this finite number of degr
of freedom could be well-defined, and screened from
acausal behavior outside of the velocity-of-light surface b
screen complementarity principle.

Of course, one may find the very definition of entropy
spacetimes with closed timelike curves somewhat probl
atic. However, in the case of Go¨del’s universe all that matter
for our argument is the region strictly below the velocity-o
light surface. One can in principle imagine cutting Go¨del’s
solution off at some finiter larger thanr H but smaller than
r 0 , and replacing the outside with some causal geome
The covariant entropy bound can then be safely applied
the holographic region, without any possible conceptual
ficulties with the definition of entropy in the presence
closed timelike curves.

The intricate structure of compact preferred screens a
ciated with the observers in Go¨del’s universe suggests tha
holography may be the correct, causal way of thinking ab
this geometry without modifying it. However, one is force
to replace the naive ‘‘metaobserver’’ perspective of the
ometry by a system of local observers, each of which se
causal region screened from the rest of the naive class
geometry by the preferred holographic screen. Each in
vidual observer would only have access to a finite amoun
degrees of freedom associated with the corresponding h
graphic region. Within this finite number of degrees of fre
dom, causality and quantum mechanics would be protec

In this paper we will not discuss noninertial observe
attempting to travel along closed timelike curves. In t
spirit of Hawking’s original chronology protection conjec
ture @21#, one may expect a large back reaction from t
geometry that can protect the solution from such observ

C. Gödel’s universe as deformed AdS3 and holography

It is useful to embed our discussion of Go¨del’s universe
into a broader framework. Consider all spacetim
homogeneous metrics of the Go¨del type. It has been show
@22# that this family of metrics is parametrized by two p
rameters,V andm, with the metric given by

ds252Xdt1
4&V

m2 sinh2S mr

2 Ddf C2

1
1

m2 sinh2~mr!df2

1dr21dz2, ~2.12!
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with VPR andm2PR. For m254V2, we recover Go¨del’s
metric ~2.2!. On the other hand, form258V2 we get the
direct-product metric on AdS33R @23#. Notice also that the
metric simplifies in the limit ofm→0 keepingV fixed; this
metric has been analyzed by Som and Raychaudhuri@24#,
and is in fact a closer analog of the string theory Go¨del
universe than Go¨del’s solution itself.

Since all the solutions in Eq.~2.12! are rotationally invari-
ant, we can easily identify the preferred screens for this
tire family of metrics using the same symmetry argument
in Gödel’s universe itself. The holographic screensH of the
nontrivial three-dimensional part of Eq.~2.12! are now lo-
cated at

r H5
2

m
arcsinhXS 16V2

m2 22D 21/2C. ~2.13!

Thus, form2,8V2, the screen is at a finite value ofr H , and
as we approach the AdS33R limit it recedes to infinity and
becomes the canonical holographic screen of AdS3 . This
connection with AdS3 leads to a particularly intriguing way
of thinking about holography of this family of solutions i
terms of breaking conformal invariance on the holograp
screen of AdS3 once we move away from the AdS3 limit.

Clearly, our observation that preferred holograph
screens can either screen closed timelike curves or b
them up into causal pieces is not restricted to homogene
space-times. An example of the same phenomenon in an
homogeneous solution can be easily found: Consider
classic cylindrically symmetric inhomogeneous solution w
closed timelike curves found in 1937 by van Stockum@25#,
which in the cylindrical coordinates takes the form

ds252dt222Vr 2dfdt1r 2~12V2r 2!df2

1e2V2r 2
~dz21dr2!. ~2.14!

It is straightforward to show that the preferred holograp
screen as defined by the inertial observer located at the o
is again compact and shields the closed timelike curves f
the observer, just as in the case of the homogeneous G¨del
universe.

III. HOLOGRAPHY IN THE SUPERSYMMETRIC GO ¨ DEL
UNIVERSE

The Gödel solution of M theory found in@10# has a direct
product formG53R6, where the nontrivial five-dimensiona
part G5 represents a maximally supersymmetric solution
minimal supergravity in five dimensions. The underlyin
spacetime ofG5 is topologically trivial, isomorphic toR5.
Again, just as in the case of Go¨del’s four-dimensional solu-
tion, much of the nontrivial structure of the solution is ca
ried in this five-dimensional factorG5 , which plays a role
analogous toG3 of the previous section. We will therefor
study holography of this five-dimensional solution first.
3-6
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A. Holography in the Gödel universe ofNÄ1 dÄ5
supergravity

The five-dimensional Go¨del geometryG5 is a maximally
supersymmetric, topologically trivial, homogeneous solut
of minimal five-dimensional supergravity@10#. We introduce
generic coordinatesXm, m50,...4 onR5, but we will soon
specialize to several specific coordinate systems. The m
mal d55 supergravity contains an Abelian gauge fieldAm
whose field strengthFmn we normalize such that the La
grangian has the following form,

L55
1

2k5
2 E d5XS R2

1

4
FmnFmn1¯ D , ~3.1!

where the ‘‘̄ ’’ stand for a Chern-Simons self-interaction o
the gauge field and for fermionic terms.

The Gödel solution takes the form of a fibration over th
flat EuclideanR4 with fibers isomorphic toR and with a
simple twist, which in a Cartesian coordinate systemt, xi ,
i 51,...4, can be written as

ds252~dt1bv!21(
i 51

4

dxi
2,

F52)bJ, ~3.2!

with the twist one-formv given by

v5x1dx22x2dx11x3dx42x4dx3[Ji j xidxj , ~3.3!

and J1252J215J3452J4351 a preferred Ka¨hler form on
R4. In Eq. ~3.2!, b is a constant rotation parameter, of ma
dimension one. Without any substantial loss of generality,
will assumeb to be positive.

As remarked in@10#, this solution is homogeneous, and
fact has a nine-dimensional group of bosonic isometries.
Killing vectors are given by

P05] t ,

Pi5] i2bJi j xj] t ,

L5x1]22x2]11x3]42x4]3 ,

R15x1]22x2]12x3]41x4]3 ,

R25x1]32x3]11x2]42x4]2 ,

R35x1]42x4]11x3]22x2]3 , ~3.4!

where] i5]/]xi . The commutation relations of this boson
symmetry algebra are

@Ra ,Rb#52eabgRg , @L,Ra#50,

@Pi ,Pj #52bJi j P0 . ~3.5!

Here a,b,...51,2,3 go over a basis of anti-self-dual tw
tensors inR4. Ra andL act on the momentaPi as rotations.
Thus, we find that the symmetry algebra of the Go¨del uni-
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verseG5 is given by the semidirect productH(2)+„SU(2)
3U(1)…, whereH(2) is the Heisenberg algebra with fiv
generators.3

While the translation symmetriesPi of the solution are
almost manifest in the Cartesian coordinatest, xi , the rota-
tion symmetries are rather obscure. It is therefore conven
to introduce a new coordinate system. First, we introduc
pair of polar coordinates, one in each of the two main pla
of rotation,

x15r 1 cosf1 , x35r 2 cosf2 ,

x25r 1 sinf1 , x45r 2 sinf2 . ~3.6!

In these ‘‘bipolar’’ coordinates, the metric becomes

ds252dt222b~r 1
2df11r 2

2df2!dt1dr1
21dr2

2

22b2r 1
2r 2

2df1df21r 1
2~12b2r 1

2!df1
2

1r 2
2~12b2r 2

2!df2
2. ~3.7!

The non-Abelian part of the rotation symmetries becom
manifest in spherical coordinates (r ,f1 ,f2 ,q), with q
P@0,p/2),

x11 ix25reif1 cosq,

x31 ix45reif2 sinq, ~3.8!

which bring the metric to the following form:

ds252S dt1
br 2

2
s3D 2

1dr21r 2dV3
2. ~3.9!

HeredV3
2 is the standard unit-volume metric onS3, ands3

is one of the right-invariant one-forms onSU(2),

s352~cos2 qdf11sin2 qdf2!. ~3.10!

It is clear from this expression for the metric that ev
though the solution does not exhibit the fullSO(4)
;SU(2)3SU(2) rotation symmetry inR4, the nonzero ro-
tation parameterb keeps the rightSU(2) @together with a
U(1) subgroup of the leftSU(2)] unbroken.

It was also noted in@10# that the Go¨del universeG5 pre-
serves all eight supersymmetries of minimald55 supergrav-
ity. Thus, the bosonic symmetry algebra~3.5! will extend to
a superalgebra with eight superchargesQ. It is natural to split

3As we will see in Sec. IV, the remarkable similarity between th
symmetry algebra and app-wave symmetry algebra is not a coin
cidence: When lifted to string theory, the Go¨del solution is actually
T dual to a supersymmetricpp wave. Notice, however, that in the
symmetry algebra ofG5 , the central extension generatorP0 of the
Heisenberg algebra is represented by a timelike Killing vec
while in thepp wave it would be null. One can actually show by
direct calculation that the five-dimensional Go¨del universe~or the
string theory lifts thereof to be studied below! does not admit any
covariantly constant null vectors, which proves that it is not ‘‘s
cretly’’ a pp wave in unusual coordinates.
3-7



e

of

h
se
th

a
o

th
e

th

p
ll

ly
f

a

e

t
d
-

n
in

ted

r
f
on

s in

gain,
with
hic

s a
ike
be
nck

BOYDA et al. PHYSICAL REVIEW D 67, 106003 ~2003!
Q into two four-component spinors,Q6. In this notation, the
~anti!commutation relations of the full symmetry superalg
bra can be written as follows:

@P0 ,Q6#50, @R,Q6#5GRQ6,

@Pi ,Q1#50, @Pi ,Q2#5bJi j G
jQ1,

$Q̄1,Q1%5G0P0 , $Q̄2,Q1%5G i Pi ,

$Q̄2,Q2%5G0~P012bL !, ~3.11!

together with Eq.~3.5!. In Eq. ~3.11!, R denotes any of the
rotation generatorsRa or L, and GR is a shorthand for the
generator of conventional rotations associated withR
PSO(4), in the corresponding spinor representation
SO(4).

Once we examine the structure of preferred holograp
screens in the next subsection, it will be interesting to
how these screens are compatible with the structure of
supersymmetry algebra~3.5!, ~3.11!.

B. Preferred holographic screens

Consider an inertial, comoving observer located at an
bitrary point in space, which we place without any loss
generality at the origin of cartesian coordinatesxi50. Since
we are focusing on the perspective of an observer at
origin, it will be convenient to use either the ‘‘bipolar’’ or th
spherical coordinates.

The symmetry arguments that allowed us to identify
preferred screen in Go¨del’s universeG3 without actually cal-
culating the geodesics can in fact be extended to the su
symmetric solutionG5 as well. Despite the fact that the fu
SO(4) rotation symmetry ofR4 is broken to anSU(2)
3U(1) subgroup, the unbroken group still acts transitive
on the three-spheres of constantr. Indeed, one can think o
the S3 at constantr as a copy ofSU(2), on which the full
SO(4) rotations would act by the left action of oneSU(2)
and the right action of the otherSU(2). In the Gödel solu-
tion, the metric on theS3 of constant radius is that of
squashed three-sphere, which still leaves the~transitive! right
action bySU(2) unbroken. This unbrokenSU(2) is suffi-
cient to reduce our analysis of the location of preferr
screens to the maximization of the area of the surfacesS3 of
constantr as a function ofr ~at constantt!, precisely as in the
simpler case ofG3 studied in the previous section. Withou
knowing the precise structure of the null geodesics emitte
some timet,0 in all directions from the origin, the symme
tries imply that these geodesics will reach theS3 of some
fixed radiusr at t50.

Thus, in order to find the preferred holographic scree
associated with the inertial comoving observer at the orig
we only need to maximize the volume of theS3 at fixedr, as
a function ofr. The induced metric on theS3 of radiusr at
constantt is given by
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dsind
2 5r 2dq21r 2 cos2 q~12b2r 2 cos2 q!df1

2

1r 2 sin2 q~12b2r 2 sin2 q!df2
2

22b2r 4 cos2 q sin2qdf1df2 , ~3.12!

implying that the induced area of this surface is given by

A~r !5E
S3

Ahind52p2r 3A12b2r 2, ~3.13!

wherehind is the determinant of the induced metric~3.12!.
We conclude that the preferred holographic screen is loca
at radial distancer ~call it r H) where the area~3.13! is maxi-
mized,

r H5
)

2b
. ~3.14!

The screen carries a Lorentz-signature induced metric,

dsH
2 52dt22

3

2b
~cos2 qdf11sin2 qdf2!dt

1
3

4b2 Fdq21cos2 qdf1
21sin2 qdf2

2

2
3

4
~cos2 qdf11sin2 qdf2!2G , ~3.15!

with each spacelike slice of constantt isomorphic to the
squashed three-sphere of radiusr H and squashing paramete
3/4. The screen metric~3.15! seems to exhibit dragging o
frames, but this is an artifact of a coordinate choice. Up
introducing new angular coordinates byf̄15f124bt, f̄2
5f224bt, Eq. ~3.15! becomes

dsH
2 524dt21

3

4b2 Fdq21cos2 qdf̄1
21sin2 qdf̄2

2

2
3

4
~cos2 qdf̄11sin2 qdf̄2!2G . ~3.16!

This phenomenon is analogous to the behavior of horizon
rotating black holes in five dimensions@26#.

The screen and its location in the Go¨del universe can be
visualized exactly as in Fig. 2, withf now collectively de-
noting the coordinates on the squashed three-sphere. A
the preferred screen cuts out a compact region of space
the observer inside, which we will refer to as the holograp
region.

The compact preferred holographic screen also implie
finite bound on the entropy that flows through a spacel
section of the holographic region. This entropy has to
smaller than one fourth of the area of the screen in Pla
units,

S<
2p3r H

3

k5
2 . ~3.17!
3-8
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~Notice that ourk5 is related to the 5D Newton constant b
8pGN5k5

2.)
It is interesting to analyze the symmetries preserved

the screen. While all the rotation symmetriesSU(2)
3U(1) as well as the time translation symmetry are l
unbroken, all the space translations are broken by the scr
Similarly, the structure of the supersymmetry algebra reve
that one half of the supercharges~namelyQ2) will be bro-
ken by the screen, while the remaining half of supersymm
try represented byQ1 ~and associated with Killing spinor
which are simply constant! is compatible with the presenc
of the screen. Thus, the screen can preserve as much a
of the full supersymmetry of the Go¨del solution, leaving an
unbroken symmetry which coincides with the symmetry l
unbroken by the choice of the inertial comoving observ
Once we lift the solution to M theory, we can also think
the preferred comoving observer as a massless particle m
ing with the speed of light along the extra dimension a
preserving 1/2 of supersymmetry. Thus, the symmetries
the observer seem compatible with the symmetries that
be left unbroken by her preferred holographic screen.

In order to verify that this simplified argument for ident
fying the preferred screens, which relies on the large sy
metry of the solution, coincides with the conventional loc
definition of the screen@15# as the surface of vanishing ex
pansion parameteru50 of the null geodesics emitted from
~or, by the time reflection symmetry, sent towards! the origin
in space, we must first analyze the structure of geodesic
tion in the Gödel spacetime. This analysis will also refine o
understanding of the Go¨del universe geometry.

C. Geodesics in the Go¨del universeG5

In this subsection we will find all the geodesics in t
Gödel universe.

First, one can use the symmetries of the solution to s
plify the analysis. By homogeneity, it will be sufficient t
consider geodesics through the originP of our coordinate
system,P[$t5xm50%. In any case, for the identification o
the preferred screens we are primarily interested in null g
desics emitted from the origin.4

We will write the tangent vector to the geodesic as

j5 ṫ
]

]t
1 ṙ 1

]

]r 1
1ḟ1

]

]f1
1 ṙ 2

]

]r 2
1ḟ2

]

]f2
, ~3.18!

where[d/dl denotes the derivative with respect to an
fine parameterl along the geodesic.

The large amount of symmetry of the Go¨del universe al-
lows us to explicitly solve for all the geodesics without a
restrictions. First of all, the following integrals of motio
will be useful,

4Moreover, since theSU(2) part of the symmetry group acts tran
sitively on the celestial sphere atP, one could rotate the initia
momentum vector along the geodesic to lay entirely in thex35x4

50 plane. By angular momentum conservation, correspondin
the two Killing vectors]/]f1 and]/]f2 , the geodesic would then
stay in thex35x450 plane throughout its history.
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~j,j!52M2, ~j,] t!52E,

~j,]f1
!5L1 , ~j,]f2

!5L2 . ~3.19!

Here L1 , L2 are the angular momenta in the two preferr
planes of rotation. The6 sign ofM2 corresponds to timelike
and spacelike geodesics, withE the energy of the particle in
the timelike case. In the null caseM250 we will find it
convenient to rescale the affine parameterl along the geo-
desic so as to setE51.

The integrals of motion~3.19! imply

ḟ15bE1
L1

r 1
2 , ḟ25bE1

L2

r 2
2 ,

ṫ5~12b2r 1
22b2r 2

2!E2b~L11L2!, ~3.20!

as well as

~ ṙ 1!21~ ṙ 2!22~12b2r 1
22b2r 2

2!E212bE~L11L2!1
L1

2

r 1
2

1
L2

2

r 2
2 52M2. ~3.21!

In order to identify the holographic screen we need
null geodesics going through the origin. Note that for no
zero values of the angular momentaL1 or L2 , the effective
potential forr 1 andr 2 precludes the geodesics from reachi
the originr 15r 250. Thus, all the geodesics passing throu
the origin will haveL15L250, and we focus on those now5

In order to separateṙ 1 from ṙ 2 we need one more integral o
motion. Consider

~j,R3![~sinf1 sinf21cosf1 cosf2!S r 2

r 1
L11

r 1

r 2
L2D

1~sinf1 cosf22cosf1 sinf2!~r 2ṙ 12r 1ṙ 2!.

~3.22!

At zero angular momentum, Eq.~3.22! has to vanish, imply-
ing that the angleq betweenr 1 andr 2 is another integral of
motion. Thus, the equations of motion for the geodesics
pass through the origin of space simplify to

~ ṙ !21b2r 2E25E22M2, ~3.23!

plus Eq. ~3.20! with Li set to zero. These can be eas
solved, yielding

to 5Of course, all the geodesics with nonzero angular momenta
be easily obtained from those with zero angular momenta by
action of the large isometry group of the Go¨del metric.
3-9
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r 15
1

b
A12M2 sin~bl!cosq,

r 25
1

b
A12M2 sin~bl!sinq,

t5
1

2
~11M2!l1

1

4b
~12M2!sin~2bl!1t0 , ~3.24!

f15bl1f1
~0! ,

f25bl1f2
~0! ,

with qP@0,p/2) andf1
(0) , f2

(0)P@0,2p) all constants. We
have rescaled the affine parameterl so as to setE equal to
one. For null geodesics,M250, while for the timelike geo-
desicsM2P@0,1# as a result of our rescaling ofl. Notice
that the comoving timet at the origin~the coordinate corre
sponding to the Killing vector] t) is not a good affine param
eter along the null geodesics passing through the origin.
stead, either one of the two main rotation anglesf1 , f2
plays the role of a natural affine parameter~as long asb is
nonzero of course!.

Even though the spherical coordinate system is
smooth at the origin, it is easy to verify—by switching to th
original Cartesian coordinate system—that the system of
geodesics~3.24! represents the complete system of all ge
desics passing through the origin. Indeed, the tangent ve
to this congruence atl50 is given in the Cartesian coord
nates by

jul505
]

]t
1cosq cosf1

~0!
]

]x1
1cosq sinf1

~0!
]

]x2

1sinq cosf2
~0!

]

]x3
1sinq sinf2

~0!
]

]x4
, ~3.25!

demonstrating that the constantsq, f1
(0) andf2

(0) are indeed
parametrizing the entire celestial sphere at the origin.

Thus, we see an interesting refocusing behavior of
geodesics in the Go¨del universe:

They start moving from the origin towards larger valu
of r, which at first means larger proper-radius spheres,
then at affine parameter

l5
p

2b
~3.26!

they reach the velocity-of-light surface, located at the larg
value r 0 of the radial coordinater that is accessible by geo
desic motion from the origin,

r 05
1

b
. ~3.27!

By that time, bothf1 andf2 change exactly byp/2. Then it
takes another
10600
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Dl5
p

2b
~3.28!

to complete one period of oscillation and refocus at the o
gin. The amount of global comoving time coordinate elaps
during the completion of one oscillation cycle equals

Dt5
p

2b
. ~3.29!

Note that the light ray arrives with its momentum equal
the initial-value momentum; thus, the light ray traveled a f
circle in the (x1 ,x2) plane. The same holds true for th
(x3 ,x4) plane.

During one refocusing cycle, the proper area of the thr
sphere reached by the geodesics reaches a maximum t
precisely when they reach the preferred screen—first on t
way out towards the velocity-of-light surface~where the
proper area of theS3 goes to zero! and then again on thei
way back to the origin~see Fig. 4!. In fact, they reach the
holographic screen for the first time at affine parameter

l5
p

3b
, ~3.30!

one third into the oscillation cycle.
Since any given geodesic moves around a circle in eac

the preferred planes of rotation, it is instructive to use
translation symmetries of the solution, and transform E
~3.24! into the frame associated with the observer at the c
ter of this circular motion. The Killing vectors~3.4! can be
easily integrated to give finite translations. For example,
find that a finite translation bya alongx2 is accompanied by
an x1-dependent translation int,

x285x21a, x185x1 , t85t1bx1a. ~3.31!

When one transforms Eq.~3.24! to the primed coordinates
associated with the center of the circular motion of a geo

FIG. 4. The behavior of null geodesics emitted from an arbitr
point P in the Gödel universe, with the initial momentum in th
(x1 ,x2) plane, and with several such geodesics indicated. Each
desic travels along a circular trajectory, reaches the velocity-of-li
surface and returns back toP, penetrating the preferred screen e
actly twice during each rotation cycle.
3-10
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HOLOGRAPHIC PROTECTION OF CHRONOLOGY IN . . . PHYSICAL REVIEW D67, 106003 ~2003!
sic, thex1-dependent time translation~3.31! eliminates the
sin(2bl) term in the expression fort as a function of the
affine parameter in Eq.~3.24!. Thus,t becomes a good affin
parameter precisely for the class of geodesics that ci
around the origin at fixed constantr.

So far, we were mainly concentrating on null geodes
emanating from the origin. The analysis is easily extende
timelike geodesics, which turn out to exhibit a similar cyc
behavior. However, they only reach up to a certain criti
distance r M strictly smaller than the distancer 0 of the
velocity-of-light surface,

r M5A12M2r 0 . ~3.32!

In terms of the global comoving time coordinatet, the time-
like geodesics sent from the origin take longer to refocus
the origin than null geodesics, the refocusing time being

Dt~M !5
~11M2!p

2b
. ~3.33!

The geodesic expansionu

We are now in a position to verify that the holograph
screen is indeed located atr H5)/2b by a direct analysis of
the geodesics in the Go¨del metric. Recall that according t
Bousso’s prescription@15#, the screen is determined as th
surfaceB where the geodesic expansionu vanishes, leading
to the ‘‘equation of motion’’ for the preferred holograph
screen,

u50, ~3.34!

with u[hmnDmjn defined as the contraction of the covaria
derivativeDmjn of the null covectorjm with respect to the
induced metrichmn on B.

The null geodesics~3.24! define a congruence whose a
sociated tangent vector is

j5~12b2r 2!
]

]t
1bS ]

]f1
1

]

]f2
D1A12b2r 2

]

]r
.

~3.35!

Its covector dual~which we denote by the same letterj! has
a rather simple form,

j[jmdXm52dt1A12b2r 2dr. ~3.36!

We can now evaluate the covariant derivativeDmjn and con-
tract it against the induced metrichmn, to obtain the geodesic
expansionu. After some straightforward algebra,

u5
324b2r 2

rA12b2r 2
. ~3.37!

Thus,u vanishes precisely atr 5r H[)/2b, in accord with
our anticipation in Eq.~3.14!. Notice also thatu diverges at
the origin and at the velocity-of-light surface, confirming th
those are indeed caustics of the geodesic motion.
10600
le

s
to

l

t

t

t

D. The Gödel universe of M theory

The lift of the five-dimensional Go¨del universeG5 to M
theory involves adding six flat dimensionsR6, which we
parametrize by coordinatesya , a51,...6. Together,t, xi and
ya form a coordinate systemXM on R11, with M50,...10.
The action of eleven-dimensional supergravity has the fo

L115
1

2k2 E d11XS R2
1

48
GMNPQGMNPQ1¯ D , ~3.38!

where ‘‘...’’ stand for the Chern-Simons term plus fermion
terms. The eleven-dimensional Go¨del solution is then given
by

ds252~dt1bv!21(
i 51

4

dxi
21 (

a51

6

dya
2,

Gi jab52bJi j Kab , ~3.39!

with all the other nonzero components ofGMNPQ related to
Eq. ~3.39! by permutations of indices, and the Ka¨hler formK
on theR6 factor defined byK1252K215K3452K435K56
52K6551.

Consider again the congruence of all null geodesics em
ted from the origin in space, where our comoving observe
located. The longitudinal momentaKa along ya are con-
served, leading to the following congruence of null geod
sics:

r 15
1

b
A12K2 sin~bl!cosq,

r 25
1

b
A12K2 sin~bl!sinq,

t5
1

2
~11K2!l1

1

4b
~12K2!sin~2bl!1t0 ,

f15bl1f1
~0! ,

f25bl1f2
~0! ,

ya5Kal. ~3.40!

Just as in the case of four-dimensional Go¨del’s solution
G33R discussed in the previous section, one can use ge
sics in the supersymmetric Go¨del solution G53R6 of M
theory to define several different classes of preferred scre
~see Fig. 5!. First of all, there is a preferred screen which
a direct product ofR6 and the screen that we found atr
5r H in G5 . This screen is translationally invariant along a
the extra dimensionsya , and clearly satisfies theu50 con-
dition trivially. It is observer-dependent, and should be as
ciated with an observer localized at a point inG5 but other-
wise delocalized alongR6, or with the maximal expansion o
light rays sent with zero momentumKa from the origin inG5
and arbitraryya .
3-11
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In addition, observers localized in a pointP both in G5

and in R6 will naturally see a compact screen in all dire
tions. The precise location of this compact screen can
found by considering the full congruence~3.40! of gedesics
emitted fromP. One can in principle calculate the expansi
parameteru and find the preferred compact screen as
surface of maximal expansion.

Using the affine parameterl and the total momentum
K2[KaKa alongR6 as coordinates, the shape of the scre
is determined from theu50 condition by a rather compli
cated implicit function ofl andK2,

05
1

2l
sin21~bl!@~12K2!bl cos~bl!1K2 sin~bl!#21

3@5K212~12K2!b2l21„25K214~12K2!b2l2
…

3cos~2bl!12~32K2!bl sin~2bl!#. ~3.41!

This screen is compact in all space dimensions, and exh
SO(6)3SU(2)3U(1) rotation invariance, withSO(6) act-
ing on ya andSU(2)3U(1) on xi .

There are several interesting points about this comp
screen. First of all, alongya50 this screen extends in ther
directions beyond the locationr H of the translationally in-
variant screen. This is in fact intuitively clear: once we a
the flat dimensionsya , the tendency of the geodesics to e
pand in theya dimensions competes against the refocus
behavior of the geodesics in ther direction ofG5 , effectively
slowing down the process of reaching the surface of maxi
area, which now happens for a slightly larger value ofr.
Notice also that the entire compact screen still fits nic
within the velocity-of-light surface as defined by our o
server. Therefore, closed timelike curves are again shie
from the observer by this screen.

FIG. 5. The two types of preferred screens in the M-the
Gödel G53R6. The translationally-invariant screen is located atr H
in G5 for all values ofuyu, and can be associated with an extend
observer delocalized or wrapped alongya . The screen associate
with a localized observer is compact in all space directions,
extends beyondr H , closer to the velocity-of-light surfacer 0 .
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IV. ANALOGIES WITH HOLOGRAPHY IN de SITTER
SPACE

Holography in de Sitter space is difficult due to the a
sence of a solvable model or an explicit embedding of
Sitter into string theory. As we have seen in the previo
sections, holography in the Go¨del universes exhibits notabl
analogies with holography in de Sitter space.

There are two important classes of preferred holograp
screens in de Sitter@15#: First, the future and past infinity ar
global, observer-independent screens of Euclidean signa
An attempt to formulate holography using these screens@7#
has led to the conjectured dS conformal field theory~CFT!
correspondence@8#. However, it is difficult to associate thes
global screens with an observer inside de Sitter: Disti
points at future infinity in de Sitter are outside of each o
er’s causal influence, and any operational definition of m
surable correlations seems to require a metaobserver.

The second class of screens is more suitable for the
scription of physics as seen by an observer inside de S
@2,3,6#: The preferred screen of a given observer is locate
his or her cosmological horizon. Since the area of t
observer-dependent screen is finite, the strong version o
holographic principle implies a finite number of degrees
freedom in the quantum mechanics associated with that
server. The finiteness of the number of degrees of freed
accessible to any given observer leads to various concep
puzzles, such as the recently discussed question of time
currences@27#. Observers following different trajectorie
have access to different holographic regions, perhaps
gesting a quantum mechanical description of de Sitter sp
as a web of infinitely many Hilbert spaces~each associated
with an observer and grasping a finite number of degree
freedom! with a complicated system of maps between th
~reflecting the exchange of data between causally conne
observers, and the horizon complementarity principle!.

Given the conceptual complexity of de Sitter holograph
it would be very helpful to have an explicit simple solvab
model exhibiting similar properties. We believe that the s
persymmetric Go¨del universes may provide such a mod
Indeed, preferred screens appearing in Go¨del holography
share many properties with the second type of prefer
screens in de Sitter space:

Both represent an example of homogeneous geome
with screens that are only defined when an observer has
selected. Observers following different worldlines will se
different holographic screens.

The underlying spacetime geometry is homogeneous,
this homogeneity is broken by the selection of the obser
and consequently by the location of the observer-depen
holographic screen, implying that the screen breaks spo
neously some of the symmetries of the naive vacuum. T
picture of observer-dependent holography stresses the im
tance of a local, environmentally-friendly definition of co
mological observables.

The finite proper area of the holographic screen implie
finite bound on the entropy that flows through the comp
holographic region of space associated with the observe
addition, the strong version of the holographic principle su

y

d

3-12
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gests that the observer has only access to a finite numb
degrees of freedom. Since the volume of space accessib
the observer is effectively finite, the system has effectiv
been put in a finite box. Some of the conceptual difficult
with a possible stringy realization of de Sitter space are c
nected to the fact that it is very difficult to confine strings
a finite box.
There are also some qualitative differences between G¨del
and de Sitter holography worth pointing out:

In the Gödel universe, the preferred screens are timeli
just as the canonical global screen in AdS space. On
other hand, the observer-dependent preferred screens
Sitter space are null.

The Gödel universe is supersymmetric.
In order to decide whether holography in the Go¨del universe
can be used as a supersymmetric laboratory for explo
conceptual questions arising in de Sitter holography~or more
generally, holography in cosmological spacetimes!, one
needs a more microscopic understanding of the Go¨del uni-
verses in string and M theory.

V. T DUALITY OF GÖ DEL UNIVERSES

One can compactify one of the flat directionsR6 ~sayy6)
of the M-theory Go¨del solution onS1 with constant radiusR
and obtain the following type IIA Go¨del background:

ds252~dt1bv!21(
i 51

4

~dxi !
21 (

a51

5

~dya!2,

Hi j 552bJi j , ~5.1!

Fi jab52bJi j Kab ,

where now in type IIA theorya,b...51,...5. The dilaton is
constant, implying that the string couplinggs can be kept
small everywhere, and the Go¨del solution is a solution of
weakly coupled type IIA superstring theory. Now, we canT
dualize along various dimensions.

A. T duality to a supersymmetric type IIB pp wave

The H field of the type IIA Gödel solution~5.1! extends
alongy5 , the dimension that was paired up in M theory wi
the extra dimensiony6 . It turns out thatT duality along this
dimension is particularly interesting. We first renamey5
[z, and use the gauge in which

Biz5bJi j x
j . ~5.2!

Due to the absence ofgzm cross terms in the metric, n
B-field will be generated afterT duality, and one gets

dsIIB
2 52dt222bv~dt1dz!1(

i 51

4

dxi
21 (

a51

4

dya
21dz2.

~5.3!

To see that this type IIB solution is in fact a supersymme
pp wave, it will be convenient to change the coordinates
follows. First, define light-cone coordinatesu5t1z, v5t
10600
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2z, and also switch from the Cartesian coordinatesxi to the
‘‘bipolar’’ coordinates given in Eq.~3.6!. Then, we perform a
u-dependent rotation in each of the two preferred planes
rotation,

f̃ i5f i2bu. ~5.4!

Upon introducing new Cartesian coordinatesx̃i ,

x̃11 i x̃25r 1ei f̃1,

x̃31 i x̃45r 2ei f̃2, ~5.5!

the type IIB metric~5.3! T dual to the Go¨del universe be-
comes

dsIIB
2 52dudv2b2S (

i 51

4

x̃i
2D du21(

i 51

4

dx̃i
21 (

a51

4

dya
2.

~5.6!

This metric has the standard form of a supersymmetricpp
wave, with the Go¨del rotation parameterb precisely equal to
the conventionally normalizedm parameter of thepp wave.
One can also easilyT dualize the Ramond-Ramond field
The self-dual type IIB five-form of the type IIB solution i
given byF5;du∧ J̃∧K, whereJ̃5( i , j 51

4 Ji j dx̃i∧dx̃j andK
5Sa,b51

4 Kabdya∧dyb . This type IIB solution is in fact the
supersymmetricpp wave resulting from the Penrose limit o
the near-horizon AdS33S33T4 geometry of a system of in
tersecting D3-branes, and was first found in@28#.

B. GödelÕpp-wave T duality

We have shown that the type IIA Go¨del universe isT dual
to a type IIBpp wave. One can turn this observation aroun
and ask whether other knownpp waves can also beT dual to
new Gödel-like universes. We indeed find a rich picture
Gödel or pp-wave duality which goes beyond the scope
the pp-waveT dualities discussed in the literature~see, e.g.,
@29#!.

Before generalizing the result of the previous subsect
to a broader class of Go¨del orpp-wave pairs, it is instructive
to first clarify which Killing dimension of the type IIBpp-
wave is being compactified onS1 andT-dualized to produce
the type IIA Gödel universe. Consider first the Killing vecto

j05
]

]u
2

]

]v
~5.7!

of the type IIBpp-wave background. This vector is spacelik
at the origin, but becomes timelike at some critical rad
distance. One can remedy this problem by augmentingj0
with a rotation in each of the two preferred planes

j5
]

]u
2

]

]v
1bS ]

]f̃1

1
]

]f̃2
D . ~5.8!
3-13
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BOYDA et al. PHYSICAL REVIEW D 67, 106003 ~2003!
This Killing vector j is everywhere spacelike, with th
spacelike rotation off-setting the effect of thedu2 terms in
the metric to keep this modified Killing vector spacelik
Moreover, the norm ofj is

uju251. ~5.9!

Consequently, if we compactify the orbit ofj on a circle of
fixed radiusR andT dualize, the dilaton field of the resultin
solution will stay constant. ThisT duality is precisely the
inverse of the type IIA→IIB T duality that maps the Go¨del
solution to thepp wave. Note that closed timelike curves a
introduced even though the orbifold action is generated by
everywhere-spacelike Killing vector.

C. New supersymmetric Gödel universes in string
and M theory

These observations lead to a very simple and general
scription for constructing a large class of Go¨del or pp-wave
T-dual pairs. Start with anypp wave in which an analog o
the Killing vectorj of Eq. ~5.8! @and satisfying Eq.~5.9! if
we want constantgs] can be identified. Compactification o
S1 along this Killing direction followed byT duality pro-
duces a Go¨del like solution of theT-dual string theory.

As an example of this, we present a new supersymme
Gödel universe of type IIA theory, as theT dual of the maxi-
mally supersymmetric type IIBpp wave@30#. Using the ob-
vious generalization of Eq.~5.8! that now involves four in-
dependent rotations in four independent two-planes of thepp
wave, we obtain a type IIA geometry with a constantH3 and
F4 . This type IIA solution can be lifted to an M-theory so
lution of R11 topology. Its metric factorizes to a product of
nontrivial metric on aG9 factor and the flat metric onR2,

ds252~dt1bÃ!21(
I 51

8

~dxI !
21 (

A51

2

~dyA!2,

Ã5JIJxIdxJ , ~5.10!

and the four-form strength can be written as

Gi jkl 54be i jkl , Gi jAB522bJi j KAB ,

Gmnpq524bemnpq, GmnAB522bJmnKAB ,
~5.11!

where i ,...51,...,4 and m,...55,...,8, while the indices
I ,...51,...,8 andA,B51,2; all the nonzero components o
the Kähler formsJIJ andKAB are now given byJ1252J21
5J3452J435J5652J655J7852J8751 and K1252K21
51.

This new supersymmetric Go¨del solutionG93R2 of M
theory exhibits exactly the same qualitative holographic f
tures as theG53R6 solution. In particular one finds compa
closed timelike curves that are topologically large, and
analysis of geodesics reveals the same qualitative structu
holographic screens.
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VI. DISCUSSION

Following a phenomenological approach to holograp
we have identified preferred holographic screens as see
inertial observers in a class of homogeneous universes o
Gödel type, with closed timelike curves. The structure
holographic screens change dramatically the question of
sality, by hiding all closed timelike curves or breaking the
into causal pieces. It is tempting to suspect that hologra
serves as the chronology protection agency, and in comb
tion with a version of the complementarity principle can le
to a consistent quantum mechanical description of this u
verse. We also noticed close analogies with the structur
holographic screens in de Sitter space, which can make
Gödel universes an interesting supersymmetric laboratory
exploring de Sitter holography. This phenomenological ide
tification of natural screens does not tell us, howev
whether the holographic dual is given by some se
consistent quantum mechanics, or whether the patholog
closed timelike curves is just translated into some incon
tency of the holographic dual. These and similar questi
require a microscopic understanding of holography in Go¨del
universes in string or M theory. We have found evidence t
the Gödel-like cosmologies represent a remarkable a
highly solvable class of solutions of string theory, and are
fact T dual to solvable supersymmetricpp-wave solutions.
Further investigation of microscopic aspects of Go¨del uni-
verses and their holography in string and M theory is
progress@17#.

Note added: As was pointed out to us after the completio
of this work, theT-duality relation between the 5D Go¨del
universe~5.1! and the geometry of Eq.~5.3! can also be
obtained from aT-duality relation found a week earlier b
Herdeiro in@32#, by taking the limit of zero chargesP5Q
5QKK50 in Eq. ~4.11! of @32#.6 However, it was not real-
ized in @32# that theT dual of the Go¨del universe is a super
symmetricHpp wave; instead, thisT dual was conjecturally
interpreted in@32# as a rotating background.
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APPENDIX: GEOMETRY OF THE GO¨ DEL UNIVERSES

In this appendix we collect various aspects of the R
mannian geometry of the Go¨del universesG5 and G9 that
play a central role in the paper.

We are using the111 conventions of MTW@31#; in
particular, our metric is of the ‘‘mostly plus’’ signature.

6We thank Harvey Reall for pointing this out to us.
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1. The five-dimensional Go¨del universe

In the original Cartesian coordinatest, xi it is natural to
introduce a vielbein

e05dt1bv, ei5dxi , i 51,...4, ~A1!

so that the metric onG5 can be written simply as

gmn52em
0en

01(
i

em
ien

i . ~A2!

In this vielbein, the spin connection one-forms are

V i j 5bJi j dt1b2Ji j Jk,xkdx, ,

V i052V0i5bJi j dxj . ~A3!

These simple expressions for the spin connection can be
to easily extract the form of the Ricci tensor in the Cartes
coordinates,

RmndXmdXn54b2dt218b3Ji j xidtdxj

12b2~d i j 22b2JikJj ,xkx,!dxidxj .

~A4!

The scalar curvature is constant,

R54b2, ~A5!

as is indeed implied by the homogeneity of the solution. T
Einstein tensorGmn5Rmn21/2Rgmn has the pressureles
fluid form,

GmndXmdXn56b2dt2112b3Ji j xidxjdt

16b4JikJj ,xkx,dxidxj

56b2umundXmdXn, ~A6!

with

umdXm52dt2bJi j xidxj ~A7!

the covariant dual of the timelike Killing vector]/]t. This is
matched by the energy-momentum tensor of the cons
gauge field strengthF;J, which is also of the pressureles
fluid form.

For the calculation of the geodesic expansion parametu
in the body of the paper, it is also useful to know the nonz
Christoffel symbols in the ‘‘bipolar’’ coordinates
(r 1 ,f1 ,r 2f2),

G r 1t
t 5b2r 1 , Gf1t

r 1 5br 1 , G r 1t
f152

b

r 1
,

Gf1r 1

t 5b3r 1
3, Gf1f1

r 1 52r 1~122b2r 1
2!,

Gf1r 1

f1 5
1

r 1
2b2r 1 ,
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Gf2r 1

t 5b3r 1r 2
2, Gf1f2

r 1 5b2r 1r 2
2,

Gf2r 1

f1 52
b2r 2

2

r 1
,

G r 2t
t 5b2r 2 , Gf2t

r 2 5br 2 , G r 2t
f252

b

r 2
,

~A8!

Gf2r 2

t 5b3r 2
3, Gf2f2

r 2 52r 2~122b2r 2
2!,

Gf2r 2

f2 5
1

r 2
2b2r 2 ,

Gf1r 2

t 5b3r 2r 1
2, Gf1f2

r 2 5b2r 1
2r 2 ,

Gf1r 2

f2 52
b2r 1

2

r 2
.

2. The nine-dimensional Go¨del universe

This solution, discussed in Sec. V, isT dual to the maxi-
mally supersymmetric type IIBpp wave.

We again introduce the natural vielbein in which the m
ric is of the form~A2!,

e05dt1bv, eI5dxI , i 51,...8. ~A9!

In this basis, the spin connection one-forms are given by

V IJ5bJIJdt1b2JIJJKLxKdxL ,

V I052V0I5bJIJdxJ , ~A10!

with the Ricci tensor

RMNdXMdXN58b2dt2116b3JIJxIdxJdt

1~2b2d IJ18b4JIKxKJJLxL!dxIdxJ ,

~A11!

the scalar curvature

R58b2, ~A12!

and the Einstein tensor

S RMN2
1

2
RgMNDdXMdxN

512b2dt2124b3JIJxIdxJdt2~2b2d IJ

212b4JIKxKJJLxL!dxIdxJ . ~A13!

Notice that unlike in the case of the five-dimensional Go¨del
solution, the Einstein tensor of the nine-dimensional Go¨del
universe is no longer of the pressureless fluid form.
3-15
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